
Lin2-Xor Lemma and
Log-size Linkable Threshold Ring Signature

Anton A. Sokolov
acmxddk@gmail.com

Full version

Abstract In this paper we introduce a novel method for constructing an efficient linkable ring signature without
a trusted setup in a group where decisional Diffie-Hellman problem is hard and no bilinear pairings exist. Our
linkable ring signature is logarithmic in the anonymity set size, its verification complexity is linear in the anonymity
set size and logarithmic in the signer threshold. A range of the recently proposed setup-free logarithmic size
signatures is based on the commitment-to-zero proving system by Groth and Kohlweiss or on the Bulletproofs
inner-product compression method by Bünz et al. In contrast, we construct our signature from scratch using the
Lin2-Xor and Lin2-Selector lemmas that we formulate and prove here. With these lemmas we construct an n-round
public coin special honest verifier zero-knowledge membership proof protocol and instantiate the protocol in the
form of a general-purpose setup-free linkable threshold ring signature in the random oracle model. Also, we show
the signature is anonymous, has witness-extended emulation, is unforgeable and non-frameable.

Keywords: Ring signature, linkable ring signature, log-size signature, threshold, membership proof, anonymity,
zero-knowledge, disjunctive proof, unforgeability, non-frameability, witness-extended emulation.

1 INTRODUCTION
In simple words, the problem is to sign a message m in such a way as to convince a verifier that someone out

of a group of possible signers has actually signed the message without revealing the signer identity. A group of
signers is called an anonymity set or, interchangeably, a ring. It could be required that L signers sign a message,
L is a threshold in this case. As an extension, it could be required that every signer can sign only once, in this
case the signature is called linkable. It is also desirable that the signature size and verification complexity are to be
minimal. An effective solution to the stated problem plays a role in cryptographic applications, for instance, in the
telecommunication and peer-to-peer distributed systems.

A formal notion of ring signatures and the early yet efficient schemes are presented in the works of Rivest,
Shamir, and Tauman [22], Abe, Ohkubo, and Suzuki [1], Liu, Wei, and Wong [19], an example of a system that
uses linkable ring signatures is, for instance, CryptoNote [25]. The nice features of these schemes are those there
is no trusted setup process and no selected entities in them, an actual signer is allowed to form a ring in an ad hoc
manner without notifying the other participants about this. All these signatures have sizes that grow linearly in the
signer anonymity set size, their verification complexities are linear, too.

The schemes in [1, 19] and other linkable ring signature schemes can be instantiated with a prime-order
cyclic group under the discrete logarithm problem hardness (DL) assumption. The scheme security and signer
anonymity are usually, e.g. as in [19], reduced to one of the stronger hardness assumptions, e.g. to the decisional
Diffie-Hellman (DDH) assumption in the random oracle model (ROM).

Recent works by Tsz Hon Yuen, Shi feng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin, Qingzhao
Zhang, and Dawu Gu [26], Sarang Noether and Brandon Goodell [20], Benjamin E. Diamond [3], Russell W. F.
Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Krishnan Thyagarajan, and JiafanWang [17],
William Black and Ryan Henry [4], and others show that under the common assumptions for a prime-order cyclic
group where DL is hard it’s possible to build a setup-free linkable ring signature with logarithmic size.

As another line of solutions, in the works of Jens Groth [13], Daira Hopwood, Sean Bowe, Taylor Hornby, and
Nathan Wilcox [15], and in some others it is shown that signer-ambiguous signatures with asymptotically lower
than logarithmic sizes and lower than linear verification complexities can be built at the cost of requiring a trusted
setup or bilinear pairings to an underlying prime-order group. However, this line of solutions is out of the scope of
our current work.

In this paper we construct a setup-free logarithmic-size linkable ring signature scheme over a prime-order cyclic
group without bilinear pairings under the DDH assumption in ROM.

1

1.1 CONTRIBUTION
1.1.1 LIN2-XOR AND LIN2-SELECTOR LEMMAS

We formulate and prove Lin2-Xor lemma that allows for committing to exactly one pair of elements out of two
pairs of elements. Using the Lin2-Xor lemma as a disjunction unit, we formulate and prove Lin2-Selector lemma
that allows for committing to exactly one pair of elements out of many pairs of elements.

The Lin2-Selector lemma provides a pure n-round public coin protocol that, being successfully played between
any prover and an honest verifier, convinces the verifier that the prover knows an opening (k0, k1, s) to a commitment
Z such that

Z = k0Ps + k1Qs,

where the pair (Ps,Qs), s ∈ [0, N − 1], is taken from a publicly known set of element pairs
{(

Pj,Q j

)}N−1
j=0 such that

there is no known discrete logarithm relationship between any elements in the set.
With the Lin2-Selector lemma, no additional proof is required that the commitment Z has the form k0Ps+ k1Qs .

After the lemma’s n-round public coin protocol has been successfully completed, the verifier is convinced both in
the form Z = k0Ps+ k1Qs , and in the prover’s knowledge of (k0, k1, s). The Lin2-Xor and Lin2-Selector lemmas are
proven for a prime-order group under the DL hardness assumption. We show, that the amount of data transmitted
from a prover to a verifier during the Lin2-Selector protocol execution is logarithmic in the size of the element pair
set

{(
Pj,Q j

)}N−1
j=0 , which we consider as a decoy set.

1.1.2 L2S SET MEMBERSHIP PROOF PROTOCOL AND MRL2SLNKSIG LINKABLE RING SIGNATURE

By defining prover’s behavior for the Lin2-Selector lemma pure protocol, we create an interactive n-round
public coin set membership proof protocol, called L2S. The L2S protocol inherits the properties of the Lin2-
Selector lemma pure protocol and thus convinces the verifier that the commitment Z = k0Ps + k1Qs is built over a
member (Ps,Qs) of a set of element pairs with unknown discrete logarithmic relationship between the elements from
all the pairs. We prove the L2S protocol is complete and sound under DL, special honest verifier zero-knowledge
(sHVZK) under DDH.

Using the L2S protocol we construct a non-interactive sHVZK many-out-of-many MRL2SPoM membership
proof scheme and, consequently, construct a many-out-of-many MRL2SLnkSig logarithmic-size linkable ring
signature, which appears to be anonymous, unforgeable, and non-frameable under DDH in ROM. Moreover, under
these assumptions, the MRL2SLnkSig signature continues to maintain its anonymity when its rings are composed
of unevenly distributed or partially corrupted public keys. Therefore, we present our MRL2SLnkSig signature as a
general-purpose log-size solution for the linkable threshold ring signature problem.

1.1.3 NOVEL METHOD FOR CONSTRUCTING A LINKABLE RING SIGNATURE

In comparision to the setup-free log-size linkable ring signature schemes proposed in [26, 20, 3, 17], that
originate from the ideas of Jens Groth and Markulf Kohlweiss [14] or from the ideas of Benedikt Bünz, Jonathan
Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell [6], our signature scheme is constructed
on a basis different from [14, 6].

A parallel can be drawn with the work [14], which introduced a mechanism similar to the Kronecker’s delta
to select a member of the anonymity set without revealing it. Our signature uses the Lin2-Xor and, consequantly,
Lin2-Selector lemmas in exactly the same role. There is a difference in the anonymity sets: the anonymity sets in
[14] lie in the plane of two orthogonal generators, while the anonymity sets for the Lin2-Selector lemma protocol
are sets of orthogonal generators.

Thus, the Lin2-Xor lemma provides a new cryptographic primitive that can be used to construct a ring signature
and possibly to construct other schemes. We also formulate and prove a stronger version of the Lin2-Xor lemma,
Lin2-Xor-WEE, which we use to prove the signature unforgeability.

1.2 METHOD OVERVIEW
1.2.1 LIN2 LEMMA

Firstly we formulate and prove a helper lemma, that connects Z to the P and Q in the equation

w(P + cQ) = Z + rH,

where Z,H, P,Q are fixed elements of a primary-order group where DL is hard, c is a verifier’s challenge, r is a
prover’s reply, and w is a non-zero scalar known to the prover.

2

The lemma states that if no discrete logarithm relationship between P and Q is known, if the prover is able to
reply with a scalar r to a random challenge c and, in addition to this, if it is able to show that the above equation
holds for some known to it private w, then the scalars a and b in the equality

Z = aP + bQ

are certainly known to the prover.

1.2.2 LIN2-XOR LEMMA AND ITS COROLLARIES
Next, we consider a linear combination R of four fixed primary-order group elements P1, Q1, P2, Q2 with

unknown discrete logarithm relationship between them

R = c20 (c10P1 + c11Q2) + c21 (c12P2 + c13Q2) ,

where c11, c13, c21 are random scalars, and c10, c12, c20 are always equal to 1. That is, reducing the constant
coefficients, we consider the following linear combination

R = (P1 + c11Q2) + c21 (P2 + c13Q2) .

It turns out that if prover demonstrates a pair of fixed elements (Z,H1) at the beginning, receives a pair of
random challenges (c11, c13) from verifier, responds with a scalar-element pair (r1,H2), then receives a random
challenge c21, responds with scalar r2, and finally shows that the equation

wR = Z + r1H1 + r2H2

holds for some secretly known non-zero scalar w, then Z has the following property: it equals to exactly one
of (aP1 + bQ1) and (aP2 + bQ2) for some known to the prover scalars a, b. We formulate this property and the
necessary conditions as Lin2-Xor lemma. The key condition is that the pair (Z,H1) is to be chosen without knowing
the challenges (c11, c13, c21), and the pair (r1,H2) is to be chosen without knowing c21.

In other words, the Lin2-Xor lemma states that the above game ends successfully only if the prover knows the
scalars a and b such that

(Z = aP1 + bQ1) ⊕ (Z = aP2 + bQ2).

After successful completion of the Lin2-Xor lemma protocol the verifier is convinced that Z is a linear combination
of (P1,Q1) or (P2,Q2). There is no way for Z to be, for example, a linear combination of all four elements
Z = aP1 + bP2 + dQ1 + eQ2 with known to the prover non-zero a, b, d, e.

Also, as a corollary, after the protocol successful completion the verifier is convinced that H1 is a linear
combination of either (P1, Q1) or (P2, Q2), that is, H1 has a similar property

(H1 = f P1 + gQ1) ⊕ (H1 = f P2 + gQ2)

for some known to the prover f , g. Moreover, as another corollary, if this game succeeds, then there is some known
to the prover x such that the element Z + r1H1 has the following property

(Z + r1H1 = x(P1 + c11Q1)) ⊕ (Z + r1H1 = x(P2 + c13Q2)).

1.2.3 LIN2-SELECTOR LEMMA
It turns out that the Lin2-Xor lemma can be ‘stacked’, i.e. applied several times as an n-round game to an

arbitrary number of fixed orthogonal elements. We assume the number of elements is a power of 2. For instance,
for eight fixed orthogonal elements P1, Q1, P2, Q2, P3, Q3, P4, Q4, and for two fixed elements Z,H1, the game will
contain

R = ((P1 + c11Q1) + c21 (P2 + c13Q2)) + c31 ((P3 + c11Q3) + c23 (P4 + c13Q4)) ,

wR = Z + r1H1 + r2H2 + r3H3,

where the (c11, c13) is the first challenge and the (r1,H2) is the first reply, the (c21, c23) is the second challenge and
the (r2,H3) is the second reply, the c31 is the third challenge and the r3 is the third reply.

In this game, Lin2-Selector lemma convinces the verifier that Z is exactly one of (aP1 + bQ1), (aP2 + bQ2),
(aP3 + bQ3), (aP4 + bQ4) for some known to the prover a, b. Namely, by applying one of the Lin2-Xor lemma
corollaries, it becomes proven that exactly one equality of the following two

(Z + r1H1 + r2H2) = x((P1 + c11Q1) + c21(P2 + c13Q2)),

(Z + r1H1 + r2H2) = x((P3 + c11Q3) + c23(P4 + c13Q4))

3

holds for some known to the prover x. Applying the Lin2-Xor lemma to the equality that holds, suppose, to the
first one, it becomes proven that Z is exactly one of (aP1 + bQ1), (aP2 + bQ2) for some a, b known to the prover.
The same happens for the case when the second equality holds.

For a set of 2n−1 pairs
{(

Pj,Q j

)}2n−1−1
j=0 , the Lin2-Selector lemma provides a general method and a protocol for

constructing R such that
wR = Z +

∑
i=1...n

riHi,

where the verifier is convinced that Z = k0Ps + k1Qs for some known to prover s ∈
[
0, 2n−1 − 1

]
, k0, k1. The

actual s can be made indistinguishable by keeping the scalars k0 and k1 in secret.

1.2.4 LEMMA PROOFS, PURE PROTOCOLS, AND SOUNDNESS

Overall, the Lin2, Lin2-Xor, and Lin2-Selector lemmas have similar structure of their premises and conclusions
in our work. The structure is this: a premise declares the necessary assumptions about the publicly seen values
and defines what we call a pure protocol. The conclusion is that if the assumptions hold and the pure protocol is
successfully completed, then the verifier is convinced that the prover knows some secret values.

A pure protocol specifies in detail what the verifier should do, however it does not specify the same for the prover.
It only describes what the prover has to reply to the verifier, without specifying how to prepare the replies. With
this minimum of information, we can prove soundness of the pure protocol, namely, that the protocol successful
completion implies that the prover knows the secret values. The Lin2, Lin2-Xor, and Lin2-Selector lemmas provide
proofs of soundness for their pure protocols. In other words, these lemmas state that for any prover strategy,
including a dishonest one, the verifier is convinced that the prover knows certain secret values after the successful
completion of the corresponding pure protocol.

We don’t consider completeness and zero-knowledge for the pure protocols, since these properties depend on
how the prover prepares the responses. If a pure protocol is proven to be sound, then a derived protocol that
specifies prover’s behavior in detail inherits the soundness. When the prover’s behavior is fully defined in a derived
protocol, we begin to consider its completeness and zero-knowledge.

As should be already seen, we use the term ‘soundness’ in the sense in which it is more often used in deductive
logic rather than in cryptography, where this term is usually meant a shorthand for ‘special soundness’. We
distinguish between these two terms and use the term ‘soundness’ in the sense of the basic relationship between
knowledge of secret values and successful completion of the protocol, while the term ‘special soundness’ in the
stricter sense of witness extraction from a series of run, as it is defined in cryptography, keeping in mind the latter
always implies the former.

We assume that the prover and verifier are probabilistic polynomial-time Turing machines (PPT), equipped with
a common tape on which they record their conversation transcript. When we prove soundness of a pure protocol, the
verifier is assumed honest, while the prover is assumed to have a dishonest subroutine that gives with overwhelming
probability acceptable replies to the uniformly random challenges such that the protocol succeeds.

To prove soundness of the Lin2 lemma protocol, we suppose that the secret values in question are not known to
the prover. We consider two successful Lin2 lemma protocol transcripts, one of which is that of the prover-verifier
conversation, and the other one is that the prover gets itself by calling the dishonest subroutine for another set of
challenges taken from its random tape. We demonstrate a polynomial-time algorithm that extracts the secret values
in question from these two transcripts using known to the prover information. Thus, we show that even without
knowing these values, once the prover is able to successfully complete the protocol, it is able to obtain them in a
polynomial time. Hence the protocol is sound.

We use the same method for the Lin2-Xor lemma protocol with the only difference that we do not immediately
demonstrate a polynomial time algorithm that finds the secret values if the protocol is successful. Instead, we
prove the possibility of such an algorithm, namely, we gradually find what values can be obtained by the prover in
polynomial time, and finally show that the secret values in question are among them. For the Lin2-Selector lemma
protocol we do the same using the Lin2 and Lin2-Xor lemmas. Thus we prove soundness of the lemma protocols.

1.2.5 SOUNDNESS, UNFORGEABILITY, AND WITNESS-EXTENDED EMULATION

So, we have proven that the protocols given in the Lin2, Lin2-Xor, and Lin2-Selector lemmas are sound. In
their proofs we first and foremost used the logical inference based on the impossibility of circumventing the DL
assumption. This inference is non-trivial, so we even introduced a tiny symbolic logic system that repeats the usual
way of getting system properties from DL.

Having proven soundness of the Lin2-Selector lemma protocol, it is easy to construct a zero-knowledge
membership proof protocol and a signature based on it. However, there still exists the question of how to prove
unforgeability of such a signature. Here we have to start using the canvas of modern cryptography, where the

4

methods for proving unforgeability have been already developed. To do this, first of all, we reformulate the three
mentioned lemmas as Lin2-WEE, Lin2-Xor-WEE, and Lin2-Selector-WEE ones, and prove the witness-extended
emulation (WEE) property for each of their protocols. The WEE property can be thought of as a slightly increased
soundness, however, it is enough to prove signature unforgeability with it.

The Lin2-WEE, Lin2-Xor-WEE, and Lin2-Selector-WEE lemmas are similar to their former counterparts, with
the main difference that the logical inference used in the Lin2, Lin2-Xor, and Lin2-Selector lemmas is replaced
by witness extraction algebra in them, although their witness extraction algebra often resembles the former logical
inference. Another question is why did we leave the Lin2, Lin2-Xor, and Lin2-Selector lemmas, if there are their
WEE counterparts providing what we need instead of them. The answer is that we think it makes sense to show
the way that led us to the signature scheme, and then show a way to verify its unforgeability. To do the latter, we
adapt the methods by Jens Groth and Markulf Kohlweiss [14] and by Joseph K. Liu, Victor K. Wei, and Duncan S.
Wong [19].

1.2.6 L2S MEMBERSHIP PROOF, MRL2SLNKSIG SIGNATURE

We construct L2S set membership proof protocol on top of the Lin2-Selector lemma pure protocol, although,
to be precise, we construct it on top of the Lin2-Selector-WEE lemma pure protocol. We prove that the L2S
protocol is complete and sound, obtaining the soundness directly from the Lin2-Selector lemma, and also that it
has witness-extended emulation, obtaining it from the Lin2-Selector-WEE lemma.

Then we analyze the L2S protocol transcript and show that all its records have distributions indistinguishable
from independent and uniform randomness, except for one record, which is a linear combination of other records
in the transcript. On this basis, we show that the L2S protocol is sHVZK using the definition and method by
Ronald Cramer, Ivan Damgård, and Berry Schoenmakers [7], and therefore doesn’t reveal any information other
than membership. This allows us to build an anonymous signature based on it.

The L2S protocol is efficient, it requires transmitting one point Z plus n scalar-point pairs (ri,Hi), and computing
one multi-exponentiation for N during verification. Here N translates to 2Ssz , where Ssz is the anonymity set size,
and n = log2(N). Overall, in all schemes in this paper the value R (introduced in 1.2.3) is calculated as a multi-
exponent only once during the verification, thus each scheme verification takes time about (2 . . . 4)Ssz/log2(Ssz)
plus O(log2(Ssz)), plus maybe not a big O(Ssz) related to the signature linking tags.

With a couple of auxiliary steps, using the Fiat-Shamir heuristic, we turn the L2S protocol into a non-
interactivemany-out-of-many proof ofmembership schemeMRL2SPoMand into a linkable threshold ring signature
MRL2SLnkSig with a link tag in the form x−1Hpoint(P), where P = xG, and Hpoint is a hash to curve function.
While the MRL2SPoM proof of membership scheme requires all elements of its anonymity set to be orthogonal to
each other, the MRL2SLnkSig scheme removes this limitation by lifting the anonymity set to an orthogonal set of
an Hpoint-based hash function images, and then applying the MRL2SPoM to this orthogonal set.

2 PRELIMINARIES
• Let G be a cyclic group of prime order in which the discrete logarithm problem is hard, and let F be a scalar
field of G. The field F is finite, of the same order as G.

• Let lowercase italic letters and words a, b, sum, . . . denote scalars in F. Sometimes indices and apostrophes
are appended: a12, b′, sp1 , sum1, Also, lowercase italic letters and words can be used to designate
integers used as indices, e.g., i, j1, idx1, . . . , this usage is clear from the context.

• Let uppercase italic letters and words A, B, X , P, H, . . . denote the elements of G. Indices and apostrophes
can be appended: A1, B′, X12, P11, Zp

0 , Also, uppercase italic letters denote sets and, sometimes,
integers, that is clear from the context. The letters N and M are reserved for integer powers of 2.

• Let 0 denote the zero element of G and also denote the zero scalar in F, it’s easy to distinguish its meaning
from the context.

• Let G be a generator of G. As G is a prime-order group, any non-zero element A is a generator of G, hence
we assume G is an a-priory chosen element.

2.1 A NOTE ABOUT CONTEXT
All definitions and lemmas below are given in the context of a game between Prover and Verifier, unless

otherwise stated. During the game Prover tries to convince Verifier that certain facts are true. For the sake of this,
Prover may disclose some information to Verifier, the latter may pick some, e.g., random, challenges, send them to
Prover and get some values back from it.

5

The game can contain multiple protocols that prescribe who provides what. Thus, playing the game Prover and
Verifier execute protocols among themselves, so that Verifier gradually becomes convinced of the facts. A protocol
can be translated into corresponding non-interactive scheme using the Fiat-Shamir heuristic in ROM.

We start by proving our lemmas in the interactive setting, then they are translated into the non-interactive setting
using the Fiat-Shamir heuristic.

2.2 DEFINITIONS
2.2.1 SECURITY PARAMETER AND CRS

We assume security parameter λ is equal to the logarithm of cardinality of F. The cardinalities of F and G
are equal to each other, so λ is equal to the logarithm of cardinality of G We omit mentioning λ in the protocols,
implying polynomial time is the polynomial time in λ everywhere.

The same is about common reference string (CRS) that contains parameters of G, G, and is implied silently
passed to all the protocols and hash functions.

2.2.2 SETS AND VECTORS

Sets are assumed having cardinalities that are polynomial in λ everywhere, of course, excluding G and F.
Vectors are ordered sets.

Sets are denoted by uppercase italic letters or curly brackets. Vectors of scalars or elements are denoted using
either square brackets [] or arrows over italic lowercase or uppercase letters, respectively: ®x, ®X .

Brackets can be omitted where it is not ambiguous, e.g., if S = {B1, B2, . . . , Bn}, then the sequence B1, B2, . . .,
Bn represents the same set S.

2.2.3 KNOWN AND UNKNOWN DISCRETE LOGARITHM RELATION

We say that a discrete logarithm relation between any element A and a non-zero element B is known iff scalar
x in the equation

A = xB

is known or can be efficiently calculated.
For any element A and for any finite set of non-zero elements S = {B1, B2, . . . , Bn}, we say a discrete logarithm

relation of A to S is known iff the scalars x1, x2, . . ., xn in the equation

A = x1B1 + x2B2 + . . . + xnBn.

can be efficiently calculated.
The term “efficiently calculated” means that a probabilistic polynomial-time algorithm (PPT) that solves the

problem with a non-negligible probability can be demonstrated. Since all the sets in our paper have polynomial
cardinality (excluding G and F) and since all the proofs have polynomial numbers of steps, we consider the terms
“efficiently calculated” and “known” as having the same meaning throughout.

If it’s proven that it’s infeasible to build a PPT for calculating x in A = xB, then we say that a discrete logarithm
relation between A and B is unknown or, equivalently, that finding it is hard. The same is about the discrete
logarithm relation of A to an element set S.

If we can’t say that a discrete logarithm relation between A and B is known and, at the same time, if we don’t
have any proof about that it is unknown, then we say nothing. The same is about the relation of A to a set S.

2.2.4 DL AND DDH ASSUMPTIONS

The discrete logarithm assumption (DL) is defined as: for any non-zero element A, for a randomly and uniformly
chosen scalar x, it is hard to find x from the pair (A, xA).

The decisional Diffie–Hellman assumption (DDH) is defined as: for any non-zero element H, for randomly
and uniformly chosen scalar series {a}, {b}, {c}, it is hard to distinguish the series of triplets {(aH, bH, abH)} and
{(aH, bH, cH)}.

DDH implies DL. We assume DL holds for G everywhere. When we prove zero-knowledge, we assume that
DDH holds for G.

2.2.5 SHORTHANDS FOR THE KNOWN AND UNKNOWN DISCRETE LOGARITHM RELATIONS

To simplify reasoning about the discrete logarithm relation, we introduce several shorthands, which in turn
form a tiny symbolic logic system.

6

For any two elements A and B such that B , 0, the simbol ‘∼’ in statement

A ∼ B

denotes the fact of knowing the discrete logarithm relation between A and B.
If a discrete logarithm relation between A and B is unknown, we write

A !∼ B.

Although the statement A !∼ B may look as an inverted A ∼ B, it is not. These statements don’t obey the law
of excluded middle, the only assumed law and inference rule for them are:

• (not (A ∼ B and A !∼ B)), meaning that it’s not possible for a discrete logarithm relationship to be simulta-
neously known and unknown.

• (not A ∼ B)⇒ A !∼ B, meaning that if knowing a discrete logarithm relationship between A and B leads to
a contradiction, then it is assumed to be unknown.

Thus, the denotations A ∼ B and A !∼ B together with the above law and inference rule provide us with a symbolic
logic system, which is a shorthand way for the commonway of reasoning about knowledge of the discrete logarithm.

That is, instead of writing, e.g. “suppose, x in A = xB is known, then . . . logical chain . . . this is a contradiction,
hence, solving A = xB is hard”, we write

(A ∼ B⇒ . . . logical chain . . .⇒ Contradiction) ⇒ A !∼ B.

We will not go deeper into the properties of this symbolic logic system now. A typical way of obtaining new
statements using it is to make a supposition A ∼ B, see if it leads to a contradiction, and, if a contradiction is found,
obtain the statements (not A ∼ B) and A !∼ B. Note that nothing can be obtained from supposition of A !∼ B.

Likewise, for any element A and any finite number of non-zero elements B1, B2, . . ., Bn, let’s denote as

A = lin (B1, B2, . . ., Bn)

the fact of knowing the discrete logarithm relation of A to {B1, B2, . . ., Bn}.
If finding a discrete logarithm relation of A to a set of non-zero elements {B1, B2, . . ., Bn} is hard, we write

A != lin (B1, B2, . . ., Bn) .

The law and inference rule for these statements are similar to those for A ∼ B and A !∼ B:
• (not (A = lin (B1, B2, . . ., Bn) and A != lin (B1, B2, . . ., Bn)))
• (not A = lin (B1, B2, . . ., Bn))⇒ A != lin (B1, B2, . . ., Bn)

Also, for any elements A and B such that B , 0

A = lin (B) is equivalent to A ∼ B,

and A != lin (B) is equivalent to A !∼ B.

2.2.6 ORTHOGONAL SETS
For any set S = {B1, B2, . . ., Bn} of non-zero elements, if for each element Bi ∈ S holds Bi != lin (S\ {Bi}),

then we denote this fact as
ort (S)

and call it an unknown discrete logarithm of each element in a set to the other elements in the set.
For any S, ort (S) means that no element in S can be expressed by means of other elements in S. So, as a

shorthand, we call S a set of independent, or orthogonal, elements in this case.

2.2.7 EVIDENCE
Let’s call a valid proof that Prover provides to Verifier and thereby convinces the latter of some fact as evidence

of that fact. Thus, the game’s goal is for Prover to convince Verifier of the facts using evidences.
For instance, if x in the relation A = xB is known to Prover, we write this fact as

A ∼ B for Prover.

Evidence of this fact can simply be the x that Prover provides to Verifier so that the latter can verify that A = xB
(assuming A and B are already shared between them).

7

In general, any acceptable way to convince Verifier of the Prover’s knowledge of x in A ∼ B can be considered
as evidence of the above fact. For example, it can be an appropriate sigma-protocol or a Schnorr signature (s, c),
where sB + cA = R and c is an output of a pre-agreed ideal hash function on input (B, A, R).

The term “evidence” is introduced in order to distinguish the proofs of statements and lemmas from the proofs
of facts that Prover provides to Verifier and the latter checks and accepts. For instance, we write

• simply (A ∼ B and C !∼D), when the fact is that x in A = xB is known to both Prover and Verifier and y in
C = yD is hard to compute for both of them,

• (A ∼ B and C !∼D) for Prover, when the fact is that x in A = xB is known to Prover and computing y in
C = yD is hard for Prover,

• evidence of (A ∼ B and C !∼D), when there is a known to Verifier acceptable proof for the fact that x in
A = xB is known to Prover and calculating y in C = yD is hard for Prover.

We call a protocol an evidence of a fact if successful completion of the protocol means that Verifier is convinced
that the fact holds on the Prover’s side with overwhelming probability. In this case the protocol is also called sound.

The term “evidence” resembles the term “argument of knowledge” defined in [6] or in [18]. However, the
“argument of knowledge” is a stricter term, as e.g. by definition in [6] it requires the perfect completeness and
witness-extended emulation, whereas “evidence” has only to be valid, i.e. to be sound. Also, we use the term
“soundness” to denote the property that successful protocol completion implies overwhelming probability for a
particular fact to hold on the Prover’s side. The term “soundness” differs from the term “knowledge soundness”
defined in [18] in that the latter requires existence of a knowledge extractor. In any case, as shown, e.g. in [6],
“knowledge soundness” implies “soundness”.

When an evidence is sent from Prover to Verifier, if it fails verification on the Verifier’s side, then the protocol
terminates with an error status. For some protocols we define function Verif that checks provided evidences, and a
protocol immediately exits by error if Verif returns 0.

2.2.8 FIXED ELEMENTS

An element A is said to be fixed for a protocol if it remains unchanged during execution of the protocol. For
example, A is fixed for a protocol if it is revealed at the beginning of the protocol and don’t change later, or, when
A = xB, if x and B are revealed at the beginning and aren’t changed until the end of the protocol.

2.2.9 RANDOM CHOICE

We use only uniform random choice of scalars over F everywhere and call it simply ‘random choice’. It is
assumed that the probability that a randomly chosen scalar will be equal to zero is negligible.

2.2.10 NEGLIGIBLE PROBABILITY AND CONTRADICTIONS

We assume probability to be negligible if its inverse is exponential in the security parameter λ. Consequently,
if by implications we get a statement that holds with the negligible probability, we assume the statement does not
hold.

The same is applied to contradictions: if we have an assumption and its implication such that the implication
holds with the negligible probability, we get a contradiction. For example, (assumption holds)⇒ (c = c′, where c
and c′ are chosen uniformly and independently at random)⇒ Contradiction.

2.2.11 DECOY SETS AND THEIR CARDINALITY

We call the anonymity set as a decoy set. One entry of a decoy set belongs to an actual signer. We don’t restrict
the actual signer to own only one entry in the set, it may own all decoys.

An adversary may own any number of entries in a decoy set, usually except for the one that the actual signer
signs with. Also, an adversary may know a relationship between some entries in a decoy set without owning them.

It is assumed that the cardinality of any decoy set is polynomial in λ. That is, it is assumed that the cardinality
of a decoy set is much less than the cardinality of F. An algorithm that looks through all the entries in a decoy set
is assumed to run in a polynomial time.

We use the terms ‘ring’ and simply ‘set’ as the synonyms to the ‘decoy set’, assuming the following semantic
difference: ‘decoy sets’ are usually parts of low-level protocols, ‘set’ is used when talking about set membership
proof, ‘ring’is related to ring signatures.

8

2.2.12 LINEAR COMBINATIONS

The terms ‘linear combination’ and ‘weighted sum’ that we apply to sums of elements multiplied by scalars are
interchangeable, they both mean the sum

a1B1 + a2B2 + . . . + anBn.

The scalars in the sum are sometimes called ‘weights’, although they don’t carry any additional meaning except
for being multipliers for the elements, i.e. the weights aren’t required to be comparable.

2.2.13 INDEX PAIRS

Index pairs for the scalars and elements are usually written without separating commas, like

a12, ci1, ci j .

To avoid ambiguity, when a two-digit number is used as a single index, it is put into curly brackets, e.g.

X(12).

The separating comma and brackets are used for the case when an index pair is a compound expression, e.g.

c1,(j+1), ci,(2j+1), c(2i),(2j+1).

2.2.14 UNIQUENESS

Two vectors are called different if they have at least one position with different items.
We call a vector unique under certain conditions when it is possible to efficiently calculate exactly one vector

that satisfies these conditions. Namely, when it is hard to calculate a different vector that satisfies these conditions.
For instance, the statement

®x is unique for the expression A =
∑

i=1...n
xiBi

means that the scalar vector ®x is efficiently computable and it’s hard to calculate a different vector ®y such that the
expression A =

∑
i=1...n yiBi holds for it.

2.2.15 WITNESS

If R is a binary polynomial-time-decidable relation, and if (u,w) ∈ R, then we call w a witness for the statement
u. As a primer, the statement u can be defined as a commitment and the witness w as a corresponding opening.

Regarding evidences, the statement u can be viewed as an assertion about that a particular fact holds for Prover,
and the witness w as the fact itself. The relation R is a relation that connects facts that take place on the Prover’s
side with statements about them. From this angle of view, an evidence is a proof of (u,w) ∈ R.

2.2.16 WITNESS-EXTENDED EMULATION

To say that a protocol has computational witness-extended emulation (also called simply witness-extended
emulation, abbreviated as WEE) we use definition of WEE from [6]. In a nutshell, by this definition, a pure
protocol has WEE if there exists a PPT emulator that finds a witness from a Prover-Verifier successful conversation.
The emulator is assumed equipped with an oracle that permits rewinding conversation to a specific move and
resuming it with fresh randomness for the Verifier from that move onwards.

It should be noted that the definition in [6] is for protocols, whereas we have adopted it for pure protocols
without any loss. In fact, the definition in [6] requires the emulator to find witness for any PPT Prover that provides
acceptable responses, whereas we require the emulator to do this for a pure protocol, where Prover is only specified
to the extent that it gives acceptable responses, which is essentially the same.

According to the Forking lemma, which is also provided in [6], a protocol has WEE if there exists a PPT
extractor that finds a witness from a polynomially bounded tree of the Prover-Verifier successful conversation
transcripts.

If a protocol has WEE, then it is sound, as the extraction of witness from a conversation or from a tree of
transcripts indicates that the witness was somehow put there by Prover and, thus, indicates that Prover knows it.
Therefore, a protocol having WEE is an evidence of the fact that Prover knows a witness.

9

2.2.17 SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE
For special honest verifier zero-knowledge (sHVZK) we use definition from [6]. A protocol is sHVZK if

there exists a PPT simulator capable of producing successful transcripts of the protocol, which are statistically
indistinguishable from the space of honest Prover-Verifier conversation transcripts with the same challenges.

This definition can be regarded as a natural extension of sHVZK definition by R. Cramer et al. for Σ-protocols
[7] to the n-round protocols.

3 PRELIMINARY LEMMAS
NotLin lemma:
For any three non-zero elements A, B, C: if A != lin (B,C), then the following three statements hold:

a) For any D and any known e: D = lin (B,C) ⇒ (A + eD) != lin (B,C).
b) For any T : (for some known e: (A + eT) = lin (B,C))⇒ T != lin (B,C).
c) Both hold: A !∼ B and A !∼C

Proof:
a) (Suppose, (A + eD) = lin (B,C), then by definition of lin() there are known scalars x, y, w, z such that

(A + eD = xB + yC) ⇒ (A + e(wB + zC) = xB + yC) ⇒ (A = (x − ew) B + (y − ez)C) ⇒ A = lin (B,C)
⇒ Contradiction)⇒ (A + eD) != lin (B,C)

b) (Suppose, T = lin (B,C), then by definition of lin() there are known scalars x, y, w, z such that (A + eT =
xB+yC)⇒ (A+e (wB + zC) = xB+yC)⇒ (A = (x − ew) B+(y − ez)C)⇒ A = lin (B,C)⇒Contradiction)
⇒ T != lin (B,C)

c) (Suppose A ∼ B, then by definition of A ∼ B there is known x such that A = xB. That is, by definition of
lin(), A = lin (B,C) ⇒ Contradiction)⇒ A !∼ B. Likewise, A !∼C.

OrtUniqueRepresentation lemma:
For any element A and any vector ®B = [Bi]

n
i=1 of non-zero elements: if ort

(
®B
)
and A = lin

(
®B
)
, then the vector of

scalars ®x = [xi]ni=1 such that
A =

∑
i=1...n

xiBi,

is unique.

Proof: Suppose, ®x is not unique, i.e. A has one more representation, with different vector ®y. Subtracting these
two representations of A from each other we get

0 =
∑

i=1...n
ziBi,

where ®z = ®x − ®y has at least one non-zero scalar.
Suppose zj is non-zero, then moving zjBj to the left side and dividing by zj we get

Bj =
∑

i=1...n,i,j

(
zi/zj

)
Bi .

This means that Bj = lin
(
®B\

{
Bj

})
, however Bj != lin

(
®B\

{
Bj

})
by definition of the ort

(
®B
)
⇒ Contradiction.

Hence, ®x is unique.

OrtReduction lemma:
For any set of non-zero elements S, any two elements Bj, Bk ∈ S, any two non-zero scalars a, b, the following holds

ort (S) ⇒ ort
({ (

aBj + bBk

)}
∪

(
S\

({
Bj

}
∪ {Bk}

)))
.

Proof: Suppose the opposite, that is,
(
aBj + bBk

)
= lin

(
S\

({
Bj

}
∪ {Bk}

))
⇒ moving Bk to the right: aBj =

lin
(
S\

{
Bj

})
⇒ dividing by a: Bj = lin

(
S\

{
Bj

})
⇒ Contradiction to the definition of ort (S).

ZeroRepresentation lemma:
For any ®B = [Bi]

n
i=1 and any ®x = [xi]

n
i=1, if ort

(
®B
)
and 0 =

∑
i=1...n xiBi , then ®x = ®0.

Proof: By the OrtUniqueRepresentation lemma, ®y = ®0 is unique for 0 =
∑

i=1...n yiBi , hence ®x = ®y = ®0.

10

OrtDisjunction lemma:
For any set of non-zero elements S, any vector of subsets [Si |Si ⊂ S]ni=0 such that for any j, k ∈ [0, n], j , k:
Sj ∩ Sk = ∅, for any vector of non-zero elements [Yi |Yi = lin (Si)]ni=0, the following holds

ort (S) ⇒ ort
(
[Yi]ni=0

)
.

Proof: Suppose the opposite, that is, by definitions of ort() and lin() there is a vector of known scalars [xi]ni=0 such
that at least one xi is non-zero and the weighted sum of [Yi]ni=0 with weights [xi]ni=0 is zero

0 =
∑

i=0...n
xiYi .

By definition of lin(), each Yi is a weighted sum of elements from S, and, as Sj ∩ Sk = ∅, each element from S
participates in no more than one of these sums. Hence, we have a representation of the zero element as a weighted
sum of elements from S, where at least one weight is non-zero. This contradicts the ZeroRepresentation lemma.
Thus, ort

(
[Yi]ni=0

)
.

Informally, the OrtDisjunction lemma states that a set of elements built as the linear combinations of not-
intersecting parts of an orthogonal set is an orthogonal set.

OrtHalfShift lemma:
For any two vectors of non-zero elements [Xi]

m
i=1 and [Yi]ni=1 such that m ≥ 0, n ≥ 0, (m + n) > 0, and

S = ([Xi]
m
i=1 ∪ [Yi]

n
i=1), for any non-zero element F such that F != lin(S), the following holds

ort(S) ⇒ ort([Xi]
m
i=1 ∪ [Yi + F]ni=1)

Proof: Suppose the opposite, that is, by definitions of ort() and lin() there are two vectors of known scalars [xi]mi=1
and [yi]ni=1 such that there is at least one non-zero scalar in them and the following holds

0 =
∑

i=1...m
xiXi +

∑
i=1...n

yi(Yi + F) =
∑

i=1...m
xiXi +

∑
i=1...n

yiYi +

(∑
i=1...n

yi

)
F .

Suppose, the (
∑

i=1...n yi)F summand is zero, then the rest of the above sum is also zero that contradicts ort(S).
Hence, the (

∑
i=1...n yi)F summand is not zero. Dividing all the above sum by (

∑
i=1...n yi), we obtain F = lin(S)

that contradicts F != lin(S). Thus, ort([Xi]
m
i=1 ∪ [Yi + F]ni=1).

Lin2 lemma:
For any four non-zero fixed elements P, Q, Z , H such that P !∼Q, the following protocol (Table 1) is an evidence
of

Z = lin (P,Q)

.

Table 1: Lin2 lemma protocol.

Prover returns a non-zero scalar r and an evidence
of (P + cQ) ∼ (Z + rH)

Verifier picks a non-zero random scalar c and sends
it to Prover

Verifier checks (Z + rH) , 0, r , 0
Verifier checks the evidence of (P + cQ) ∼ (Z + rH)

Proof: Note the protocol is not claimed to be a Σ-protocol. We have to prove only the following statement: if
Verifier succeeds in checking (P + cQ) ∼ (Z + rH), where (Z + rH) , 0, r , 0, then Prover knows a, b such that
Z = aP + bQ.

After the protocol (Table 1) successful completion Verifier is convinced that (P + cQ) ∼ (Z + rH) for Prover,
where (Z + rH) , 0, r , 0. Hence, it is convinced that Prover knows t such that

P + cQ = tZ + trH (1)

Suppose, t = 0⇒ P + cQ = 0⇒ P ∼ Q⇒ Contradiction to P !∼Q. Hence, t , 0.
Finding Z from the equality (1)

Z = (P + cQ) /t − rH. (2)

11

For another challenge c′:
Z = (P + c′Q) /t ′ − r ′H, (3)

where r ′ and t ′ correspond to the equality (P + c′Q) ∼ (Z + r ′H).
Eliminating Z from the equations (2) and (3): (P + cQ) /t − rH = (P + c′Q) /t ′ − r ′H⇒

(1/t − 1/t ′) P + (c/t − c′/t ′)Q + (r ′ − r)H = 0. (4)

Suppose, (r ′ − r) = 0. We have two possibilities with this supposition: (1/t − 1/t ′) = (c/t − c′/t ′) = 0 or
(1/t − 1/t ′) P + (c/t − c′/t ′)Q = 0.
(1/t − 1/t ′) = (c/t − c′/t ′) = 0⇒ (c = c′) ⇒ Contradiction, as c is a random choice.
(1/t − 1/t ′) P + (c/t − c′/t ′)Q = 0 ⇒ P ∼ Q ⇒ Contradiction to P !∼Q, as P ∼ Q and P !∼Q can’t hold

together. Hence, (r ′ − r) , 0.
Finding H from the equation (4):

H = (1/t − 1/t ′) /(r ′ − r) P + (c/t − c′/t ′) /(r ′ − r)Q. (5)

Thus,
H = xP + yQ, (6)

where
x = (1/t − 1/t ′) /(r ′ − r) ,

y = (c/t − c′/t ′) /(r ′ − r) .
(7)

Prover is able to efficiently calculate these x and y from the two successful transcripts.
Finding Z = aP + bQ from (2) and (5):

Z = (1/t) P + (c/t)Q − r (1/t − 1/t ′) /(r ′ − r) P − r (c/t − c′/t ′) /(r ′ − r)Q (8)

⇒

a =1/t − r(1/t − 1/t ′)/(r ′ − r),

b =c/t − r(c/t − c′/t ′)/(r ′ − r).

⇒ Z = lin (P,Q) for Prover. Thus, the lemma is proven.

Corollary of Lin2 lemma:
Under the conditions of the Lin2 lemma, its protocol (Table 1) is an evidence of

H = lin(P,Q) ∧ (Z + rH) = lin(P,Q)

.

Proof: In the course of proving the Lin2 lemma, we have already shown that the element H is represented by the
formula (6) with the known coefficients (7). Hence, by definition of lin(), H = lin(P,Q) for Prover.

Also, by definition of lin(), there are known to Prover scalars a, b, x, y such that Z = aP+ bQ and H = xP+ yQ.
Hence, (Z + rH) = (a + r x)P + (b + ry)Q and, thus, (Z + rH) = lin(P,Q) for Prover.

4 LIN2-XOR LEMMA AND ITS COROLLARIES
Here we formulate and prove the main lemma of this paper using the auxiliary lemmas given above. We also

prove two useful corollaries of the lemma. Moreover, we show that under a slightly stronger premise the lemma
protocol admits witnesses extraction.

4.1 LIN2-XOR LEMMA
Lin2-Xor lemma:
For any four non-zero fixed elements P1, Q1P2, Q2 such that ort (P1,Q1P2,Q2), for any two non-zero fixed elements
Z,H1, the following protocol (Table 2) is an evidence of

Z = lin(P1,Q1) ⊕ Z = lin(P2,Q2)

.

12

Table 2: Lin2-Xor lemma protocol.

Prover returns a non-zero scalar r1 and a non-zero
element H2

Prover returns a non-zero scalar r2 and
an evidence of
(P1 + c11Q1 + c2P2 + c2c13Q2) ∼ (Z + r1H1 + r2H2)

Verifier picks two non-zero random scalars c11, c13
and sends them to Prover

Verifier checks
(Z + r1H1) , 0, r1 , 0, H2 , 0

Verifier picks a non-zero random scalar c2 and sends
it to Prover

Verifier checks (Z + r1H1 + r2H2) , 0, r2 , 0
Verifier checks the evidence of
(P1 + c11Q1 + c2P2 + c2c13Q2) ∼ (Z + r1H1 + r2H2)

Table 3: Lin2-Xor lemma to Lin2 lemma protocol expression substitution.

Lin2-Xor lemma expressions Lin2 lemma expressions

c2 c
r2 r
(P1 + c11Q1) P
(P2 + c13Q2) Q
(Z + r1H1) Z
H2 H
(Z + r1H1) = lin (P1 + c11Q1, P2 + c13Q2) Z = lin (P,Q)

Proof: Applying the OrtReductionLemma two times, ort (P1,Q1P2,Q2) ⇒ ort ((P1 + c11Q1) , (P2 + c13Q2)) ⇒

by definition of ort(), (P1 + c11Q1) !∼ (P2 + c13Q2).
Let’s move the first two steps of the Lin2-Xor lemma protocol (Table 2) to its premise. After this, we get

exactly the premise, protocol (Table 1), and conclusion of the Lin2 lemma with the expression substitution shown
in Table 3. Thus, by the Corollary of Lin2 lemma, the Lin2-Xor lemma protocol is also an evidence of

(Z + r1H1) = lin(P1 + c11Q1, P2 + c13Q2) (9)

Rewriting the evidence (9) using definition of lin(), we get on the Prover’s side

(Z + r1H1) = a (P1 + c11Q1) + b (P2 + c13Q2) , (10)

where Verifier is convinced that the scalars a and b are known to Prover. Also, as (Z + r1H1) , 0, Verifier is
convinced that at least one of a and b is non-zero.

For another challenge
(
c′11, c

′
13

)
, reply r ′1, and scalars a′, b′ known to Prover(

Z + r ′1H1
)
= a′

(
P1 + c′11Q1

)
+ b′

(
P2 + c′13Q2

)
, (11)

where at least one of a′ and b′ is non-zero.
Excluding H1 from the equations (10), (11), and extracting Z

(a (P1 + c11Q1) + b (P2 + c13Q2) − Z) /r1 =
(
a′

(
P1 + c′11Q1

)
+ b′

(
P2 + c′13Q2

)
− Z

)
/r ′1 ⇒(

r1 − r ′1
)

Z = r1a′
(
P1 + c′11Q1

)
+ r1b′

(
P2 + c′13Q2

)
− r ′1a (P1 + c11Q1) − r ′1b (P2 + c13Q2) .

We can assume r1 , r ′1, as r1 = r ′1 for different random challenges immediately leads to contradiction, so we can
divide by (r1 − r ′1)

Z =
((

r1a′ − r ′1a
)

P1 +
(
r1a′c′11 − r ′1ac11

)
Q1 +

(
r1b′ − r ′1b

)
P2 +

(
r1b′c′13 − r ′1bc13

)
Q2

)
/
(
r1 − r ′1

)
That is, extracting the weights for P1, Q1, P2, Q2, we have

Z = k1P1 + k2Q1 + k3P2 + k4Q2, (12)

13

where 
k1 =

(
r1a′ − r ′1a

)
/
(
r1 − r ′1

)
k2 =

(
r1a′c′11 − r ′1ac11

)
/
(
r1 − r ′1

)
k3 =

(
r1b′ − r ′1b

)
/
(
r1 − r ′1

)
k4 =

(
r1b′c′13 − r ′1bc13

)
/
(
r1 − r ′1

) (13)

Verifier is convinced that Prover knows the scalars k1, k2, k3, k4, as it is convinced that all scalars at the
right-hand sides of the above equalities are known to Prover.

Moreover, as ort (P1,Q1, P2,Q2) and as Z , P1, Q1, P2, Q2 are fixed by premise, by the OrtUniqueRepresentation
lemma Verifier is convinced that the scalars k1, k2, k3, k4 are constants, i.e. they remain the same regardless of the
challenges and replies. Also, at least one of k1, k2, k3, k4 is non-zero, as the opposite contradicts the premise of
non-zero Z .

Now we will prove that the system of equalities (13), where k1, k2, k3, k4 are constants and at least one of them
is non-zero, implies that Verifier is convinced that the following conjunction of four statements holds:

∧

((k1 , 0) ∧ (k3 , 0)) ⇒ Contradiction
((k1 , 0) ∧ (k4 , 0)) ⇒ Contradiction
((k2 , 0) ∧ (k3 , 0)) ⇒ Contradiction
((k2 , 0) ∧ (k4 , 0)) ⇒ Contradiction

(14)

Here is a proof for the first statement in the conjunction (14). Let’s suppose

k1 , 0 and k3 , 0. (15)

Rewriting the formula for k1 in the system (13), keeping in mind that r1 , 0 and r ′1 , 0(
r1 − r ′1

)
k1 =

(
r1a′ − r ′1a

)
⇒

r1 (a′ − k1) = r ′1 (a − k1) ⇒

(a′ − k1) /r ′1 = (a − k1) /r1 (16)

As the right-hand side of the equality (16) depends only on the first transcript, and the left-hand side depends only
on the second one, Verifier is convinced that both sides are equal to some constant q known to Prover

(a′ − k1) /r ′1 = q and (a − k1) /r1 = q ⇒

a′ = qr ′1 + k1 and a = qr1 + k1 (17)

Let t = (k2/k1), where k1 , 0 by the supposition (15). Taking the formulae for k2 and k1 from the system (13) and
dividing them

t
(
r1a′ − r ′1a

)
=

(
r1a′c′11 − r ′1ac11

)
⇒

r ′1a (c11 − t) = r1a′
(
c′11 − t

)
⇒

a (c11 − t) /r1 = a′
(
c′11 − t

)
/r ′1 (18)

As the right-hand side of the equality (18) depends only on the first transcript, and the left-hand side depends only
on the second one, Verifier is convinced that both sides are equal to some constant v known to Prover

a (c11 − t) /r1 = v and a′
(
c′11 − t

)
/r ′1 = v ⇒

vr1 = a (c11 − t) and vr ′1 = a′
(
c′11 − t

)
(19)

The constant v is non-zero, as the opposite immediately leads to a = 0 and a′ = 0, and, consequently, leads to a
contradiction with k1 , 0. Writing down this,

v , 0. (20)

Using formula for a from the equalities (17), we find r1 from the equality (19) for vr1

vr1 = (qr1 + k1) (c11 − t) ⇒

r1 (v − q (c11 − t)) = k1 (c11 − t) ⇒

r1 = k1 (c11 − t) /(v − q (c11 − t)) ⇒

r1 = k1/((v/(c11 − t)) − q) (21)

14

Note we have performed division by the expressions (v − q(c11 − t)) and (c11 − t) above, as both they are non-zero
with overwhelming probability. It can be seen that both these expressions have random uniform distributions
containing only the randomness c11 and the constants v, t, q, where v , 0 according to (20).

Thus, if (15) holds, then according to (21) Verifier is convinced that r1 has uniform random distribution and is
composed of constants known to Prover together with the randomness c11.

Likewise, using the formulae for k3 and k4 from (13), Verifier is convinced that if (15) holds, then r1 is composed
of some known to Prover constants u, s, p such that u , 0 and of the randomness c13

r1 = k3/((u/(c13 − s)) − p). (22)

If (15) holds, then according to the equations (21) and (22) the variable r1 can be calculated from each of the
two independent randomnesses c11 and c13. Hence, excluding r1 from (21) and (22), Verifier is convinced that
Prover is able to calculate the randomness c11 from the constants and from the randomness c13, that contradicts the
independence of the randomnesses c11 and c13.

Thus, we have proven the first statement in the conjunction (14). Namely, we have proven that on the lemma
protocol (Table 2) successful completion Verifier is convinced that at least one of k1 and k3 is zero.

To prove the second statement in (14) we rewrite the system (13) as
k1 =

(
r1a′ − r ′1a

)
/
(
r1 − r ′1

)
k2 =

(
r1a′c′11 − r ′1ac11

)
/
(
r1 − r ′1

)
k3 =

(
r1d ′e′13 − r ′1de13

)
/
(
r1 − r ′1

)
k4 =

(
r1d ′ − r ′1d

)
/
(
r1 − r ′1

) , where


d = bc13
d ′ = b′c′13
e13 = (1/c13)

e′13 = (1/c
′
13)

(23)

The rewritten system (23) is exactly the system (13) where k3 and k4 have swapped places. Moreover, the system
(23) has the same properties as the system (13). Hence, using the formulae for k3 and k4 from (23), Verifier is
convinced that

r1 = k4/((u′/(e13 − s′)) − p′) (24)

for some known to Prover constants u′, s′, p′ such that u′ , 0. From the expressions (22) and (24) Verifier obtains
the sought contradiction for the case if both k1 and k4 are non-zero. Thus, the second statement of the conjunction
(14) is proven. Namely, Verifier is convinced that at least one of k1 and k4 is zero.

Likewise, swapping k1 and k2 in the system (13) the same way as it has been done for k3 and k4 in the system
(23), the third and fourth statements in the conjunction (14) are proven.

Recalling the linear combination (12) Z = k1P1 + k2Q1 + k3P2 + k4Q2, where k1, k2, k3, k4 are known to
Prover, the conjunction (14) implies that, by the definitions of evidence and lin(), Verifier has an evidence of

Z = lin(P1,Q1) ⊕ Z = lin(P2,Q2).

Thus, the lemma is proven.

4.2 COROLLARIES
Corollary 1 of Lin2-Xor lemma:
Under the conditions of the Lin2-Xor lemma, its protocol (Table 2) is an evidence of

H1 = lin(P1,Q1) ⊕ H1 = lin(P2,Q2)

.

Proof: Let’s divide the equations (10) and (11) by r1 and r ′1 respectively. It is possible, as r1 , 0 and r ′1 , 0.
Hence, we rewrite the equations (10) and (11) as{

(H1 + r̃1Z) = ã(P1 + c11Q1) + b̃(P2 + c13Q2)

(H1 + r̃ ′1Z) = ã′(P1 + c′11Q1) + b̃′(P2 + c′13Q2)
, where

{
r̃1 = 1/r1, ã = a/r1, b̃ = b/r1
r̃ ′1 = 1/r ′1, ã′ = a′/r ′1, b̃′ = b′/r ′1

After that, in the same way as we did in the proof of the Lin2-Xor lemma we arrive at the conclusion of this
corollary.

Corollary 2 of Lin2-Xor lemma:
Under the conditions of the Lin2-Xor lemma, its protocol (Table 2) is an evidence of

(Z = lin(P1,Q1) ∧ H1 = lin(P1,Q1)) ⊕ (Z = lin(P2,Q2) ∧ H1 = lin(P2,Q2))

.

15

Proof: On the Lin2-Xor lemma protocol successful completion, by the Lin2-Xor lemma and by its Corollary 1,
Verifier is convinced that

(Z = lin(P1,Q1) ⊕ Z = lin(P2,Q2)) ∧ (H1 = lin(P1,Q1) ⊕ H1 = lin(P2,Q2)) for Prover.

Suppose, (Z = lin (P1,Q1) ∧ H1 = lin (P2,Q2)) for Prover. By definition of lin(), Prover knows z1, z2, h1, h2
such that (Z = z1P1 + z2Q1 and H1 = h1P2 + h2Q2). Hence, (10) rewrites as

z1P1 + z2Q1 + r1 (h1P2 + h2Q2) = a (P1 + c11Q1) + b (P2 + c13Q2) . (25)

By the OrtUniqueRepresentation lemma, as ort(P1,Q1, P2,Q2) holds, from the equality (25) we have

z1 = a (26)
z2 = ac11 , (27)

If a = 0, then from the equalities (26) and (27) we obtain z1 = 0 and z2 = 0, which is a contradiction to Z , 0.
Hence, as a , 0, it is possible to divide the equality (27) by the equality (26)

z2/z1 = c11 .

However, z1, z2 are constants, as Z , P1, Q1 are fixed. Hence, z2/z1 can’t be equal to the random choice c11,
contradiction. Thus, the supposition about that (Z = lin (P1,Q1) ∧ H1 = lin (P2,Q2)) holds for Prover is wrong.

Likewise, the case of (Z = lin (P2,Q2) ∧ H1 = lin (P1,Q1)) is not possible. Thus, we have arrived at the
conclusion of this corollary.

Corollary 3 of Lin2-Xor lemma:
Under the conditions of the Lin2-Xor lemma, its protocol (Table 2) is an evidence of

©­­­«
Z = lin(P1,Q1) ∧

H1 = lin(P1,Q1) ∧

((Z + r1H1) ∼ (P1 + c11Q1)) ∧

((Z + r1H1) !∼(P2 + c13Q2))

ª®®®¬ ⊕
©­­­«

Z = lin(P2,Q2) ∧

H1 = lin(P2,Q2) ∧

((Z + r1H1) ∼ (P2 + c13Q2)) ∧

((Z + r1H1) !∼(P1 + c11Q1))

ª®®®¬
Proof: According to Corollary 2 of Lin2-Xor lemma, there are only two possible cases

(Z = lin(P1,Q1) ∧ H1 = lin(P1,Q1)) ⊕ (Z = lin(P2,Q2) ∧ H1 = lin(P2,Q2)) on the Prover’s side.

If (Z = lin (P1,Q1) ∧ H1 = lin (P1,Q1)) for Prover, then using definition of lin() we obtain

(Z + r1H1) = lin (P1,Q1) for Prover. (28)

At the same time, according to (10), Verifier is convinced that Prover knows a, b in

(Z + r1H1) = a (P1 + c11Q1) + b (P2 + c13Q2) . (29)

Combining the expressions (28) and (29), by the OrtUniqueRepresentation lemma, definitions of lin() and ‘∼’, we
obtain

(Z + r1H1) ∼ (P1 + c11Q1) for Prover. (30)
Suppose, (Z + r1H1) ∼ (P2 + c13Q2) holds for Prover simultaneously with the expression (30). This contradicts

the OrtUniqueRepresentation lemma, as the element (Z + r1H1) gets two representations: a (P1 + c11Q1) and
b (P2 + c13Q2), where a and b are known to Prover. Hence, (Z + r1H1) !∼ (P2 + c13Q2) for Prover.

Thus, we have proven the first part of this corollary. Namely, we have proven that the expression

©­­­«
Z = lin(P1,Q1) ∧

H1 = lin(P1,Q1) ∧

((Z + r1H1) ∼ (P1 + c11Q1)) ∧

((Z + r1H1) !∼(P2 + c13Q2))

ª®®®¬
holds, when (Z = lin (P1,Q1) ∧ H1 = lin (P1,Q1)) holds for Prover.

The same way we prove the second part, namely, that the expression

©­­­«
Z = lin(P2,Q2) ∧

H1 = lin(P2,Q2) ∧

((Z + r1H1) ∼ (P2 + c13Q2)) ∧

((Z + r1H1) !∼(P1 + c11Q1))

ª®®®¬
holds, when (Z = lin (P2,Q2) ∧ H1 = lin (P2,Q2)) holds for Prover. Thus, this corollary is proven.

16

4.3 WITNESS EXTRACTION
Here we will reformulate the Lin2, Lin2-Xor lemmas and their corollaries so that, in addition to soundness, we

also get witness-extended emulation for their protocols.

4.3.1 LIN2 LEMMA PROTOCOL WITNESS EXTRACTION
Let’s look again at the Lin2 lemma protocol shown in Table 1 and consider the element H in the Lin2 lemma

premise as the first message from Prover to Verifier. We will separate the evidence of (P + cQ) ∼ (Z + rH) from
the protocol and assume that the evidence is provided by means of another protocol, which is played immediately
after the Verifier’s check of (Z + rH) , 0, r , 0.

Thus, for the Lin2 lemma, we have 1-round protocol followed by some n-round evidence protocol as shown in
Table 4. We will assume that the n-round evidence protocol has witness-extended emulation. Now we will show
that under this assumption the rewritten Lin2 lemma protocol (Table 4) also has witness-extended emulation.

Lin2-WEE lemma:
For any three non-zero fixed elements P, Q, Z such that P !∼Q, for the relation R = {(Z, (a, b)) | Z = aP + bQ},
the following protocol (Table 4) has witness-extended emulation.

Table 4: Lin2-WEE lemma protocol, rewritten protocol of Lin2 lemma.

Prover sends a non-zero element H

Prover returns a non-zero scalar r

Verifier checks H , 0

Verifier picks a non-zero random scalar c and sends
it to Prover

Verifier checks (Z + rH) , 0, r , 0

Prover and Verifier play a WEE protocol of the evidence (P + cQ) ∼ (Z + rH).

Proof: For this lemma protocol (Table 4), let’s build a PPT emulator that will satisfy the definition of witness-
extended emulation.

Suppose, the emulator is fed with a successful transcript of the protocol for some arbitrary Z such that Z , 0.
The transcript has a random challenge c and a reply r . Also, it has, as a sub-transcript, a successful transcript of a
WEE protocol of the evidence (P + cQ) ∼ (Z + rH).

By definition of WEE, properly unwinding the game for the evidence (P + cQ) ∼ (Z + rH) the emulator gets
witness w such that

w(P + cQ) = (Z + rH). (31)

Likewise, unwinding the protocol to the point where the challenge c was generated and generating it anew as c′,
the emulator gets witness w′ for the challenge c′ with reply r ′ such that

w′(P + c′Q) = (Z + r ′H). (32)

As has been shown in the Lin2 lemma proof, with overwhelming probability c , c′ and r , r ′, so subtracting
the equations (31) and (32) from each other

(w′ − w)P + (w′c′ − wc)Q = (r ′ − r)H,

the emulator obtains

H = ((w′ − w)/(r ′ − r))P + ((w′c′ − wc)/(r ′ − r))Q, (33)
Z = (w − r(w′ − w)/(r ′ − r))P + (wc − r(w′c′ − wc)/(r ′ − r))Q, (34)

that is, from the equality (34)

Z = aP + aQ,

where

a = w − r(w′ − w)/(r ′ − r),

b = wc − r(w′c′ − wc)/(r ′ − r).

17

Thus, we have shown that the emulator is able to obtain witness (a, b) for a statement Z such that (Z, (a, b)) ∈ R.
Hence, by definition of WEE, under this lemma conditions the lemma protocol (Table 4) has witness-extended
emulation.

Corollary of Lin2-WEE lemma:
Under the conditions of the Lin2-WEE lemma, for element H sent in the first message of the protocol (Table 4),
there is a witness-extended emulation algorithm for the protocol (Table 4), which is capable of extracting witness
for the relation RH = {(H, (x, y)) | H = xP + yQ}.

Proof: In the course of proving the Lin2-WEE lemma, we have already shown that the element H is represented
by the formula (33), where the coefficients (w′ − w)/(r ′ − r) and (w′c′ − wc)/(r ′ − r) in the linear combination of
H with respect to P and Q are known. These coefficients are the witness sought.

4.3.2 LIN2-XOR LEMMA PROTOCOL WITNESS EXTRACTION
Now, looking at the Lin2-Xor lemma protocol (Table 2) let’s figure out how we can rewrite it similar way as we

did with the Lin2 lemma protocol (Tables 1, 4). The element H1 from the Lin2-Xor lemma premise becomes the first
message. Next, the first round with the challenge pair (c1, c3) and corresponding reply r1 continues to completion.
After that, as the second round, the Lin2-WEE lemma protocol (Table 4) with the symbolic substitutions as per
Table 3 (with H2 transmitted as its first message) could be played.

It should be noted that the Lin2 lemma protocol (Table 1) with substitutions (Table 3) is played in the Lin2-Xor
lemma protocol (Table 2) second round only for the sake of obtaining the evidence (9), and for nothing else. Hence,
we can drop the requirement to use exactly the Lin2 lemma protocol and instead to require any protocol, as long as
it provides the evidence (9) and has WEE.

Overall, the rewritten protocol is shown in Table 5. Compared to the Lin2-Xor lemma protocol (Table 2), it has
a stronger precondition in the sense that its sub-protocol for obtaining the evidence (9) requires WEE and at the
same time the precondition is relaxed in the sense that any WEE protocol providing the evidence (9) will suffice.

As a side note, to ease modeling of the protocol rewinding and resuming, transmission of the challenge pair
(c11, c13) in the first round can be thought of as made up of two subsequent sub-rounds, where c11 is transmitted in
the first sub-round, and c13 in the second.

Lin2-Xor-WEE lemma:
For any five non-zero fixed elements P1, Q1, P2, Q2, Z such that ort(P1, Q1, P2, Q2) holds, for the relation
R = {(Z, (x, y)) | (Z = xP1 + yQ1) ⊕ (Z = xP2 + yQ2)}, the following protocol (Table 5) has witness-extended
emulation.

Table 5: Lin2-Xor-WEE lemma protocol, rewritten protocol of Lin2-Xor lemma.

Prover sends a non-zero element H1

Prover returns a non-zero scalar r1.
(Note H2 is sent thereafter as the first message of the
subsequent Lin2 lemma WEE protocol, in the case
if it is used.)

Verifier checks H1 , 0

Verifier picks two non-zero random scalars c11, c13
and sends them to Prover

Verifier checks
(Z + r1H1) , 0, r1 , 0

Prover and Verifier play a WEE protocol of the evidence (Z + r1H1) = lin(P1 + c11Q1, P2 + c13Q2).
(For instance, they play the Lin2 lemma WEE protocol from Table 4 with substitutions as per Table 3.)

Proof: For this lemma protocol (Table 5), let’s build a PPT emulator that will satisfy the definition of witness-
extended emulation.

Suppose, the emulator is fed with a successful transcript of the protocol for some arbitrary Z such that Z , 0.
The transcript has the random challenge pair (c11, c13) and reply r1. Also it has, as a sub-transcript, a successful
transcript of a WEE protocol of the evidence (9), namely, of (Z + r1H1) = lin(P1 + c11Q1, P2 + c13Q2) for Prover.

By definition of WEE, properly unwinding the game for the evidence (Z + r1H1) = lin(P1 + c11Q1, P2 + c13Q2),
the emulator gets a witness pair (a, b) such that

(Z + r1H1) = a(P1 + c11Q1) + b(P2 + c13Q2). (35)

18

Rewinding the protocol to the point where the first challenge pair was generated, and continuing to completion,
properly unwinding the game for the aforementioned evidence, the emulator gets the other challenge pair (c′11, c

′
13),

reply r ′1, and withess pair (a
′, b′) such that

(Z + r ′1H1) = a′(P1 + c′11Q1) + b′(P2 + c′13Q2). (36)

Subtracting the equalities (35) and (36) from each other, the emulator gets

(r ′1 − r1)H1 = (a′ − a)P1 + (a′c′11 − ac11)Q1 + (b′ − b)P2 + (b′c′13 − bc13)Q2. (37)

Suppose, (r ′1 − r1) = 0. In this case, the left-hand side of the equality (37) becomes equal to zero, and thus, if
at least one of the weights for P1,Q1, P2,Q2 on the right-hand side of (37) is non-zero, then ort(P1,Q1, P2,Q2) is
not satisfied, which contradicts the premise. At the same time, if all the weights for P1,Q1, P2,Q2 are zeros, then
from (37) is seen that a = a′ = b = b′ = 0, and from (35) is seen that (Z + r1H1) = 0, which is a contradiction to
the protocol. Therefore,

(r ′1 − r1) , 0 . (38)

Thus, the emulator gets the weights h1, h2, h3, h4 such that
h1 = (a′ − a)/(r ′1 − r1)

h2 = (a′c′11 − ac11)/(r ′1 − r1)

h3 = (b′ − b)/(r ′1 − r1)

h4 = (b′c′13 − bc13)/(r ′1 − r1) ,

(39)

(h1 , 0) ∨ (h2 , 0) ∨ (h3 , 0) ∨ (h4 , 0) , (40)

and
H1 = h1P1 + h2Q1 + h3P2 + h4Q2 . (41)

For any other couple of transcripts of this protocol with the same P1,Q1, P2,Q2 and H1, the weights h1, h2, h3, h4
calculated by the formulae (39) will be the same, since the opposite contradicts the premise of ort(P1,Q1, P2,Q2).
Namely, having two distinct decompositions of H1 the emulator is able to subtract them from each other and, thus,
to demonstrate an example that violates the orthogonality of P1,Q1, P2,Q2.

The emulator unwinds again to the point where the first challenge pair was generated and, resuming onward,
obtains new (c′′11, c

′′
13), r

′′
1 , a

′′, b′′. As with the system (39), the emulator has the following system for these new
values 

h1 = (a′′ − a)/(r ′′1 − r1)

h2 = (a′′c′′11 − ac11)/(r ′′1 − r1)

h3 = (b′′ − b)/(r ′′1 − r1)

h4 = (b′′c′′13 − bc13)/(r ′′1 − r1) .

(42)

The systems (39) and (42) can be unified and rewritten without any loss into a single system as follows

h1(r ′1 − r1) = a′ − a
h2(r ′1 − r1) = a′c′11 − ac11
h3(r ′1 − r1) = b′ − b
h4(r ′1 − r1) = b′c′13 − bc13
h1(r ′′1 − r1) = a′′ − a
h2(r ′′1 − r1) = a′′c′′11 − ac11
h3(r ′′1 − r1) = b′′ − b
h4(r ′′1 − r1) = b′′c′′13 − bc13 .

(43)

Or, in matrix form, as 

−1 1 0 0 0 0 −h1 0
−c11 c′11 0 0 0 0 −h2 0
−1 0 1 0 0 0 0 −h1
−c11 0 c′′11 0 0 0 0 −h2

0 0 0 −1 1 0 −h3 0
0 0 0 −c13 c′13 0 −h4 0
0 0 0 −1 0 1 0 −h3
0 0 0 −c13 0 c′′13 0 −h4


×



a
a′

a′′

b
b′

b′′

(r ′1 − r1)

(r ′′1 − r1)


=



0
0
0
0
0
0
0
0


(44)

19

The right-hand side of the equality (44) is the zero vector. At the same time, the matrix on the left-hand side
of the equality (44), taking into account the inequality (38), is multiplied by a non-zero vector. Therefore, the
determinant of the matrix must be equal to zero, that is

det



−1 1 0 0 0 0 −h1 0
−c11 c′11 0 0 0 0 −h2 0
−1 0 1 0 0 0 0 −h1
−c11 0 c′′11 0 0 0 0 −h2

0 0 0 −1 1 0 −h3 0
0 0 0 −c13 c′13 0 −h4 0
0 0 0 −1 0 1 0 −h3
0 0 0 −c13 0 c′′13 0 −h4


= 0 . (45)

It can be seen that the equality (45) connecting the random challenges and weights h1, h2, h3, h4 together may
contain some constraints on the choice of the weights. The emulator will now find what these constraints are.

Using Laplace expansion with respect to the column, where c′′13 is placed in the determinant, the equality (45)
rewrites as an equality for the minors

c′′13 det



−1 1 0 0 0 −h1 0
−c11 c′11 0 0 0 −h2 0
−1 0 1 0 0 0 −h1
−c11 0 c′′11 0 0 0 −h2

0 0 0 −1 1 −h3 0
0 0 0 −c13 c′13 −h4 0
0 0 0 −1 0 0 −h3


= det



−1 1 0 0 0 −h1 0
−c11 c′11 0 0 0 −h2 0
−1 0 1 0 0 0 −h1
−c11 0 c′′11 0 0 0 −h2

0 0 0 −1 1 −h3 0
0 0 0 −c13 c′13 −h4 0
0 0 0 −c13 0 0 −h4


. (46)

Unwinding to the point where c′′13 was generated, and resuming, the emulator gets equality (46) for another value
of the randomness c′′13 and thus obtains that both determinants in (46) are necessarily equal to zero, it uses only the
first one

det



−1 1 0 0 0 −h1 0
−c11 c′11 0 0 0 −h2 0
−1 0 1 0 0 0 −h1
−c11 0 c′′11 0 0 0 −h2

0 0 0 −1 1 −h3 0
0 0 0 −c13 c′13 −h4 0
0 0 0 −1 0 0 −h3


= 0 . (47)

Doing the same for the determinant (47) with respect to the randomness c′′11 column, the emulator obtains

det



−1 1 0 0 −h1 0
−c11 c′11 0 0 −h2 0
−1 0 0 0 0 −h1
0 0 −1 1 −h3 0
0 0 −c13 c′13 −h4 0
0 0 −1 0 0 −h3


= 0 . (48)

Repeating the same for the determinant (48) with respect to the randomness c′13 column, the emulator obtains two
more equalities

det


−1 1 0 −h1 0
−c11 c′11 0 −h2 0
−1 0 0 0 −h1
0 0 −1 −h3 0
0 0 −1 0 −h3


= 0 , (49)

det


−1 1 0 −h1 0
−c11 c′11 0 −h2 0
−1 0 0 0 −h1
0 0 −c13 −h4 0
0 0 −1 0 −h3


= 0 . (50)

20

Repeating the same for the determinant (49) with respect to the randomness c′11 column, the emulator obtains an
equality for the minor of ‘1’ in the column

det


−c11 0 −h2 0
−1 0 0 −h1
0 −1 −h3 0
0 −1 0 −h3

 = 0 . (51)

Repeating the same for the determinant (51) with respect to the randomness c11 column, the emulator obtains two
equalities

det


0 0 −h1
−1 −h3 0
−1 0 −h3

 = 0 , (52)

det


0 −h2 0
−1 −h3 0
−1 0 −h3

 = 0 . (53)

From the equalities (52) and (53) the emulator finds

h1h3 = 0 , (54)
h2h3 = 0 . (55)

Likewise, from the equality (50) the emulator finds

h1h4 = 0 , (56)
h2h4 = 0 . (57)

Combining the equalities (40), (41), (54), (55), (56), (57) the emulator finds that the following holds

(h1 = 0 ∧ h2 = 0) ⊕ (h3 = 0 ∧ h4 = 0) , (58)

©­«
H1 = uP1 + vQ1 ,
u = h1 ,
v = h2

ª®¬ ⊕ ©­«
H1 = uP2 + vQ2 ,
u = h3 ,
v = h4

ª®¬ . (59)

From (43) and (58) the emulator finds that the witnesses a and b in the equality (35) meet the following condition

(a = 0) ⊕ (b = 0) . (60)

From the equality (35), taking into account the known weights h1, h2, h3, h4, which were calculated by the formulae
(42), the constraint (60), using the decomposition (59), from the known challenges and known values of a, b, r the
emulator finds the sought witness pair (x, y)

©­«
Z = xP1 + yQ1 ,
x = a − r1h1 ,
y = ac11 − r1h2

ª®¬ ⊕ ©­«
Z = xP2 + yQ2 ,
x = b − r1h3 ,
y = bc13 − r1h4

ª®¬ (61)

Thus, the lemma is proven.

Corollary 1 of Lin2-Xor-WEE lemma:
Under the conditions of the Lin2-Xor-WEE lemma, for the element H1 sent in the first message of its protocol, for
RH1 = {(H1, (u, v)) | (H1 = uP1 + vQ1) ⊕ (H1 = uP2 + vQ2)}, there is a witness-extended emulation algorithm for
the lemma protocol (Table 5), which is capable of extracting witness for the relation RH1 .

Proof: In the course of proving the Lin2-Xor-WEE lemma, we have already shown that the element H1 is
represented by the formula (59), where the coefficients in the linear combinations of H1 with respect to P1,Q1, P2,Q2
are efficiently calculated by the formulae (42). These coefficients, which satisfy the constraint (58), are the witness
sought.

Corollary 2 of Lin2-Xor-WEE lemma:
Under the conditions of the Lin2-Xor-WEE lemma, for the element H1 sent in the first message of its protocol, for
RZ,H1 = {((Z,H1), ((x, y), (u, v))) | (Z = xP1 + yQ1 ∧ H1 = uP1 + vQ1) ⊕ (Z = xP2 + yQ2 ∧ H1 = uP2 + vQ2)},
there is a witness-extended emulation algorithm for the lemma protocol (Table 5), which is capable of extracting
witness for the relation RZ,H1 .

21

Proof: In the course of proving the Lin2-Xor-WEE lemma, we have already found the sought witness ((x, y), (u, v)),
which is calculated by the formulae (61), (59), (42), and bounded by the equality (35) and the condition (60).

Corollary 3 of Lin2-Xor-WEE lemma:
Under the conditions of the Lin2-Xor-WEE lemma, for the element H1, challenges (c11, c13) and reply r1 sent in its
protocol, for

RZ,H1,c11,c13,r1 =

 ((Z,H1, c11, c13, r1),
((x, y), (u, v),w))

������ ©­«
Z = xP1 + yQ1 ∧

H1 = uP1 + vQ1 ∧

Z + r1H1 = w(P1 + c11Q1)

ª®¬ ⊕ ©­«
Z = xP2 + yQ2 ∧

H1 = uP2 + vQ2 ∧

Z + r1H1 = w(P2 + c13Q2)

ª®¬
 ,

there is a witness-extended emulation algorithm for the lemma protocol (Table 5), which is capable of extracting
witness for the relation RZ,H1,c11,c13,r1 .

Proof: The Corollary 2 gives the parts (x, y), (u, v) of the sought witness. Having the elements Z and H1 expressed
as Z = xP1 + yQ1 and H1 = uP1 + vQ1, from the equality (35), according to the condition (60), the w part of the
sought witness is equal to the known scalar a. In the remaining case, if the elements Z and H1 are expressed as
Z = xP2 + yQ2 and H1 = uP2 + vQ2, then the part w is equal to the known scalar b from the equality (35). Thus,
the witness for the relation RZ,H1,c11,c13,r1 is found.

5 LIN2-SELECTOR LEMMA
5.1 PRELIMINARY DEFINITIONS AND PROPERTIES
5.1.1 RSUM

Let’s rewrite the sum R = P1+c11Q1+c2P2+c2c13Q2, which we considered in the Lin2-Xor lemma, in the form
of the following tree structure (see Figure 1), where we renamed P1,Q1, P2,Q2 into X0, X1, X2, X3. Informally, this
tree structure is evaluated to R recursively, each node performs summation and each arrow performs multiplication
by its tag. If all arrow tags are known, then R represents a multi-exponent sum of four summands.

X0 X1 X2 X3

+ +

+
R =

1 c21

1 c11 1 c13

Figure 1: Rsum for four elements.

Generalizing this tree structure, we have, for example, for a set of sixteen elements
[
Xj

]15
j=0 a tree structure of the

form as in Figure 2, that is, the sum R = X0+c11X1+c21X2+c21c13X3+c31X4+c31c11X5+c31c23X6+c31c23c13X7+

c41X8 + c41c11X9 + c41c21X(10) + c41c21c13X(11) + c41c33X(12) + c41c33c11X(13) + c41c33c23X(14) + c41c33c23c13X(15).

Rsum definition:
We call the above tree structure as Rsum and define it recursively as follows.

For any n > 0, for N = 2n, a vector of N elements
[
Xj

]N−1
j=0 , a vector of 2-tuples of scalars [(ci1, ci3)]n−1

i=1 , a

scalar cn1, let Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
be an element, such that:



Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
=

Rsum
(
n − 1, N/2,

[
Xj

]N/2−1
j=0 , [(ci1, ci3)]n−2

i=1 , c(n−1),1

)
+

cn1 Rsum
(
n − 1, N/2,

[
Xj

]N−1
j=N/2, [(ci1, ci3)]

n−2
i=1 , c(n−1),3

)
Rsum

(
1, 2,

[
Xj

]2k+1
j=2k, [], c

)
= X(2k) + cX(2k+1), where k ∈ [0, (N/2) − 1] .

22

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X(10) X(11) X(12) X(13) X(14) X(15)

+ + + + + + + +

+ + + +

+ +

+
R =

1 c41

1 c31 1 c33

1 c21 1 c23 1 c21 1 c23

1 c11 1 c13 1 c11 1 c13 1 c11 1 c13 1 c11 1 c13

Figure 2: Rsum for sixteen elements.

Informally, for n > 1, Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
is a weighted sum of its left and right subtrees

with the weights 1 and cn1, respectively. The subtrees are the weighted sums of their left and right subtrees, and
so on. For n = 1, the Rsum’s are leaves and are calculated directly as weighted sums of two elements, with the
weights 1, c11 or 1, c13.

Rsum property:
This property follows from the definitions of Rsum and lin():

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn1

)
= lin

([
Xj

]N−1
j=0

)
.

5.2 LIN2-SELECTOR LEMMA
Lin2-Selector lemma:
For any n > 1 and N = 2n, for any vector of non-zero fixed elements

[
Xj

]N−1
j=0 such that ort

([
Xj

]N−1
j=0

)
holds, for

any non-zero fixed element Z , for a vector of n non-zero elements [Hi]
n
i=1 where H1 is fixed, and for a vector of

non-zero scalars [ri]ni=1, the protocol in Table 6 is an evidence of Z = lin
(
X(2s), X(2s+1)

)
for some known to Prover

s ∈ [0, N/2 − 1].

Proof: We prove this lemma by induction for each n starting from 2, where n is an integer equal to the logarithm
of the

[
Xj

]N−1
j=0 vector size.

For the induction base case, n = 2, we have exactly the premise of the Lin2-Xor lemma. That is, there are four
elements X0, X1, X2, X3 and also there is one round of the ci1, ci3 pair generation, where i = 1.

Since
Rsum

(
2, 4,

[
Xj

]3
j=0, [(ci1, ci3)]

1
i=1, cn

)
= X0 + c11X1 + c21X2 + c21c13X3,

Verifier has an evidence of

(X0 + c11X1 + c21X2 + c21c13X3) ∼ (Z + r1H1 + r2H2)

in the last step of the protocol.
By the conclusion of the Lin2-Xor lemma, thus, Verifier has an evidence that exactly one of the following holds

for Prover
Z = lin (X0, X1) and Z = lin (X2, X3) ,

that is, an evidence of Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, 1]. The base case is proven.

The induction hypothesis is that the lemma holds for m > 1. Let’s prove it for n = (m + 1). For the sake of
this, let’s write the lemma premise, protocol and conclusion for n = (m + 1) separating the last round of the ci1, ci3
challenge pair generation, where i = m:

23

Table 6: Lin2-Selector lemma protocol.

Prover returns a non-zero scalar ri and a non-zero
element Hi+1

empty

Prover returns a non-zero scalar rn and an evidence
of

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
∼(

Z +
∑

i=1...n
riHi

)

Verifier picks two non-zero random scalars ci1, ci3
and sends them to Prover

Verifier checks
(Z +

∑
j=1...i rjHj) , 0, ri , 0,Hi+1 , 0

Verifier increments i = i + 1
If (i < n), then Verifier goes to the step above:
Otherwise, Verifier goes to the step below:

Verifier picks a non-zero random scalar cn and
sends it to Prover

Verifier checks (Z +
∑

i=1...n riHi) , 0, rn , 0
Verifier checks the evidence of

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
∼(

Z +
∑

i=1...n
riHi

)

Prover and Verifier share a variable i with assigned value i = 1

For n = (m + 1) > 2 and N = 2n = 2 (2m) = 2M , for any vector of non-zero fixed elements
[
Xj

]2M−1
j=0 ,

such that ort
([

Xj

]2M−1
j=0

)
holds, any non-zero fixed element Z , a vector of (m + 1) non-zero elements [Hi]

m+1
i=1

where H1 is fixed, and a vector of non-zero scalars [ri]m+1
i=1 , the following protocol (Table 7) is an evidence of

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, M − 1]:

Let the Rsum
(
m + 1, 2M,

[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1

)
be rewritten by the definition of the Rsum as a sum of

four Rsum’s Y0, Y1, Y2, Y3:

Rsum
(
m + 1, 2M,

[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1

)
= Rsum

(
m, M,

[
Xj

]M−1
j=0 , [(ci1, ci3)]

m−1
i=1 , cm1

)
+ cm+1 Rsum

(
m, M,

[
Xj

]2M−1
j=M

, [(ci1, ci3)]m−1
i=1 , cm3

)
= Rsum

(
m − 1, M/2,

[
Xj

]M/2−1
j=0 , [(ci1, ci3)]m−2

i=1 , c(m−1),1

)
+ cm1 Rsum

(
m − 1, M/2,

[
Xj

]M−1
j=M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
+ cm+1 Rsum

(
m − 1, M/2,

[
Xj

]3M/2−1
j=M

, [(ci1, ci3)]m−2
i=1 , c(m−1),1

)
+ cm+1cm3 Rsum

(
m − 1, M/2,

[
Xj

]2M−1
j=3M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
= Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3,

where: 

Y0 = Rsum
(
m − 1, M/2,

[
Xj

]M/2−1
j=0 , [(ci1, ci3)]m−2

i=1 , c(m−1),1

)
Y1 = Rsum

(
m − 1, M/2,

[
Xj

]M−1
j=M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
Y2 = Rsum

(
m − 1, M/2,

[
Xj

]3M/2−1
j=M

, [(ci1, ci3)]m−2
i=1 , c(m−1),1

)
Y3 = Rsum

(
m − 1, M/2,

[
Xj

]2M−1
j=3M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
24

Table 7: Lin2-Selector lemma protocol for n = (m + 1).

Prover returns a non-zero scalar ri and a non-zero
element Hi+1

empty

Prover returns a non-zero scalar rm and a non-zero
element Hm+1

Prover returns a non-zero scalar rm+1 and an
evidence of

Rsum(m + 1, 2M,
[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1) ∼©­«Z +

∑
i=1...(m+1)

riHi
ª®¬

Verifier picks two non-zero random scalars ci1, ci3
and sends them to Prover

Verifier checks
(Z +

∑
j=1...i rjHj) , 0, ri , 0,Hi+1 , 0

Verifier increments i = i + 1
If (i < m), then Verifier goes to the step above:
Otherwise, Verifier goes to the step below:

Verifier picks two non-zero random scalars cm1, cm3
and sends them to Prover

Verifier checks
(Z +

∑
j=1...m rjHj) , 0, rm , 0,Hm+1 , 0

Verifier picks a non-zero random scalar cm+1 and
sends it to Prover

Verifier checks (Z +
∑

i=1...(m+1) riHi) , 0, rm+1 , 0
Verifier checks the evidence of

Rsum(m + 1, 2M,
[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1) ∼©­«Z +

∑
i=1...(m+1)

riHi
ª®¬

Prover and Verifier share a variable i with assigned value i = 1

By the Rsum property,

Y0 = lin
([

Xj

]M/2−1
j=0

)
, Y1 = lin

([
Xj

]M−1
j=M/2

)
,

Y2 = lin
([

Xj

]3M/2−1
j=M

)
, Y3 = lin

([
Xj

]2M−1
j=3M/2

)
.

As the subsets
[
Xj

]M/2−1
j=0 ,

[
Xj

]M−1
j=M/2,

[
Xj

]3M/2−1
j=M

,
[
Xj

]2M−1
j=3M/2 of the set

[
Xj

]2M−1
j=0 don’t intersect pairwise, and

as ort
([

Xj

]2M−1
j=0

)
by the premise, we have ort (Y0,Y1,Y2,Y3) by the OrtDisjunction lemma. Thus, the evidence in

the last step of the protocol rewrites as follows:

Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3 ∼
©­«Z +

∑
i=1...(m+1)

riHi
ª®¬ .

Defining element F: F = Z +
∑

i=1...(m−1)

riHi , the evidence rewrites

Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3 ∼ (F + rmHm + rm+1Hm+1) .

Now, let’s look at the step where Verifier picks the challenges cm1, cm3. At that moment, all ci1, ci3 and ri for
i < m are already returned by Prover and thus are fixed. Hence, at that moment Y0, Y1, Y2, Y3 and F are fixed. In
addition to this, at that moment Hm is already returned by Prover and thus is fixed.

Hence, having the evidence of (Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3) ∼ (F + rmHm + rm+1Hm+1) in the last step,
we have the premise and the protocol of the Lin2-Xor lemma here. Namely, we have the fixed Y0, Y1, Y2, Y3, F, Hm

and ort (Y0,Y1,Y2,Y3). Verifier picks the challenges cm1, cm3, Prover replies with rm and Hm+1, Verifier picks cm+1,
Prover replies with rm+1 and with the evidence of (Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3) ∼ (F + rmHm + rm+1Hm+1).

25

Hence, if Verifier successfully completes the protocol for n = (m + 1), that is, if Verifier accepts that

Rsum
(
m + 1, 2M,

[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1

)
∼

©­«Z +
∑

i=1...(m+1)

riHi
ª®¬ ,

then it accepts that
Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3 ∼ (F + rmHm + rm+1Hm+1) ,

and, then, the protocol of the Lin2-Xor lemma is successfully completed, and, by the Corollary of Lin2-Xor lemma,
exactly one of the following a) and b) holds for Prover:

a) (F + rmHm) ∼ (Y0 + cm1Y1)

b) (F + rmHm) ∼ (Y2 + cm3Y3)

Here we can rewrite Y0 + cm1Y1 and Y2 + cm3Y12 using the definitions of Y0, Y1, Y2, Y3 and the definition of Rsum as

Y0 + cm1Y1 = Rsum
(
m − 1, M/2,

[
Xj

]M/2−1
j=0 , [(ci1, ci3)]m−2

i=1 , c(m−1),1

)
+ cm1 Rsum

(
m − 1, M/2,

[
Xj

]M−1
j=M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
= Rsum

(
m, M,

[
Xj

]M−1
j=0 , [(ci1, ci3)]

m−1
i=1 , cm1

)
Y2 + cm3Y3 = Rsum

(
m − 1, M/2,

[
Xj

]3M/2−1
j=M

, [(ci1, ci3)]m−2
i=1 , c(m−1),1

)
+ cm3 Rsum

(
m − 1, M/2,

[
Xj

]2M−1
j=3M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
= Rsum

(
m, M,

[
Xj

]2M−1
j=M

, [(ci1, ci3)]m−1
i=1 , cm3

)
Thus, using the definition of F and the two above equalities, inserting rmHm into the sum, we obtain that exactly
one of the following a) or b) holds for Prover:

a)

(
Z +

∑
i=1...m

riHi

)
∼ Rsum

(
m, M,

[
Xj

]M−1
j=0 , [(ci1, ci3)]

m−1
i=1 , cm1

)
b)

(
Z +

∑
i=1...m

riHi

)
∼ Rsum

(
m, M,

[
Xj

]2M−1
j=M

, [(ci1, ci3)]m−1
i=1 , cm3

)
If a) holds, then, renaming cm1 to be cm, the premise and protocol of this lemma for the case n = m are met, and,
by the induction hypothesis, Verifier has an evidence of

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, M/2 − 1].

If b) holds, then, renaming cm3 to be cm, the premise and protocol of this lemma for the case n = m are met, and,
by the induction hypothesis, Verifier has an evidence of

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [M/2, M − 1].

Putting it all together, from the induction hypothesis for n = m, we have obtained for n = (m + 1), that if the
premise and protocol of this lemma are met, then Verifier has exactly one of the two evidences,(

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, M/2 − 1]

)
or

(
Z = lin

(
X(2s), X(2s+1)

)
, s ∈ [M/2, M − 1]

)
.

Unifying the intervals for s, we obtain, that Verifier has an evidence of

Z = lin
(
X(2s), X(2s+1)

)
, s ∈ [0, M − 1].

That is, recalling M = 2m = 2m+1/2, we have obtained the conclusion of this lemma for n = (m + 1).
Thus, the lemma is proven for all n > 1.

26

5.3 WITNESS EXTRACTION
Here we will provide a WEE counterpart for the Lin2-Selector lemma, as we did in Section 4.3.2 for the

Lin2-Xor lemma.

Lin2-Selector-WEE lemma:
For any n > 1 and N = 2n, for any vector of non-zero fixed elements

[
Xj

]N−1
j=0 such that ort

([
Xj

]N−1
j=0

)
holds,

for any non-zero fixed element Z , for a vector of n non-zero elements [Hi]
n
i=1 where H1 is fixed, for a vector of

non-zero scalars [ri]ni=1, for the relation R = {(Z, (x, y, s)) | Z = xX(2s) + yX(2s+1), s ∈ [0, N/2 − 1]}, the protocol
in Table 6 has witness-extended emulation, provided that the evidence for the Rsum in the last step of the protocol
has witness-extended emulation.

Proof: The element H1 is implied as the first message from Prover to Verifier in the protocol (Table 6). For this
protocol, we will prove the existence of a PPT emulator that satisfies the definition of witness-extended emulation.
The proof is by induction for each n starting from 2, where n = log2(N).

For the induction base case, n = 2, this lemma premise and protocol meet the premise and protocol of the
Lin2-Xor-WEE lemma. By the Lin2-Xor-WEE lemma conclusion, there exists a PPT emulator such that the sought
scalars x and y can be efficiently calculated with it. The index s of the witness (x, y, s) is found by simply checking
which pair of elements from [Xj]

N−1
j=0 matches the condition Z = xX(2s) + yX(2s+1). Thus, the induction base case

is proven.
The induction hypothesis is that the lemma holds for m > 1. Let’s prove the lemma for n = (m + 1). When

the lemma protocol is successfully completed for n = (m + 1), Verifier has an Rsum tree structure R built over the
challenges and set [Xj]

2M−1
j=0 as

R = Rsum(m + 1, 2M,
[
Xj

]2M−1
j=0 , [(ci1, ci3)]mi=1, cm+1) , where M = 2m and ort([Xj]

2M−1
j=0). (62)

At depth 2 from the root, this tree structure has four sub-trees Y0,Y1,Y2,Y3 such that

R = Y0 + cm1Y1 + cm+1Y2 + cm+1cm3Y3 , (63)

evaluated as 

Y0 = Rsum
(
m − 1, M/2,

[
Xj

]M/2−1
j=0 , [(ci1, ci3)]m−2

i=1 , c(m−1),1

)
Y1 = Rsum

(
m − 1, M/2,

[
Xj

]M−1
j=M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

)
Y2 = Rsum

(
m − 1, M/2,

[
Xj

]3M/2−1
j=M

, [(ci1, ci3)]m−2
i=1 , c(m−1),1

)
Y3 = Rsum

(
m − 1, M/2,

[
Xj

]2M−1
j=3M/2, [(ci1, ci3)]

m−2
i=1 , c(m−1),3

) (64)

and, by the OrtDisjunction lemma, satisfying ort(Y0,Y1,Y2,Y3). Thus, we see that during the execution of the
protocol (Table 6), starting from the moment the challenge pair (cm1, cm3) is generated, the rest of the protocol
satisfies the premise and the protocol (Table 5) of the Lin2-Xor-WEE lemma.

Therefore, according to the Corollary 3 of Lin2-Xor-WEE lemma, there is a PPT emulator that extracts scalar
w such that (

Z +
∑

i=1...m
riHi = w(Y0 + cm1Y1)

)
⊕

(
Z +

∑
i=1...m

riHi = w(Y2 + cm3Y3)

)
. (65)

The elements (Y0 + cm1Y1) and (Y2 + cm3Y3), taking into account the formulae (63) and (64), are the roots of the left
and right sub-trees of the Rsum R. Thus, depending on which of them the witness w belongs to according to the
statement (65), this lemma protocol (Table 6) for n = (m + 1) meets this lemma premise and protocol for n = m.
Hence, by the induction hypothesis, since this lemma is assumed proven for n = m, there is a PPT emulator that
finds a witness (x, y, s) for Z in the statement (65), that is, a witness for the following relation

R ′ =

{
(Z, (x, y, s))

���� (
Z = xX(2s) + yX(2s+1) ,
s ∈ [0, M/2 − 1]

)
⊕

(
Z = xX(M+2s) + yX(M+2s+1) ,
s ∈ [0, M/2 − 1]

)}
. (66)

The sought witness for the relation R is obtained from the witness for the relation R ′ (66) in one step by simple
conversion of the index s. Thus, we have proven this lemma for n = (m+1) and, by induction, the lemma is proven.

6 L2S MEMBERSHIP PROOF
Here we construct a proof of membership (PoM) protocol called L2S. In this protocol, Verifier is fed with an

element Z , and, upon successful completion of all steps of the protocol, Verifier is convinced that Z is a commitment

27

to a pair of elements from a publicly known set of element pairs, such that Prover knows an opening for Z . In other
words, Verifier is convinced that its input Z is, in fact, a member pair from the public set, enclosed in a commitment.

We prove that the L2S protocol is complete and sound. Also we prove it has witness-extended emulation, is
special honest verifier zero-knowledge, and no possibility exists for identifying a pair in the set that the element Z
corresponds to.

6.1 COM2 COMMITMENT
Com2 definition:
Given a vector ®X =

[
Xj

]N−1
j=0 of N = 2n elements, n > 0, such that ort

(
®X
)
holds, two scalars k0, k1, and an integer

index s ∈ [0, N/2 − 1], let’s define Com2
(
k0, k1, s, ®X

)
as an element (k0X2s + k1X2s+1). That is,

Com2
(
k0, k1, s, ®X

)
= k0X2s + k1X2s+1 .

The 3-tuple (k0, k1, s) is an opening to the Com2
(
k0, k1, s, ®X

)
.

Knowing ®X , a Com2 commitment Z over ®X , and the scalars k0, k1 of its opening, it’s possible to efficiently
calculate the index s by iterating through ®X and checking if Z = k0X2s + k1X2s+1.

By the OrtUniqueRepresentation lemma, if Z has a (k0, k1, s) opening over ®X , then the opening (k0, k1, s) is
unique. Hence, according to definition from [14], the Com2 commitment is strongly binding.

We call a Com2 commitment as a commitment to a member-pair. A set of member-pairs
[
Xj

]N−1
j=0 , N = 2n, is

called a decoy set.

6.2 L2S MEMBERSHIP PROOF PROTOCOL
We define L2S PoM protocol as four procedures

L2S = {DecoySetGen,ComGen, InteractionProcedure,Verif} ,

where:
• DecoySetGen (n), where n > 1, is an arbitrary function that returns an element vector ®X =

[
Xj

]N−1
j=0

of N = 2n elements such that ort(®X) holds. Each element in the generated ®X has a distribution that
is independent of the distributions of other elements in the same ®X and is indistinguishable from the
uniform randomness. Two vectors generated by DecoySetGen may have a non-empty intersection. For any
DecoySetGen implementation choice, the returned vector ®X orthogonality, independence of the element
distributions and their uniform randomness are to be guaranteed.

• ComGen(®X) is an arbitrary function that returns a pair ((k0, k1, s) , Z), where k0 is non-zero and chosen
uniformly at random, k1 is arbitrary, s ∈ [0, N/2 − 1], and Z = Com2

(
k0, k1, s, ®X

)
. For any ComGen

implementation choice, the independence and random uniformity of the k0 distribution together with the
conditions Z = Com2

(
k0, k1, s, ®X

)
and k0 , 0 are to be guaranteed.

• InteractionProcedure is shown in Table 8. It starts with Prover having an opening (k0, k1, s), and Verifier
having a commitment Z . On completion of InteractionProcedure, Verifier has a tuple(

[(ci1, ci3)]n−1
i=1 , cn, Z, [(ri,Hi)]

n
i=1, c,T, t

)
(67)

that contains Z together with all the challenges and replies occurred during the Prover and Verifier interaction.
• Verif function is shown in Table 9. It accepts a tuple that Verifier has upon completion of InteractionPro-
cedure along with a decoy set from DecoySetGen. It returns 1 or 0, which means the verification succeeded
or failed.

Overall, the L2S protocol steps are the following:
• A decoy set ®X is generated at both Prover’s and Verifier’s sides, using same L2S.DecoySetGen.
• Prover gets an opening (k0, k1, s) from L2S.ComGen. At the same time, Verifier gets some element Z .
• All steps of L2S.InteractionProcedure are performed between the Prover and Verifier. On completion of
L2S.InteractionProcedure Verifier has the tuple (67).

• Verifier calls L2S.Verif for the decoy set and tuple obtained above. Iff it returns 1, then the L2S protocol is
completed successfully. We will prove below that the successful completion means Z = Com2

(
k0, k1, s, ®X

)
.

28

Table 8: L2S.InteractionProcedure.

Prover:
(k0, k1, s), where k0 , 0, s ∈ [0, N/2 − 1]

w = k0
k = k1/w

M = N[
Yj

]M−1
j=0 =

[
Xj

]N−1
j=0

(z, h) = (2s, 2s + 1)
a = 1
q← random, non-zero
H1 = wYh/q H1

(ci0, ci2) = (1, 1)
(e, g) = (ci,(z%4), ci,(h%4))

ri = q((g/e) − k) ri
k = 0
a = ea

M = M/2[
Yj

]M−1
j=0 =

[(
Y(2j) + ci,((2j+1)%4)Y(2j+1)

)
/e

]M−1
j=0

z = (z//2)
h = InvertLastBit(z)
q← random, non-zero
Hi+1 = wYh/q Hi+1

(cn0, cn1) = (1, cn)
(e, g) = (cn,z, cn,h)
rn = q (g/e) rn
a = ea
x = a/w
q← random, non-zero
W = (k0X2s + k1X2s+1) +

∑
i=1...n riHi

T = qW T

t = q − xc t

Verifier:
Z

(ci1, ci3) ← random, non-zero

i = i + 1
If (i < n), then:
Otherwise:

cn ← random, non-zero

c← random, non-zero

Verifier has a tuple:(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)

Prover and Verifier common parameters:
• n, N = 2n, where n > 1

• a set of elements
[
Xj

]N−1
j=0 = DecoySetGen(n)

• a shared variable i with assigned value i = 1

29

Table 9: L2S.Verif function.

Input: n,
[
Xj

]N−1
j=0 ,

(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
, where N = 2n, n > 1

S = Z
For i = 1 . . . n:

If (ri == 0 or Hi == 0) then return 0
S = S + riHi

If S == 0 then return 0
W = S

R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
If (tW + cR) == T then return 1
Else return 0.

Note the InvertLastBit function, which is used in the L2S.InteractionProcedure implementation (Table 8),
takes an unsigned integer and returns this integer with inverted least significant bit in its binary representation. That
is, it is defined as

InvertLastBit (i) = (2 (i//2) + (i + 1)%2) , where the // and % are the quotient and remainder operators.

We use the InvertLastBit for the binary tree indexes, to switch between the left and right subtrees of a tree node.

6.2.1 PROOF OF THE RELATION BETWEEN R AND W

Now, looking at the L2S.InteractionProcedure implementation in Table 8, we show that

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
= xW,

where x = a/w is calculated on the Prover’s side.
On the Prover’s side of L2S.InteractionProcedure, at the beginning, the expression[

Yj

]M−1
j=0 =

[
Xj

]N−1
j=0 , where M = N,

lets all Yj’s be Xj’s.
Next, down the protocol execution flow, when i = 1, the expression[

Yj

]M−1
j=0 =

[(
Y(2j) + ci,((2j+1)%4)Y(2j+1)

)
/e

]M−1
j=0 , where M = N/2,

lets the Yj’s vector contain N/2 Rsum’s

Rsum
(
1, 2, [Xt]

2j+1
t=2j , [], c1,((2j+1)%4)

)
,

each divided by the common factor e, which is equal to 1 for i = 1. The variable a accumulates the common factor,
that is, remains to be 1.

When i = 2, the expression[
Yj

]M−1
j=0 =

[(
Y(2j) + ci,((2j+1)%4)Y(2j+1)

)
/e

]M−1
j=0 , where M = N/4,

lets the Yj’s vector contain N/4 Rsum’s:

Rsum
(
2, 4, [Xt]

4(j+1)−1
t=4j ,

[(
cd,1, cd,3

)]1
d=1, c2,((2j+1)%4)

)
divided by the common factor c2,(s%4) simultaneously accumulated in a. Note for all s′: cs′,0 = cs′,2 = 1.

When i = 3, the expression[
Yj

]M−1
j=0 =

[(
Y(2j) + ci,((2j+1)%4)Y(2j+1)

)
/e

]M−1
j=0 , where M = N/8,

lets the Yj’s vector contain N/8 Rsum’s

Rsum
(
3, 8, [Xt]

8(j+1)−1
t=8j ,

[(
cd,1, cd,3

)]2
d=1, c3,((2j+1)%4)

)
30

divided by the common factor c2,(s%4)c3,((s//2)%4). The variable a contains the common factor c2,(s%4)c3,((s//2)%4).
And so on, until i = n. At that moment Yj’s vector contains 2 Rsum’s representing the left and right subtrees of

the root, both divided by a, where a is the product of all challenges on the path from the pair with index s to the
root.

At the same time, from the beginning, Prover composes Hi’s and ri’s using the Yj’s.
When i = 1, Prover sends to Verifier

H1 = wX(2s+1)/q, where q is random,
r1 = q

(
c1,((2s+1)%4) − k

)
, where q is the same and k = k1/w,

so that (Z + r1H1) = w Rsum
(
1, 2, [Xt]

2s+1
t=2s , [], c1,((2s+1)%4)

)
.

Next, Prover reshuffles q, sets h = InvertLastBit (s) and sends

H2 = w Rsum
(
1, 2, [Xt]

2h+1
t=2h , [], c1,((2h+1)%4)

)
/q

When i = 2, Prover sets k = 0 and sends

r2 = q
(
c2,(h%4)/c2,(s%4)

)
,

so that

(Z + r1H1 + r2H2) = w Rsum
(
1, 2, [Xt]

2s+1
t=2s , [], c1,((2s+1)%4)

)
+

w(c2,(h%4)/c2,(s%4))Rsum
(
1, 2, [Xt]

2h+1
t=2h , [], c1,((2h+1)%4)

)
=

w Rsum
(
2, 4, [Xt]

4((s//2)+1)−1
t=4(s//2) ,

[(
cd,1, cd,3

)]1
d=1, c2,((2(s//2)+1)%4)

)
/c2,(s%4)

Next, Prover reshuffles q, sets h = InvertLastBit (s//2) and sends

H3 = w Rsum
(
2, 4, [Xt]

4(h+1)−1
t=4h ,

[(
cd,1, cd,3

)]1
d=1, c2,((2h+1)%4)

)
/(c2,(s%4)q)

When i = 3, Prover sends
r3 = q

(
c3,(h%4)/c3,((s//2)%4)

)
,

so that

(Z + r1H1 + r2H2 + r3H3) = w Rsum
(
2, 4, [Xt]

4((s//2)+1)−1
t=4(s//2) ,

[(
cd,1, cd,3

)]1
d=1, c2,((2(s//2)+1)%4)

)
/c2,(s%4)+

w(c3,(h%4)/c3,((s//2)%4))Rsum
(
2, 4, [Xt]

4(h+1)−1
t=4h ,

[(
cd,1, cd,3

)]1
d=1, c2,((2h+1)%4)

)
/c2,(s%4) =

w Rsum
(
2, 4, [Xt]

8((s//4)+1)−1
t=8(s//4) ,

[(
cd,1, cd,3

)]2
d=1, c3,((2(s//4)+1)%4)

)
/(c2,(s%4)c3,((s//2)%4))

And so on, until i = n and

W = (Z + r1H1 + r2H2 + . . . + rnHn) = w Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
/a

Thus, Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
= xW .

6.2.2 PROOF THAT CORRECT OPENING IMPLIES L2S.VERIF RETURN 1

The (T, c, t) part of the L2S.Verif implementation (Table 9) input is the Schnorr identification scheme [23]
initial message, challenge and reply for the relation R = xW .

If Z = Com2
(
k0, k1, s,

[
Xj

]N−1
j=0

)
, then the values of W calculated on the Prover’s side and in L2S.Verif are

identical, as in both places W is calculated by the same formula with the same [(ri,Hi)]
n
i=1 and Z .

As proven in 6.2.1, Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(1, ci1, ci3)]

n−1
i=1 , cn

)
= xW . Hence, on the Prover’s side xW is equal

to R used in L2S.Verif. As the Schnorr identification scheme [23] is complete, this implies (tW + cR) == T .
Thus, Z = Com2

(
k0, k1, s,

[
Xj

]N−1
j=0

)
implies L2S.Verif returns 1.

31

6.3 LS2 PROTOCOL PROPERTIES
6.3.1 COMPLETENESS

As shown in 6.2.2, if Z at the Verifier’s input is equal to a commitment Com2
(
k0, k1, s,

[
Xj

]N−1
j=0

)
, where the

opening (k0, k1, s) is the Prover’s input, then L2S.Verif returns 1. This means that the LS2 protocol is complete.

6.3.2 SOUNDNESS
L2S.InteractionProcedure (Table 8) together with the subsequent call of the L2S.Verif function (Table 9)

matches the Lin2-Selector lemma protocol (Table 6). Namely, the L2S.InteractionProcedure and L2S.Verif
populate the Lin2-Selector lemma pure protocol with a concrete implementation of Prover’s behavior. Therefore,
as such, the LS2 protocol satisfies the criterion of the Lin2-Selector lemma protocol for applying the Lin2-Selector
lemma.

As shown in 6.2.2, if L2S.Verif returns 1, then (tW + cR) == T , and, since the Schnorr identification scheme
[23] is sound, Verifier has an evidence of W ∼ R, that is, an evidence of

Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
∼

(
Z +

∑
i=1...n

riHi

)
.

Thus, by the Lin2-Selector lemma, if L2S.Verif returns 1, then Verifier is convinced that Z = lin
(
X(2s), X(2s+1)

)
holds on Prover’s side for some member-pair

(
X(2s), X(2s+1)

)
, where s ∈ [0, N/2 − 1].

That is, using the definitions of lin() and Com2, if L2S.Verif returns 1, then Verifier is convinced that Prover
knows an opening (k0, k1, s) of the commitment Z such that Z = Com2

(
k0, k1, s,

[
Xj

]N−1
j=0

)
. Therefore, the LS2

protocol is sound.

6.3.3 WITNESS-EXTENDED EMULATION
In 6.3.2 we showed that the Lin2-Selector lemma applies to the LS2 protocol. In addition to the requirements

imposed by the Lin2-Selector lemma on a protocol, the Lin2-Selector-WEE lemma from 5.3 to be applicable
requires a witness-extended emulator to exist for the evidence at the last step of the protocol (Table 6). That is, in
relation to the LS2 protocol, it requires a witness-extended emulator to exist for the evidence of W ∼ R.

The evidence of W ∼ R is implemented with the Schnorr identification scheme, more on this in 6.2.2. Since
the Schnorr identification scheme is special sound, a witness-extended emulator exists for the evidence of W ∼ R
according to the definitions of the witness-extended emulation and special soundness (the latter is a case of the
former). Hence, the Lin2-Selector-WEE lemma applies to the LS2 protocol.

Thus, by the Lin2-Selector-WEE lemma, the LS2 protocol has witness-extended emulation.

6.3.4 STRUCTURE AND VIEW OF THE L2S PROVER-VERIFIER PUBLIC TRANSCRIPT
The LS2 protocol Prover-Verifier public transcript is the following tuple, copying (67) here(

[(ci1, ci3)]n−1
i=1 , cn, Z, [(ri,Hi)]

n
i=1, c,T, t

)
.

The itemsT and t in the transcript are related to the Schnorr id scheme, they are distributed uniformly at random.
However, they are not independent.

Here we are interested only in the transcripts that Verifier accepts, that is, in those for which (tW + cR) == T .
The W and R are calculated from the publicly visible elements and scalars(

Z, [(ri,Hi)]
n
i=1

)
and

([
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
,

respectively. Thus, the element T is a linear combination of the variables seen for anyone. Hence, we exclude T
from our consideration: for any transcript accepted by Verifier the itemT carries no information and can be restored
from the other items of the transcript and elements of the decoy set.

All the challenges are independent and uniformly random. All ri’s are independent and uniformly random, too,
as each ri is obfuscated by the private multiplier q, which is reshuffled for each ri .

The random multiplier q is reduced in the products riHi . These products represent Rsum’s, i.e., the subtree
sums at heights i. That is, for each height i, the element (Z + r1H1 + . . . + ri−1Hi−1) corresponds to a subtree that
the index s belongs to. At the same time, the element riHi corresponds to a complimentary subtree that the index s
doesn’t belong to. The height i = 1 is the only exclusion from this, as Z has a fraction k1/k0 of its complimentary
subtree, nevertheless, this difference has no effect on the transcript item independencies and uniformities.

32

All the elements Z , r1H1, . . . , riHi are obfuscated by the multiplier w. The multiplier w is private and uniformly
random, as w = k0, where k0 is uniformly random by the definition of L2S.ComGen. By the definition of Rsum,
each riHi is a linear combination of the elements from the

[
Xj

]N−1
j=0 with efficiently computable scalar coefficients.

Moreover, all riHi’s depend on the different non-intersecting subsets of the
[
Xj

]N−1
j=0 .

Using the terms introduced in [5], the riHi’s and Z are linearly independent degree 2 polynomials of a private
set of the independent and random uniform scalars{

{w} ∪
{
discrete logarithms of

[
Xj

]N−1
j=0

}}
.

The coefficients of these polynomials are efficiently computable from the [(ci1, ci3)]n−1
i=1 , cn, and k1. Thus, reducing

the question of the riHi’s distributions to the (P,Q)-DDH problem [5], we have

P =
{[

Xj

]N−1
j=0

}
and Q =

{
{Z} ∪ {riHi}

n
i=1

}
,

Span (P) ∩ Span (Q) = ∅.

By the (P,Q)-DDH assumption, the distributions of all the riHi’s and Z are indistinguishable from {eiG}n+1
i=1 , where

all the ei’s are independent and uniformly random.
As the DDH assumption implies (P,Q)-DDH [5] for our polynomials in the above sets P and Q, we have

all the riHi’s and Z distributed independently and uniformly at random under DDH. We have proven this for
any conversation transcript between honest Prover and Verifier over any fixed decoy set

[
Xj

]N−1
j=0 generated by

L2S.DecoySetGen. For readability, we omit the word ‘indistinguishable’, reserving it for the distributions.
For all honest conversation transcripts over all really used and possibly intersecting decoy sets, we reduce the

question to the same (P,Q)-DDH problem with

P = ∅ and Q = ∪all transcripts TR with their decoy sets

{
{Z} ∪ {riHi}

n
i=1 ∪

[
Xj

]N−1
j=0

}
TR
,

Span (P) ∩ Span (Q) = ∅,

where the private set of the independent and random uniform scalars is

∪all transcripts TR with their decoy sets

{
{w} ∪

{
discrete logarithms of

[
Xj

]N−1
j=0

}}
TR
.

By requiring w to be chosen independently and uniformly at random for each transcript, meaning same Z is
never used in any two different conversations, we obtain that all the riHi’s and Z’s publicly seen across all the
accepted transcripts are distributed independently and uniformly at random under DDH. Their distributions are
independent of each other and of the distributions of the elements Xj’s of decoy sets.

Thus, we conclude, that all items, except for the items T , of all honest L2S conversation transcripts have
uniformly random and independent distributions under the DDH, provided that the input commitments Z are never
reused. That is, the input commitments are to be generated anew with a call to L2S.ComGen for each conversation.

As for the transcript items T , each honest transcript item T is efficiently computable from the other items
of the transcript. Overall, the items T carry no information in honest transcripts, they serve only to distinguish
honest transcripts, i.e. the proofs that Verifier accepts, from the transcripts where Prover tries to dishonestly prove
knowledge of opening, that Verifier rejects.

6.3.5 SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE

We will show the L2S protocol is sHVZK following definition from [6]. Having the random independence
property proven for the transcript items in 6.3.4, it’s easy to build a simulator, that for any given challenges and for
any given input Z generates a simulated transcript that Verifier accepts, and no PPT algorithm is able to distinguish
it from the space of honest transcripts with the same challenges.

The simulator acts as follows:
• It takes an empty L2S transcript placeholder and puts the given input Z and challenges [(ci1, ci3)]n−1

i=1 , cn in
their places.

• It independently generates random uniform scalars and puts them in the places of scalars in the placeholder.

• It independently generates random uniform scalars and puts their exponents in the places of elements in the
placeholder, except for the place of element T .

33

• It takes the values [(ci1, ci3)]n−1
i=1 , cn, Z , [(ri,Hi)]

n
i=1, c, t from the already filled in places of the placeholder,

obtains
[
Xj

]N−1
j=0 by calling L2S.DecoySetGen, calculates

R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
,

W = Z +
∑

i=1...n
riHi,

and puts value (tW + cR) in the place of T .
Thus, the simulated transcript is ready. Verifier accepts it, as it passes the (tW + cR) == T check in L2S.Verif.
(The other checks in L2S.Verif are also passed with overwhelming probability as the checked values are uniformly
random.)

Suppose, there exists a PPT algorithm that distinguishes with non-negligible probability the simulated transcript
from the space of honest transcripts with the same challenges. As proven in 6.3.4, the space contains the transcripts
with all items having distributions indistinguishable from the distributions of the items of the simulated transcript,
except for the item T . However, T is calculated the same way from the same sources for honest and for simulated
transcripts, hence the algorithm is not able to distinguish the transcripts by T’s. Hence, we have that the PPT
algorithm is able to distinguish indistinguishable distributions, contradiction.

We have proven the L2S protocol is sHVZK under DDH, provided that the input commitments Z are generated
anew with L2S.ComGen for each Prover-Verifier conversation.

6.3.6 INDISTINGUISHABILITY OF THE MEMBER-PAIR INDEX

Here we will prove that the member-pair index s in the opening (k0, k1, s) of the input commitment Z can not
be distinguished from a honest conversation transcript.

Suppose, there exists a PPT algorithm that distinguishes s with non-negligible probability from a honest Prover-
Verifier conversation transcript. Applying the algorithm to all transcripts in the honest transcript space, we obtain a
partitioning of the space where each partition with non-negligible probability distinguishes some information about
the actual values of s in it. However, according to 6.3.4 the space entries contain only the items indistinguishable
from the independent and uniform randomness, with the exclusion of the dependent items T that carry no additional
information. Thus, we have the algorithm that distinguishes with non-negligible probability some information
about the actual values of s from the independent and uniform randomness, that is a contradiction.

We have proven the member-pair index s in the L2S proof of membership protocol is indistinguishable
under DDH, as long as the input commitments Z are generated anew with L2S.ComGen for each Prover-Verifier
conversation.

7 L2S PROTOCOL EXTENSIONS
7.1 RL2S PROTOCOL, SHVZK FOR NON-RANDOM INPUT

As shown in 6.3.5, L2S is sHVZK under DDH, provided that the scalar k0 in Prover’s input (k0, k1, s) has
independent and randomly uniform distribution. To remove this restriction and to allow the protocol to keep the
sHVZK property for any input commitment distribution, including the cases when a linear relationship between
different input commitments is known to an adversary, we extend L2S protocol with an input randomization. Of
course, as the input commitments are publicly seen in the transcripts, an adversary is still able to track the known
relationships between them, however, with sHVZK no adversary is able to obtain any information beyond that from
the transcripts.

The idea of the input randomization is that right at the beginning of L2S.InteractionProcedure Prover
multiplies the opening-commitment pair ((k0, k1, s) , Z) by a private random uniform scalar f and supports Verifier
with an evidence of (Z ∼ f Z) in the form of Schnorr id tuple. Next, L2S.InteractionProcedure is run usual way,
however with the multiplied by f opening and commitment, we denote this substitution as follows

((k0, k1, s) , Z) ← ((f k0, f k1, s) , f Z) .

We define RL2S protocol as four procedures

RL2S = {DecoySetGen=L2S.DecoySetGen,ComGen, InteractionProcedure,Verif} ,

where

34

• RL2S.ComGen(®X) is an arbitrary function that returns a pair ((k0, k1, s) , Z0), where k0 is arbitrary non-zero,
k1 is arbitrary, s ∈ [0, N/2 − 1], and Z0 = Com2

(
k0, k1, s, ®X

)
. For any ComGen implementation choice, the

conditions k0 , 0 and Z0 = Com2
(
k0, k1, s, ®X

)
are to be guaranteed.

• RL2S.InteractionProcedure is shown in Table 10. It starts with Prover having (k0, k1, s), k0 , 0, and
Verifier having Z0. On completion of RL2S.InteractionProcedure, Verifier has two tuples: (Z0, c0,T0, t0)
and

(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
, that contain the initial input as Z0 and the randomized input as

Z together with all the challenges and replies occurred during the Prover and Verifier interaction.

Table 10: RL2S.InteractionProcedure.

Prover:

(k0, k1, s), where k0 , 0

s – secret index, s ∈ [0, N/2 − 1]

Z0 = Com2
(
k0, k1, s,

[
Xj

]N−1
j=0

)
f ← random, non-zero

Z = f Z0 Z

(k0, k1, s) = (f k0, f k1, s)

q← random, non-zero

T0 = qZ0 T0

t0 = q − f c0 t0

Verifier:

Z0

c0← random, non-zero

Verifier has two tuples:

(Z0, c0,T0, t0),(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
Run L2S.InteractionProcedure for the new (k0, k1, s) and Z

Prover and Verifier common parameters:
– n, N = 2n, where n > 1

– a set of elements
[
Xj

]N−1
j=0 = DecoySetGen(n)

• RL2S.Verif function is shown in Table 11. It takes the two tuples from the RL2S.InteractionProcedure
output together with the decoy set from DecoySetGen and returns 1 or 0.

Table 11: RL2S.Verif function.

Input: n,
[
Xj

]N−1
j=0 , where N = 2n, n > 1,

(Z0, c0,T0, t0),(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
If (t0Z0 + c0Z) == T0 then continue
Else return 0

Run L2S.Verif for the
n,

[
Xj

]N−1
j=0 ,

(
[(ci1, ci3)]n−1

i=1 , cn, Z, [(ri,Hi)]
n
i=1, c,T, t

)
The steps for the RL2S protocol are the same as for the L2S protocol.

35

7.1.1 RL2S PROTOCOL COMPLETENESS AND SOUNDNESS

As the Schnorr identification and the L2S protocols are complete and sound, the RL2S protocol is complete
and sound.

7.1.2 RL2S PROTOCOL SHVZK

The RL2S protocol is sHVZK. To prove this, we repeat the same steps as those for the L2S sHVZK proof in
6.3.5 with the only two additions

• As the (Z0, c0,T0, t0) tuple is put at the beginning of a public RL2S protocol transcript, and as Z in the
transcript becomes Z = f Z0, it’s necessary to determine the distributions of them:

– c0 is an independent and randomly uniform honest Verifier’s challenge.
– Z has independent and random uniform distribution, as f in the equation Z = f Z0 is private, indepen-
dent, and uniformly random.

– t0 is independent and uniformly random, as it is obfuscated by the private independent and randomly
uniform scalar q in the formula t0 = q − f c0.

– Z0 is independent of the other items in the transcript, however, it is not uniformly random.
– T0 is not independent, it is evaluated as T0 = (t0Z0 + c0Z) from the items (Z0, Z, c0, t0).

Thus, all T0’s can be excluded from consideration, as they carry no information. We get to conclusion, that
an RL2S transcript contains two dependent items: T0 and T , that are evaluated from the other items. It
contains the input commitments as Z0, and there is no item, except for T0, distinguishably dependent on Z0
in the transcript. All the other items are independent and uniformly random.

• RL2S simulator puts the input commitment in the place of Z0 and fills in all the other places, except for
the ones of T0 and T , with the independent and uniformly random values. It puts the evaluated values
(t0Z0 + c0Z) and (tW + cR) in the places of T0 and T , respectively.

7.1.3 RL2S PROTOCOL WITNESS-EXTENDED EMULATION

The RL2S protocol is the Schnorr identification protocol followed by the L2S protocol. Since both Schnorr
identification and L2S protocols have witness-extended emulators, a witness-extended emulator for the RL2S
protocol can be obtained by simply invoking the emulator for L2S and then the emulator for Schnorr identification
protocols. Thus, the RL2S protocol has witness-extended emulation.

7.2 MRL2S PROTOCOL
Aparallel version of theRL2Sprotocol is a protocol that runsmultiple instances ofRL2S.InteractionProcedure

in parallel and thus proves membership for multiple commitments at once. We call it MRL2S protocol and define
as follows

MRL2S = {DecoySetGen=L2S.DecoySetGen,ComGen=RL2S.ComGen,MapInteractionProcedure, JoinVerif} ,

where
• MRL2S.MapInteractionProcedure is shown in Table 12. It starts with Prover having L openings[(

kp
0 , kp

1 , s
p
)
|kp

0 , 0
]L
p=1

and Verifier having L commitments
[
Zp

0
]L
p=1. On completion of

MRL2S.InteractionProcedure, Verifier has L tuples((
Zp

0 , c0,T
p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,
[(

rpi ,H
p
i

)]n
i=1, c,T

p, tp
))L

p=1
, (68)

which contain the outputs of L concurrent runs of MRL2S.InteractionProcedure with the same decoy set
and common challenges.

• MRL2S.JoinVerif function is shown inTable 13. It takes the L tuples fromMRL2S.MapInteractionProcedure
together with the decoy set from DecoySetGen and returns 1 or 0.

MRL2S.JoinVerif performs L verifications in parallel. As all theRsum’s R inside the nestedRL2S.Verif.L2S.Verif
calls are the same, MRL2S.JoinVerif performs their calculation only once, at the beginning, and uses the
calculated value

R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
for the nested calls.

36

Table 12: MRL2S.MapInteractionProcedure.

Prover and Verifier common parameters:
• L

• n, N = 2n, where n > 1

Prover: Verifier:[(
kp

0 , kp
1 , s

p
)
|kp

0 , 0
]L
p=1

[
Zp

0
]L
p=1

For each p ∈ [1, L]: run RL2S.InteractionProcedure using n,
(
kp

0 , kp
1 , s

p
)
as arguments for Prover,

and n, Zp
0 as arguments for Verifier.

All the parallel RL2S.InteractionProcedure instances share the same decoy set[
Xj

]N−1
j=0 = DecoySetGen (n) and same Verifier’s challenges c0, [(ci1, ci3)]n−1

i=1 , cn, c
Verifier has L tuples:[((

Zp
0 , c0,T

p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,[(
rpi ,H

p
i

)]n
i=1, c,T

p, tp
))]L

p=1

Table 13: MRL2S.JoinVerif function.

Input: L, n,
[
Xj

]N−1
j=0 , where N = 2n, n > 1,((

Zp
0 , c0,T

p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,
[(

rpi ,H
p
i

)]n
i=1, c,T

p, tp
))L

p=1

R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
For each p ∈ [1, L]: run RL2S.Verif using n,

[
Xj

]N−1
j=0 and(

Zp
0 , c0,T

p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,
[(

rpi ,H
p
i

)]n
i=1, c,T

p, tp
)
as arguments.

Inside each RL2S.Verif call, within nested L2S.Verif call, use the calculated above R for the
RL2S.Verif.L2S.Verif.R

Return 0 if one of the RL2S.Verif calls returns 0. Otherwise, return 1.

The steps for the MRL2S protocol are identical to the steps of the RL2S protocol, with the only difference in that
the parallel procedure versions are used instead of the sequential ones:

MapInteractionProcedure→ InteractionProcedure,
JoinVerif→ Verif

7.2.1 MRL2S PROTOCOL COMPLETENESS, SOUNDNESS, AND WITNESS-EXTENDED EMULATION
The MRL2S protocol completeness and soundness immediately follow from the completeness and soundness

of the RL2S protocol.
TheMRL2S protocol also has witness-extended emulation, its emulator calls the L (polynomial number) nested

RL2S protocol emulators, which synchronously rewind to the same points in the L transcript trees. To summarize,
here is the polynomial time relation that the MRL2S protocol emulator finds witness for

R =

L⋃
p=1

{
(Zp

0 , (k
p
0 , kp

1 , s
p)) | Zp

0 = kp
0 X(2sp) + kp

1 X(2sp+1) , s ∈ [0, N/2 − 1]
}

(69)

7.2.2 MRL2S PROTOCOL SHVZK
The MRL2S protocol is sHVZK. To prove this, we repeat the same steps as for the proof of RL2S sHVZK in

7.1.2 and, therefore, as for the proof of L2S sHVZK in 6.3.5, with the only addition below.
The space of honest MRL2S transcripts is the space of honest RL2S transcripts partitioned by the MRL2S

proofs. Each partition contains L RL2S transcripts with equal challenges, that were generated during the corre-
sponding proof with L inputs. For each partition, all items of its L transcripts, omitting the challenges and items Z0,

37

T0, T discussed above (in 7.1.2 and 6.3.4) as revealing no information, are distributed independently and uniformly
at random. Independence here is meant as the total independence from the other items in own transcript, own
partition, and other partitions as well. Hence, the honest MRL2S transcript space doesn’t reveal any information
other than the information accessible from the input commitments and partitioning per se.

A simulator for the MRL2S protocol runs L RL2S protocol simulators in parallel and, upon completion of
all of them, the simulated transcript contains L RL2S simulated transcripts that are indistinguishable from honest
ones. Thus, a simulated MRL2S transcript is indistinguishable from an honest MRL2S transcript.

7.2.3 MRL2S PROTOCOL COMPLEXITIES
Recalling theMRL2S transcript (68),((

Zp
0 , c0,T

p
0 , t

p
0

)
,
(
[(ci1, ci3)]n−1

i=1 , cn, Zp,
[(

rpi ,H
p
i

)]n
i=1, c,T

p, tp
))L

p=1
,

where all data, except for the initial elements {Zp
0 }

L
p=1 and challenges, are regarded as transmitted from Prover to

Verifier. The amount of transmitted data is shown in Table 14.

Table 14: MRL2S transmitted data amount.

G F

MRL2S L (n + 3) L (n + 2)

The R = Rsum
(
n, N,

[
Xj

]N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn

)
calculation, performed only once for all L verifications,

requires only one multi-exponentiation for n summands. This is seen from the Rsum recursive definition in 5.1.1,
that can be expanded so that all the scalar coefficients for the elements from

[
Xj

]N−1
j=0 are calculated as scalar-scalar

multiplications and, after that, a single multi-exponentiation of the elements from
[
Xj

]N−1
j=0 to their respective

coefficients is performed. MRL2S verification complexity is shown in Table 15, where N = 2n:

Table 15: MRL2S verification complexity.

multi-exp(N) single-exp
MRL2S 1 nL + 3L + 1

8 MRL2S-BASED NON-INTERACTIVE PROOF OF MEMBERSHIP
Having an interactive public coin protocol, it’s possible to turn it into a non-interactive scheme using the

Fiat-Shamir heuristic in ROM [10, 21, 2]. We create a non-interactive zero-knowledge PoM scheme on the base of
MRL2S. Overall, the idea behind our PoM is that we do not allow the odd elements of the MRL2S decoy set to
participate in the commitment Z0, and thus Z0 becomes an element at even position in the decoy set multiplied by
some secret, not necessarily random, scalar.

As a random oracle, to generate challenges, we use hash function Hscalar(. . .) defined below. The MRL2S
protocol requires an orthogonal decoy set with the element distributions indistinguishable from independent uniform
randomness, so we also use ‘hash-to-curve’ function Hpoint(. . .).

8.1 PRELIMINARIES
8.1.1 ELLIPTIC CURVE POINTS AND ELEMENTS

We assume the prime-order groupG is instantiated with an elliptic curve point group of the same order, so that
the curve points represent the elements of G hereinafter. Thus, we use the term ‘points’ instead of ‘elements’, they
become equivalent from now.

8.1.2 ANY TO SCALAR HASH FUNCTION HSCALAR(. . .)

We callHscalar(. . .) an ideal hash function that accepts any number of arguments of any type, i.e. the arguments
are strings, scalars inF, and points inG. It returns a scalar fromF. The function is sensitive to its arguments order.

8.1.3 ANY TO POINT HASH FUNCTION HPOINT(. . .)

We call Hpoint(. . .) an ideal hash function that accepts any number of ordered arguments of any type, i.e. the
arguments are strings, scalars in F, points in G. It returns a point in G.

38

8.1.4 IDEAL HASH FUNCTIONS AND RANDOM ORACLES
We use the term ‘ideal hash function’ as a shorthand for the term ‘cryptographic hash function that is indif-

ferentiable from a random oracle’. For the Hscalar it can be, for instance, SHA-3 [8]. For the Hpoint it can be, for
instance, one of the functions described in [16, 9, 11].

8.1.5 RESERVED INTEGER NAMES AND CONSTANTS
We assume the integers n, m, N , L have the following meaning hereinafter:
• N > 2 is a number of decoys, N is a power of 2 each time, N/2 is the number of decoy pairs
• n = log2 (N)

• L is a threshold for signature: 0 < L < (N/2 + 1). For membership proof, L is any number: 0 < L

• D is the maximum number of decoy pairs allowed in the system

8.1.6 DECOY VECTOR AS A VECTOR OF PAIRS

The procedure MRL2S.DecoySetGen in 7.2 returns the decoy vector [Xj]
N−1
j=0 . We reshape this vector to be a

vector of pairs [(Pj,Q j)]
N/2−1
j=0 . Thus, the vector [Xj]

N−1
j=0 becomes a flattened view of the [(Pj,Q j)]

N/2−1
j=0 , where

for any s ∈ [0, N/2 − 1]: Ps = X2s,Qs = X2s+1. We write [Xj]
N−1
j=0 = Flatten([(Pj,Q j)]

N/2−1
j=0) for this.

8.1.7 PREDEFINED SET OF ORTHOGONAL GENARATORS

Let [Gi]
D−1
i=0 be a predefined set of orthogonal generators. We construct it with Hpoint as a separate family of

hash points [Gi]
D−1
i=0 = [Hpoint(0, i)]D−1

i=0 , and use it for the odd elements of the decoy sets.

8.2 MRL2SPOM NIZK POM SCHEME
The abbreviation MRL2SPoM stands for the MRL2S-based proof of membership scheme, that is, the above

non-interactive proof that we create for the following relation

R =

L⋃
p=1

{
(Zp

0 , (v
p, sp)) | Zp

0 = vpPsp , sp ∈ [0, N/2 − 1]
}

(70)

For L = 1, the proof data structure transmitted from Prover to Verifier is

σ =
(
T0, Z, t0, [(ri,Hi)]

n
i=1,T, t

)
(71)

In fact, this data structure is a part of MRL2S transcript that is interactively transmitted from Prover to Verifier.
For any L, the proof data transmitted from Prover to Verifier is L instances of σ, that is, [σp]Lp=1. Note the input
commitment Z0 is not transmitted since it is known in advance by both parties.

The MRL2SPoM scheme is six procedures:

MRL2SPoM = {GetPredefinedGenerators, SetGen,MembersGen,GetDecoySet,Prove,Verif} ,

where:
• MRL2SPoM.GetPredefinedGenerators returns the vector of orthogonal generators [Gi]

D−1
i=0 such that they

have uniformly random and independent distributions. Implementation is shown in Listing 1.

Listing 1: MRL2SPoM.GetPredefinedGenerators initial implementation.
Input: none

Output: [Gi]
D−1
i=0 ---orthogonal generators

Procedure:

[Gi]
D−1
i=0 = [Hpoint(“Predefined generator family”,G, i)]D−1

i=0
Return [Gi]

D−1
i=0

• MRL2SPoM.SetGen returns an orthogonal set of points [Pj]
N/2−1
j=0 such that all points in it have uniformly

random and independent distributions. Also, it’s guaranteed that ort([Pj]
N/2−1
j=0 ∪ [Gi]

D−1
i=0) holds for the

returned points.

39

• MRL2SPoM.MembersGen returns a vector of points [Zp
0]

L

p=1 such that each point in it will be proven a

member of the set [Pj]
N/2−1
j=0 multiplied by some known to Prover scalar.

• MRL2SPoM.GetDecoySet takes a hint point F such that F != lin([Zp
0]

L

p=1 ∪ [Pj]
N/2−1
j=0 ∪ [Gi]

D−1
i=0), and

returns the decoy set [Xj]
N−1
j=0 for use in the proof. Implementation is shown in Listing 2.

Listing 2: MRL2SPoM.GetDecoySet implementation.
Input: F ---hint point

Output: [Xj]
N−1
j=0 ---decoy set

Procedure:

[Gi]
D−1
i=0 = GetPredefinedGenerators()

[Pj]
N/2−1
j=0 = SetGen()

[Q j]
N/2−1
j=0 = [G j + F]N/2−1

j=0

[Xj]
N−1
j=0 = Flatten([(Pj,Q j)]

N/2−1
j=0)

Return [Xj]
N−1
j=0

• MRL2SPoM.Prove takes a vector of private keys [(vp, sp)]Lp=1 together with a public scalar seed e, and
returns the vector [σp]Lp=1 or 0 on error. Prove is MRL2S.MapInteractionProcedure translated to the
non-interactive setting. Specification is in Listing 3.

Listing 3: MRL2SPoM.Prove specification.
Input: e --scalar seed

[(vp, sp)]Lp=1 --private keys

Output: [σp]Lp=1 or 0 --proof, vector of σ’s on success,

--0 on failure
Procedure:

• Let [Pj]
N/2−1
j=0 = SetGen()

• Let [Zp
0]

L

p=1 = MembersGen()

• Let F = Hpoint([Pj]
N/2−1
j=0 , [Zp

0]
L

p=1). Thus, F != lin([Zp
0]

L

p=1 ∪ [Pj]
N/2−1
j=0 ∪ [Gi]

D−1
i=0)

holds.

• Let [Xj]
N−1
j=0 = GetDecoySet(F)

• For p = 1 . . . L: Ensure the private keys correspond
If Zp

0 , vpX2sp then Return 0. to the member set elements.

• Let [(kp
0 , kp

1 , s
p)]

L

p=1 = [(v
p, 0, sp)]Lp=1

• Run all L RL2S.InteractionProcedure’s in parallel with [(kp
0 , kp

1 , s
p)]

L

p=1

and [Zp
0]

L

p=1 as arguments. Stop all them at the point, where the

first challenge c0 is to be obtained. At that moment the values

of [(Zp
0 ,T

p
0 , Zp)]

L

p=1 are already calculated.

• Calculate e = Hscalar(e, [Xj]
N−1
j=0 , [(Z

p
0 ,T

p
0 , Zp)]

L

p=1)

• Let c0 = e
• Continue all the L parallel procedures to the point, where the
challenge pair (c11, c13) is to be obtained. At that moment the

values of [tp0]
L

p=1 and [H
p
1]

L

p=1 are already calculated.

• Calculate e = Hscalar(e, [t
p
0]

L

p=1, [H
p
1]

L

p=1)

• Let (c11, c13) = (e, Hscalar(e))
• Continue all the L parallel procedures to the point, where the
challenge pair (c21, c23) is to be obtained. At that moment the

values of [rp1]
L

p=1 and [H
p
2]

L

p=1 are already calculated.

40

• Calculate e = Hscalar(e, [r
p
1]

L

p=1, [H
p
2]

L

p=1)

• Let (c21, c23) = (e, Hscalar(e))

• And so on..., until all the tuples [(T p
0 , Zp, tp0 , [(r

p
i ,H

p
i)]

n

i=1,T
p, tp)]L

p=1 and

(c0, [(ci1, ci3)]n−1
i=1 , cn, c) are calculated.

• Let [σp]Lp=1 = [(T
p
0 , Zp, tp0 , [(r

p
i ,H

p
i)]

n

i=1,T
p, tp)]L

p=1
• Return [σp]Lp=1

• MRL2SPoM.Verif takes a proof generated by Prove and returns 0 or 1. Verif is MRL2S.JoinVerif
translated to the non-interactive setting. Specification is in Listing 4.

Listing 4: MRL2SPoM.Verif specification.
Input: e --scalar seed, same as used for GetProof call

[σp]Lp=1 --proof, a vector of σ’s

Output: 0 or 1 --verification is failed or completed ok
Procedure:

• Let [Pj]
N/2−1
j=0 = SetGen()

• Let [Zp
0]

L

p=1 = MembersGen()

• Let F = Hpoint([Pj]
N/2−1
j=0 , [Zp

0]
L

p=1). Thus, F != lin([Zp
0]

L

p=1 ∪ [Pj]
N/2−1
j=0 ∪ [Gi]

D−1
i=0)

holds.

• Let [Xj]
N−1
j=0 = GetDecoySet(F)

• Extract the values of [(T p
0 , Zp)]

L

p=1 from [σ
p]Lp=1

• Calculate e = Hscalar(e, [Xj]
N−1
j=0 , [(Z

p
0 ,T

p
0 , Zp)]

L

p=1)

• Let c0 = e
• Extract the values of [tp0]

L

p=1 and [H
p
1]

L

p=1 from [σ
p]Lp=1

• Calculate e = Hscalar(e, [t
p
0]

L

p=1, [H
p
1]

L

p=1)

• Let (c11, c13) = (e, Hscalar(e))
• Extract the values of [rp1]

L

p=1 and [H
p
2]

L

p=1 from [σ
p]Lp=1

• Calculate e = Hscalar(e, [r
p
1]

L

p=1, [H
p
2]

L

p=1)

• Let (c21, c23) = (e, Hscalar(e))
• And so on..., until the tuple (c0, [(ci1, ci3)]n−1

i=1 , cn, c) is restored.

At this moment all the values of [(Zp
0 ,T

p
0 , Zp, tp0 , [(r

p
i ,H

p
i)]

n

i=1,T
p, tp)]L

p=1
are extracted from [σp]Lp=1.

• For p = 1 . . . L:
If (tp0 Zp

0 + c0Zp) , T p
0 then Return 0

• Calculate R = Rsum(n, N, [Xj]
N−1
j=0 , [(ci1, ci3)]

n−1
i=1 , cn)

• For p = 1 . . . L:
Let S = Zp

For i = 1 . . . n:
S = S + rpi Hp

i
If (S == 0) or (rpi == 0) or (Hp

i == 0) then Return 0
W = S
If (tpW + cR) , T p then Return 0

• Return 1

Overall, the MRL2SPoM scheme works as follows:
• Prover and Verifier agree on the sets used, namely, on the SetGen and MembersGen functions.

• Knowing private keys [(vp, sp)]Lp=1 that connect the member set elements [Zp
0]

L

p=1 returned byMembersGen

to the elements of the set [Pj]
N/2−1
j=0 returned by SetGen, Prover calls Prove and obtains the proof [σp]Lp=1.

41

It should be added that Prover also passes to Prove an arbitrary seed e, which sets up the random oracle. The
meaning and use of the seed e is the same as the use of seed in [14].

• Prover sends the proof [σp]Lp=1 and the seed e to Verifier.

• Verifier calls Verif for [σp]Lp=1 and e. If 1 is returned, then Verifier is convinced that Prover knows the
private keys that connect each element of the member set [Zp

0]
L

p=1 to an element of the set [Pj]
N/2−1
j=0 .

8.2.1 MRL2SPOM COMPLETENESS AND SOUNDNESS

The MRL2SPoM procedures match the MRL2S procedures translated to the non-interactive setting with the
Fiat-Shamir heuristic. To ascertain orthogonality of the decoy set returned from MRL2SPoM.GetDecoySet we
refer to the OrtHalfShift lemma from Section 3. Thus, from the MRL2S protocol completeness and soundness,
the MRL2SPoM scheme is complete, and successful MRL2SPoM.Verif implies Prover’s knowledge of tuples
[(kp

0 , kp
1 , s

p)]
L

p=1 such that for each of them holds

Zp
0 = kp

0 Psp + kp
1 Qsp , (72)

where [Pj]
N/2−1
j=0 and [Q j]

N/2−1
j=0 are defined as in the MRL2SPoM.GetDecoySet implementation (Listing 2).

For each p ∈ [1, L], from theMRL2SPoM.GetDecoySet implementation (Listing 2), we have Qsp = Gsp + F,
and hence the equation (72) rewrites as

Zp
0 = kp

0 Psp + kp
1 Gsp + kp

1 F . (73)

According to the MRL2SPoM.Prove specification (Listing 3), F is a hash point of the points Psp and Zp
0 , with

the point Gsp fixed before the hashing. Therefore, if k1 , 0, then F = lin(Zp
0 , Psp ,Gsp), that breaks the Hpoint

function property of being indifferentiable from a random oracle.
Thus, with overwhelming probability the scalar k1 in the equations (73) and (72) is equal to zero. This turns

the L equations (72) into the relation (70) and hence the MRL2SPoM scheme is sound.

8.2.2 MRL2SPOM ZERO-KNOWLEDGE AND WITNESS-EXTENDED EMULATION

As shown in 7.2.2, each MRL2S transcript contains the independently uniformly distributed random items
together with the inputs [Zp

0]
L

p=1 and with the completely dependent [T p
0 ,T

p]
L

p=1 items. TheMRL2SPoM scheme
honest transcript space form a subspace of the MRL2S protocol honest transcript space.

Namely, the MRL2SPoM honest transcripts are those MRL2S honest transcripts that have kp
1 = 0 in the

[Zp
0]

L

p=1 input openings. Therefore, any MRL2SPoM honest transcript reveals no more than the same MRL2S

honest transcript may reveal, that is, as MRL2S is zero-knowledge, it reveals no more than the inputs [Zp
0]

L

p=1
reveals.

A simulator for the MRL2SPoM scheme is identical to the simulator for MRL2S. Thus, the MRL2SPoM
scheme is zero-knowledge.

A WEE emulator for theMRL2SPoM scheme is identical to the emulator for MRL2S. It finds witness for the
relation (70) instead of the relation (69), as all the L coefficients kp

1 in the L equations (72) are equal to zero.

8.2.3 MRL2SPOM COMPLEXITIES

TheMRL2SPoM proof size, recalling the proof is [σp]Lp=1, is shown in Table 16. It is the same as theMRL2S
amount of transmitted data. The scalar seed e is not accounted, as it can have any value agreed between Prover and
Verifier, e.g. be fixed as e = 0.

Table 16: MRL2SPoM proof size.

G F

MRL2SPoM L(n + 3) L(n + 2)

The MRL2SPoM verification complexity is shown in Table 17, where N = 2n. We use the same optimization
for the Rsum calculation, as in MRL2S. The scalar-scalar multiplications and Hscalar calls are assumed taking a
negligible amount of the computational time.

42

Table 17: MRL2SPoM verification complexity.

multi-exp(N) single-exp Hpoint
MRL2SPoM 1 nL + 3L + 1 1

9 LINKABLE RING SIGNATURE BASED ON MRL2SPOM
We construct MRL2SLnkSig linkable ring signature scheme on the base of the MRL2SPoM membership

proof. We will assume that there are senders of messages that have key pairs (b, B) of secret and public keys such
that B = bG, and that senders sign their messages with our ring signature, selecting ring members ad hoc.

The idea of MRL2SLnkSig is that we encode each public key B in the ring as a point (zHpoint(B) + B) in
the MRL2SPoM set. We let sender publish an auxiliary point I together with a MRL2SPoM membership proof
for that the point (zI + G) multiplied by some secret factor belongs to a set composed of (zHpoint(B) + B)’s. The
coefficient z is a randomness picked after I is published. This way the sender proves knowledge of factor w such
that the equality (zHpoint(B) + B) = w(zI + G) holds for some public key B in the ring. It turns out that (w = b)
always holds in this case. Thus, the MRL2SLnkSig ring signature will be the MRL2SPoM membership proof
followed by the auxiliary point I.

To make sure the constructedMRL2SLnkSig signature scheme is applicable in the real world, we will describe
and prove its security using the common linkable ring signature securitymodel definitions andmethods. Particularly,
we will prove no PPT adversary is able to forge it, i.e. to produce an acceptable signature without knowing an
appropriate private key, even observing any number of signatures made by others.

9.1 PRELIMINARY LEMMA
Random weighting is a common cryptography technique for combining two or more proofs into a single one.

It is used in different forms for various scenarios, e.g. as in [20, 26]. Let us formulate the following lemma for a
variant of the random weighting that we need in.

RandomWeighting-WEE lemma:
For any four non-zero elements X,Y,C,D such that C !∼D holds, for the relation

R = { ((X,Y,C,D),w) | (X = wC) ∧ (Y = wD) }, (74)

the following protocol (Table 18) is complete, sound, and has witness-extended emulation.

Table 18: RandomWeighting-WEE lemma protocol.

Verifier sends a non-zero random scalars z to Prover

Prover and Verifier play a WEE protocol of the evidence (zX + Y) ∼ (zC + D)

Proof: The protocol completeness follows from that it is defined for any elements X,Y,C,D such that C !∼D.
The protocol soundness follows from the witness-extended emulation that we will prove now.

We build a WEE emulator for this lemma protocol (Table 18). For the first, the emulator unwinds the evidence
(zX + Y) ∼ (zC + D) and obtains witness w such that

(zX + Y) = w(zC + D) . (75)

Next, it unwinds to the point of the challenge z and, resuming with a new value z′ for it, obtains w′ such that

(z′X + Y) = w′(z′C + D) . (76)

Subtracting the equations (75) and (76) from each other and dividing by non-zero (z′ − z), it gets

X = ((w′z′ − wz)/(z′ − z))C + ((w′ − w)/(z′ − z))D . (77)

Thus, it has a representation of X as a linear combination of C and D, which are orthogonal by the premise. Hence,
by the OrtUniqueRepresentation from Section 3, it has two equations

u = (w′z′ − wz)/(z′ − z) ,

v = (w′ − w)/(z′ − z) ,
(78)

43

where u and v are constants. From the equations (78) it obtains the equation

u = vz′ + w , (79)

which connects z′ and w from two independent of each other transcripts. For the equation (79) to hold for the
independent transcripts, v should be equal to zero. Therefore, w appears to be a constant, that is, w = w′. Next,
from the decomposition (77) the emulator obtains

X = wC ,

and from the equation (75) it obtains
Y = wD .

We have shown an emulator that extracts witness for the relation (74) by traversing the transcript tree in a
polynomial number of steps. Hence, the protocol has witness-extended emulation. The lemma is proven.

9.2 MRL2SLNKSIG LINKABLE RING SIGNATURE
9.2.1 MRL2SLNKSIG SCHEME

The MRL2SLnkSig linkable ring signature scheme is the following four procedures

MRL2SLnkSig = {RingGen, Sign,Verif,Link} ,

where:
• MRL2SLnkSig.RingGen returns a vector [Bj]

N/2−1
j=0 of arbitrary points. These points are only required to

be non-zero and unequal to each other. Actual signer’s public keys are to be placed among them.
• MRL2SLnkSig.Sign takes a scalar message m, an actual signer’s vector of private keys [(bp, sp)]L

p=1 such

that [(bp, sp) | bpG = Bsp , sp ∈ [0, N/2 − 1], ∀i, j : si , s j]Lp=1, and returns a signatureS = [(Ip, σp)]Lp=1
on success or 0 on error. The [Ip]Lp=1 values contained in the signature are called key images. Implementation
is shown in Listing 5. Note we use lambda notation to denote procedure assignments in the listings.

Listing 5: MRL2SLnkSig.Sign implementation.
Input: m --message

[(bp, sp)]L
p=1 --private keys

Output: [(Ip, σp)]Lp=1 or 0 --signature on success,

--0 on failure
Procedure:

[Bj]
N/2−1
j=0 = RingGen()

[Ip]Lp=1 = [Hpoint(b
pG)/bp]Lp=1

For j = 1 . . . L:
If I j ∈ ([Ip]Lp=1 \ {I

j}) then Return 0

z = Hscalar(m, [Bj]
N/2−1
j=0 , [Ip]Lp=1)

MRL2SPoM.SetGen = λ.([Bj + zHpoint(Bj)]
N/2−1
j=0)

MRL2SPoM.MembersGen = λ.([G + zIp]Lp=1)

e = Hscalar(z)
proof = MRL2SPoM.Prove(e, [(1/bp, sp)]Lp=1)

If proof == 0 then Return 0

[σp]Lp=1 = proof

Return [(Ip, σp)]Lp=1

• MRL2SLnkSig.Verif takes a scalar message m and a signature S generated by Sign. It returns 1 or 0,
meaning successful or failed verification completion. Implementation is in Listing 6.

44

Listing 6: MRL2SLnkSig.Verif implementation.
Input: m --message

[(Ip, σp)]Lp=1 --signature

Output: 1 or 0 --success or failure
Procedure:

[Bj]
N/2−1
j=0 = RingGen()

z = Hscalar(m, [Bj]
N/2−1
j=0 , [Ip]Lp=1)

MRL2SPoM.SetGen = λ.([Bj + zHpoint(Bj)]
N/2−1
j=0)

MRL2SPoM.MembersGen = λ.([G + zIp]Lp=1)

e = Hscalar(z)
If MRL2SPoM.Verif(e, [σp]Lp=1) == 0 then Return 0
Return 1

• MRL2SLnkSig.Link takes a pair ([Ip0]
L

p=1, [I
p
1]

L

p=1) of key image sets from two signatures successfully
verified by Verif. It returns 1 or 0, meaning the signatures are linked or not linked. Implementation is in
Listing 7.

Listing 7: MRL2SLnkSig.Link implementation.

Input: ([Ip0]
L

p=1, [I
p
1]

L

p=1) --two key image sets from two signatures

Output: 0 or 1 --0 means the signatures are not linked,
--1 means the signatures are linked

Procedure:
For j = 1 . . . L:

If I j0 ∈ [I
p
1]

L

p=1 then Return 1

Return 0

The main MRL2SLnkSig usage scenario is as follows:
• Prover and Verifier agree on a MRL2SLnkSig.RingGen implementation to return the same ring [Bj]

N/2−1
j=0

for both parties.
• Prover signs a message m with L private keys [(bp, sp)]Lp=1 by calling MRL2SLnkSig.Sign and gets a
signature S = [(Ip, σp)]Lp=1.

• Verifier receives the message m and signatureS, and callsMRL2SLnkSig.Verif for them. Iff the call returns
1, then Verifier is convinced that Prover has signed the message m with L private keys, which correspond
to some L public keys in the ring. It is also convinced that the vector [Ip]Lp=1 contains key images of the
signing private keys. Note if it is allowed for [Bj]

N/2−1
j=0 to contain equal public keys, then Prover may sign

with equal private keys, if this is a case then the vector of key images [Ip]Lp=1 contain duplicates.
• When the above steps are performed multiple times, Verifier is convinced that a number of messages were
actually signed. For any two successfully verified signatures, Verifier has two vectors [Ip0]

L

p=1 and [Ip1]
L

p=1
of key images contained in them. Verifier calls MRL2SLnkSig.Link for these key image vectors and, iff it
returns 1, Verifier gets convinced that at least one common private key was used to sign both signatures.

9.2.2 SCHEME COMPLETENESS, SOUNDNESS, AND WITNESS-EXTENDED EMULATION
TheMRL2SLnkSig scheme is a composition of the randomweighting protocol in Table 18 and theMRL2SPoM

scheme. The MRL2SPoM scheme plays a role of the evidence (zX + Y) ∼ (zC + D) in the protocol. By the
MRL2SPoM scheme properties and according to the RandomWeighting-WEE lemma, we can assert the following.

As both the protocol in Table 18 and the MRL2SPoM scheme are complete, the resulting MRL2SLnkSig
scheme is complete. As both the protocol and the MRL2SPoM scheme are sound, the MRL2SLnkSig scheme is
sound.

As both the protocol in Table 18 and the MRL2SPoM scheme have witness-extended emulations, the
MRL2SLnkSig scheme has witness-extended emulation. The relation that the MRL2SLnkSig emulator finds

45

witness for is the intersection of the relations (70) and (74)

R =

L⋃
p=1

{
(Ip, (bp, sp)) | (Bsp = bpG ∧ Hpoint(Bsp) = bp I) , sp ∈ [0, N/2 − 1]

}
(80)

9.2.3 STRUCTURE AND VIEW OF THE MRL2SLNKSIG SIGNATURE

TheMRL2SLnkSig signature is a vector of L pairs, where the first item in each pair is a key image denoted as
I, and the second item is a MRL2SPoM proof (71) denoted as σ. Structure and view of the [σp]Lp=1 part of the
signature is described in 8.2.2, there is shown that σ’s don’t reveal any information and can be viewed as completely
random, excluding simply dependent items. The question is how much information can be obtained from [Ip]Lp=1.

Evidently, I is revealing some information. For instance, according to the relation (80), every time B is the
actual signer, the same I appears in the key image vector. For any public key B, an adversary that has access to the
signing oracle is able to find the corresponding key image I. In other words, due to the key images, the space of all
MRL2SLnkSig signatures is partitioned by public keys. That is, each public key together with its corresponding
key image establishes a distinguishable partition in the space.

On the other hand, if the rule of signing only once with the same public key is somehow imposed to the
system, then the space looks completely random, provided that the public keys B are distributed independently and
uniformly at random. This is due to that the triples (B,Hpoint(B), I) look completely random by DDH assumption in
this case. Moreover, even if the public keys B are distributed non-uniformly, the space remains completely random
except for the keys B.

9.2.4 SIGNATURE SIMULATION

If theMRL2SLnkSig signature was zero knowledge, then, by definition of zero knowledge, there would be an
interactive simulator that for any ring [Pj]

N/2−1
j=0 , any input I, and any set of random challenges known in advance

yields an acceptable signature indistinguishable from an honest one. However, it is not.
An example of why such simulator doesn’t exist is following. Suppose a simulator is fed with the ring of two

honest public keys {P0, P1} and with a random I. The honest key images I0, I1 to the keys in the ring {P0, P1} can
always be found from the space of the honest MRL2SLnkSig signatures. Thus, any signature produced by the
simulator will be distinguishable from an honest one, as there is only negligible probability that the random I is
equal to one of the known I0, I1.

Nevertheless, if the ring contains a dishonest public key, i.e. a public key with an absolutely unknown private
key, then the simulation is possible for random input I. Suppose, the key P1 in the ring {P0, P1} is dishonest.
Then the simulator yields (I, σ), where σ is a MRL2SPoM simulated transcript indistinguishable from an honest
MRL2SPoM transcript. The random point I is indistinguishable from an honest key image, as there is no key image
for P1 in the space of the honest signatures to disprove that. Thus, the simulated signature (I, σ) is indistinguishable
from an honest one in this case.

9.2.5 COMPLEXITIES

TheMRL2SLnkSig signature size is the size of its internalMRL2SPoM proof plus the size of L key images.
It is shown in Table 19.

Table 19: MRL2SLnkSig signature size.

G F

MRL2SLnkSig L(n + 4) L(n + 2)

The MRL2SLnkSig verification complexity is shown in Table 20. In addition to the optimization used in
MRL2SPoM, in MRL2SLnkSig we optimize the calculations related to the decoy set even elements [Pj]

N/2−1
j=0 .

Instead of calculating them directly withinMRL2SPoM.SetGen, we defer the exponentiations by the coefficient z
until the single multi-exponentiation is collected and do all exponentiations with it. In the meantime, before it is
collected, the necessary hashes of Pj’s are calculated as the hashes of the (Bj,Hpoint(Bj), z) tuples.

Table 20: MRL2SLnkSig verification complexity.

multi-exp(3N/2) single-exp Hpoint
MRL2SLnkSig 1 nL + 4L + 2 N/2 + 1

46

Recalling N commonly denotes a ring size, whereas we use N to denote the internal decoy set size which is
two times larger than the ring size, in Table 21 we provide the same data as in Tables 19, 20 in the common terms.
Also, in Table 21 we assume the size of a point from G is equal to the size of a scalar from F.

Table 21: MRL2SLnkSig signature size and verification complexity, where:
• N is the ring size
• L is the threshold
• mexp(3N) is the multi-exponentiation of 3N summands
• Hpt is one call to Hpoint

Size Verification complexity
MRL2SLnkSig 2L · log2 N + 8L mexp(3N) + L · log2 N + 5L + 2 + (N + 1)Hpt

9.3 MRL2SLNKSIG SIGNATURE SECURITY
Works presenting new signature schemes, such as [1, 4, 3, 14, 17, 19, 20, 23, 26], contain proofs that they

cannot be tampered with certain types of attacks. These proofs have a lot in common, e.g. in modeling the attacks,
however they differ from each other in details. The works [14, 19, 20] contain a set of security requirements usually
imposed on linkable ring signatures, so below we rehash many of the definitions from these works, and we mainly
use the methods presented there to prove resistance to attacks.

First, we consider a generic concept of linkable ring signature, that we call GLRS, along with its security
requirements. GLRS is similar to the LRS concept from [20], with the only difference that KeyGen does not
necessarily generate independently and evenly distributed secret keys. We prove that theMRL2SLnkSig signature
matches the GLRS security requirements. Moreover, we show that MRL2SLnkSig is unforgeable w.r.t. insider
corruption and also existentially unforgeable against attacks using adaptive chosen messages and adaptive chosen
public keys (EU_CMA/CPA). Next, we discuss the case of signingwithmultiple keys and show thatMRL2SLnkSig
remains secure in this case.

9.3.1 DEFINITIONS FOR L = 1
Generic linkable ring signature (GLRS) definition:
GLRS is four procedures:

• KeyGen() → (x, X): Generates a secret key x and corresponding public key X such that X = xG. It is not
required here for the secret keys to be chosen uniformly at random. The only requirement is that seeing only
the X’s generated by KeyGen and having no additional information, it is hard to find x for any X .

• Sign(x,m, R) → σ: Generates a signature σ on a message m with respect to the ring R = {X0, . . . , Xn−1},
provided that x is a secret key corresponding to some Xi ∈ R generated by KeyGen. The ring R itself is
not required to be composed only of keys generated by KeyGen, the only two requirements to R are that the
actual signer’s public key Xi ∈ R have to be generated by KeyGen and R has to contain no duplicates.

• Verify(σ,m, R) → {0, 1}: Verifies a signature σ on a message m with respect to the ring R. Outputs 0 if the
signature is rejected, and 1 if accepted.

• Link(σ,σ′) → {0, 1}: Determines if signatures σ and σ′ were signed using the same private key. Outputs
0 if the signatures were signed using different private keys, and 1 if they were signed using the same private
key.

Correctness definition:
Consider this game between a challenger and a PPT adversary A:

• The challenger runs KeyGen() → (x, X) and supplies the keys to A.
• The adversary A chooses a ring such that X ∈ R and a message m, and sends them to the challenger.
• The challenger signs the message with Sign(x,m, R) → σ.

If Pr[Verify(σ,m, R) = 1] = 1, we say that the GLRS is perfectly correct. If Pr[Verify(σ,m, R) = 1] ≈ 1, we say
that the GLRS is simply correct. Note the sign ‘≈’ means overwhelming probability, whereas ‘=’ means equality.

Unforgeability w.r.t. insider corruption definition:
Consider this game between a challenger and a PPT adversary A:

• The adversary A is granted access to a public key oracle GenOracle that (on the i-th invocation) runs
KeyGen() → (xi, Xi) and returns Xi to A. In this game, KeyGen genarates key pairs (x, X)’s where x’s are
chosen independently and uniformly at random.

47

• The adversaryA is granted access to a corruption oracle CorruptOracle(i) that returns xi if it corresponds to
a query to GenOracle.

• The adversary A is granted access to a signing oracle SignOracle(X,m, R) that runs Sign(x,m, R) → σ and
returns σ to A, provided that X corresponds to a query to GenOracle and X ∈ R.

• Then, A outputs (σ,m, R) such that SignOracle was not queried with (_,m, R), all keys in R were generated
by queries to GenOracle, and no key in R was corrupted by CorruptOracle.

If Pr[Verify(σ,m, R) = 1] ≈ 0, we say that the GLRS is unforgeable w.r.t. insider corruption.

Existential unforgeability against adaptive chosenmessage / public key attackers (EU_CMA/CPA) definition:
Consider this game between a challenger and a PPT adversary A:

• The adversary A is granted access to a public key oracle GenOracle that (on the i-th invocation) runs
KeyGen() → (xi, Xi) and returns Xi to A.

• The adversary A is granted access to a signing oracle SignOracle(X,m, R) that runs Sign(x,m, R) → σ and
returns σ to A, provided that X corresponds to a query to GenOracle and X ∈ R.

• Then, A outputs (σ,m, R) such that SignOracle was not queried with (_,m, R), all keys in R were generated
by queries to GenOracle.

If Pr[Verify(σ,m, R) = 1] ≈ 0, we say that the GLRS is unforgeable against adaptive chosen message and adaptive
chosen public key attackers (EU_CMA/CPA).

As can be seen from the definitions of unforgeability w.r.t. insider corruption and EU_CMA/CPA, their games
differ only in that the former deals with an independent uniformly random distribution of private keys and involves
key corruption using CorruptOracle, whereas the latter deals with possibly dependent private keys without any
possibility of corruption. Naturally, the EU_CMA/CPA definition cannot allow for key corruption, because with
dependent private keys this may corrupt all keys with a single call to CorruptOracle.

Anonymity definition:
Consider this game between a challenger and a PPT adversary A:

• The adversary A is granted access to the public key oracle GenOracle and the corruption oracle CorruptOr-
acle. In this game, KeyGen genarates key pairs (x, X)’s where x’s are chosen independently and uniformly
at random.

• The adversaryA chooses a message m, a ring R, and indices i0 and i1, and sends them to the challenger. We
require that Xi0, Xi1 ∈ R such that both keys were generated by queries to GenOracle, and neither key was
corrupted by CorruptOracle.

• The challenger selects a uniformly random bit b ∈ {0, 1}, generates the signature Sign(xib ,m, R) → σ, and
sends it to A.

• The adversary A chooses a bit b′ ∈ {0, 1}.
If Pr[b′ = b] ≈ 1/2 and A did not make any corruption queries after receiving σ, we say that the GLRS is
anonymous.

Anonymity w.r.t. chosen public key attackers (anonymity w.r.t. CPA) definition:
Consider this game between a challenger and a PPT adversary A:

• The adversary A is granted access to the public key oracle GenOracle.
• The adversaryA chooses a message m, a ring R, and indices i0 and i1, and sends them to the challenger. We
require that Xi0, Xi1 ∈ R such that both keys were generated by queries to GenOracle.

• The challenger selects a uniformly random bit b ∈ {0, 1}, generates the signature Sign(xib ,m, R) → σ, and
sends it to A.

• The adversary A chooses a bit b′ ∈ {0, 1}.
If Pr[b′ = b] ≈ 1/2 and A did not make any corruption queries after receiving σ, we say that the GLRS is
anonymous w.r.t. CPA.

As can be seen from the definitions of anonymity and anonymity w.r.t. CPA, their games are as different as the
games of unforgeability w.r.t. insider corruption and EU_CMA/CPA.

Linkability definition:
Consider the following game between a challenger and a PPT adversary A:

• For i ∈ [0, k − 1], the adversary A produces a public key Xi , message mi , ring Ri , and signature σi .
• The adversary A produces another message m, ring R, and signature σ.

48

• All tuples (Xi,mi, Ri,σi) and (m, R,σ) are sent to the challenger.
• The challenger checks the following:

– |V | = k, where V =
⋃k−1

i=0 Ri .
– Each Xi ∈ V .
– Each Ri ⊂ V .
– Verify(σi,mi, Ri) = 1 for all i.
– Verify(σ,m, R) = 1.
– For all i , j, we have Link(σi,σ j) = Link(σi,σ) = 0.

• If all checks pass, A wins.
If A wins with only negligible probability for all k, we say the GLRS is linkable.

Non-frameability definition:
Consider also the following game between a challenger and a PPT adversary A:

• The adversary A is granted access to the public-key oracle GenOracle.
• The adversary A is granted access to the corruption oracle CorruptOracle.
• The adversary A is granted access to the signing oracle SignOracle.
• In this game, KeyGen genarates key pairs (x, X)’s, where x’s are chosen independently and uniformly at
random.

• The adversaryA chooses a public key X that was generated by a query to GenOracle, but was not corrupted
by CorruptOracle. It selects a message m and ring R such that X ∈ R. It queries SignOracle(X,m, R) → σ.

• The adversary A then produces a tuple (m′, R′,σ′) and sends (m′, R′,σ′) to the challenger, along with
(X,m, R,σ).

• If Verify(σ′,m′, R′) = 0 or if σ′ was produced using a query to SignOracle, the challenger aborts.
If Pr[Link(σ,σ′) = 1] ≈ 0, we say that the GLRS is non-frameable.

Non-frameability w.r.t. chosen public key attackers (non-frameability w.r.t. CPA) definition:
Consider also the following game between a challenger and a PPT adversary A:

• The adversary A is granted access to the public-key oracle GenOracle.
• The adversary A is granted access to the signing oracle SignOracle.
• The adversary A chooses a public key X that was generated by a query to GenOracle. It selects a message

m and ring R such that X ∈ R. It queries SignOracle(X,m, R) → σ.
• The adversary A then produces a tuple (m′, R′,σ′) and sends (m′, R′,σ′) to the challenger, along with
(X,m, R,σ).

• If Verify(σ′,m′, R′) = 0 or if σ′ was produced using a query to SignOracle, the challenger aborts.
If Pr[Link(σ,σ′) = 1] ≈ 0, we say that the GLRS is non-frameable w.r.t. CPA.

The games of non-frameability and non-frameability w.r.t. CPA are as different as the games of unforgeability
w.r.t. insider corruption and EU_CMA/CPA.

9.3.2 SECURITY PROOF FOR L = 1
The MRL2SLnkSig signature scheme defined in 9.2.1, for L = 1, can be considered GLRS by appropriately

renaming procedures and adding KeyGen as specified for the GLRS adversarial games. We will now prove the
security properties of the MRL2SLnkSig scheme for this case.

In 9.2.4 we noticed indistinguishability of simulated signature from an honest one as long as a dishonest key
exists in the ring. The following lemma formalizes that observation.

MRL2SLnkSig-Simulation lemma:
For the MRL2SLnkSig signature scheme considered as GLRS, for L = 1, for the games specified in the unforge-
ability w.r.t. insider corruption and EU_CMA/CPA definitions,
◦ if for some Xj obtained from GenOracleA calls SignOracle(Xj, _, _) one or many times with any messages,
any rings R such that Xj ∈ R,
◦ if for these calls SignOracle returns signatures σ = (I, σ)’s such that the point I is common for all these
returned σ’s with actual signer Xj , and I was picked by SignOracle independently and uniformly at random
one time when producing the first σ for Xj ,

49

◦ and if σ’s in σ’s are the correspondingMRL2SPoM simulated proofs,

◦ if RandomOracle always returns to A the same randomness for the same queries notwithstanding of the
MRL2SPoM proof simulations,

thenA is unable to distinguish these σ’s from the honestMRL2SLnkSig signatures, unless Xj is corrupted. That
is, in this game A is unable to determine if SignOracle simulates the MRL2SLnkSig signatures for the actual
signer Xj or not, until xj becomes known to A.

Proof: Each honest MRL2SLnkSig signature, where actual signer is Xj , contains honest key image I =
Hpoint(Xj)/xj . A distribution of the honest key image I, as follows from definition of the ideal hash functionHpoint,
is independent and uniformly random. Thus, the simulated signatures cannot be distinguished using key images.

Suppose, there is anyway an adversary A that distinguishes a simulated signature from the space of honest
ones. Thus,A distinguishes a simulatedMRL2SPoM proof σ from the space of honestMRL2SPoM proofs, that
contradicts the MRL2SPoM scheme zero-knowledge property, which is proven in 8.2.2. Therefore, there is no A
capable of distinguishing simulated signatures in this game. The lemma is proven.

We can now move on to the next theorems.

Theorem 1:
The MRL2SLnkSig signature scheme for L = 1, considered as GLRS, has the following properties: perfect
correctness, unforgeability w.r.t. insider corruption and EU_CMA/CPA.

Proof: The MRL2SLnkSig scheme completeness, which is proven in 9.2.2, implies correctness. Moreover, it is
seen from the implementation of the scheme core protocol (Table 8) that MRL2SLnkSig is perfectly correct.

The MRL2SLnkSig scheme is unforgeable w.r.t. insider corruption, we provide a proof sketch using the
method from [14], which we modified to account for differences between our signature and the signature in [14].
Instead of special soundness as in [14], we rely on the WEE property of our signature scheme. We model the
Hscalar function as a random oracle RandomOracle. Considering a PPT adversaryA which is supposed to produce a
forged signature with non-negligible probability, we construct a polynomial time attack that breaks DL assumption.
Instead of zero-knowledge property as in [14], we use the simulated signature indistinguishability asserted by the
MRL2SLnkSig-Simulation lemma. The proof sketch is the following.
X To set up our attack, we take a PPT adversary A that produces an acceptable signature for a ring R of

uncorrupted keys generated by KeyGen, and insert our PPT master algorithm M in the middle between
A and the oracles GenOracle, CorruptOracle, SignOracle, and RandomOracle. To distinguish between the
original oracles atM input from their counterparts atM output we append suffix ‘In’ to the input ones. Note
M doesn’t have any access to the private keys behind GenOracleIn, it can know them only with calling to
CorruptOracleIn.

X Initially, the masterM runs A without changing the behavior of the oracles. In polynomial time and with
non-negligible probability A produces forgeries σ’s for uncorrupted rings R’s. Suppose, A makes at most
qV GenOracle calls to have 1/p probability of producing a forgery (explained in detail in [14]).

X Next,M changes the behavior of SignOracle and RandomOracle and restarts the game. Modified SignOracle,
for some random j ∈ [1, . . . , qV], no longer redirects to SignOracleIn when requesting a signature for the
actual signer Xj . Instead, it picks a point Ij independently and uniformly at random on the first call of
SignOracle for the signer Xj , and starts returning signatures σ = (Ij, σ) each time it is called for Xj . Each
time σ is generated,M provides the MRL2SPoM simulator with a series of random challenges. ThenM
patches RandomOracle so that instead of redirecting to RandomOracleIn, it starts returning those challenges
as responses to the corresponding queries. As shown in [14], this patch does not result in the problem of
getting multiple different responses for the same query to RandomOracle.

X M also modifies CorruptOracle so that when called to corrupt Xj it just stops A. This modification does
not reduce the likelihood of obtaining a successful forgery for the actual signer Xj , neither in the case of the
unmodified SignOracle, nor in the case of the modified SignOracle. This is because the corruption of Xj

during a run of A means that the creation of a successful forgery for the signer Xj has failed in this run.

X According to the MRL2SLnkSig-Simulation lemma, when A is executed with the modified version of
CorruptOracle, then A cannot distinguish whether it is run with the modified oracles SignOracle and
RandomOracle, or not. Since in the case of running A with unmodified SignOracle and RandomOracle the
probability of successful forgery for Xj is 1/(pqV), the same probability remains for the case of running A
with the modified versions of SignOracle and RandomOracle. Thus, running A with simulated signatures
for Xj yields in a polynomial time a successful forgery with the actual signer Xj and with an uncorrupted
ring R 3 Xj .

50

X Now, by running A with simulated signatures for Xj , the masterM rewinds in the usual way and thus gets
in a polynomial time a transcript tree rooted in the uncorrupted (Xj, R) with leaves in successful forgeries.
As the MRL2SLnkSig scheme has witness-extended emulation for the relation (80),M extracts witness xj
such that Xj = xjG from this transcript tree.

X However, the witness xj is not known to M, because Xj is uncorrupted and M doesn’t have access to
KeyGen, except through the use of GenOracle, which is also not revealing xj . Thus, having supposed
that MRL2SLnkSig can be forged in polynomial time we have built the PPT algorithmM that breaks DL
assumption for Xj . Therefore, the supposition was incorrect andMRL2SLnkSig is unforgeable w.r.t. insider
corruption.

The proof of the EU_CMA/CPA property for MRL2SLnkSig is similar to the above proof of unforgeability
w.r.t. insider corruption. The difference in games is that A can no longer corrupt keys, however it can now use
uneven key distribution. Using the Rewind-on-Success lemma from [19], this difference can be ignored. Here’s a
sketch of the proof.
X The attack setup is the same as for the above unforgeability w.r.t. insider corruption attack, CorruptOracle is

no longer used.

X Initially, the masterM runs A and obtains a forgery for some key in a polynomial time.

X Next,M builds a successful transcript tree by rewinding the forgery. By the Rewind-on-Success lemma [19],
M is able to build it in a polynomial time.

X From the successful transcript tree, due to the witness-extended emulation of MRL2SLnkSig,M restores
witness xj , and thus breaks DL assumption.

The theorem is proven.

Theorem 2:
The MRL2SLnkSig signature scheme for L = 1, considered as GLRS, has the following properties: anonymity
and anonymity w.r.t. CPA.

Proof: The MRL2PoM part σ of the MRL2SLnkSig signature σ = (I, σ) is sHVZK, it doesn’t reveal any
information about the actual signer key. Therefore, any adversarial advantage in breaking anonymity arises
from the signature key image together with public key ring (I, R). For any public key Xi , by definition of the
hash function Hpoint, the corresponding key image I = Hpoint(Xi)/xi has an independent and uniformly random
distribution. Hence, it also brings no adversarial advantage.

The public key ring R with two uncorrupted keys Xi0, Xi1 ∈ R remain the only source of information for the
adversaryA to win the adversarial games defined for the anonymity and anonymity w.r.t. CPA. However, R, Xi0, Xi1

are known toA beforehand, and thus bring no additional information. Therefore,A wins only with the probability
of a random coin flip, i.e. according to the respective definitions, MRL2SLnkSig is anonymous and anonymous
w.r.t. CPA.

Theorem 3:
The MRL2SLnkSig signature scheme for L = 1, considered as GLRS, has the following properties: linkability,
non-frameability, and non-frameability w.r.t. CPA.

Proof: The linkability proof presented in [20] for linkable ring signature also applies toMRL2SLnkSig. In both
the signature provided in [20] and ours, the underlying protocols are sHVZK. The difference in the linking tags
doesn’t change the proof, so we refer to [20] and don’t repeat the proof here.

It’s the same with non-frameability. The non-frameability proof in [20] applies to MRL2SLnkSig as well, so
we refer to [20] and don’t repeat it here. Moreover, the proof relies only on the scheme witness extraction property,
namely, on special soundness in [20], and on WEE for the relation (80) in our case, the proof doesn’t depend on
the key distribution generated by KeyGen, therefore the non-frameability proof also proves non-frameability w.r.t.
CPA.

9.3.3 SECURITY FOR MULTIPLE INPUTS

For L ≥ 1, we define a natural extension of GLRS as follows.

Generic linkable threshold ring signature (GLTRS) definition:
GLTRS is a threshold version of GLRS, it is four procedures:

• KeyGen() → (x, X): Generates key pairs, the same as for GLRS.

• L is a threshold.

51

• Sign(®x,m, R) → S : Generates a signature S on a message m with respect to the ring R = {X0, . . . , Xn−1},
provided that ®x, | ®x | = L, is a set of different secret keys corresponding to some subset ®X ⊆ R generated
by KeyGen. The ring R itself is not required to be composed only of keys generated by KeyGen, the only
two requirements to R are that the actual signer public keys ®X have to be generated by KeyGen and R has to
contain no duplicates.

• Verify(S,m, R) → {0, 1}: Verifies a signature S on a message m with respect to the ring R. Outputs 0 if
the signature is rejected, and 1 if accepted. This procedure result has to be equal to the conjunction of L
GLRS.Verify results if GLRS.Sign was respectively called for all x ∈ ®x.

• Link(S,S′) → {0, 1}: Determines if signatures S and S′ have a common signing key. Outputs 0 if the
signatures were signed using different private keys, and 1 if they have at least one common signing key. This
procedure result has to be equal to the disjunction of L · L ′ GLRS.Link results if GLRS.Sign was respectively
called for all x ∈ ®x and for all x ′ ∈ ®x ′.

TheMRL2SLnkSig signature is consideredGLTRS by appropriately renaming procedures and addingKeyGen.
The natural L−dimensional extensions for the security properties defined in 9.3.1 seem straightforward, hence we
don’t provide formal definitions for them here. Although, we recognize that a deeper formal investigation of linkable
threshold (L−dimensional) ring signatures may reveal some new properties, such as in [12, 24].

MRL2SLnkSig is perfectly correct for L ≥ 1, this is seen from the implementation (Table 8). Here we also
recall that for each (Ip, σp) ∈ S, p ∈ [1 . . . L], (Ip, σp) is totally independent ofS \ (Ip, σp), and each σp reveals
no more information than random noise.

MRL2SLnkSig is unforgeable w.r.t. insider corruption and also is EU_CMA/CPA for L ≥ 1, since everything
the PPT master algorithmM does and gets in Theorem 1 (9.3.2), it can do in polynomial time in L−dimensions.

Linkability, non-frameability, and non-frameability w.r.t. CPA also alive forMRL2SLnkSig in L−dimensions,
because if one of them was broken in L−dimensions, then it would be easy to break its 1−dimensional counterpart
that would contradict to Theorem 2 or to Theorem 3 (9.3.2).

9.4 MRL2SLNKSIG SIGNATURE AND RECENTLY PROPOSED LOG-SIZE SCHEMES
We refer to the work [20], where proof sizes and verification complexities for two of the recently proposed

top-performative schemes are shown in Table 1 [20]. Although we don’t provide a direct performance comparison
of our MRL2SLnkSig signature to the schemes analyzed in [20] due to the following reasons:

• The linkable signature schemes analyzed in [20] include homomorphic commitment sum proofs as well,
whereas our scheme is just a linkable signature,

• Our linkable signature operates with the linking tags of the form x−1Hpoint (xG), whereas, for instance, the
Triptych scheme from [20] operates with the linking tags of the form x−1U, where U is an independent
generator,

in any case, we can look at the asymptotes. Assuming anHpoint call is about ten times faster than an exponentiation,
and thus takes about the same time as an exponentiation calculated within a multi-exponent for a roughly 210

element ring, we can see that, for instance, for big N’s, our signature verification time asymptote mexp(3N)+NHpt
is not far from the RingCT 3.0 asymptote mexp(4N). Triptych asymptote mexp(2N) is about 2 times faster than
both ours and RingCT 3.0.

The size asymptotes for big N’s and threshold L = 1 are 2 log2 N for our signature, the same for RingCT 3.0,
and 3 log2 N for Triptych. Thus, for the big, say, of 215 element, rings, all the scheme sizes seem roughly equal. As
for threshold L > 1, RingCT 3.0 provides the best asymptotic time O(log2 N + L), whereas our signature is only
O(L log2 N).

It is worth mentioning that we use one of the most time-tested form of linking tag, x±1Hpoint(xG), which we
can see, e.g. in [19, 25]. This form of linking tag is absolutely insensitive to any distribution of public keys and
allows the signature to be anonymous w.r.t. chosen public key attackers.

Below we provide a couple of notes regarding possible modifications to our signature that include the homo-
morphic commitment sum proof and better verification time.

10 POSSIBLE EXTENSIONS
The MRL2SPoM membership proof and MRL2SLnkSig signature are things that are achievable with a

few steps starting from the Lin2-Xor lemma. Thus, possible extentions could include further optimization of
MRL2SLnkSig as well as creating other arguments of knowledge using the methods we applied in the Lin2
(-WEE), Lin2-Xor(-WEE), Lin2-Selector(-WEE) lemmas. For instance,

• It is possible to move more exponentiations under the single multi-exponent in MRL2SLnkSig.

52

• It is possible to verify a batch of signatures at once using the well-known random weighting technique.
• A homomorhic commitments sum proof could be attached to the signature by appending homomorhic
commitments Aj to the elements Pj = Bj + zHpoint(Bj) and separating them with another random weight ξ
as follows

Pj = Bj + zHpoint(Bj) + ξAj

• In theory, it seems possible to create a range proof argument, as in [6], using a combination of the methods
from the three mentioned lemmas. Lin2-Xor lemma allows to implement the choice of 0 or 2i depending
on the i−th bit of the binary representation of a value, while Lin2 lemma allows to combine the selected
powers of 2 into a sum. The question is if there exists an optimal solution with the orthogonal generators and
normalization checks for this.

ACKNOWLEDGEMENTS
Author thanks everyone who occasionally had talks with him about privacy systems while writing this article,

and thanks Olga Kolesnikova for reading the early drafts and making amicable comments on the narrative. Also,
author would like to thank the people from Zano project for their support during the first reviews, for sharing
knowledge on the current state of the art with hashing to curve, special thanks to Valeriy Pisarkov for proofreading
the Lin2-Xor, Lin2- Selector lemmas and protocols.

REFERENCES
[1] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. “1-out-of-n signatures from a variety of keys”. In:

ASIACRYPT 2002. Springer-Verlag. 2002, pp. 415–432.
[2] Mihir Bellare and Phillip Rogaway. “Random oracles are practical: a paradigm for designing efficient

protocols”. In: CCS ’93: Proceedings of the 1st ACM conference on Computer and communications security.
Association for Computing Machinery. 1993, pp. 62–73.

[3] E. Diamond Benjamin. “Many-out-of-many” proofs with applications to anonymous Zether. Tech. rep.
Cryptology ePrint Archive, Report 2020/293, 2020. https://eprint.iacr.org/2020/293, 2020.

[4] William Black and Ryan Henry. There Are 10 Types of Vectors (and Polynomials) Efficient Zero-Knowledge
Proofs of “One-Hotness” via Polynomials with One Zero. Tech. rep. Cryptology ePrint Archive, Report
2019/968, 2019. https://eprint.iacr.org/2019/968, 2019.

[5] Emmanuel Bresson et al. “A generalization of DDHwith applications to protocol analysis and computational
soundness”. In: CRYPTO 2007, LNCS 4622. Springer. 2007, pp. 482–499.

[6] Benedikt Bünz et al. “Bulletproofs: Short proofs for confidential transactions and more”. In: 2018 IEEE
Symposium on Security and Privacy (SP). IEEE. 2018, pp. 315–334.

[7] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of partial knowledge and simplified design
of witness hiding protocols”. In: CRYPTO ’94, LNCS 839. Springer-Verlag. 1994, pp. 174–187.

[8] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. 2015-08-04
2015. doi: https://doi.org/10.6028/NIST.FIPS.202.

[9] Reza R Farashahi et al. Indifferentiable Deterministic Hashing to Elliptic andHyperelliptic Curves. Tech. rep.
Cryptology ePrint Archive, Report 2010/539, 2010. https://eprint.iacr.org/2010/539, 2010.

[10] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions to Identification and Signature
Problems”. In: CRYPTO 1986. Lecture Notes in Computer Science. Vol. 263. Springer Berlin Heidelberg.
1986, pp. 186–194.

[11] Pierre-Alain Fouque and Mehdi Tibouchi. “Indifferentiable Hashing to Barreto–Naehrig Curves”. In:
Progress in Cryptology – LATINCRYPT 2012. Springer Berlin Heidelberg, 2012, pp. 1–17.

[12] Brandon Goodell, Sarang Noether, and RandomRun. Concise Linkable Ring Signatures and Forgery Against
Adversarial Keys. Cryptology ePrint Archive, Report 2019/654. https://ia.cr/2019/654. 2019.

[13] Jens Groth. On the Size of Pairing-based Non-interactive Arguments. Tech. rep. Cryptology ePrint Archive,
Report 2016/260, 2016. https://eprint.iacr.org/2016/260, 2016.

[14] Jens Groth and Markulf Kohlweiss. “One-out-of-many proofs: Or how to leak a secret and spend a coin”. In:
Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer.
2015, pp. 253–280.

53

https://eprint.iacr.org/2020/293
https://eprint.iacr.org/2019/968
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://eprint.iacr.org/2010/539
https://ia.cr/2019/654
https://eprint.iacr.org/2016/260

[15] Daira Hopwood et al. Zcash protocol specification. Tech. rep. Tech. rep. 2016–1.10. Zerocoin Electric Coin
Company, Tech. Rep., 2016.

[16] Thomas Icart. “How to Hash into Elliptic Curves”. In: Advances in Cryptology - CRYPTO 2009. Springer
Berlin Heidelberg, 2009, pp. 303–316.

[17] Russell WF Lai et al. “Omniring: Scaling private payments without trusted setup”. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. 2019, pp. 31–48.

[18] Yehuda Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. Tech. rep.
Cryptology ePrint Archive, Report 2001/107, 2003. https://eprint.iacr.org/2003/107, 2003.

[19] Joseph K Liu, Victor K Wei, and Duncan S Wong. “Linkable Spontaneous Anonymous Group Signature for
Ad Hoc Groups (Extended Abstract)”. In: Proc. Ninth Australasian Conf. Information Security and Privacy
(ACISP). 2004.

[20] Sarang Noether and Brandon Goodell. Triptych: logarithmic-sized linkable ring signatures with applications.
Cryptology ePrint Archive, Report 2020/018. https://ia.cr/2020/018. 2020.

[21] David Pointcheval and Jacques Stern. “Security Proofs for Signature Schemes”. In: Advances in Cryptology,
EUROCRYPT ’96. Springer Berlin Heidelberg, 1996, pp. 387–398.

[22] Ronald L Rivest, Adi Shamir, and Yael Tauman. “How to leak a secret”. In: Asiacrypt 2001, LNCS 2248.
Springer-Verlag. 2001, pp. 552–565.

[23] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptology 4.3 (1991), pp. 161–
174.

[24] Patrick P. Tsang et al. Separable Linkable Threshold Ring Signatures. Cryptology ePrint Archive, Report
2004/267. https://ia.cr/2004/267. 2004.

[25] Nicolas Van Saberhagen. CryptoNote v 2.0. https://cryptonote.org/whitepaper.pdf. 2013.
[26] Tsz Hon Yuen et al. RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security.

Tech. rep. Cryptology ePrint Archive, Report 2019/508, 2019. https://eprint.iacr.org/2019/508,
2019.

54

https://eprint.iacr.org/2003/107
https://ia.cr/2020/018
https://ia.cr/2004/267
https://cryptonote.org/whitepaper.pdf
https://eprint.iacr.org/2019/508

	Introduction
	Contribution
	Lin2-Xor and Lin2-Selector lemmas
	L2S set membership proof protocol and MRL2SLnkSig linkable ring signature
	Novel method for constructing a linkable ring signature

	Method overview
	Lin2 lemma
	Lin2-Xor lemma and its corollaries
	Lin2-Selector lemma
	Lemma proofs, pure protocols, and soundness
	Soundness, unforgeability, and witness-extended emulation
	L2S membership proof, MRL2SLnkSig signature

	Preliminaries
	A note about context
	Definitions
	Security parameter and CRS
	Sets and vectors
	Known and unknown discrete logarithm relation
	DL and DDH assumptions
	Shorthands for the known and unknown discrete logarithm relations
	Orthogonal sets
	Evidence
	Fixed elements
	Random choice
	Negligible probability and contradictions
	Decoy sets and their cardinality
	Linear combinations
	Index pairs
	Uniqueness
	Witness
	Witness-extended emulation
	Special Honest Verifier Zero-knowledge

	Preliminary lemmas
	Lin2-Xor lemma and its corollaries
	Lin2-Xor lemma
	Corollaries
	Witness extraction
	Lin2 lemma protocol witness extraction
	Lin2-Xor lemma protocol witness extraction

	Lin2-Selector lemma
	Preliminary definitions and properties
	Rsum

	Lin2-Selector lemma
	Witness extraction

	L2S membership proof
	Com2 commitment
	L2S membership proof protocol
	Proof of the relation between R and W
	Proof that correct opening implies L2S.Verif return 1

	LS2 protocol properties
	Completeness
	Soundness
	Witness-extended emulation
	Structure and view of the L2S Prover-Verifier public transcript
	Special Honest Verifier Zero-knowledge
	Indistinguishability of the member-pair index

	L2S protocol extensions
	RL2S protocol, sHVZK for non-random input
	RL2S protocol completeness and soundness
	RL2S protocol sHVZK
	RL2S protocol witness-extended emulation

	MRL2S protocol
	MRL2S protocol completeness, soundness, and Witness-extended emulation
	MRL2S protocol sHVZK
	MRL2S protocol complexities

	MRL2S-based non-interactive proof of membership
	Preliminaries
	Elliptic curve points and elements
	Any to scalar hash function Hscalar(…)
	Any to point hash function Hpoint(…)
	Ideal hash functions and random oracles
	Reserved integer names and constants
	Decoy vector as a vector of pairs
	Predefined set of orthogonal genarators

	MRL2SPoM NIZK PoM scheme
	MRL2SPoM completeness and soundness
	MRL2SPoM zero-knowledge and Witness-extended emulation
	MRL2SPoM complexities

	Linkable ring signature based on MRL2SPoM
	Preliminary lemma
	MRL2SLnkSig linkable ring signature
	MRL2SLnkSig scheme
	Scheme completeness, soundness, and witness-extended emulation
	Structure and view of the MRL2SLnkSig signature
	Signature simulation
	Complexities

	MRL2SLnkSig signature security
	Definitions for L=1
	Security proof for L=1
	Security for multiple inputs

	MRL2SLnkSig signature and recently proposed log-size schemes

	Possible extensions

