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Abstract

We give a lower bound for the size of the value set of almost perfect
nonlinear (APN) functions F : F2n → F2n . For n even it is 2n+2

3 and
sharp as the simple example F (x) = x3 shows. The sharp lower bound
for n odd has to lie between 2n+1

3 and 2n−1. Sharp bounds for the
cases n = 3 and n = 5 are explicitly given.
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1 Introduction

Almost perfect nonlinear (APN) functions are quite important in cryptogra-
phy. Due to their optimal resistance to differential attacks [6] they are used
as S-boxes of block ciphers. An introduction to the topic can be found in the
book [4] and in the survey [1]. In general, a better understanding of APN
functions could be helpful to find new APN functions. Therefore, we will
have a closer look on the minimal value set size of APN functions.

In Section 2 we will introduce some basic definitions and have a look
on some preimage properties of APN functions. Afterwards in Section 3
we will state our main theorem about the minimal value set size of APN
functions and present beside theoretical results also some results based on
computations for dimension 5.
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2 Preliminaries

Let F2n be the finite field of 2n elements with n ≥ 2. A (vectorial Boolean)
function F : F2n → F2n is called almost perfect nonlinear (APN) if, for every
nonzero c ∈ F2n and every d ∈ F2n , the equation F (x+ c) + F (x) = d has at
most two solutions.

A set P = {x1, x2, x3, x1 +x2 +x3} with x1, x2, x3 ∈ F2n pairwise different
is called affine sub-plane (or affine subspace of dimension 2) of F2n and a
function F : F2n → F2n is called affine on P if F (x1 + x2 + x3) = F (x1) +
F (x2) + F (x3). It is easy to see that F is APN if and only if F is not affine
on every affine sub-plane of F2n .

The value set of a function F : F2n → F2n is defined by VF = {F (x) : x ∈
F2n}, its size (or cardinality) is denoted by |VF | and F−1(y) = {x ∈ F2n :
F (x) = y} is the preimage of y ∈ F2n of F .

There are several equivalence relations on functions which preserve prop-
erties like APN or value set size. Two functions F,G : F2n → F2n are called:

1. affine equivalent if G = T1◦F ◦T2 where the functions T1, T2 : F2n → F2n

are affine permutations;

2. extended affine (EA) equivalent if G = T1 ◦ F ◦ T2 + A where the
functions T1, T2 : F2n → F2n are affine permutations and A : F2n → F2n

is an affine function.

It is clear that affine equivalence is included in EA equivalence. The APN
property of a function is preserved by EA equivalence. The value set size is
preserved by affine equivalence but not in general by EA equivalence. Be-
cause of its importance we mention also the Carlet-Charpin-Zinoviev (CCZ)
equivalence (see [3], [5] for more details).

Let us take a closer look on some preimage properties of APN functions.
We define

S2(M) = {m1 +m2 : m1,m2 ∈M and m1 6= m2}

for M ⊆ F2n .

Proposition 2.1. Let F : F2n → F2n be a function. If F is APN then

·∪
y∈F2n

S2(F
−1(y)) ⊆ F2n \ {0}

and for each y ∈ F2n it holds

|S2(F
−1(y))| =

(
|F−1(y)|

2

)
.
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Proof. It follows immediately from the definition that 0 /∈ S2(F
−1(y)) for

y ∈ F2n .
Suppose that S2(F

−1(y1)) ∩ S2(F
−1(y2)) 6= ∅ for y1, y2 ∈ F2n , y1 6= y2.

Hence there exist c ∈ F2n \ {0} and x1, x2 ∈ F2n , x1 6= x2 such that F (x1) =
F (x1 + c) = y1 and F (x2) = F (x2 + c) = y2 and therefore F (x1) + F (x2) +
F (x2 + c) = F (x1 + c). Thus, F is not APN.

Suppose that |S2(F
−1(y))| <

(|F−1(y)|
2

)
for y ∈ F2n . Hence there exist

x1, x2, x3, x4 ∈ F−1(y) pairwise different with x1 + x2 = x3 + x4. Thus,
F (x1)+F (x2)+F (x3) = F (x1 +x2 +x3). But then it follows that F is affine
on {x1, x2, x3, x1 + x2 + x3} and therefore not APN.

We remark that Proposition 2.1 cannot be used to characterise APN
functions since S2(F

−1(y)) = ∅ for all y ∈ F2n if F : F2n → F2n is bijective.
But it is quite useful to find a lower bound for the value set size of APN
functions.

For a function F : F2n → F2n we define

ki = |{y ∈ F2n : |F−1(y)| = i}|

for 1 ≤ i ≤ 2n and call the vector (ki)1≤i≤2n the preimage size distribution of
F . Due to F2n = ·∪y∈F2n

F−1(y) it follows

2n =
2n∑
i=1

iki. (1)

If F is additionally APN then it holds by Proposition 2.1

2n − 1 ≥
2n∑
i=1

(
i

2

)
ki. (2)

Subtracting equation (1) from (2) leads to the following result:

Corollary 2.2. If F is APN then

k1 + k2 ≥ 1 +
2n∑
i=4

i(i− 3)

2
ki. (3)

Thus, there always exists y ∈ F2n such that |F−1(y)| equals 1 or 2.
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3 Minimal value set size

Theorem 3.1. Let F : F2n → F2n be a function and n ≥ 3. If F is APN
then

|VF | ≥

{
2n+1
3

for n odd,
2n+2
3

for n even.

Proof. The equations (1) and (3) can be translated into a linear programming
problem.
Primary Problem: Minimize

k1 + · · ·+ k2n

with ki ∈ Q and ki ≥ 0 for 1 ≤ i ≤ 2n such that (1) and (3) holds.
Dual Problem: Maximize

−2nl1 + l2

with l1, l2 ∈ Q and l2 ≥ 0 such that

jl1 +
j(j − 3)

2
l2 ≥ −1

for each 1 ≤ j ≤ 2n.
From the duality theorem of linear programming (e.g. Corollary 7.1g in

[7]) follows now that the feasible solutions

k2 = 1, k3 =
2n − 2

3
, ki = 0 otherwise

l1 = −1

3
, l2 =

1

3

are optimal since

−2n(−1

3
) +

1

3
=

2n + 1

3
= 1 +

2n − 2

3
.

For n odd it follows k3 = 2n−2
3
∈ Z≥0. For n even the feasible solution

k1 = 1, k3 =
2n − 1

3
∈ Z≥0, ki = 0 otherwise

is optimal since

(1 +
2n − 1

3
)− (1 +

2n − 2

3
) =

1

3
.
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For n even the lower bound of Theorem 3.1 is sharp as F (x) = x3 with
|VF | = 2n+2

3
and the preimage size distribution k1 = 1, k2 = 0, k3 = 2n−1

3
and

ki = 0 for i > 3 shows.
For the case n odd the given bound is not sharp as we will show later in

Proposition 3.3. But we are able to give the following example which is quite
close at the lower bound at least for small dimensions.

Example 3.2. Let F : F2n → F2n : x 7→ x4 + x3. If n is odd then

|VF | = 2n−1

with a preimage size distribution k1 = 0, k2 = 2n−1 and ki = 0 for i > 2.

Proof. It is sufficient to show that for c ∈ F2n the equation

x4 + x3 + c = 0 (4)

has either no solution or two solutions. For c = 0 it follows directly that 0
and 1 are the solutions of (4). So let c 6= 0 and α ∈ F2n \ {0, 1} be a solution
of (4). Setting x = z + (α + 1) it remains to observe the equation

x4 + x3 + c

x+ α
= z3 + (α + 1)z + α(α + 1) = 0. (5)

Let Tr: F2n → F2n be the trace function over F2n , e.g

Tr : F2n → F2n : x 7→ x+ x2 + · · ·+ x2
n−1

.

By Theorem 1 of [8] and by

Tr(
(α + 1)3

(α(α + 1))2
) = Tr(α−2(α + 1)) = α−1 + α−2

n

= 0

it follows now that (5) has exactly one solution and therefore (4) exactly two
solutions.

Next proposition shows that for n = 3 the discussed Example 3.2 provides
the best possible bound and for n = 5 it is almost best possible.

Proposition 3.3. Let F : F2n → F2n be an APN function.

(a) For n = 3 it follows |VF | ≥ 22 = 4.

(b) For n = 5 it follows |VF | ≥ 24 − 1 = 15.

Both lower bounds are sharp.
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Proof. (a): By Theorem 3.1 it follows that |F (F23)| ≥ 3. Assume that
|F (F23)| = 3. Using equation (1) and (2) leads straightforward to the sit-
uation that the case k1 = 0, k2 = 1, k3 = 2 and ki = 0 for i > 3 is the
only possible. So, let F (F23) = {y1, y2, y3} and |F−1(y1)| = |F−1(y2)| = 3,
|F−1(y3)| = 2. Without restriction we have F−1(y1) = {0, x1, x2} with dif-
ferent x1, x2 ∈ F23 \ {0} and therefore S2(F

−1(y1)) = {x1, x2, x1 + x2}. Let
x3 ∈ F23 be linearly independent from x1, x2. Then F−1(y2) = {x3, x1 + x2}
is the only possible set with more then one element such that S2(F

−1(y1))∪
S2(F

−1(y2)) = ∅. But this contradicts |F−1(y1)| = 3. Thus, |F (F23)| ≥ 4.
The function F (x) = x4 + x3 reaches this bound.

The result of Proposition 3.3(b) was found with extensive computations
made with a self-written C++ library. Let G : F2n → F2n be an APN function
representing an EA equivalence class. It is sufficient to calculate the value
set size and preimage size distribution of all F = G + L with L : F2n → F2n

linear to find the minimal value set size and all its preimage size distributions
from the whole EA equivalence class.

For n = 5 there exist 7 EA equivalence classes of APN functions as shown
in [2]. Our computational results about the minimal value set size and the
preimage size distributions are listed in Table 1. It is notable that apart of
some functions with minimal value set size and EA equivalent to the inverse
function every other APN function with minimal value set size has the same
preimage size distribution k1 = 0, k2 = 14, k3 = 0, k4 = 1 and ki = 0 for
i > 4.

Even for n = 7 the complexity of finding the minimal value set size of
one EA equivalence class with the given algorithm is exploding.

Table 1: APN functions on n = 5 with minimal value set size up to EA
equivalence and different preimage size distribution. For i = 6, . . . , 32 it
holds ki = 0.

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 6 11 31 16 8 20 30 4 20 23 21 24 22 4 24
2 0 2 13 9 13 27 25 9 16 8 25 7 10 6 26 16
3 0 10 4 15 10 2 10 3 3 13 15 0 25 21 16 29
4 0 6 31 24 29 25 6 3 20 22 3 0 25 25 11 10
5a 0 17 17 27 8 20 17 4 4 2 18 25 21 21 28 15
5b 0 27 7 7 8 30 7 24 31 19 31 30 14 4 17 8
5c 0 10 28 13 2 5 22 24 29 0 6 22 6 29 2 10
5d 0 0 11 16 23 26 20 16 27 12 23 13 21 4 6 4
5e 0 30 24 29 11 24 27 1 0 9 31 27 18 29 18 14
5f 0 5 5 27 9 1 4 5 4 22 6 25 20 0 9 14
5g 0 2 7 30 21 26 26 28 30 11 30 6 18 1 13 13
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5h 0 3 7 31 18 28 29 26 22 2 22 15 29 15 2 3
5i 0 23 29 17 6 28 19 0 17 17 11 6 14 8 11 30
6 0 17 25 18 20 9 22 4 16 24 31 31 16 17 24 4
7 0 28 9 16 29 16 4 19 4 30 15 28 22 9 27 18

# 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 23 13 30 22 0 4 6 16 4 8 21 11 31 13 1 1
2 2 10 0 14 6 26 29 7 14 28 8 28 29 27 2 2
3 25 27 13 14 22 22 4 5 29 27 5 2 10 14 21 16
4 5 11 10 5 29 17 20 25 27 17 24 19 27 19 31 22
5a 14 28 22 8 20 21 11 22 14 20 2 22 4 0 25 15
5b 0 24 14 26 26 17 19 4 27 11 1 31 17 31 26 6
5c 4 13 17 20 20 14 6 0 29 28 28 19 29 2 13 0
5d 25 26 27 20 28 12 25 21 6 13 16 21 19 6 20 19
5e 15 18 30 15 22 24 0 18 11 30 14 21 2 9 22 15
5f 2 4 14 4 25 12 18 27 2 12 26 26 9 25 0 2
5g 0 1 14 3 7 21 14 0 26 19 0 7 13 26 6 3
5h 20 20 26 22 20 7 29 18 6 14 28 26 22 0 29 25
5i 2 22 22 14 22 17 5 30 23 11 23 5 19 17 2 18
6 25 10 10 18 0 20 16 26 26 22 5 16 7 9 7 5
7 29 26 19 27 26 17 10 17 0 18 30 15 0 10 22 0

# |F (F25)| k1 k2 k3 k4 k5 D(x) EA CCZ

1 15 0 14 0 1 0 6x8 + x16 x5 can.
2 15 0 14 0 1 0 2x4 + x16 x3 can.
3 15 0 14 0 1 0 9x+ 28x2 + 23x4 + 17x8 + 25x16 [3] 1
4 15 0 14 0 1 0 24x+ 10x2 + 7x4 + 11x8 + 24x16 [3] 2
5a 15 3 7 5 0 0 28x+ 15x2 + 2x4 + x8 x15 can.
5b 15 3 8 3 1 0 22x+ 11x2 + 6x4 + x8 x15 can.
5c 15 6 3 4 2 0 8x+ 10x2 + 9x4 + x8 + x16 x15 can.
5d 15 2 9 4 0 0 25x+ 18x2 + 9x4 + 2x8 + x16 x15 can.
5e 15 4 6 4 1 0 15x+ 13x2 + 30x4 + 2x8 + x16 x15 can.
5f 15 5 4 5 1 0 16x+ 17x2 + 12x4 + 8x8 + x16 x15 can.
5g 15 5 5 3 2 0 6x+ 11x2 + 7x4 + 8x8 + x16 x15 can.
5h 15 4 7 2 2 0 16x+ 28x2 + 2x4 + 13x8 + x16 x15 can.
5i 15 4 7 3 0 1 21x+ 16x2 + 20x4 + 6x8 + x16 x15 can.
6 15 0 14 0 1 0 27x+ 2x2 + 8x4 + x16 x11 2
7 15 0 14 0 1 0 11x+ 30x2 + 9x4 + x16 x7 1

4 Conclusion

We have shown the lower bound 2n+2
3

for the value set size of APN functions
for even dimension n which is sharp as the simple example F (x) = x3 shows.
Furthermore we have proved that for odd dimension n the sharp lower bound
has to lie between 2n+1

3
and 2n−1. The theoretical result for dimension 3 and
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the computational result for dimension 5 suggest that for odd dimension
greater than 5 the given lower bound is not sharp and has to be close to
2n−1. Further work has to be done to sharpen the lower bound for higher
odd dimensions.
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