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Abstract. In this paper we present the concept of linear secret-sharing
homomorphisms, which are linear transformations between different secret-
sharing schemes defined over vector spaces over a field F and allow for
efficient multiparty conversion from one secret-sharing scheme to the
other. This concept generalizes the observation from (Smart and Talibi,
IMACC 2019) and (Dalskov et al., ESORICS 2020) that moving from a
secret-sharing scheme over Fp to a secret sharing over an elliptic curve
group G of order p can be done non-interactively by multiplying the
share unto a generator of G. We generalize this idea and show that it
can also be used to compute arbitrary bilinear maps and in particular
pairings over elliptic curves.
We present several practical applications using our techniques: First we
show how to securely realize the Pointcheval-Sanders signature scheme
(CT-RSA 2016) in MPC. Second we present a construction for dynamic
proactive secret-sharing which outperforms the current state of the art
from CCS 2019. Third we present a construction for MPC input certifica-
tion using digital signatures that we show experimentally to outperform
the previous best solution in this area.

1 Introduction

A (t, n)-secure secret-sharing scheme allows a secret to be distributed into n
shares in such a way that any set of at most t shares are independent of the
secret, but any set of at least t + 1 shares together can completely reconstruct
the secret. In linear secret-sharing schemes (LSSS), shares of two secrets can be
added together to obtain shares of the sum of the secrets. A popular example of
a (n−1, n)-secure LSSS is additive secret sharing, whereby a secret s ∈ Fp (here
Fp denotes integers modulo a prime p) is secret-shared by sampling uniformly
random s1, . . . , sn ∈ Fp subject to s1 + · · ·+ sn ≡ s mod p. Another well-known
example of a (t, n)-secure LSSS is Shamir secret sharing [38] that distributes a
secret s ∈ Fp by sampling a random polynomial f(x) over Fp of degree at most
t such that f(0) = s, and where the i’th share is defined as si = f(i).

Linear secret-sharing schemes are information-theoretic in nature: they do
not rely on any computational assumption and therefore tend to be very effi-
cient. Furthermore, they are widely used in multiple applications like distributed



storage [23] or secure multiparty computation [12]. Linear secret-sharing schemes
can be augmented with techniques from public-key cryptography, such as elliptic-
curve cryptography. As an example, consider (a variant of) Feldman’s scheme for
verifiable secret sharing3 [20]: To distribute a secret s ∈ Fp, the dealer samples a
polynomial of degree at most t such that f(0) = s, say f(x) = s+r1x+· · ·+rtxt,
and sets the i-th share to be si = f(i). On top of this, the dealer publishes
s · G, r1 · G, . . . , rt · G, where G is a generator of an elliptic-curve group G of
order p for which the discrete-log problem is hard. Each party can now de-
tect if its share si is correct by computing si · G and checking that it equals
s ·G+ i1(r1G) + i2(r2G) + · · ·+ it(rtG).

Similar approaches have also been used to instantiate polynomial commit-
ments [29], or to securely compute ECDSA signatures [16,39]. The key idea
behind these techniques is that the group G, having order p, is isomorphic to
Fp as an additive group. Although the general idea of using secret sharing “in
the exponent” has been used multiple times in the literature, this has been done
in a rather ad-hoc way, for specific linear secret-sharing schemes and only for
elliptic curves. Thus, a more formal and general treatment of these techniques
is currently missing.

1.1 Our Contributions

In this work we expand the range of applications of the techniques mentioned
above by considering the case of secure signatures, proactive secret sharing and
input certification, providing novel protocols in each of these settings that im-
prove over the state of the art. We also provide experimental results for some
of our protocols. Furthermore, along the way we formalize and generalize the
idea of “secret sharing in the exponent” by using an adequate mathematical def-
inition of linear secret sharing, extending it to general vector spaces—of which
elliptic curves are particular cases—and using linear transformations between
these vector spaces to convert from one secret-shared representation to a dif-
ferent one. Our framework neatly generalizes the techniques used in some prior
work like [16,39]. We extend this notion and show how generic multiplication
triples over Fp can be used to securely compute general bilinear maps, of which
bilinear pairings are a particular case.

The contributions made in this work are summarized below. This listing also
serves as an overview of the rest of the paper.

– We introduce the concept of linear secret-sharing homomorphism (LSS
homomorphisms) which can be seen as a generalization formalization of the
idea of “putting the share in the exponent”. An adequate mathematical
foundation for LSS homomorphisms is presented, and we show how generic
multiplication triples can be used to compute securely any bilinear map.
This is done in Section 2.

3 A verifiable secret-sharing scheme is one in which parties can verify that the dealer
shared the secret correctly
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– We demonstrate how LSS homomorphisms allow computation of scalar prod-
ucts, thus showing that it generalizes previously used techniques in e.g.,
[16,39]. We furthermore show that it is possible to use our techniques to
compute bilinear pairings over secret-shared data using any secure compu-
tation protocol. This is done in Section 2.5, where the first part shows how to
compute scalar multiplications and bilinear pairings, and where the second
part shows how to instantiate our techniques with various popular secret-
sharing schemes.

– To illustrate the usefulness of our LSS homomorphisms, we provide 3 appli-
cations. The first of these is a demonstration of how digital signatures can
be computed and verified on secret-shared data. This is done in Section 3.

– Our second application demonstrates a protocol for dynamic proactive secret-
sharing (PSS). This uses the digital signatures and the result is a dynamic
PSS protocol with better communication complexity than the current state
of the art. This is done in Section 4.

– Our final application is input certification. We present a method for ver-
ifying that a certain party provided input to a secure computation that
was previously certified by a trusted party. We benchmark our protocol ex-
perimentally and show that it significantly outperforms the previous best
solution for input certification for any number of parties. The protocol is
presented in Section 5, and our experiments are presented in Section 6.

1.2 Related Work

Previous works [16,39] make use of the folklore idea of “putting the shares in
the exponent” to efficiently instantiate threshold ECDSA, among other things.
They approach the problem from a more practical point of view, using certain
specific protocols and focusing on the application at hand, whereas our work is
more general, applying to any linear secret-sharing scheme and also any vector
space homomorphism. Furthermore, these works did not consider the case of
cryptographic pairings, as these are not needed in the ECDSA algorithm. Also,
in [19] the authors present protocols to securely compute over elliptic curves
(and also over lattices). The authors consider key generation of elliptic-curve
ElGamal, as well as decryption, based on generic MPC protocols. In addition,
a protocol for solving the discrete log of a secret-shared value is presented. We
present an alternative to such an decoding scheme in Appendix D.2 which can
be seen as complimentary to their approach.

In [11] the authors construct protocols for multiplying matrices and other
bilinear operations such as convolutions based on the observation that the widely
used Beaver multiplication technique [6] extends to these operations as well. This
turns out to be a particular instantiation of our framework from Section 2 when
the vector spaces are instantiated with matrix spaces and the bilinear map is
instantiated with matrix product.

Multiple works have addressed the problem of proactive secret-sharing. It
was originally proposed in [28,34], and several works have built on top of these
techniques [27,37,5,4,32], including ours. Among these, the closest to our work is
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the state-of-the-art [32], which also makes use of pairing-friendly elliptic curves
to ensure correctness of the transmitted message. However, a crucial difference
is that in their work, a commitment scheme based on elliptic curves, coupled
with the technique of “putting the share in the exponent” is used to ensure
each player individually behaves correctly. Instead, in our work, we use elliptic
curve computation on the secret rather than on the shares, which reduces the
communication complexity, as shown in Section 4.

Finally, not many works have been devoted to the important task of input
certification in MPC. For general functions, the only works we are aware of
are [8,30,41,9]. Among these, only [9] tackles the problem from a more general
perspective, having multiple parties and different protocols. In [9], the concept
of signature schemes with privacy is introduced, which are signatures that allow
for an interactive protocol for verification, in such a way that the privacy of the
message is preserved. The authors of [9] present constructions of this type of
signatures, and use them to solve the input certification problem. However, the
techniques from [9] differ from ours at a fundamental level: Their protocols first
computes a commitment of the MPC inputs, and then engage in an interactive
protocol for verification to check the validity of these inputs. Furthermore, these
techniques are presented separately for two MPC protocols: one from [18] and one
from [17]. Instead, our results apply to any MPC protocol based on linear secret-
sharing schemes, and moreover, is much simpler and efficient as no commitments,
proofs of knowledge, or special verification protocol are needed.

2 LSS Homomorphisms and Bilinear Maps

Let F be a prime field of order p. We use a ∈R A to represent that a is sampled
uniformly at random from the finite set A.

2.1 Linear Secret Sharing

In this section we define the notion of linear secret sharing that we will use
throughout this paper. Most of the presentation here can be seen as a simplified
verision of [13, Section 6.3], but it can also be regarded as a generalization since
we consider arbitrary vector spaces.

Definition 1. Let F be a field. A linear secret sharing scheme (LSSS) S over V
for n players is defined by a matrix M ∈ Fm×(t+1), where m ≥ n, and a function
label : {1, . . . ,m} → {1, . . . , n}. We say M is the matrix for S. We can apply
label to the rows of M in a natural way, and we say that player Plabel(i) owns the
i-th row of M . For a subset A of the players, we let MA be the matrix consisting
of the rows owned by players in A.

To secret-share a value s ∈ V , the dealer samples uniformly at random a
vector rs ∈ V t+1 such that its first entry is s, and sends to player Pi each row of
M · rs owned by this player. We write Js, rsK for the vector of shares M · rs, or
simply JsK if the randomness vector rs is not needed. Observe that the parties
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can obtain shares of s1 + s2 from shares of s1 and shares of s2 by locally adding
their respective shares. We denote this by Js1 + s2K = Js1K + Js2K.

The main properties of a secret sharing scheme are privacy and reconstruc-
tion, which are defined with respect to an access structure. In this work, and for
the sake of simplicity, we consider only threshold access structures. That said,
our results generalize without issue to more general access structures as well.

Definition 2. An LSSS S = (M, label) is (t, t+ 1)-secure if the following holds:

– (Privacy) For all s ∈ V and for every subset A of players with |A| ≤ t, the
distribution of Mrs is independent of s

– (Reconstruction) For every subset A of players with |A| ≤ t there is a recon-
struction vector eA ∈ FmA such that eᵀA(MArs) = s for all s ∈ V .

2.2 LSS over Vector Spaces

Let V be a finite-dimensional F-vector space, and let S = (M, label) be an LSSS
over F. Since V is isomorphic to Fk for some k, we can use the LSSS S to secret-
share elements in V by simply sharing each one of its k components. This is
formalized as follows.

Definition 3. A linear secret-sharing scheme over a finite-dimensional F-vector
space V is simply an LSSS S = (M, label) over F. To share a secret v ∈ V , the
dealer samples uniformly at random a vector rv ∈ V t+1 such that its first entry
is v, and sends to player Pi each row of M · rv ∈ V m owned by this player.
Privacy properties are preserved. To reconstruct, a set of parties A with |A| > t
uses the reconstruction vector eA as eᵀA(MArv) = v.

As before, given v ∈ V we use the notation Jv, rvKV , or simply JvKV , to
denote the vector in V m of shares of v.

2.3 LSS Homomorphisms

Let U and V be two finite-dimensional F-vector spaces, and let φ : V → U
be a vector-space homomorphism. According to the definition in Section 2.2,
any given LSSS S = (M, label) over F can be seen as an LSSS over V or over
U . However, the fact that there is a vector-space homomorphism from V to U
implies that, for any v ∈ V , the parties can locally get Jφ(v)KU from JvKV . We
formalize this below.

Definition 4. Let U and V be two finite-dimensional F-vector spaces, and let
φ : V → U be a vector-space homomorphism. Let S = (M, label) be an LSSS
over V . We say that the pair (S, φ) is a linear secret-sharing homomorphism.

The following simple proposition illustrates the value of considering LSS ho-
momorphisms.
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Proposition 1. Let U and V be two finite-dimensional F-vector spaces, and
let (S, φ) be a LSS homomorphism from U to V . Given v ∈ V and Jv, rvKV ,
applying φ to each share leads to Jφ(v), φ(rv)KU .4

Proof. Observe that φ (Jv, rvKV ) = φ(Mrv) = Mφ(rv) = Jφ(v), φ(rv)KU . ut

2.4 LSSS with Bilinear Maps

In Section 2.3 we saw how the parties could locally convert from sharings in one
vector space to another vector space, provided there is a linear transformation
between the two. The goal of this section is to extend this to the case of bilinear
maps. More precisely, let U, V,W be F-vector spaces of dimension d,5 and let
S = (M, label) be an LSSS over F. From Section 2.2, S is also an LSSS over U ,
V and W . Let φ : U × V → W be a bilinear map, that is, the functions φ(·, v)
for v ∈ V and φ(u, ·) for u ∈ U are linear.

We show how the parties can obtain Jφ(u, v)KW from JuKU and JvKV , for
u ∈ U and v ∈ V . Unlike the case of a linear transformation, this operation
requires communication among the parties. Intuitively, this is achieved by using
a generalization of “multiplication triples” [6] to the context of bilinear maps. At
a high level, the parties preprocess “bilinear triples” (JαKU , JβKV , Jφ(α, β)KW )
where α ∈ U and β ∈ V are uniformly random, open δ = u− α and ε = v − β,
and compute Jφ(u, v)KW as

φ(δ, ε) + φ(δ, JβKV ) + φ(JαKU , ε) + Jφ(α, β)KW = Jφ (δ + α, ε+ β)KW
= Jφ (u, v)KW .

Appendix A formalizes this intuition and defines a protocol Πbilinear parameter-
ized by the map φ, which takes as input JuKU , JvKV and outputs JwKW with
w = φ(u, v).

2.5 Instantiations

In the previous section we developed a theory for LSS homomorphisms and
secure computation for bilinear maps based on an arbitrary linear secret sharing
scheme and an arbitrary linear transformation between vector spaces. Let G be
an elliptic curve group of order a prime p, which in particular means that G is an
F-vector space, and let G be a generator of G. Consider the isomorphism φ : F→
G given by x 7→ x ·G. Let S = (M, label) be an LSSS over F. Given what we have
seen so far, S can be seen as an LSSS over G. To secret-share a curve point P ∈ G,
the dealer samples random points (P1, . . . , Pt), computes (Q1, . . . , Qm)ᵀ = M ·
(P, P1, . . . , Pt)

ᵀ ∈ Gm, and sends Qi to party Plabel(i). Furthermore, if s ∈ F is
secret shared as JsK, the LSS homomorphism property applied to φ implies that

4 We extend the definition of φ to operate on vectors over V pointwise.
5 It is not necessary for these spaces to have the same dimension, but we assume this

for simplicity in the notation.
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each party can locally multiply its share by the generator G to obtain Js ·GKG.
By instantiating the secret-sharing scheme with popular constructions such as
additive or Shamir secret-sharing, we obtain different techniques used in previous
works in the literature, as cited in the introduction.

Now, by choosing different bilinear maps we also obtain some techniques
used in previous works, such as [16,39]. Consider the scalar multiplication map
f : F×G→ G given by f : x, P 7→ x ·P . Using ΠBilinear with f we can obtain the
protocol ΠScalarMul (more precisely, ΠScalarMul is a special case of ΠBilinear when the
LSS homomorphism is f and the dimensions of the inputs are 1), described below,
which computes a scalar multiplication between a scalar and point when both
scalar and point are secret-shared. We remark that this protocol was presented
in [39] and as such our presentation here can be considered as illustrating that
ΠBilinear generalizes the techniques in their work. We assume access to a triple pre-
processing functionality FMulTriple that produces (JaK , JbK , Ja · bK), where a, b ∈ F
are uniformly random.

Protocol ΠScalarMul

Inputs: JxK and JP KG
Outputs: Jx · P KG

OFFLINE PHASE

1. Parties call (JaK , JbK , Ja · bK)← FMulTriple.
2. Parties use the LSS homomorphism x 7→ x · G for a generator G of G to

compute JBKG = JbK ·G and JCK = Ja · bK ·G.

ONLINE PHASE

1. Parties open d← JxK− JaK and Q← JP KG − JBKG.
2. Using the LSS homomorphism, parties compute JEKG = JaK ·Q and JF KG =

d · JBKG.
3. Parties compute locally Jx · P KG = JEKG + JF KG + d ·Q+ JCKG.

Bilinear Pairings. Consider G1,G2,GT elliptic curve groups of order a prime p.
As usual in the field of pairing-based cryptography, we use additive notation for
the groups G1,G2, and multiplicative notation for GT . We denote by 0G1

, 0G2

and 1GT
the identities of G1,G2 and GT , respectively. Consider a pairing e :

G1 ×G2 → GT satisfying:

1. For all G ∈ G1, H ∈ G2 and a, b ∈ F, e(aG, bH) = e(G,H)ab.
2. For P1 ∈ G1, P2 ∈ G2 with P1 6= 0, P2 6= 0, e(P1, P2) 6= 1.
3. The map e can be computed efficiently.

This notation will be used for the rest of the paper. In the context of Section
2, the groups G1,G2,GT can be viewed as F-vector spaces of dimension 1, so we
can apply the techniques presented there to compute Je(P1, P2)KGT

from JP1KG1
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and JP2KG2
. We summarize the resulting protocol below. We let G1 and G2

denote generators of G1 and G2, respectively.

Protocol Πpairing

Inputs: JP1KG1
and JP2KG2

.
Output: Je(P1, P2)KGT

.

OFFLINE PHASE

1. The parties call (JaK , JbK , Ja · bK)← FMulTriple.
2. The parties use the LSS homomorphisms x 7→ x · G1 and x 7→ x · G2 to

locally compute JQ1KG1
= JaK ·G1 and JQ2KG2

= JbK ·G2, respectively.
3. Using the LSS homomorphism x 7→ e(G1, G2)x, the parties compute

Je(Q1, Q2)K = Je(a ·G1, b ·G2)KGT
← e(G1, G2)JabK

ONLINE PHASE

1. The parties open D1 ← JP1KG1
− JQ1KG1

and D2 ← JP2KG2
− JQ2KG2

2. The parties use the LSS homomorphism e(Q1, ·) to compute
Je(D1, Q2)KGT

← e(D1, JQ2KG1
), and similarly they use the LSS ho-

momorphism e(·, D2) to compute Je(Q1, D2)KGT
← e(JQ1KG1

, D2).
3. The parties compute locally and output Je(P1, P2)KGT

= e(D1, D2) ·
Je(D1, Q2)KGT

· Je(Q1, D2)KGT
· Je(Q1, Q2)KGT

.

3 Threshold Signature Schemes

In this section we show how our techniques can be used to securely sign and
verify messages that are secret shared, using keys that are similarly secret-shared.
More precisely, we present here three protocols: First, a key generation protocol
ΠKeygen for generating (pk, JskK) securely where pk is a public key and JskK a
secret-shared private key. Second, a signing protocol ΠSign protocol that on input
a secret shared message JmK and JskK output from ΠKeygen outputs JσK where σ
is a signature on m under sk. Finally, we present a verification protocol ΠVerify

which on input JmK, JσK and pk outputs JbK where b is a value indicating whether
or not σ is a valid signature on m under the private key corresponding to the
public key pk.

We choose to use the signature scheme [36] by Pointcheval and Sanders
(henceforth PS) as our starting point. The primary reason for choosing the PS
scheme is that signatures are short and independent of the message length, and
that messages do not need to be hashed prior to signing.6. Interestingly, com-
puting PS signatures securely leads to a number of optimizations that are made
possible since e.g., the secret key is not known by any party.

6 A downside of e.g., ECDSA signatures is that messages have to be hashed first,
which creates a significant problem when messages are secret-shared, as hashing
secret-shared data is quite expensive
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Primitives for MPC. For this section, and for the rest of the paper, we will rely
on the existence of several functionalities to securely compute on secret-shared
data. We list them here in brief. Also, for a functionality/protocol Fabc/Πabc,
we denote by Cabc its total communication cost, in bits.

– FMulTriple outputs a triple (JaK , JbK , JcK) where c = ab.
– FDotProd takes as input (JxiK)Li=1 and (JyiK)Li=1, and produces JzK, where

z =
∑L
`=1 φ(x`y`).

– FMul takes two inputs JxK and JyK, and outputs JwK where w = xy. FMul is
a particular case of FDotProd for L = 1.

– FRand(K) outputs JxK where x ∈ K, where K is a F-vector space. Notice
that it is enough to have a functionality which samples a secret-shared field
element: to get a secret point, parties can locally apply an appropriate LSS
homomorphism to obtain a secret-shared group element.

– FCoin(K) outputs a uniformly random s ∈ K to all parties.

The functionalities above are defined irrespectively of whether the adversary
is passive (that is, it respect the protocol specification) or active (the adver-
sary may deviate arbitrarily).7 The following functionality only makes sense for
settings with active security.

– FDotProd∗ takes as input (JxiK)Li=1 and (JyiK)Li=1, and produces Jz + δK, where

z =
∑L
`=1 φ(x`y`) and δ ∈ F is an error provided by the adversary.

The reason to consider this dot product functionality, which produces incor-
rect results, is that (1) for some secret-sharing schemes this functionality can
be instantiated with a communication complexity that is independent of the
length L, and (2) that it suffices for some of the applications we consider later
on. How these functionalities are instantiated depends naturally on the choice
of secret-sharing scheme. We discuss instantiations for popular secret-sharing
schemes, including the ones we will focus on what follows (additive and Shamir
secret-sharing), in Section B in the Appendix.

3.1 The PS Signature Scheme

The PS signature scheme signs a vector of messages m ∈ Fr as follows (we
present the multi-message variant here):

– Setup(1λ): Output pp← (p,G1,G2,GT , e), a type-3 pairing.

7 One caveat is that the shares on their own may not define the secret if the adversary
is allowed to change the corrupt parties’ shares, which is the case for an active
adversary. This is an issue for example for additive secret sharing with a dishonest
majority (which can be fixed by adding homomorphic MACs), but not for Shamir
secret sharing with an honest majority. We discuss this in detail in Section B in the
Appendix.
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– Keygen(pp): Select random H ← G2 and (x, y1, . . . , yr) ← Fr+1. Com-
pute (X,Y1, . . . , Yr) = (xH, y1H, . . . , yrH) set sk = (x, y1, . . . , yr) and pk =
(H,X, Y1, . . . , Yr).

– Sign(sk,m): Select random G ← G1 \ {0} and output the signature σ =
(G, (x+

∑r
i=1miyi) ·G).

– Verify(pk,m, σ): Parse σ as (σ1, σ2). If σ1 6= 0 and e(σ1, X +
∑
miYi) =

e(σ2, H) output 1. Otherwise output 0.

The remainder of this section will focus on how to instantiate the PS signature
scheme securely.

3.2 Threshold PS Signatures

The ΠKeygen protocol presented below shows how to generate keys suitable for
signing messages of r blocks. The protocol proceeds as follows: parties invoke
FCoin and FRand a suitable number of times to generate the private key and then
use an appropriate LSS homomorphism to compute the public key.

Protocol ΠKeygen

Inputs: pp = (p,G1,G2,GT , e), r
Outputs: (pk, JskK)

1. Parties invoke FCoin(G2) to obtain H, and invoke FRand(F) a total of r + 1
times to obtain (JxK , Jy1K , . . . , JyrK).

2. Let φ2 : F→ G2 be LSS-homomorphism given by φ2 : x 7→ xH. Using φ2,
compute JXKG2

= φ2(JxK) and JYiKG2
= φ2(JyiK) for i = 1, . . . , r.

3. Parties open X ← JXKG2
and Yi ← JyiKG2

for i = 1, . . . , r. Output the pair
(pk, JskK) where pk = (H,X, Y1, . . . , Yr) and JskK = (JxK , Jy1K , . . . , JyrK).

The communication complexity of ΠKeygen is CKeygen = CCoin(1) + CRand(r +
1) + COpen(r + 1) field elements.

Next up is computing Sign on secret-shared inputs (assumed to be generated
by a FInput functionality) given the tools we have described so far. The ΠSign pro-
tocol below outputs a signature (σ1, Jσ2KG1

). The reasons for keeping σ1 public
are (1) that it simplifies things when we use this later, and (2) makes signing
more efficient. If, however, σ1 cannot be revealed then ΠPairing is needed for step
3.

Protocol ΠSign

Inputs: JskK = (JxK , Jy1K , . . . , JyrK), JmK = (Jm1K , . . . , JmrK)
Outputs: JσK

1. Parties obtain σ1 ∈R G1 by invoking FCoin(G1). If σ1 = 0, repeat this step.
2. Parties invoke JzK ← FDotProd ((JyiK)ri=1, (JmiK)ri=1) and then compute

JwK = JxK + JzK.
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3. Parties use the LSS homomorphism x 7→ x·σ1 to compute locally Jσ2KG1
←

ΠScalarMul(JwK , σ1).
4. Output (σ1, Jσ2KG1

).

Protocol ΠSign produces a correct signature with communication complexity
CCoin(1) + CDotProd(r).

Finally, we show a verification protocol ΠVerify in which a secret-shared GT
element JbKGT

where b = 1GT
if an only if the signature was valid. While this

is not a bit, it nevertheless carries the same information. Below the signature
we verify is (σ1, Jσ2KG1

), however if this is not the case (in particular, if σ1 is
secret-shared) then ΠPairing is needed in step 4.

Protocol ΠVerify

Inputs: pk = (H,X, Y1, . . . , Yr), JmK = (JmiK)ri=1, σ = (σ1, Jσ2KG1
)

Outputs: JbKGT
= J1GT K if Verify(pk,m, σ) = 0 and a random value otherwise.

1. If σ1 = 0 then output JµKGT
← FRand(GT ).

2. Compute JαKGT
= e(Jσ2K , H) using the LSS Homomorphism x 7→ xH.

3. Locally compute JβKGT
= e(σ1, X +

∑r
i=1 JmiKYi) using LSS homomor-

phisms.
4. Output JbKGT

← ΠScalarMul(JρK , JαKGT
/ JβKGT

) where JρK was obtained by
invoking FRand.

The communication complexity of theΠVerify protocol is CRand(1)+CScalarMul(1).
We now argue security.

Lemma 1. Protocol ΠVerify outputs a secret-sharing of 0GT
if σ = (σ1, Jσ2KG1

)
is a valid signature on JmK with public key pk, otherwise the protocol outputs a
secret-sharing of a uniformly random element.

Proof. Note that JαKGT
/ JβKGT

= Je(σ1, X +
∑
imiYi)/e(σ2, H)KGT

which is

1GT
if and only if e(σ1, X+

∑
imiYi) = e(σ2, H); that is, if the signature is valid.

Thus we have that the distribution of JbKGT
= J(a/β)ρKGT

is either uniformly
random (if α 6= β), or 1GT

(if α = β). To see that JbKGT
is uniformly random

when α 6= β it suffices to note that α/β is a generator of GT and that ρ was
picked at random.

It is likewise possible to see that any successful attack on (ΠKeygen, ΠSign, ΠVerify)
can easily be turned into an attack on the original PS signature scheme, in par-
ticular on the EUF-CMA [25] property of the PS signature scheme.

We consider an ideal threshold signature functionality roughly equivalent to
the Ftsig functionality presented in[10], the main difference being that we do not
consider key refreshment. It is possible to show thatΠPS = (ΠKeygen, ΠSign, ΠVerify)
securely realizes this functionality

The Ftsig functionality records a message as signed once it has received a sign
request from t+1 parties. During verification, Ftsig receives a tuple (m,σ, pk) and
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does one of three things: If (m,σ, b) was previously recorded, then b is returned
(that is, the signature was previously verified and b was the result); If m was
never signed, then b = 0 is returned, and if (m,σ) was not previously verified
but m was signed, then b = Verify(pk,m, σ) is returned.

Importantly, distinguishing between ΠPS and Ftsig happens only if the ad-
versary manages to input a pair (m,σ, pk) such that m was never signed, but
1 = Verify(pk,m, σ). However, this corresponds precisely to breaking the EUF-
CMA property of the PS signature scheme.

4 Applications to Proactive Secret Sharing

Secret-sharing allows a dealer to distribute a secret such that an adversary with
only access to some subset of the shares cannot learn anything about the secret.
However as time passes it becomes harder to argue that no leakage beyond this
subset takes place, and thus that the secret remains hidden from the adversary.
Proactive Secret-sharing (PSS) deals with this problem by periodically “refresh-
ing” (or proactivizing) shares such that shares between two proactivization stages
become “incompatible”.

Typically, the case of interest in the PSS setting is honest majority, since
in this case the value of the underlying secret is determined by the shares from
the honest parties only. In this section we focus on Shamir secret-sharing, as
described in Section B.2 in the Appendix, and we denote such sharings by J·K.
We assume that 2t+ 1 = n. Multiple PSS schemes have been proposed for this
case, but for the special situation of dynamic PSS (a PSS scheme is dynamic if
the number of parties and threshold can change between each proactivization),
CHURP is presented in [32]. In a nutshell, CHURP first performs an optimistic
proactivization and, if cheating is detected, falls back to a slower method that
is able to detect cheaters.

In what follows we show how to use the protocols for signatures developed
in Section 3 to obtain a conceptually simple and efficient dynamic PSS with
abort. We first develop a highly efficient protocol for proactivizing a secret that
guarantees privacy, but allows the adversary to tamper with the transmitted
secret. Then, we use our signatures to transmit a signature on the secret, that
can be checked by the receiving committee. In this way, due to the unforgeabil-
ity properties of the signature scheme, an adversary cannot make the receiving
committee accept an incorrectly transmitted message. This construction leads to
a 9-fold improvement in terms of communication with respect to the optimistic
protocol from [32].

We say that the parties have consistent sharings of a secret x if each Pi
knows a value si such that there exists a polynomial f(x) of degree at most t
with f(i) = si and f(0) = s.

4.1 Proactive Secret Sharing

We present here the definitions of proactive secret sharing, or PSS for short. We
remark that our goal is not to provide formal definitions of these properties but
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rather a high level description of what a PSS scheme is, so that we can present
in a clear manner our optimizations to the work of [32].

In a PSS scheme a set of n parties have consistent Shamir shares of a secret
JsK = (s1, . . . , sn) with threshold t. At a given stage, a proactivization mechanism
is executed, from which the parties obtain Js′K = (s′1, . . . , s

′
n). A PSS scheme

satisfies:

– (Correctness). It must hold that s = s′

– (Privacy). An adversary corrupting a set of at most t parties before the
proactivization, and also a (potentially different) set of at most t parties
after the proactivization, cannot learn anything about the secret s.

The PSS schemes we consider in this work are dynamic in that the set of
parties holding the secret before the proactivization step may be different than
the set of parties holding the secret afterwards.

4.2 Partial PSS

In what follows we denote by C = {Pi}ni=1 and C′ = {P ′i}ni=1 the old a new com-
mittees, respectively. Furthermore, we denote U = {Pi}t+1

i=1 and U ′ = {P ′i}
t+1
i=1. As

mentioned before, we consider Shamir secret-sharing, as defined in Section B.2,
with threshold t < n/2. This ensures that the corrupt parties cannot modify
their shares without resulting in an error, thanks to error-detection, as discussed
in Section B.2 in the Appendix. Our protocol ΠPartialPSS is inspired by the proto-
col from [5], except that, since we do not require the transmitted message to be
correct, we can remove most of the bottlenecks like the use of hyper-invertible
matrices or consistency checks to ensure parties send shares consistently.

Protocol ΠPartialPSS(JsKC)

Inputs A shared value JsKC = (s1, . . . , sn) among a committee C.

Output: Either a consistently shared value Js′KC
′

or abort. If all parties behave
honestly then s′ = s.

1. Each Pi ∈ C samples si1, . . . , si,t+1 ∈R F such that si =
∑t+1

j=1 sij and
sends sij to Pj for j = 1, . . . , t+ 1.

2. Each Pi ∈ U samples rki ∈R F for k = 1, . . . , t, and sets r0,i = 0.
3. Each Pi ∈ U sets aij = sji +

∑t
k=0 rki · j

k and sends aij to P ′j , for each
j = 1, . . . , n.

4. Each P ′j ∈ C′ sets s′j :=
∑t+1

i=1 aij .
5. The parties in C′ output the shares (s′1, . . . , s

′
n).

Theorem 1. Protocol ΠPartialPSS satisfies the following properties.

1. Assume that initially the parties in C had consistent shares of a secret s.
Then the protocol results in the parties in C′ having consistent shares of
s+ δ, where δ is an additive error known by the adversary.
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2. An adversary simultaneously controlling t parties in C and t parties in C′

does not learn anything about the secret input s.

Proof. We begin by introducing some notation. Let A ⊆ C and A′ ⊆ C′ be the
corresponding subsets of corrupt parties. For an honest party Pi it should hold
that si =

∑t+1
j=1 sij , where sij is the additive share sent by Pi to Pj in step 1.

However, for Pi ∈ A, this may not be the case, so we define δi ∈ F such that
si + δi =

∑t+1
j=1 sij . Finally, each Pi ∈ U is supposed to send aij in step 3, but

naturally, parties in A∩U may not follow this. We define εij for Pi ∈ A∩U and
j = 1, . . . , n in such a way that aij + εij is the value sent by Pi to P ′j in step 3.

It is easy to see that the value reconstructed by P ′j in step 4 is s′j =
∑t+1
i=1 aij =

εj+δj+sj+
∑t
k=0 rk ·jk, where εj =

∑t+1
i=1 εij , rk =

∑t+1
i=1 rki (notice that r0 = 0).

This can be written as s′j = γj + h(j), where h(x) = f(x) + g(x) ∈ F≤t[x],

g(x) =
∑t
k=0 rk · xk ∈ F≤t[x] and γj = εj + δj .

Now we are ready to argue consistency of the final sharings. The honest
parties P ′j ∈ C′ \ A′ output the sharings s′j = γj + h(j). On the other hand, the
adversary knows all γi, so we can re-define the shares s′j ← s′j − γj + q(j) for

P ′j ∈ A′, where q(j) ∈ F≤t[x] is such that q(i) = γi for Pi ∈ C′ \ A′.8 This way
the sharings (s′1, . . . , s

′
j) are consistent with the polynomial h(x)+q(x) ∈ F≤t[x],

whose underlying secret is f(0) + g(0) + q(0) = s+ 0 + q(0) = s+ δ.
Finally, we argue privacy. For this we assume that q(x) ≡ 0 (that is, the

adversary did not cheat overall). This simplifies notation, but it is also without
loss of generality because as we saw above the worst thing an adversary can do
is shifting the secret by an amount the adversary itself knows. First, notice that
the view of the adversary is

({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈U∩A︸ ︷︷ ︸
Sampled locally

, {sij}Pi∈C,Pj∈U∩A︸ ︷︷ ︸
Received in step 1

, {aij}Pi∈U,P ′j∈A′︸ ︷︷ ︸
Received in step 4

),

where gi(x) =
∑t
k=0 rki · xt (notice that g(x) =

∑t+1
i=1 gi(x)). We claim that this

view is independent of the secret s. To see this, we define a simulator S that, on
input ({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈U∩A) and without knowledge of s, produces an
indistinguishable view.

The simulator S is defined as follows:

– Sample sij ∈R F for Pi ∈ C \ A, Pj ∈ U ∩ A, and set sij := sij for Pi ∈
A, Pj ∈ U ∩ A.

– Define aij := sji + gi(j) for Pi ∈ U ∩ A, P ′j ∈ A′, and aij ∈R F for Pi ∈
U \ A, P ′j ∈ A′

– Output

({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈A, {sij}Pi∈C,Pj∈U∩A, {aij}Pi∈U,P ′j∈A′).

The two views are perfectly indistinguishable: {sij}Pi∈C,Pj∈U∩A ≡ {sij}Pi∈C,Pj∈U∩A
because, given that |U ∩ A| ≤ t < t+ 1, in the real execution the honest parties

8 Here we are using the fact that n = 2t+ 1 rather than the more general n ≥ 2t+ 1.
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Pi ∈ C \ A sample {sij}Pj∈U∩A independently and uniformly at random, like
in the simulation. Also {aij}Pi∈U,P ′j∈A′ ≡ {aij}Pi∈U,P ′j∈A′ given the rest of the

views because, in the real execution, {aij}Pi∈U\A,P ′j∈A′ are uniformly random

since they are only conditioned on aj =
∑t+1
i=1 aij = sj + g(j) for P ′j ∈ A′, but

since |A′| ≤ t and g(x) ∈R F≤t[x] with g(0) = 0, {g(j)}P ′j∈A′ are independent

and uniform so {aj}Pj∈A′ look uniform and independent to the adversary. ut

Extending to group elements. ΠPartialPSS can be extended to proactivize shares
JαKCG, where G is an elliptic curve group by running the same protocol “in the
exponent”. More formally, the LSS homomorphism x 7→ x · G, where G is a
generator of G, is used. This will be used later on in our protocol. Finally,
observe that ΠPartialPSS communicates a total of n(n+ 1) field elements.

4.3 Simple and Efficient PSS with Abort

The protocol ΠPartialPSS presented in the previous section guarantees privacy and
consistency of the new sharings, but it does not satify the main property of a
PSS, which is guaranteeing that the secret remains the same. More precisely, a

malicious party may disrupt the output as Js+ γKC
′
← ΠPartialPSS(JsKC), where

γ is some value known by the adversary. This is of course not ideal, but it can
be fixed by making use of the signature protocols proposed in Section 3. In
a nutshell, the committee C uses ΠPartialPSS to send to C′ not only the secret
s, but also a signature on this secret using a secret-key shared by C. Then,
upon receiving shares of the message-signature pair, the parties in C′ proceed
to verifying this pair securely using C’s public key, and if this check passes then
it can be guaranteed that the message was correct, since the adversary cannot
produce a valid message-signature pair for a new message.

The protocol is presented more formally in Protocol ΠPSS below. The setup
regarding secret/public key pairs is also presented in the protocol.

Protocol ΠPSS(JsKC)

Inputs: A shared value JsKC = (s1, . . . , sn) among a committee C.

Output: Consistent shares JsKC
′

or abort.
Setup: Parties in C have a shared secret-key JskCKC, and its corresponding
public key pkC is known by the parties in C′. This can be easily generated by
using protocol ΠKeygen from Section 3.

1. Parties in C call (σ1, Jσ2KC)← ΠSign(JskCKC , JsKC).

2. Parties in C ∪ C′ call Js′KC
′
← ΠPartialPSS(JsKC) and Jσ′2K

C′ ←
ΠPartialPSS(Jσ2KC).

3. P1, . . . , Pt+1 all send σ1 to the parties in C′. If some party in Pj ∈ C′

receives two different σ1 from two different parties, then the parties abort.

4. Parties in C′ call JvKC
′
← ΠVerify(Js′K

C′
, (σ1, Jσ′2K

C′
), pkC) and open v using

error detection. If v = 0GT then the parties in C′ output Js′KC
′
. Else, they

abort.
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Intuitively, the protocol guarantees that the parties do not abort if and only
if the message is transmitted correctly. This follows from the unforgeability of
the signature scheme: If an adversary can cause the parties to accept with a
wrong message/signature pair, then this would constitute a forged signature.
The fact that privacy is maintained regardless of whether the parties abort or
not is more subtle, but essentially follows from the fact that decision to abort
can be shown to independent of the secret (thus ruling out a selective failure
attack). Put differently, a decision depends only on the error introduced by the
adversary which is independent of the secret.

We summarize these properties in Theorem 2 below. In our proof we do
not reduce to the unforgeability of the signature scheme, but instead to a hard
problem over elliptic curves directly. This is easier and cleaner in our particular
setting, given that the signatures are produced and checked within the same
protocol. The computational problem we reduce the security of Protocol ΠPSS

to is the following, which can be seen as a natural variant of Computational
Diffie-Hellman (CDH) problem over G1.

Definition 5 (co-CDH assumption). Let G ∈ G1 and G′ ∈ G2 be generators.
Given (G,G′, aG, bG′) for a, b,∈R F, an adversary cannot efficiently find (ab)G.

With this assumption at hand, which is assumed to hold for certain choices
of pairing settings (see [21]), we can prove the following about the security of
ΠPSS.

Theorem 2. Protocol ΠPSS instantiates the PSS-with-abort functionality de-
scribed in Section 4.1, that is, if the parties do not abort in the protocol ΠPSS,

then the parties in C′ have shares JsKC
′
, where JsKC was the input provided to the

protocol. Furthermore, privacy of s is satisfied regardless of whether the parties
abort or not.

Proof (Sketch). We only provide a sketch of the corresponding simulation-based
proof. Let s′ = s + δ and σ′2 = σ2 + γ, where δ ∈ F and γ ∈ G1 are the
errors introduced by the adversary in the ΠPartialPSS protocol. Our simulator
simply emulates the role of the honest parties, with these virtual honest parties
using random shares as inputs. The simulator also emulates all the necessary
functionalities like FDotProd∗, FCoin and FRand. Using an argument along the lines
of the proof of Theorem 1, the simulator is then able to learn the errors δ and
γ. The simulator then makes the virtual parties abort if δ 6= 0 or γ 6= 0G1

.
We show that the simulated execution is indistinguishable to the adversary

from a real execution. To see this, first observe that in the real execution, the
honest parties abort if the output of Verify∗ is not 0. Furthermore, it is easy to

see that the output of ΠVerify(Js′K
C′
, (σ1, Jσ′2K

C′
), pkC) is equal to 0 if and only if

δ · e(σ1, Y ) = e(γ,H). Given this, the only scenario in which the two executions
(real and simulated) could differ is if δ 6= 0 or γ 6= 0G1

, but δ ·e(σ1, Y ) = e(γ,H),
since in this case the honest parties in the real execution do not abort, but the
honest parties in the ideal execution do. However, we show this cannot happen:
If δ 6= 0 or γ 6= 0G1 , then δ · e(σ1, Y ) 6= e(γ,H), with overwhelming probability.
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To see why the claim above holds, we make a reduction to the co-CDH
problem defined above: An adversary gets challenged with (α1H,α2H

′), and
its goal is to find α1α2H. The adversary then plays the simulator above, but
uses σ1 = α1H and Y = α2H

′. Now suppose that in the simulation δ 6= 0
and δ · e(σ1, Y ) = e(γ,H ′). We can see then that this equation implies that
δα1α2 = β, where β ∈ F is such that γ = βH ′. In particular, it implies that
α1α2H = δ−1βH = δ−1γ, so the adversary, who knows δ and γ, can compute
α1α2H as above, thus breaking co-CDH. Finally, it is easy to see that if γ 6= 0
and δ · e(σ1, Y ) = e(γ,H), then δ 6= 0 with high probability since otherwise
e(γ,H) = 0, so the same argument as above works. This finishes the sketch of
the simulation-based proof of the theorem. ut

Although we did not address this in our security arguments, the setup needed
for the protocol ΠPSS, namely that the parties in C have a shared secret-key
for which the parties in C′ know the corresponding public key, can be reused
for multiple successful proactivizations. Intuitively, this holds because, if the
adversary cheats in the proactivization, Theorem 2 shows that this is detected
with overwhelming probability, and if the adversary does not cheat then no
extra information about the secret-key from the committee C is leaked to the
adversary.

Communication Complexity. The communication complexity of the ΠPSS pro-
tocol is CPartialPSS(L+ 1) + CSign(L) + CVerify(L). We ignore the opening of JvK at
the end as this is independent of L. Recall that CSign(L) = CCoin(1) +CDotProd(L),
and CVerify(L) = CRand(1) + CScalarMul(1) For the case of Shamir secret sharing,
CRand(1) = 2n log |F|, using the protocol from [18] and amortizing over multiple
calls to FRand. Also, CDotProd(L) = 5.5n log |F|, and CScalarMul(1) = 5.5n log |F| too,
using the specialized bilinear protocol Πshm

DotProd for Shamir SS described in Sec-
tion B.2. We ignore the cost CCoin(1) since it can be instantiated non-interactively
using a PRG.

Given the above, the total communication complexity of the ΠPSS protocol
is

log(|F|) · ((L+ 1) · n · (n+ 1) + 13n) bits.

Comparison with CHURP. The dynamic PSS protocol proposed in [32], is to
our knowledge state-of-the-art in terms of communication complexity. At a high
level, CHURP is made of two main protocols, Opt-CHURP, which is able to detect
malicious behavior during the proactivization but is not able to point out which
party or parties cheated, and Exp-CHURP, which performs proactivization while
enabling cheater detection at the expense of requiring more communication.
Since in this work we have described a PSS protocol with abort, we compare our
protocol against Opt-CHURP.

The total communication complexity of Opt-CHURP is 9Ln2 log |F| bits in
point-to-point channels, plus 256n bits over a blockchain,9 so our novel method

9 For a more detailed derivation of this complexity, see Section C in the appendix.
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presents a 9-fold improvement over the state of the art. Furthermore, although
not mentioned in our protocol, a lot of the communication that appears in the
13n term in our ΠPSS protocol can be regarded as preprocessing, that is, it is
independent of the message being transmitted and can be computed in advance,
before the proactivization phase.

Finally, we note that our novel protocol ΠPSS is conceptually much more sim-
ple than Opt-CHURP. Unlike in Opt-CHURP, our protocol does not require the
expensive use of commitments and proofs at the individual level (i.e. per party)
in order to ensure correctness of the transmitted value. Instead, we compute a
global signature of the secret and check its validity after the proactivization.

Optimizations. If multiple shared elements Js1K
C
, . . . , JsLKC are to be proac-

tivized, we can make use of the fact that the signature scheme described in
Section 3 allows for cheap signing and verification of long messages without
penalty in communication.

Also, as we noted in Section 3.2, we can use the more efficient functionality
FDotProd∗ instead of FDotProd, at the expense of allowing the adversary to produce
incorrect signatures by adding any error to the second component of the signa-
ture. However, this is completely acceptable in our setting. In fact, the adversary
can already add an error to the second component of the signature when using
the ΠPartialPSS protocol. Hence, in our protocol ΠPSS we use the modified version
of ΠSign that uses FDotProd∗ instead of FDotProd.

Additionally, the fact that the worst that can happen in the ΠPartialPSS proto-
col is that the transmitted message is wrong by an additive amount known by the
adversary implies that other methods to ensure correctness of the transmitted
value can be devised, like the MACs described in Section B.1 in the Appendix for
additive secret-sharing. Although the overall computation is much more efficient
since it does not involve any public-key operations, the communication of the
method we present here is worse by a factor of 2.

5 Applications to Input Certification

MPC does not put any restriction on what kind of inputs are allowed, yet such
a property has its place in many applications. For example, one might want to
ensure that the two parties in the classic millionaires problem [40] do not lie
about their fortunes.

Signatures seem like the obvious candidate primitive for certifying inputs in
MPC: A trusted party T will sign all inputs xi of party Pi that need certifi-
cation. Then, after Pi have shared its input Jx′iK, which it may change if it is
misbehaving, parties will verify that Jx′iK is a value that was previously signed
by T . While this approach clearly works (if Pi could get away with sharing x′i,
then Pi produced a forgery) it is nevertheless hindered by the fact that signa-
ture verification is expensive to compute on secret-shared values, arising from
the fact that the usual first step in verifying a signature is hashing the message,
which is prohibitively expensive in MPC. In this section we show that by using
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our secure PS signatures from Section 3, this approach is not longer infeasible,
and in fact, it is quite efficient.

5.1 Certifying inputs with PS signatures

We consider a setting in which n parties P1, . . . , Pn wish to compute a function
f(x1, . . . ,xn), where xi ∈ FL corresponds to the input of party Pi. We assume
that all parties hold the public key pk of some trusted authority T , who provided
each Pi with a PS signature (σi1, σ

i
2) on its input xi. We also assume a function-

ality FInput that, on input xi from Pi, distributes to the parties consistent shares
Jxi1K , . . . , JxiLK. We also assume the existence of a broadcast channel.

Our protocol, ΠCertInput, allows a party Pi to distribute shares of its input,
only if this input has been previously certified.

Protocol ΠCertInput

Input: Index i ∈ {1, . . . , n} and
(
(xi)

L
i=1, σ1, σ2

)
from Pj .

Output: (JxiK)i where Verify(pk, (JxiKi), (σ1, σ2)) = 1, or abort.

1. Pj calls FInput to distribute
(

(JxiK)i, Jσ2KG1

)
. Also, Pj broadcasts σ1 to all

parties.
2. Parties call JrKGT

← ΠVerify(pk, (JxiK)Li=1, σ1, Jσ2KG1
).

3. Parties open JrKGT
, who output (JxiK)i if r = 1GT and abort otherwise.

Complexity analysis. The communication complexity of the protocol ΠCertInput

is CInput(L) + CVerify(L) + COpen(1) bits.

Security. Security of ΠCertInput follows immediately from the security of the pro-
tocols presented in Section 3. Indeed, if a corrupt Pj sends an incorrect share to
an honest party, then that directly corresponds to creating a forgery in the PS
signature scheme.

Optimization if multiple parties provide input. If all parties P1, . . . , Pn useΠCertInput

to certify their input, each party can call ΠCertInput, which, in the case that a pro-
tocol with guaranteed output delivery is used to compute ΠVerify, allows parties
to identify exactly which party provided a faulty input. However, one can im-
prove the communication complexity if a “global” abort is accepted, that is, if
the parties do not abort then all the inputs are correctly certified, but if they do
abort, then it is not possible to identify which party provided an incorrect input
(however, for protocols without guaranteed output delivery, this is acceptable
since the abort can already happen due to malicious behavior in other parts of
the protocol).

The optimization works as follows. Consider the n ΠCertInput executions, cor-
responding to all parties. At the end of step 2, n shares Jr1KGT

, . . . , JrnKGT
have

been produced. The parties then locally compute JrKGT
=

∏n
i=1 JriKGT

(recall
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that GT is a multiplicative group), open r, and accept the secret-shared inputs
if and only if this opened value equals 1GT

. Notice that, if at least one signature
is incorrect, then at least one ri is uniformly random, so r will be uniformly
random too and therefore the probability that it equals 1GT

in this case is at
most 1/|GT |.

Comparison with [9]. Certifying inputs for MPC with the help of signatures has
been studied previously in [9]. However, the approach followed in that work is
conceptually much more complex than the one we presented here. At a high
level, instead of verifying the signature in MPC, the parties jointly produce
commitments of the secret-shared inputs, and then each input owner uses these
commitments, together with the signatures, to prove via an interactive protocol
(that roughly resembles a zero-knowledge proof of knowledge) “posession” of the
signatures. Furthermore, the protocols presented in [9] depend on the underlying
secret-sharing scheme used, and two ad-hoc constructions, one for Shamir secret-
sharing (using the MPC protocol from [18]) and another one for additive secret
sharing (using the MPC protocol from [17]), are presented. Instead, our approach
is completely general and applies to any linear secret-sharing scheme, as defined
in Section 2.

We present in Section 6.1 a more experimental and quantitative comparison
between our work and [9]. We observe that, in general, our approach is at least
2 times more efficient.

6 Implementation and Benchmarking

We implemented our protocols with the RELIC toolkit [2] using the 128-bit-
secure pairing-friendly BLS12-381 curve. This curve has embedding degree k =
12 and a 255-bit prime-order subgroup, and became popular after it was adopted
by the ZCash cryptocurrency [7]. It is now in the process of standardization due
to its attractive performance characteristics, including an efficient towering of
extensions, efficient GLV endomorphisms for scalar multiplications, cyclotomic
squarings for fast exponentiation in GT , among others. In terms of security, the
choice is motivated by recent attacks against the DLP in GT [31] and is sup-
ported by the analysis in [33]. Our implementation makes use of all optimiza-
tions implemented in RELIC, including Intel 64-bit Assembly acceleration, and
extend the supported algorithms to allow computation of arbitrarily-sized linear
combinations of G2 points through Pippenger’s algorithm. We take special care
to batch operations which can performed simultaneously, for example merging
scalar multiplications together or combining the two pairing computations within
MPC signature verification as a product of pairings. We deliberately enabled the
variable-time but faster algorithms in the library relying on the timing-attack
resistance built in MPC, since computations will be performed essentially over
ephemeral data. The resulting code will be contributed back to the library.

We benchmarked our implementation on an Intel Core i7-7820X Skylake
CPU clocked at 3.6GHz with HyperThreading and TurboBoost turned off to
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Operation Local (cc) Two-party (cc)

Scalar multiplication in G1 386 612
Scalar multiplication in G2 1,009 1,796
Exponentiation in GT 1,619 2,772
Pairing computation 3,107 4,063

PS key generation (1 msg) 2,670 4,723
PS signature computation (1 msg) 626 654
PS signature verification (1 msg) 5,153 8,065

PS key generation (10 msgs) 11,970 23,464
PS signature computation (10 msgs) 656 668
PS signature verification (10 msgs) 10,144 12,953

Table 1. Efficiency comparison between local computation and two-party computation
of the main operations in pairing groups and PS signature computation/verification.
We display execution times in 103 clock cycles (cc) for each of the main operations in
the protocols and report the average for each of the two parties.

Number of messages

1 10 102 103 104 105 106

Ours 8,065 12,953 62,714 357,445 2,334,742 22,281,049 220,572,619
[9] 11,445 18,690 103,950 970,200 9,723,000 111,090,000 -

Table 2. Efficiency comparison between our certified input protocol from Section 5
and the one presented in [9]. Numbers are measured in thousands of clock cycles (cc).

reduce noise in the benchmarks. Each procedure was executed 104 times and the
averages are reported in Table 1. It can be seen from the table that the MPC
versions of scalar multiplications and exponentiations introduce a computational
overhead ranging from 1.59 to 1.78, while pairing computation becomes only 30%
slower. For the PS protocol, key generation and signature verification in MPC
are penalized in comparison to local computation by less than a 2-factor, while
the cost of signature computation stays essentially the same. There is no perfor-
mance penalty for signature computation involving many messages because of
the batching possibility in the PS signature scheme.

6.1 Certified Inputs

Here we compare our protocol for input certification from Section 5 with the
experimental results reported in [9]. To perform a fair comparison, we converted
the timings from the second half of Table 2 in [9] to clock cycles using the
reported CPU frequency of 2.1GHz for an Intel Sandy Bridge Xeon E5-2620
machine. Each procedure in our implementation was executed 104 times for up
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to 102 messages, after which we decreased the number of executions linearly with
the increase in number of messages. We used as reference the largest running
time of the two running parties (input provider and other party) reported in [9],
since the computation would be bounded by the maximum running time. Our
results are shown in Table 2, and show that our implementations are already
faster for small numbers of messages, but improve on related work by a factor of
2–5 when the number of messages is at least 100. While the two benchmarking
machines are different (Intel Sandy Bridge and Skylake), our implementations
do not make use of any performance feature specific to Skylake, such as more
advanced vector instruction sets. Hence we claim that the performance of our
implementations would not be different enough in Sandy Bridge to explain the
difference, and just converting performance figures to clock cycles makes the
results generally comparable.
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A Bilinear maps for MPC

We formalize the intuition from Section 2.4 below where we describe the protocol
Πbilinear in detail.

For this protocol we assume a functionality FOuterProd that produce ran-
dom shares Ja1K , . . . , JadK , Jb1K , . . . , JbdK over F, together with JaibjK for i, j ∈
{1, . . . , d}. This is used to produce the “bilinear triples” mentioned earlier. (No-
tice further that the case where d = 1, FOuterProd corresponds to a classical
triple-preprocessing functionality.) Also, in the protocol below we assume that
{u1, . . . , ud} is a basis for U and that {v1, . . . , vd} is a basis for V .

Protocol Πbilinear

Inputs: JuKU and JvKV .
Output: JwKW where w = φ(u, v) ∈W .

OFFLINE PHASE

1. The parties call
(
{JaiK}di=1, {JbiK}di=1, {JaibjK}di,j=1

)
← FOuterProd.
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2. The parties use the LSS homomorphisms x 7→ x·ui and x 7→ x·vi to locally
compute JαKU =

∑d
i=1 JaiK · ui and JβKV =

∑d
i=1 JbiK · vi, respectively.

3. The parties compute Jφ(aiui, bjvj)KW ← JaibjK · φ(ui, vj) using the LSS
homomorphisms x 7→ x · φ(ui, vj).

4. The parties compute locally Jφ(α, β)KW =
∑d

i,j=1 Jφ(aiui, bjvj)KW .

ONLINE PHASE

1. The parties open δ ← JuKU − JαKU and ε← JvKV − JβKV
2. The parties use the LSS homomorphism φ(δ, ·) to compute Jφ(δ, β)KW ←

φ(δ, JβKV ), and similarly they use the LSS homomorphism φ(·, ε) to com-
pute Jφ(α, ε)KW ← φ(JαKU , ε).

3. The parties compute locally and output Jφ(u, v)KW = φ(δ, ε)+Jφ(δ, β)KW +
Jφ(α, ε)KW + Jφ(α, β)KW .

B Some Linear Secret Sharing Schemes

B.1 Additive Secret-Sharing

In this scheme each party Pi gets a uniformly random value ri ∈ F subject to∑n
i=1 ri = s, where s ∈ F is the secret. More formally, this scheme Sadd is defined

as (Madd, labeladd), where Madd ∈ Fn×n is given below, and labeladd(i) = i:
r1
r2
...

rn−1
s− r1 − · · · − rn−1

 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
1 −1 −1 · · · −1


︸ ︷︷ ︸

Madd∈Fn×n

·


s
r1
r2
...

rn−1



It is easy to see that this scheme is (n−1, n)-secure. Let us denote additive secret

sharing of s by JsKadd, and abussing notation, we write JsKadd = (r1, . . . , rn),
where each ri is the share of party Pi. Given an elliptic curve group G of order p,
having G as generator, the parties can obtain shares of s·G by locally multiplying
the generator G by their share ri; that is, Js ·GKadd = (r1 ·G, . . . , rn ·G).

Reconstruction. The scheme Sadd is mostly used in the dishonest majority
setting. However, at reconstruction time, a maliciously corrupt party can lie
about his share, causing the reconstructed value to be incorrect. To help solve
this issue, actively secure protocols in the dishonest majority share a secret s
as JsKadd, together with Jr · sKadd, where r is a global uniformly random value

that is also shared as JrKadd. We denote this by JsKadd∗. At reconstruction time,

the adversary may open JsKadd to s + δ where δ is some error known to the
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adversary. To ensure that δ = 0 (so the correct value is opened), the parties

compute (s + δ) JrKadd − Jr · sKadd, open this value, and check it equals 0. It is
easy to see that this value equals r · δ, but since the adversary may cheat in this
opening, this opened value may be r · δ− ε. However, if δ 6= 0, this opened value
equals 0 if and only if r = ε/δ, which happens with probability at most 1/|F|
since ε and δ are chosen independently of the uniformly random r.

The same check can be performed over G: The sharings Js ·GKaddG are accom-

panied by Jr · s ·GKaddG , where r is a global uniformly random value that is also

shared as JrKadd. At reconstruction time Js ·GKaddG can be opened to (s+ δ) ·G,

and to ensure δ = 0 the parties open JrKaddG · (s+ δ) ·G− Jr · s ·GKaddG and check
that this point is the identity. It is easy to see that, like in the case over F, the
check passes with probability at most 1/|F| if δ 6= 0.

B.2 Shamir Secret-Sharing

Consider a setting with n parties, and let 0 < t < n. In this scheme each party
Pi gets f(i) where f(x) ∈R F≤t[x] subject to f(0) = s, and s ∈ F is the secret.10

We denote JsKshmF = (f(1), . . . , f(n)). More formally, this scheme Sshm is defined
as (Mshm, labelshm), where Mshm ∈ Fn×(t+1) is given below, and labelshm(i) = i:

s1
s2
...

sn−1
sn

 =


10 11 12 · · · 1t

20 21 22 · · · 2t

...
(n− 1)0 (n− 1)1 (n− 1)2 · · · (n− 1)t

n0 n1 n2 · · · nt


︸ ︷︷ ︸

Mshm∈Fn×(t+1)

·


s
r1
r2
...
rt



It is easy to see that this scheme is (n − 1, n)-secure. Over a vector space V ,
sharing a point α ∈ V is done by sampling r1, . . . , rt ∈R V , and setting the
i-th share to be αi = α +

∑t
j=1 i

j · rj . In this way, αi = f(i), where f(x) =

α+
∑t
j=1 x

j · rj ∈R V≤t[x]. We denote this by JSKshmV .

Reconstruction. Consider a shared value JsKshm = (f(1), . . . , f(n)). If t ≥ n/2,
then it can be shown that, like in the additive scheme from Section B.1, the
adversary can succeed in opening an incorrect value by modifying the shares
of the corrupt parties. However, if t < n/2, this cannot be done: The honest
parties will be able to detect that the opened value is not correct. Furthermore,
if t < n/3, the honest parties can do better: On top of detecting whether the
open value is the right one, they can correct the errors and compute the right
secret. We describe these below, and we also discuss extensions to elliptic curves.

10 We assume that |F| > n+ 1
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Error detection (t < n/2). Assume t < n/2, and suppose that a most t shares
among (s1, . . . , sn) are incorrect. If all shares (s1, . . . , sn) lie in a polynomial of
degree at most t, then the reconstructed secret must be correct, given that a
polynomial of degree at most t is determined by any t+ 1 points, in particular,
it is determined by the t+1 ≤ n− t correct shares. In this way, by verifying if all
the shares lie in a polynmial of the right degree, the parties can detect whether
the reconstructed value is correct or not. This can be done by interpolating a
polynomial of degree at most t using the first t + 1 shares, and then checking
whether the other shares are consistent with this polynomial.

Alternatively, the parties can use the parity check matrix H ∈ F(n−t−1)×n,
which satisfies that A · (s1, . . . , sn)T is the zero-vector if and only if the shares si
are consistent with a polynomial of degree at most t. This check can be performed
for the group sharings JP KG as well.

Error correction (t < n/3). If t < n/2 then the parties can detect whether a
reconstructed value is correct or not, but they cannot “fix” the errors in case the
value is not correct. Under the additional condition t < n/3, this can actually
be done, that is, the parties can reconstruct the correct value, regardless of any
changes the adversary does to the shares from corrupted parties. The algorithm
to achieve this proceeds, at least conceptually, as follows: The parties find a
subset of 2t + 1 shares among the announced shares that lies in a polynomial
of degree at most t; this set exists because there are at least n − t ≥ 2t + 1
correct shares. Then, the secret given by this polynomial is taken as the right
secret. This is correct because of the same reason as in the previous case: This
polynomial is determined by any set of t+ 1 points among the 2t+ 1 ones that
are consistent, and in particular, it is determined by the t+1 = 2t+1− t correct
shares, since at most t of them can be incorrect.

The main bottleneck in the reconstruction algorithm sketched above is finding
a consistent subset of 2t+1 shares, since there are exponentially-many such sets.
To this end, an error-correction algorithm like Berlekamp Welch is used [24],
which has a running time that is polynomial in n.

Finally, it is important to remark that, unlike the error-detection mechanism
above, this error-correction procedure cannot be performed over the group G.
This interesting result was shown in [35].

Dot Products of Shared Vectors. Let 2t+1 = n, and let U, V,W be F-vector
spaces of dimension d with bases {ui}di=1, {vi}di=1 and {wi}di=1, respectively.11

Consider a bilinear map φ : U ×V →W . For the rest of this section we consider
Shamir secret sharing, and we omit the superscript shm from the sharings, and
consider explicitly the degree of the polynomial used for the sharing: J·Kh denotes
Shamir secret sharing using polynomials of degree at most h.

Consider shared values Jx1K
t
U , . . . , JxLKtU , Jy1K

t
V , . . . , JyLKtV . In this section

we describe a protocol to compute Jz + δKtW , where z =
∑L
`=1 φ(x`y`) and δ ∈W

11 As in Section 2, the condition that all three spaces have the same dimension is not
necessary.
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is some error known to the adversary. The main building blocks of the protocol
are the following:

– The parties can locally obtain Jφ(α, β)K2tW from JαKtU and JβKtV . To see this,

write JαKtU = (f(1), . . . , f(n)) and JβKtU = (g(1), . . . , g(n)), for some f(x) ∈
U≤t[x] and g(x) ∈ V≤t[x] such that f(0) = α and g(0) = β. Write f(x) =∑t
i=0 x

i · ri and g(x) =
∑t
i=0 x

i · si, and let h(x) =
∑t
i,j=1 x

i+j · φ(ri, sj) ∈
W≤2t[x]. It is easy to see that h(0) = φ(α, β) and that h(i) = φ(f(i), g(i))

for all i = 1, . . . , n, so Jφ(α, β)K2tW = (h(1), . . . , h(n)).

– There exists a protocol ΠDoubleSh that produces a pair (JwKtW , JwK2tW ), where

w ∈R W . Such a pair can be produced from d pairs (JriK
t
F , JriK

2t
F ) by defining

JwKkW =
∑d
i=1 JriK

k · wi for k = t, 2t. These pairs over F can be produced
using the protocol from [18].

With these tools at hand we are ready to describe our main protocol.

Protocol Πshm
DotProd

Inputs: Shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV .

Output: Jz + δKW , where z =
∑L

`=1 φ(x`, y`) and δ ∈ W is some error known
to the adversary.

1. Call (JwKtW , JwK2tW )← ΠDoubleSh

2. Parties locally compute Jφ(x`, y`)K2tW ← φ(Jx`KtU , Jy`K
t
V ), for ` = 1, . . . , L;

3. Parties compute JeKW = JwK2tW +
∑L

`=1 Jφ(u`, v`)K2tW and send the shares of
e to P1.

4. P1 uses the n = 2t + 1 shares received to reconstruct e + δ (where δ
is the error the adversary may introduce by lying about its shares), and
broadcastsa e+ δ to all parties.

5. All parties set Jz + δKtW = (e+ δ)− JwKtW .

a A proper broadcast channel must be used.

The protocol is private because the only value that is opened is e, which is a
perfectly masked version of the sensitive value z, given that w is uniformly ran-
dom and unknown to the adversary. The communication complexity of Πshm

DotProd

is CshmDotProd = d · log(|F|) · 5.5 · n, using the optimization from [26].

B.3 Replicated Secret Sharing

This is a (1, 2)-secure LSSS for 3 parties. In this scheme each party Pi gets
(ri, ri+1), where the sub-indexes wrap modulo 3, and s = r1 + r2 + r3, where
s ∈ F is the secret. We denote JsKrepF = ((r1, r2), (r2, r3), (r3, r1)). More formally,
this scheme Srep is defined as (Mrep, labelrep), where Mrep ∈ F6×3 is given below,
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and labelrep(i) = di/2e for i = 1, . . . , 6.
r1
r2
r2

s− r1 − r2
s− r1 − r2

r1

 =


0 1 0
0 0 1
0 0 1
1 −1 −1
1 −1 −1
0 1 0


︸ ︷︷ ︸
Mrep∈F6×3

·

 s
r1
r2



Reconstruction. Consider a shared value JsKrep = ((r1, r2), (r2, r3), (r3, r1)). To
open this share, P1 sends (r1, r2), P2 sends (r2, r3), and P3 sends (H(r3), H(r1)),
where H is a collision resistant hash function. To verify that the opening is done
correctly, the shares announced by P1 and P2 are checked against the hashes
announced by P3. If they are consistent, since at most one party is corrupt, the
secret is correct.

Dot Products of Shared Vectors. Like in Section B.2, let U, V,W be F-vector
spaces of dimension d with bases {ui}di=1, {vi}di=1 and {wi}di=1, respectively, and
consider a bilinear map φ : U × V →W . For the rest of this section we consider
replicated secret sharing, and we omit the superscript rep from the sharings.

Consider shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV . In this section

we describe a protocol to compute Jz + δKW , where z =
∑L
`=1 φ(x`y`) and δ ∈W

is some error known to the adversary. The only building blocks required for this
protocol are the following:

– The parties can locally obtain Jφ(α, β)KaddW from JαKrepU and JβKrepV . To see this,
write JαKrepU = ((α1, α2), (α2, α3), (α3, α1)) and JβKrepU = ((β1, β2), (β2, β3), (β3, β1)),
where α = α1+α2+α3 and β = β1+β2+β3. Let γi = φ(αi, βi)+φ(αi+1, βi)+
φ(αi, βi+1), for i = 1, 2, 3, which can be computed locally by party Pi. It is
easy to see that φ(α, β) = γ1 + γ2 + γ3, which completes the claim.

– A protocol for generating random shares J0KrepW . This can be done by gener-

ating d random shares J0KrepF , . . . , J0KrepF , and setting J0KrepW =
∑d
i=1 J0KrepF ·wi.

Furthermore, generating each J0KrepF can be done non-interactively by dis-
tributing some shared keys among the parties in a setup phase, as shown in
[1].

– An interactive protocol for obtaining Jw + δKrepW from JwKaddW , where δ ∈ W
is an additive error known to the adversary. If JwKaddW = (η1, η2, η3), this is
achieved by letting each Pi send ηi to Pi+1, so JwKrepW = ((η1, η2), (η2, η3), (η3, η1)).
It is shown in [1] that the only attack the adversary may carry in this protocol
is adding an error δ.

Our main protocol is described below.
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Protocol Π rep
DotProd

Inputs: Shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV .

Output: Jz + δKW , where z =
∑L

`=1 φ(x`, y`) and δ ∈ W is some error known
to the adversary.

1. Parties locally compute Jφ(x`, y`)KaddW ← φ(Jx`KrepU , Jy`KrepV ), for ` = 1, . . . , L;

2. Parties sample J0KaddW and then locally compute JzKaddW = J0KaddW +∑L
`=1 Jφ(x`, y`)KaddW .

3. Parties convert Jz + δKrepW ← JzKaddW .

C Communication Complexity of CHURP

CHURP, a dynamic PSS protocol proposed in [32], is the state of the art in terms
of communication complexity. At a high level, CHURP is made of two main
protocols, Opt-CHURP, which is able to detect malicious behavior during the
proactivization but is not able to point out which party or parties cheated, and
Exp-CHURP, which performs proactivization while enabling cheater detection
at the expense of being heavier in terms of communication. Since in this work
we have described a PSS protocol with abort, we compare our protocol against
Opt-CHURP.

The protocol Opt-CHURP is comprised of three main subprotocols: Opt-
ShareReduce, Opt-Proactivize and Opt-ShareDist. In the first sub-protocol, Opt-
ShareReduce, the parties in C distribute shares of their shares towards the parties
in C′. A threshold of 2t is used for these “two-level” shares to account for the
fact that the adversary may control t parties in each committee C and C′. We
could avoid such high degree sharing in our ΠPartialPSS protocol since there the
parties do not share their shares directly. In Opt-ShareReduce, to ensure that a
party sends the right share, the parties must also communicate commitments
and witnesses for certain polynomial commitment scheme (see [32] for details).
The concrete communication complexity of this step is 2Ln2 elements, where L
is the amount of shared field elements being proactivized.

In the second stage, Opt-Proactivize the parties in C′ produce reduced-shares
(that is, “shares of shares”) of 0 that are added to the reduce-shares of the secret.
We will not discuss the details fo this procedure here, beyond mentioning that
this requires the parties to exchange shares and proofs in order to ensure the
correctness of this method. This incurs a communication complexity of 5Ln2

field elements, on top of requiring publishing n hashes on a blockchain, say 256n
bits using SHA256, which is a requirement that our protocol ΠPSS does not have.

In the final stage, Opt-ShareDist, each party in C′ sends the reduce-shares of
the i-th share to party P ′i , who reconstructs the refreshed share. Again, open-
ing information for certain commitments must be transmitted. This leads to a
communication complexity of 2Ln2.

We see then that the total (off-chain) communication complexity in Opt-
CHURP is 9Ln2 log(|F|) bits.
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D Secure Computation over Elliptic Curves

So far we have presented a fairly comprehensive “toolbox” for performing secure
computation over elliptic curves. We may view the LSS homomorphism φ : Fp →
G defined by φ(x) = x · G as a function that encodes x into the exponent of
G. While this enables the applications we presented in Section 3, Section 4 and
Section 5, it does not an efficient way of decoding.

The following example illustrates why this might lead to issues in some appli-
cations: Parties hold JmKF and wish to encrypt it using El-Gamal. Using an LSS
homomorphism on JmK would effectively encode m in the exponent, and then
we could use secure computation over elliptic curves to compute the encryption
of m.

The above works for encryption. But what if the parties wish to recover JmK
from the encryption? Clearly, a party cannot recover mi from mi · G since mi

(the share) is a random field element. On the other hand, we cannot reconstruct
m ·G towards a party as that would reveal the message.12

The issue above arises from the fact that the encoding of JmK was done
using the LSS homomorphism x 7→ x · G, which is highly efficient due to its
linearity, but has a “one-wayness” to it, making it very hard to decode. In the
following, we show a different way of encoding a shared field element JmK in such
a way that, although the encoding itself is interactive (and therefore less efficient
than the LSS homomorphism encoding described above), the decoding process is
practically efficient. This enables a seamless interplay between traditional secure
computation over F, and secure computation over an elliptic curve group as
defined here.

D.1 Preliminaries

In the following, we assume J·K corresponds to a secret-sharing scheme capable
of detecting errors, such as Shamir secret-sharing (cf. B.2). Additionally, we will
use two auxiliary functionalities which we describe here.

Functionality FsRand. The functionality FsRand used in the secure injective
encoding in Section D.2 has also seen other uses, in particular in connection
with secure truncation protocols such as in [15]. FsRand can easily be realized
with a functionality for generating random bits. To obtain a k bit value r such
that its lower ` bits are zero, do the following:

1. Sample k − ` random bits JbiK for i = 0, . . . , k − `− 1.

2. Each party locally computes JrK = −2k−1bk−`−1 + 2`
∑k−`−1
i=0 2ibi.

12 A recent work show how to compute these discrete logs on secret-shared inputs and
their method can be seen as complimentary to ours [19]

31



Protocols ΠIsSqr and ΠSqrt. We present here two protocols: One for testing if
a number is a square, and another for computing the root of a square number.
Note that neither protocol is private if the input is 0. However, for our purposes
this is fine as we use them on random values only.

Protocol ΠIsSqr

Inputs: JxK.
Outputs: 1 if x is a quadratic residue modulo p and 0 otherwise.

1. Invoke JbK← FRand(F) and compute JcK← FMul(JbK , JbK).
2. Compute JdK← FMul(JxK , JcK) and open d.
3. Compute d(p−1)/2 = x(p−1)/2c(p−1)/2.
4. If d ∈ {0,−1} output 0. Otherwise (d = 1) output 1.

Protocol ΠIsSqr has complexity CIsSqr = CRand(1) + CMul(2) + COpen(1)

Lemma 2. Protocol ΠIsSqr securely computes the Legendre symbol x.

Proof. Since c = b2, its Legendre symbol is 1. Thus the Legendre symbol of
d is determined entirely by x. Notice that b 6= 0 with probability 1 − 1/|F|.
As for privacy: Since b is random, b2 = c is random as well and thus acts as
a multiplicative mask of x. Thus revealing d reveals nothing about x, except
whether x is a square or not. ut

We next show how to compute the square root of a number modulo p. In
ΠSqrt below we assume that p ≡ 3 (mod 4) as that allows for an efficient method
of finding y such that x = y2 (mod p), given x. More precisely, given x, we can
find y by computing y = x(p+1)/4. Observe that y2 = (x(p+1)/4)2 = x(p+1)/2 =
x · x(p−1)/2 = x since x is a square. (In practice, p is chosen such that it is
congruent to 3 modulo 4 for exactly this reason, so our protocol is compatible
with all standardized curves.) It remains to figure out how to compute this
formula without revealing x, which we do following a similar approach as in
ΠIsSqr. More precisely, we produce a couple of random values of a specific format
and use them as a multiplicative mask on the input. The masked input is then
opened, and we compute the square root of the masked value. Finally, the mask
is removed, in order to obtain the final result. The values that we need for the
mask can be produced using the FMulTriple functionality and a trick for computing
the inverse of a random element as described in [3].

Protocol ΠSqrt

Inputs: JxK where x has a square root.
Outputs: JyK such that y2 = x.

OFFLINE PHASE

1. Obtain a random triple (JaK , JbK , Jc = a · bK)← FMulTriple.
2. Open c and compute c−1 JbK =

q
(a · b)−1b

y
=

q
a−1

y
.
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3. Compute
q
a2

y
← FMul(JaK , JaK).

4. Store the values (
q
a2

y
,
q
a−1

y
).

ONLINE PHASE

1. Compute JzK← FMul(JxK ,
q
a2

y
) and open z.

2. Output JyK = z(p+1)/4 ·
q
a−1

y
.

Protocol ΠSqrt computes the square root of its input with complexity CSqrt =
CMulTriple(1) + CMul(2) + COpen(2).

Lemma 3. Protocol ΠSqrt computes the square root of x securely.

Proof. Observe that z(p+1)/4 = (xa2)(p+1)/4 = x(p+1)/4a, and thus we obtain
y = z(p+1)/4a−1 = x(p+1)/4 as desired (as with ΠIsSqr, the mask a is non zero
with high probability). As for privacy, it suffices to note that a is random and
thus acts as a mask for the input, and thus z leaks nothing about x. ut

D.2 Secure Encoding and Decoding

In the following section we assume that J·K corresponds to a secret-sharing scheme
capable of detecting errors, such as Shamir secret-sharing. We now show how
to map secret-shared messages into curve points, and back, in the presence of
an active adversary and an honest majority. Consider the following commonly
used injective encoding for encoding bit-strings into points on the curve G over
F (see [22]): To encode a message m ∈ {0, 1}`, with ` ≤ (1/2 − ε) log2 p for a
fixed ε ∈ (0, 1/2), pick a random integer x ∈ [0, p− 1] such that m = x mod 2`.
If x is a valid curve-point for G, then output (x, y), and otherwise pick a new
random x and start over. We denote this encoding by En and its inverse as De
(notice that De simple discards y and returns x mod 2`).

Our aim now is to implement (En,De) securely; that is, we wish to compute
JEn(x)K given JxK with x ∈ {0, 1}`, and JDe(X)K given JXKG with En(m) = X ∈
G for some m. For this we will use two functionalities: The first protocol is FIsSqr,
which takes as input a secret-shared value JxK and outputs 1 if x is a square,
and 0 otherwise. That is, if FIsSqr outputs 1, then there exists a value y such
that x2 = y mod p. The other protocol is FSqrt which, on input a square JxK,
outputs JyK satisfying y = x2 mod p.

In the following, we assume that the curve is given as y2 = x3 +ax+ b where
a and b are constants.

Decoding. We begin with decoding. Given a secret-sharing JEn(m)KG where
En(m) = (x, y) and m ≡ x mod 2`, the goal is to obtain JmK. Besides JEn(m)KG,
we assume that we also have access to a secret-sharing of the upper `−log2 p bits
of x and we denote this value as JrK. Write JzKG = JEn(m)KG and let xi, resp. yi
be the values that comprise the i’th party’s share of z. To decode z, each party
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first re-shares the xi and yi they hold, after which everyone computes the point
addition formula over all the coordinates. In a nutshell, this is the same idea
used when decomposing a number into bits. In this scenario, parties mask the
value they want to bit-decompose and then compute a binary adder to unmask
each bit.

Protocol ΠDecode

Inputs: JXKG, JrK where r was the randomness added during encoding.
Outputs: JmK the encoded message, secret-shared over the basefield.

1. Each party Pi parses their share of JXKG as the pair (xi, yi) and secret-
shares JxiK, JyiK towards the other parties.

2. Parties verify that the reshared values are consistent (cf. B.2).
3. For j = 2, . . . , t+ 1 where t is the number of corrupt parties, compute the

curve addition of the shares over the secret-shared coordinates:
(a) Invoke JaK = FRand(F).
(b) JzK← FMul(Jxj − xj−1K , JaK) and open z.
(c) Compute JdK =

q
(xj − xj−1)−1

y
= z−1 JaK, JλK =

FMul(Jyj − yj−1K , JdK) and finally
q
λ2

y
= FMul(JλK , JλK).

(d) Compute Jx′K =
q
λ2

y
− JxjK− Jxj−1K.

(e) Compute Jy′′K = FMul(JλK , Jxj − x′K) and Jy′K = Jy′′K− JyjK.
(f) Set JxjK = Jx′K and JyjK = Jy′K.

4. Output Jxt+1K− JrK.

Protocol ΠDecode computes the injective encoding with complexity CShare(n)+
CCheck(n) + (t+ 1)(CRand(1) + CMul(4) + COpen(1)).

Lemma 4. Protocol ΠDecode securely outputs the lower ` bits of JXKG.

Proof. LetXi = (xi, yi) be the i’th party’s share ofX = (x, y). Notice thatX can

be reconstructed as a linear combination of the Xi’s; in particular, X =
∑t+1
i=1Xi

(we omit constants in this linear combination for the sake of simplicity). This
linear combination is computed in step 3 in the protocol, so, at step 3.f, parties
hold shares of the coordinates of X, secret-shared over the base field. Finally,
JxK− JrK removes the randomness located in the upper log2 p− ` bits of x. Step
1 potentially poses a problem, as a corrupt party may secret-share an incorrect
value. However, the parity check applied in step 2 ensures this cannot happen,
as the adversary can only modify at most t shares. ut

Encoding. To encode a value x ∈ F, recall that we first need to add a bit of
randomness to it, in order to have a chance at hitting a valid x-coordinate for
our curve. Let ` be an upper bound on the size of x, i.e., x ≤ 2`. We first consider
a straightforward, but ultimately insecure, approach utilizing FCoin: Parties use
FCoin to sample a random value r < p such that its lower ` bits are 0. Parties
then call FIsSqr(JxK + r), and restart the process (i.e., go back and pick another
r) if this protocol outputs 0. However this fails to be secure. Indeed, if x is of low
entropy, then revealing whether or not JxK + r is a square, reveals information
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about x itself (in particular, the adversary can rule out values x′ for which x′+r
is a square).

We must thus resort to fancier machinations that allows us to sample an
appropriate r without revealing it. Luckily, sampling a random value where its
lower bits are zero has been used before—in particular in connection with secure
truncation protocols (see e.g., [14]). We thus assume a functionality FsRand which
outputs a secret-shared r suitable for our purposes. The final thing we require
is a tuple (JRKG , JrxK , JryK) where R = (rx, ry). Such a tuple can be generated
by sampling a random JRKG and then using step 2 in ΠDecode to obtain JrxK and
JryK.

Protocol ΠEncode

Inputs: JmK the message to be encoded.
Outputs: JEn(m)KG, JrK.

1. Sample JrK = FsRand and compute JxK = JmK + JrK.
2. Call FIsSqr(JxK). If the return value is 0, go back to the previous step.
3. Call JyK = FSqrt(

q
x3

y
+ JxK a + b). Note that parties now have JxK, JyK

which are secret-sharings of En(m) in the field.
4. Parties then compute the curve addition formula between the points

(JxK , JyK) and (JrxK , JryK). Let (JzxK , JzyK) be the result.
5. JzxK and JzyK is opened. Write Z = (zx, zy).
6. Output JEn(m)KG = JXKG = Z − JRKG and JrK.

Protocol ΠEncode computes the injective encoding of m with complexity

CEncode = CsRand(k) + CIsSqr(k) + CSqrt(1) + 2COpen(1) + CRand(1) + CMul(4).

Security comes from the fact that, at the end of step 5, parties hold Z = X +R,
and since R is random, nothing is revealed about X. In the cost formula, k
denotes the number of repetitions of the first two steps. [22] proves that a suitable
r is found in expected 3 iterations (i.e., k has expected value 3).
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