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Abstract

We give a lower bound for the size of the value set of almost perfect
nonlinear (APN) functions F : Fn

2 → Fn
2 in explicit form and proof it

with methods of linear programming. It coincides with the bound
given in [5]. For n even it is 2n+2

3 and sharp as the simple example
F (x) = x3 shows. The sharp lower bound for n odd has to lie between
2n+1
3 and 2n−1. Sharp bounds for the cases n = 3 and n = 5 are

explicitly given.

Keywords Boolean functions, Cryptographic S-boxes, Almost perfect
nonlinear (APN), Size of value set

Mathematics Subject Classification (2020) 94A60, 06E30, 11T71

1 Introduction

Almost perfect nonlinear (APN) functions are quite important in cryptogra-
phy. Due to their optimal resistance to differential attacks [10] they are used
as S-boxes of block ciphers. An introduction to the topic can be found in the
book [6] and in the survey [1].

In general, a better understanding of APN functions could be helpful to
find new APN functions. Therefore, we will have a closer look at the size of
the value set of an APN function and present here a lower bound in explicit
form. It coincides with the bound given in [5] but instead of proofing it
with the Cauchy-Schwarz inequality we use the duality theorem of linear
programming.
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In Section 2 we will introduce some basic definitions and have a look at
some properties of preimages of APN functions. Afterwards in Section 3 we
will state our main theorem about the minimal size of the value set of an
APN function and present both theoretical derivations, and a summery of
our computational results.

2 Preliminaries

Let Fn
2 be the vector space of dimension n over the finite field with two

elements F2 = {0, 1}. We denote F2n when it is endowed with its finite field
structure.

The value set of a (vectorial Boolean) function F : Fn
2 → Fn

2 is defined
by VF = {F (x) : x ∈ Fn

2}, its size (or cardinality) is denoted by |VF | and
F−1(y) = {x ∈ Fn

2 : F (x) = y} is the preimage of y ∈ Fn
2 of F .

A function F : Fn
2 → Fn

2 is called almost perfect nonlinear (APN) if, for
every nonzero c ∈ Fn

2 and every d ∈ Fn
2 , the equation F (x + c) + F (x) = d

has at most two solutions [10].
There are several equivalence relations on functions that preserve prop-

erties like that of being APN or like the size of its value set. Two functions
F,G : Fn

2 → Fn
2 are called:

1. affine equivalent if G = T1 ◦F ◦T2 where the functions T1, T2 : Fn
2 → Fn

2

are affine permutations;

2. extended affine (EA) equivalent if G = T1 ◦ F ◦ T2 + A where the
functions T1, T2 : Fn

2 → Fn
2 are affine permutations and A : Fn

2 → Fn
2 is

an affine function.

Affine equivalence is a special case of EA equivalence. The APN property
of a function is preserved by EA equivalence [11, 4]. It is straightforward to
show that the size of a value set is preserved by affine equivalence but not in
general by EA equivalence.

Let us take a closer look at some properties of the preimages of APN
functions. We define

S2(M) = {m1 +m2 : m1,m2 ∈M and m1 6= m2}

for M ⊆ Fn
2 . The union of two disjoint sets M1,M2 is denoted by M1 ·∪M2.

Proposition 2.1. Let F : Fn
2 → Fn

2 be a function. If F is APN then

·∪
y∈F2n

S2(F
−1(y)) ⊆ F2n \ {0}
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and

|S2(F
−1(y))| =

(
|F−1(y)|

2

)
for y ∈ Fn

2 .

Proof. It follows immediately from the definition that 0 /∈ S2(F
−1(y)) for

y ∈ F2n .
Suppose that S2(F

−1(y1)) ∩ S2(F
−1(y2)) 6= ∅ for y1, y2 ∈ Fn

2 , y1 6= y2.
Hence there exist c ∈ Fn

2 \ {0} and x1, x2 ∈ Fn
2 , x1 6= x2 such that F (x1) =

F (x1 + c) = y1 and F (x2) = F (x2 + c) = y2. But then it follows that
F (x1) + F (x1 + c) = F (x2) + F (x2 + c) = 0 and F is not APN.

Suppose that |S2(F
−1(y))| <

(|F−1(y)|
2

)
for y ∈ Fn

2 . Hence there exist
x1, x2, x3, x4 ∈ F−1(y) pairwise different with x1 + x2 = x3 + x4. Thus,
F (x1 + (x1 + x2)) + F (x1) = F (x3 + (x3 + x4)) + F (x3) = 0 and F is not
APN.

We remark that Proposition 2.1 cannot be used to characterise APN
functions e.g if F : Fn

2 → Fn
2 is bijective. In this case we have S2(F

−1(y)) = ∅
for y ∈ Fn

2 . But it is quite useful to find a lower bound for the size of the
value set of an APN function.

For a function F : Fn
2 → Fn

2 we define

ki = |{y ∈ Fn
2 : |F−1(y)| = i}|

for 1 ≤ i ≤ 2n and call the vector (ki)1≤i≤2n the preimage size distribution of
F . Since Fn

2 = ·∪y∈Fn
2
F−1(y), it follows

2n =
2n∑
i=1

iki. (1)

If F is additionally APN then

2n − 1 ≥
2n∑
i=1

(
i

2

)
ki, (2)

by Proposition 2.1. Subtracting (1) from (2) leads to the following result:

Corollary 2.2. If F is APN then

k1 + k2 ≥ 1 +
2n∑
i=4

i(i− 3)

2
ki. (3)

Consequently, there always exists y ∈ Fn
2 such that |F−1(y)| equals 1 or 2.
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3 Minimal size of value set

We will now present our main theorem and proof it with the duality theorem
of linear programming. Lemma 5 of [5] gives an equivalent bound but proved
using the Cauchy-Schwarz inequality. Just recently, after finishing the first
version of this paper, [7] and [9] generalised this result to more classes of
functions. In both generalisations the bound for the APN case coincides
with the one given in this paper.

Theorem 3.1 ([5]). Let F : Fn
2 → Fn

2 be a function. If F is APN then

|VF | ≥

{
2n+1
3

for n odd,
2n+2
3

for n even.

Proof. We translate (1) and (3) into a linear programming problem.
Primary Problem: Minimize

k1 + · · ·+ k2n

with ki ∈ Q and ki ≥ 0 for 1 ≤ i ≤ 2n such that (1) and (3) holds.
Dual Problem: Maximize

−2nl1 + l2

with l1, l2 ∈ Q and l2 ≥ 0 such that

jl1 +
j(j − 3)

2
l2 ≥ −1

for each 1 ≤ j ≤ 2n.
From the duality theorem of linear programming (e.g. Corollary 7.1g in

[12]) it follows that the feasible solutions

k2 = 1, k3 =
2n − 2

3
, ki = 0 otherwise

l1 = −1

3
, l2 =

1

3

are optimal since

−2n(−1

3
) +

1

3
=

2n + 1

3
= 1 +

2n − 2

3
.

For n odd it follows k3 = 2n−2
3
∈ Z≥0. For n even the feasible solution

k1 = 1, k3 =
2n − 1

3
∈ Z≥0, ki = 0 otherwise
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is optimal since

(1 +
2n − 1

3
)− (1 +

2n − 2

3
) =

1

3
.

For n even the lower bound of Theorem 3.1 is sharp. It is easily seen
that the function F (x) = x3 has image size |VF | = 2n+2

3
and preimage size

distribution k1 = 1, k2 = 0, k3 = 2n−1
3

and ki = 0 for i > 3.
For the case n odd the given bound is not sharp as we will show later

in Proposition 3.3. But we are able to give the following example which is
quite close to the lower bound at least for small dimensions. We present an
alternative proof for its preimage size distribution in comparison to the one
given in [8].

Example 3.2 ([8]). Let F : F2n → F2n be a function given by x 7→ x4 + x3.
If n is odd then

|VF | = 2n−1

with preimage size distribution k1 = 0, k2 = 2n−1 and ki = 0 for i > 2.

Proof. It is sufficient to show that for c ∈ F2n the equation

x4 + x3 + c = 0 (4)

has either no solution or two solutions. For c = 0 it follows directly that 0
and 1 are the solutions of (4). So let c 6= 0 and α ∈ F2n \ {0, 1} be a solution
of (4). Setting x = z + (α + 1) it remains to observe the equation

x4 + x3 + c

x+ α
= z3 + (α + 1)z + α(α + 1) = 0. (5)

Let Tr: F2n → F2n be the trace function over F2n , e.g

Tr : F2n → F2n : x 7→ x+ x2 + · · ·+ x2
n−1

.

By Theorem 1 of [13] and by

Tr(
(α + 1)3

(α(α + 1))2
) = Tr(α−2(α + 1)) = α−1 + α−2

n

= 0

it follows now that (5) has exactly one solution and therefore (4) exactly two
solutions.

Next proposition shows that for n = 3 the discussed Example 3.2 provides
the best possible bound and for n = 5 it is almost best possible.
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Proposition 3.3. Let F : Fn
2 → Fn

2 be an APN function.

(a) For n = 3 it follows |VF | ≥ 22 = 4.

(b) For n = 5 it follows |VF | ≥ 24 − 1 = 15.

Both lower bounds are sharp.

Proof. (a): By Theorem 3.1 it follows that |F (F3
2)| ≥ 3. Assume that

|F (F3
2)| = 3. The only possible preimage size distribution is k1 = 0, k2 = 1,

k3 = 2 and ki = 0 for i > 3, which follows easily from (1) and (2). So,
fix F (F3

2) = {y1, y2, y3} with |F−1(y1)| = |F−1(y2)| = 3, |F−1(y3)| = 2.
Without loss of generality we can assume F−1(y1) = {0, x1, x2} with dif-
ferent x1, x2 ∈ F3

2 \ {0} and therefore S2(F
−1(y1)) = {x1, x2, x1 + x2}. Let

x3 ∈ F3
2 be such that x1, x2, x3 are linearly independent. Then F−1(y2) =

{x3, x1 + x2} is the only possible set with more than one element such that
S2(F

−1(y1)) ∪ S2(F
−1(y2)) = ∅. But this contradicts |F−1(y1)| = 3 and

therefore |F (F3
2)| ≥ 4. Example 3.2 attains this bound.

(b): Computer based.

The result of Proposition 3.3(b) was found with extensive computations
made with a program written in C++. Let G : Fn

2 → Fn
2 be an APN function

representing an EA equivalence class. It is sufficient to calculate the size of
the value set and preimage size distribution of all F = G+L with L : Fn

2 → Fn
2

linear to find the minimal size of the value set and all its preimage size
distributions from the whole EA equivalence class.

For n = 5 there exist 7 EA equivalence classes of APN functions as shown
in [2]. Our computational results about the minimal size of a value set and
the preimage size distributions are listed in Table 1. It is notable that apart
from some functions with value set of minimal size and EA equivalent to the
inverse function every other APN function with value set of minimal size has
the same preimage size distribution k1 = 0, k2 = 14, k3 = 0, k4 = 1 and
ki = 0 for i > 4.

Even for n = 7 the complexity of finding APN functions with value sets
of minimal size of one EA equivalence class with the given algorithm is ex-
ploding.

Table 1: APN functions for n = 5 with minimal value set size up to EA
equivalence and preimage size distribution (ki)1≤i≤32 (we have ki = 0 for
i > 5).

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 6 11 31 16 8 20 30 4 20 23 21 24 22 4 24
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2 0 2 13 9 13 27 25 9 16 8 25 7 10 6 26 16
3 0 10 4 15 10 2 10 3 3 13 15 0 25 21 16 29
4 0 6 31 24 29 25 6 3 20 22 3 0 25 25 11 10
5a 0 17 17 27 8 20 17 4 4 2 18 25 21 21 28 15
5b 0 27 7 7 8 30 7 24 31 19 31 30 14 4 17 8
5c 0 10 28 13 2 5 22 24 29 0 6 22 6 29 2 10
5d 0 0 11 16 23 26 20 16 27 12 23 13 21 4 6 4
5e 0 30 24 29 11 24 27 1 0 9 31 27 18 29 18 14
5f 0 5 5 27 9 1 4 5 4 22 6 25 20 0 9 14
5g 0 2 7 30 21 26 26 28 30 11 30 6 18 1 13 13
5h 0 3 7 31 18 28 29 26 22 2 22 15 29 15 2 3
5i 0 23 29 17 6 28 19 0 17 17 11 6 14 8 11 30
6 0 17 25 18 20 9 22 4 16 24 31 31 16 17 24 4
7 0 28 9 16 29 16 4 19 4 30 15 28 22 9 27 18

# 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 23 13 30 22 0 4 6 16 4 8 21 11 31 13 1 1
2 2 10 0 14 6 26 29 7 14 28 8 28 29 27 2 2
3 25 27 13 14 22 22 4 5 29 27 5 2 10 14 21 16
4 5 11 10 5 29 17 20 25 27 17 24 19 27 19 31 22
5a 14 28 22 8 20 21 11 22 14 20 2 22 4 0 25 15
5b 0 24 14 26 26 17 19 4 27 11 1 31 17 31 26 6
5c 4 13 17 20 20 14 6 0 29 28 28 19 29 2 13 0
5d 25 26 27 20 28 12 25 21 6 13 16 21 19 6 20 19
5e 15 18 30 15 22 24 0 18 11 30 14 21 2 9 22 15
5f 2 4 14 4 25 12 18 27 2 12 26 26 9 25 0 2
5g 0 1 14 3 7 21 14 0 26 19 0 7 13 26 6 3
5h 20 20 26 22 20 7 29 18 6 14 28 26 22 0 29 25
5i 2 22 22 14 22 17 5 30 23 11 23 5 19 17 2 18
6 25 10 10 18 0 20 16 26 26 22 5 16 7 9 7 5
7 29 26 19 27 26 17 10 17 0 18 30 15 0 10 22 0

# |F (F5
2)| k1 k2 k3 k4 k5 L(x) EA

1 15 0 14 0 1 0 6x8 + x16 x5

2 15 0 14 0 1 0 2x4 + x16 x3

3 15 0 14 0 1 0 9x+ 28x2 + 23x4 + 17x8 + 25x16 [3]
4 15 0 14 0 1 0 24x+ 10x2 + 7x4 + 11x8 + 24x16 [3]
5a 15 3 7 5 0 0 28x+ 15x2 + 2x4 + x8 x15

5b 15 3 8 3 1 0 22x+ 11x2 + 6x4 + x8 x15

5c 15 6 3 4 2 0 8x+ 10x2 + 9x4 + x8 + x16 x15

5d 15 2 9 4 0 0 25x+ 18x2 + 9x4 + 2x8 + x16 x15

5e 15 4 6 4 1 0 15x+ 13x2 + 30x4 + 2x8 + x16 x15

5f 15 5 4 5 1 0 16x+ 17x2 + 12x4 + 8x8 + x16 x15

5g 15 5 5 3 2 0 6x+ 11x2 + 7x4 + 8x8 + x16 x15

5h 15 4 7 2 2 0 16x+ 28x2 + 2x4 + 13x8 + x16 x15

5i 15 4 7 3 0 1 21x+ 16x2 + 20x4 + 6x8 + x16 x15

6 15 0 14 0 1 0 27x+ 2x2 + 8x4 + x16 x11
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7 15 0 14 0 1 0 11x+ 30x2 + 9x4 + x16 x7

4 Conclusion

In this paper we gave a lower bound for the size of the value set of an APN
function in explicit form and proof it with methods of linear programming.

However it is only sharp for even dimensions. Hence further work has to
be done to sharpen the lower bound for higher odd dimensions. Of course, a
characterisation of all functions attaining the lower bound is also from great
interest.

Additionally it would be interesting to find other similar problems which
could be solved using methods of linear programming.
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