
Secure Single-Server Aggregation with (Poly)Logarithmic
Overhead

James Bell

The Alan Turing Institute

London, UK

jbell@turing.ac.uk

K. A. Bonawitz

Google

New York, US

bonawitz@google.com

Adrià Gascón

Google

London, UK

adriag@google.com

Tancrède Lepoint

Google

New York, US

tancrede@google.com

Mariana Raykova

Google

New York, US

marianar@google.com

ABSTRACT
Secure aggregation is a cryptographic primitive that enables a

server to learn the sumof the vector inputs ofmany clients. Bonawitz

et al. (CCS 2017) presented a construction that incurs computation

and communication for each client linear in the number of parties.

While this functionality enables a broad range of privacy preserving

computational tasks, scaling concerns limit its scope of use.

We present the first constructions for secure aggregation that

achieve polylogarithmic communication and computation per client.

Our constructions provide security in the semi-honest and the

semi-malicious setting where the adversary controls the server and

a 𝛾-fraction of the clients, and correctness with up to 𝛿-fraction

dropouts among the clients. Our constructions show how to replace

the complete communication graph of Bonawitz et al., which entails

the linear overheads, with a 𝑘-regular graph of logarithmic degree

while maintaining the security guarantees.

Beyond improving the known asymptotics for secure aggrega-

tion, our constructions also achieve very efficient concrete param-

eters. The semi-honest secure aggregation can handle a billion

clients at the per client cost of the protocol of Bonawitz et al. for

a thousand clients. In the semi-malicious setting with 10
4
clients,

each client needs to communicate only with 3% of the clients to

have a guarantee that its input has been added together with the

inputs of at least 5000 other clients, while withstanding up to 5%

corrupt clients and 5% dropouts.

We also show an application of secure aggregation to the task of

secure shuffling which enables the first cryptographically secure

instantiation of the shuffle model of differential privacy.

1 INTRODUCTION
Once considered a purely theoretical tool, cryptographic secure

multiparty computation has become a tool that underlies several

technological solutions [IKN
+
20, BIK

+
17, BEG

+
19, CGB17, LN18,

ABL
+
18, Leu19]. In this context constructions for two parties (or a

small number of parties) still have dominant presence. One reason

for this is the increased complexity that many party solutions bring,

which could be a challenge for adoption among a large number

of participants. Another reason is the fact that many multiparty

solutions require communication channels between all participants,

which is not always viable. Further, real scenarios withmany parties

need to account for the fact that a fraction of the parties may drop

out during the execution.

All of these concerns apply to the settingwhere a service provider

collects aggregate statistics from a large population in a privacy

preserving way. This includes basic statistical tasks such as com-

puting mean, variance, and histograms, as well as large scale dis-

tributed training of machine learning models as in federated learn-

ing [BEG
+
19, KMA

+
19]. In such settings there is a powerful central

server and a large number of clients with constrained resources, a

single communication channel only to the server, and intermittent

network connectivity that results in a significant probability of

dropping out during the protocol execution, a common problem in

production systems [BEG
+
19].

While there have been both theoretical and appliedworks propos-

ing secure computation solutions for settings with restricted com-

munication [HLP11, BCDH18, RSY18, LEM14, LATV12, EDG14],

Bonawitz et al. [BIK
+
17] introduced the first practical secure com-

putation construction whose implementation scaled to a thousand

clients, a larger number of parties than any existing system. That

work presents a secure aggregation protocol that enables a central

server to learn the summation of the input vectors of many clients

securely, i.e. without obtaining any information beyond the sum.

The protocol is also robust in the presence of a fraction of clients

dropping out. That paper and subsequent work [BEG
+
19] showed

that secure vector summation enables powerful privacy-preserving

functionalities such as federated learning [KMA
+
19].

In this work we focus on two aspects of secure vector aggre-

gation. First, we construct two new protocols with semi-honest

and malicious security, which provide better efficiency both in

terms of asymptotics as well as concrete costs. Second, we present

a new application of secure aggregation for construction of secure

shuffling protocols. This enables anonymous data collection in the

single-server setting, and in particular provides the first crypto-

graphically secure instantiation of the shuffle model of differential

privacy [BEM
+
17].

Efficiency of Secure Aggregation. While the existing secure aggre-

gation construction of Bonawitz et al. [BIK
+
17] is sufficiently effi-

cient to run in production systems [BEG
+
19], scaling concerns limit

its scope of use. Its limitations stem from the computation and com-

munication complexity of the protocol. For adding 𝑛 length 𝑙 vec-

tors (one provided by each client) their protocol requires𝑂 (𝑛2 + 𝑙𝑛)
computation and 𝑂 (𝑛 + 𝑙) communication per device, and 𝑂 (𝑙𝑛2)

1

computation and 𝑂 (𝑛2 + 𝑙𝑛) communication for the server. This

introduces linear overhead over the computation in the clear where

every client sends a vector and the server adds up all 𝑛 vectors.

Although recently a variant with polylog overhead has been pro-

posed [SGA20], it requires𝑛/log𝑛 rounds and, contrary to Bonawitz
et al.’s approach, relies on revealing a partial sum of log𝑛 input

values to a coallition of the server and a client.

Reducing client compute time is significant: the more compute

time is required at each device, the more likely that device is to drop

out. This not only results in wasted computation, but also induces

bias as powerful devices with fast connection will be overrepre-

sented in the collected statistics. In practice, these costs limit the

use of secure aggregation to settings of no more than approximately

a thousand devices for large values of 𝑙 , e.g., larger than 10
6
. This

prevents computing large histograms or training neural networks

that require large client batches to achieve good quality [MRTZ18].

Looking beyond concrete efficiency, current theoretical construc-

tions do not provide constant round solutions with sublinear com-

munication (in the number of clients) per client. This is the case

even in the semi-honest setting when we need to account for the

key distribution phase as well as support dropouts [RSY18]. Note

that there exist relevant solutions based on homomorphic encryp-

tion (HE) [Gam85, Pai99, Gen09], where the server computes the

sum of encrypted inputs under a key shared among the clients.

However, the generation of shared HE parameters among all par-

ties with sublinear communication and in a way that is robust to

dropouts remains a challenge. Boyle et al. [BCP15] present efficient

large-scale secure computation but do use a broadcast channel per

party.

Amplification by Shuffling. Differential privacy (DP) [DMNS06]

has become the de facto notion of individual privacy in data analysis.

Until recently there have been two main threat models for DP: the

central model, where a curator is trusted with all private inputs

and the task of outputting privatized aggregates, and the local DP

setting where individuals release DP versions of their data. While

the second model has minimal trust assumptions it also comes with

significant limitations in terms of accuracy.

The recently introduced shuffle model of DP [BEM
+
17, CSU

+
19]

assumes only a trusted shuffler (a party that applies a random per-

mutation to input data before publishing it) rather than a trusted

curator computing arbitrary functionalities. The shuffle model

matches exactly the setting of a single powerful server and a large

number of devices in a star network. Several recent works [EFM
+
19,

BBGN19b, BBGN19a, GPV19, EFM
+
20] have shown that this model

offers a fruitful middle ground (in the terms of tradeoffs between

trust distribution and accuracy) between the local and curator mod-

els. Implementing efficient shufflers in practice has either required

reliance on trusted computing hardware or onion-routing/mixnet

constructions, which require strong non-collusion assumptions

and significantly increased communication. While we can imple-

ment the shuffling step with general multiparty computation to

achieve local DP privacy, any practical deployment would require

an efficient shuffling construction.

1.1 Our contributions
Our paper has three main contributions: two new constructions for

secure aggregation which provide security in the semi-honest and

semi-malicious setting, and a new construction for secure shuffling

based on secure aggregation.

For our constructions we consider the following setting: an ag-

gregation server and 𝑛 clients which have inputs of length 𝑙 and

the goal of the protocol is to provide the server with a summation

of the inputs of all clients that complete the protocol execution. We

require that correctness holds with all but 2
−[

probability, where

[> 0 is the correctness parameter. The protocols are secure in

the presence of an adversary controlling the server and up to an

arbitrary 𝛾-fraction of the clients that are corrupted independently

of the protocol execution. In other words, client corruptions happen

before the protocol execution starts. Note that the only assump-

tion is that the adversary does not have the ability to compromise

new devices adaptively as the protocol progresses. Moreover, our

protocols are robust to an arbitrary 𝛿-fraction of clients dropping

out during the protocol execution. We note that a larger number

of dropouts can only lead to an incorrect output, however, does

not affect the security of the protocols. Our constructions achieve

information theoretic security with a security parameter 𝜎 , except

for the use of a key agreement protocol for randomness generation,

and encryption and signature for secure communication.

Semi-honest Construction. The construction of Bonawitz et al. [BIK
+
17]

uses the server as a relay that forwards encrypted and authenti-

cated messages between clients. Their solution requires that every

pair of clients are able to communicate. Intuitively, the complete

communication graph serves both security and dropout robustness.

Roughly speaking, every client (a) negotiates shared randomness

with every other client to mask their submitted value, and (b) shares

(with threshold 𝑡) their random seeds with every other client. While

(a) ensures security, (b) guarantees that the protocol can recover

from dropouts without compromising security as long as 𝑡 is set

appropriately.

The main insight that enables our efficiency improvement is

that a complete graph is in fact not necessary: it is enough to

consider a 𝑘-regular communication graph, i.e., each client speaks

to 𝑘 < 𝑛− 1 other clients, where 𝑘 = 𝑂 (log𝑛). We obtain this result

by using a randomized communication graph construction, and

then leveraging its properties with respect to the distributions of

corrupt clients and dropouts.

Our semi-honest construction requires𝑂 (log2 𝑛+𝑙 log𝑛) compu-

tation and 𝑂 (log𝑛 + 𝑙) communication per client, and 𝑂 (𝑛 log2 𝑛 +
𝑛𝑙 log𝑛) computation and 𝑂 (𝑛 log𝑛 + 𝑛𝑙) communication for the

server. It requires three rounds of interactions between the server

and clients. We characterize the properties of the communication

graph that suffice for the security and correctness of the resulting

protocol, and present a graph generation construction with con-

crete parameters. For example, with 𝜎 = 40 and [= 30, we need

only 𝑘 = 150 neighbors per client in order to run the protocol with

𝑛 = 10
8
clients and provide security for up to 𝛾 = 1/5 corrupt nodes

and 𝛿 = 1/20 dropouts. In fact, we can run our protocol with a

billion clients, while incurring roughly the same costs per client as

the protocol of Bonawitz et al. [BIK
+
17] when run on a thousand

clients (see Section 5 for more details).

2

Semi-malicious Construction. Our semi-malicious setting assumes

that the server behaves honestly in the first step of the protocol

when it commits to the public keys of all clients. After this point,

it can deviate arbitrarily from the protocol and our construction

provides security. This is analogous to the assumption in [BIK
+
17],

and weaker than assuming a public key infrastructure for key dis-

tribution.

The security definition for the malicious case is a bit more in-

volved, and is discussed in detail in Section 4. Roughly speaking,

this is due to the fact that a malicious server can disrupt communica-

tion between parties at any round, and thus can simulate dropouts

inconsistently across clients. As it is impossible for clients to dis-

tinguish real from simulated dropouts, a malicious server cannot

be prevented from excluding (𝛾 + 𝛿) clients from the final sum by

definition of the summation functionality itself. Instead of requiring

that a malicious server cannot learn the sum of the inputs of less

than (1 − 𝛾 − 𝛿)𝑛 clients, as in the semi-honest case, we formalize

and prove that our protocol ensures that the server can only learn

sums including at least a constant fraction 𝛼 of the clients’ inputs.

In other words, every honest client is guaranteed that their input

will be added with at least 𝛼 (1−𝛾)𝑛 other inputs from honest clients

even when the malicious server is controlling 𝛾𝑛 other clients.

Bonawitz et al. [BIK
+
17] also propose a semi-malicious version

of their protocol. The main idea there is to add their semi-honest

variant a round in which clients verify that the server reported

consistent views of dropouts to all of them. This extension incurs

additional linear communication and computation. Extending our

semi-honest protocol while maintaining sublinear overhead is more

challenging. First, the server cannot be trusted to generate the com-

munication graph honestly, and thus we propose a protocol where

clients choose their 𝑘 = 𝑂 (log𝑛) neighbors in a distributed ver-

ifiable way. Second, we find an alternative approach to ensuring

global consistency of reported dropouts by having each client per-

form only a local verification on their neighborhood. We then prove

that this corresponds to a global property of the communication

graph thanks to the connectivity properties of random graphs.

Our semi-malicious construction requires𝑂 (log2 𝑛+𝑙 log𝑛) com-

putation and𝑂 (log2 𝑛+𝑙) communication per client, and𝑂 (𝑙 log2 𝑛)
computation and 𝑂 (log2 𝑛 + 𝑙𝑛) communication for the server. It

runs in five and a half rounds of interactions. Our protocol also

achieves very efficient concrete costs. For example, with 𝜎 = 40

and [= 30, if we run the protocol with 10
4
clients and corrupt

and dropout rates 𝛾 = 𝛿 = 0.05 we need only 300 neighbors to

guarantee that every client’s input is aggregated with the inputs of

at least 5000 clients (see Section 5 for more details).

Secure Shuffle Construction. As mentioned above, we provide an

instantiation of the shuffle model of differential privacy by showing

a reduction of shuffling to vector summation. Our solution leverages

a randomized data structure called an invertible Bloom lookup table

(IBLT) [GM11]. To shuffle𝑚 messages distributed among 𝑛 clients,

it suffices to run a single execution of secure vector summation with

vectors of length ∼ 2𝑚. This covers the case where each user has

multiple messages to send, as in the multi-message shuffle model

[CSU
+
19, GPV19, BBGN20], as well as the case where most users

do not have any input, which models submissions of error reports.

Table 1: Summary of parameters used throughout the paper.

Parameter Description

𝑛 Number of clients.

𝑘 Number of neighbors of each client 𝑘 < 𝑛.

𝑡 Secret Sharing reconstruction threshold 𝑡 ≤ 𝑘 .

𝜎
Information-theoretic security parameter

(bounding the probability of bad events).

[
Correctness parameter

(bounding the failure probability).

_
Cryptographic security parameter

(for cryptographic primitives).

𝛿 Maximum fraction of dropout clients.

𝛾 Maximum fraction of corrupted clients.

X Domain of the summation protocol.

𝑙 Size of the clients’ vector input.

2 PRELIMINARIES AND NOTATION
Hypergeometric distribution. We recall that the Hypergeometric

distribution HyperGeom(𝑛,𝑚, 𝑘) is a discrete probability distribution
that describes the probability of 𝑠 successes in 𝑘 draws, without

replacement, from a finite population of size 𝑛 that contains exactly

𝑚 objects with that feature. We use the following tail bounds for

𝑋 ∼ HyperGeom(𝑛,𝑚, 𝑘):
• ∀𝑑 > 0 : Pr[𝑋 ≤ (𝑚/𝑛 − 𝑑)𝑘] ≤ 𝑒−2𝑑2𝑘

,

• ∀𝑑 > 0 : Pr[𝑋 ≥ (𝑚/𝑛 + 𝑑)𝑘] ≤ 𝑒−2𝑑2𝑘
.

Moreover, by choosing 𝑑 = 1 −𝑚/𝑛, we get that

Pr[𝑋 ≥ 𝑘] = Pr[𝑋 ≤ 𝑘] ≤ 𝑒−2(1−𝑚/𝑛)
2𝑘 .

Graphs. We denote a graph with a vertex set V and edge set E as

G(V, E), where (𝑖, 𝑗) ∈ E is there is an edge between vertices 𝑖 and

𝑗 . The set of all nodes connected to the 𝑖-th node is its neighbors

NG (𝑖) = { 𝑗 ∈ V : (𝑖, 𝑗) ∈ E}. A graph G′(V′, E′) is a subgraph
of G(V, E) if V′ ⊆ V and E′ ⊆ E. The subgraph of G induced by

a subset of the vertices V′ ⊂ V and the edges between E′ where
(𝑖, 𝑗) ∈ E′ if and only if (𝑖, 𝑗) ∈ E) and 𝑖, 𝑗 ∈ V′ is denoted G[V′].

Parameters. We provide in Table 1 the parameters we will use

throughout the paper. In particular, 𝜎 will denote an information-

theoretic security parameter bounding the probability of bad events

happening and [will denote the correctness parameter. We denote

by _ a security parameter associated with standard cryptographic

primitives (such as Shamir secret sharing, pseudorandom generator,

and authenticated encryption).

We says that two distributions D,D ′ are computationally indis-

tinguishable with respect to 𝜎 and _, denoted

D ≈𝜎,_ D ′ ,
if the statistical distance betweenD andD ′ is bounded by the sum
of a negligible function in _ and of a negligible function in 𝜎 .

Throughout the paper, we denote X = Z/𝑅Z the domain on

which the summation protocol is performed, and we assume the

3

representation of elements of X (resp. computational cost of opera-

tions in X) is �̃� (1) in 𝑛 (resp. log(𝑛)) so as to enable additions of 𝑛

elements in X without overflow.

Cryptographic primitives. In our protocols, wewill use the follow-

ing cryptographic primitives for randomness generation and secure

communication. A signature scheme scheme that is existentially un-

forgeable under chosen message attacks (EUF-CMA); for example, it

can be instantiated with ECDSA in practice. A cryptographically se-

cure pseudorandom generator 𝐹 : {0, 1}_ → X𝑙 ; for example, it can

be instantiated with AES-CTR in practice [BIK
+
17, BEG

+
19]. An au-

thenticated encryption scheme with associated data (AEAD), which

is semantically secure under a chosen plaintext attack (IND-CPA)

and provides integrity of ciphertext (INT-CTXT), which means that

it is computationally infeasible to produce a ciphertext not previ-

ously produced by the sender regardless of whether or not the un-

derlying plaintext is “new”; for example, it can be instantiated with

ChaCha20+Poly1305 [23] in practice. A _-secure key-agreement

protocol, i.e., a key-agreement protocol such that there exists a

simulator SimKA , which takes as input an output key sampled

uniformly at random and the public key of the other party, and

simulates the messages of the key agreement execution so that the

statistical distance is negligible in _; for example, it can be instanti-

ated with a Diffie–Hellman key agreement protocol followed by a

key derivation function in practice.

3 THE SEMI-HONEST PROTOCOL
In this section, we present our semi-honest summation protocol.

Our construction is parametrized by a (possibly random) undirected

regular graph G with 𝑛 nodes and degree 𝑘 . Intuitively the graph G
will determine the direct communication channels that will be used

in the protocol in the following sense: clients that are connected

in G will exchange private messages in the protocol via the server

which, however, will not be able to see the message content. We will

prove the correctness and the security of our protocol assuming a

set of properties of the graph G. Next we will describe a random-

ized algorithm called GenerateGraph, which generates graphs

for which these properties hold with high probability. Since we

are in the semi-honest setting this algorithm can be generated by

the server (in the malicious setting protocol of Section 4, we will

describe a distributed graph generation protocol).

3.1 An abstract summation protocol
We present our protocol in Algorithm 1. It runs among 𝑛 clients

with identifiers 1, . . . , 𝑛 and the server. All parties have access to the

following primitives: a pseudorandom generator (PRG) 𝐹 , which is

used to expand short random keys, a secure key agreement protocol

KA to create shared random keys, and an authenticated encryption

scheme for private communication E𝑎𝑢𝑡ℎ .

Construction Overview. The main idea of our construction is a

generalization of the secure aggregation protocol of Bonawitz et

al. [BIK
+
17], which only works with complete graphs (i.e., all the

vertices are connected between each other), that works with any

graph sampled from a larger set of sparser graphs. Our construction

enables significant efficiency improvements.

Algorithm 1: Abstract summation protocol.

Parties: Clients 1, . . . , 𝑛, and Server.

Public Parameters: Vector length 𝑙 , input domain X𝑙 , and PRG

𝐹 : {0, 1}_ ↦→ X𝑙
Input: ®𝑥𝑖 ∈ X𝑙 (by each client 𝑖).

Output: 𝑧 ∈ X (for the server).

We denote by𝐴1, 𝐴2, 𝐴3 the sets of clients that run each of the steps of

the protocol. Thus, 𝐴1 ⊇ 𝐴2 ⊇ 𝐴′
2
⊇ 𝐴3 where 𝐴

′
2
is the set of clients

who will be included in the final sum.

(1) The server runs (G, 𝑡, 𝑘) = GenerateGraph(𝑛) , where G is a

regular degree-𝑘 undirected graph with 𝑛 nodes. By NG (𝑖) we
denote the set of 𝑘 nodes adjacent to 𝑖 (its neighbors).

(2) Client 𝑖 ∈ [𝑛] generates key pairs (𝑠𝑘1
𝑖
, 𝑝𝑘1

𝑖
) , (𝑠𝑘2

𝑖
, 𝑝𝑘2

𝑖
) and sends

(𝑝𝑘1
𝑖
, 𝑝𝑘2

𝑖
) to the server who forwards the message to NG (𝑖) .

(3) Client 𝑖 ∈ 𝐴1:

• Generates a random PRG seed 𝑏𝑖 .

• Computes two sets of shares:

𝐻𝑏
𝑖 = {ℎ𝑏𝑖,1, . . . , ℎ𝑏𝑖,𝑘 } = ShamirSS(𝑡, 𝑘,𝑏𝑖)

𝐻𝑠
𝑖 = {ℎ𝑠𝑖,1, . . . , ℎ𝑠𝑖,𝑘 } = ShamirSS(𝑡, 𝑘, 𝑠𝑘1𝑖)

• Sends to the server a message𝑚 = (𝑗, 𝑐𝑖,𝑗) , where
𝑐𝑖,𝑗 = E𝑎𝑢𝑡ℎ .Enc(𝑘𝑖,𝑗 , (𝑖 | | 𝑗 | |ℎ𝑏𝑖,𝑗 | |ℎ𝑠𝑖,𝐽)) for each
𝑗 ∈ NG (𝑖) , where 𝑐𝑖,𝑗 is a ciphertext encrypted under

𝑘𝑖,𝑗 = KA.𝐴𝑔𝑟𝑒𝑒 (𝑠𝑘2
𝑖
, 𝑝𝑘2

𝑗
) .

(4) The server aborts if |𝐴1 | < (1 − 𝛿)𝑛 and otherwise forwards all

messages (𝑗, 𝑐𝑖,𝑗) to client 𝑗 , who deduces 𝐴1 ∩ 𝑁G (𝑗) .
(5) Client 𝑖 ∈ 𝐴2:

• Computes a shared random PRG seed 𝑠𝑖,𝑗 as

𝑠𝑖,𝑗 = KA.𝐴𝑔𝑟𝑒𝑒 (𝑠𝑘1
𝑖
, 𝑝𝑘1

𝑗
) .

• Sends to the server their masked input

®𝑦𝑖 = ®𝑥𝑖 + ®𝑟𝑖 −
∑

𝑗∈𝐴1∩NG (𝑖)
0< 𝑗<𝑖

®𝑚𝑖,𝑗 +
∑

𝑗∈𝐴1∩NG (𝑖)
𝑖< 𝑗≤𝑛

®𝑚𝑖,𝑗

where ®𝑟𝑖 = 𝐹 (𝑏𝑖) and ®𝑚𝑖,𝑗 = 𝐹 (𝑠𝑖,𝑗) .
(6) The server collect masked inputs for a determined time period,

which defines a set 𝐴′
2
⊆ 𝐴2. It aborts if |𝐴′

2
| < (1 − 𝛿)𝑛 and

otherwise sends (𝐴′
2
∩ NG (𝑖), (𝐴1 \𝐴′

2
) ∩ NG (𝑖)) to every client

𝑖 ∈ 𝐴′
2
.

(7) Client 𝑗 ∈ 𝐴3 receives (𝑅1, 𝑅2) from the server and sends

{(𝑖, ℎ𝑏
𝑖,𝑗
) }𝑖∈𝑅1

∪ {(𝑖, ℎ𝑠
𝑖,𝑗
) }𝑖∈𝑅2

, obtained by decrypting the

ciphertext 𝑐𝑖,𝑗 received in Step 3.

(8) The server aborts if |𝐴3 | < (1 − 𝛿)𝑛 and otherwise:

• Collects, for each client 𝑖 ∈ 𝐴′
2
, the set 𝐵𝑖 of all shares in 𝐻𝑏

𝑖

sent by clients in 𝐴3. Then aborts if |𝐵𝑖 | < 𝑡 and recovers 𝑏𝑖

and ®𝑟𝑖 otherwise.
• Collects, for each client 𝑖 ∈ (𝐴1 \𝐴′

2
) , the set 𝑆𝑖 of all shares

in 𝐻𝑠
𝑖
sent by clients in 𝐴3. Then aborts if |𝑆𝑖 | < 𝑡 and

recovers 𝑠𝑘1
𝑖
and ®𝑚𝑖,𝑗 otherwise.

Outputs

∑
𝑖∈𝐴′

2

®𝑥𝑖 as∑
𝑖∈𝐴′

2

(
®𝑦𝑖 − ®𝑟𝑖 +

∑
𝑗∈NG (𝑖)∩(𝐴1\𝐴′

2
)

0< 𝑗<𝑖

®𝑚𝑖,𝑗 −
∑

𝑗∈NG (𝑖)∩(𝐴1\𝐴′
2
)

𝑖< 𝑗≤𝑛

®𝑚𝑖,𝑗

)
.

As we discussed above, the first step of the protocol will be to

generate a 𝑘-regular graph G and a threshold 1 ≤ 𝑡 ≤ 𝑘 , where
the 𝑛 vertices are the clients participating to the protocol. To do

this the server runs a randomized graph generation algoritmhm

GenerateGraph that takes the number 𝑛 of clients/nodes and

4

samples output (G, 𝑡) from a distribution D. Below, we will define

which properties the outputs of this distribution suffice for the

proofs of correctness and security.

The edges of the graph determine pairs of clients each of which

run a key agreement protocol to share a randomkey, which later will

be used by each party to derive a mask for her input. More precisely,

each client 𝑖 generates key pairs (𝑠𝑘1
𝑖
, 𝑝𝑘1

𝑖
), (𝑠𝑘2

𝑖
, 𝑝𝑘2

𝑖
) and sends

(𝑝𝑘1
𝑖
, 𝑝𝑘2

𝑖
) to all of her neighbors. Then, each pair (𝑖, 𝑗) of connected

partiesG runs a key agreement protocol 𝑠𝑖, 𝑗 = KA .𝐴𝑔𝑟𝑒𝑒 (𝑠𝑘1𝑖 , 𝑝𝑘
1

𝑗
),

which uses the keys exchange in the previous step to derive a shared

random key 𝑠𝑖, 𝑗 .

Each client 𝑖 derives pairwise masks for her input𝑚𝑖, 𝑗 = 𝐹 (𝑠𝑖, 𝑗)
derived from shared keys with each of her neighbors 𝑗 ∈ NG (𝑖),
which it adds to her input as follows

®𝑥𝑖 −
∑

𝑗 ∈NG (𝑖), 𝑗<𝑖
®𝑚𝑖, 𝑗 +

∑
𝑗 ∈NG (𝑖), 𝑗>𝑖

®𝑚𝑖, 𝑗 .

In the setting where all parties submit their masked inputs, all

pairwise masks cancel in the final sum. However, to support execu-

tion when dropouts occur, the protocol needs to enable removal of

the pairwise masks of dropout clients (who never submitted their

masked inputs). For this purpose, each client 𝑖 shares her key 𝑠𝑘1
𝑖

to her neighbors 𝑗 ’s by sending a ciphertext containing the share

produced using the public keys 𝑝𝑘2
𝑗
’s. Later, if client 𝑖 drops out,

her neighbors can send the decrypted shares to the server. Armed

with those shares, the server can reconstruct the secret key 𝑠𝑘1
𝑖
and

use it together with the public keys of 𝑖’s neighbors to compute 𝑠𝑖, 𝑗 .

Finally, the server can recover the corresponding pairwise masks

®𝑚𝑖, 𝑗 and remove them from the final output sum.

The above approach has a shortcoming that if the server an-

nounces dropouts and later some masked inputs of the claimed

dropouts arrive, the server will be able to recover those inputs in

the clear. To prevent this possibility the protocol introduced an-

other level of masks, called self masks, that each client generates

locally ®𝑟𝑖 = 𝐹 (𝑏𝑖) from a randomly sampled seed 𝑏𝑖 . This mask is

also added to the input

®𝑥𝑖 + ®𝑟𝑖 −
∑

𝑗 ∈NG (𝑖), 𝑗<𝑖
®𝑚𝑖, 𝑗 +

∑
𝑗 ∈NG (𝑖), 𝑗>𝑖

®𝑚𝑖, 𝑗 .

Now, client 𝑖 also shares 𝑏𝑖 to her neighbors. Later, if 𝑖 submitted

her masked input, the server will instead request shares of 𝑏𝑖 from

the client’s neighbors in order to reconstruct and remove ®𝑟𝑖 from
the sum. In other words, either client 𝑖 has submitted her masked

input and the server will obtain shares from the mask 𝑏𝑖 , or client 𝑖

has dropped out and the server will obtain shares of 𝑠𝑘1
𝑖
. Crucially,

we require each client to provide to the server only one share for

each if her neighbors. This guarantees that the masked inputs of

clients that are not included in the final sum cannot be revealed in

the clear to the server.

Dropouts may happen throughout the steps of the protocol. We

denote by𝐴1 the set of parties that share their masks with the their

neighbors, 𝐴2 ⊆ 𝐴1 is the set of parties that send their masked

inputs with their self mask and the pairwise masks generated from

the shared keys with her neighbors in 𝐴1, 𝐴3 is the set of clients

that send shares to the server to be used in the reconstruction of the

output. If any of the complementary of these sets becomes larger

than the threshold 𝛿𝑛 for dropouts, the server aborts. Also if a client

has less than 𝑡 neighbors in 𝐴3, the server aborts since it cannot

reconstruct at least one mask needed to obtain the output.

The construction of Bonawitz et al. [BIK
+
17] uses a complete

graph where each client shares a mask with every other client in

the system. While a single random mask hides perfectly a private

value, the intuition of why we need more masks is the presence of

corrupt clients, who will share their masks with the server, and of

dropouts whose masks will be removed. However, we will show

that 𝑛 − 1 masks per input may be more than what is needed for

security. In particular, the insight in our construction is that the

number of such masks can be significantly reduced to𝑂 (log𝑛), in a

setting where we can assume that the pairs of parties sharing com-

mon randomness used to derive masks are chosen at random and

independent of the set of corrupted parties and the set of dropouts.

In particular we model this by using a random 𝑘-regular graph that

determines the node neighbors with whom masks are shared. In

our security proofs, we will argue that, when 𝑘 = 𝑂 (log𝑛), for each
honest client there is a sufficient number of honest non-dropout

neighbors to protect the client’s input.

Graph Properties. Let G = (V, E) be a 𝑘-regular undirected graph
with 𝑛 nodes, and let 0 < 𝑡 < 𝑘 be an integer. Recall that NG (𝑖) =
{ 𝑗 ∈ V : (𝑖, 𝑗) ∈ E} is the set of neighbors of 𝑖 .

The first property that we require from any graph output by

GenerateGraph is that, for every set of corrupt clients C, with all

but negligible probability, no honest client 𝑖 has 𝑡 neighbors in C.
Note that this happening would immediately break security, as the

adversary would be able to recover the secrets of 𝑖 by combining

shares from 𝑖’s corrupted neighbors. Formally, we define the event

𝐸1 as a predicate on a set C and a pair (G, 𝑡) that is 1 iff the “good”

property holds.
1

Definition 3.1 (Not too many corrupt neighbors). Let C ⊂ [𝑛] be
such that |C| ≤ 𝛾𝑛. We define event 𝐸1 as

𝐸1 (C,G, 𝑡) = 1 iff ∀𝑖 ∈ [𝑛] \ C : |NG (𝑖) ∩ C| < 𝑡

Event 𝐸1 is not the only event related to the communication

graph G that could break security: consider the situation where

a set of 𝐷 clients, with |𝐷 | ≤ 𝛿𝑛, drop out right before Step 5

in such a way that removing clients/nodes in 𝐷 disconnects the

communication graph G, i.e. G[[𝑛] \ 𝐷] is not connected. Now, as
discussed above, edges in the graph correspond to shared masks

®𝑚𝑖, 𝑗 that are crucial to ensure security, as these masks are used to

mask values ®𝑦𝑖 that involve private inputs. However, if the graph
gets disconnected by 𝐷 , and |𝐷 | ≤ 𝛿𝑛, then by definition of the

functionality (𝛿-robustness) the server would be able to recover the

masks𝑚𝑖, 𝑗 involving clients in 𝐷 , i.e. the edges in the cut induced

by𝐷 . This implies that the server would receive at least two disjoint

sets 𝑆1, 𝑆2 of masked inputs (one for each connected component

in G[[𝑛] \ 𝐷]) whose masks cancel independently of the other set,

resulting in the server learning (at least) two partial sums, which

breaks security. We state our “good” event 𝐸2 where the graph

remains connected. Note that although we excluded corrupted

nodes in the above description for simplicity, they need to be taken

1
Note that for a complete graph, the event 𝐸1 is 1 for every set C trivially, as long as

𝑡 > |C |, where |C | ≤ 𝛾𝑛. However this implies that 𝑘 ≥ 𝑡 = 𝑂 (𝑛) , and results in

linear overhead.

5

into account. As before, we define 𝐸2 as a predicate on sets C, 𝐷 of

appropriate size, and a graph G.

Definition 3.2 (Connectivity after dropouts). Let C ⊂ [𝑛] and
𝐷 ⊂ [𝑛] be such that |C| ≤ 𝛾𝑛 and |𝐷 | ≤ 𝛿𝑛. We define event 𝐸2 as

𝐸2 (C, 𝐷,G) = 1 iff G[[𝑛] \ (C ∪ 𝐷)] is connected

Note that the above event trivially holds for a complete graph G
(and reasonable parameters 𝛾 and 𝛿) and any sets C, 𝐷 , as in that

case 𝑘 = 𝑛 − 1 > (𝛾 + 𝛿)𝑛.
Perhaps surprisingly, we will prove that events 𝐸1 and 𝐸2 cap-

ture all possible ways in which security could be broken (assuming

perfect cryptographic primitives) due to the choice of communica-

tion network. More concretely, we will show the following: Con-

sider a graph generation algorithm GenerateGraph such that for

any sets C, 𝐷 of appropriate sizes, a pair (G, 𝑡) generated using

GenerateGraph will satisfy 𝐸1 (C,G, 𝑡) ∧ 𝐸2 (C, 𝐷,G) = 1 except

for negligible probability. Then, GenerateGraph can be used in

Algorithm 1, and the result will be a secure protocol.

Finally, we still need one more property that GenerateGraph

must satisfy to ensure correctness. Note that if after removing

dropouts some client does not have at least 𝑡 neighbors then the

server can’t recover the final sum.

Definition 3.3 (Enough surviving neighbors for reconstruction). Let

𝐷 ⊂ [𝑛] such that |𝐷 | ≤ 𝛿𝑛. We define event 𝐸3 as

𝐸3 (𝐷,G, 𝑡) = 1 iff ∀𝑖 ∈ [𝑛] : |NG (𝑖) ∩ ([𝑛] \ 𝐷) | ≥ 𝑡

3.2 Generating “Good” Graphs
This section characterizes “good” graph generation algorithms as

those that generate graphs for which events 𝐸1, 𝐸2, 𝐸3 hold with

probability parameterized by a statistical security parameter 𝜎 (for

𝐸1 and 𝐸2) and a correctness parameter [(for 𝐸3).

Definition 3.4. Let D be a distribution over pairs (G, 𝑡). We say

that D is (𝜎, [)-good if, for all sets C ⊂ [𝑛] and 𝐷 ⊂ [𝑛] such that

|C| ≤ 𝛾𝑛 and |𝐷 | ≤ 𝛿𝑛, we have that
(1) Pr[𝐸1 (C,G′, 𝑡 ′) ∧ 𝐸2 (C, 𝐷,G′, 𝑡 ′) = 1 | (G′, 𝑡 ′) ← D] >

1 − 2−𝜎
(2) Pr[𝐸3 (𝐷,G′, 𝑡 ′) = 1 | (G′, 𝑡 ′) ← D] > 1 − 2−[

Analogously, we say that a graph generation algorithmGenerateGraph

is (𝜎, [)-good if it implements a (𝜎, [)-good distribution.

In Section 3.5, we describe a concrete (randomized) (𝜎, [)-good
graph generation algorithm.

3.3 Correctness and Security
In this section, we state our correctness and security theorems,

whose proofs are provided in Appendix B. We note that the proof of

security uses a standard simulation-based approach [Gol04] similar

to the one by Bonawitz et al. [BIK
+
17].

Theorem 3.5 (Correctness). Let Π be Algorithm 1 instantiated

with a (𝜎, [)-good graph generation algorithmGenerateGraph. Con-

sider an execution of Π with inputs X = (®𝑥𝑖)𝑖∈[𝑛] . If |𝐴3 | ≥ (1− 𝛿)𝑛,
i.e., less than a fraction 𝛿 of the clients dropout, then the server does

not abort and obtains ®𝑧 = ∑
𝐴′
2

®𝑥𝑖 with probability 1 − 2−[.

Theorem 3.6 (Security). Let 𝜎, [, _ be integer parameters. Let Π
be an instantiation of Algorithm 1 with a (𝜎, [)-good graph gener-

ation algorithm GenerateGraph, a IND-CPA secure authenticated

encryption scheme, and a _-secure key agreement protocol. There ex-

ists a PPT simulator Sim such that for all 𝑘 , all sets of surviving clients

𝐴1, 𝐴2, 𝐴
′
2
, 𝐴3 as defined in Algorithm 1, all inputs X = (®𝑥𝑖)𝑖∈[𝑛] ,

and all sets of corrupted clients C with |C| ≤ 𝛾𝑛, denote ®𝑧 = ∑
𝑖∈𝐴′

2

®𝑥𝑖 ,
the output of Sim is perfectly indistinguishable from the joint view

of the server and the corrupted clients RealC (𝐴1, 𝐴2, 𝐴
′
2
, 𝐴3) in that

execution, i.e., RealC (𝐴1, 𝐴2, 𝐴
′
2
, 𝐴3) ≈𝜎,_ Sim(®𝑧, C, 𝐴1, 𝐴2, 𝐴

′
2
, 𝐴3).

3.4 Performance Analysis
We report the communication and computation costs for the client

and server when 𝑘 = 𝑂 (log𝑛). We recall that we assume that

assume that basic operations and representation of elements in X
are 𝑂 (1).

Client computation: 𝑂 (log2 𝑛 + 𝑙 log𝑛). Each client computation

can be broken up as 2𝑘 key agreements and 𝑘 encryptions (𝑂 (𝑘)
complexity), creating twice 𝑡-out-of-𝑘 Shamir secret shares (𝑂 (𝑘2)
complexity), generating values ®𝑚𝑖, 𝑗 for all neighbors 𝑗 (𝑂 (𝑘𝑙) com-

plexity).

Client communication: 𝑂 (log𝑛 + 𝑙). Each client performs 2𝑘 key

agreements (𝑂 (𝑘) messages), send 2𝑘 encrypted shares (𝑂 (𝑘) mes-

sages), send a masked input (𝑂 (𝑙) complexity), reveal up to 2𝑘

shares (𝑂 (𝑘) messages).

Server computation: 𝑂 (𝑛(log2 𝑛 + 𝑙 log𝑛)). The server computa-

tion can be broken up as reconstructing 𝑡-out-of-𝑘 Shamir secrets

for each client (𝑂 (𝑛 · 𝑘2) complexity), generating values ®𝑚𝑖, 𝑗 for all

(dropped out) neighbors 𝑗 of each client 𝑖 (𝑂 (𝑛𝑘𝑙) complexity).

Server communication: 𝑂 (𝑛(log𝑛 + 𝑙)). The server receives or
sends 𝑂 (log𝑛 + 𝑙) to each client.

3.5 Our Random Graph Constructions
Since Bonawitz et al. [BIK

+
17] uses a complete graph, all of the

events 𝐸1 (C,G, 𝑡), 𝐸2 (C, 𝐷,G) and 𝐸3 (𝐷,G, 𝑡) are deterministically

equal to 1. That is to say that the complete graph is (𝜎, [)-good for

any𝜎 and[. In this sectionwewill describe how to construct amuch

sparser random graph, which is still (𝜎, [)-good for reasonable 𝜎

and [.

Our randomized construction is shown is Algorithm 2, and con-

sists of uniformly renaming the node of a graph known as a Harary

graph with 𝑛 nodes and degree 𝑘 . This graph, which we denote

Harary(𝑛, 𝑘), has vertices V = [𝑛] and an edge between two dis-

tinct vertices 𝑖 and 𝑗 if and only if 𝑗 − 𝑖 modulo 𝑛 is ≤ (𝑘 + 1)/2
or ≥ 𝑛 − 𝑘/2. Roughly speaking, you can think of this as writing

the nodes of the graph in a circle and putting edges between those

within distance 𝑘/2 of each other. As an example, Figure 1 shows

Harary(8, 4).

Our whole problem now reduces to defining exactly the function

ComputeDegreeAndThreshold such that the values of 𝑘 and

𝑡 it returns result in GenerateGraph being (𝜎, [)-good. This in
turn leads to a secure protocol, as we saw in the previous section.

6

Figure 1: A Harary graph with 8 nodes and degree 4.

Algorithm 2: GenerateGraph
Public Parameters: Max. fraction of corrupt nodes 𝛾 , max.

fraction of dropout nodes 𝛿 .

Input: Number of nodes 𝑛, statistical security parameter 𝜎 ,

correctness parameter [.

Output: A triple (G, 𝑡, 𝑘)
(𝑘, 𝑡) = ComputeDegreeAndThreshold(𝑛,𝛾, 𝛿, 𝜎, [)
Let 𝐻 = Harary(𝑛,𝑘)
Sample a random permutation 𝜋 : [𝑛] ↦→ [𝑛]
Let G be the set of edges {(𝜋 (𝑖), 𝜋 (𝑗)) | (𝑖, 𝑗) ∈ 𝐻 }
return (G, 𝑡, 𝑘)

More concretely, we will see in this section that choosing 𝑘 ≥
𝑂 (log𝑛 + 𝜎 + [) is enough to achieve the (𝜎, [)-goodness property.

Consider any graph generation algorithm G constructed by sam-

pling 𝑘 neighbors uniformly and without replacement from the set

of remaining 𝑛 − 1 clients (as done in Algorithm 2). This general

property is all we need to argue about events 𝐸1, 𝐸3 in the defini-

tions of (𝜎, [)-good, so we don’t need to get into the specifics of

Harary graphs yet.

𝐸1: Not too many corrupt neighbors. Let us first focus on the

event 𝐸1 (C,G, 𝑡), which holds if every client 𝑖 has fewer than 𝑡

corrupt neighbors in NG (𝑖) (Definition 3.1). Let Xi be the random
variable counting the number of malicious neighbors of a user 𝑖 , and

note that Xi ∼ HyperGeom(𝑛− 1, 𝛾𝑛, 𝑘), i.e. Xi is hypergeometrically

distributed. Thus by a union bound across all clients we have that

Pr[𝐸1 (C,G, 𝑡) = 0] ≤ 𝑛𝑃𝑟 [Xi ≥ 𝑡] = 𝑛(1 − cdf𝑋𝑖
(𝑡 − 1)).

𝐸3: Not too many neighbors drop out. Let us now turn our at-

tention towards correctness: if we set 𝑡 too large then the server

will fail to recover enough shares in step B.1 and abort, and that

would result in a wasted computation. The intuition behind this

event for G is analogous to the case of 𝐸1, as if Yi is the number

of surviving (not dropped out) neighbors of the 𝑖th user we have

that Yi ∼ HyperGeom(𝑛 − 1, (1 − 𝛿)𝑛, 𝑘), thanks again to the fact

that G is such that the 𝑘 neighbors of 𝑖 are randomly sampled from

[𝑛] \ {𝑖}. Hence, again by a union bound across clients, we have

that Pr[𝐸3 (C,G, 𝑡) = 0] ≤ 𝑛𝑃𝑟 [Yi ≤ 𝑡] = 𝑛(cdf𝑌𝑖 (𝑡)).
Hypergeometrics (like Binomials) are concentrated around their

mean and have sub-gaussian tails. This means that Pr[Xi ≥ 𝑡]

Figure 2: Probability mass functions of Xi ∼ HyperGeom(𝑛 −
1, 𝛾𝑛, 𝑘) and Yi ∼ HyperGeom(𝑛 − 1, (1 − 𝛿)𝑛, 𝑘).

decreases exponentially fast as 𝑡 gets away from 𝐸 [Xi] = 𝛾𝑛/(𝑛−1);
thus it is possible to make both of the above probabilities very small.

The Security/Correctness tradeoff. To gain additional intuition,

let us now discuss the interaction between 𝐸1 and 𝐸3, as they cor-

respond to the tension between correctness and security in out

protocol: For a fixed 𝑘 , one should be setting 𝑡 ∈ (0, 𝑘) accord-
ing to Xi for security, while simultaneously satisfying correctness

with respect to Yi. Large 𝑡 achieves results in better security (be-

cause the probability of 𝐸1 not holding decreases, while smaller

𝑡 helps correctness by reducing the failure probability associated

to 𝐸3). Figure 2 visually illustrates the situation by showing the

probability mass function of both Xi and Yi for 𝑛 = 10
4
, 𝑘 = 200,

𝛾 = 1/5, 𝛿 = 1/10, and a choice of threshold 𝑡 = 100 that gives

Pr[𝑋𝑖 ≥ 𝑡] < 2
−40

and Pr[𝑌𝑖 < 𝑡] < 2
−30

. Note that as the probabil-

ity mass function of hypergeometric distributions has a closed form

we can numerically compute these values accurately. We exploit

this fact to get tighter bounds than the analytical ones in Section 5.

𝐸2: Connectivity after dropouts. Up to this point, we only used the

fact that the neighbors of 𝑖 in G are random subsamples of [𝑛] \ {𝑖}.
To argue about 𝐸2 we will leverage the connectivity properties of

Harary graphs. Consider a graph𝐻 = Harary(𝑛, 𝑘) and assume that

𝑘 is even w.l.o.g. Recall that these graphs can be easily constructed

by putting nodes 1, . . . , 𝑛 in a circle and connecting each node to

the 𝑘/2 nodes to its left and the 𝑘/2 nodes to its right (around the

circle). The property that we will use in our argument is that to

disconnect 𝐻 one needs to remove at least 𝑘/2 successive nodes. To
see this, we can argue by contradiction: consider a way of removing

nodes that disconnects two nodes 𝑛1, 𝑛2 and contradicts our claim.

Without loss of generality let 𝑛1 = 1. Color all removed nodes blue,

and color in red all neighbors of 𝑛1 greater than 𝑛1 that are not blue

already. We should be able to color at least one additional node. By

iterating this process from any node we newly colored red, we will

color in red a sequence of nodes each at distance less than 𝑘/2 from
each other, and furthermore, that all nodes colored red are in the

same connected component as 𝑛1. This means that a node 𝑛3 such

7

that 𝑛3 −𝑛2 < 𝑘/2 is in the list of red nodes, and thus 𝑛2 must have

been colored red, a contradiction. This property implies that, as G
from Algorithm 2, is simply 𝐻 but with nodes randomly renamed,

we have that Pr[𝐸2 (C, 𝐷,G′) = 0] ≤ 𝑛(𝛾 +𝛿)𝑘/2, by a union bound

across clients and the fact that (𝛾 + 𝛿)𝑘/2 is an upper bound on the

probability that 𝑘/2 “successive” nodes following a particular node

in 𝐺 are in 𝐶 ∪ 𝐷 (recall that |C| ≤ 𝛾𝑛 and 𝐷 ≤ 𝛿𝑛).
The following lemma captures the three points we have made

so far. Let us remark that it does not tell us immediately how large

𝑘 should be. Instead, it states sufficient (efficiently checkable) con-

ditions that would imply that a given 𝑘 was secure given the rest

of the parameters, and thus it will become central in Section 5.

Lemma 3.7. Let 𝑛 > 0 be a set of clients, let 𝜎, [be security and

correctness let 𝛾, 𝛿 ∈ [0, 1] be the maximum fraction of corrupt and

dropout clients, respectively, and let 𝑘, 𝑡 be natural numbers such that

𝑡 ∈ (0, 𝑘). Let
Xi ∼ HyperGeom(𝑛 − 1, 𝛾𝑛, 𝑘), Yi ∼ HyperGeom(𝑛 − 1, (1 − 𝛿)𝑛, 𝑘)
be random variables. If the following two constraints hold then the

distributionD over pairs (G, 𝑡) implemented by Algorithm 2 is (𝜎, [)-
good:

(1) 1 − cdf𝑋𝑖
(𝑡 − 1) + (𝛿 + 𝛾)𝑘/2 < 2

−𝜎/𝑛
(2) cdfY𝑖 (𝑡) < 2

−[/𝑛
Equipped with the above observation, in the rest of this section

we show that in fact 𝑘 ≥ 𝑂 (log𝑛+𝜎 +[) suffices, while giving some

evidence that the hidden constant is in fact small (that point will be

addressed fully in Section 5). The following lemmas and theorem

follow from the tail bounds on the hypergeometric distribution

stated in the preliminaries section. Their detailed proofs can be

found in Appendix A.

Lemma 3.8. Let G be such that, for all 𝑖 ∈ [𝑛], G(𝑖) is a uniform
sample of size 𝑘 from [𝑛] \ {𝑖}. Let C ⊂ [𝑛] be such that |C| ≤ 𝛾𝑛,
and 𝑡 = 𝛽𝑘 . If 𝑘 ≥ 𝑐 (𝜎1 log 2 + log𝑛) and 𝑐 > 1

2(𝛽− 𝑛𝛾

𝑛−1)
2
then

Pr[𝐸1 (C,G, 𝑡) = 0] ≤ 2
−𝜎1

.

Let us now turn our attention towards correctness. Maybe not

surprisingly at this point, it turns out that 𝑘 > 𝑂 ([+ log𝑛), with a

small constant depending on the dropout rate 𝛿 is enough to ensure

a failure probability bounded by 2
−[

, as we show in the next lemma.

Lemma 3.9. Let G be such that, for all 𝑖 ∈ [𝑛], G(𝑖) is a uniform
sample of size 𝑘 from [𝑛] \ {𝑖}. Let 𝐷 ⊂ [𝑛] such that |𝐷 | ≤ 𝛿𝑛

and let 𝑡 = 𝛽𝑘 . If 𝑘 ≥ 𝑐 ([log 2 + log𝑛) and 𝑐 > 1

2

(
𝑛 (1−𝛿)
𝑛−1 −𝛽

)
2
then

Pr[𝐸3 (𝐷,G, 𝑡) = 0] ≤ 2
−[

.

It is important to remark that our previous two lemmas did not

rely entirely on our specific Harary graph construction. In fact

any algorithm that results in Xi and Yi being concentrated would

work. These include, for example Erdős-Rényi graphs, as well as a

distributed construction where every client samples 𝑘 neighbors at

random (as done in the malicious version of our protocol presented

in the next section). However, as discussed above to address our

remaining property 𝐸2 (C, 𝐷,G) wewill heavily leverage the Harary
graph based construction, as it results in an efficient and simple

solution. This is done inside the proof of the following theorem

that ties this section together.

Theorem 3.10. Let 𝛾, 𝛿 ∈ [0, 1] be such that
𝛾𝑛
𝑛−1 + 𝛿 < 1.

The distribution D over pairs (G, 𝑡) implemented by Algorithm 2 is

(𝜎, [)-good, as long as 𝛽 = 𝑡/𝑘 satisfies
𝛾𝑛
𝑛−1 < 𝛽 < (1 − 𝛿), and

𝑘 ≥ max

©«
((𝜎 + 1) log 2 + log𝑛)

𝑐
+ 1, [log 2 + log𝑛

2

(
𝑛 (1−𝛿)
𝑛−1 − 𝛽

)
2

ª®®¬
with 𝑐 = min

(
2(𝛽 − 2𝛾)2,− log(𝛾 + 𝛿)

)
.

As an example consider the situation in which 𝛾 = 𝛿 = 1/5 and
take 𝛽 = 1/2 then we get security and correctness with 𝑛 = 10

6
,

𝜎 = 40 and [= 30, so long as 𝑘 ≥ 385. Whilst this already saves a

factor of 2500 over the complete graph, even lower requirements

are shown to suffice in Section 5.

4 THE MALICIOUS PROTOCOL
In this section we show how to extend the ideas behind our semi-

honest protocol to withstand an adversary that controls the server

and a fraction 𝛾 of the 𝑛 clients, as before, but where the adver-

sary can deviate from the protocol execution. This includes, for

example, sending incorrect messages, dropping out, or ignoring cer-

tain messages. Crucially, our protocol for this threat model retains

the computational benefits of the semi-honest variant: sublinear

(polylog) client computation and communication in 𝑛.

Powerful adversary. To illustrate the power of such an adversary,

let us describe a simple attack on the protocol of the previous section

that can be run by a malicious server, by simply giving inconsistent

views of which users dropped out to different clients. The goal of

the server in this attack is to recover the private vector ®𝑥𝑢 from a

target client 𝑢. Let 𝑁 = NG (𝑢) be the set of neighbors chosen by

𝑢 in an execution without drop-outs. After collecting all masked

inputs, the server tells all clients in 𝑁 = [𝑛] \𝑁 that the immediate

neighbors of 𝑢, i.e., every client in 𝑁 , have dropped out. In other

words, the server requests shares that are sufficient to recompute

the pairwise masks of everyone in 𝑁 . Note that these masks include

values that cancel with all of 𝑢’s pairwise masks. Hence, to obtain

𝑢’s private vector, the server can announce to clients in 𝑁 that 𝑢

did not drop out to also recover 𝑢’s self mask. Note that the server’s

malicious behavior here is only in notifying everyone in 𝑁 that

clients in 𝑁 have dropped out, while simultaneously requesting

shares of 𝑢’s self mask from all clients in 𝑁 . For this reason, this

attack succeeds against any variant of the abstract protocol from

the previous section, regardless of the choice of graph G.

What can the server legitimely learn in a robust protocol? While

it is clear that the above attack is a problem as the server can

learn a single client’s data, formalizing what constitutes an attack

against a protocol that aims at being robust against dropouts has

some subtleties. Note that a malicious server can always wait for

an execution where there are no dropouts, and simulate them by

ignoring certain messages. Concretely, if a protocol is robust against

a fraction 𝛿 of the clients dropping out, and the adversary controls

a fraction 𝛾 of the clients, we cannot hope to prevent the server

from learning the sum of any subset 𝐻 of honest clients of their

choice, as long as |𝐻 | ≥ (1 − 𝛿 − 𝛾)𝑛.
Bonawitz et al. [BIK

+
17] show how to modify their protocol

so that it is secure in the presence of such a server by adding a

8

“consistency check” round at the end of the protocol. This additional

round prevents the server from learning the sum of any subset𝐻 of

size |𝐻 | ≤ 𝛼 ·𝑛, by ensuring that at least 𝛼 ·𝑛 clients, with 𝛼 = Ω(1),
are given a consistent view of who dropped out. Unfortunately, this

consistency check requires to transmit such a set of size 𝛼 ·𝑛 to each
client, yielding a communication overhead linear in 𝑛. Achieving

the analogous goal (ensuring that 𝛼 is a constant fraction of the

secret sharing degree) in our 𝑂 (log𝑛)-degree regular graphs from
Section 3 would give 𝛼 = 𝑂 (log𝑛/𝑛), which is unsatisfactory from

a security standpoint: the number of values among which an honest

client’s value is hidden is too small, e.g., about 9 for 𝑛 = 10
4
. Thus,

we require completely new ideas to make 𝛼 independent of 𝑛.

We show that 𝛼 can in fact be made a constant fraction inde-

pendent of 𝑛 while retaining polylog communication in 𝑛. More

concretely, we show that the server cannot learn the sum of any

subset 𝐻 of honest clients such that |𝐻 | < 𝛼𝑛 for 𝛼 = Ω(1).

4.1 Security Definition
Intuitively, we want to define a summation protocol as being 𝛼-

secure, for 𝛼 ∈ [0, 1], if honest clients are guaranteed that their

private value will be aggregated at most once with at least 𝛼𝑛 other

values from honest clients. Formalizing this intuitive guarantee re-

quires care. As it is common in MPC, we will use a simulation-based

proof, where we show that any attacker’s view of the execution can

be simulated in a setting where the attacker (which controls the

server and a fraction of the clients) does not interact with the hon-

est clients but a simulator that does not have access to the honest

parties’ inputs. Instead, we will assume that the simulator can query

once an oracle computing an “ideal” functionality that captures the

leakage that we are willing to tolerate. We denote the functionality

by 𝐹X,𝛼 as it is parameterized by the set X of the honest parties’

inputs and 𝛼 ∈ [0, 1]. It takes as input a partition of the honest

clients (a collection of pairwise disjoint subsets {𝑁1, 𝑁2, ..., 𝑁𝑘+1})
and, for each subset 𝑁𝑖 it either returns

∑
𝑖∈𝑁𝑖

®𝑥𝑖 if the subset is
“large enough”, namely |𝑁𝑖 | ≥ 𝛼 · |X|, or answers ⊥.

Definition 4.1 (𝛼-Summation Ideal Functionality). Let 𝑛, 𝑅, ℓ be

integers, and 𝛼 ∈ [0, 1]. Let 𝐻 ⊆ [𝑛] and X𝐻 = { ®𝑥𝑖 }𝑖∈𝐻 where

®𝑥𝑖 ∈ Zℓ𝑅 . Let P𝐻 be the set of partitions of 𝐻 .

The 𝛼-summation ideal functionality overX𝐻 , denoted by 𝐹X𝐻 ,𝛼 ,

is defined for all partition {𝐻1, . . . , 𝐻^ } ∈ P𝐻 as

𝐹 ®𝑥,𝛼 ({𝐻1, . . . , 𝐻^ }) = {𝑆1, . . . , 𝑆^ } ,
where

∀𝑘 ∈ [1, ^], 𝑆𝑘 =

{ ∑
𝑖∈𝐻𝑘

®𝑥𝑖 if |𝐻𝑘 | ≥ 𝛼 · |𝐻 |,
⊥ otherwise.

4.2 The Malicious Protocol
Before we present our protocol precisely in Algorithm 3, let us

discuss the intuition behind it.

Similarly to Bonawitz et al. [BIK
+
17], we will need the assump-

tion that, roughly speaking, the clients participating in the execu-

tion are “real” clients, and not simulated by the server as part of a

Sybil attack. This could be achieved assuming a Public Key Infras-

tructure (PKI) external to the clients and server. It in fact suffices

to assume that the server behaves semi-honestly during the key

collection phase. This is what we will assume below: the server

behaves semi-honestly during Part I of the protocol and commits

the public keys of all “real” clients in a Merkle tree. This limits the

power of a malicious server to interrupting the communication be-

tween parties in subsequent rounds, which is equivalent to making

it appear to certain parties that certain other parties have dropped

out.

A first hurdle in extending our efficient semi-honest protocol

from Section 3 to the malicious setting, which does not apply to the

protocol of Bonawitz et al., is that we cannot rely on the server to

generate the communication graph G anymore, as it may deviate

from the prescribed way and assign many malicious neighbors to

an honest client. Hence, the first difference will be that in the pro-

tocol from this section the graph will be generated in a distributed

way (Part II of Algorithm 3). G = (V, E) with V = [𝑛], will now
be a directed graph, and (𝑖, 𝑗) ∈ E will mean that client 𝑖 chose

to trust client 𝑗 with shares of its secrets; this relationship will

not be symmetric. We denote by N•→ (𝑖) = { 𝑗 ∈ V : (𝑖, 𝑗) ∈ E}
the outgoing neighbors of 𝑖 . This graph generation algorithm will

enable to prove that no honest client has too many corrupt neigh-

bors with overwhelming probability. In particular, we define the

following event, and will show in Lemma 4.7 that the event holds

with overwhelming probability for the (random) graph generated

in Part II.

Definition 4.2 (Not too many corrupt neighbors (malicious case)).

Let 𝑘, 𝑡 be integers such that 𝑘 < 𝑛 and 𝑡 ∈ (𝑘/2, 𝑘), and let C ⊂ [𝑛]
be such that |C| ≤ 𝛾𝑛. We define event 𝐸4 as

𝐸4 (C,G, 𝑘, 𝑡) = 1 iff ∀𝑖 ∈ [𝑛] \ C : |N•→ (𝑖) ∩ C| < 2𝑡 − 𝑘 .

A second significant hurdle, emphasized by the simple attack

described at the beginning of the section, comes from the fact that

the adversary can give inconsistent views to each honest client

about which clients are still alive. The first issue is that we need

to ensure that the adversary can never learn both the shares of the

self-mask and the secret key of a user 𝑖 that submitted its masked

value. However, even if what precedes hold, this does not mean

that we are satisfying our security defition. As discussed above, we

also want to provide a 𝐾-anonymity-style guarantee that a client

input revealed to the server has been combined with 𝐾 = 𝛼 · 𝑛
clients where 𝛼 = Ω(1). Our protocol shows that it suffices to have

a logarithmic number of neighbors and a local check of consistency.

Our first issue is actually solved by the bound 2𝑡 − 𝑘 (instead

of 𝑡) in Definition 4.2, and by the fact that a neighbor of 𝑖 will at

most reveal one share of 𝑖 . Indeed, if𝑚𝑖 is the number of malicious

neighbors of 𝑖 , the adversary needs to learn 2𝑡 − 2𝑚𝑖 shares from

the 𝑘 −𝑚𝑖 honest neighbors of 𝑖 to recover both 𝑏𝑖 and 𝑠𝑘
1

𝑖
; when

the event in Definition 4.2 holds, i.e. 𝑚𝑖 < 2𝑡 − 𝑘 , we know the

adversary cannot learn both secret values of 𝑖 .

As for the second issue, let us describe a way to fix the simple

attack we described, which as we will see leads to a general solution.

Recall that in the attacks, all clients believe that neighbors 𝑐1, . . . , 𝑐𝑘
of 𝑢 (the target client) have dropped out, while the 𝑐𝑖 ’s are in fact

alive and report shares from 𝑢. Instead, we will make sure each 𝑐𝑖
refuses to release any secrets (about 𝑢 or anybody else) unless the

server can convince them that “enough” of their neighbors know

that they are alive. In particular, the server will have to provide the

𝑐𝑖 ’s with 𝑝 = 𝑘 − 𝑡 + 1 signed messages (assuming that all clients are

9

honest) from 𝑐𝑖 ’s neighbors stating that they have been informed

that 𝑐𝑖 is alive, and thus will not release shares of 𝑐𝑖 ’s secret key. To

extend this idea to the setting with corrupted clients it is enough

to note that if we knew that every honest client has no more than

𝑚 corrupted neighbors then setting 𝑝 = 𝑘 − (𝑡 −𝑚) + 1 would

suffice, as we could conservatively assume that the server already

possesses𝑚 shares from each client via the corrupted clients. Finally,

to find a value for𝑚 that works with overwhelming probability we

will rely on the fact that the number X of corrupted neighbors is

distributed as HyperGeom(𝑛 − 1, 𝛾𝑛, 𝑘) (as in Section 3), and thus an

𝑚 ≈ 𝑘𝛾 +
√
𝑘 + log𝑛 suffices.

Lemma 4.3 (Informal). No honest client 𝑖 reveals a share and has

more than 𝑡 shares of their secret key 𝑠𝑘1
𝑖
revealed.

The previous modification prevents the secrets of the 𝑐𝑖 from

being revealed, but does not yet prevent the attack from going

through. Indeed, if the server told 𝑢 that all its neighbors have

dropped out, 𝑢 will mask its input vector only with its self-mask,

which can be recovered from the 𝑐𝑖 ’s by telling them 𝑢 dropped out.

Henceforth, we will additionally have 𝑐𝑖 not reveal a secret about 𝑢

unless she received a signed message from 𝑢 that the pairwise mask

between 𝑢 and 𝑐𝑖 was included in 𝑢’s masked input.

The final challenge therefore consists in proving that the two

countermeasures above prevent the adversary from learning the

sum of the inputs of a “small clique” of clients. Instead, we want

to show that the server needs to aggregate at least 𝛼 · 𝑛 clients to

hope to learn anything about their inputs with 𝛼 = Ω(1). Denote
by 𝑆 a set of honest clients and assume that every honest client

has no more than 𝑚 corrupted neighbors; in order to learn the

self-masks of the clients in 𝑆 , the server needs all of them to have

at least 𝑡 −𝑚 honest clients revealing shares of their self-masks.

However, these honest clients reveal such a share only if they know

the pairwise mask has been included in the sum. Therefore, the

server will also need to include those neighbors in the set 𝑆 . Now

the server needs that each client in 𝑆 chooses a fraction ≈ 𝑡/𝑘 − 𝛾
of their neighbors from 𝑆 , where 𝛾 is the fraction of compromised

clients, and hence we obtain that the server will not learn anything

about a set 𝑆 unless |𝑆 |/𝑛 is at least ≈ 𝑡/𝑘 −𝛾 , which is independent

of 𝑛 when 𝑡 is a fraction of 𝑘 . We define the following event, and

show in Lemma 4.7 that it holds with overwhelming probability for

the random graph generated in Part II.

Definition 4.4 (No small near cliques). Let C ⊂ [𝑛]. We define the

event 𝐸5 as 𝐸5 (C,G, 𝑡, 𝛼) = 1 iff

∀𝑆 ⊂ [𝑛] \ C, |𝑆 | < 𝛼𝑛, ∃𝑖 ∈ 𝑆, |N•→ (𝑖) ∩ (C ∪ 𝑆) | < 𝑡 .
Finally, for the protocol to be correct in the presence of up to 𝛿 ·𝑛

dropouts, we define the following event and will show in Lemma 4.7

that the event holds with overwhelming probability for the graph

generated in Part II.

Definition 4.5 (Enough shares are available). Let 𝐷 ⊂ [𝑛]. We

define the event 𝐸6 as

𝐸6 (𝐷,G, 𝑡) = 1 iff ∀𝑖 ∈ [𝑛] : |N•→ (𝑖) ∩ ([𝑛] \ 𝐷) | ≥ 𝑡 .

4.3 Generating “Nice” Graphs
As explained above, we would like to show that Part II of Algo-

rithm 3 generates “nice” graphs, i.e., that the events 𝐸4, 𝐸5, and

𝐸6 happen with overwhelming probability on graphs generated

according to Part II of Algorithm 3. Below, we define formally what

a nice graph generation algorithm is, and state in Lemma 4.7 that

Part II of Algorithm 3 satisfies the definition. A detailed proof of

Lemma 4.7 can be found in Appendix C.

Definition 4.6. Let 𝑘, 𝜎, [be integers and let 𝛼, 𝛿 ∈ [0, 1]. Let
C ⊆ [𝑛]. LetD be a distribution over pairs (G, 𝑡). We say thatD is

(𝜎, [, C, 𝛼)-nice if, for all sets 𝐷 ⊂ [𝑛] such that |𝐷 | ≤ 𝛿𝑛, we have
that

(1) 𝑃𝑟 [𝐸4 (C,G′, 𝑡 ′) ∧ 𝐸5 (C,G′, 𝑡 ′, 𝛼) = 1 | (G′, 𝑡 ′) ← D] >
1 − 2−𝜎

(2) 𝑃𝑟 [𝐸6 (𝐷,G′, 𝑡 ′) = 1 | (G′, 𝑡 ′) ← D] > 1 − 2−[−1

Analogously, we say that a graph generation algorithm is (𝜎, [, C, 𝛼)-
nice if it implements a (𝜎, [, C, 𝛼)-nice distribution.

Lemma 4.7. Let 𝛾 ≥ 0 and 𝛿 ≥ 0 such that 𝛾 + 2𝛿 < 1. Then

there exists a constant 𝑐 making the following statement true for all

sufficiently large 𝑛. Let 𝑘 be such that

𝑐 (1 + log𝑛 + [+ 𝜎) ≤ 𝑘 < (𝑛 − 1)/4

𝑡 = ⌈(3 + 𝛾 − 2𝛿)𝑘/4⌉ and 𝛼 = (1 − 𝛾 − 2𝛿)/12. Let C ⊂ [𝑛], such
that |C| ≤ 𝛾𝑛, be the set of corrupted clients. Then for sufficiently

large 𝑛, the distribution D over pairs (G, 𝑡) implemented by Part II

of Algorithm 3 is (𝜎, [, C, 𝛼)-nice.

4.4 Correctness and Security
In this section, we state our correctness and security theorems; we

formally prove them in Appendix C.

Theorem 4.8 (Correctness). LetΠ be the protocol of Algorithm 3

with the parameters of Lemma 4.7. Consider an execution of Π with

inputs X = (®𝑥𝑖)𝑖∈[𝑛] , in which all parties follow the protocol. If

𝐴5 ≥ (1 − 𝛿)𝑛, i.e. less than a fraction 𝛿 of the clients dropout, then

the server does not abort and obtains ®𝑧 =
∑
𝐴′
2

®𝑥𝑖 with probability

1 − 2−[.

Theorem 4.9 (Security). Let 𝜎, [, _ be integer parameters. Let Π
be the protocol of Algorithm 3 with the parameters of Lemma 4.7,

𝑝 = 𝑘 − (𝑡 − 𝑘𝛾𝑛

𝑛 − 1 +
√
𝑘

2

((𝜎 + 1) log(2) + log𝑛)) + 1,

and instantiated with a IND-CPA and INT-CTXT authenticated en-

cryption scheme, a EUF-CMA signature scheme, and a _-secure key

agreement protocol. There exists a PPT simulator Sim such that, for

all C ⊂ [𝑛] such that |C| ≤ 𝛾𝑛, inputs X = (®𝑥𝑖)𝑖∈[𝑛]\C , and for all
malicious adversary A controlling the server and the set of corrupted

clients C behaving semi-honestly in Part I, the output of Sim is com-

putationally indistinguishable from the joint view of the server and

the corrupted clients RealC , i.e., RealC ≈𝜎,_ Sim𝐹X′,𝛼 (C), where the
simulator can query once the ideal functionality 𝐹X,𝛼 .

4.5 Performance Analysis
We report the communication and computation costs for the client

and server when 𝑘 = 𝑂 (log𝑛). We recall that we assumed that

basic operations and representation of elements in X are 𝑂 (1).
10

Algorithm 3: Summation protocol in the malicious setting.

Parties: Clients 1, . . . , 𝑛, and Server.

Public Parameters: Vector length 𝑙 , input domain X𝑙 , and PRG 𝐹 : {0, 1}_ ↦→ X𝑙 .
Input: ®𝑥𝑖 ∈ X𝑙 (by each client 𝑖).

Output: 𝑧 ∈ X (for the server).

We denote by 𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴5 the sets of clients that run each of the steps of the protocol. Note that [𝑛] ⊇ 𝐴1 ⊇ 𝐴2 ⊆ 𝐴′
2
⊇ 𝐴3 ⊇ 𝐴4 ⊇ 𝐴5, where

𝐴′
2
is the set of clients who will be included in the final sum.

Part I: public key commitments. In this part only, we assume the server to behave semi-honestly.

(1) Client 𝑖 ∈ [𝑛] generates key pairs K1

𝑖
= (𝑠𝑘1

𝑖
, 𝑝𝑘1

𝑖
) , K2

𝑖
= (𝑠𝑘2

𝑖
, 𝑝𝑘2

𝑖
) and sends (𝑝𝑘1

𝑖
, 𝑝𝑘2

𝑖
) to the server.

(2) The server commits to both vectors of public keys 𝑝𝑘1 = (𝑝𝑘1
𝑖
)𝑖 and 𝑝𝑘2 = (𝑝𝑘2𝑖)𝑖 by means of a Merkle tree.

Part II: distributed graph generation. In these steps, the clients and server will jointly generate a directed graph G([𝑛], 𝐸) .
(3) Client 𝑖 ∈ [𝑛] selects 𝑘 neighbors randomly by sampling without replacement 𝑘 times from the set of all clients [𝑛], and sends the resulting set

N•→ (𝑖) to the server. This set represents the “outgoing” neighbors of client 𝑖 . We note that the choices made by all clients implicitly define a set of

“ingoing” neighbors for client 𝑖 , denoted as N•← (𝑖) ⊆ {𝑖 ∈ N•→ (𝑗) : 𝑗 ∈ [𝑛] } Denote N (𝑖) = N•← (𝑖) ∪ N•→ (𝑖) .
(4) The server sends

(
N•← (𝑖), (𝑗, 𝑝𝑘1𝑗 , 𝑝𝑘2𝑗)𝑗∈N (𝑖)

)
to client 𝑖 ∈ [𝑛], together with |N (𝑖) | log

2
(𝑛) hashes for the Merkle tree verification.

(5) Client 𝑖 ∈ 𝐴1 aborts if the server is sending more than 3𝑘 + 𝑘 public keys. Otherwise, she verifies that the public keys sent by the server are consistent

with the Merkle tree root, that she knows the public keys of everyone in N•→ (𝑖) , and aborts otherwise.

Part III: Masks generation and secret sharing.
(6) Client 𝑖 ∈ 𝐴1:

• Generate a random PRG seed 𝑏𝑖 .

• Compute two sets of shares 𝐻𝑏
𝑖
= {ℎ𝑏

𝑖,1
, . . . , ℎ𝑏

𝑖,𝑘
} = ShamirSS(𝑡, 𝑘,𝑏𝑖) and 𝐻𝑠

𝑖
= {ℎ𝑠

𝑖,1
, . . . , ℎ𝑠

𝑖,𝑘
} = ShamirSS(𝑡, 𝑘, 𝑠𝑘1

𝑖
) .

• Sends to the server messages𝑚 𝑗 = (𝑗, 𝑐𝑖,𝑗) , where 𝑐𝑖,𝑗 = E𝑎𝑢𝑡ℎ .Enc(𝑘𝑖,𝑗 , (𝑖 | | 𝑗 | | ℎ𝑏𝑖,𝑗 | | ℎ𝑠𝑖,𝑗)) for each 𝑗 ∈ N•→ (𝑖) , where 𝑐𝑖,𝑗 is a ciphertext
encrypted under 𝑘𝑖,𝑗 = KA.𝐴𝑔𝑟𝑒𝑒 (𝑠𝑘2

𝑖
, 𝑝𝑘2

𝑗
) .

(7) The server aborts if |𝐴1 | < (1− 𝛿)𝑛, and otherwise forwards all messages (𝑗, 𝑐𝑖,𝑗) to client 𝑗 .We note that this essentially defines a set𝐴2, 𝑗 ⊆ N (𝑗) of
the clients 𝑖 from which client 𝑗 received (𝑗, 𝑐𝑖,𝑗) .

(8) Client 𝑖 ∈ 𝐴2:

• Decrypts all the ciphertexts received, and aborts if decryption fails.

• Computes a shared random PRG seed 𝑠𝑖,𝑗 as 𝑠𝑖,𝑗 = KA.𝐴𝑔𝑟𝑒𝑒 (𝑠𝑘1
𝑖
, 𝑝𝑘1

𝑗
) with every 𝑗 ∈ 𝐴2,𝑖 .

• Computes ®𝑟𝑖 = 𝐹 (𝑏𝑖) and ®𝑚𝑖,𝑗 = 𝐹 (𝑠𝑖,𝑗) and computes their masked input ®𝑦𝑖 = ®𝑥𝑖 + ®𝑟𝑖 −
∑

𝑗∈𝐴2,𝑖
0< 𝑗<𝑖

®𝑚𝑖,𝑗 +
∑

𝑗∈𝐴2,𝑖
𝑖< 𝑗≤𝑛

®𝑚𝑖,𝑗 .

• Signs the message𝑚𝑖,𝑗 = (“included′′ | | 𝑖 | | 𝑗) with 𝑠𝑘2𝑖 to obtain a signature 𝜎 incl

𝑖,𝑗
for all 𝑗 ∈ 𝐴2, 𝑗 .

• Sends (®𝑦𝑖 , (𝑚𝑖,𝑗 , 𝜎
incl

𝑖,𝑗
)𝑗∈𝐴2,𝑖

) to the server.

Part IV: Unmasking.
(9) The server collects masked input and messages/signatures for a certain period of time, which defines a set 𝐴′

2
⊆ 𝐴2. If |𝐴′

2
| < (1 − 𝛿)𝑛, it aborts, and

otherwise sends (𝐴′
2
∩ N•← (𝑖), (𝐴1 \𝐴′

2
) ∩ N•← (𝑖)) and all messages/signatures (𝑚 𝑗,𝑖 , 𝜎

incl

𝑗,𝑖
) to every 𝑖 ∈ 𝐴′

2
. We note that this essentially defines two

sets 𝐴𝑏
3,𝑖
, 𝐴𝑠

3,𝑖
of the clients 𝑗 for every client 𝑖 that received the message sent by the server.

(10) Client 𝑖 ∈ 𝐴3 checks that 𝐴
𝑏
3,𝑖
∩𝐴𝑠

3,𝑖
= ∅, 𝐴𝑏

3,𝑖
, 𝐴𝑠

3,𝑖
⊆ N•← (𝑖) ∩𝐴2,𝑖 , and that all signatures 𝜎 incl

𝑗,𝑖
are valid for 𝑗 ∈ 𝐴𝑏

3,𝑖
, and aborts otherwise.

(11) Client 𝑖 ∈ 𝐴3, for every 𝑗 ∈ 𝐴𝑏
3,𝑖
⊆ N•← (𝑖) , signs a message𝑚𝑖,𝑗 = (“ack′′ | | 𝑖 | | 𝑗) using 𝑠𝑘2𝑖 , and send the signature (𝑚𝑖,𝑗 , 𝜎

ack

𝑖,𝑗
) to the server.

(12) The server aborts if |𝐴3 | < (1 − 𝛿)𝑛, and otherwise forwards all messages (𝑗,𝑚𝑖,𝑗 , 𝜎𝑖,𝑗) to client 𝑗 .

(13) Client 𝑗 ∈ 𝐴4 collects all messages and signatures, and checks that all the signatures are valid using 𝑝𝑘2
𝑖
(abort otherwise). Once client 𝑗 receives 𝑝

such valid signatures from parties in N•→ (𝑗) , she sends {(𝑖, ℎ𝑏𝑖,𝑗) }𝑖∈𝐴𝑏
3, 𝑗
∪ {(𝑖, ℎ𝑠

𝑖,𝑗
) }𝑖∈𝐴𝑠

3, 𝑗
. We denote by 𝐴5 ⊆ 𝐴4 the sets of clients who send shares.

(14) The server aborts if |𝐴5 | < (1 − 𝛿)𝑛, and otherwise:

• Collects, for each 𝑖 ∈ 𝐴′
2
, the set 𝐵𝑖 of all shares in 𝐻𝑏

𝑖
sent by clients in 𝐴5. It aborts if |𝐵𝑖 | < 𝑡 and recovers 𝑏𝑖 and ®𝑟𝑖 otherwise.

• Collects, for each 𝑖 ∈ 𝐴1 \𝐴′
2
, the set 𝑆𝑖 of all shares in 𝐻𝑠

𝑖
sent by clients in 𝐴5. It aborts if |𝑆𝑖 | < 𝑡 and recovers 𝑠𝑘1

𝑖
and ®𝑚𝑖,𝑗 otherwise.

Outputs∑
𝑖∈𝐴′

2

(
®𝑦𝑖 − ®𝑟𝑖 +

∑
𝑗∈N (𝑖)∩(𝐴1\𝐴′

2
)

0< 𝑗<𝑖

®𝑚𝑖,𝑗 −
∑

𝑗∈N (𝑖)∩(𝐴1\𝐴′
2
)

𝑖< 𝑗≤𝑛

®𝑚𝑖,𝑗

)
.

Client computation: 𝑂 (log2 𝑛 + 𝑙 log𝑛). Each client computation

can be broken up as receiving ≤ 4𝑘 log𝑛 hashes (𝑂 (𝑘 log𝑛) com-

plexity), ≤ 5𝑘 key agreements and 𝑘 encryptions (𝑂 (𝑘) complexity),

≤ 5𝑘 signatures signing and verifications (𝑂 (𝑘) complexity), cre-

ating twice 𝑡-out-of-𝑘 Shamir secret shares (𝑂 (𝑘2) complexity),

generating values ®𝑚𝑖, 𝑗 for all neighbors 𝑗 (𝑂 (𝑘𝑙) complexity).

Client communication: 𝑂 (log2 𝑛 + 𝑙). Each client performs ≤ 5𝑘

key agreements (𝑂 (𝑘) messages), send 2𝑘 encrypted shares (𝑂 (𝑘)
messages), send a masked input (𝑂 (𝑙) complexity), send ≤ 5𝑘 sig-

natures, and reveal up to 2𝑘 shares (𝑂 (𝑘) messages).

11

Server computation: 𝑂 (𝑛(log2 𝑛 + 𝑙 log𝑛)). The server computa-

tion can be broken up as reconstructing 𝑡-out-of-𝑘 Shamir secrets

for each client (𝑂 (𝑛 · 𝑘2) complexity), generating values ®𝑚𝑖, 𝑗 for all

(dropped out) neighbors 𝑗 of each client 𝑖 (𝑂 (𝑛𝑘𝑙) complexity).

Server communication: 𝑂 (𝑛(log2 𝑛 + 𝑙)). The server receives or
sends 𝑂 (log2 𝑛 + 𝑙) to each client.

5 NUMERICAL BOUNDS AND CONCRETE
EFFICIENCY RESULTS

In Theorems 3.6 and 4.9, we established that a number of neighbors

𝑘 = 𝑂 (log𝑛 + [+ 𝜎) suffices to obtain secure and correct protocols

in the semi-honest and malicious variants. These theorems are

derived from tail bounds on the hypergeometric distribution. While

the same tail bounds could be used in practice to set the operating

parameters 𝑘, 𝑡 (i.e. by direct evaluation of the expression for 𝑘

in Theorem 3.10), more efficient choices can be found by directly

evaluating the hypergeometric CDF, as we show below.

5.1 Semi-honest Variant
The results in this Section follow from Lemma 3.7, and the fact that

the CDF of the hypergeometric distribution can be evaluated di-

rectly on concrete parameters.More concretely, note that Lemma 3.7

gives sufficient efficiently checkable conditions that 𝑘, 𝑡 can satisfy

(given the rest of the parameters) implying that our protocol is

secure and correct (Lemmas 3.6 and 3.5). This gives a numerical ap-

proach to obtain secure parameters 𝑘, 𝑡 given 𝑛, 𝜎, [,𝛾, 𝛿 . The naive

algorithm iterates over all possible values of 𝑘, 𝑡 in lexicographic

order and stops as soon as it finds one that satisfies both conditions

in Lemma 3.7 (assuming our intent is to minimize computation and

communication for the required security 𝜎). We implemented a

more efficient and stable variant of this approach that uses binary

search and evaluates the above checks in the log domain, avoid-

ing numerical under(over)flows. Our implementation consists of

less than 100 lines of Python code leveraging the Scipy scientific

computing library [VGO
+
20].

Fig. 3a shows secure values of 𝑘 for several settings of param-

eters corresponding to all combinations of 𝛾, 𝛿 taking values in

{1/3, 1/20}, 𝜎 = 40, and [= 30, as 𝑛 grows from 10
3
to 10

8
. Fig. 3b

shows how 𝑘 scales with 𝛾 , everything else being the same. Note

that less than 150 neighbors are enough to provide security up to

𝑛 = 10
8
clients where at most 1 in 5 clients are corrupted by and

1 in 20 clients dropout (or vice versa). Moreover, 𝑘 = 100 suffices

for 𝑛 = 10
4
, which immediately translates into a 100x concrete im-

provement in client computation and communication with respect

to the protocol by Bonawitz et al [BIK
+
17], with roughly the same

server computation cost. These gains increase linearly with 𝑛, as

our protocol retains roughly the same client runtime and commu-

nication costs for values of 𝑛 for which the protocol by Bonawitz

et al [BIK
+
17] becomes highly impractical.

Benchmarking. In the semi-honest protocol, each client performs

(a) 2𝑘 key agreements, (b) secret sharing 2 secrets into 𝑘 shares

(which takes 𝑂 (𝑘2) time), and (c) generating and stretching 𝑘 + 1
seeds using the PRG 𝐹 (which we implement using AES) to the

length of the input vector 𝑙 (which is 𝑂 (𝑘𝑙)). We benchmarked

Shamir share generation and PRG expansion using AES to con-

firm that the PRG expansion is the bottleneck (which is consistent

with the running times reported in [BIK
+
17]). Expanding 𝑘 = 500

seeds to length 𝑙 = 10
5
takes about a second in our C++ implemen-

tation, while secret sharing a Shamir secret into 𝑘 = 500 shares

takes on the order of a millisecond on a standard desktop com-

puter. Thus our runtime and communication improvements with

respect to the semi-honest version of [BIK
+
17] are roughly a factor

𝑛/𝑘 = 𝑂 (𝑛/log𝑛). Bonawitz et al report that their client runtime

for 𝑛 = 500 and 𝑙 = 10
5
is about 1.5 seconds, with less than a 𝑀𝐵

of communication (see Figure 8 in [BIK
+
17]). This immediately

translates in the same cost for our semi-honest protocol for any

setting with 𝑘 < 500, which includes settings with 𝑛 up to a billion,

with reasonable parameters.

5.2 Malicious Variant
Our approach to compute numerical bounds for the malicious vari-

ant is analogous to the one from the semi-honest variant: LemmaC.4

states sufficient conditions that a triple (𝑘, 𝑡, 𝛼) must satisfy to get

security and correctness. As in the semi-honest case these checks

involve only simple calculations and querying the CDF of a hyper-

geometric random variable. Our implementation consists of roughly

100 lines of Python code leveraging the Scipy scientific computing

library [VGO
+
20].

Fig. 3c shows secure values of 𝑘 and 𝛼 for several settings of

parameters corresponding to all combinations of 𝛾, 𝛿 taking values

in {1/5, 1/20}, 𝜎 = 40, and [= 30, as 𝑛 grows from 10
3
to 10

8
. For

example, the graph shows that with 10
4
clients and 𝛾 = 𝛿 = 1/5,

less than 600 neighbors per client are enough for security, and every

honest client is guaranteed that if the (possibly malicious) server

gets a sum 𝑧 in the clear involving their value, then 𝑧 is the result

of aggregating at least 0.39𝑛 = 3900 honest clients. The value of 𝑘

in this plot is the minimum value that guarantees security 𝜎 , thus

minimizing client computation and communication. Hence, the

resulting 𝛼 , which grows with 𝑘 , is not as large as it could be for

each setting. This explains the counterintuitive fact that settings

with smaller 𝛾 also have smaller 𝛼 (as they allow a smaller 𝑘). To

clarify this point Fig. 4a shows how 𝛼 scales with 𝑘 : 𝛼 converges

towards (1 − 𝛾 − 𝛿)𝑛, which is the best one can hope for (as in

a round without dropouts a malicious server can drop any set of

(𝛿)𝑛 honest parties from the sum). Hence, by increasing 𝑘 , our

analysis covers the full spectrum of possible 𝛼 , and allows to fine

tune parameters to concrete trade-off between security (captured

by 𝛼, 𝜎) and the main computational costs (captured by 𝑘, 𝑡). Finally,

to illustrate this kind of fine-tuning, Figure 4b shows how 𝛼 grows

for small numbers of neighbors in some parameters. For example,

the plot shows that, for 𝑛 = 10
4, 𝛾 = 𝛿 = 1/20, 300 neighbors are

enough so that every honest client is certain that their value will

be aggregated with those of at least 5000 other clients!

6 SHUFFLING FROM SUMMATION
Assume client 𝑖 has a message 𝑥𝑖 ∈ 𝑀 with |𝑀 | =𝑚. We wish for

the server to receive the multiset of messages with no information

on which message came from whom. This is equivalent to the

messages being gathered by some trusted third party and shuffled

(or sorted) before being handed to the server. This primitive is

12

(a) Secure𝑘 for several settings (Semi-honest). (b) Secure 𝑘 for several settings, as 𝛾 grows
(Semi-honest).

(c) Secure 𝑘 for several settings, and the value
of 𝛼 guaranteed in each case (Malicious).

Figure 3: Number of neighbors per client in several settings for security.

(a) Convergence of 𝛼 for 𝑛 = 10
5. (b) Concrete values of 𝛼 for 𝑛 = 10

4.

Figure 4: Values of 𝛼 as the number of neighbors increases in the malicious setting.

interesting as it is the basis of the shuffle model of differential

privacy [CSU
+
19, GPV19, BBGN20, BBGN19b] and could be used

for anonymized submissions [BEM
+
17]. In this section, we show a

reduction from secure shuffling to secure summation. Our reduction

makes a single call to secure summation, and thus the security and

drop-out robustness properties of our protocol directly translate to

the shuffling functionality. In particular, in the semi-honest variant,

honest clients are guaranteed to have their value shuffled with at

least (1−𝛾 − 𝛿)𝑛 other values from honest clients. In the malicious

setting, one gets the analogous guarantee with 𝛼𝑛, as explained in

Section 4.

We first discuss a simple baseline solution that only works for

small𝑚. A histogram of how many times each message appears

can be considered as a vector of length𝑚. Thus, each client can

locally build a histogram of their input (which would be a one-hot

vector) and then a vector summation protocol can be used to add

these local histograms together. The server then learns only the

aggregate histogram, as desired. The problem with this solution

is that it is impractical for large𝑚, e.g.,𝑚 = 2
32
. More generally,

this solution is wasteful for scenarios where we know that the

result histogram is going to be sparse. In the rest of this section,

we discuss a solution where the length of vectors being aggregated

only depends logarithmically on𝑚.

6.1 A Solution Based on Sketching
As a motivation for this protocol consider the following idea. Each

client construct a vector ®𝑣𝑖 of length 𝑙 with zeros everywhere, except
for a randomly chosen location which contains 𝑥𝑖 . Then all clients

and the server run a secure summation protocol for the server to

obtain ®𝑧 = ∑
𝑖 𝑥𝑖 . If no two clients choose the same location to place

their message in then all the messages are revealed in the sum in

a random order. There problem, of course, is that unless the input

vectors are extremely long, i.e., 𝑙 is large with respect to 𝑛, there

are likely to be collisions. Even worse, the server will not be able

to tell which entries contain collisions as the sum of the encodings

of two elements of𝑀 might also be a valid encoding. This can be

13

fixed by having clients encode their input in ®𝑣𝑖 a pair (𝑥𝑖 , 1) so
that collisions in ®𝑧 can be detected as the second component of

the pair would act as a counter of how many entries collided at

a position. This change alone gives a protocol that can recover a

constant fraction of the data using vectors with 𝑙 = 𝑂 (𝑛) entries, or
all the parties data using vectors with 𝑙 = 𝑂 (𝑛2) entries with high

probability.

In order to improve the solution above, each client can instead

put their message in multiple different entries. This way, even if

they are caught in a collision, their message can still get through

at some other index. This modification introduces a difficulty in

that the server cannot tell whether two identical messages in the

output vector came from different clients, or from the same client.

To solve this problem, client 𝑖 will prepend their message with a

uniformly random bitstring 𝑝𝑖 . This bitstring can be thought of

as a pseudonym for the client and will be long enough to avoid

two clients choosing the same pseudonym with overwhelming

probability. Thus, in this variant, clients send a 𝑐-hot vector of

triples including 𝑐 copies of the triple (𝑝𝑖 , 𝑥𝑖 , 1) at random positions.

Using this trick, with 𝑐 = 𝑂 (log(𝑛)) entries chosen by each client,

allows all the parties data to be retrieved using vectors of length

𝑙 = 𝑂 (𝑛 log(𝑛)).
Finally, we propose a solution that can even achieve better com-

munication. The key observation is that once one of the 𝑐 copies of

client 𝑖’s data is recovered, we would like the server to recover the

random positions of the remaining 𝑐 − 1 entries. Then the server

can substract (𝑝𝑖 , 𝑥𝑖 , 1) from those positions, uncovering further

triples from a client 𝑗 that might have collided with 𝑖 , and thus effec-

tively recovering from collisions. This idea is not new, and in fact

underlies the probabilistic data structure called an invertible Bloom

lookup table (IBLT) [GM11]. We will thus present our protocol in

terms of IBLTs.

An IBLT is a linear sketch of a key-value store, such that if the

vector representations for two IBLTs are added together, the result

is a new IBLT that encodes the union of the key-value stores for

the original IBLTs. IBLTs support the following operations (among

others):

• Insert(𝑝, 𝑥): insert the key-value pair (𝑝, 𝑥).
• ListEntries(): list every key-value pair in the data structure.

Though the ListEntries operation may fail we some probability, we

can choose parameters for the IBLT so that this failure happens

with very small probability.

Concretely, an IBLT consists of a vector and a hash function [GM11].

The vector has length 𝑙 and its entries are tuples (𝑝, 𝑥, 𝑎) containing
a key/pseudonym 𝑝 ∈ 𝑃 , a value/message 𝑥 ∈ 𝑀 and a counter 𝑎

taking values in [𝑛], represented in such a way that if two of these

tuples are added their counters are added. The hash function has

a fixed number of outputs 𝑐 and is itself a fixed public parameter

ℎ : 𝑃 → [0..𝑙 − 1]𝑐 , which we model as a random oracle. To insert a

key-value pair (𝑝, 𝑥) into an IBLT we simply add a tuple (𝑝, 𝑥, 1) to
every entry corresponding to an output of ℎ(𝑝). To list the entries

of an IBLT we find a counter with value 1 and read the key value

(𝑝, 𝑥) from there. We then subtract (𝑝, 𝑥, 1) from every entry cor-

responding to an output of ℎ(𝑝) and append (𝑝, 𝑥) to the output.

We then repeat this operation until no more counters have value 1.

This will terminate with all counters 0 and thus having recovered

Algorithm 4: Local Vector PreparationV𝑙,𝑐,ℎ
Public Parameters: Vector length 𝑙 , number of copies 𝑐

and hash function

ℎ : {0, 1}128 → [0..𝑙 − 1]𝑐
Input: The message 𝑥

Output: 𝑣 ∈ Z𝑙
2
𝑘

Choose a pseudonym 𝑝 ∈ {0, 1}128 uniformly at random

Let 𝑥 ′ = (𝑝, 𝑥, 1)
Let 𝑣 ∈ Z𝑙

2
𝑘
be the zero vector

for 𝑖 ∈ [0..𝑐 − 1] do
Set the ℎ(𝑝)𝑖 th entry of 𝑣 to 𝑥 ′

end
return 𝑣

all entries, with high probability, so long as 𝑙 is large enough. The

required value of 𝑙 is considered in Section 6.2 below.

Using the IBLT data structure, a secure shuffle primitive follows

from secure vector summation as follows. Every client first creates

an empty local IBLT, all with the same parameters. They each client

𝑖 chooses a pseudonym 𝑝𝑖 uniformly at random from a set 𝑃 that is

sufficiently large to avoid collisions (e.g. 64 bit strings would work

well). Each client 𝑖 then inserts the pair (𝑝𝑖 , 𝑥𝑖) into their local IBLT.
A vector summation protocol is then used to combine the local

IBLTs from each client and finally the server performs a ListEntries

operation on the result.

More concretely, the clients’ algorithm (shown in Algorithm 4)

consists of initializing and zeroing a vector of length 𝑙 and then

doing𝑂 (𝑐) computation to edit 𝑐 of the entries. As 𝑙 will in practice

much bigger than 𝑐 , the task of submitting 𝑙 to the vector summa-

tion algorithm will be the dominant cost. For a triple 𝑥 = (𝑝, 𝑥, 𝑎)
we refer to 𝑝, 𝑥, 1 as 𝑥 .𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑦𝑚, 𝑥 .𝑚𝑒𝑠𝑠𝑎𝑔𝑒 , and 𝑥 .𝑐𝑜𝑢𝑛𝑡 , respec-

tively.

The server’s algorithm, described in Algorithm 5, is more com-

plicated as it must run the ListEntries operation. However, as the

count in each entry only ever decreases, and a value can be added to

the queue only when the count of a corresponding entry decreases

to one the queue will output each value in [0..𝑙 − 1] at most twice.

Thus, the contents of the while loop are executed at most 2𝑙 times.

On at most 𝑛 occasions will this amount to more than checking if a

byte contains the value one. On those 𝑛 occasions the hash function

must be called once and 𝑐 subtractions made from the vector. This

amounts to𝑂 (𝑙𝑐) work which is lower order compared to the work

of the vector summation protocol.

It should be clear that the above protocol is secure, as long as

the underlying secure summation protocol is secure. We state and

argue this fact informally in the next proposition.

Proposition 6.1 (Informal). Assume a secure summation proto-

col 𝑃 withstanding a 𝛿 fraction of dropouts and a 𝛾 fraction of corrupt

parties colluding with the server. Then secure shuffling protocol de-

scribed in Algorithms 4 and 5 instantiated with 𝑃 securely implements

shuffling.

Proof. The resulting vector ®𝑧 that the server receives from the

summation depends only on the inputs of dishonest clients and the

14

Algorithm 5:Message Recovery 𝑅𝑙,𝑐,ℎ

Public Parameters: Number of clients 𝑛, vector length 𝑙 ,

number of copies 𝑐 and hash function

ℎ : {0, 1}128 → [0..𝑙 − 1]𝑐
Output:Messages ∈ 𝑀𝑛

Engage on a secure vector summation protocol with the

clients to obtain 𝑣 =
∑𝑛
𝑖=1V𝑙,𝑐,ℎ (𝑥𝑖)

Initialize Messages to an empty list

Initialize a FIFO queue𝑄 containing every value in [0..𝑙 − 1]
while 𝑄 isn’t empty do

Let 𝑖 = 𝑄.𝑛𝑒𝑥𝑡 ()
if 𝑣𝑖 .𝑐𝑜𝑢𝑛𝑡 == 1 then

Let𝑚′ = 𝑣𝑖
Messages.append(𝑚′.𝑚𝑒𝑠𝑠𝑎𝑔𝑒)
Let 𝑝 =𝑚′.𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑦𝑚
for 𝑖 ∈ [0..𝑐 − 1] do

Subtract𝑚′ from 𝑣ℎ (𝑝)𝑖
if 𝑣ℎ (𝑝)𝑖 .𝑐𝑜𝑢𝑛𝑡 == 1 then

Add ℎ(𝑝)𝑖 to 𝑄
end

end
return Messages

set of pairs of messages and associated pseudonyms. The adversary

cannot learn anything new from the dishonest clients inputs as they

come from the server. Furthermore whatever messages the dishon-

est clients send in, the vector ®𝑧 only depends on the (multi)set of

pairs of messages and associated pseudonyms. As the pseudonyms

are all independently and identically distributed this (multi)set of

pairs is independent of which of the honest clients holds which

message. Therefore the resulting vector ®𝑧 has a distribution inde-

pendent of which client has which message and thus leaks nothing

other than the multiset of messages. □

Remark 1. In this section we assumed that each message fits into

one entry of the vector but in practice this is unnecessary. It is pos-

sible to split messages over multiple entries. To achieve this start by

grouping entries in the vector together so that each group can hold a

message. Each client picks a group at random to encode their message

in. This will not save any communication but may allow the additions

to be conducted in a more machine friendly format. The only restric-

tion is that the counter section of the message fit within one entry so

as to avoid overflow issues. In fact only the entries holding the counter

sections need to be summed. All other entries could be XORed together

rather than summed and the protocol still goes through fine.

To completely specify our protocol and its costs, it remains to

show how to choose parameters 𝑐 and 𝑙 . We address this point next.

6.2 Choice of 𝑙
All messages will be recovered if and only if there does not exist

a non empty set of messages so that all their entries collide with

other members of this set. In other words, the hypergraph with

the entries as vertices and the messages as hyper edges connecting

those vertices that they are added to has a non-empty 2-core. In the

Figure 5: Plot of the expected fraction fo messages recov-
ered and probability of recovering all messages against the
length 𝑙 of the vectors used. For this the number of clients is
𝑛 = 10000 and each inserts their message in 𝑐 = 3 places.

paper introducing IBLT [GM11], the following theorem is presented

as Theorem 1.

Theorem 6.2 (Theorem 1 of [GM11]). For all 𝑐 > 0, there exist

a constant 𝐶𝑐 such that, so long as 𝑙 > (𝐶𝑐 + 𝜖)𝑛 for some 𝜖 > 0, the

probability of not recovering all messages is 𝑂 (𝑛2−𝑐).

They also give a definition of 𝐶𝑐 that allows it to be computed

and find that, 𝐶3 ≈ 1.222 and 𝐶4 ≈ 1.295. This shows that at least

asymptotically for large 𝑛 it suffices to take the number of entries

of the vector to be about 1.3𝑛.

We numerically simulated the process of distributing and recov-

ering the messages (implementing the hash functions as random

oracles). Figure 5 shows, for 𝑛 = 10000 and 𝑐 = 3, how the recov-

ery of messages varies with 𝑙 . It shows that a choice of 𝑙 = 1.3𝑛

does indeed return all the messages almost all the time in this case,

whereas 𝑙 = 1.2𝑛 would on average return only half the messages,

and almost never all of them.

Thus, with the above parameters, for 𝑛 > 100, 𝑙 can be be taken

to be less than 2𝑛⌈log
2
(|𝑃 |) + log

2
(𝑚) + log

2
(𝑛)⌉. For example if

𝑛 = 10, 000 and the messages are 32 bits long this requires 2 ·10, 000 ·
(64 + 32 + 14) = 2, 200, 000 bit, i.e. 269kB, vectors.

Remark 2. This protocol is very easily adapted to the case where

clients have different numbers of messages to send. This covers the

case where each user has multiple messages to send, as in the multi-

message shufflemodel [CSU
+
19, GPV19, BBGN20], and the case where

most users don’t have any message to send, which might be useful

for submitting error reports. In those cases the length of the required

vectors is the same but with 𝑛 replaced by the number of messages to

send. For example with 𝑛 = 100, 000 and one percent of users having a

256 bit message to send, we require 2 · 1000 · (64+256+10) = 660, 000

bit, i.e. 81kB, vectors. If a bound on the number of message to send

is not known a priori, the parties could engage in a private scalar

summation protocol first to establish how many messages they have

between them.

15

7 CONCLUSION
We presented new constructions for secure aggregation that achieve

both better asymptotic computation and communication costs than

previous solutions as well as very efficient concrete parameters,

which enable much better scalability with the number of clients.

The efficiency cost of the construction of Bonawitz et al. [BIK
+
17]

limited its use to a thousand clients. Our semi-honest construction

supports billions of clients and our semi-malicious construction

supports tens of thousands of clients for the same per client cost.

Last but not least we presented a construction for secure shuffling

using secure vector aggregation, which is the first cryptographically

secure instantiation of the shuffle model of differential privacy. This

construction requires each client to have an input vector of size

linear in the total number of submitted messages.

We leave as future work a system implementation of our proto-

cols, and leave as an intriguing open question how to achieve secure

shuffling with sublinear complexity in the single-server setting.

REFERENCES
[ABL

+
18] David W. Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt

Nielsen, Jakob Illeborg Pagter, Nigel P. Smart, and Rebecca N. Wright.

From keys to databases - real-world applications of secure multi-party

computation. Comput. J., 61(12):1749–1771, 2018.

[BBGN19a] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Improved

summation from shuffling. arXiv: 1909.11225, 2019.

[BBGN19b] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy

blanket of the shuffle model. In Alexandra Boldyreva and Daniele Mic-

ciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 18-

22, 2019, Proceedings, Part II, volume 11693 of Lecture Notes in Computer

Science, pages 638–667. Springer, 2019.

[BBGN20] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. Private summa-

tion in the multi-message shuffle model, 2020.

[BCDH18] Elette Boyle, Ran Cohen, Deepesh Data, and Pavel Hubáček. Must the

communication graph of mpc protocols be an expander? In Hovav

Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –

CRYPTO 2018, 2018.

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure com-

putation: Multi-party computation for (parallel) ram programs. In

Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology

– CRYPTO 2015, 2015.

[BEG
+
19] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,

Alex Ingerman, Vladimir Ivanov, Chloé M Kiddon, Jakub Konečný, Ste-

fano Mazzocchi, Brendan McMahan, Timon Van Overveldt, David Petrou,

Daniel Ramage, and Jason Roselander. Towards federated learning at

scale: System design. In SysML 2019, 2019.

[BEM
+
17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth

Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes,

and Bernhard Seefeld. Prochlo: Strong privacy for analytics in the crowd.

In Proceedings of the 26th Symposium on Operating Systems Principles,

SOSP ’17, pages 441–459, New York, NY, USA, 2017. ACM.

[BIK
+
17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,

H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and

Karn Seth. Practical secure aggregation for privacy-preserving machine

learning. In ACM Conference on Computer and Communications Security,

pages 1175–1191. ACM, 2017.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scal-

able computation of aggregate statistics. In 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 17), 2017.

[CSU
+
19] Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and Maxim

Zhilyaev. Distributed differential privacy via mixnets. In EUROCRYPT,

pages 375–403, 2019.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-

brating noise to sensitivity in private data analysis. In Proceedings of the

Third Conference on Theory of Cryptography, 2006.

[EDG14] Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private collec-

tion of traffic statistics for anonymous communication networks. In

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS ?14, page 1068?1079, New York, NY, USA, 2014.

Association for Computing Machinery.

[EFM
+
19] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,

Kunal Talwar, and Abhradeep Thakurta. Amplification by shuffling: From

local to central differential privacy via anonymity. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

?19, 2019.

[EFM
+
20] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,

Shuang Song, Kunal Talwar, and Abhradeep Thakurta. Encode, shuffle,

analyze privacy revisited: Formalizations and empirical evaluation. arXiv

preprint arXiv:2001.03618, 2020.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE Trans. Information Theory, 31(4):469–472,

1985.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In In

Proc. STOC, pages 169–178, 2009.

[GM11] Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup

tables. In 49th Annual Allerton Conference on Communication, Control,

and Computing, Allerton 2011, Allerton Park & Retreat Center, Monticello,

IL, USA, 28-30 September, 2011, pages 792–799. IEEE, 2011.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic

Applications. Cambridge University Press, 2004.

[GPV19] Badih Ghazi, Rasmus Pagh, and Ameya Velingker. Scalable and differen-

tially private distributed aggregation in the shuffled model. arXiv preprint

arXiv:1906.08320, 2019.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on

the web: Computing without simultaneous interaction. In Proceedings of

the 31st Annual Conference on Advances in Cryptology, 2011.

[IKN
+
20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana

Raykova, Shobhit Saxena, Karn Seth, David Shanahan, andMoti Yung. On

deploying secure computing commercially: Private intersection-sum pro-

tocols and their business applications. In 5th IEEE European Symposium

on Security and Privacy, 2020.

[23] Internet Research Task Force (IRTF). ChaCha20 and Poly1305 for IETF

protocols, 2018. https://datatracker.ietf.org/doc/rfc8439/; accessed 2020-

05-12.

[KMA
+
19] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,

Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles,

Graham Cormode, Rachel Cummings, et al. Advances and open problems

in federated learning. arXiv preprint arXiv:1912.04977, 2019.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly

multiparty computation on the cloud via multikey fully homomorphic

encryption. In Proceedings of the Forty-Fourth Annual ACM Symposium

on Theory of Computing, STOC ?12, page 1219?1234, New York, NY, USA,

2012. Association for Computing Machinery.

[LEM14] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private and

dynamic time-series data aggregation with trust relaxation. In Dimitris

Gritzalis, Aggelos Kiayias, and Ioannis Askoxylakis, editors, Cryptology

and Network Security, 2014.

[Leu19] KU Leuven. Scale-mamba software. 2019.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practi-

cal distributed key generation and applications to cryptocurrency custody.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,

pages 1837–1854, 2018.

[MRTZ18] H BrendanMcMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learn-

ing differentially private recurrent language models. In International

Conference on Learning Representations (ICLR), 2018.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In EUROCRYPT, volume 1592 of Lecture Notes in

Computer Science, pages 223–238. Springer, 1999.

[RSY18] Leonid Reyzin, Adam Smith, and Sophia Yakoubov. Turning hate into love:

Homomorphic ad hoc threshold encryption for scalable mpc. Cryptology

ePrint Archive, Report 2018/997, 2018. https://eprint.iacr.org/2018/997.

[SGA20] Jinhyun So, Basak Guler, and Amir Salman Avestimehr. Turbo-aggregate:

Breaking the quadratic aggregation barrier in secure federated learning.

IACR Cryptol. ePrint Arch., 2020:167, 2020.

[VGO
+
20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren

Weckesser, Jonathan Bright, Stéfan J. van derWalt, Matthew Brett, Joshua

Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric

Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W.

Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,

Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald,

Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy

1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python. Nature Methods, 17:261–272, 2020.

16

https://datatracker.ietf.org/doc/rfc8439/
https://eprint.iacr.org/2018/997

A PROOFS OF OUR RANDOMIZED
CONSTRUCTION

Proof of Lemma 3.8. Let Xi be the number of malicious neigh-

bors of the 𝑖th user, i.e. |N𝐺 (𝑖)∩C|.We have thatXi ∼ HyperGeom(𝑛−
1, 𝛾𝑛, 𝑘) and thus taking 𝑑 = 𝛽 − 𝛾𝑛

𝑛−1 gives

Pr[Xi ≥ (𝛾𝑛/(𝑛 − 1) + 𝑑)𝑘] = Pr[Xi ≥ 𝑡] ≤ 𝑒−2(𝛽−
𝛾𝑛

𝑛−1)
2

𝑘

And by a union bound across clients we get that

Pr[𝐸1 (C,G, 𝑡) = 0] ≤ 𝑛 Pr[Xi ≥ 𝑡] ≤ 𝑛𝑒−2(𝛽−
𝛾𝑛

𝑛−1)
2

𝑘

Now it suffices to prove that Pr[𝐸1 (C,G, 𝑡) = 0] ≤ 2
−𝜎1

. This gives

the constraint

𝑘 ≥ 𝜎1 log 2 + log𝑛

2

(
𝛽 − 𝑛𝛾

𝑛−1

)
2

. The above inequality is implied by the conditions of the lemma

and this concludes the proof. □

Proof. Let Yi be the number of surviving (not dropped out)

neighbors of the 𝑖th user. We have that Yi ∼ HyperGeom(𝑛 − 1, (1 −
𝛿)𝑛, 𝑘) and thus taking 𝑑 =

(1−𝛿)𝑛
𝑛−1 − 𝛽 gives

Pr

[
Yi ≤

(
(1 − 𝛿)𝑛
𝑛 − 1 − 𝑑

)
𝑘

]
= Pr[Yi ≤ 𝑡] ≤ 𝑒

−2
(
(1−𝛿)𝑛
𝑛−1 −𝛽

)
2

𝑘

Now {𝐸3 (𝐷,G, 𝑡) = 0} is the event that some client has less than 𝑡

surviving neighbors. By a union bound across clients we get that

Pr[𝐸3 (𝐷,G, 𝑡) = 0] ≤ 𝑛 Pr[Yi ≤ 𝑡] ≤ 𝑛𝑒
−2

(
(1−𝛿)𝑛
𝑛−1 −𝛽

)
2

𝑘
.

It suffices to prove that Pr[𝐸3 (𝐷,G, 𝑡) = 0] ≤ 2
−[

. This gives the

constraint

𝑘 >
[log 2 + log𝑛

2

(
𝑛 (1−𝛿)
𝑛−1 − 𝛽

)
2

. The above inequality is implied by the conditions of the lemma

and this concludes the proof. □

Proof of Theorem 3.10. Let (G, 𝑡) ← D, and let C ⊂ [𝑛] and
𝐷 ⊂ [𝑛] be such that |C| ≤ 𝛾𝑛 and |𝐷 | ≤ 𝛿𝑛. Let us first show that

Pr[𝐸2 (C, 𝐷,G′) | (G′, 𝑡 ′) ← D] > 1 − 2−(𝜎+1) .
Recall the property that disconnecting a Harary graph with 𝑛 nodes

and degree 𝑘 requires dropping ⌊𝑘/2⌋ successive nodes. By taking

a union bound, we have that Pr[𝐸2 (C, 𝐷,G′) = 0] ≤ 𝑛𝑝 , where 𝑝
is the probability that a given ⌊𝑘/2⌋ “successive” nodes in 𝐺 are

dishonest or dropouts. As 𝑝 ≤ (𝛾 +𝛿) ⌊𝑘/2⌋ , 𝑘 ≥ ((𝜎+1) log 2+log𝑛)𝑐 +1
and 𝑐 ≤ − log(𝛾 +𝛿), we have that Pr[𝐸2 (C, 𝐷,G′) = 0 | (G′, 𝑡 ′) ←
D] ≤ 2

−(𝜎+1)
On the other hand, by Lemma 3.8, as 𝑐 ≤ 2(𝛽 − 2𝛾)2

and 𝑘 ≥ ((𝜎+1)+log𝑛)𝑐 , we must have Pr[𝐸1 (C,G, 𝑡) = 0] < 2
−(𝜎+1)

.

Combining these two constraints we get that if 𝑘 > max(𝑏1, 𝑏2)
then Pr[𝐸1 (C,G, 𝑡) = 0 ∨ 𝐸2 (C,G, 𝑡) = 0] < 2

−𝜎
.

It remains to consider 𝐸3. However the required bound on

Pr[𝐸3 (𝐷,G, 𝑡) = 0]
follows from

𝑘 ≥ [log 2 + log𝑛

2

(
𝑛 (1−𝛿)
𝑛−1 − 𝛽

)
2

by Lemma 3.9. □

B SECURITY PROOFS FOR SEMI-HONEST
PROTOCOL

B.1 Correctness
Proof of Theorem 3.5. The fact that the server does not abort

before Step B.1 follows trivially from the protocol description, as

|𝐴3 | ≥ (1 − 𝛿)𝑛 implies that 𝐴1 and 𝐴2 are also of size at least

(1−𝛿)𝑛 and thus the server does not abort before Step . Henceforth,
it suffices to show that the server will be able to gather 𝑡 shares

from neighbors of clients 𝑖 ∈ 𝐴1 \𝐴′
2
in Step B.1 with large enough

probability. Let 𝐷 be [𝑛] \ 𝐴3, and note that 𝐷 < 𝛿𝑛. Then, as

GenerateGraph is (𝜎, [)-good, it follows that
Pr[The server collects enough shares] = Pr[𝐸3 (𝐷,G, 𝑡)] > 1−2−[.

□

B.2 Security
Before proving our security theorem, we start with a lemma that

we will use in the proof. Intuitively this lemma shows that is we

have a connected graph and each node masks its input with random

valueswhere each value is shared between two connected nodes, the

resulting values reveal only the sum of the inputs of the nodes. The

lemma is the equivalent of Lemma 6.1. in Bonawitz et al. [BIK
+
17],

which shows the same property but only for complete graphs.

Lemma B.1. Let G = (V, E) be a connected graph and {𝑥𝑢 ∈
Z𝑚
𝑅
}𝑢∈V. For all 𝑚,𝑅, the following two distributions are indistin-

guishable
(
𝑥𝑢 +

∑
𝑣∈NG (𝑢) 𝑟𝑢,𝑣

)
mod 𝑅 :

∀(𝑢, 𝑣) ∈ E, 𝑟𝑢,𝑣 ← Z
𝑚
𝑅

if 𝑢 < 𝑣

𝑟𝑢,𝑣 = −𝑟𝑣,𝑢 if 𝑢 > 𝑣

𝑢∈V
≈

{
𝑡𝑢 ← Z𝑚𝑅 :

∑
𝑢∈V

𝑡𝑢 =
∑
𝑢∈V

𝑥𝑢

}
𝑢∈V

Proof of Lemma B.1. For ease of exposition, we do not write

mod𝑅. We prove the lemma by induction on the size of |V|. Our
base case is |V| = 2, for which the lemma holds. Let us assume

that the lemma hold for for graphs of size |V| = 𝑘 . Let G(V, E) be
a connected graph with 𝑘 + 1 vertices and let𝑤 ∈ V be one of its

vertices. For all 𝑢 ∈ 𝑉 \ {𝑤}, define

𝛿𝑢 =

{
𝑟𝑢,𝑤 = −𝑟𝑤,𝑢 if𝑤 ∈ NG (𝑢)
0 otherwise.

By induction, it holds that
(𝑥𝑢 + 𝛿𝑢) +

∑
𝑣∈NG (𝑢),𝑣≠𝑤 𝑟𝑢,𝑣 :

∀(𝑢, 𝑣) ∈ E \ {(𝑢,𝑤)}, 𝑟𝑢,𝑣 ← Z
𝑚
𝑅

if 𝑢 < 𝑣

𝑟𝑢,𝑣 = −𝑟𝑣,𝑢 if 𝑢 > 𝑣

𝑢∈V\{𝑤 }
≈

𝑡𝑢 ← Z𝑚𝑅 :

∑
𝑢∈V\{𝑤 }

𝑡𝑢 =
∑

𝑢∈V\{𝑤 }
(𝑥𝑢 + 𝛿𝑢)

𝑢∈V\{𝑤 }
≈

𝑡𝑢 ← Z𝑚𝑅 :

∑
𝑢∈V\{𝑤 }

𝑡𝑢 =
∑

𝑢∈V\{𝑤 }
𝑥𝑢 +

∑
𝑢∈NG (𝑤)

𝑟𝑢,𝑤

𝑢∈V\{𝑤 }
17

Then, denote

𝑡𝑤 = 𝑥𝑤 +
∑

𝑣∈NG (𝑤)
𝑟𝑤,𝑣 = 𝑥𝑤 −

∑
𝑢∈NG (𝑤)

𝑟𝑢,𝑤 .

Since the 𝑟𝑢,𝑤 ’s are random, it holds that 𝑡𝑤 is uniformly distributed,

and ∑
𝑢∈V

𝑡𝑢 =
∑
𝑢∈V

𝑥𝑢 ,

which concludes the proof. □

Proof of Theorem 3.6. We will prove the theorem statement

presenting a sequence of hybrids starting that start from the real

execution and transition to the simulated execution where each

two consecutive hybrids are indistinguishable:

Hyb1 This is RealC (𝐴1, 𝐴2, 𝐴
′
2
, 𝐴3), the view of the adversary in

the real execution of the protocol.

Hyb2 In this hybrid for every honest client 𝑖 ∈ 𝐴1 we replace

the shares of 𝑏𝑖 and 𝑠𝑘
1

𝑖
sent to other honest clients by

zeros, which the adversary sees encrypted as 𝑐𝑖, 𝑗 . However,

honest clients will submit the correct shares in Step B.1.

The indistinguishability from the previous hybrid follows

by the IND-CPA security of the encryption scheme E𝑎𝑢𝑡ℎ .
Hyb3 In this hybrid for every honest client 𝑢 ∈ 𝐴1 \ 𝐴′

2
we re-

place the shares of 𝑏𝑢 sent to parties in C with shares of

0 (a different sharing for each value). Note that with over-

whelming probability 𝐸1 (C,G, 𝑡) = 1, hence this hybrid is

indistinguishable from the previous hybrid since the server

never receives sufficient shares to reconstruct 𝑏𝑢 (honest

parties will not send shares of 𝑏𝑢), and hence the Shamir

secret share of 𝑏𝑢 and 0 are indistinguishable.

Hyb4 In this hybrid for every honest client 𝑢 ∈ 𝐴2 \ 𝐴′
2
, we

modify ®𝑟𝑢 to be chosen uniformly at random. Since 𝑏𝑢 is

chosen uniformly at random and the shares sent about it

no longer contain any information about after the change

from the previous step, this hybrid is indistinguishable

from the previous by the pseudorandom properties of the

PRG 𝐹 .

Hyb5 In this hybrid for every honest client𝑢 ∈ 𝐴′
2
we replace the

shares of 𝑠𝑘1𝑢 sent to parties in C with shares of 0 (a differ-

ent sharing for each value). Note that with overwhelming

probability 𝐸1 (C,G, 𝑡) = 1, hence this hybrid is indistin-

guishable from the previous hybrid since the server never

receives sufficient shares to reconstruct 𝑠𝑘1𝑢 (honest clients

will not send shares of 𝑠𝑘1𝑢), and hence the Shamir secret

share of 𝑠𝑘1𝑢 and 0 are indistinguishable.

Hyb6 The difference in this hybrid from the previous one is

that the simulator changes the behavior of honest clients

𝑖 ∈ 𝐴′
2
(Step 3) to run the the key agreement simulator

SimKA (𝑠𝑖, 𝑗 , 𝑝𝑘1𝑗) where 𝑠𝑖, 𝑗 is chosen uniformly at ran-

dom. Indistinguishability follows by the security of the key

agreement protocol and the fact that the shares sent 𝑠𝑘1
𝑖

has been substituted by shares of zero in the previous step

and carry no information about they.

Hyb7 For every pair of honest clients 𝑖, 𝑗 ∈ 𝐴′
2
we set the value

®𝑚𝑖, 𝑗 to be uniformly random. This is indistinguishable from

the previous hybrid because of the pseudorandom prop-

erties of 𝐹 and the fact that ®𝑚𝑖, 𝑗 = 𝐹 (𝑠𝑖, 𝑗) where 𝑠𝑖, 𝑗 is

sampled at random and independent of all the other values

sent in the protocol.

Hyb8 For every pair of honest clients 𝑖, 𝑗 ∈ 𝐴′
2
we set the value

®𝑚𝑖, 𝑗 to be uniformly random. This is indistinguishable from

the previous hybrid because of the pseudorandom prop-

erties of 𝐹 and the fact that ®𝑚𝑖, 𝑗 = 𝐹 (𝑠𝑖, 𝑗) where 𝑠𝑖, 𝑗 is
sampled at random and independent of all the other values

sent in the protocol (the corresponding shared of 𝑠𝑖, 𝑗 were

changed to shares of zero).

Hyb9 In this hybrid we change the way we compute the values

®𝑦𝑖 in Step 5 for all honest parties in 𝑖 ∈ 𝐴′
2
as follows:

®𝑦𝑖 = 𝑤𝑖 + ®𝑟𝑖 −
∑

𝑗 ∈𝐴1∩NG (𝑖)
0< 𝑗<𝑖

®𝑚𝑖, 𝑗 +
∑

𝑗 ∈𝐴1∩NG (𝑖)
𝑖< 𝑗≤𝑛

®𝑚𝑖, 𝑗 ,

where the values𝑤𝑖 are chosen at random subject to∑
𝑖∈𝐴′

2

®𝑤𝑖 = ®𝑧 .

We argue that this hybrid is indistinguishable from the

previous for the following reasons. First note that with

overwhelming probability 𝐸2 (C, 𝐷,G) = 1, hence G[𝐴2 ∩
C] is connected. Then, by Lemma B.1 we have that the two

distributions are indistinguishable.

Hyb10 In this hybrid we change the way we compute the values

®𝑦𝑖 in Step 5 for all honest parties in 𝑖 ∈ 𝐴2 \𝐴′
2
as follows:

®𝑦𝑖 = ®𝑟𝑖 −
∑

𝑗 ∈𝐴1∩NG (𝑖)
0< 𝑗<𝑖

®𝑚𝑖, 𝑗 +
∑

𝑗 ∈𝐴1∩NG (𝑖)
𝑖< 𝑗≤𝑛

®𝑚𝑖, 𝑗 .

This is indistinguishable from the previous hybrid since

no honest party sends shares from 𝑏𝑖 and since with over-

whelming probability 𝐸1 (C,G, 𝑡) = 1, the server does not

receive a sufficient number of shares of 𝑏𝑖 , hence 𝑟𝑖 is dis-

tributed uniformly and so it 𝑦𝑖 in both hybrids.

The distribution of the last hybrid can be computed from the sim-

ulator’s input ®𝑧, 𝐴1, 𝐴2, 𝐴
′
2
, 𝐴3. So SimC (®𝑧) is defined to sample

from that distribution. This concludes the proof. □

C SECURITY PROOFS FOR MALICIOUS
PROTOCOL

C.1 Proof of Correctness
Before proving Theorem 4.8, we first bound the probability of an

honest client to abort incorrectly in Step (5).

Lemma C.1. Assume 𝑘 ≥ log(𝑛) + ([+ 1) log(2). If all parties
follow the malicious protocol honestly, then the probability that any

client aborts in Step (5) of Algorithm 3 is at most 2
−[−1

.

Proof. Let 𝑋𝑖 be the number of incoming neighbors of client

𝑖 . The distribution of 𝑋𝑖 is binomial with 𝑛 − 1 trials and success

probability 𝑘/(𝑛 − 1). The mean ` of 𝑋𝑖 is thus 𝑘 .

The multiplicative Chernoff bound states that

Pr[𝑋𝑖 ≥ (1 + 𝑑)`] ≤ exp

(
− 𝑑

2`

2 + 𝑑

)
.

In particular

Pr[𝑋𝑖 ≥ 3𝑘] ≤ 𝑒−𝑘 .
18

In order for a client 𝑖 to abort𝑋𝑖 must be ≥ 3𝑘 . So by a union bound

the probability of anyone aborting is at most

𝑛 Pr[𝑋𝑖 ≥ 3𝑘] ≤ 𝑛𝑒−𝑘

= 𝑒 log(𝑛)𝑒− log(𝑛)−([+1) log(2)

= 2
−[−1 ,

as required. □

Proof of Theorem 4.8. From Lemma C.1, we bound the prob-

ability of an honest client to abort incorrectly in Step (5). We can

therefore assume this event does not happen. Similarly to the proof

of Theorem 3.5, the fact that the server does not abort before Step 14

follows from the protocol description, as |𝐴5 | ≥ (1 − 𝛿)𝑛 implies

that |𝐴1 |, |𝐴2 |, |𝐴′
2
|, |𝐴3 |, |𝐴4 | ≥ (1 − 𝛿)𝑛. Next, we note that the

messages and signatures are created to enforce the server to be-

have, and if it behaves, do not impact correctness. The rest of the

proof follows as in the semi-honest case where we use event 𝐸6
holds instead of 𝐸3. □

C.2 Proof of Lemma 4.7
Let G = (V, E) be a graph with V = [𝑛]. We denote by G(𝑖) =
{(𝑖, 𝑗) ∈ E : 𝑗 ∈ V} the set of neighbors of 𝑖 . Throughout this section,
C will be the fixed (but unknown) set of at most𝛾𝑛 corrupted clients.

We will start by defining the event that no honest client has

too many dishonest neighbors. This will be useful for proving that

multiple other events happen with high probability. Let

𝑚(_) = 𝑘𝛾𝑛

𝑛 − 1 +
√
𝑘

2

(_ log(2) + log(𝑛)) .

Let 𝑋𝑖 be |G(𝑖) ∩ C|, and let the binary predicate 𝐸𝑚 (_),_ = 1 if and

only if for all 𝑖 ∈ [𝑛] \ C, we have 𝑋𝑖 ≤ 𝑚(_). For moderately large

_, this will almost always be the case.

Lemma C.2. Pr[𝐸𝑚 (_),_ = 0] ≤ 2
−_

.

Proof. Each honest client chooses their 𝑘 neighbors indepen-

dently from amongst 𝑛 possibilities, at most 𝛾𝑛 of which are in C.
If 𝑖 ∈ [𝑛] \ C then 𝑋𝑖 has a distribution stochastically dominated

by HyperGeom(𝑛 − 1, 𝛾𝑛, 𝑘) (with equality if exactly 𝛾𝑛 clients are

corrupted). Thus, as there are at most 𝑛 honest clients,

Pr[𝐸𝑚 (_),_ = 1] ≥ Pr[𝑋𝑖 ≤ 𝑚(_)]𝑛 ≥ (1 − Pr [𝑋𝑖 ≥ 𝑚(_)])𝑛

≥ 1 − 𝑛 Pr [𝑋𝑖 ≥ 𝑚(_)] .

Therefore,

Pr[𝐸𝑚 (_),_ = 0] = 𝑛 · Pr [𝑋𝑖 ≥ 𝑚(_)]

= exp

(
log(𝑛) − 2

(
𝑚(_) − 𝑘𝛾𝑛

𝑛 − 1

)
2

/𝑘
)

= 2
−_ .

□

Lemma C.3. Let 𝑘, 𝑡, 𝑛,𝑚 be integers such that 𝑘 ≤ (𝑛 − 1)/4 and
𝑡 −𝑚 > log(𝑛), and denote 𝛼 = 𝑡−𝑚

2𝑘
. Let

𝑎 = min

{
(𝑡 −𝑚 + 1)

(
3(𝑡 −𝑚)

2

− log(𝑒𝑛)
)
, 𝑛

(
(𝑡 −𝑚)3

2𝑘
− 1

)}

then for

Xs ∼ HyperGeom(𝑛 − 1, 𝑠 − 1, 𝑘)

we have

Pr

[
𝐸5 (C,G, 𝑡, 𝛼) = 0

��𝐸𝑚,_ = 1

]
≤

∑
𝑠<𝛼𝑛

(
𝑛

𝑠

)
cdfXs (𝑡−𝑚−1)

𝑠 ≤ 𝑛𝑒−𝑎 .

Proof. We will bound Pr[𝐸5 (C,G, 𝑡, 𝛼) = 0] using a union

bound over all the possible sets 𝑆 . Let 𝐵𝑆 be the event that every

client in 𝑆 has at least 𝑡 −𝑚 neighbors in 𝑆 . Note that the number of

neighbors that a client in 𝑆 has in 𝑆 has a HyperGeom(𝑛−1, |𝑆 |−1, 𝑘)
distribution. Thus the probability that a fixed client in that set has

at least 𝑡 −𝑚 neighbors in 𝑆 cdfXs (𝑡 −𝑚 − 1).

Pr

[
𝐸5 (C,G, 𝑡, 𝛼) = 0

��𝐸𝑚,_ = 1

]
≤

∑
𝑆 : |𝑆 |<𝛼𝑛

Pr[𝐵𝑆] ≤
∑
𝑠<𝛼𝑛

(
𝑛

𝑠

)
𝑝𝑠𝑠 .

Note that,

(𝑛
𝑠

)
≤

(
𝑒𝑛
𝑠

)𝑠
and cdfXs (𝑡 −𝑚 − 1) can be bounded using

the tail-bound in Section 2 for 𝑠 > 𝑡 −𝑚 and by zero otherwise.

Putting this together we get that

Pr [𝐸5 (C,G, 𝑡, 𝛼) = 0] ≤
∑

𝑡−𝑚<𝑠<𝛼𝑛

𝑔(𝑠)

where 𝑔(𝑠) =
(
𝑒𝑛
𝑠

)𝑠
exp(−2𝑘 ((𝑡 −𝑚)/𝑘 − (𝑠 − 1)/(𝑛 − 1))2𝑠). From

which it follows that Pr[𝐸5 (C,G, 𝑡, 𝛼) = 0] ≤ 𝛼𝑛max𝑡−𝑚<𝑠<𝛼𝑛 𝑔(𝑠).
It thus suffices to show that, for 𝑡 −𝑚 < 𝑠 < 𝛼𝑛, log(𝑔(𝑠)) < −𝑎.

Let 𝑙 (𝑠) = log(𝑔(𝑠)). We will study the derivatives in order to

show that 𝑙 (𝑠) must achieve its maximum over [𝑡 −𝑚 + 1, 𝛼𝑛] at
one of the end points. Then we shall show that 𝑙 (𝑡 −𝑚 + 1) and
𝑙 (𝛼𝑛) are both less than −𝑎. From which the result is immediate.

Let us start by writing out 𝑙 and its first three derivatives.

𝑙 (𝑠) = 𝑠 log
(𝑒𝑛
𝑠

)
− 2𝑘𝑠

(
𝑡 −𝑚
𝑘
− 𝑠 − 1
𝑛 − 1

)
2

𝑙 ′(𝑠) = log

(𝑒𝑛
𝑠

)
− 1 + 4𝑘𝑠

𝑛 − 1

(
𝑡 −𝑚
𝑘
− 𝑠 − 1
𝑛 − 1

)
− 2𝑘

(
𝑡 −𝑚
𝑘
− 𝑠 − 1
𝑛 − 1

)
2

𝑙 ′′(𝑠) = −1
𝑠
− 4𝑘𝑠

(𝑛 − 1)2
+ 8𝑘

𝑛 − 1

(
𝑡 −𝑚
𝑘
− 𝑠 − 1
𝑛 − 1

)
𝑙 ′′′(𝑠) = 1

𝑠2
− 12𝑘

(𝑛 − 1)2

Note that the third derivative is decreasing, so can change sign

at most once. It follows that the second derivative can change

sign at most twice and the first derivative at most thrice. Note

also that 𝑙 ′(0) = ∞ and 𝑙 ′(∞) = −∞. Thus if we can show that

𝑙 ′(𝑡 −𝑚 + 1) < 0 and 𝑙 ′(𝛼𝑛) > 0 then we can conclude that 𝑙 has

one minimum and no maximum in the interior of [𝑡 −𝑚 + 1, 𝛼𝑛].
19

We will do that now, firstly

𝑙 ′(𝑡 −𝑚 + 1)

= log

(𝑒𝑛

𝑡 −𝑚 + 1

)
− 1 + 𝑘 (𝑡 −𝑚 + 1)

𝑛 − 1 (𝑡 −𝑚)
(
1

𝑘
− 1

𝑛 − 1

)
− 2𝑘 (𝑡 −𝑚)

(
1

𝑘
− 1

𝑛 − 1

)
≤ log(𝑛) −

(
2 − 𝑘

𝑛

)
(𝑡 −𝑚)𝑛 − 𝑘 − 1

𝑛 − 1
≤ log(𝑛) − (𝑡 −𝑚) as 𝑘 ≤ (𝑛 − 1)/4
< 0 as 𝑡 −𝑚 > log(𝑛)

and secondly

𝑙 ′
(𝑡 −𝑚

2𝑘
𝑛

)
= log

(
2𝑘𝑒

𝑡 −𝑚

)
− 1 + 2(𝑡 −𝑚)𝑛

𝑛 − 1 (𝑡 −𝑚)𝑛 − 1 − 𝑘(𝑛 − 1)𝑘

− 2𝑘
(
𝑡 −𝑚
𝑘
+ 1

𝑛 − 1 −
𝑛

𝑛 − 1
𝑡 −𝑚
2𝑘

)
2

≥ 2

(𝑡 −𝑚)2
𝑘

𝑛 − 𝑘
𝑛

− 2 (𝑡 −𝑚)
2

𝑘

(
1 + 𝑘

(𝑛 − 1) (𝑡 −𝑚) −
𝑛

2(𝑛 − 1)

)
2

≥ (𝑡 −𝑚)
2

𝑘

(
3

2

− 2
(
1 + 1

4

− 1

2

)
2

)
as 𝑘 ≤ (𝑛 − 1)/4

=
(𝑡 −𝑚)2

𝑘

3

8

> 0.

It remains to evaluate the endpoints. Firstly

𝑙 (𝑡 −𝑚 + 1) = (𝑡 −𝑚 + 1) log
(𝑒𝑛

𝑡 −𝑚 + 1

)
− 2𝑘 (𝑡 −𝑚 + 1) (𝑡 −𝑚)𝑛 − 𝑘 − 1

𝑘 (𝑛 − 1)

≤ (𝑡 −𝑚 + 1)
(
log(𝑒𝑛) − 2(𝑡 −𝑚)𝑛 − 1 − 𝑘

𝑛 − 1

)
≤ −(𝑡 −𝑚 + 1)

(
3(𝑡 −𝑚)

2

− log(𝑒𝑛)
)

and secondly

𝑙

(𝑡 −𝑚
2𝑘

𝑛

)
= 𝑛

𝑡 −𝑚
2𝑘

log

(
2𝑒𝑘

𝑡 −𝑚

)
− (𝑡 −𝑚)𝑛

(
𝑡 −𝑚
𝑘
− 𝑡 −𝑚

2𝑘

𝑛

𝑛 − 1 +
1

𝑛 − 1

)
2

≤ 𝑛 − (𝑡 −𝑚)𝑛
(𝑡 −𝑚

2𝑘

)
2

≤ −𝑛
(
(𝑡 −𝑚)3

2𝑘
− 1

)
.

The maximum of these is the definition of −𝑎 so the proof is com-

plete. □

All the lemmas above enable to list the three constraints neces-

sary to prove that Part II of Algorithm 3 has the desired “niceness”

property.

Lemma C.4. Let 𝑛 > 0 be a set of clients, let 𝜎, [be security and

correctness parameters, let 𝛾, 𝛿 ∈ [0, 1] be the maximum fraction of

corrupt and dropout clients, respectively, let 𝑘, 𝑡 be natural numbers

such that 𝑡 ∈ (0, 𝑘) and 𝛼 ∈ (0, 1). Let
Xs ∼ HyperGeom(𝑛 − 1, 𝑠 − 1, 𝑘)

Y ∼ HyperGeom(𝑛 − 1, (1 − 𝛿)𝑛, 𝑘)
be random variables. Let C, with |C| ≤ 𝛾𝑛, be the set of corrupted
clients. Let

𝑚 =
𝑘𝛾𝑛

𝑛 − 1 +
√
𝑘

2

((𝜎 + 1) log(2) + log𝑛)

If the following three constraints hold

(1) 𝑚 ≤ 2𝑡 − 𝑘 ,
(2)

∑
𝑠<𝛼𝑛

(𝑛
𝑠

)
cdfXs (𝑡 −𝑚 − 1)𝑠 ≤ 2

−(𝜎+1)
,

(3) and 𝑛 · cdfY (𝑡 − 1) ≤ 2
−[−1

,

then the distribution D over pairs (G, 𝑡) implemented by Part II of

Algorithm 3 is (𝜎, [, C, 𝛼)-nice.

Proof of Lemma C.4. Lemma C.2 with _ = 𝜎 + 1 says that with
probability 1 − 2−(𝜎+1) , 𝐸𝑚,𝜎+1 = 1. As𝑚 =𝑚(𝜎 + 1) ≤ 2𝑡 − 𝑘 we

have 𝐸𝑚,𝜎+1 ≤ 𝐸4 (C,G, 𝑡) so that covers 𝐸4
By a union bound

Pr[𝐸5 (C,G, 𝑡, 𝛼) = 0] ≤
∑

𝑆 : |𝑆 |<𝛼𝑛
Pr[∀𝑖 ∈ 𝑆, |N•→ (𝑖)∩(C∪𝑆) | ≥ 𝑡] .

As |N•→ (𝑖) ∩ (C ∪𝑆) | has (at worst) a HyperGeom(𝑛 − 1, |𝑆 | +𝛾𝑛, 𝑘)
distribution, we have

Pr[∀𝑖 ∈ 𝑆, |N•→ (𝑖) ∩ (C ∪ 𝑆) | ≥ 𝑡] ≤ cdf𝑋 |𝑆 | (𝑡 −𝑚 − 1)
|𝑆 | .

Substituting this in amalgamating 𝑆 of the same size into a single

term gives

Pr[𝐸5 (C,G, 𝑡, 𝛼) = 0] ≤
∑
𝑠<𝛼𝑛

(
𝑛

𝑠

)
cdfXs (𝑡 −𝑚 − 1)

𝑠 .

which by (2) is at most 2
−(𝜎+1)

.

Putting these two bounds together satisfies condition (1) of the

definition of niceness.

Finally,

Pr[𝐸6 (𝐷,G, 𝑡)] ≤ 𝑛 Pr[|N•→ (1) ∩ ([𝑛] \ 𝐷) | < 𝑡] .
Combining this with the fact that |N•→ (𝑖) ∩ ([𝑛] \𝐷) | has at worst
a HyperGeom(𝑛 − 1, (1 − 𝛿)𝑛, 𝑘) distribution we get

Pr[𝐸6 (𝐷,G, 𝑡) = 0] ≤ 𝑛 · cdfY (𝑡 − 1)
And thus condition (2) in the definition of niceness follows from

constraint (3). □

We can finally prove Lemma 4.7.

Proof of Lemma 4.7. Let (G, 𝑡) be generated by Part II in Algo-

rithm 3. We will prove the three constraints of Lemma C.4 and thus

conclude niceness. At various points we will have to assume 𝑐 is

at least some constant. Taking 𝑐 to be the maximum of all of those

constants will give a 𝑐 for which the lemma holds and the following

proof goes through.

20

The first constraint is that𝑚 ≤ 2𝑡 − 𝑘 . To show this note that

𝑡 ≥ (3 + 𝛾 − 2𝛿)𝑘/4, so 2𝑡 − 𝑘 ≥ (1 + 𝛾 − 2𝛿)𝑘/2 and it suffices to

show this is bigger than𝑚 i.e.(
(1 + 𝛾 − 2𝛿)

2

− 𝛾𝑛

𝑛 − 1

)
2

𝑘2 ≥ 𝑘 (𝜎 + 1) log(2) + log(𝑛)
2

.

This constraint holds so long as

𝑘 ≥ (𝜎 + 1) log(2) + log(𝑛)
2

(
(1 + 𝛾 − 2𝛿)

2

− 𝛾𝑛

𝑛 − 1

)−2
and in particular so long as

𝑐 >
1

2

(
(1 + 𝛾 − 2𝛿)

2

− 𝛾𝑛

𝑛 − 1

)−2
.

for sufficiently large 𝑛 the expression on the right is bounded so 𝑐

can be chosen to satisfy this constraint.

For the third constraint we use the hypergeometric tail-bound

cdfY (𝑡 − 1) ≤ exp

(
− 2
𝑘

(
𝑡 − 𝑘 (1 − 𝛿)𝑛

𝑛 − 1

)
2

)
to reduce the constraint to

2

𝑘

(
𝑡 − 𝑘 (1 − 𝛿)𝑛

𝑛 − 1

)
2

≥ [+ 1.

As 𝑡 ≥ (3 + 𝛾 − 2𝛿)𝑘/4 it suffices to have

𝑘 ≥ [+ 1
2

(
3 + 𝛾 − 2𝛿

4

− (1 − 𝛿)𝑛
𝑛 − 1

)−2
.

This is satisfied so long as

𝑐 >
1

2

(
3 + 𝛾 − 2𝛿

4

− (1 − 𝛿)𝑛
𝑛 − 1

)−2
which is again bounded for sufficiently large 𝑛 so 𝑐 can be chosen

to satisfy this.

For the second constraint we shall use Lemma C.3. This reduces

the task to showing that 𝑘 < (𝑛 − 1)/4, 𝑡 −𝑚 > log(𝑛) and for

𝑎 = min

{
(𝑡 −𝑚 + 1)

(
3(𝑡 −𝑚)

2

− log(𝑒𝑛)
)
, 𝑛

(
(𝑡 −𝑚)3

2𝑘
− 1

)}
we have 𝑎 ≥ log(𝑛) + 𝜎 + 1.

That 𝑘 < (𝑛 − 1)/4 is assumed in the statement we are proving

so we don’t need to show that. The other two conditions follow

from the claim that

𝑡 −𝑚 > max{log(𝑛) + 𝜎 + 1, 2
√
𝑘}.

To see this note again that 𝑡 ≥ (3 + 𝛾 − 2𝛿)𝑘/4 so 𝑡 −𝑚 is at least(
3 + 𝛾 − 2𝛿

4

− 𝛾𝑛

𝑛 − 1

)
𝑘 −

√
(𝜎 + 1) log(2) + log(𝑛)

2

√
𝑘. (1)

So long as 𝑐 is bigger than

4

(
3 + 𝛾 − 2𝛿

4

− 𝛾𝑛

𝑛 − 1

)
2

the first term of Eq. (1) is more than twice the second term so then

𝑡 −𝑚 is at least

1

2

(
3 + 𝛾 − 2𝛿

4

− 𝛾𝑛

𝑛 − 1

)
𝑘.

Thus 𝑡 −𝑚 is at least log(𝑛) + 𝜎 + 1 so long as 𝑐 is at least

2

(
3 + 𝛾 − 2𝛿

4

− 𝛾𝑛

𝑛 − 1

)−1
.

Furthermore 𝑡 −𝑚 is at least 2

√
𝑘 so long as 𝑐 is at least

16

(
3 + 𝛾 − 2𝛿

4

− 𝛾𝑛

𝑛 − 1

)−2
.

□

C.3 Proof of Theorem 4.9
Proof of Theorem 4.9. We will prove the theorem statement

by defining a simulator Sim through a sequence of hybrids, so that

the view of the adversary A in any two subsequent executions are

computationally indistinguishable. In each of the hybrids below, to

ease notation, we assume that the Sim will cause honest parties to

abort as they would during the real protocol execution (e.g., when

receiving a malformed message). We denoteH = [𝑛] \ C the set of

honest clients.

Hyb1 This is the real execution of the protocol, where the adver-

sary is interacting with honest parties.

Hyb2 In this hybrid, we introduce a simulator Sim, which knows

all the inputs ®𝑥𝑖 and secret keys 𝑠𝑘1
𝑖
, 𝑠𝑘2

𝑖
for 𝑖 ∈ H . The

simulator runs a full execution of the protocol with the

adversary and answers the random oracle queries by using

a dynamically generated table of random values. The view

of the adversary in this hybrid is the same as in the previous

hybrid.

Hyb3 In this hybrid, the simulator aborts any of the honest parties

in H if A provides a public key for 𝑗 ∈ H which is not

the valid public key of client 𝑗 . The view of the adversary

in this hybrid is indistinguishable from the view in the

previous hybrid since we assumed the server to behave

semi-honestly during the public-key commitments phase

(during the Merkle tree generation) and each client inH
checks that the keys it received are in the Merkle tree.

Hyb4 In this hybrid, the simulator replaces KA .𝐴𝑔𝑟𝑒𝑒 in Step 6

by SimKA (𝑘𝑖, 𝑗) where 𝑘𝑖, 𝑗 is chosen uniformly at random

for all 𝑖, 𝑗 ∈ H . The view of the adversary in this hybrid is

indistinguishable from the view in the previous hybrid by

the security of the key agreement protocol.

Hyb5 In this hybrid, the simulator replaces KA .𝐴𝑔𝑟𝑒𝑒 in Step 8

by SimKA (𝑠𝑖, 𝑗), where 𝑠𝑖, 𝑗 is chosen uniformly at random

for all 𝑖, 𝑗 ∈ H . The view of the adversary in this hybrid is

indistinguishable from the view in the previous hybrid by

the security of the key agreement protocol.

Hyb6 In this hybrid, Sim aborts client 𝑖 ∈ H in Step 8 if 𝑖 receives

from the server a ciphertext (𝑗, 𝑐𝑖, 𝑗) for 𝑗 ∈ H which

is not the ciphertext created by 𝑗 and can be decrypted

without failure. Since the key 𝑘𝑖, 𝑗 was chosen uniformly at

random in Hyb4, the view of the adversary in this hybrid

is indistinguishable from the view in the previous hybrid

by the INT-CTXT security of the authenticated encryption

scheme.

Hyb7 In this hybrid, the simulator substitutes all encrypted shares

sent between 𝑖, 𝑗 ∈ H with encryptions of 0 (but still re-

veals the real shares in Step 13). Since the key 𝑘𝑖, 𝑗 was

21

chosen uniformly at random in Hyb4, the view of the ad-

versary in this hybrid is indistinguishable from the view

in the previous hybrid by the semantic security of the au-

thenticated encryption scheme.

Hyb8 In this hybrid, the simulator aborts client 𝑖 ∈ H in Step 10

if any of the signatures 𝜎 incl
𝑖, 𝑗

for 𝑖, 𝑗 ∈ H is valid but was

never produced by 𝑖 . The view of the adversary in this

hybrid is indistinguishable from the view in the previous

hybrid by the existential unforgeability under chosen mes-

sage attack of the signature scheme.

Hyb9 In this hybrid, the simulator makes client 𝑖 ∈ H abort in

Step 13 if any of the signatures 𝜎ack
𝑖, 𝑗

for 𝑖, 𝑗 ∈ H is valid

but was never produced by 𝑖 . The view of the adversary

in this hybrid is indistinguishable from the view in the

previous hybrid by the existential unforgeability under

chosen message attack of the signature scheme.

At this point, we introduce some notation. Denote by G = (E,V)
the graph obtained during Part II, where V = [𝑛] and (𝑖, 𝑗) ∈ E
if 𝑗 ∈ N•→ (𝑖) where 𝑖 ∈ H . Note that G is well defined since the

simulator has chosen all the sets N•→ (𝑖) for 𝑖 ∈ H , and this does not

depend on messages provided by the adversary.

Hyb10 In this hybrid, the simulator aborts if the adversary queried

the random oracle on input 𝑏𝑖 for 𝑖 ∈ H before the shares

are revealed in Step 13. By Lemma 4.7, it holds that event

𝐸4 (C,G, 𝑡) = 1 (Definition 4.2) with overwhelming prob-

ability, and in particular that all 𝑖 ∈ H have less than

2𝑡 − 𝑘 < 𝑡 corrupt neighbors, and hence that the adver-

sary knows less than 𝑡 shares of 𝑏𝑖 for all 𝑖 ∈ H . By the

information-theoretic security of Shamir secret sharing,

with overwhelming probability the view of the adversary

in this hybrid is indistinguishable from the view in the

previous hybrid.

Hyb11 We use the notation of Step 8 and denote 𝐴2,𝑖 the set of

parties 𝑗 for which client 𝑖 will include the values ®𝑚𝑖, 𝑗 in

®𝑦𝑖 . In this hybrid, the simulator samples the values ®𝑦𝑖 at
random in Step 8, and will program the random oracle on

𝑏𝑖 as follows in Step 14:

PRG(𝑏𝑖) B ®𝑦𝑖 − ®𝑥𝑖 +
∑
𝑗 ∈𝐴2,𝑖

𝑗<𝑖

®𝑚𝑖, 𝑗 −
∑
𝑗 ∈𝐴2,𝑖

𝑖< 𝑗

®𝑚𝑖, 𝑗 .

Since the adversary has not queried the random oracle on

𝑏𝑖 before Step 14, its view in this hybrid is indistinguishable

from its view in the previous hybrid.

The simulator is now going program the random oracle on input

𝑏𝑖 differently to “delete” the inputs ®𝑥𝑖 , while ensuring the view of the

adversary does not change. There will be several cases, each handled

in their own hybrids.

Denote byH submit ⊆ H the set of clients 𝑖 who sent masked values

to the adversary in Step 8. Denote byH shares ⊆ H the set of clients

𝑖 for which the simulator sent at least 𝑡 − |N•→ (𝑖) ∩ C| shares of 𝑏𝑖
in Step 13. Note that these sets are well defined (in Steps 8 and 13

respectively) as they follows from the simulator actions. Note that

H shares ⊆ H submit
. Indeed, for the simulator to have a client 𝑗 reveal

a share of 𝑏𝑖 in Step 13, it must have received a valid signature 𝜎 incl
𝑖, 𝑗

,

which is created by 𝑖 in Step 8, hence 𝑖 ∈ H submit
.

Hyb12 In this hybrid, the simulator will reprogram in Step 14 the

random oracle on𝑏𝑖 for all 𝑖 ∈ H\H shares
arbitrarily. Since

𝑖 ∉ H shares
, the simulator will have not sent the shares of

𝑏𝑖 in Step 13. As such, the adversary will not have enough

shares to recover 𝑏𝑖 , and therefore with overwhelming

probability will not query the random oracle on 𝑏𝑖 . Hence,

the view of the adversary in this hybrid is indistinguishable

from the view in the previous hybrid.

We are now going to define a subgraph G′ of G where the vertices

are all the honest nodes that will have more than 𝑡 shares of their

self-mask revealed and the corrupted parties, i.e., V′ = H reveal ∪ C,
and the (undirected) edges are defined as

∀𝑗, 𝑗 ′ ∈ V′, (𝑗, 𝑗 ′) ∈ E′ ⇐⇒ (𝑗 ′ ∈ 𝐴2, 𝑗 ∧ 𝑗 ∈ 𝐴2, 𝑗 ′) .
We denote 𝑁1, . . . , 𝑁^ the different connected components of G′′.

Hyb13 For all 𝑘 ∈ [1, ^], instead of programming the random

oracle as

∀𝑖 ∈ 𝑁𝑘 , PRG(𝑏𝑖) B ®𝑦𝑖 − ®𝑥𝑖 +
∑
𝑗 ∈𝐴2,𝑖

𝑗<𝑖

®𝑚𝑖, 𝑗 −
∑
𝑗 ∈𝐴2,𝑖

𝑖< 𝑗

®𝑚𝑖, 𝑗 ,

the simulator samples |𝑁𝑘 | random vectors { ®𝑤𝑖 }𝑖∈𝑁𝑘
con-

ditioned on ∑
𝑖∈𝑁𝑘

®𝑤𝑖 =
∑
𝑖∈𝑁𝑘

®𝑥𝑖 ,

and programs the random oracle on 𝑏𝑖 in Step 14 as follows

for all 𝑖 ∈ 𝑁𝑘 :

PRG(𝑏𝑖) B ®𝑦𝑖 − ®𝑤𝑖 +
∑
𝑗 ∈𝐴2,𝑖

𝑗<𝑖, 𝑗∉𝑁𝑘

®𝑚𝑖, 𝑗 −
∑
𝑗 ∈𝐴2,𝑖

𝑖< 𝑗, 𝑗∉𝑁𝑘

®𝑚𝑖, 𝑗 . (2)

We need to show that the view of the adversary in this

hybrid is indistinguishable from the view in the previous

hybrid.

Let us show that the adversary cannot learn the values

𝑠𝑖, 𝑗 for 𝑖, 𝑗 ∈ 𝑁𝑘 . Let 𝑖, 𝑗 ∈ 𝑁𝑘 . In order to learn 𝑠𝑖, 𝑗 , the

adversary must get enough shares to reconstruct either 𝑠𝑘1
𝑗

or 𝑠𝑘1
𝑖
. We show below that A cannot get enough shares

for 𝑠𝑘1
𝑖
and the same argument holds for 𝑠𝑘1

𝑗
. Denote by

𝑚𝑖 = |N•→ (𝑖) ∩ C| the number of corrupted neighbors of 𝑖 ,

and 𝑅𝑖 ⊆ N•→ (𝑖)∩H the set of honest clients that revealed

shares of 𝑏𝑖 in Step 13. Since A has enough shares of 𝑏𝑖 ,

it must be that𝑚𝑖 + |𝑅𝑖 | ≥ 𝑡 . By Lemma 4.7, it holds that

event 𝐸4 (C,G, 𝑡) = 1 (Definition 4.2) with overwhelming

probability, and in particular that𝑚𝑖 < 2𝑡 − 𝑘 . Now, since
a neighbor of 𝑖 will not reveal both a share of 𝑏𝑖 and 𝑠𝑘

1

𝑖
,

to recover both 𝑏𝑖 and 𝑠𝑘
1

𝑖
, the adversary needs to obtain

at least 2(𝑡 −𝑚𝑖) shares from the 𝑘 −𝑚𝑖 honest neighbors

of 𝑖 , and hence needs that 2(𝑡 −𝑚𝑖) ≤ 𝑘 −𝑚𝑖 , i.e., needs

that𝑚𝑖 ≥ 2𝑡 − 𝑘 , which contradicts what is above.

Finally, it suffices to apply Lemma B.1 which proves that

the values above are identically distributed as the previous

hybrid.

22

Hyb14 Let𝑘 ∈ [1, 𝑐] such that |𝑁𝑘 | < 𝛼 ·𝑛. The simulator programs

the random oracle as above, but with random𝑤𝑖 ’s (i.e., it

does not need to condition on

∑
𝑖∈𝑁𝑘

®𝑤𝑖 =
∑
𝑖∈𝑁𝑘

®𝑥𝑖). We

need to show that the view of the adversary in this hybrid

is indistinguishable from the view in the previous hybrid.

By Lemma 4.7, it holds that event 𝐸5 (C,G, 𝑡, 𝛼) = 1 (Def-

inition 4.4) with overwhelming probability. Hence, there

exists 𝑖 ∈ 𝑁𝑘 , such that |N•→ (𝑖) ∩ (C ∪ 𝑁𝑘) | < 𝑡 . Since

A learned more than 𝑡 shares of 𝑏𝑖 (since 𝑁𝑘 ⊆ H reveal
),

it means A obtained a share of 𝑏𝑖 from 𝑗 ∉ 𝑁𝑘 . Since

𝑗 ∈ N•→ (𝑖), this implies that 𝑗 ∈ 𝐴2,𝑖 but 𝑖 ∉ 𝐴2, 𝑗 . There-

fore, it means that the only place that ®𝑚𝑖, 𝑗 appears was

when the simulator was programming PRG(𝑏𝑖) in Eq. (2).

Now, as before, we know that the adversary cannot have

learned 𝑠𝑘1
𝑖
. Now, we prove formally that the adversary

cannot have learned 𝑠𝑘1
𝑗
(Lemma 4.3) when

𝑝 = 𝑘 − (𝑡 −𝑚) + 1
with

𝑚 =
𝑘𝛾𝑛

𝑛 − 1 +
√
𝑘

2

((𝜎 + 1) log(2) + log𝑛).

By Lemma C.4, it holds that with probability at least 1−2−𝜎 ,
the adversary will not learn 𝑝 shares of 𝑠𝑘1

𝑗
, and it holds

that |N•→ (𝑗) ∩ C| ≤ 𝑚. Henceforth, the adversary knows

at most

|N•→ (𝑗) ∩ C| + (𝑘 − 𝑝) ≤ |N•→ (𝑗) ∩ C| + 𝑡 −𝑚 − 1 < 𝑡

shares of 𝑠𝑘1
𝑗
. Therefore 𝑠𝑖, 𝑗 (and ®𝑚𝑖, 𝑗) remains unknown

to the adversary with overwhelming probability, and the

adversary cannot learn∑
𝑖∈𝑁𝑘

®𝑤𝑖 =
∑
𝑖∈𝑁𝑘

®𝑥𝑖 ,

which means that the latter equality needs no longer to

hold.

Hyb15 This hybrid is defined as the previous one, with the only

difference that the simulator does not receive the inputs

of the honest parties. Instead, in Step 14, the simulator

makes one query to the functionality 𝐹 { ®𝑥𝑖 }𝑖∈H ,𝛼 on input

the partition

Π =

^+1⋃
𝑘=1

𝑁𝑘

where 𝑁^+1 = H \⋃^
𝑖=1 𝑁𝑘 . For all 𝑁𝑘 of size greater or

equal to 𝛼 · |H | ≤ 𝛼 · 𝑛, it will obtain the values necessary

to sample the required 𝑤𝑖 values. The functionality will

return ⊥ for all the other sets but the previous hybrids

removed the need to know the corresponding inputs.

It is easy to see that this change does not modify the

view seen by the adversary, and therefore it is perfectly

indistinguishable from the previous one. Moreover, this

hybrid does not make use of the honest party’s inputs, and

this concludes the proof.

□

23

	Abstract
	1 Introduction
	1.1 Our contributions

	2 Preliminaries and Notation
	3 The Semi-Honest Protocol
	3.1 An abstract summation protocol
	3.2 Generating ``Good'' Graphs
	3.3 Correctness and Security
	3.4 Performance Analysis
	3.5 Our Random Graph Constructions

	4 The Malicious Protocol
	4.1 Security Definition
	4.2 The Malicious Protocol
	4.3 Generating ``Nice'' Graphs
	4.4 Correctness and Security
	4.5 Performance Analysis

	5 Numerical bounds and concrete efficiency results
	5.1 Semi-honest Variant
	5.2 Malicious Variant

	6 Shuffling from Summation
	6.1 A Solution Based on Sketching
	6.2 Choice of l

	7 Conclusion
	References
	A Proofs of our randomized construction
	B Security Proofs for Semi-Honest Protocol
	B.1 Correctness
	B.2 Security

	C Security Proofs for Malicious Protocol
	C.1 Proof of Correctness
	C.2 Proof of Lemma 4.7
	C.3 Proof of Theorem 4.9

