
Crowd Verifiable Zero-Knowledge and
End-to-end Verifiable Multiparty Computation

Foteini Baldimtsi1, Aggelos Kiayias23, Thomas Zacharias2, and Bingsheng
Zhang4

1 George Mason University, USA
2 The University of Edinburgh, UK

3 IOHK, UK
4 Zhejiang University, China

Abstract. Auditing a secure multiparty computation (MPC) protocol
entails the validation of the protocol transcript by a third party that is
otherwise untrusted. In this work we introduce the concept of end-to-end
verifiable MPC (VMPC), that requires the validation to provide a cor-
rectness guarantee even in the setting that all servers, trusted setup prim-
itives and all the client systems utilized by the input-providing users of
the MPC protocol are subverted by an adversary. To instantiate VMPC,
we introduce a new concept in the setting of zero-knowlegde protocols
that we term crowd verifiable zero-knowledge (CVZK). A CVZK proto-
col enables a prover to convince a set of verifiers about a certain state-
ment, even though each one individually contributes a small amount of
entropy for verification and some of them are adversarially controlled.
Given CVZK, we present a VMPC protocol that is based on discrete-
logarithm related assumptions. At the high level of adversity that VMPC
is meant to withstand, it is infeasible to ensure perfect correctness, thus
we investigate the classes of functions and verifiability relations that are
feasible in our framework, and present a number of possible applications
the underlying functions of which can be implemented via VMPC.

Keywords: Multi-party computation· zero-knowledge· privacy· verifiability

1 Introduction

Over the last 30 years, secure multiparty computation (MPC) has transitioned
from theoretical feasibility results [62, 63, 35] to real-world implementations
[13, 60, 46, 29, 28, 26] that can be used for a number of different security critical
operations including auctions [13], e-voting [25, 44, 2], and privacy preserving
statistics [53, 14]. An important paradigm for MPC that captures a large number
of applications is the client-server model [32, 7, 27, 41, 54, 36] where participants
of the system are distinguished between clients and servers, with the clients con-
tributing input for the computation and receiving the output, while the servers,
operating in an oblivious fashion, are processing the data given by the clients.

The servers performing the MPC protocol collectively ensure the privacy
preservation of the execution, up to the information that is leaked by the output

itself. There do exist protocols that achieve this level of privacy provided that
there exists at least one server that is not subverted by the adversary. The typi-
cal execution of such protocols involves the clients encoding their input suitably
for processing by the servers (e.g., by performing secret-sharing [38]) and receiv-
ing the encoded output which they reconstruct to produce the final result. While
the level of privacy achieved by such protocols is adequate for their intended ap-
plications and their performance has improved over time (e.g., protocols such as
SPDZ [29] and [28, 42] achieve very good performance for real world applications
by utilizing an offline/online approach [6]), there are still crucial considerations
for their deployment in the real-world especially if the outcome of the MPC
protocol has important committing and actionable consequences (such as e.g.,
in e-voting, auctions and other protocols).

To address this consideration, Baum, Damg̊ard and Orlandi [4] asked whether
it is feasible to construct efficient auditable MPC protocols. In auditable MPC,
an external observer who is given access to the protocol transcript, can verify
that the protocol was executed correctly even if all the servers (but not client
devices) were subverted by the adversary. The authors of [4] observe that this
is theoretically feasible if a common reference string (CRS) is available to the
participants and provide an efficient instantiation of such protocol by suitably
amending the SPDZ protocol [29]. While the above constitutes a good step
towards addressing real world considerations of deploying MPC protocols, there
are serious issues that remain from the perspective of auditability. Specifically,
the work of [4] does not provide any guarantees about the validity of the output
in case, (i) the CRS is subverted, or (ii) the users’ client devices get corrupted.

Verification of the correctness of the result by any party, even if all servers
are corrupt (but not client devices), has also been studied by Schoenmakers
and Veeningen [61] in the context of universally verifiable MPC. The security
analysis in [61] is in the random oracle model and still, the case of corrupted
client devices is not considered. Moreover, achieving universally verifiable (or
publicly auditable) MPC in the standard model is stated as an open problem.

Unfortunately, the threat of malicious CRS and client byzantine behavior
cannot be dismissed: in fact, it has been extensively studied in the context of
e-voting systems, which are a very compelling use-case for MPC, and frequently
invoked as one of the important considerations for real-world deployment. Specif-
ically, the issue of malicious clients has been studied in the end-to-end verifiabil-
ity model for e-voting, e.g., [47] while the issue of removing setup assumptions
such as the CRS or random oracles has been also recently considered [44, 43].

The fact that the concept of end-to-end verifiability has been so far thor-
oughly examined in the e-voting area comes not as surprise, since elections is
a prominent example where auditing the correctness of the execution is a top
integrity requirement. Nonetheless, transparency in terms of end-to-end verifica-
tion can be a highly desirable feature in several other scenarios, such as auctions,
demographic statistics, financial analysis, or profile matching where the (human)
users contributing their inputs may have a keen interest in auditing the correct-
ness of the computation (e.g., highest bid, unemployment rate, average salary,

2

order book matching in trading). From a mathematical aspect, it appears that
several other use-cases of MPC evaluation functions besides tallying that fall
into the scope of end-to-end verification have not been examined.

To capture these considerations and instead of pursuing tailored-made stud-
ies for each use-case, in this work, we take a step forward and propose a unified
treatment of the problem of end-to-end verifiability in MPC under a “human-
client-server” setting. In particular, we separate human users from their client
devices (e.g., smartphones) in the spirit of the “ceremony” concept [31, 45] of
voting protocols. While client devices can be thought of as stateful, probabilis-
tic, interactive Turing machines, we model human users to be limited in two
ways: (a) humans are bad sources of randomness; formally, the randomness of
a user can be adversarially guessed with non-negligible probability, i.e. its min-
entropy is up to logarithmic to the security parameter, and (b) humans cannot
perform complicated calculations; i.e. humans’ computational complexity is lin-
ear in the security parameter (i.e., the minimum for reading the input). Given
this modeling we ask:

Is it possible to construct auditable MPC protocols, in the sense that everyone
who has access to the transcript can verify that the output is correct, even if
all servers, client devices and setup assumptions (e.g. a common reference
string) are subverted by an adversary?

We answer this question by introducing the concept of end-to-end verifiable
multiparty computation (VMPC) and presenting both feasibility and infeasibility
results for different classes of functions. Some of the most promising applications
of VMPC include e-voting, privacy preserving statistics and supervised learning
of classifiers over private data.

1.1 Technical Overview and Contributions

VMPC model. The security property of VMPC is modeled in the universal
composability (UC) framework [16], aiming to unifying two lines of research on
secure computing: end-to-end verifiable e-voting (which typically separates hu-
mans from their devices in security analysis) and client-server (auditable) MPC.
More specifically, we define the VMPC ideal functionality as Ff,Rvmpc(P), where P
is a set of players, including users, client devices, servers and a verifier; f is the
MPC function to be evaluated, and R is a relation that is used to measure the
distance between the returned VMPC output and the correct (true) computa-
tion result. As will be explained later, when the VMPC output is verified, it is
guaranteed that the output is not “far” from the truth.

The distinction between users and clients. In order to capture “end-to-end ver-
ifiability”, we have to make a distinction between users and clients: the users
are the humans with limited computation and entropy that interact with their
client devices (e.g., smartphones or laptops) to provide input to the MPC. To
accommodate this, our ideal functionality acknowledges these two roles and for
this reason it departs from the previous formulation of auditable MPC [4]. A

3

critical challenge in VMPC is the fact that the result should be verifiable even
if all clients and servers are corrupted!

The role of the verifier. VMPC departs from the conventional UC definition
of MPC since there should be a special entity, the verifier, that verifies the
correctness of the output. The concept of the verifier in our modeling is an
abstraction only. The verifier is invoked only for auditing and trusted only for
verifiability, not privacy. It can be any device, organization, or computer system
that the user trusts to do the audit. Moreover, it is straightforward to extend the
model to involve multiple verifiers as discussed in Section 5 and hence only for
simplicity we choose to model just a single entity. We note that the human user
cannot perform auditing herself due to the fact that it requires cryptographic
computations. As in e-voting, verification is delegatable, i.e., the verifier obtains
users’ individual audit data in an out-of-band manner.

EUC with a super-polynomial helper. The astute readers may notice that a UC
realization of the VMPC primitive in a setting where there is no trusted setup
such as a CRS is infeasible. Indeed, it is well known [16] that a non-trivial MPC
functionalities cannot be UC-realized without a trusted setup. To go around
these impossibility results and still provide a composable construction, we uti-
lize the extended UC model with a helper H, (H-EUC security) [18]. This model,
which can been seen as an adaptation of the super-polynomial simulation con-
cept [59] in the UC setting, enables one to provide standard model constructions
that are composable and at the same time real world secure, using a “complexity
leveraging” argument that requires subexponential security for the underlying
cryptographic primitives. In particular, in the setting of H-EUC security, trans-
lating a real world attack to an ideal world attack requires a super-polynomial
computation. More precisely, a polynomial-time operation that invokes a super-
polynomial helper program H. It follows that if the distance of the real world
from the ideal is bounded by the distinguishing advantage of some underlying
cryptographic distributions, assuming subexponential indistinguishability is suf-
ficient to infer the security for the primitive.

System architecture. We assume there exists a consistent and public bulletin
board (BB) (modeled as the global functionality GBB) that can be accessed by
all the VMPC players except human users, i.e., the client devices, the servers
and the verifier. In addition, we assume there exists an authenticated channel
(modeled as the functionality Fauth) between the human users and the verifier.
Besides, we assume there exists a secure channel (modeled as the functionality
Fsc) between the human users and their local client devices. A VMPC scheme
consists of four sub-protocols: Initialize (setup phase among servers), Input (run
by servers, users-clients), Compute (executed by the servers) and Verify (exe-
cuted by the verifier and users). According to the e-voting and pre-processing
MPC approach [12, 57, 29, 28], we consider minimal user interaction - the users
independently interact with the system once in order to submit their inputs.
This limitation is challenging from a protocol design perspective.

The breadth of VMPC feasibility. We explore the class of functions that
can be realized by VMPC, since in our setting, contrary to general MPC results,

4

it is infeasible to compute any function with perfect correctness. To see this
with a simple example, consider some function f that outputs the XOR of the
input bits. It is easy to see that each user has too little entropy to challenge
the set of malicious clients and servers about the proper encoding of her private
input. However, even if a single input bit is incorrectly encoded by the user’s
client (which can be undetected with non-negligible probability) the output XOR
value can be flipped. To accommodate for this natural deficiency, our VMPC
functionality enforces a relation R between the reported output and the correct
output. It is clear that depending on the function f , a different relation R may
be achievable. We capture this interplay between correctness and the function to
be computed by introducing the notion of a spreading relation R for a function
f : X → Y . Informally, given a certain metric over the input space, a spreading
relation over the range of f , satisfies that whenever x, x′ are close w.r.t. the
metric, the images of x, x′ are related. A typical case of a spreading relation can
emerge when f is a Lipschitz function for a given metric. Based on the above
we show that one cannot hope to compute a function f with a relation over the
range of f that is more “refined” than a spreading relation.

Building Blocks. VMPC is a complex primitive and we introduce novel build-
ing blocks to facilitate it. ZK proofs cannot be directly used for VMPC since we
require a 3-round public-coin protocol to comply with our minimal interaction
setting and this is infeasible, cf. [40, 33], while we cannot utilize a subversion-
sound NIZK either, cf. [8], since in this case, we can at best obtain witness
indistinguishability which is insufficient for proving the simulation-based pri-
vacy needed for VMPC.
Crowd Verifiable Zero-Knowledge (CVZK). To overcome these issues we intro-
duce a new cryptographic primitive that we call crowd verifiable zero-knowledge
which may also be of independent interest. In CVZK, a single prover tries to
convince a set of n verifiers (a “crowd”) of the validity of a certain statement.
Although the notion of multi-verifier zero-knowledge already exists in the lit-
erature, e.g. [15, 50], the focus of CVZK is different. Namely, the challenge for
CVZK is that each human verifier is restricted to contribute up to a logarithmic
number of random bits and hence, if, say all but one verifiers are corrupted,
there would be insufficient entropy available in order to achieve a low soundness
error. Thus, the only way to go forward for the verifiers is to assume the relative
honesty of the crowd, i.e., there is a sufficient number of them acting honestly
and introduce enough randomness in the system so that the soundness error can
be small. The notion of CVZK is critical towards realizing VMPC, since in the
absence of reliable client systems, the users have no obvious way of challenging
the system’s operation; users, being humans, are assumed to be bad sources of
entropy that cannot contribute individually a sufficient number of random bits
to provide a sufficiently low soundness error.
Coalescence functions and CVZK Instantiation. We introduce coalescence func-
tions (Section 3.2) to typify the randomness extraction primitive that is at the
core of our CVZK construction. In CVZK, it is not straightforward how to use
the random bits that honest verifiers contribute. The reason is that the adver-

5

sary, who is in control of the prover and a number of verifiers, may attempt to use
the malicious verifiers’ coins to “cancel” the entropy of the honest verifiers and
assist the malicious prover to convince them of a wrong statement. Coalescence
relates to collective coin flipping [9] and randomness condensers [30]. In partic-
ular, a coalescence function is a deterministic function that tries to make good
use of the entropy of its input. Specifically, a coalescence function takes as an
input a non-oblivious symbol fixing source and produces a series of blocks, one
of which is guaranteed to be of high entropy; these blocks will be subsequently
used in conjunction to form the challenge implementing CVZK.

We construct coalescence functions using a one-round collective coin flipping
protocol and the (strongly) resilient function defined in [55]. Then, we present
a compiler that takes a fully input delayed Σ-protocol and leads to a CVZK
construction that performs a parallel proof w.r.t. each block produced by the
coalescence function. Our CVZK construction is secure for any number of cor-
rupted users up to O(nc/ log3 n), for some constant c < 1 and a set of n users.

VMPC Construction. Our VMPC construction is based on CVZK. It uses an
offline / online approach (a.k.a. pre-processing mode) for computing the output
(proposed by Beaver [6] and utilized numerous times [29, 4]). In a nutshell, our
construction follows the paradigm of SPDZ [29] and BDO [4]. Namely, the data
are shared and committed on the BB. The underlying secret sharing scheme
and the commitment scheme have compatible linearly homomorphic property;
therefore, the auditor can check the correctness of the protocol execution by
performing the same operations over the committed data. In addition, to achieve
crowd verifiability, all the ZK proofs need to be transformed to CVZK – (i) in
the pre-processing phase, the servers post the first move of the CVZK on the BB;
(ii) in the input phase, the (human) users collaboratively generate the challenge
coins of the CVZK; (iii) in the output phase, the servers post the protocol output
together with the third move of the CVZK, which completes the CVZK proofs.

We prove indistinguishability between real and ideal world for our construc-
tion under adaptive onewayness [58] of the discrete-logarithm function and the
decisional Diffie-Hellman assumption. We infer that, by utilizing sub-exponential
versions of those assumptions, our protocol realizes the ideal description of
VMPC, in the H-EUC model, for any (symmetric) function f with correctness
up to a spreading relation R for f .

We note that an alternative but sub-optimal approach to VMPC would be
to add the Benaloh challenge mechanism [10, 11], that has been proposed in the
context of e-voting to mitigate corrupted client devices, to the BDO protocol [4].
However, the resulting VMPC protocol would still require a trusted setup, e.g.,
CRS or Random Oracle (RO), and therefore it would fall short of our objective to
realize VMPC in the plain model. Moreover, the Benaloh challenge mechanism
requires the client to have a second trusted device that is capable of performing a
cryptographic computation prior to submitting her input to the VMPC protocol
and being able to communicate with it in an authenticated manner. Instead, the
only requirement in our VMPC protocol is to have authenticated access to a
verifier in the final step of the protocol.

6

Applications. As already mentioned, a main motivation for this work is the
apparent connection of end-to-end verifiability to several practical MPC instan-
tiations for real-world scenarios. Thus, we conclude by discussing possible appli-
cations of VMPC and examine how their underlying function can be combined
with suitable spreading relations and implemented. We provide some interesting
examples: (i) E-voting functions: where the final election tally aggregates the
votes provided by the voters, (ii) privacy-preserving statistics: where the final
outcome is a statistic that is calculated over uni-dimensional data, (iii) privacy-
preserving processing of multi-dimensional data: where functions that correlate
across different dimensions are calculated, (iv) supervised learning of classifiers:
where the outcome is a model that results from training on private data.

2 Preliminaries

Notation. By λ we denote the security parameter and by negl(·) the property
that a function is negligible in some parameter. We write poly(x) to denote that
a value is polynomial in x, PPT to denote probabilistic polynomial time, and [n]
as the abbreviation of the set { 1, . . . , n }. Hmin(D) denotes the min entropy of a

distribution D and Un denotes the uniform distribution over {0, 1}n. By x
$← S,

we denote that x is sampled uniformly at random from set S, and by X ∼ D
that the random variable X follows the distribution D.

Σ-protocols. Let RL be polynomial-time-decidable witness relation for an NP-
language L. A Σ-protocol is a 3-move public coin protocol between a prover,
Σ.Prv, and a verifier, Σ.V , where the goal of the prover, having a witness w,
is to convince the verifier that some statement x is in language L. We split the
proverΣ.Prv into two algorithms (Σ.Prv1, Σ.Prv2). AΣ-protocol for (x,w) ∈ RL
consists of the following PPT algorithms:

• Σ.Prv1(x,w): on input x ∈ L and w s.t. (x,w) ∈ RL, it outputs the first
message of the protocol, a, and a state stP ∈ { 0, 1 }∗.
• Σ.Prv2(stP , e): after receiving the challenge e ∈ { 0, 1 }λ from Σ.V and on

input the state, it outputs the prover’s response z.

• Σ.Verify(x, a, e, z): on input a transcript (x, a, e, z), it outputs b ∈ { 0, 1 }.
A transcript is called accepting if Σ.Verify(x, a, e, z) = 1.

We care about the following properties: (i) completeness, (ii) special soundness,
and (iii) special honest verifier zero-knowledge (sHVZK), i.e., if the challenge e
is known in advance, then there is a PPT simulator Σ.Sim that simulates the
transcript on input (x, e). In addition, we allow completeness of a Σ-protocol to
be non-perfect, i.e. have a negligible error, and sHVZK to be computational. We
provide a formal definition of a Σ-protocol in Supplementary Material A.1.

One-round collective coin flipping and resilient functions. The core
of our CVZK construction is similar to a one-round collective coin flipping
(1RCCF) process: (1) each player generates and broadcasts a coin c within the
same round, (2) a uniformly random string is produced (with high probability).

7

The adversary can see the honest players’ coins first and then decide the cor-
rupted players’ coins. The 1RCCF notion was introduced in [9] and is closely
related to the notion of resilient functions which we recall below.

Definition 1 (Resilient function). Let f : {0, 1}m −→ {0, 1} be a Boolean
function on variables x1, . . . , xm. The influence of a set S ⊆ {x1, . . . , xm} on f ,
denoted by IS(f), is defined as the probability that f is undetermined after fixing
the variables outside S uniformly at random. Let Iq(f) = minS⊆{x1,...,xm},|S|≤q IS(f).
We say that f is (q, ε)-resilient if Iq(f) ≤ ε. In addition, for 0 < τ < 1, we say
f is τ -strongly resilient if for all 1 ≤ q ≤ n, Iq(f) ≤ τ · q.

We use the (Θ(log2m/m))-strongly resilient function defined in [55] (i.e., any
coalition of q bits has influence at most Θ(q · log2m/m)) which has a bias
1/2 ± 1/10. We note that it has been shown that for any Boolean function
on mO(1) bits, even one bit can have influence Ω(logm/mO(1)) [39]. Hence, it
is not possible to get a single bit string with ε = m−Ω(1). In Supplementary
Material A.2 we provide further discussion about related work.

Publicly samplable adaptive one-way functions. Adaptive one-way func-
tions (adaptive OWFs, or AOWFs for short) were formally introduced by Pandey

et al. [58]. In a nutshell, a family of AOWFs is indexed by a tag, tag ∈ { 0, 1 }λ,
such that for any tag, it is hard for any PPT adversary to invert ftag(·) for
randomly sampled images, even when given access to the inversion oracle of
ftag′(·) for any other tag′ 6= tag. We recall the definition of AOWFs in Supple-
mentary Material A.3. Here, we define a variant of AOWFs where the adversary
is provided a publicly sampled image as inversion challenge.

Definition 2. Let F =
{
{ftag : Xtag −→ Ytag}tag∈{0,1}λ

}
λ∈N be an AOWF fam-

ily. We say that F is publicly samplable adaptive one-way (PS-AOWF) if:
(1) There is an efficient deterministic image-mapping algorithm IM(·, ·) such

that for every tag ∈ {0, 1}λ, it holds that

Pr
[
ω ← Uλ : IM(tag, ω) ∈ Ytag

]
= 1− negl(λ) .

(2) Let O(tag, ·, ·) denote the inversion oracle (as in [58]) that, on input tag′

and y outputs f−1tag′(y) if tag′ 6= tag, |tag′| = |tag|, and ⊥ otherwise. Then, for

every PPT adversary A and every tag ∈ {0, 1}λ, it holds that

Pr
[
ω ← Uλ : AO(tag,·,·)(tag, ω) = f−1tag

(
IM(tag, ω)

)]
= negl(λ) .

For notation simplicity, in the rest of the paper we omit indexing by λ ∈ N
and simply write F = {ftag : Xtag −→ Ytag}tag∈{0,1}λ .

The main difference between PS-AOWFs and AOWFs as used in [58] is public
samplability : even if A is given the random coins, ω, used for the image mapping
algorithm IM(·, ·), it can only invert the OWF with negligible probability. In
Supplementary Material A.4, we provide an instantiation of a PS-OWF based
on the hardness of discrete logarithm problem (DLP) in the generic group model.

Externalized UC with global helper. Universal Composability (UC) is a
widely accepted simulation-based model to analyze protocol security. In the UC

8

framework, all the ideal functionalities are “subroutine respectful” in the sense
that each protocol execution session has its own copy of the functionalities,
which only interact with the single protocol session. This subroutine respecting
feature does not always naturally reflect the real world scenarios; for instance,
we typically want the trusted setup (e.g., CRS or PKI) to be deployed once
and then used in multiple protocols. To handle global setups the generalized UC
(GUC) framework was introduced [17]. However, as noted in the introduction,
given that in this work we want to avoid the use of a trusted setup (beyond a
consistent bulletin board), while still providing a composable construction, we
revert to the extended UC model with super-polynomial time helpers, denoted
by H-EUC [18]. In this model both the simulator and the adversary can access
a (externalized super-polynomial time) global helper functionality H.

3 CVZK and Coalescence Functions

A crowd verifiable zero-knowledge (CVZK) argument for a language L ∈ NP
with a witness relation RL is an interactive proof between a PPT prover, that
consists of a pair of algorithms CVZK.P = (CVZK.Prv1,CVZK.Prv2), and a col-
lection of PPT verifiers (CVZK.V1, . . . ,CVZK.Vn). The private input of the
prover is some witness w s.t. (x,w) ∈ RL, where x is a public statement. In
a CVZK argument execution, the interaction is in three moves as follows:
(1) The prover CVZK.Prv1(x,w) outputs the statement x and a string a to all
n verifiers and outputs a state stP .
(2) For ` ∈ [n], each verifier CVZK.V`(x, a) sends a challenge c` to the prover and
keeps a private state st` (e.g., the coins of V`). Note that CVZK.V` gets as input
only (x, a), and computes her challenge independently from the other verifiers.
(3) After receiving c` for all ` = {1, . . . , n}, CVZK.Prv2 outputs its response, z.

Additionally, there is a verification algorithm CVZK.Verify that takes as input
the execution transcript 〈x, a, 〈c`〉`∈[n], z〉 and optionally, a state st`, ` ∈ [n] (if
run by CVZK.V`), and outputs 0/1.

As discussed in the introduction, CVZK is particularly interesting when each
verifier contributes limited (human-level) randomness individually, yet the ran-
domness of all verifiers (seen as a crowd) provides enough entropy to support
the protocol’s soundness. This unique feature of CVZK will be in the core of the
security analysis of our VMPC construction (Sec. 7). Nonetheless, from a mere
definitional aspect, the verifiers need not to be limited, so for generality, we pose
no restrictions on the entropy of their individual challenges in our definition.

3.1 CVZK Definition

We consider an adversary that statically corrupts up to a ratio of the verifier
crowd. Let Icorr be the set of indices of corrupted verifiers.

Definition 3. Let n be a positive integer, 0 ≤ t1, t2, t3 ≤ n be positive values and
ε1(·), ε2(·) be real functions. A tuple of PPT algorithms 〈(CVZK.Prv1,CVZK.Prv2),

9

(CVZK.V1, . . . ,CVZK.Vn), CVZK.Verify〉 is a (t1, t2, t3, ε1, ε2)-crowd-verifiable zero-
knowledge argument of membership (CVZK-AoM) for a language L ∈ NP, if
the following properties are satisfied:

(i). (t1, ε1)-Crowd-Verifiable Completeness: For every x ∈ L∩{0, 1}poly(λ),
w ∈ RL(x), every PPT adversary A and every Icorr ⊆ [n] such that |Icorr| ≤ t1,
the probability that the following experiment returns 1 is less or equal to ε1(λ).

ExptCVCompl
(t1,A,Icorr)

(1λ, x, w)

1. CVZK.Prv1(x,w) outputs the message a and state stP ;
2. For ` ∈ [n] \ Icorr, run CVZK.V`(x, a)→ (c`, st`);
3. A

(
x, a, 〈c`〉`∈[n]\Icorr

)
outputs 〈c′1, . . . , c′n〉;

4. CVZK.Prv2(x,w, a, 〈c′1, . . . , c′n〉, stP) outputs response z;
5. If (∀` ∈ [n] \ Icorr : c′` = c`) AND

(
(CVZK.Verify(x, a, 〈c′1, . . . , c′n〉, z) = 0) OR

(∃` ∈ [n] \ Icorr : CVZK.Verify(x, a, 〈c′1, . . . , c′n〉, z, st`) = 0)
)

then return 1; else return 0;

(ii). (t2, ε2)-Crowd-Verifiable Soundness: For every x ∈ {0, 1}poly(λ) \ L,
every PPT adversary A and every Icorr ⊆ [n] such that |Icorr| ≤ t2, the probability
that the following experiment returns 1 is less or equal to ε2(λ).
ExptCVSound

(t2,A,Icorr)
(1λ, x)

1. A(x, Icorr) outputs a message a;
2. For ` ∈ [n] \ Icorr, run CVZK.V`(x, a)→ (c`, st`);
3. A

(
x, a, 〈c`〉`∈[n]\Icorr

)
outputs 〈c′1, . . . , c′n〉 and response z;

4. If (∀` ∈ [n] \ Icorr : c′` = c`) AND (CVZK.Verify(x, a, 〈c′1, . . . , c′n〉, z) = 1) AND
(∀` ∈ [n] \ Icorr : CVZK.Verify(x, a, 〈c′1, . . . , c′n〉, z, st`) = 1)
then return 1 else return 0;

(iii). t3-Crowd-Verifiable Zero-Knowledge: For every x ∈ L∩{0, 1}poly(λ),
w ∈ RL(x), every PPT adversary A and every Icorr ⊆ [n] such that |Icorr| ≤ t3,
there is a PPT simulator CVZK.Sim = (CVZK.Sim1,CVZK.Sim2) such that the
outputs of the following two experiments are computationally indistinguishable.

ExptCVZK
(Ideal,t3,A,Icorr)

(1λ, x)

1. CVZK.Sim1(x, Icorr) outputs a, stSim,
and 〈c`〉`∈[n]\Icorr ;

2. A
(
x, a, 〈c`〉`∈[n]\Icorr

)
outputs 〈c′1, . . . , c′n〉;

3. CVZK.Sim2(x, a, 〈c′1, . . . , c′n〉, stSim)
outputs z;

4. b← A(x, z);
5. If (∀` ∈ [n] \ Icorr : c′` = c`),

then return b; else return ⊥ ;

ExptCVZK
(Real,t3,A,Icorr)

(1λ, x, w)

1. CVZK.Prv1(x,w) outputs a and state stP ;
2. For ` ∈ [n] \ Icorr, run

CVZK.V`(x, a)→ (c`, st`);
3. A

(
x, a, 〈c`〉`∈[n]\Icorr

)
outputs 〈c′1, . . . , c′n〉;

4. CVZK.Prv2(x,w, a, 〈c′1, . . . , c′n〉, stP) outputs z;
5. b← A(x, z);
6. If (∀` ∈ [n] \ Icorr : c′` = c`),

then return b; else return ⊥ ;

Analogously, we can also define a CVZK argument of knowledge as follows. We
say that 〈(CVZK.Prv1, CVZK.Prv2), (CVZK.V1, . . . , CVZK.Vn), CVZK.Verify〉 is
a (t1, t2, t3, ε1)-crowd-verifiable zero-knowledge argument of knowledge (CVZK-
AoK), if it satisfies (t1, ε1)-Completeness and t3-Crowd-Verifiable Zero-Knowledge
as previously, and the following property:

t2- Crowd-Verifiable Validity: There exists a PPT extractor CVZK.Ext such
that for every x ∈ {0, 1}poly(λ), every PPT adversary A and every Icorr ⊆ [n]

10

such that |Icorr| ≤ t2, the following holds: if there is a non-negligible function
α(·) such that

Pr
[
ExptCVSound

(t2,A,Icorr)(1
λ, x) = 1

]
≥ α(λ) ,

then there is a non-negligible function β(·) such that

Pr[w∗ ← CVZK.ExtA(x, Icorr) : (x,w∗) ∈ RL] ≥ β(λ) .

Remark 1 (Relativized CVZK security). Definition 3 specifies CVZK security
against a PPT adversary A and a PPT simulator CVZK.Sim. Note that the
notions of crowd-verifiable completeness, soundness, validity, and zero-knowledge
can be extended so that they hold even when A, and maybe CVZK.Sim, has also
access to a (potentially super-polynomial) oracle H.

Remark 2 (Sensitivity of CVZK soundness to the number of verifiers). In our
definition of CVZK soundness, even a single (out of t2) honest failed verifica-
tion invalidates a soundness attack. We could extend the definition of soundness
by adding a parameter s that captures tolerance of failed verifications. How-
ever, given the independency of verifications in our setting (every verifier decides
based on her own private state), this extension would not be much more expres-
sive security-wise in practice. We detail our argumentation in Supplementary
Material B.

3.2 Coalescence Functions

We introduce the notion of a coalescence function, which will be a core compo-
nent of our CVZK construction (cf. Section 4). In particular, coalescence func-
tions will be the key for exploiting the CVZK verifiers’ randomness in the pres-
ence of an adversary (a malicious prover) that aims to “cancel” the entropy of the
honest verifiers. Given the verifiers’ coins, a coalescence function will produce a
collection of (challenge) strings such that at least one of the strings has sufficient
entropy to support CVZK soundness. At a high level, a function F achieves co-
alescence, if when provided as input an n-dimensional vector that is (i) sampled
from a distribution Dλ, and (ii) adversarially tampered at up to t-out-of-n vector
components, it outputs a sequence of m k-bit strings so that with overwhelming
probability, at least one of the m strings is statistically close to uniformly ran-
dom. Our definition of F postulates the existence of “good” events G1, . . .Gm,
defined over the input distribution, where conditional to Gi being true, the corre-
sponding output string is statistically close to uniform. Coalescence is achieved
if the probability that such a “good” event occurs is overwhelming.

Definition 4. Let n, k,m be polynomial in λ and In = (in(1), . . . , in(n)) be an
n-dimensional vector sampled according to the distribution ensemble {Dλ}λ so
that the support of Dλ is Ωλ. Let F : Ωλ −→ ({0, 1}k)m be a function. For any
adversary A, any t ≤ n, and any Icorr ⊆ [n] such that |Icorr| ≤ t, we define the
following experiment:

11

ExptCoal
(t,A,Icorr)

(1λ)

1. Set In = (in(1), . . . , in(n))← Dλ;

2. A
(
〈in(`)〉`∈Icorr

)
outputs In′ = (in′(1), . . . , in′(n)) s.t. ∀` ∈ [n] \ Icorr : in′(`) = in(`);

3. Return (d1, . . . , dm)← F (In′);

We say that the function F : Ωλ → ({0, 1}k)m is a (k,m, t)-coalescence
function w.r.t. Dλ, if there exist events G1, . . .Gm over Ωλ such that the following
two conditions hold:

(1) Pr[∧mi=1¬Gi] = negl(λ), and
(2) for every adversary A and every Icorr ⊆ [n] such that |Icorr| ≤ t, it holds

that for all i ∈ [m], the random variable (di|Gi) is statistically negl(λ)-close
to Uk, where (d1, . . . , dm) ← ExptCoal

(t,A,Icorr)(1
λ). Note that (X|A) denotes the

random variable X conditional on the event A.
Furthermore, we require that a (k,m, t)-coalescence function F w.r.t. Dλ sat-

isfies the following two additional properties:
Completeness: the output of F on inputs sampled from Dλ, denoted by F (Dλ),
is statistically negl(λ)-close to the uniform distribution (Uk)m over ({0, 1}k)m.
Efficient samplability: there exists a PPT algorithm Sample(·) such that the
following two conditions hold:
(a) Pr

[
In← Sample

(d1,...,dm)←(Uk)m
(d1, . . . , dm) : F (In) = (d1, . . . , dm)

]
= 1− negl(λ).

(b) The distribution Sample
(
(Uk)m

)
is statistically negl(λ)-close to Dλ.

In Section 4.1, we present an implementation of a coalescence function w.r.t. Un
based on 1RCCF.

4 CVZK Construction

In this section, we show how to compile any Σ-protocol into a 3-move CVZK
protocol. Our CVZK construction is a compiler that utilizes an explicit instantia-
tion of a coalescence function from 1RCCF and a special class of protocols where
both the prover and the simulator operate in an “input-delayed” manner, i.e.,
they do not need to know the statement in the first move. Our CVZK protocol
will be a basic tool for the construction of our VMPC scheme (cf. Section 7). As
noted in the introduction, the security of the VMPC scheme is in the extended
UC model (EUC), where both the simulator and the adversary have access to
a (externalized super-polynomial time) global helper functionality H, denoted
as H-EUC security. Therefore, the CVZK protocol must also be secure against
PPT adversaries with oracle access to some helper.

4.1 Coalescence Functions from 1RCCF

As mentioned in Section 2, it is not possible to produce a single random string via
collective coin flipping and hope it has exponentially small statistical distance to
a uniformly random string. Nevertheless, we show that it is possible to produce

12

several random strings such that with overwhelming probability one of them is
close to uniformly random, as dictated by the coalescence property.

Description. Without loss of generality, let n = λγ for a constant γ > 1 and
assume λ log λ divides n; if not, we can always pad with 0’s until the total num-
ber of coins is a multiple of λ log λ. Let fres denote the (Θ(log2m/m))-strongly
resilient function over m bits proposed in [55]. We define the instantiation of the

coalescence function F : {0, 1}n −→
(
{0, 1}

λ
log2 λ

)log λ
as follows:

Step 1. On input C := (c1, . . . , cn), F partitions the n-bit input C into λ log λ
blocksB1, . . . , Bλ log λ, with n

λ log λ bits each. NamelyBj :=
(
c (j−1)n
λ log λ +1

, . . . , c jn
λ log λ

)
,

where j ∈ [λ log λ].

Step 2. Then, F groups every λ blocks together, resulting to log λ groups,
denoted as G1, . . . , Glog λ. Namely, Gi :=

(
B(i−1)λ+1, . . . , Biλ

)
, where i ∈ [log λ].

Within each groupGi, we apply the resilient function fres on each blockB(i−1)λ+k,
k ∈ [λ], to output 1 bit; hence, for each group Gi, by sequentially running fres we
obtain a λ-bit string (bi,1, . . . , bi,λ)←

(
fres(B(i−1)λ+1), . . . , fres(Biλ)

)
, and log λ

strings in total for all the groups Gi, i ∈ [log λ].

Step 3. The resilient function fres in [55] has a bias 1
10 . Therefore, even if the

input Gi is random, the output bits (bi,1, . . . , bi,λ) are not a random sequence
of λ log λ bits due to this bias. In order to make the output of F balanced (i.e.,
unbiased), for each group Gi, i ∈ [log λ], we execute the following process: on
input (bi,1, . . . , bi,λ), we perform a sequential (von Neumann) rejection sampling
over pairs of bits until an unbiased string di := (di,1, . . . , di, λ

log2 λ
) is produced,

with λ
log2 λ

bits length as described below:

1. Set two indices j ← 1 and k ← 1;

2. While
(

(j < λ) ∧ (k < λ
log2λ

)
)

:

– If bi,j 6= bi,j+1, then set di,k ← bi,j and k ← k + 1;
– Set j ← j + 2;

3. If k = λ
log2λ

, then return di := (di,1, . . . , di, λ
log2 λ

);

4. else return di := (bi,1, . . . , bi, λ
log2 λ

);

Finally, we define the output of F (C) as the sequence (d1, . . . , dlog λ).

Security. The security of F (·) is stated below and is proved in C.1.

Theorem 1. Let γ > 1 be a constant and n = λγ . Then, the function F :

{0, 1}n −→
(
{0, 1}

λ
log2 λ

)log λ
described in Section 4.1 is a

(
λ

log2 λ
, log λ, n

1− 1
γ

log3 n

)
-

coalescence function w.r.t. uniform distribution Un that satisfies completeness
and efficient samplability.

By Theorem 1, for n = λγ , if the adversary can corrupt up to n
1− 1

γ

log3 n
verifiers,

then on input the n verifiers’ coins, F outputs log λ strings of λ
log2 λ

bits, such

that with probability 1− negl(λ), at least one of the log λ strings is statistically
close to uniformly random.

13

4.2 A helper family for AOWF inversion

Let F = {ftag : Xtag −→ Ytag}tag∈{0,1}λ be a (publicly samplable) AOWF family.
In Fig. 1, we define the associated helper family H = {HS}S⊂{0,1}λ (we omit
indexing by λ ∈ N for simplicity). Here, S refers to the subset of tags of entities
controlled by an adversary. Namely, the adversary can only ask for preimages
that are consistent with its corruption extent.

The helper HS(·, ·), where S ⊂ {0, 1}λ.

On query (tag, β), if tag ∈ S, then it returns a value α ∈ Xtag s.t. ftag(α) = β.
Otherwise, it returns ⊥.

Fig. 1: The helper family H = {HS}S⊂{0,1}λ w.r.t. F = {ftag}tag∈{0,1}λ .

4.3 Fully Input-delayed Σ-protocols

In our CVZK construction, we utilize a special class of Σ-protocols where both
the prover and the simulator do not need to know the proof statement in the
first move. Such “input-delayed” protocols (at least for the prover side) have
been studied in the literature (e.g., [49, 21, 22, 37]). To stress the input-delayed
property for both prover and simulator, we name these protocols fully input-
delayed and provide their definition below.

Definition 5. Let Σ.Π := (Σ.Prv1, Σ.Prv2, Σ.Verify) be a Σ-protocol for a lan-
guage L ∈ NP. We say that Σ.Π is fully input-delayed if for every x ∈ L, it
satisfies the following two properties:
(1) Input-delayed proving: Σ.Prv1 takes as input only the length of x, |x|.
(2) Input-delayed simulation: there exists an sHVZK simulator Σ.Sim := (Σ.Sim1,
Σ.Sim2) s.t. Σ.Sim1 takes as input only |x| and the challenge c.

As we will see in Section 4.4, CVZK can be built upon any fully input-delayed
protocol (in a black-box manner) for a suitable “one-way” language that is se-
cure against helper-aided PPT adversaries. Here, for generality, we propose an
instantiation of such a protocol from the fully input-delayed proof for the Hamil-
tonian Cycle problem of Lapidot and Shamir (LS) [49]. By the LS protocol, we
know that there exists a fully input-delayed Σ-protocol for every NP language.
In C.3, we recall the LS protocol and show that it is secure against helper-aided
PPT adversaries, when built upon a commitment scheme that is also secure
against PPT adversaries with access to the same helper. In C.2, we propose
an instantiation of such a commitment scheme based on ElGamal, assuming an
“adaptive” variant of the DDH problem in the spirit of AOWFs [58], defined
formally in A.4, Definition 10.

4.4 Generic CVZK Compiler

We present a generic CVZK compiler for any Σ-protocol Σ.Π = (Σ.Prv1,
Σ.Prv2, Σ.Verify) for an NP language L and (x,w) ∈ RL. Let F = {ftag :

14

Xtag −→ Ytag}tag∈{0,1}λ/log2 λ be a PS-AOWF family (cf. Definition 2), and tag`
be the identity of the verifier CVZK.V` for ` ∈ [n]. Let |tag1| = · · · = |tagn|. For
each ` ∈ [n], our compiler utilizes a fully input-delayed Σ-protocol InD.Π :=
(InD.Prv1, InD.Prv2, InD.Verify) for the language L∗tag`

defined as:

L∗tag`
=
{
β ∈ Ytag`

∣∣ ∃α ∈ Xtag` : ftag`(α) = β
}
. (1)

For simplicity, we say that InD.Π is for the family
{
L∗tag`

}
`∈[n], without referring

specifically to the family member.

Description. In terms of architecture, our CVZK compiler is in the spirit of
disjunctive proofs [24, 22]: the prover must show that either (i) knows a witness
w for x ∈ L or (ii) can invert a hard instance of the PS-AOWF ftag. However,
several adaptations are required so that validity and ZK are preserved in the
CVZK setting where multiple (individually weak) verifiers are present. First,
the challenge C provided by the n verifiers is given as input to the coalescence
function F (·) defined in Sec. 4.1 which outputs log λ strings (d1, . . . , dlogλ), each
λ

log2 λ
bits long. In addition, the compiler maintains a fixed disjunctive mode so

that the prover always (i) proves the knowledge of w for x ∈ L and (ii) simulates
the knowledge of a collection of inversions to hard instances.

To prove the knowledge of w for x ∈ L, the prover executes log λ parallel
runs of the compiled Σ-protocol Σ.Π for (x,w) ∈ RL, where the challenge
in the i-th run is the XOR operation of the i-th block of n

log λ verifiers’ bits
from C and some randomness provided by the prover in the first move. To
simulate the inversions to hard instances, our compiler exploits the fully input-
delayed property of InD.Π. In particular, it runs n · log λ parallel simulations
of InD.Π where the (`, j)-th run, (`, j) ∈ [n] × [log λ], is for a hard instance
(statement) x∗`,j associated with the identity tag` of CVZK.V`. The statement
x∗`,j is created later on in the third move of the protocol by running the image-
mapping algorithm of F on input tag` and the j-th string output by F (C),
dj . The latter is feasible because the first move of the input-delayed simulator
InD.Sim is executed obliviously to the statement.

By the coalescence property of F (·), the output F (C) preserves enough en-

tropy, so that any malicious CVZK prover corrupting less than n
1− 1

γ

log3 n
verifiers is

forced to be challenged on the knowledge of (i) w for x ∈ L or (ii) an inversion of
a hard instance, in at least one of the corresponding parallel executions. Thus,
by the adaptive one-way property of F, the (potentially malicious) prover must
simulate the knowledge of all inversions and indeed prove the knowledge of w for
x ∈ L, so CVZK validity is guaranteed.

The ZK property of our compiler relies on the sHVZK properties of Σ.Π
and InD.Π, yet we remark that the CVZK simulation must be straight-line (no
rewindings) so that our construction can be deployed in theH-EUC setting of our
VMPC scheme. For this reason, we do “complexity leveraging” along the lines
of super-polynomial simulation introduced in [59], by allowing our simulator to
have access to members of the helper family H defined in Fig. 1. Our CVZK
compiler is presented in detail in Fig. 2.

15

1. CVZK.Prv1(x,w):
– For i ∈ [log λ], run (ai, sti)← Σ.Prv1(x,w).
– Pick random R := (r1, . . . , rn)← { 0, 1 }n.
– For ` ∈ [n] and j ∈ [log λ], run (a∗`,j , st

∗
`,j)← InD.Sim1(r`, size), where size =

log λ · |M λ
log2 λ

(tag`, ·)| and |M λ
log2 λ

(tag`, ·)| is the circuit size of ftag`(·) as in

Definition 2.
– Output A :=

(
{ai}i∈[log λ], {a∗`,j}

j∈[log λ]
`∈[n]

)
and the state

stP :=
(
R, {sti}i∈[log λ], {st∗`,j}

j∈[log λ]
`∈[n]

)
.

2. The verifiers generate coins C := (c1, . . . , cn) ∈ { 0, 1 }n. I.e., for ` ∈ [n],
CVZK.V`(x, a) outputs a random bit c`.

3. CVZK.Prv2(x,w,A,C, stP):

– Parse stP :=
(
R, {sti}i∈[log λ], {st∗`,j}

j∈[log λ]
`∈[n]

)
.

– Compute the coalescence function F (·) defined in Section 4.1 on input C to

get F (C) = (d1, . . . , dlog λ), where dj ∈ {0, 1}λ/log
2 λ, j ∈ [log λ].

– Set E := R⊕ C, and parse E as (e1, . . . , elog λ), where ei ∈ {0, 1}n/ log λ.
– For i ∈ [log λ], run zi ← Σ.Prv2(sti, ei).
– For ` ∈ [n] and j ∈ [log λ]:
• Run β`,j ← IM(tag`, dj), where IM(·, ·) is the image-mapping algorithm of

the family F, as in Definition 2.
• Define the statement x∗`,j := β`,j for L∗tag`

.
• Run z∗`,j ← InD.Sim2(st∗`,j , x

∗
`,j).

– Output Z :=
(
E, {zi}i∈[log λ], {z∗`,j}

j∈[log λ]
`∈[n]

)
.

4. CVZK.Verify(x,A,C, Z):

– Parse A :=
(
{ai}i∈[log λ], {a∗`,j}

j∈[log λ]
`∈[n]

)
.

– Parse Z :=
(
E, {zi}i∈[log λ], {z∗`,j}

j∈[log λ]
`∈[n]

)
.

– Compute (d1, . . . , dlog λ)← F (C).
– Compute R := (r1, . . . , rn) = E ⊕ C and parse E as (e1, . . . , elog λ).
– For i ∈ [log λ], check that Σ.Verify(x, ai, ei, zi) = 1.
– For ` ∈ [n] and j ∈ [log λ], run β`,j ← IM(tag`, dj) and define the statement
x∗`,j = β`,j . Then, check that InD.Verify

(
x∗`,j , a

∗
`,j , r`, z

∗
`,j

)
= 1.

– Output 1 if all the checks are valid; output 0, otherwise.

Fig. 2: The generic CVZK compiler CVZK.Π.

Security. To prove the security of our CVZK generic compiler we use a sim-
ulator pair (CVZK.Sim1,CVZK.Sim2), where CVZK.Sim2 is given oracle access
to a member of the super-polynomial helper family H = {HS}S⊂{0,1}λ/ log2 λ

defined in Fig. 1. We state our CVZK security theorem below and prove it in
Supplementary Material C.4.

Theorem 2. Let Σ.Π = (Σ.Prv1, Σ.Prv2, Σ.Verify) be a Σ-protocol for some
language L ∈ NP where the challenge is chosen uniformly at random. Let
F = {ftag : Xtag −→ Ytag}tag∈{0,1}λ/ log2 λ be a PS-AOWF family (cf. Defini-

tion 2), and let H = {HS}S⊂{0,1}λ/ log2 λ be the associated helper family defined

in Fig. 1. Let InD.Π := (InD.Prv1, InD.Prv2, InD.Verify) be a fully input-delayed

16

Σ-protocol for the language family
{
L∗tag`

}
`∈[n] defined in Eq.(1).

Let γ > 1 be a constant and n = λγ . Let CVZK.Π be the CVZK compiler for the
language L with n verifiers described in Fig. 2 over Σ.Π, InD.Π and F. Then,
against any adversary A, it holds that:

(1) If the image-mapping algorithm IM(·, ·) of F has error ε(·)5, Σ.Π has com-
pleteness error δ(·) and InD.Π has perfect completeness, then for every t1 ≤
n
1− 1

γ

log2 n
, CVZK.Π satisfies (t1, ε1)-crowd verifiable completeness, where ε1(λ) :=

δ(λ) log λ+ n log λε(λ)2Θ(log2 n) + negl(λ).

(2) If Σ.Π and InD.Π are special sound, then for every t2 ≤ n
1− 1

γ

log3 n
, there is a

negligible function ε2(·) s.t. CVZK.Π satisfies (t2, ε2)-crowd verifiable soundness
and t2-crowd verifiable validity.

(3) Let t3 ≤ n and consider any subset of indices of corrupted verifiers Icorr ⊆ [n]
s.t. |Icorr| ≤ t3. Let A be PPT with access to a helper HS from H, where (i)
{tag`}`∈Icorr ⊆ S and (ii) {tag`}`∈[n]\Icorr

∩S = ∅. If Σ.Π and InD.Π are sHVZK
against PPT distinguishers with access to HS, then there is a PPT simulator pair(
CVZK.Sim1, CVZK.Sim

HS
2

)
s.t. CVZK.Π is t3-crowd-verifiable zero-knowledge

against PPT distinguishers with access to HS.

5 End-to-end Verifiable MPC

We introduce end-to-end verifiable multiparty computation (VMPC), which as
we show in Section 7, can be realized with the use of CVZK. A VMPC scheme
encompasses the interaction among sets of users, clients and servers, so that the
correct computation of some fixed function f of the users’ private inputs can be
verified, while their privacy is preserved. End-to-end verifiability suggests that
even when all servers and all users’ clients are corrupted, verification is still
possible (although, obviously, in an all-malicious setting, privacy is violated).
Furthermore, a user’s audit data do not leak information about her private input
so the verification mechanism may be delegated to an external verifier.

5.1 VMPC Syntax

Let U = {U1, . . . , Un } be a set of n users where every user has an associated
client C = {C1, . . . , Cn }. Let S = {S1, . . . , Sk } be a set of k servers. All clients
and servers run in polynomial time. Every server has write permission to a con-
sistent bulletin board (BB) to which all parties have read access. Each user U`
receives her private input x` from some set X (which includes a special sym-
bol “abstain”) and is associated with a client C` for engaging in the VMPC
execution. In addition, there exists an efficient verifier V responsible for audit-
ing procedures. The evaluation function associated with the VMPC scheme is

5 The adaptive OWF family instantiated in A.4 has perfect samplability, i.e. ε(λ) = 0.

17

denoted by f : Xn −→ Y , where Xn is the set of vectors of length n, the coor-
dinates of which are elements in X, and Y is the range set. All parameters and
set sizes n, k are polynomial in the security parameter λ.

Note that we consider the concept of a single verifier that audits the VMPC
execution on behalf of the users, in the spirit of delegatable receipt-free verifi-
cation that is established in e-voting literature (e.g. [20, 56, 44]). Alternatively,
we could involve multiple verifiers, e.g. one for each user, and require that all
or a threshold of them verify successfully. This approach does not essentially
affect the design and security analysis of a VMPC scheme, as (i) individual ver-
ifiability is captured in our description via the delegatable verification carried
out by the single verifier and (ii) a threshold of collective user randomness is
anyway needed. Which of the two directions is preferable, is mostly a matter of
deployment and depends on the real world scenario where the VMPC is used.

Separating users from their client devices. The distinction between the
user and her associated client is crucial for the analysis of VMPC security where
end-to-end verifiability is preserved in an all-malicious setting, i.e., where the
honest users are against a severe adversarial environment that controls the en-
tire VMPC execution by corrupting all servers and all clients. In this setting,
each user is an entity with limited “human level” power, unable of perform-
ing complex cryptographic operations which are outsourced to her associated
client. A secure VMPC scheme should be designed in a way that withstands
such attacks, based on the engagement of the honest users in the execution.

VMPC security relies on the internal randomness that each user generates
during her interaction with the system. By r` we denote the randomness gener-
ated by the user U` and κ` is the min-entropy of r`. Let κ := min{κ` | ` ∈ [n]}
be the min-entropy of all users’ randomness, that we call the user min-entropy
of a VMPC scheme. Given that we view U` as a “human entity”, the values of κ
are small and insufficient for secure implementation of cryptographic primitives.
Namely, each individual user contributes randomness that can be guessed by an
adversary with non-negligible probability. Formally, it should hold κ = O(logλ),
i.e. 2−κ is a non-negligible value and hence insufficient for any cryptographic op-
eration. From a computational point of view, users cannot perform complicated
calculations and their computational complexity is linear in λ (i.e., the minimum
for reading the input).

Protocols. A VMPC scheme consists of the following protocols:

– Initialize (executed among the servers). At the end of the protocol each
server Si posts a public value Paramsi in the BB and maintains private state sti.
By Params = {Paramsi, i ∈ [k]} we denote the execution’s public parameters.

– Input (executed among the servers and the users along with their associ-
ated clients). We restrict the interaction in the simple setting where the users
engage in the Input protocol without interacting with each other. Specifically,
each user U`, provides her input x` to her client C` (e.g., smartphone or desktop
PC) which in turn interacts with the servers. By her interaction with C`, the
user U` obtains some string α` that will be used as individual audit data.

18

– Compute (executed among the servers). At the end of the protocol, the
servers post an output value y and the public audit data τ on the BB. Then,
everyone may obtain the output y from the BB.

– Verify (executed by the verifier V and the users). In particular, V requests
the individual audit data α` from each user U` and reads y, τ from the BB.
Subsequently it provides each user U` with a pair (y, v), where v ∈ {0, 1} denotes
the verification success or failure.

Remark 3. The Initialize protocol can operate as a setup service that is run
ahead of time and is used for multiple executions, while the Input protocol
represents the online interaction between a user, her client and the servers.

5.2 Security Framework

We define a functionality that captures the two fundamental properties that
every VMPC should achieve: (i) standard MPC security and (ii) end-to-end ver-
ifiability. Our model for VMPC is in the spirit of H-EUC security [18], which
allows for the preservation of the said properties under arbitrary protocol com-
positions. Thus, VMPC security refers to indistinguishability between an ideal
and a real world setting by any environment that schedules the execution. In
our definition we assume the functionality of a Bulletin Board GBB (with consis-
tent write/read operations) and a functionality Fsc that models a Secure Channel
between each user and her client (for completeness we recall GBB and Fsc in A.5).
Ideal world setting. We formally describe the ideal VMPC functionality Ff,Rvmpc(P)
that is defined w.r.t. to an evaluation function f : Xn −→ Y and a binary re-
lation R ⊆ Img[f] × Img[f] over the image of f . The functionality Ff,Rvmpc(P)
operates with the parties in P = U ∪ C ∪ S ∪ {V }, which include the users
U = {U1, . . . , Un } along with their associated clients C = {C1, . . . , Cn }, the
servers S = {S1, . . . , Sk }, and the verifier V .

The relation R determines the level of security offered by Ff,Rvmpc(P) in terms of
adversarial manipulation of the output computed value. E.g., if R is the equality
relation { (y, y) | y ∈ Y }, then no deviation from the actual intended evaluation
will be permitted by the Ff,Rvmpc(P). Finally, the environment Z provides the par-
ties with their inputs and determines a subset Lcorr ⊂ P of statically corrupted
parties. Along the lines of the H-EUC model, we consider an externalized global
helper functionality H in both the ideal and real world. The helper H can inter-
act with parties in P and the environment Z. Namely, Z sends Lcorr to H at the
beginning or the execution. In this work, we allow H to run in super-polynomial
time w.r.t. the security parameter λ. At a high level, Ff,Rvmpc(P) interacts with
the ideal adversary Sim as follows:

– At the Initialize phase, it waits for the servers and clients to be ready for
the VMPC execution.

– At the Input phase, it receives the user’s inputs. It leaks the input of U`
to the adversary only if (i) all servers are corrupted or (ii) the client C` of U`
is corrupted. If neither (i) nor (ii) holds, then Ff,Rvmpc(P) only reveals whether U`
abstained from the execution.

19

– At the Compute phase, upon receiving all user’s inputs denoted as vector
x ∈ Xn, it computes the output value y = f(x).

– At the Verify phase, upon receiving a verification request from V (which
is a dummy party here), the functionality is responsible for playing the role of
an “ideal verifier” for every user U`. On the other hand, Sim sends to Ff,Rvmpc(P)
an adversarial (hence, not necessarily meaningful) output value ỹ for the VMPC
execution for U`. Then, Ff,Rvmpc(P)’s verification verdict w.r.t. U` will depend on
the interaction with Sim and potentially the relation of y, ỹ w.r.t. R. We stress
that Ff,Rvmpc(P) will consider ỹ only if (a) all servers are corrupted, or (b) an honest
user’s client is corrupted6. If this is not the case, then it will always send the
actual computed value y to U` and its verification verdict will not depend on R,
which is in line with the standard notion of MPC correctness. The functionality
Ff,Rvmpc(P) is presented in Figure 3.
Real world setting. In the real world setting, all the entities specified in
the set P are involved in an execution of a VMPC scheme Π = (Initialize,
Input,Compute,Verify) in the presence of functionalities GBB and Fsc. As
in the ideal world, the environment Z provides the inputs and determines the
corruption subset Lcorr ⊂ P. Z will also send Lcorr to H at the beginning of the
execution. During Initialize, the servers interact with the users’ clients. During
the Input protocol, every honest user U` engages by providing her private input
x` via C` and obtaining her individual audit data α`. The execution is run in the
presence of a PPT adversary A that observes the network traffic and corrupts
the parties specified in Lcorr.
VMPC definition. As in the H-EUC framework [18], we consider an environ-
ment Z that provides inputs to all parties, interacts with helper H and schedules

the execution. In the ideal world setting, Z outputs the bit EXEC
Ff,Rvmpc(P)
Sim,Z,H (λ), and

in the real world the bit EXECP,Π
GBB,Fsc

A,Z,H (λ). Security is defined as follows:

Definition 6. Let f : Xn −→ Y be an evaluation function and R ⊆ Y × Y be
a binary relation. Let H be a helper functionality. We say that a VMPC scheme
ΠGBB,Fsc operating with the parties in P, H-EUC realizes Ff,Rvmpc(P) with error ε,
if for every PPT adversary A there is an ideal PPT simulator Sim such that for
every PPT environment Z, it holds that∣∣∣Pr

[
EXEC

Ff,Rvmpc(P)
Sim,Z,H (λ) = 1

]
− Pr

[
EXECP,Π

GBB,Fsc

A,Z,H (λ) = 1
]∣∣∣ < ε .

Strength of our VMPC security model. Based on the description of Ff,Rvmpc,
the private input x` of an honest user U` is leaked if her client C` is corrupted, or
if all servers are malicious, so in our VMPC model, the honest users’ clients and
at least one server must be non-corrupted for privacy. For integrity, we require
that the verifier remains honest, while GBB captures the notion of a consistent and
public bulletin board. We informally argue that these requirements are essential
for VMPC feasibility, at least for meaningful cases of functions and relations.

6 In case an honest user’s client is corrupted, an “input replacement” attack can take
place which makes it impossible to deliver (the true output) y to the user.

20

The functionality operates with the following parties P = U ∪ C ∪ S ∪ {V }. The
set Lcorr ⊂ P contains all corrupted parties.

Initialize.

– It sets its status to ‘init’ and initializes four lists Lstart, Lcomp, Lcast and Lready as
empty and a list Lin as 〈(U`, ·)〉U`∈U .

– Upon receiving (Start, sid) from Si ∈ S, if its status is ‘init’, then it updates
Lstart ← Lstart ∪ {Si }. If |Lstart| = k, it sets the status to ‘input’.

– Upon receiving (Ready, sid) from C`, if its status is ‘init’, then it sends public
delayed output (Ready, sid) to Sim and adds C` to Lready.

Input.

– Upon receiving (Cast, sid, x`) from U`, if (i) the status is ‘input’, and (ii)
C` ∈ Lcorr or {S1, . . . , Sk} ⊆ Lcorr, then it sends (sid, cast, U`, x`) to Sim. Otherwise,

it sends (sid, cast, U`, (x`
?
= ‘abstain’)) to Sim. If the status is ‘input’ and the entry

in Lin indexed by U` is (U`, ·), then it updates the entry as (U`, x`).
– Upon receiving (Record, sid, U`, x̃`) from Sim, if (i) the status is ‘input’, and

(ii) (U`, ·) /∈ Lcast, then
◦ If C` ∈ Lcorr, then it adds (U`, x̃`) to Lcast.
◦ If (a) C` /∈ Lcorr, (b) there is a record (U`, x`) ∈ Lin and (c) C` ∈ Lready or

x` = abstain, then it adds (U`, x`) to Lcast.
– Upon receiving (Compute, sid) from Si ∈ S, if its status is ‘input’, then it

updates Lcomp ← Lcomp ∪ {Si }. If |Lcomp| = k, it sets the status to ‘compute’. For
every U` s.t. there is no record in Lcast, it adds (U`, abstain) to Lcast.

Compute.

– If status is ‘compute’ and Lcast contains records for all users U1, . . . , Un, it
computes y ← f

(
〈x`〉(U`,x`)∈Lcast

)
and sends (Output, sid, y) to Sim.

– Upon receiving (Audit, sid) from Sim, it sets the status to ‘audit’.

Verify.

– Upon receiving (Verify, sid) from V , if the status is ‘audit’, then it sends
(Verify, sid) to Sim.
– Upon receiving (Verify response, sid, U`, ỹ, ṽ) from Sim, if the status is ‘audit’:
(1) If (i) ṽ = 1, and (ii) V /∈ Lcorr then
• If there exists an Si /∈ Lcorr and for all `′ such that U`′ 6∈ Lcorr it holds that

C`′ 6∈ Lcorr, then it sends (Result, sid, y, 1) to U`.
• Else, (all servers are corrupted, or there is an honest U`′ with a corrupted C`′)
◦ If (y, ỹ) ∈ R, then it sends (Result, sid, ỹ, 1) to U`.
◦ If (y, ỹ) /∈ R, then it sends (Result, sid, ỹ, 0) to U`.

(2) Else if (i) ṽ = 0 or (ii) V ∈ Lcorr, then it sends (Result, sid, ỹ, ṽ).

Fig. 3: The ideal VMPC functionality Ff,Rvmpc(P).

Clearly, since the users communicate with the servers only via her client, the
user has to provide her input to the client which has to be trusted for privacy.
Besides, if the adversary can corrupt all the servers, then it can completely run
the Compute protocol and along with the environment, schedule the evaluation

21

of f that, in general, may leak information on individual inputs that Sim cannot
infer just by receiving the evaluation of f on the entire input vector.

Furthermore, if the real world verifier is malicious, then it can provide arbi-
trary verdicts regardless of the “verification rules” imposed by R, which rules
are respected by Ff,Rvmpc(P) in the ideal world (the same would hold even we con-
sidered multiple verifiers per user). Finally, in case of no consistent BB, since the
communication between parties is not assumed authenticated, an adversary can
disconnect the parties separating them into disjoint groups, and provide partial
and mutually inconsistent views of the VMPC execution per group. For more
details, we refer to Barak et al. [3] and Supplementary Material D, where we
discuss the strength of our model w.r.t. the server, client, and verifier corruption.

6 Spreading Relations

In this section, we study the characteristics that a function f : Xn −→ Y must
have w.r.t. some relation R ⊆ Img[f]× Img[f] to be realized by a VMPC scheme.
Recall that in our setting, all entities capable of performing cryptographic oper-
ations might be corrupted and only a subset of users is honest. This requirement
poses limitations not present in other security models (e.g. [4]), where auditable/
verifiable MPC is feasible for a large class of functions (arithmetic circuits) given
(i) the existence of a trusted randomness source or a random oracle or (ii) the
fact that both the honest user and her client are considered as one non-corrupted
entity. As a consequence, for some evaluation function f and binary relation R,
if VMPC realization is feasible, then this is due to the nature of the users’ en-
gagement in the VMPC execution. Namely, we consider that the users interact
using some randomness that implies a level of unpredictability in the eyes of the
attacker that prevents end-to-end verifiability (as determined by relation R) or
secrecy from being breached. Naturally, this engagement results in a security
error that strongly depends on (i) the number of honest users whose inputs are
attacked by the adversary and (ii) the user min entropy κ. On the contrary, it is
plausible that if an adversary controlling the entire execution can guess all the
users’ coins, then this execution is left defenseless against the adversary’s attacks.
As mentioned in Section 5, the possible values for κ remain at a “human level”,
in the sense that the randomness r` of U` can be guessed with good probability.
Typically, we assume that 2−κ is non-negligible in the security parameter λ by
setting κ = O(logλ).

We view the sets Xn and Y as metric spaces equipped with metrics dXn

and dY respectively. For the domain Xn, we select the metric that provides an
estimation of the number of honest users that have been attacked, i.e. their inputs
are modified by the real world adversary. So, we fix dXn as the metric Dcrn that
counts the number of vector elements that two inputs x = (x1, . . . , xn),x′ =
(x′1, . . . , x

′
n) differ. Formally, Dcrn(x,x′) =

∣∣ { ` ∈ [n] | x` 6= x′` }
∣∣ .

We examine feasibility of realizing Ff,Rvmpc w.r.t. f,R according to the following
reasoning: assuming that cryptographic security holds, then an adversarial input
that has some distance δ w.r.t. Dcrn from the honest inputs cannot cause a

22

significant divergence y′ from the actual evaluation y = f(x). Here, divergence is
interpreted as the case where y, y′ are not in some fixed relation R. For instance,
if divergence means that the deviation from the actual evaluation is no more
than δ, this can be expressed as y, y′ not being in the bounded distance relation
Rδ defined as follows:

Rδ := {(z, z′) ∈ Y × Y | dY (z, z′) ≤ δ} . (2)

An interesting class of evaluation functions that can be realized in an VMPC
manner w.r.t. Rδ are the ones that satisfy some relaxed isometric property, thus
inherently preventing evaluation from “large” deviation blow ups when the dis-
tance between honest and adversarial inputs is bounded, as specified by Eq. (2)
for some positive value δ. One noticeable example are the Lipschitz functions;
namely, for some L > 0, if the evaluation function f : Xn −→ Y is L-Lipschitz,
then for every x,x′ ∈ Xn it holds that dY

(
f(x), f(x′)

)
≤ L · Dcrn

(
x,x′

)
.

Thus, in the case of an L-Liptshitz function f and bounded distance relation
Rδ, the following condition holds:

∀x,x′ ∈ Xn : Dcrn(x,x′) ≤ δ/L⇒ Rδ
(
f(x), f(x′)

)
.

In general, the above condition implies that the ideal functionality Ff,Rvmpc(P)
will accept a simulation when the adversarial value y′ can be derived by an input
vector that is no more than δ-far from the actual users’ inputs. This interesting
property fits perfectly with our intuition of VMPC realization and captures
Lipschitz functions and bounded distance relations as special case. Based on the
above, we introduce the notion of spreading relations as follows.

Definition 7 (Spreading relation). Let (Xn,Dcrn) and (Y, dY) be metric
spaces, f : Xn −→ Y be a function and δ be a non-negative real value. We
say that R ⊆ Img[f] × Img[f] is a δ-spreading relation over Img[f], if for every
x,x′ ∈ Xn it holds that

Dcrn(x,x′) ≤ δ ⇒ R
(
f(x), f(x′)

)
.

The breadth of VMPC feasibility. Given Definition 7, we formally explore
the boundaries of VMPC feasibility given some fixed values κ, δ. Intuitively, we
show that if f is symmetric7, then VMPC realization with a small (typically
negl(δ)) error is infeasible when R is not a δ-spreading relation over Img[f],
or if the users engage in the VMPC execution in a “deterministic way” (i.e.,
κ = 0). A detailed discussion and a proof sketch can be found in Supplementary
Material E.

Theorem 3. Let f : Xn −→ Y be a symmetric function, R ⊆ Img[f] × Img[f]
be a binary relation and κ, δ be non-negative values, where δ ≤ n

2 . Then, one of
the following two conditions holds:

(1) R is a δ-spreading relation over Img[f].

7 f(x1, . . . , xn) is symmetric iff it is unchanged by any permutation of its variables.

23

(2) For every VMPC scheme ΠGBB,Fsc with parties in P = {U1, . . . , Un} ∪
{C1, . . . , Cn}∪ {S1, . . . , Sk}∪ {V } and user min entropy κ, and every helper H,
there is a negligible function ε and a non-negligible function γ such that ΠGBB,Fsc

does not H-EUC realize Ff,Rvmpc(P) with error less than min{2−κδ − ε(λ), γ(λ)}.

7 Constructing VMPC from CVZK

A number of efficient practical MPC protocols [12, 57, 29, 28] have been proposed
in the pre-processing model. Such protocols consist of two phases: offline and
online. During the offline phase, the MPC parties jointly compute authenticated
correlated randomness, which typically is independent of the parties’ inputs.
During the online phase, the correlated randomness is consumed to securely
evaluate the MPC function over the parties’ inputs. Our VMPC construction
follows the same paradigm as [4]. Our main challenge is to transform a publicly
audible MPC to a VMPC without a trusted setup.

Our construction utilizes (i) a perfectly binding homomorphic commitment
that is secure against helper-aided PPT adversaries (cf. C.2), (ii) a dual-mode
homomorphic commitment DC, which allows for two ways to choose the com-
mitment key s.t. the commitment is either perfectly binding or equivocal (con-
structed in F.1), (iii) a Σ-protocol for Beaver triples, (cf. F.2) and (iv) CVZK
proofs that derive from compiling straight-line simulatable ZK proofs for NP
languages (cf. F.4) via our CVZK construction from Section 4. Note that plain
ZK does not comply with the VMPC corruption model, as all servers and clients
can be corrupted and each user has limited entropy. Additionally, our protocol
utilizes a secure channel functionality Fsc between human users U` and their lo-
cal clients C`; and an authenticated channel functionality Fauth between human
users U` and verifier V . Both channels can be instantiated from physical world,
such as isolated voting rooms and trusted mailing service. To provide intuition,
we first provide a construction for the single-server setting.

7.1 Single-server VMPC

As a warm-up , we present the simpler case of a single MPC server S. In this
setting, no privacy can be guaranteed when S is corrupted, yet end-to-end ver-
ifiability should remain, since the property should hold even if all servers are
corrupted. For simplicity, by using CVZK to prove a statement, we mean that
the prover (server) runs CVZK.Prv1 to generate the first move of the CVZK proof
and posts it on BB (formalized as GBB in Fig. 6) during the Initialize phase.
Each user then acts as a CVZK verifier to generate and post a coin on the BB at
Input phase. The prover uses CVZK.Prv2 to complete the proof by posting the
third move of the CVZK proof to the BB at the Compute phase. At Verify,
anyone can check the CVZK transcripts posted on the BB.
– At the Initialize phase, S first generates a perfectly binding commitment key
of the dual-mode homomorphic commitment as ck ← DC.Gen(1λ) which posts
on the BB and shows that ck is a binding key using CVZK. Then, S generates

24

and commits to two random numbers r
(0)
` , r

(1)
` ∈ Zp to the BB for each user U`,

` ∈ [n]. Denote the corresponding commitments as c
(0)
` and c

(1)
` . Furthermore, S

generates sufficiently many random Beaver triples (depending on the multiplica-
tion gates of the circuit to be evaluated), i.e., triples (a, b, c) ∈ (Zp)3 such that
c = a · b, and then commits the triples to the BB by showing their correctness
using the CVZK compiled from the Σ-protocol for Beaver triples described in

F.2. For each user U`, ` ∈ [n], S sends r
(0)
` and r

(1)
` to her client C`.

– At the Input phase, C` sends (displays) r
(0)
` and r

(1)
` to U`. Assume U`’s input

is x`. U` randomly picks b`←{ 0, 1 } and computes δ` = x` − r(b`)`
8. Then, U`

sends (b`, δ`) to C`, which in turn posts (U`, δ`, b`) to the BB, where U` is the

user ID. Finally, U` obtains (b`, δ`, r
(1−b`)
`) as her individual audit data α`.

– At the Compute phase, S fetches posted messages from the BB. For ` ∈ [n], S

sets c` ← c
(b`)
` ·DC.Comck(δ`; 0) and opens c

(1−b`)
` to the BB (note that c` commits

to x`). S follows the arithmetic circuit to evaluate f(x1, . . . , xn) using (c1, . . . , cn)
as the input commitments. Specifically, (i) for addition gate z = x+y, S uses ho-
momorphic property to set the commitment of z as DC.Comck(x) ·DC.Comck(y);
(ii) for multiplication gate z = x·y, S needs to consume a pre-committed random
Beaver triple. Denote the commitments of x and y as X and Y , respectively and
the triple commitments as (A,B,C) which commit to a, b, c s.t. a · b = c. Then,
S opens the commitment X/A as α and Y/B as β to the BB. It then sets the
commitment of z as C ·Bα ·Aβ ·DC.Comck(α · β). By homomorphic property, it
is easy to see that z = x · y. Finally, S opens the commitments corresponding to
the output gate(s) of the arithmetic circuit as the final result.
– At the Verify phase, V requests and receives the individual audit data {α`}`∈[n]
from each user U`, ` ∈ [n], via Fauth. First, V parses α` = (b`, δ`, r

(1−b`)
`), for

` ∈ [n]. Next, V fetches all the transcript from the BB, and it executes the
following steps: (1) it checks that the posted b` on the BB match the ones in α`;
(2) it verifies that the openings of all the commitments are valid; (3) it verifies
that all the CVZK proofs are valid; (4) it re-computes the arithmetic circuit
using the commitments and openings posted on the BB to verify the computa-
tion correctness. If all checks are successful, V sets the verification bit v := 1,
else it sets v := 0. Finally, it sends the opening of the result commitment (i.e.,
f(x1, . . . , xn)) along with v to every user U`, ` ∈ [n].

7.2 Security of the single-server construction

We provide an informal discussion on the security of the single-server construc-
tion in terms of privacy and end-to-end verifiability.

Privacy. The single-server VMPC construction preserves user U`’s privacy
when the server S and C` are honest. In particular, since the underlying com-

8 Note that this step requires the “human” user to perform some linear operation
in Zp. If we want to avoid any type of computation in the user side (apart from
coin-flipping), then the client can also send a pre-computed lookup table for all δ`
(assuming that the user input space is polynomial).

25

mitment scheme is computationally hiding under the adaptively secure DDH
assumption, all the posted commitments to values X/A and Y/B leak no infor-
mation (up to a negl(λ) error) about the users’ inputs to a PPT adversary with
access to the helper. Furthermore, while computing the multiplication gates,
the openings have uniform distribution, as the plaintext is masked by a random
group element.

End-to-end verifiability. Let f be an evaluation function and R be a δ-
spreading relation over Img[f] (cf. Definition 7), where δ ≥ 0 is an integer.
We informally discuss how the single-server VMPC protocol achieves end-to-
end verifiability w.r.t. R, with error that is negligible in λ and δ. Recall that the
soundness of the underlying CVZK proofs and the binding property of the (dual-
mode) commitment scheme holds even against unbounded adversaries, therefore
argumentation for end-to-end verifiability captures the case of helper-aided ad-
versaries. We stress that the argumentation can extend to the multiple server
case, since the adversary is allowed to corrupt all servers as a single malicious au-
thority. Assume that the adversary A corrupts the MPC server, all users’ clients

and no more than n1−
1
γ /log3 n users. First, we note that if A additionally cor-

rupts the verifier V , we can construct a simple simulator that engages with A
by playing the role of honest users and simply forwards the malicious response
of V to Ff,Rvmpc(P) along with the adversarial tally y′. For the more interesting
case where V is honest, we list the types of attacks that A may launch below:

– Commitment attack: A attempts to open some commitment c of a message
m, to a value m′ 6= m. By the perfect binding property of ElGamal commitment,
this attack has zero success probability.

– Soundness attack: A attempts to convince the verifier of an invalid CVZK

proof. By the
(
n1−

1
γ /log3 n, negl(λ)

)
-crowd-verifiable soundness of our CVZK

compiler (cf. Theorem 2), A has negl(λ) probability of success in such an attack.

– Client attack: by corrupting the client C` of U`, A provides U` with a pair

of random values (r̂
(0)
` , r̂

(1)
`), where one component r̂

(b∗)
` is different than r

(b∗)
`

in the pair (r
(0)
` , r

(1)
`) committed to BB (formalized as GBB in Fig. 6). Hence,

if A∗ guesses the coin of U` correctly (i.e. b∗ = b`), then it can perform the

VMPC execution by replacing U`’s input x` with input x∗` = x` +
(
r̂
(b∗)
` − r(b

∗)
`

)
without being detected. Given that U` flips a fair coin, this attack has 1/2 success
probability.

Observe that the above list is complete; if none of the above attacks happen,
then by the properties of the secret sharing scheme, A can not tamper the VMPC
computation on the consistent BB without being detected.

Leaving aside the negl(λ) cryptographic error inserted by combinations of
commitment and soundness attacks, the adversary’s effectiveness relies on the
scale of client attacks that it can execute. If it performs more than δ client
attacks, then by the description of client attacks, V will detect and reject with
at least 1 − 2−δ probability. So, with at least 1 − 2−δ probability, a simulator
playing the role of the (honest) verifier will also send a reject message (ṽ = 0)
for every honest user to Ff,Rvmpc(P) and indistinguishability is preserved.

26

On the other hand, if A performs less than δ client attacks, then the actual
input x and the adversarial one x′ are δ-close w.r.t. Dcrn(·, ·). Since the relation
R is δ-spreading, we have that

(
f(x), f(x′)

)
∈ R holds. So, when the simulator

plays the role of the (honest) verifier that accepts, it sends an accept message
(ṽ = 1) for every honest user to Ff,Rvmpc(P) which in turn will also accept (since(
f(x), f(x′)

)
∈ R holds). Besides, Ff,Rvmpc(P) will reject whenever the simulator

sends a reject message, hence, indistinguishability is again preserved.
We conclude that the single-server VMPC scheme achieves end-to-end veri-

fiability with overall error 2−δ + negl(λ).
Observe that the above list is complete; if none of the above attacks happen,

then by the properties of the secret sharing scheme, A can not tamper the VMPC
computation on the consistent BB without being detected.

Leaving aside the negl(λ) cryptographic error inserted by combinations of
commitment and soundness attacks, the adversary’s effectiveness relies on the
scale of client attacks that it can execute. If it performs more than δ client
attacks, then by the description of client attacks, V will detect and reject with
at least 1 − 2−δ probability. So, with at least 1 − 2−δ probability, a simulator
playing the role of the (honest) verifier will also send a reject message (ṽ = 0)
for every honest user to Ff,Rvmpc(P) and indistinguishability is preserved.

On the other hand, if A performs less than δ client attacks, then the actual
input x and the adversarial one x′ are δ-close w.r.t. Dcrn(·, ·). Since the relation
R is δ-spreading, we have that

(
f(x), f(x′)

)
∈ R holds. So, when the simulator

plays the role of the (honest) verifier that accepts, it sends an accept message
(ṽ = 1) for every honest user to Ff,Rvmpc(P) which in turn will also accept (since(
f(x), f(x′)

)
∈ R holds). Besides, Ff,Rvmpc(P) will reject whenever the simulator

sends a reject message, hence, indistinguishability is again preserved.
We conclude that the single-server VMPC scheme achieves end-to-end veri-

fiability with overall error 2−δ + negl(λ).

7.3 Extension to multi-server VMPC

The single-server VMPC can be naturally extended to a multi-server version
by secret-sharing the server’s state. The protocol is similar to BDO [4] and
SPDZ [29, 28]. However, all the underlying ZK proofs need to be compiled in
CVZK. Let Zp be the message space of the secret shared values. A secret shared
value x ∈ Zp is represented by 〈x〉 := (x(1), . . . , x(k)), where each MPC server

Sj , j ∈ [k], holds the random share x(j) such that x =
∑k
j=1 x

(j). Each shared

value 〈x〉 is associated with a (secret shared) fresh randomness ρ ∈ (Zp)k and a
commitment DC.Comck(x; ρ). More specifically, a publicly traceable secret shared
value x is J·K-represented as JxK := (〈x〉, 〈ρ〉,DC.Comck(x; ρ)), where shares of x
and ρ are held by the MPC servers. DC.Comck(x; ρ) is posted to Gbb. In the
following, we provide a detailed description of the VMPC data representation.

Data representation. The main difference between our data representation
and the SPDZ (and its variants) is that we do not attach linear MAC to the
shared data. This is mainly because we aim to achieve verifiability when all

27

the MPC servers are corrupted, and all the shared values including the MAC
key are known to the adversary in that extreme case. Hence, the correctness
of the online phase execution cannot be ensured by checking MACs. Instead,
similar as in [5], all the shared values have also a corresponding commitment
posted on Gbb; therefore, the auditor can run the exact MPC online circuit over
the commitments and check if the opening of the final commitment matches
the MPC output. The difference between [5] and ours is that we also commit
individual shares. More specifically, let the message space of the shared value be
Zp. A secret shared value x ∈ Zp is represented by

〈x〉 := (x(1), . . . , x(k)) ,

where each MPC server Sj , j ∈ [k], holds the random share x(j) such that

x =
∑k
j=1 x

(j). Each shared value 〈x〉 associated with a (secret shared) fresh
randomness ρ(x) ∈ Zp and a commitment Comck(x; ρ(x)). More specifically, a
publicly traceable secret shared value x is J·K-represented as below:

JxK := (〈x〉, 〈ρ(x)〉,Comck(〈x〉; 〈ρ(x)〉),Comck(x; ρ(x)) ,

where shares of x and ρ(x) are held by the MPC servers, and for notation sim-
plicity, we use the notation Comck(〈x〉; 〈ρ(x)〉) to denote a vector of commitments
of the individual shares, i.e.,

Comck(x(1); ρ(x(1))), . . . ,Comck(x(k); ρ(x(k)))

Comck(〈x〉; 〈ρ(x)〉) and Comck(x; ρ(x)) are posted to Gbb. Due to homomor-
phic property, we have

Comck(x; ρ(x)) =

k∏
i=1

Comck(x(i); ρ(x(i))) .

Information wise, Comck(x; ρ(x)) is redundant, but we keep it for conceptual
clarity. It is easy to see that J·K shares are linearly homomorphic:

JxK + JyK : =
(
〈x〉+ 〈y〉, 〈ρ(x)〉+ 〈ρ(y)〉,

Comck(〈x〉; 〈ρ(x)〉) · Comck(〈y〉; 〈ρ(y)〉)
Comck(x; ρ(x)) · Comck(y; ρ(y))

)
JxK + c : =

(
〈x〉+ c, 〈ρ(x)〉,

(
Comck(x(1); ρ(x(1)) · Comck(c; 0),

Comck(x(2); ρ(x(2)), . . . ,Comck(x(k); ρ(x(k))
)
,

Comck(x; ρ(x)) · Comck(c; 0)
)

JxK · c : =
(
〈x〉 · c, 〈ρ(x)〉 · c,

(Comck(〈x〉; 〈ρ(x)〉))c, (Comck(x; ρ(x)))c
)

The offline phase. Similar to all the MPCs with preprocessing, our VMPC
also uses offline phase to generate sufficiently many correlated randomness. More

28

precisely, we need to generate shared random Beaver triples and shared random
values. The main differences between FV.Offline and the ones used in SPDZ and
its variants are (i) The MAC is removed from all the shares, and (ii) FV.Offline has
to be crowd verifiable. The functionality is depicted in Fig. 4. The MPC servers
initialize the functionality by sending (Init, sid, n1, n2) to FV.Offline. If all the
servers are corrupted, the functionality let the adversary Sim choose the random
coin Ω and use it to generate the commitment key as ck← GenCom(Paramgp;Ω).
Otherwise, FV.Offline generate the commitment key with a freshly sampled random
coin. After that, it sends the commitment key ck to all the servers in S.

After that, FV.Offline generates n1 random values and n2 random Beaver
triples, and shares and commits them to all MPC servers Si ∈ S. If all the
MPC servers are corrupted, we let the adversary choose all the random val-
ues and Beaver triples; however, if there is an invalid Beaver triple, FV.Offline

sets the audit flag to invalid. Subsequently, it will be detected by V who sends
(Verify, sid) to FV.Offline. In F.6, we provide the realization of FV.Offline using
CVZK in the H-EUC model.

The online phase. We provide details on the description the description full
multi-server VMPC protocol ΠGBB,Fsc,Fauth,FV.Offline

online presented in Fig. 5.

At the Initialize phase, each server Si ∈ S sends (Init, sid, 2n, n′) to FV.Offline,
where n′ is the upper-bound of the multiplication gates of the evaluation cir-
cuit. When all the servers have sent the init command, FV.Offline generates a
commitment key ck, 2n random values and n′ Beaver triples. It then sends the
corresponding shares and commitments to the servers Si ∈ S. Each server Si ∈ S
then posts all the received commitments to Gbb. Next, all servers jointly open
r2` and r2`+1 to the client C`, ` ∈ [n] via secure channels. The client C` checks
the validity of r2` and r2`+1 according to their commitments posted on the Gbb,

and sets r
(0)
` := r2` and r

(1)
` := r2`+1.

At the Input phase, the user U` ∈ U on input x` obtains two random num-

bers r
(0)
` ,r

(1)
` from C` via Fsc. Then, U` flips a random bit b`←{ 0, 1 } and com-

putes δ` = x` − r
(b`)
` in Zp. U` sends (b`, δ`) to C` via Fsc and returns the

individual audit data (b`, δ`, r
(1−b`)
`). Finally, C` posts (U`, δ`, b`) to Gbb. By flip-

ping b`, each user U`, ` ∈ [n] contributes one bit of randomness, and all users’
bits form the string (b1, . . . , bn) ∈ {0, 1}n that will be provided as input to the
verifier coalescence function F presented in Section 4.1. U` sends (U`, α`) to the

verifier V via Fauth, where α` := (b`, δ` r
(1−b`)
`).

At the Compute phase, each server Si fetches {(U`, δ`, b`)}`∈[n] from Gbb.

The server Si ∈ S sets the input as Jx`K← Jr(b`)` K+δ` and follows the arithmetic
circuit gate by gate, computing over the commitments: (i) for an addition gate
for z = x + y, Si sets JzK = JxK + JyK; (ii) for multiplication gate z = x · y, Si
needs to consume a random Beaver triple (JaK, JbK, JcK). Si opens JxK− JaK as α
and JyK − JbK as β to Gbb. Once all the other Si ∈ S have opened them to Gbb,
Si then sets JzK = JcK + JbK · α + JaK · β + α · β. At the end, Si ∈ S opens the

29

The functionality FV.Offline

The functionality operates with the parties P = S ∪ {V }. Let set Lcorr ⊆ P
contain all corrupted parties. It is parameterized by algorithms DC.Gen,DC.Com
and variables τ and J . Initially, τ = valid, J = ∅.
� Upon receiving (Init, sid, n1, n2) from an MPC server Si ∈ S, it sets J =
J ∪{Si}, and sends a notification message (InitNotify, sid, Si) to Sim. If J = S,
it executes the following steps.

– If S ⊆ Lcorr, then it sends (CK, sid) to Sim. Upon receiving (SetCK, sid, Ω)
from Sim, it sets ck← DC.Gen(1λ;Ω). If Ω = ⊥, it sets ck← DC.Gen(1λ).

– It sends (CK, sid, ck) to all the servers in S.
– For each server Si ∈ S do:
◦ If Si ∈ Lcorr, then it sends (Rand, sid, Si) to Sim. Upon receiving

(SetRand, sid, Si, (r
∗
i,j , ρ

∗
i,j)j∈[n1]) from Sim, it sets ri,j = r∗i,j and ρi,j =

ρ∗i,j) for j ∈ [n1].
◦ If Si ∈ S \Lcorr, then it picks random ri,j ← Zp and ρi,j ← (Zp)k, j ∈ [n1].

– It sends (RandShare, sid, (ri,j , ρi,j)j∈[n1]) to the honest Si ∈ S \ Lcorr via
private delayed output.

– It sets rj =
∑k
i=1 ri,j , ρj =

∑k
i=1 ρi,j , and Rj ← DC.Comck(rj ; ρj) for j ∈ [n1].

– It sends (Rand, sid, (R1, . . . , Rn1)) to all the servers in Si ∈ S.
– If not all the servers are corrupted, let Sx ∈ S \ Lcorr be an honest server.
– For each server Si ∈ S do:
◦ If Si ∈ Lcorr, then it sends (Triple, sid, Si) to Sim. Upon receiving

(SetTriple, sid, Si, (a
∗
i,j , α

∗
i,j , b

∗
i,j , β

∗
i,j , c

∗
i,j , γ

∗
i,j)j∈[n2]) from Sim, it sets

ai,j = a∗i,j , αi,j = α∗i,j , bi,j = b∗i,j , βi,j = β∗i,j , ci,j = c∗i,j , and γi,j = γ∗i,j
for j ∈ [n2].

◦ If Si ∈ S \ Lcorr and i 6= x, it picks random ai,j , bi,j , ci,j ← Zp and
αi,j , βi,j , γi,j ← (Zp)k, j ∈ [n2].

– If S ⊆ Lcorr, then for j ∈ [n2], it computes aj =
∑k
i=1 ai,j , bj =

∑k
i=1 bi,j ,

cj =
∑k
i=1 ci,j , αj =

∑k
i=1 αi,j , βj =

∑k
i=1 βi,j , and γj =

∑k
i=1 γi,j .

If ∃j ∈ [n2] : cj 6= aj · bj , then it sets τ = invalid.
– Otherwise, for Sx, it picks random ai,j , bi,j ← Zp and αi,j , βi,j , γi,j ← (Zp)k,
j ∈ [n2]. It computes aj =

∑k
i=1 ai,j , bj =

∑k
i=1 bi,j , αj =

∑k
i=1 αi,j , βj =∑k

i=1 βi,j , and γj =
∑k
i=1 γi,j . It then computes cj = aj · bj , j ∈ [k] and

cx,j = cj −
∑
i∈[k]\{x} ci,j .

– For each honest Si ∈ S \ Lcorr, it sends (TripleShare, , sid,
(ai,j , αi,j , bi,j , βi,j , ci,j , γi,j)j∈[n2]) to Si via private delayed channel.

– For j ∈ [n2], it computes Aj ← DC.Comck(aj ;αj), Bj ← DC.Comck(bj ;βj), and
Cj ← DC.Comck(cj ; γj). It sends (Triple, sid, (Aj , Bj , Cj)j∈[n2]) to all Si ∈ S.

� Upon receiving (Verify, sid) from V , it returns (Verified, sid, τ).

Fig. 4: The functionality FV.Offline.

output gate(s) of the arithmetic circuit as the final result to Gbb. Furthermore,

the servers Si ∈ S jointly open all commitments to all shares r
(1−b`)
i,` , ` ∈ [n] for

30

auditing.

At the Verify phase, upon receiving the users’ audit data (b`, δ` r
(1−b`)
`), the

verifier V performs the following steps:

(1) Ask all users via Fauth for their audit data 〈α1, . . . , αn〉. Upon receiving them

parse each α` = (b`, δ`, r
(1−b`)
`), for ` ∈ [n]. Now for each ` do the following

set (i-v) of checks increasing counter for each set that successfully passes:
(i) For ` ∈ [n], check b` and δ` are consistent with those posted on the BB.
(ii) Sends (Verify, sid) to FV.Offline and obtain (Verified, sid, τ). Assert that

τ = valid.
(iii) It verifies that the commitments to all unused random value r

(1−b`)
` , ` ∈ [n]

are correctly opened.
(iv) It verifies that opening of all gate commitments are valid.
(v) It re-computes the arithmetic circuit using the commitments and openings

posted on the Gbb obtaining the evaluation y = f(x1, . . . , xn).
(2) If counter ≥ min{n, n1−1/γ/ log3(n) + δ}, and set of checks (i-v) verify for `

send via Fauth to U` (y, 1), else send (y, 0).

Theorem 4. Let ΠGBB,Fsc,Fauth,FV.Offline

online be the VMPC scheme in Fig. 5 with n
users. Let γ > 1 be a constant such that n = λγ . Let f : Xn −→ Y be a symmet-
ric function and R ⊆ Img[f]× Img[f] be a δ-spreading relation over Img[f]. The

protocol ΠGBB,Fsc,Fauth,FV.Offline

online H-EUC realizes Ff,Rvmpc(P) in the {GBB,Fsc,Fauth,

FV.Offline}-hybrid model with error 2−δ + negl(λ) under the adaptive DDH as-

sumption, against any PPT environment Z that statically corrupts at most n
1− 1

γ

log3 n

users, assuming the underlying CVZK is (n, negl(λ))-crowd verifiable complete,(
n
1− 1

γ

log3 n
, negl(λ)

)
-crowd verifiable sound, and n-crowd verifiable zero-knowledge.

Proof. (Sketch) Let A be a real-world PPT adversary that statically corrupts

no more than n
1− 1

γ

log3 n
users. This means that we consider environments that in-

struct no more than n
1− 1

γ

log3 n
user corruptions. To prove the theorem, it suffices to

construct a simulator Sim such that no non-uniform PPT environment Z that

instruct no more than n
1− 1

γ

log3 n
user corruptions can distinguish between

(a). the real/hybrid execution, EXECP,Π
GBB,Fsc,Fauth,FV.Offline

A,Z,H (λ), in the {Gbb,Fsc,
Fauth,FV.Offline}-hybrid world and the corrupted parties are controlled by
a dummy adversary A who simply forwards messages from/to Z, and

(b). the ideal execution, EXEC
Ff,Rvmpc(P),GBB

Sim,Z,H (λ), where the parties interact with func-

tionality Ff,Rvmpc(P) in the Gbb-hybrid model and corrupted parties are con-
trolled by the simulator Sim.

Moreover, there is a super-polynomial helper H that exists in both ideal and
real world.

31

Initialize.
1. Upon receiving (Start, sid) from the environment Z, the server Si ∈ S sends

(Init, sid, 2n, n′) to FV.Offline, where n′ is the number of multiplication gates.
2. Upon receiving (CK, sid, ck), (RandShare, sid, (ri,j , ρi,j)j∈[2n]), (Rand, sid,

(R1, . . . , R2n)), (TripleShare, , sid, (ai,j , αi,j , bi,j , βi,j , ci,j , γi,j)j∈[n′]) and
(Triple, sid, (Aj , Bj , Cj)j∈[n′]) from FV.Offline, the server Si ∈ S
– Posts (ck, (Rj)j∈[2n], (Aj , Bj , Cj)j∈[n′]) to the Gbb.
– For ` ∈ [n], sends (ri,2`, ρi,2`) and (ri,2`+1, ρi,2`+1) to C`.

3. Upon receiving (ri,2`, ρi,2`) and (i, r2`+1, ρi,2`+1) from all the servers Si ∈ S,

the client C` sets r
(0)
` =

∑k
j=1 rj,2`, ρ

(0)
` =

∑k
j=1 ρj,2`, r

(1)
` =

∑k
j=1 rj,2`+1, and

ρ
(1)
` =

∑k
j=1 ρj,2`+1. It then fetches ck, R2` and R2`+1 from the BB and checks

if R2` = DC.Comck(r
(0)
` ; ρ

(0)
`) and R2`+1 = DC.Comck(r

(1)
` ; ρ

(1)
`).

Input.
4. Upon receiving (Cast, sid, x`) from the environment Z, the user U` fetches

(r
(0)
` , r

(1)
`) from C` via Fsc. It then picks b` ← {0, 1} and computes δ` = x`−r(b`)` .

Next, it sends (b`, δ`) to C` via Fsc.
5. Upon receiving (b`, δ`) from U`, C` posts (U`, b`, δ`) to Gbb and stores (U`, α`).

Compute.
6. Upon receiving (Compute, sid) from the environment Z, the server Si:

– Fetches the posted (U`, b`, δ`)`∈[n] from Gbb (via a Read requests), and com-

putes Jx`K← Jr(b`)` K + δ`. For ` ∈ [n], it then opens R
(1−b`)
` to the Gbb.

– Uses (Jx`K)`∈[n] as input commitments and follows the arithmetic circuit f
gate by gate, computing over the commitments:

(i) For an addition gate for z = x+ y, it sets JzK = JxK + JyK.
(ii) For a multiplication gate z = x · y, it consumes a random Beaver triple

(JaK, JbK, JcK). Si opens JxK − JaK as α and JyK − JbK as β to Gbb. Once all
the other Si ∈ S have opened them to Gbb, Si then sets JzK = JcK + JbK ·
α+ JaK · β + α · β.

(iii) For an output gate, it opens the commitment to Gbb.
Verify.

7. Upon receiving (Verify, sid) from the environment Z, the verifier V
(1) Ask all users via Fauth for their receipts 〈α1, . . . , αn〉. Upon receiving them

parse each α` = (b`, δ`, r
(1−b`)
`), for ` ∈ [n]. Now for each ` do the following

set (i-v) of checks increasing counter for each set that successfully passes:
(i) For ` ∈ [n], check b` and δ` are consistent with those posted on the BB.
(ii) Sends (Verify, sid) to FV.Offline and obtain (Verified, sid, τ = valid).

(iii) It verifies that the commitments to all unused random value r
(1−b`)
` , ` ∈ [n]

are correctly opened.
(iv) It verifies that opening of all gate commitments are valid.
(v) It re-computes the arithmetic circuit using the commitments and openings

posted on the Gbb obtaining the evaluation y = f(x1, . . . , xn).
(2) If counter ≥ min{n, n1−1/γ/ log3(n) + δ}, and set of checks (i-v) verify for `

send via Fauth to U` (y, 1), else send (y, 0).

Fig. 5: VMPC protocol ΠGBB,Fsc,Fauth,FV.Offline

online .

32

As a first step, we apply Theorem 1 and Theorem 2 given that the number

of corrupted verifiers (users) is no more than n
1− 1

γ

log3 n
to deduce the security er-

ror of the CVZK proofs. When n = λγ and the adversary can corrupt up to
n
1− 1

γ

log3 n
users, the underlying coalescence construction of the CVZK construction

is a
(

λ
log2 λ

, log λ, n
1− 1

γ

log3 n

)
-coalescence function. Therefore, we get that there is a

negligible function ε(·) such that the following hold:

(1) The CVZK proofs satisfy (perfect) (n, ε(λ))-crowd verifiable complete-
ness.

(2) For every t2 ≤ n
1− 1

γ

log3 n
, the CVZK proofs satisfy (t2, ε(λ))-crowd verifiable

soundness.
(3) The CVZK proofs satisfy n-crowd-verifiable zero-knowledge in the H-

helper model.

Let Ucorr, Ccorr and Scorr be the corrupted set of users, clients, and servers,

respectively, where we have that |Ucorr| ≤ n
1− 1

γ

log3 n
. We consider the following two

cases.

Case 1: 0 ≤ |Scorr| < k (i.e., there is at least one honest server).
Simulation. The simulator Sim simulates FV.Offline, so Sim can learn all the

shares of generated random coins {rj}j∈[2n] and Beaver triples {(aj , bj , cj)}j∈[n′],
because all the parties receive shares from FV.Offline. The proof is straightforward,
for malicious user U` ∈ Ucorr, the simulator Sim can extract their inputs by
computing δ` + r`, where r` is the used random value and δ` is the posted
difference on the GBB. The simulator then submit the malicious users’ input to
Ff,Rvmpc(P); for honest user U` ∈ U \ Ucorr, the simulator uses 0 (or any other
fixed element in Zp) as their input and follows the protocol description as if the
user U` receives command (Cast, sid, 0) from the environment Z. At the end of
the computing phase, when simulator Sim obtains the outcome from Ff,Rvmpc(P),
it needs to fake the final opening of the commitment by simulating the CVZK
opening. The step needs H’s help to enable the CVZK simulation.

Indistinguishability. Since there is at least one honest server Si ∈ S, the
soundness of all the ZK proofs is ensured by the randomness generated by the
honest server, regardless the number of corrupted users. The indistinguishability

between the view of Z and A in the real execution EXECP,Π
GBB,Fsc,Fauth,FV.Offline

A,Z,H (λ)

and the ideal execution EXEC
Ff,Rvmpc(P),GBB

Sim,Z,H (λ), derives by the security of the CVZK
proofs mentioned above in the H-EUC model. Finally, we consider the out-
put/return distribution of the command (Verify, sid) of the (honest) auditor V

between EXECP,Π
GBB,Fsc,Fauth,FV.Offline

A,Z,H (λ) and EXEC
Ff,Rvmpc(P),GBB

Sim,Z,H (λ).

As discussed in the single-server case (cf. 7.2), the adversary A may perform
so-called Client attacks. Namely, the adversary A can corrupt the client C` of U`
and provide U` with a pair of random values (r̂

(0)
` , r̂

(1)
`), where one component

r̂
(b∗)
` is different than r

(b∗)
` in the pair (r

(0)
` , r

(1)
`) committed in GBB. Hence,

33

if A∗ guesses the coin of U` correctly (i.e. b∗ = b`), then it can perform the

VMPC execution by replacing U`’s input x` with input x∗` = x` +
(
r̂
(b∗)
` − r(b

∗)
`

)
without being detected. Given that U` flips a fair coin, this attack has 1/2 success
probability. When f : Xn −→ Y is a symmetric function and R ⊆ Img[f]×Img[f]
is a δ-spreading relation, the probability that (y, ỹ) /∈ R but it is not detected
by ΠGBB,Fsc,Fauth,FV.Offline is bounded by

P = (1/2)δ + negl(λ) .

Therefore, when (y, ỹ) /∈ R, the (honest) auditor V will output (Result, sid, ỹ, 1)
to U` in the protocol ΠGBB,Fsc,Fauth,FV.Offline execution. The same occurs in Ff,Rvmpc(P)
according to the condition (2) in the verification checking condition of Fig. 3. On
the other hand, if A performs less than δ client attacks, then the actual input
x and the adversarial one x′ are δ-close w.r.t. Dcrn(·, ·). Since the relation R is
δ-spreading, we have that R

(
f(x), f(x′)

)
holds. So, when the simulator plays

the role of the verifier accepts, it sends an accept message (ṽ = 1) for every
honest user to Ff,Rvmpc(P) which in turn will also accept. Besides, Ff,Rvmpc(P) will
reject whenever the simulator sends a reject message, hence, indistinguishability
is again preserved.

Case 2: 0 ≤ |Ucorr| ≤ n
1− 1

γ

log3 n
∧ |Scorr| = k (full server corruption).

The case of full server corruption, has similarities with the argumentation of
the single-server example (cf. 7.2), as full corruption reduces to a single malicious
server setting. Thus, only end-to-end verifiability is expected to be preserved.

No privacy is guaranteed with all the servers are corrupted. All the users’
inputs are leaked by the Ff,Rvmpc(P), the simulator Sim can simply simulate the
view by following the protocol description with the leaked inputs. Since for any

t2 ≤ n
1− 1

γ

log3 n
, the underlying CVZK proofs satisfy (t2, ε(λ))-crowd verifiable sound-

ness and t2-crowd verifiable validity, when |Ucorr| ≤ n
1− 1

γ

log3 n
, the soundness of all

the ZK proofs are ensured (up to negl(λ) error) even when all the servers are
corrupted. Moreover, as there is no simulated message, the view of Z and A in

the real execution EXECP,Π
GBB,Fsc,Fauth,FV.Offline

A,Z,H (λ) is identical to the ideal execu-

tion EXEC
Ff,Rvmpc(P),GBB

Sim,Z,H (λ). With regards to the end-to-end verifiability, the out-
put/return distribution of the command (Verify, sid) of the (honest) auditor V

between EXECP,Π
GBB,Fsc,Fauth,FV.Offline

A,Z,H (λ) and EXEC
Ff,Rvmpc(P),GBB

Sim,Z,H (λ) are indistinguish-
able when f : Xn −→ Y is a symmetric function and R ⊆ Img[f] × Img[f] is a
δ-spreading relation. The proof is similar to that of Case 1.

We note that if A additionally corrupts the verifier V , we can construct a
simple simulator that engages with A plays the role of honest users and simply
forwards the malicious response of V to Ff,Rvmpc(P) along with the adversarial
tally y′.

Therefore, ΠGBB,Fsc,Fauth,FV.Offline

online H-EUC realizes Ff,Rvmpc(P) with error 2−δ +
negl(λ) in the {GBB,Fsc,Fauth, FV.Offline}-hybrid model, against any PPT envi-

ronment Z that statically corrupts no more than n
1− 1

γ

log3 n
users. ut

34

Remark: When δ = ω(log λ), thenΠGBB,Fsc,Fauth,FV.Offline

online H-EUC realizes Ff,Rvmpc(P).

Efficiency. The overall computational and communicational cost is O(λ · (n +
k) · |C|), where |C| stands for the number of multiplicative gates of the circuit,
n is the number of users, and k is the number of servers. The concrete efficiency
of VMPC largely depends on the efficiency of the instantiation of the underlying
fully input-delayed Σ-protocol used in CVZK.

8 Applications of VMPC

Examples of interesting VMPC application scenarios may refer to e-voting, as
well as any type of privacy-preserving data processing where for transparency
reasons, it is important to provide evidence of the integrity of the outcome, e.g.,
demographic statistics or financial analysis. In our modeling, the most appealing
cases - in terms of usability by a user with “human level” limitations - are the
ones where the error is small for the lowest possible entropy, e.g. users contribute
only 1 bit. Hence, for simplicity we set κ = 1. Following the reasoning in Section 6
and by Theorem 3, when κ = 1, a VMPC application can be feasible when it is
w.r.t. to δ-spreading relations and with an error expected to be negl(δ) (ignoring
the negl(λ) cryptographic error). In general, we can calibrate the security error
by designing VMPC schemes that support sufficiently large values of κ. We
present a selection of interesting VMPC applications below.

e-Voting. The security analysis of several e-voting systems (e.g. [48, 44, 23]) is
based on the claim that “assuming cryptographic security, by attacking one voter
you change one vote, thus you add at most one to the total tally deviation”. This
claim can be seen as a special case of VMPC security for an evaluation (tally)
function which is 1-Lipschitz and tally deviation is naturally captured by Rδ
defined in Eq. (2). Thus, if the voters contribute min entropy of 1 bit, then we
expect that e-voting security holds with error negl(δ).

Privacy-preserving statistics. Let X = [a, b] be a range of integer values,

Y = [na, nb] and f :=
∑n
`=1 x`
n be the average of all users’ inputs. E.g., [a, b] could

be the number of unemployed adults or dependent members in a family, the range
of the employees’ salary in a company, or the household power consumption in
a city measured by smart meters. If we set dY to the absolute value | · |, then f
is a b−a

n -Lipschitz function for Dcrn and | · |, so for user min entropy of 1 bit, we

expect that (f,Rδ) can be realized with error negl(δn
b−a). This also generalizes to

other aggregate statistics such as calculating higher moments over the data set.

Privacy-preserving processing of multidimensional data (profile match-
ing). A useful generalization of the privacy-preserving statistics case is when
performing processing on multidimensional data collected from multiple sources.
A simple two-dimensional example illustrating this follows. Let X1, X2 be two
domains of attributes and X := X1 ×X2, i.e. each input x` is an attribute pair
(x`,1, x`,2). Let Y = [n], P1, P2 be predicates over X1, X2 respectively and let
f :=

∑n
`=1 P1(x`,1) · P2(x`,2) be the function that counts the number of inputs

35

that satisfy both P1, P2. E.g., X1 could be the set of dates and X2 be the lo-
cations, fragmented in area units. Then, f counts the number of people that
are in a specific place and have their birthday. If we set dY to | · |, then f is a
1-Lipschitz function for Dcrn and | · |. Like the previous example, we expect that
(f,Rδ) can be realized with error negl(δ).

Supervised learning of (binary) classifiers. In many use cases, functions
that operate as classifiers are being “trained” via a machine learning algorithm
(e.g. Perceptron) on input a vector of training data. Here, we view the users’ in-
puts as training data that are vectors of dimension m, i.e. x` = (x`,1, . . . , x`,m) ∈
[a1, b1]×· · ·×[am, bm], where [ai, bi], i ∈ [m] are intervals. The evaluation function
f outputs a hyperplane HP (x) := {w · z | z ∈ Rm} that defines the decision’s
0/1 output. If the adversary changes x with some x′ s.t. Dcrn(x,x′) ≤ δ, then the
adversarially computed hyperplane HP (x′) := {w′ · z | z ∈ Rm} must be close
to HP (x), otherwise the attack is detected. This could be expressed by having
w,w′ be δ close w.r.t. the Euclidean distance. Assume now that for a set of new
data points z1, . . . , zt we set the relation as “R

(
HP (x), HP (x′)

)
⇔ ∀j ∈ [t] the

classifier makes the same decision for zj”. Then, clearly R is a spreading relation
w.r.t. to f , suggesting that the functionality of calculating classifier is resilient
against attacks on less than δ of the training data.

References

1. M. Ajtai and N. Linial. The influence of large coalitions. Combinatorica, 13(2):129–
145, 1993.

2. J. Alwen, R. Ostrovsky, H. Zhou, and V. Zikas. Incoercible multi-party computa-
tion and universally composable receipt-free voting. In CRYPTO, 2015.

3. B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computation
without authentication. In CRYPTO, 2005.

4. C. Baum, I. Damg̊ard, and C. Orlandi. Publicly auditable secure multi-party
computation. In SCN, 2014.

5. C. Baum, I. Damg̊ard, and C. Orlandi. Publicly auditable secure multi-party
computation. In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of
LNCS, pages 175–196. Springer, Heidelberg, Sept. 2014.

6. D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO,
1991.

7. D. Beaver. Commodity-based cryptography (extended abstract). In 29th ACM
STOC, pages 446–455. ACM Press, May 1997.

8. M. Bellare, G. Fuchsbauer, and A. Scafuro. NIZKs with an untrusted CRS: security
in the face of parameter subversion. In ASIACRYPT, 2016.

9. M. Ben-Or and N. Linial. Collective coin flipping, robust voting schemes and
minima of banzhaf values. In FOCS, 1985.

10. J. Benaloh. Simple verifiable elections. USENIX EVT. USENIX Association, 2006.

11. J. Benaloh. Ballot casting assurance via voter-initiated poll station auditing. In
EVT, 2007.

12. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryp-
tion and multiparty computation. In EUROCRYPT, 2011.

36

13. P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure multiparty computation goes live. In FC,
2009.

14. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification
over encrypted data. In NDSS, 2015.

15. M. Burmester and Y. Desmedt. Broadcast interactive proofs (extended abstract).
In EUROCRYPT, 1991.

16. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001.

17. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In TCC, 2007.

18. R. Canetti, H. Lin, and R. Pass. Adaptive hardness and composable security in
the plain model from standard assumptions. In FOCS, 2010.

19. E. Chattopadhyay and D. Zuckerman. Explicit two-source extractors and resilient
functions. In STOC, 2016.

20. D. Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE S&P, 2004.
21. M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Improved

or-composition of sigma-protocols. In TCC, 2016.
22. M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Online/offline

OR composition of sigma protocols. In EUROCRYPT, 2016.
23. V. Cortier, D. Galindo, R. Küsters, J. Mueller, and T. Truderung. SoK: Verifiability

notions for e-voting protocols. In IEEE Security & Privacy, 2016.
24. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In CRYPTO, 1994.
25. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient

multi-authority election scheme. In EUROCRYPT, 1997.
26. I. Damg̊ard, K. Damg̊ard, K. Nielsen, P. S. Nordholt, and T. Toft. Confidential

benchmarking based on multiparty computation. In FC, 2016.
27. I. Damg̊ard, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. D. Smith. Scalable

multiparty computation with nearly optimal work and resilience. In CRYPTO,
2008.

28. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In
ESORICS, 2013.

29. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO, 2012.

30. Y. Dodis, T. Ristenpart, and S. P. Vadhan. Randomness condensers for efficiently
samplable, seed-dependent sources. In TCC, 2012.

31. C. Ellison. Ceremony design and analysis. IACR ePrint, Report 2007/399, 2007.
32. U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation (ex-

tended abstract). In 26th ACM STOC, pages 554–563. ACM Press, May 1994.
33. N. Fleischhacker, V. Goyal, and A. Jain. On the existence of three round zero-

knowledge proofs. In EUROCRYPT, 2018.
34. N. Gilboa. Two party RSA key generation. In CRYPTO, 1999.
35. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A

completeness theorem for protocols with honest majority. In STOC, 1987.
36. S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing

without simultaneous interaction. In CRYPTO, 2011.
37. C. Hazay and M. Venkitasubramaniam. On the power of secure two-party compu-

tation. In CRYPTO, 2016.

37

38. Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with
minimal interaction. In CRYPTO, 2010.

39. J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions
(extended abstract). In FOCS, 1988.

40. Y. T. Kalai, G. N. Rothblum, and R. D. Rothblum. From obfuscation to the
security of Fiat-Shamir for proofs. In CRYPTO, 2017.

41. S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided secure
function evaluation. In ACM-CCS, 2012.

42. M. Keller, E. Orsini, and P. Scholl. MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In CCS, 2016.

43. A. Kiayias, T. Zacharias, and B. Zhang. DEMOS-2: scalable E2E verifiable elec-
tions without random oracles. In ACM-CCS, 2015.

44. A. Kiayias, T. Zacharias, and B. Zhang. End-to-end verifiable elections in the
standard model. In EUROCRYPT, 2015.

45. A. Kiayias, T. Zacharias, and B. Zhang. Ceremonies for end-to-end verifiable
elections. In PKC, 2017.

46. B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with malicious
adversaries. In USENIX, 2012.

47. R. Küsters, T. Truderung, and A. Vogt. Accountability: definition and relationship
to verifiability. In ACM-CCS, 2010.

48. R. Küsters, T. Truderung, and A. Vogt. Clash attacks on the verifiability of e-
voting systems. In IEEE Security & Privacy, 2012.

49. D. Lapidot and A. Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In CRYPTO, 1990.

50. M. Lepinski, S. Micali, and A. Shelat. Fair-zero knowledge. In TCC, 2005.
51. X. Li. Improved two-source extractors, and affine extractors for polylogarithmic

entropy. In FOCS, 2016.
52. Y. Lindell. An efficient transform from sigma protocols to NIZK with a CRS and

non-programmable random oracle. Cryptology ePrint Archive, Report 2014/710,
2014. http://eprint.iacr.org/2014/710.

53. Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving
data mining. IACR ePrint 2008/197, 2008.

54. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption. In STOC, 2012.

55. R. Meka. Explicit resilient functions matching ajtai-linial. In SODA, 2017.
56. C. A. Neff. Practical high certainty intent verification for encrypted votes. Vote-

here, Inc. whitepaper, 2004.
57. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to

practical active-secure two-party computation. In CRYPTO, 2012.
58. O. Pandey, R. Pass, and V. Vaikuntanathan. Adaptive one-way functions and

applications. In CRYPTO, 2008.
59. R. Pass. Simulation in quasi-polynomial time, and its application to protocol

composition. In EUROCRYPT, 2003.
60. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party com-

putation is practical. In ASIACRYPT, 2009.
61. B. Schoenmakers and M. Veeningen. Universally verifiable multiparty computation

from threshold homomorphic cryptosystems. In ACNS, pages 3–22, 2015.
62. A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd

FOCS, pages 160–164. IEEE Computer Society Press, Nov. 1982.
63. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th

FOCS, pages 162–167. IEEE Computer Society Press, Oct. 1986.

38

http://eprint.iacr.org/2014/710

A Supplementary Preliminaries

A.1 Σ-protocols

Definition 8. Let L be a language in NP and RL be a witness relation for the
language L. A protocol Σ.Π = (Σ.P,Σ.V) (where Σ.P consists of algorithms
(Σ.Prv1, Σ.Prv2)) is said to be a Σ-protocol if there is a negligible function δ(·)
such that the following properties hold:

δ-Completeness: For every x ∈ L ∩ {0, 1}poly(λ) and w ∈ RL(x),

Pr[(a, stP)← Σ.Prv1(x,w); e← Σ.V (x, a); z ← Σ.Prv2(x,w, stP , e) :

Σ.Verify(x, a, e, z) = 0] ≤ δ(λ).

Special Soundness: There exists a PPT extractor Σ.Ext, such that for ev-
ery pair of valid transcripts (x, a, e, z) and (x, a, e′, z′) with e 6= e′, i.e. Σ.Verify(x, a, e, z) =
1 and Σ.Verify(x, a, e′, z′) = 1, the extractor Σ.Ext can efficiently compute w
such that (x,w) ∈ RL.

sHVZK: there exists a PPT simulator Σ.Sim such that for every x ∈ L ∩
{ 0, 1 }poly(λ), w ∈ RL(x) and e ∈ { 0, 1 }λ, the following distributions are indis-
tinguishable:

– Σ.Sim(x, e)
– { (a, stP)← Σ.Prv1(x,w); z ← Σ.Prv2(x,w, stP , e) : (x, a, e, z) }.

A.2 Related Work in Resilient Functions

Ben-Or and Linial showed that the iterative-majority function is (εn0.63, ε)-
resilient for any ε = n−Ω(1) [9]. Further, Ajtai and Linial showed the existence of
(Ω(n/ log2 n), 1/3)-resilient functions [1], but their construction is probabilistic

and its de-randomized variant takes nO(n2) running time. Chattopadhyay and
Zuckerman [19] proposed an explicit construction of a monotone, almost bal-
anced (n1−δ, n−Ω(1))-resilient function, for any δ > 0. Later, Li [51] extended
their one-bit construction to f : {0, 1}n 7→ {0, 1}m that is still (n1−δ, n−Ω(1))-
resilient. Recently, Meka [55] gave an explicit resilient function for q = O(n/ log2 n),
but the function is a slightly biased. Moreover, the function is so-called (Θ(log2 n/n))-
strongly resilient, i.e., any coalition of q bits has influence at most Θ(q ·log2 n/n).

A.3 Definition of Adaptive OWF Families

Definition 9 ([58]). Let F =
{
{ftag : Xtag −→ Ytag}tag∈{0,1}λ

}
λ∈N be a family

of injective functions. We say that F is an adaptive one-way function (AOWF)
family if:

(1) For every λ and tag ∈ {0, 1}λ, the elements in Xtag can be randomly
sampled efficiently, and there is a family of poly-size deterministic circuits M =
{Mλ }λ∈N s.t. for every λ, tag ∈ {0, 1}λ and x ∈ Xtag, Mλ(tag, x) = ftag(x).

39

(2) Let O(tag, ·, ·) denote the oracle that, on input tag′ and y outputs f−1tag′(y)
if tag′ 6= tag, |tag′| = |tag|, and ⊥ otherwise. Then, for every PPT adversary A
and every tag ∈ {0, 1}λ, it holds that

Pr
[
x

$← Xtag : AO(tag,·,·)(tag, ftag(x)
)

= x
]

= negl(λ) .

A.4 Instantiation of a Publicly Samplable Adaptive OWF Family

Pandey et al. presented two candidates for adaptive OWFs (AOWFs) in [58],
based on discrete logarithm and factoring, respectively. The authors also claimed
that AOWFs can be instantiated from RSA and Rabin functions.

In the following, we first give an instantiation of a collection of groups where
the strong adaptive DDH assumption is conjectured to be true. For any se-
curity parameter λ ∈ N, for any tag ∈ {0, 1}λ, define the collection of groups
{(q, ptag, gtag, Gtag)}tag∈{0,1}λ where ptag is a 2λ bit prime whose first λ bits equal
to tag, and q is a large (more than λ bits) prime factor of ptag − 1. 〈gtag〉 = Gtag

is a cyclic multiplicative group of prime order q. We assume that the standard
DDH assumption holds for each group Gtag. Moreover, we set the corresponding
inversion oracle O(tag, ·, ·) to be the discrete logarithm oracle DL(tag, ·, ·) that,
on input tag′ and y outputs x such that gxtag′ = y if tag 6= tag′, |tag′| = |tag| and
⊥ otherwise. We assume that accessing the discrete logarithm oracle of one or
more group(s) gives no advantage on breaking the DDH assumption on the other
group(s) (such assumption always holds in the generic group model). Formally,
we have the following definition.

Definition 10. We say that the DDH problem is adaptively hard w.r.t. the col-
lection of groups {(q, ptag, gtag, Gtag)}tag∈{0,1}λ , if for any PPT adversary A and

every tag ∈ {0, 1}λ, it holds that∣∣∣Pr
[
x, y

$← Zq : ADL(tag,·,·)(gtag, g
x
tag, g

y
tag, g

xy
tag

)
= 1
]
−

− Pr
[
x, y, z

$← Zq : ADL(tag,·,·)(gtag, g
x
tag, g

y
tag, g

z
tag

)
= 1
]∣∣∣ = negl(λ) ,

where DL(tag, ·, ·) is the discrete logarithm oracle.

We note that the above strong adaptive DDH assumption implies the adap-
tive discrete logarithm assumption defined as:

Definition 11. We say the adaptive discrete logarithm problem is hard w.r.t.
the collection of groups {(q, ptag, gtag, Gtag)}tag∈{0,1}λ if for any PPT adversary

A and every tag ∈ {0, 1}λ we have

Pr
[
y

$← Zq;x← ADL(tag,·,·)(tag, y) : gxtag = y
]

= negl(λ)

where DL(tag, ·, ·) is a discrete logarithm oracle that, on input tag′ and y outputs
x such that gxtag′ = y if tag 6= tag′, |tag′| = |tag| and ⊥ otherwise.

40

Let us now describe how to concretely instantiate a publicly samplable adap-
tive OWF family (PS-AOWF) based on the hardness of discrete logarithm w.r.t.
the collection of groups {(q, ptag, gtag, Gtag)}tag∈{0,1}λ . We first construct a sim-
ple image-mapping algorithm IM(tag, ω) with perfect samplability as follows:
Let ptag be a prime such that ptag = kq + 1 for some k ∈ N. Given ω ∈ [0, q],
IM(tag, ω) outputs y = ωk (mod ptag). It is easy to see that y is always a valid
image; therefore, the image-mapping algorithm has perfect samplability, i.e.

Pr
[
ω ← [0, q] : IM(tag, ω) ∈ Zptag

]
= 1 .

From Definition 11 it is easy to see that even an adversary is given the random
coins ω can still only invert DL with negligible probability.

A.5 Standard Ideal Functionalities

For our VMPC definition we utilize standard versions of the ideal functionalities
of a Bulletin Board and of a Secure Channel. For completeness we recall them
below.
Formalizing the BB notion. We formally express the notion of a global bulletin
board BB with consistent write/read operations in Figure 6.

Functionality GBB

– Upon initialization, it creates an empty list Lwrite.
– Upon receiving (write, sid, pid, x) from a server S ∈ S, it appends the record x

to Lwrite and sends (write, sid, x) to Sim.
– Upon receiving (Read, sid) from any party P , it returns the data (sid, Lwrite) to

the requester.

Fig. 6: The global setup bulletin board functionality GBB.

Formalizing the Fsc ideal functionality. In Figure 7 we recall the secure
channels functionality Fsc between each user and her client.

Functionality Fsc

Upon receiving (send, sid, x, ID′) from entity ID, it sends (send, sid, ID, |x|, ID′)
to Sim and provides (sent, sid, ID, x) to ID′ as private delayed output.

Fig. 7: The ideal secure channel functionality Fsc.

B Sensitivity of CVZK soundness to the number of
verifiers

In our definition of CVZK soundness, each verifier decides based on the transcript
and its private state. We allow the adversary to corrupt up to t2 verifiers and

41

change their coins. Thus, if the adversary provides a transcript that is inconsis-
tent with these verifiers’ states, which depend on the original coins, it is enough
if a single honest verifier detects the inconsistency. The intuition is that the prob-
ability none of the verifiers detects the inconsistency becomes very small, e.g.,
it drops exponentially with t2. We could extend the definition of soundness by
adding a parameter s that captures tolerance of failed verifications. Then, sound-
ness would hold against adversaries that leave t2-out-of-n verifiers honest, iff a
subset of at least s-out-of-t2 honest verifiers verify successfully. However, given
the independency of verifications in our setting (every verifier decides based
on her own private state), this extension would not be much more expressive
security-wise in practice. For instance, in the case that each verifier contributes
a single bit, requiring s-out-of-t2 successful verifications carries the same error,
e.g. ε2 = 2−s, as asking exactly s successful verifications. Our constructions are
adaptable in a straightforward manner to such an extended s-out-of-t2 defini-
tion. For this reason, we will just focus on the above definitional setting where
even a single honest failed verification invalidates a soundness attack.

C Supplementary Material for Section 4

C.1 Proof of Theorem 1

Proof. Let Icorr ⊂ [n] s.t. |Icorr| ≤ t = n
1− 1

γ

log3 n
and an adversary A. For the function

F : {0, 1}n −→
(
{0, 1}

λ
log2 λ

)log λ
, the experiment ExptCoal

(t,A,Icorr)(1
λ) is executed

as follows:
1. Set C := (c1, . . . , cn)← Un;
2. A

(
〈c`〉`∈Icorr

)
outputs C′ = (c′1, . . . , c

′
n)

s.t. ∀` ∈ [n] \ Icorr : c′` = c`;
3. Return (d1, . . . , dm)← F (C′);

Namely, C := (c1, . . . , cn) is a uniformly random n-bit string, the bits of which
are grouped as (G1, . . . , Glog λ) and the adversary A statically tampers up to t
bits of C. Let ti, i ∈ [log λ] be the number of corrupted bits in group Gi, where
t1 + · · ·+ tlog λ = t.

Let Bi,1, . . . , Bi,λ denote the blocks inside the group Gi, i.e. Bi,j = B(i−1)λ+j ,
j ∈ [λ]. Assume the adversary selects ti,j bits to corrupt for the block Bi,j , and

∀i :
∑λ
j=1 ti,j = ti. Let Infi,j be the event that over the input coins of Bi,j the

adversary A influences the output bit bi,j ← fres(Bi,j), where i ∈ [log λ], j ∈ [λ].

By the (Θ(log2m
m))-strong resilience of fres, if we set m = n

λ log λ (the input block

length), then each corrupted bit in Bi,j has probability Θ(log3 n

n
1− 1

γ
) to influence

the output bit of Bi,j . By the union bound, the latter implies that

Pr
[
Infi,j

]
= Θ

(
ti,j ·

log3 n

n1−
1
γ

)
. (3)

Next, we define as Gi the event that the adversary does not influence any of
the λ bits output of group Gi. We will prove that the events G1, . . . ,Glog λ meet

42

the conditions in Definition 4 that set F as a
(

λ
log2 λ

, log λ, n
1− 1

γ

log3 n

)
-coalescence

function w.r.t. Un.

Condition (i). Pr[∧log λi=1 ¬Gi] = negl(λ): by Eq. (3), the union bound and the fact

that
∑λ
j=1 ti,j ≤ ti, we have that the probability that A influences at least one

of the λ bits output of group Gi

Pr[¬Gi] = Pr[∨λj=1Infi,j] ≤
λ∑
j=1

Pr[Infi,j] =

=

λ∑
j=1

Θ
(
ti,j ·

log3 n

n1−
1
γ

)
= Θ

(
ti ·

log3 n

n1−
1
γ

)
, for any i ∈ [log λ] .

Recall that A can statically corrupt up to t bits, which implies that the events
G1, . . .Glog λ are mutually independent and their probabilities are affected only
by the arrangement t1, . . . , tlog λ of corrupted bit positions that A selects. There-
fore, the probability that for every i ∈ [log λ], at least one of the output bits of
Gi is affected by some corrupted bits is bounded by

Pr[∧log λi=1 ¬Gi] =

log λ∏
i=1

Pr[¬Gi] ≤
log λ∏
i=1

Θ
(
ti ·

log3 n

n1−
1
γ

)
.

Now, we make use of the fact that the product
∏m
i=1 ti under the restriction∑m

i=1 ti = t is maximized at the value
(
t
m

)m
to we get that

Pr[∧log λi=1 ¬Gi] ≤
log λ∏
i=1

(
Θ
(
ti ·

log3 n

n1−
1
γ

))
=

log λ∏
i=1

ti

log λ∏
i=1

(
Θ
(log3 n

n1−
1
γ

))
≤

≤
(t

log λ

)log λ log λ∏
i=1

(
Θ
(log3 n

n1−
1
γ

))
.

Hence, by setting t = n
1− 1

γ

log3 n
, and since log λ = Θ(log n), we have that

Pr[∧log λi=1 ¬Gi] ≤
(
Θ
(n1− 1

γ

log4 n

))log λ
·
log λ∏
i=1

(
Θ
(log3 n

n1−
1
γ

))
=

=

log λ∏
i=1

Θ
(1

log n

)
= O(1/ loglog λ n) = O(2− log logn log λ) = negl(λ)

(4)

Condition (ii). For all i ∈ [log λ], the random variable (di|Gi) is statistically
negl(λ)-close to U λ

log2λ
: we define the event Faili that the rejection sampling

process fails for a bit of group Gi. We will show that for every Gi, on condition
that Gi occurs, then Faili happens with negligible probability. Specifically, assume

43

that Gi occurs, so the groupGi is unaffected. Now, since the non-corrupted bits of
Gi are random and the bias property of fres, we have that the output bits bi,j ←
fres(Bi,j), i ∈ [λ] have a bias 1

10 . Therefore, by providing the rejection sampling
process with input (bi,1, . . . , bi,λ), the probability that a pair (bi,j , bi,j+1) consists
of two non-equal bits is(1

2
+

1

10

)
·
(1

2
− 1

10

)
+
(1

2
− 1

10

)
·
(1

2
+

1

10

)
=

12

25
.

Thus, the probability of log2 λ consecutive fails is
(

1− 12
25

)− log2 λ

. If up to log2 λ

iterations are needed, then at most 2 log2 λ input bits are “consumed” in order
to output an unbiased bit. As a result, the probability that for the group Gi,
the process will succeed in outputting a λ

log2 λ
-bit string di is at least

(
1−

(13

25

)− log2 λ) λ
2log2λ ≥ 1− λ

2 log2 λ

(13

25

)− log2 λ

= 1− negl(λ) .

We conclude that
∀i ∈ [log λ] : Pr[Faili|Gi] = negl(λ) . (5)

Assume now that Gi ∧ (¬Faili) occurs. Then, the output bits (bi,1, . . . , bi,λ)
for Gi are not influenced, so by the properties of fres they are random and have
a bias 1

10 . When (bi,1, . . . , bi,λ) is provided as input to the rejection sampling
process, we have that

Pr[bi,j = 1, bi,j+1 = 0] = Pr[bi,j = 0, bi,j+1 = 1],

so given that bi,j 6= bi,j+1 the corresponding produced bit of di is unbiased. Thus,
when the process succeeds, the output di consists of λ

log2λ
random and unbiased

bits. As a result, for all for all i ∈ {1, . . . , log λ}, (di|Gi ∧ (¬Faili)) ∼ U λ
log2 λ

.

By the above and applying Eq. (5), we compute the statistical distance be-
tween di|Gi and U λ

log2λ
as follows:

∆
[
di|Gi,U λ

log2 λ

]
=

=
∑

z∈{0,1}
λ

log2 λ

∣∣∣ Pr[di|Gi = z]− 2
− λ

log2 λ

∣∣∣ =

=
∑

z∈{0,1}
λ

log2 λ

∣∣∣ Pr[¬Faili|Gi] · Pr[di|Gi = zi|Gi ∧ (¬Faili)]− 2
− λ

log2 λ

∣∣∣
=

∑
z∈{0,1}

λ
log2 λ

∣∣∣ (1− Pr[Faili|Gi]) · 2
− λ

log2 λ + 2
− λ

log2 λ

∣∣∣ ≤
≤

∑
z∈{0,1}

λ
log2 λ

∣∣∣ (1− negl(λ)) · 2−
λ

log2 λ − 2
− λ

log2 λ

∣∣∣ = negl(λ) .

44

As a result, condition (ii) also holds which implies that F is a
(

λ
log2 λ

, log λ, n
1− 1

γ

log3 n

)
-

coalescence function w.r.t. Un.

It remains to show that F satisfies completeness and efficient samplability.

Completeness: Recall that the output of F (C) is determined by λ log λ applica-
tions of the resilient function fres on each of the blocks Bi,j that C was split. If C
is sampled from Un, then each Bi,j is also uniform. By the (Θ(log2 n/n))-strong
resilience of fres (see Definition 1), we have that the probability that fres(Bi,j) is
undetermined after fixing all inputs bits (i.e. the bits outside S = ∅) uniformly
at random, is

I∅(fres) = I0(fres) ≤ (Θ(log2 n/n)) · 0 = 0 .

As a result, every output bit bi,j will be random with bias 1
10 . As shown pre-

viously, for every i, the rejection sampling process will fail to output a random
unbiased bit sequence di only with negl(λ) probability. Therefore, the statistical

distance between F (Un) = (d1, . . . , dlog λ) and
(
U λ

log2 λ

)log λ
is bounded by

∆
[
(d1, . . . , dlog λ),

(
U λ

log2 λ

)log λ]
=

=
∑

(z1,...,zlog λ)

∣∣∣ Pr[(d1, . . . , dlog λ) = (z1, . . . , zlog λ)]− 2
−(λ

log2 λ
)log λ

∣∣∣ =

=
∑

(z1,...,zlog λ)

∣∣∣ log λ∏
i=1

Pr[di = zi]− 2−
λ

log λ

∣∣∣ =

=
∑

(z1,...,zlog λ)

∣∣∣ log λ∏
i=1

(Pr[¬Faili] · Pr[di = zi|¬Faili])− 2−
λ

log λ

∣∣∣ =

=
∑

(z1,...,zlog λ)

∣∣∣ log λ∏
i=1

(Pr[¬Faili] · Pr[di = zi|Gi])− 2−
λ

log λ

∣∣∣ =

=
∑

(z1,...,zlog λ)

∣∣∣ log λ∏
i=1

(1− Pr[Faili]) · 2
−(λ

log2 λ
)log λ

+ 2−
λ

log λ

∣∣∣ ≤
≤

∑
(z1,...,zlog λ)

∣∣∣ (1− negl(λ)) · 2−
λ

log λ − 2−
λ

log λ

∣∣∣ = negl(λ) .

Efficient samplability: before presenting our Sample(·) algorithm for F , let us
first describe for some given di = (di,1, . . . , di, λ

log2 λ
), the format of a bit sequence

bi = (bi,1, . . . , bi,λ) that if provided as input to the rejection sampling process,
then the output is di.

First, in order for every bit di,k to be produced, the pair (di,k, 1−di,k), where
k ∈ [λ

log2 λ
] must appear on bi.

Second, strings yi,1, . . . , yi, λ
log2 λ

of pairs of equal bits (i.e., 00 or 11) preceding

the pairs (d1, 1 − d1), . . . , (d λ
log2 λ

1 − d λ
log2 λ

) may appear on bi (the rejection

45

sampling performs a repetition when running into such pairs). Let 2`i,k ≥ 0 be
the length of each yi,k, i.e. yi,k consists of `i,k pairs of equal bits. Finally, bi may

have a suffix zi of arbitrary bits and length `i,z = λ− 2 λ
log2 λ

+
∑ λ

log2 λ

k=1 `i,k.

We define the set S[di] of all λ-bit sequences that when input to the rejection
sampling process, they produce di. By the above, S[di] can be formally described
as

S[di] :=
⋃(

({00, 11})`1 ||(di,1, 1− di,1)|| · · ·

`i,1,...,`i,λ/log2 λ,`i,z : `i,z+
∑ λ

log2 λ
k=1 2`i,k=λ−2 λ

log2 λ

· · · ||({00, 11})`λ/log2 λ ||(di, λ
log2 λ

, 1− di, λ
log2 λ

)||({0, 1})`z
)
.

Next, we define the Sample(·) algorithm for F . Intuitively on input (d1, . . . , dlog λ),
Sample chooses a random bi = (bi,1, . . . , bi,λ) ∈ S[di] for every di and then per-

forms uniformly random rejection sampling from
(
U n
λ log λ

)λ
until it hits a block

sequence (B(i−1)λ+1, . . . , Biλ) s.t. (bi,1, . . . , bi,λ)←
(
fres(B(i−1)λ+1), . . . , fres(Biλ)

)
(or abort if rejection sampling fails). In case of success, it outputs all log λ suit-
able block sequences.

The algorithm Sample on input d1, . . . , dlog λ executes the following steps:

1. For i = 1, . . . , log λ,

(a) Choose random string lengths `i,1, . . . , `i, λ
log2 λ

, `i,z such that `i,z+
∑ λ

log2 λ

k=1 2`i,k =

λ− 2 λ
log2 λ

.

(b) For k = 1, . . . , λ
log2 λ

choose `i,k random pairs of equal pairs and concate-

nate them to create substring yi,k.
(c) Choose a random string zi of length `i,z.
(d) Set the λ-bit string bi ∈ S[di] as

bi = (bi,1, . . . , bi,λ) := yi,1||(di,1, 1− di,1)|| · · ·
· · · ||yi, λ

log2 λ
||(di, λ

log2 λ
, 1− di, λ

log2 λ
)||zi .

(e) For j = 1, . . . , λ, pick a uniformly random n
λ log λ -bit string ui,j ← U n

λ log λ

and check whether fres(ui,j) = bi,j . If yes, then set B(i−1)λ+j ← uj ;
otherwise, repeat by sampling a fresh (nλ log λ)-bit string ui,j until the
equality fres(ui,j) = bi,j holds. If λ iterations fail, then abort.

(f) Set group block sequence Gi as Gi := (B(i−1)λ+1, . . . , Biλ).
2. Output C = (c1, . . . , cn) := (G1, . . . , Glog λ).

We now show the two properties of Sample(·) that guarantee the efficient
samplability of F .

(i). The following probability is 1− negl(λ):

Pr
[
C ← Sample(d1,

(d1,...,dlog λ)←
(
U λ

log2 λ

)log λ . . . , dlog λ) : F (C) = (d1, . . . , dlog λ)
]
.

46

We observe that if Sample(d1, . . . , dlog λ) does not fail, i.e. for every i ∈ [log λ]
and j ∈ [λ], the algorithm manages to sample a suitable block B(i−1)λ+j (Step
1.(e)), then the output C is such that F (C) = (d1, . . . , dlog λ). This is because
for every i ∈ [log λ]. steps 1.(a)-(d) guarantee that bi ∈ S[di]. What remains to
show is that the success probability of Sample(d1, . . . , dlog λ) is 1− negl(λ).

By the constant bias 1
10 of fres we have that for every i ∈ [log λ and j ∈ [λ]

Pr
[
ui,j ← U n

λ log λ
: fres(ui,j) 6= bi,j

]
≤ 1

2
+

1

10
=

3

5
.

Therefore, the probability that Step 1.(e) will fail for bi,j after λ iterations is no
more than (3

5)λ. Thus, by the union bound the probability that Step 1.(e) will
not fail for any i ∈ [log λ] and j ∈ [λ] is at least

1− λ log λ
(3

5

)λ
= 1− negl(λ) .

(ii). The distribution Sample
((
U λ

log2 λ

)log λ)
is statistically negl(λ)-close to

Un: as a first step, we observe that for every two distinct strings di := (di,1, . . . , di,λ),
d′i := (d′i,1, . . . , d

′
i,λ) the elements (λ-bit strings) in the sets S[di] and S[d′i] are

in 1-1 correspondence. This holds because for every λ-bit string

bi = (bi,1, . . . , bi,λ) := yi,1||(di,1, 1− di,1)|| · · ·
· · · ||yi, λ

log2 λ
||(di, λ

log2 λ
, 1− di, λ

log2 λ
)||zi .

that is in S[di], then the λ-bit string

b′i = (b′i,1, . . . , b
′
i,λ) := yi,1||(d′i,1, 1− d′i,1)|| · · ·

· · · ||yi, λ
log2 λ
||(d′

i, λ
log2 λ

, 1− d′
i, λ

log2 λ

)||zi .

is in S[d′i]. It directly follows that for any two di, d
′
i the sets S[di] and S[d′i] are

of equal size.

Next, we observe that every two corresponding bi and b′i differ only at a
subset of the pairs (di,k, 1 − di,k), (d′i,k, 1 − d′i,k), k ∈ [λ

log2 λ
]. Namely, it could

be the case that (di,k, 1− di,k) = (0, 1) and (d′i,k, 1− d′i,k) = (1, 0) or vice versa.
In any case, both bi and b′i have the same number of 0s and 1s.

Let H[bi] denote the set of suitable block sequences (B(i−1)λ+1, . . . , Biλ) for

bi i.e. (bi,1, . . . , bi,λ)←
(
fres(B(i−1)λ+1), . . . , fres(Biλ)

)
. We will show that since

bi and b′i have the same number of 0s and 1s, H[bi] and H[b′i] are of equal size.

47

In particular, it holds that

|H[bi]| =
λ∏
j=1

∣∣ {B(i−1)λ+j : fres(B(i−1)λ+j) = bi,j }
∣∣ =

=
∏

j:bi,j=0

∣∣ {B(i−1)λ+j : fres(B(i−1)λ+j) = 0 }
∣∣·

·
∏

j:bi,j=1

∣∣ {B(i−1)λ+j : fres(B(i−1)λ+j) = 1 }
∣∣ =

=
∏

j:b′i,j=0

∣∣ {B′(i−1)λ+j : fres(B
′
(i−1)λ+j) = 0 }

∣∣·
·
∏

j:b′i,j=1

∣∣ {B′(i−1)λ+j : fres(B
′
(i−1)λ+j) = 1 }

∣∣ =

=

λ∏
j=1

∣∣ {B′(i−1)λ+j : fres(B
′
(i−1)λ+j) = b′i,j }

∣∣ = |H[b′i]| .

(6)

As shown previously, the probability of failure (denoted by the event Fail) of
Sample(d1, . . . , dlog λ) is negl(λ). We will prove that when Sample(

(
U λ

log2 λ
) does

not fail, then the output C = (c1, . . . , cn) := (G1, . . . , Glog λ) follows Un. By per-
forming similar computation steps as previously in the proof (e.g. see complete-
ness), this suffices for proving that Sample

((
U

λ
log2 λ

)log λ) is statistically negl(λ)-

close to Un.

For everyGi := (B(i−1)λ+1, . . . , Biλ), let E[Gi] be the event that Sample(. . . , di, . . .),
where di is random, fixes at Step 1.(d) the unique string bi s.t. Gi ∈ H[bi]. Re-
call that by construction, Sample(d1, . . . , dlog λ) chooses the respective strings
b1, . . . ,blog λ uniformly at random from the sets S[d1], . . . , S[dlog λ], respectively
(see Steps 1(a)-(d)). Hence, by Eq. (6), we have that for any two distinct
C := (G1, . . . , Glog λ), C ′ := (G′1, . . . , G

′
log λ)

48

Pr
[
(d1, . . . , dlog λ)←

(
U λ

log2 λ

)log λ
: C ← Sample(d1, . . . , dlog λ)

]
=

=

log λ∏
i=1

Pr
[
di ← U λ

log2 λ
: (. . . , Gi, . . .)← Sample(. . . , di, . . .)

]
=

=

log λ∏
i=1

Pr
[
di ← U λ

log2 λ
: E[Gi] ∧Gi ∈ H[bi] ∧ bi ∈ S[di]

]
=

=

log λ∏
i=1

Pr
[
di ← U λ

log2 λ
: Gi ∈ H[bi] ∧ bi ∈ S[di]

]
·

· Pr
[
di ← U λ

log2 λ
: E[Gi]

∣∣ Gi ∈ H[bi] ∧ bi ∈ S[di]]
]

=

=

log λ∏
i=1

2
− λ

log2 λ · 1

|S[di]|
· 1

|H[bi]|
=

=

log λ∏
i=1

2
− λ

log2 λ · 1

|S[d′i]|
· 1

|H[b′i]|
=

=

log λ∏
i=1

Pr
[
d′i ← U λ

log2 λ
: G′i ∈ H[b′i] ∧ b′i ∈ S[d′i]

]
·

· Pr
[
d′i ← U λ

log2 λ
: E[G′i]

∣∣ G′i ∈ H[b′i] ∧ b′i ∈ S[d′i]]
]

=

=

log λ∏
i=1

Pr
[
d′i ← U λ

log2 λ
: E[G′i] ∧G′i ∈ H[b′i] ∧ b′i ∈ S[d′i]

]
=

=

log λ∏
i=1

Pr
[
d′i ← U λ

log2 λ
: (. . . , G′i, . . .)← Sample(. . . , d′i, . . .)

]
=

= Pr
[
(d′1, . . . , d

′
log λ)←

(
U λ

log2 λ

)log λ
: C ′ ← Sample(d′1, . . . , d

′
log λ)

]
.

(7)

By Eq. (7), when Sample
((
U λ

log2 λ

)log λ)
does not fail, each C ∈ {0, 1}n has the

same probability of being output. Namely,

Sample
((
U λ

log2 λ

)log λ)∣∣(¬Fail) ∼ Un .

Since Pr[Fail] = negl(λ), we have that

∆
[
Sample

((
U λ

log2 λ

)log λ)
,Un

]
= negl(λ) .

ut

C.2 A commitment scheme secure against helper-aided adversaries

We denote a commitment scheme CS as a triple of efficient algorithms (CS.Gen,
CS.Com,CS.Ver), where (i) the generator algorithm CS.Gen(1λ) outputs a com-

49

mitment key ck, (ii) the commitment algorithm CS.Comck(M) outputs a com-
mitment c to message M , and (iii) the verification algorithm CS.Verck(c, (M, r))
outputs 1 accepting M as an opening of c given decommitment information
(M, r), or 0, otherwise.

In this subsection, we present a commitment scheme that is perfectly bind-
ing and computationally hiding against helper-aided PPT adversaries, given the
function family F = {ftag : Zq −→ Gtag}tag∈{0,1}λ , where ftag(x) := gxtag, such
that the DDH is adaptively hard w.r.t. the collection of groups {(q, ptag, gtag, Gtag)}tag∈{0,1}λ

as instantiated in A.4.

Description. We consider a subset of k tags, {tag∗1, . . . , tag∗k} ⊂ {0, 1}λ. We note
that in the VMPC setting, these tags will refer to the k MPC servers that will
jointly setup the commitment key.

For tag∗i , i ∈ [k], let Gtag∗i
be the underlying group of order q with generator

gtag∗i
. Our scheme utilizes the following tools:

1. For every tag∗i , i ∈ [k], the (lifted) ElGamal encryption scheme (gritag∗i
, gMi

tag∗i
hritag∗i

),

where (q, ptag∗i
, gtag∗i

, htag∗i
) is the public key and message Mi is encrypted un-

der randomness ri.

2. A k-out-of-k additive secret sharing scheme, i.e., M = M1 + M2 + · · · +
Mk mod q.

Our commitment scheme CSF = (CSF.Gen,CSF.Com,CSF.Ver) w.r.t. {tag∗1, . . . , tag∗k}
is specified as follows:

– CS.GenF(1λ):

1. For each i ∈ [k], choose a random value ti
$← Zq and set the partial

commitment key cki = (q, ptag∗i
, gtag∗i

, htag∗i
:= gtitag∗i

).

2. Output ck = (ck1, . . . , ckk).

– CS.ComF
ck(M): commit to M as below

1. Split M into k shares M1, . . . ,Mk s.t. M =
∑k
i=1Mi mod q.

2. For each i ∈ [k], choose randomness ri
$← Zq and compute the ElGamal

ciphertext ψi := (gritag∗i
, gMi

tag∗i
hritag∗i

).

3. Output the commitment c := (ψ1, . . . , ψk). The decommitment informa-
tion is 〈Mi, ri〉i∈[k].

– CS.VerFck(c, (M, 〈Mi, ri〉i∈[k])): parse c := (ψ1, . . . , ψk) and output 1 iff the
following checks hold

1.
∑
i∈[k]Mi ≡M mod q.

2. ψi = (gritag∗i
, gMi

tag∗i
hritag∗i

), for i ∈ [k].

50

Security. We prove the security of CSF = (CSF.Gen,CSF.Com,CSF.Ver) in the
following lemma:

Lemma 1. Let F = {ftag : Zq −→ Gtag}tag∈{0,1}λ , where ftag(x) := gxtag, such
that the DDH is adaptively hard w.r.t. the collection of groups {(q, ptag, gtag, Gtag)}tag∈{0,1}λ

and let H = {HS}S⊂{0,1}λ be the associated helper family defined in Fig. 1.

Let {tag∗1, . . . , tag∗k} ⊂ {0, 1}λ be a tag collection. Then, the commitment

scheme CSF = (CSF.Gen,CSF.Com,CSF.Ver) w.r.t. {tag∗1, . . . , tag∗k} ⊂ {0, 1}λ
is (i) perfectly binding and (ii) computationally hiding against PPT adversaries
with access to any member HS of H s.t. {tag∗1, . . . , tag∗k} 6⊂ S.

Proof. The perfect binding property of CSF is straightforward by the perfect
correctness of ElGamal and the secret sharing scheme, and argued at an infor-
mation theoretic level independently of H. To prove the computational hiding
property of CSF against helper-aided PPT adversaries, we will use reduction to
the adaptive DDH hardness of Gtag∗1

, . . . , Gtag∗k
.

Namely, letA be a PPT adversary aided byHS s.t. for some i ∈ [k] : tag∗i /∈ S,
against the hiding property of CSF. Observe that HS for this F provides discrete
logarithms as preimage replies.

We construct an adversary B that by having access to the discrete logarithm
oracle DL(tag∗i , ·, ·), manages to break the adaptive DDH hardness for Gtag∗i

. In
particular, B on input (gtag∗i

, gxtag∗i
, gytag∗i

, gztag∗i
) (where z is either equal to xy or

random) and hardcoded with q executes the following steps:

1. It sets cki := (q, ptag∗i
, gtag∗i

, htag∗i
:= gxtag∗i

).

2. For j ∈ [k] \ {i}, it chooses a distinct tag tagj 6= tag∗i and a random value

tj
$← Ztagj . It sets ckj := (q, ptagj , gtagj , htagj := g

tj
tagj

).

3. It provides A with ck = (ck1, . . . , ckk) and emulates the hiding game for CS.
4. For a query (tag, β) fromA intended forHS , it emulates a response as follows:

if tag ∈ S, (hence, tag 6= tag∗i), then it forwards the query to DL(tag∗i , ·, ·)
and replies with the oracle’s response α. If tag /∈ S (hence, including the
case tag = tag∗i), then it returns ⊥.

5. It receives the challenge pair (M0,M1) from A and replies with an emulated
commitment cb ← Comck(M b) as follows:
(a) It chooses a random b ∈ {0, 1} and splits M b into k shares M b

1 , . . . ,M
b
k .

(b) For j ∈ [k] \ {i}, it computes a normal ElGamal encryption of M b
j , ψbj .

(c) For j = i, it sets ψbi := (gytag∗i
, gM

b
i gztag∗i

).

(d) It sets cb := (ψb1, . . . ψ
b
k).

6. If A’s guess matches b, then it outputs 1. Otherwise, it outputs 0.

First, note that by the information theoretic security of the secret sharing
scheme, even though A, by querying HS , can obtain the exponent tj and thus
totally recover some of (or even all) the shares M b

j for j ∈ [k] \ {i}, it does not

gain any information about M b
i by these queries. Thus, the guess of A for M b

is independent given any collection of shares that does not include M b
i .

51

The proof is completed similarly to the reduction of ElGamal IND-CPA
security to the DHH assumption. Namely, let 1

2 + δ be the advantage of A in

breaking the hiding property of CSF. Next, assume that B gets a valid DDH tuple
(gtag∗i

, gxtag∗i
, gytag∗i

, gxytag∗i
), i.e. z = xy. In this case, B sets ψbi so that it perfectly

emulates the hiding game. On the other hand, if z is totally random, then the

value ψbi := (gytag∗i
, gM

b
i gztag∗i

) is randomly distributed, independently from b.

We conclude that

∣∣∣Pr
[
x, y

$← Zq : B(gtag∗i
, gxtag∗i

, gytag∗i
, gxytag∗i

) = 1
]
−

Pr
[
x, y, z

$← Zq : B(gtag∗i
, gxtag∗i

, gytag∗i
, gztag∗i

) = 1
]∣∣∣ =

=
∣∣∣(1

2
+ δ
)
− 1

2

∣∣∣ = δ .

Namely, the distinguishing advantage of B is also δ. ut

C.3 The Lapidot-Shamir (LS) fully input-delayed protocol

The LS protocol is a fully input-delayed protocol, as defined in Definition 5, i.e.
both the prover and the simulator only need to know the size of the statement
in order to produce the first move, while the actual statement is only needed for
the third move. The LS protocol is a proof of knowledge of a Hamiltonian cycle
HC of a given graph G = (V,E) with size |G|. Consistently with the syntax
of a Σ-protocol in Section 2, an LS proof consists of (1) the LS prover pair of
algorithms (a, stP) ← LS.Prv1(|G|) and z ← LS.Prv2(stP , r,G,HC), (2) the LS
verifier algorithm LS.V (a,G) that outputs a single bit challenge r ∈ { 0, 1 }, and
(3) the verification algorithm LS.Verify(G, a, r, z) that outputs 0/1.

Description. More concretely, the protocol works as follows:

• LS.Prv1(|G|): In the first move, the prover picks a random cycle RC with
|V | vertices and commits to RC in terms of a |V | × |V | adjacency matrix in an
element-wise function. Then, it utilizes a perfectly binding commitment scheme
to output the commitment to the adjacency matrix of RC as the first message
a and a state stP ∈ { 0, 1 }∗.
• LS.V (a,G): The verifier sends a single bit challenge r ∈ { 0, 1 }.
• LS.Prv2(stP , r,G,HC): In the third move, the prover takes as input the

state stP ∈ { 0, 1 }∗, the challenge r ∈ { 0, 1 }, the statement G = (V,E) and
the corresponding witness (Hamiltonian cycle) HC. If r = 0, then it opens the
committed RC outputs and sends them as the response z; otherwise, it finds a
permutation π that maps the vertices of G to the adjacency matrix of RC such
that RC is the Hamiltonian cycle HC, using a (perfectly binding) commitment
scheme. It then opens all the committed adjacency matrix RC elements that
correspond to non-edges of G. It outputs π and the opening to the adjacency
matrix as the response z.

52

• LS.Verify(G, a, r, z): it takes as input the statement x and the transcript
(a, r, z), and it outputs 0/1, if the selected openings of the commitments to RC
are consistent.

Security. The LS protocol satisfies input-delayed simulation, because there exists
a simulator LS.Sim = (LS.Sim1, LS.Sim2) s.t. for any challenge r, LS.Sim can
simulate a transcript that is computationally indistinguishable from the real one
in an input-delayed manner. LS.Sim = (LS.Sim1, LS.Sim2) is defined as follows:

� LS.Sim1(r, |G|): the simulator’s output depends on the challenge r as follows:
– If r = 0, then it acts as LS.Prv1. Namely, it picks a random cycle RC and

outputs a commitment to the adjacency matrix of RC as a simulated
first message a.

– If r = 1, then it picks a random cycle RC, but now a is a commitment
of an all-zero |V | × |V | matrix.

In both cases, t he simulator state stSim contains a, r and all the decommit-
ment information for the committed matrix.

� LS.Sim2(stSim, G):
– If r = 0, then it acts as LS.Prv2. I.e., it outputs z as the opening to RC.
– If r = 1, then it outputs z as a pair of (i) the permutation that maps
RC to the vertices of G (in a fixed order), and (ii) the openings to the
committed all-zero matrix that correspond to non-edges of G.

Note for r = 0, LS.Sim acts a real prover therefore it produces transcripts that
are identically distributed to the real ones. For r = 1, the first message a and
the permutation included in z are identically distributed to the ones in a real
transcript, since RC is randomly chosen. Hence, sHVZK relies on the hiding
property of the commitments between the real and the simulated adjacency
matrix for RC.

Given Lemma 1 and the description of LS.Sim = (LS.Sim1, LS.Sim2), we prove
the existence of a fully input-delayed Σ-protocol for any NP language that is
secure against helper-aided adversaries.

Proposition 1. Let F = {ftag : Zqtag −→ Gtag}tag∈{0,1}λ such that the DDH
problem is adaptively hard in F, and let H = {HS}S⊂{0,1}λ be the associated
helper family defined in Fig. 1.

Let {tag∗1, . . . , tag∗k} ⊂ {0, 1}λ be a tag collection. Then, for every L ∈ NP,
there exists a fully input-delayed Σ-protocol for L that achieves (i) (perfect)
completeness, (ii) special soundness and (iii) sHVZK against PPT adversaries
with access to any member HS of H such that {tag∗1, . . . , tag∗k} 6⊂ S.

Proof. Let CSF = (CS.GenF,CS.ComF,CS.VerF) be the commitment scheme pre-
sented in C.2. By the NP-completeness of the Hamiltonian Cycle problem, it
suffices to show that the LS protocol over CSF satisfies the properties in Propo-
sition 1. The proof is as in the standard proof the LS protocol, except from
sHVZK where reference to helper access is necessary.

Perfect completeness: follows directly from the correctness of CS.GenF that
in turn, is based on the correctness of ElGamal encryption.

53

Special soundness: follows from the perfect binding property of CSF. Namely,
given two accepting transcripts (G, a, 0, z0) and (G, a, 1, z1) allows the extraction
of the witness HC by LS.Ext. This is true since for r = 0 one gets the random
cycle RC and for r = 1 one gets the permutation that maps the random cycle
in the actual cycle HC. Note that a single run of the LS proof has soundness
error 1/2 and needs to be repeated λ times for soundness amplification to 2−λ.

sHVZK: let S such that {tag∗1, . . . , tag∗k} 6⊂ S and A be a PPT adversary with
access to HS that breaks the sHVZK property of LS. Since for challenge r = 0,
the simulator LS.Sim acts exactly as the actual prover, we have that for challenge
r = 1, A can distinguish a simulated transcript from a real one on challenge 1
with some non-negligible advantage α(λ). W.l.o.g. (otherwise we can flip the
output of A), assume that

Pr
[
(a, stP)← LS.Prv1(|G|); z ← LS.Prv2(stP , 1, G,HC) : A(G, a, 1, z) = 1

]
≥

≥Pr
[
(a, stSim)← LS.Sim1(1, |G|); z ← LS.Sim2(stSim, G) : A(G, a, 1, z) = 1

]
+ α(λ) .

(8)

We construct a PPT adversary B with access to HS against the compu-
tational hiding property of CSF. Namely, on input a commitment key ck, B
operates as follows:

1. It specifies a graph G with vertex set V and Hamiltonian cycle HC w.r.t.
the security parameter λ implied by ck.

2. It provides two multi-challenge vectors M0 = (0, . . . , 0) and M1 = (1, . . . , 1)
consisting of |V | elements. By a standard hybrid argument, we can refer to
multi-challege hiding, as it is equivalent to single-challenge hiding up to a
negligible error.

3. It replies to every query of A for HS , simply by forwarding the query and
returning HS ’s response.

4. It receives a vector of |V | commitments to challenge bit b. Then, it runs an
execution of LS as the prover does for challenge r = 1 with the following
modification: B commits to the adjacency matrix of RC by plugging in the
|V | commitments to b in the matrix entries that correspond to the edges of
RC.

5. It returns the response of A.

Observe that when b = 1, then B interacts as a real prover, whereas when
b = 0 it outputs a transcript identically distributed to the simulated ones. In

54

both cases, this is on condition the challenge is 1. Thus, by Eq. (8), it holds that

Pr
[
B wins

]
=

=
1

2
· Pr

[
B wins

∣∣ b = 1
]

+
1

2
· Pr

[
B wins

∣∣ b = 0
]

=

=
1

2
· Pr

[
B outputs 1

∣∣ b = 1
]

+
1

2
· Pr

[
B outputs 0

∣∣ b = 0
]

=

=
1

2
+

1

2
·
(

Pr
[
B outputs 1

∣∣ b = 1
]
− Pr

[
B outputs 1

∣∣ b = 0
])

=

=
1

2
+

1

2
·
(

Pr
[
A outputs 1

∣∣ b = 1
]
− Pr

[
A outputs 1

∣∣ b = 0
])
≥

≥1

2
+
α(λ)

2
.

Therefore, B wins with non-negligible distinguishing advantage which contradicts
to the hiding property of CSF proven in Lemma 1. This completes the proof. ut

C.4 Proof of Theorem 2

Proof. Crowd-verifiable Completeness. In the following argumentation, we
assume that the von Neumann sampling process for the computation of the
coalescence outputs will not fail. By Theorem 1, this is something that happens
with 1 − negl(λ) probability, so we may include the negl(λ) failure error in the
total error bound at the end of the completeness proof.

For a statement x ∈ L∩{0, 1}poly(λ) and a witness w for x, the completeness
of Σ.Π gives us that

Pr[(a, st)← Σ.Prv1(x,w); e← Σ.V (x, a); r ← Σ.Prv2(x,w, e, st) :

Σ.Verify(x, a, e, z) = 0] ≤ δ(λ).

Let A be a (not necessarily PPT) adversary against the completeness of the
CVZK protocol CVZK.Π that may tamper at most t1 verifier challenges, i.e. it
can flip at most t1 bits of the random challenge C = (c1, . . . , cn). By engaging

in the completeness experiment ExptCVCompl
(t1,A,Icorr)

(1λ, x, w) (as defined in Def. 3),

the adversary will win only if it manages to output an adversarial challenge Ĉ
s.t. a non-accepting CVZK transcript (A, Ĉ, Z) is generated.

In the third round of CVZK.Π, the prover algorithm CVZK.Prv2(x,w,A, Ĉ, stP)
will generate the n-bit string E = Ĉ ⊕ R, where R is a truly random n-bit
string produced by CVZK.Prv1(x,w) and included in its state stP . So, E :=
(e1, . . . , elog λ) is uniformly distributed. Note that this holds unconditionally,
i.e., regardless of A’s strategy.

Therefore, the strings e1, . . . , elog λ that will be used as challenges for the log λ
independent executions of CVZK.Π are uniformly random. By the completeness

55

and uniformity of the challenge of Σ.Π and the union bound, we have that

Pr
[
(ai, sti)← Σ.Prv1(x,w), i ∈ [log λ]; (e1, . . . , elog λ)← Un;

zi ← Σ.Prv2(x,w, ei, sti), i ∈ [log λ] :
∧

i∈[log λ]

Σ.Verify(x, ai, ei, zi) = 1
]

≥ 1−
∑

i∈[log λ]

Pr
[
(ai, sti)← Σ.Prv1(x,w); ei ← Un/ log λ;

zi ← Σ.Prv2(x,w, ei, sti) : Σ.Verify(x, ai, ei, zi) = 0
]
≥

≥1− δ(λ) log λ .

(9)

To argue about the completeness of the input-delayed proofs, we first make use
of the public samplability property of F (cf. property (1) of Definition 2) with
error ε(·). Namely, for every tag`, ` ∈ [n], it holds that

Pr
[
ω ← Uλ/ log2 λ : IM(tag`, ω) ∈ Ytag

]
≥ 1− ε(λ) . (10)

By Eq. (10), at least (1− ε`(λ))2
λ

log2 λ strings in {0, 1}
λ

log2 λ lead to the sam-
pling of a valid statement for L∗tag`

. We argue that by the construction of the coa-
lescence F (·) over the strongly resilient function fres, for every ` ∈ [n], j ∈ [log λ],
the output of IM(tag`, dj) is a valid statement x∗`,j ∈ L∗tag`

.

Let (G1, . . . , Glog λ) be the grouping of the bits of the input to the coalescence
function that produce the output of λ/ log2 λ- bits strings d1, . . . , dlog λ. Note that
the adversary breaks completeness even if it manages to tamper the coalescence
output of a single group so that it leads to the sampling of an invalid value
(non-statement). Thus, it suffices to show that A has negl(λ) success probability,
even if it concentrates all its tampering power of t1 bits, upon a single group,
say Gj . As in Theorem 1 proof, let Bj,1, . . . , Bj,λ denote the blocks inside the
group Gj . bj,1, . . . , bj,λ be the bit sequence that, when given as input to the von
Neumann rejection sampling process, produces dj . Namely, bj,k is the output bit
of fres(Bj,k).

Next, assume that A selects ti,j bits to corrupt for the block Bi,j , and ∀i :∑λ
j=1 ti,j = t1. Let Infi,j be the event that over the input coins of Bi,j the

adversary A influences the output bit bi,j ← fres(Bi,j), where i ∈ [log λ], j ∈ [λ].

By the (Θ(log2m
m))-strong resilience of fres, if we set m = n

λ log λ (the input block

length), then each corrupted bit in Bi,j has probability Θ(log3 n

n
1− 1

γ
) to influence

the output bit of Bi,j . By the union bound, the latter implies that

Pr
[
Infi,j

]
= Θ

(
ti,j ·

log3 n

n1−
1
γ

)
. (11)

Now, let X be the random variable that counts the number of blocks from
Bi,1, . . . , Bi,λ which output bit has been influenced. It is easy to see that X is

56

the sum of λ Bernoulli trials with success probability Pr
[
Infi,1

]
, . . . ,Pr

[
Infi,λ

]
,

respectively. Thus, by Eq. (11), the mean of X is

µ = E[X] =

λ∑
j=1

Θ
(
ti,j ·

log3 n

n1−
1
γ

)
= Θ

(
t1 ·

log3 n

n1−
1
γ

)
.

By requiring that t1 ≤ n
1− 1

γ

log2 n
, we get that µ = Θ(log n). Thus, by the Chernoff

bounds, we have that asymptotically

Pr
[
X ≥ log2 n

]
≤ Pr

[
X ≥ µ log1/2 n

]
≤ e−Θ(log3/2 n) = negl(λ) . (12)

So with 1 − negl(λ), A can not influence more than Θ(log2 n) out of the λ bits
of the sequence bj,1, . . . , bj,λ. Since to produce a bit of dj , we need at least two
input bits in the von Neumann sampling process, we deduce that A can neither
influence more than Θ(log2 n) out of the λ/ log2 λ bits of dj .

Recall that the λ/ log2 λ − Θ(log2 n) uninfluenced bits of dj are uniformly
random. Therefore, given the adversarial tampering the output is randomly chose

among a subset of 2
λ

log2 λ
−Θ(log2 n)

strings.
In the worst case (hence, optimal in terms of adversarial strategy), these

2
λ

log2 λ
−Θ(log2 n)

strings contain all the “bad” ones that lead to an invalid value

(non-statement). By Eq. (10), the bad strings can be no more than ε(λ)2
λ

log2 λ in
total. Thus, the probability of randomly hitting a bad string is upper bounded
by

ε(λ)2
λ

log2 λ

2
λ

log2 λ
−Θ(log2 n)

= ε(λ)2Θ(log2 n) .

Recall that the above bound holds for every ` ∈ [n]∀j ∈ [log λ]. Thus, by the
union bound, we have that

Pr
[∧
`∈[n]

∧
j∈[log λ]

x∗`,j = IM(tag`, dj) ∈ L∗tag`

]
≥ 1− n log λε(λ)2Θ(log2 n) .

(13)

Given the validity of input-delayed statements, the completeness of all proofs
for the validity of x∗`,j , ` ∈ [n], j ∈ [log λ] follows directly from the perfect
completeness of the InD.Π proofs.

By Eq. (9) and (13) and including the negl(λ) failure error in von Neu-

mann sampling, we conclude that for every t1 ≤ n
1− 1

γ

log2 n
, CVZK.Π has (t1, ε1)-

completeness, where ε1(λ) := δ(λ) log λ+ n log λε(λ)2Θ(log2 n) + negl(λ).

Crowd-verifiable soundness. Given t2-crowd verifiable validity that will be
shown below, crowd verifiable soundness is easily deduced. Specifically, assume

57

that there is a non-negligible function α(·) and an (unbounded) adversary A s.t.
for some x ∈ {0, 1}poly(λ)

Pr
[
ExptCVSound

(t2,A,Icorr)(1
λ, x) = 1

]
≥ α(λ) .

Then, by t2-crowd verifiable validity, then we have that x ∈ L with non-negligible
probability β(λ), as the CVZK extractor utilizing A can output a witness for
x ∈ L with non-negligible probability. Therefore for every x ∈ {0, 1}poly(λ) \ L
and every adversary A there is a negligible function εx,A(·) s.t.

Pr
[
ExptCVSound

(t2,A,Icorr)(1
λ, x) = 1

]
≤ εx,A(λ) .

Since for every λ, the set {εx,A(λ)}x,A is lower bounded (e.g., by 0), by the
supremum axiom of the real numbers we can define the function ε(·)

ε2(λ) := inf({εx,A(λ)}x,A) .

Clearly, ε(·) is negligible. Besides, by the definition of εx,A(·), we deduce that
CVZK.Π achieves (t2, ε2)-crowd verifiable soundness.

Crowd-verifiable validity. Let A be an adversary against the crowd verifiable
validity of CVZK.Π that acts as a malicious prover, corrupts up to t2 verifiers
and engages in ExptCVSound

(t2,A,Icorr)(1
λ). For some statement x, and subset Icorr ⊂ [n]

we define
px := Pr

[
ExptCVSound

(t2,A,Icorr)(1
λ, x) = 1

]
.

We construct a (candidate) PPT extractor algorithm CVZK.Ext for CVZK.Π
that emulates ExptCVSound

(t2,A,Icorr)(1
λ, x) with standard rewinding and utilizes the

extractor of Σ.Π, denoted by Σ.Ext, to extract a witness for x, given the publicly
samplable adaptive one-way function family F. Then, we will analyze the success
probability for CVZK.Ext.

The algorithm CVZK.Ext given the code of A, on input x and the set of
indices of corrupted users Icorr, executes the following steps:

1. It starts ExptCVSound
(t2,A,Icorr)(1

λ, x), playing the role of honest verifiers.

2. It obtains
(
A := ({ai}i∈[log λ], {a∗`}`∈[n])

)
from A(x, Icorr).

3. For ` ∈ [n], it chooses a random bit c` to generate challenge C := (c1, . . . , cn) ∈
{ 0, 1 }n.
4. It obtains tampered challenge Ĉ := 〈ĉ1, . . . , ĉn〉 and response Z := (E, {zi}i∈[log λ],
{z∗`,j}

j∈[log λ]
`∈[n]) from A(x, 〈c`〉`∈Icorr).

5. If CVZK.Verify(x,A, Ĉ, Z) = 1, then it rewinds A at the beginning of the
challenge step providing A with a new challenge 〈c′`〉`∈Icorr derived from a fresh
challenge C ′ := (c′1, . . . , c

′
n) ∈ { 0, 1 }n, where C ′ is computed as follows:

(a). Let (G1, . . . , Gλ log λ) be the partition of C and (G′1, . . . , G
′
λ log λ) be the par-

tition of C ′ into log λ groups of n
log λ bits.

(b). CVZK.Ext chooses randomly an index i∗ ∈ [log λ].
(c). For every i ∈ [log λ] \ i∗, it chooses Gi uniformly at random.

58

(d). It fixes G′i∗ = Gi∗ .

If CVZK.Verify(x,A, Ĉ, Z) = 0, then CVZK.Ext aborts.
6. It obtains new tampered challenge Ĉ ′ := 〈ĉ′1, . . . , ĉ′n〉 and new response Z ′ :=

(E′, {z′i}i∈[log λ], {z′`,j
∗}j∈[log λ]`∈[n]) from A(x, 〈c′1, . . . , c′n〉).

7. If CVZK.Verify(x,A, Ĉ ′, Z ′) = 1, then

(a). Let F (Ĉ) = (d̂1, . . . , d̂log λ), and F (Ĉ ′) = (d̂′1, . . . , d̂
′
log λ), be the coalescence

images. Parse E,E′ as (e1, . . . , elog λ) and (e′1, . . . , e
′
log λ), respectively.

(b). If there is an i0 ∈ [log λ] s.t. ei0 6= e′i0 , then it runs Σ.Ext on input the two
valid transcripts (x, ai0 , ei0 , zi0) and (x, a′i0 , e

′
i0
, z′i0) and receives the output

w of Σ.Ext. Then, CVZK.Ext returns w as a valid witness for x.
(c). Otherwise, it holds that (e1, . . . , elog λ) = (e′1, . . . , e

′
log λ). Then, CVZK.Ext

aborts.

If CVZK.Verify(x,A, Ĉ ′, Z ′) = 0, then CVZK.Ext aborts.

By the above description and the special soundness of Σ.Π, CVZK.Ext will cer-
tainly output a valid witness for x if the following events happen:

(i). CVZK.Verify(x,A, Ĉ, Z) = CVZK.Verify(x,A, Ĉ ′, Z ′) = 1, and
(ii). E 6= E′.

We lower bound the probability that these events happen via two claims. We
begin by making use of the coalescence function F (·). Specifically, recall that Def-
inition 4 refers to unbounded adversaries, thus it captures the state of A upon
receiving a randomly chosen CVZK challenge C. Therefore, (d1, . . . , dlog λ) ←
F (Ĉ) is a valid output for a run of the experiment ExptCoal

(t,A,Icorr)(1
λ) in Defini-

tion 4. The latter implies that there exist events G1, . . .Gm from the probability
space of ExptCVSound

(t2,A,Icorr)(1
λ, x) such that for the following two conditions hold:

(1) Pr[∧log λi=1 ¬Gi] = negl(λ), and
(2) for all i ∈ [log λ] and Icorr output by A, the random variable (di|Gi) is

statistically negl(λ)-close to Uλ/ log2 λ.
By the construction of F (·) (cf. also proof of Theorem 1), each Gi denotes

the event that A does not influence any of the λ bits output by the blocks of
group Gi, where (G1, . . . , Glog λ) = C. Thus, by condition (1) we have that

Pr
[(

ExptCVSound
(t2,A) (1λ, x) = 1

)
∧
(
∨log λi=1 Gi

)]
= px − negl(λ) . (14)

By Eq. (14) and the union bound, we get that

px − negl(λ) = Pr
[(

ExptCVSound
(t2,A) (1λ, x) = 1

)
∧
(
∨log λi=1 Gi

)]
=

= Pr
[
∨log λi=1

((
ExptCVSound

(t2,A) (1λ, x) = 1
)
∧ Gi

)]
≤

≤
log λ∑
i=1

[(
ExptCVSound

(t2,A) (1λ, x) = 1
)
∧ Gi

)]
.

(15)

59

By Eq. (15) and an averaging argument, we conclude that there exists an i0 ∈
[log λ] and a negligible function δ(·) s.t.

Pr
[(

ExptCVSound
(t2,A) (1λ, x) = 1

)
∧ Gi0

]
≥ px

log λ
− δ(λ) . (16)

Coming back to the setting dictated by the description of CVZK.Ext, we
define as Uninf the event that in both runs (the first with challenge C and the
rewinded run with challenge C ′ on condition that Gi∗ is fixed) that CVZK.Ext
performs the event Gi∗ . We lower bound the probability Valid ∧ Uninf happens
in the following claim.

Claim 5 Pr[Valid ∧ Uninf] ≥ (px)
3

8(log λ)4 − negl(λ).

Proof of claim: We prove the claim via a combinatorial argument along the
lines of the splitting Lemma. Let A be the space of all first move messages A
and R be the space of all response messages (Ĉ, Z) that A outputs during the
execution of ExptCVSound

(t2,A) (1λ, x). For notation simplicity, the elements of A, R
are in one-to-one correspondence with the coins of A, where w.l.o.g. we assume
that A always outputs well-formed messages.

For the index i0 guaranteed from Eq. (16), let Good.Trx be the set of triples(
A,C := (G1, . . . , Glog λ), (Ĉ := (Ĝ1, . . . , Ĝlog λ), Z)

)
∈ A×

(
{0, 1}

n
log λ

)log λ×R
such that

1. CVZK.Verify(x,A, Ĉ, Z) = 1 (i.e. the transcript (x,A, Ĉ, Z) is accepting),
and

2. the output di0 of Gi0 is not influenced (i.e. running fres on the blocks Gi0
and Ĝi0 produces the same output di0).

Let Good.Runx be the set of pairs (A,G) ∈ A× {0, 1}
n

log λ s.t.∣∣∣{(C, Ĉ, Z)
∣∣ ((A,C := (G1, . . . , Glog λ), (Ĉ, Z)

)
∈ Good.Trx

)
∧

∧
(
Gi0 = G

)}∣∣∣ ≥ 1

2
·
(px

log λ
− δ(λ)

)
·
(
2

n
log λ

)log λ−1 · |R| .
Observe that CVZK.Ext samples the honest verifiers slightly differently than in
ExptCVSound

(t2,A,Icorr)(1
λ, x). Namely, it chooses n bits for all positions (including the

ones in Icorr) and then provides A with only the honest verifiers’ bits. It is
straightforward that this way of sampling is (i) consistent with the coalescence
experiment ExptCoal

(t,A,Icorr)(1
λ) (cf. Definition 4), and (ii) that this leads to exactly

the same distribution as choosing only the honest bits as in CVZK security
experiments. Therefore, by Eq. (16) and the definition of Good.Trx, Good.Runx,

60

we have that(px
log λ

− δ(λ)
)
· |A| ·

(
2

n
log λ

)log λ · |R| ≤ |Good.Trx| =
=

∑
(A,G)

∣∣∣{(C, Ĉ, Z)
∣∣ ((A,C, (Ĉ, Z)

)
∈ Good.Trx

)
∧
(
Gi0 = G

)}∣∣∣ =

=
∑

(A,G)∈Good.Runx

∣∣∣{(C, Ĉ, Z)
∣∣ ((A,C, (Ĉ, Z)

)
∈ Good.Trx

)
∧
(
Gi0 = G

)}∣∣∣+
+
∑

(A,G)/∈Good.Runx

∣∣∣{(C, Ĉ, Z)
∣∣ ((A,C, (Ĉ, Z)

)
∈ Good.Trx

)
∧
(
Gi0 = G

)}∣∣∣⇒
⇒
(px

log λ
− δ(λ)

)
· |A| ·

(
2

n
log λ

)log λ · |R|
≤ |Good.Runx| ·

(
2

n
log λ

)log λ−1 · |R|+
+
(
|A| · 2

n
log λ − |Good.Runx|

)1

2
·
(px

log λ
− δ(λ)

)
·
(
2

n
log λ

)log λ−1 · |R| ⇒
⇒
(px

log λ
− δ(λ)

)
· |A| ·

(
2

n
log λ

)log λ · |R|
≤ |Good.Runx| ·

(
2

n
log λ

)log λ−1 · |R|+
+
(
|A| · 2

n
log λ

)1

2
·
(px

log λ
− δ(λ)

)
·
(
2

n
log λ

)log λ−1 · |R| ⇒
⇒|Good.Runx| ≥

1

2
·
(px

log λ
− δ(λ)

)
· |A| · 2

n
log λ · log λ .

(17)

If in the first run, assume the pair (A,C := (G1, . . . , Glog λ)) is s.t. for some
i0, (A,Gi0) ∈ Good.Runx. Let Guess be the event that by randomly choosing
i∗ in Step 5(d), CVZK.Ext successfully guesses i∗ = i0. Then, by definition of
Good.Runx, and the description of CVZK.Ext (Steps 5(a)-(d)), we have that

Pr
[
Valid ∧ Uninf

∣∣ (A,Gi0) ∈ Good.Runx,Guess
]
≥ 1

4
·
(px

log λ
− δ(λ)

)2
. (18)

By Eq. (17) and (18), the negligibility of δ(·), and the fact that Pr[Guess] = 1
log λ ,

where the guess is independently at random, we conclude that

Pr[Valid ∧ Uninf]

≥ Pr
[
Valid ∧ Uninf ∧

(
(A,Gi0) ∈ Good.Runx

)
∧ Guess

]
=

= Pr
[
Valid ∧ Uninf

∣∣ (A,Gi0) ∈ Good.Runx,Guess
]
·

· Pr
[
(A,Gi0) ∈ Good.Runx

]
· Pr

[
Guess

]
≥

≥1

4
·
(px

log λ
− δ(λ)

)2
· 1

2
·
(px

log λ
− δ(λ)

)
· 1

log λ
≥

≥ (px)3

8(log λ)4
− negl(λ) .

61

(End of proof of Claim) a

Subsequently, in the following claim, we apply the properties of the coales-
cence function F (·) and the security of the publicly samplable adaptive OWF
family F to prove that the probability that Valid,Uninf and E = E′ happen is
negligible.

Claim 6 Pr[Valid ∧ Uninf ∧ (E = E′)] = negl(λ).

Proof of claim: Assume for the sake of contradiction that there is a non-
negligible function α(·) s.t.

Pr
[
Valid ∧ Uninf ∧ (E = E′)

]
≥ α(λ) .

We show that we can construct a PPT algorithm B that breaks the security
publicly samplable adaptive one-way function family

F = {ftag : Xtag 7→ Ytag}
tag∈{0,1}

λ
log2 λ

with non-negligible probability α′(·). Namely, there is a tag ∈ {0, 1}
λ

log2 λ s.t.

Pr
[
d← Uλ/ log2 λ : BO(tag,·,·)(tag, d) = f−1tag

(
IM(tag, d)

)]
≥ α′(λ) .

In particular, the algorithm B is hardcoded with tag and (x, Icorr) and is given
the code of CVZK.Ext, A, the algorithm Sample guaranteed by the efficient sam-
plability of F (·), and the knowledge extractor of InD.Π, denoted by InD.Ext and
guaranteed by the special soundness of InD.Π. On input a randomly chosen value
d, the algorithm B executes the following steps:

1. It randomly chooses `0 ∈ [n] \ Icorr setting tag`0 ← tag.

2. It executes the steps of CVZK.ExtA(x, Icorr) with the following modification
for sampling C: for i ∈ [log λ], i 6= i∗ (where as before, i∗ is the guess of

CVZK.Ext) for fixing the group Gi, it randomly picks di ← {0, 1}λ/ log2 λ; it
then sets di∗ := d and invokes Sample(d1, . . . , dlog λ), obtaining C ∈ {0, 1}n. If
F (C) 6= (d1, . . . , dlog λ), then it aborts.

3. Let Ĉ and Ĉ ′ be the adversarially tampered challenges. If di∗ and d′i∗ derived

by F (Ĉ) and F (Ĉ ′) are not equal, then B aborts. Note that if di∗ = d′i∗ , then
the adaptive OWF sampler on input di∗ and any tag tag`, ` ∈ [n], outputs the
same statement x∗`,i∗ := β`,i∗ ← IM(tag`, di∗) in both runs.

4. Let R := (r1, . . . , rn) = E ⊕ Ĉ and R′ := (r′1, . . . , r
′
n) = E′ ⊕ Ĉ ′. If r`0 6= r′`0 ,

then B aborts.
5. If CVZK.Verify(x,A, Ĉ, Z) = CVZK.Verify(x,A, Ĉ ′, Z ′) = 1 (i.e. Valid happens
as well as di∗ = d′i∗ , and r`0 6= r′`0), then B

(a). Computes the OWF challenge β ← IM(tag, d) (i.e. β = x∗`0,i∗).
(b). Runs InD.Ext on input the two valid transcripts (β, a∗`0,i∗ , r`0 , z

∗
`0,i∗

) and

(β, a∗`0,i∗ , r
′
`0
, z∗

′

`0,i∗
) and receives the output α of InD.Ext. Then, CVZK.Ext

returns α as a preimage for β.

62

Clearly, by the special soundness of InD.Π, the algorithm B always returns a
valid preimage when the event Valid ∧ (di∗ = d′i∗) ∧ (r`0 6= r′`0) happens. Recall
that Uninf is the event where in both runs, the output corresponding to the
fixed i∗-th group Gi∗ is uninfluenced. Thus, when Uninf happens d′i∗ and d′i∗ are
always equal, and specifically equal to B’s input, d, which means that B breaks
the adaptive one-wayness of F.

We first argue that B emulates CVZK.ExtA(x, Icorr) with 1 − negl(λ) proba-
bility. The latter holds by the efficient samplability of the coalescence function
F (·), as proven in Theorem 1. Namely, since the adaptive OWF challenge d pro-
vided to B is randomly chosen, the vector d1, . . . , dlog λ that B generates at step

2 is uniformly distributed over
(
{0, 1}λ/ log2 λ

)log λ
. Thus, with 1− negl(λ) prob-

ability Sample(d1, . . . , dlog λ) outputs a value C s.t. F (C) = (d1, . . . , dlog λ), so B
will not abort in this step. In addition, C is sampled statistically negl(λ)-close
to Un, i.e., according to the original CVZK sampling that CVZK.Ext follows.

Let Ham(·, ·) denote the Hamming distance between two strings of equal

length. Recall that Ĉ, Ĉ ′ derived by the tampering of at most t2 ≤ n
1− 1

γ

log3 n
bit posi-

tions in the two n-bit challenges C = (G1, . . . , Gλ log λ) and C ′ = (G′1, . . . , G
′
λ log λ)

respectively. Since C ′ is generated by fixing the bits in G′i∗ the same as Gi∗ and

randomly flipping all other positions, we have that C and C ′ differ at 1
2

(
n− n

log λ

)
bit positions on average. Hence, by the Chernoff bounds we have that

Pr
[
Ham(C,C ′) ≥ n/3

]
≥ 1− e−

(n
2
− n

2 log λ
)(n

6
+ n

2 log λ
)2

2 = 1− negl(λ) . (19)

Now suppose that C,C ′ differ in at least n/3 bit positions. In this case, since

n
1− 1

γ

log3 n
= o(n) for any γ > 0 and sufficiently large n, we deduce that whatever

is the tampering strategy of A, it is impossible that A can produce two adver-
sarial challenges Ĉ, Ĉ ′ that are “close”. Specifically, by Eq. (19) and the fact
that B almost perfectly emulates CVZK.ExtA(x), we have that with 1− negl(λ)
probability and for sufficiently large n,

Ham(Ĉ, Ĉ ′) ≥ n

3
− 2t2 ≥

n

3
− 2

n1−
1
γ

log3 n
≥ n

4
. (20)

Since B chooses `0 uniformly at random, by Eq. (20) we get that

Pr
[
ĉ`0 6= ĉ′`0

]
≥ 1

4
− negl(λ) . (21)

By our hypothesis, the fact that R = E⊕ Ĉ, R′ = E′⊕ Ĉ ′ and Eq. (21), we have
that

63

Pr
[
Valid ∧ Uninf ∧ (E = E′) ∧ (r`0 6= r′`0)

]
=

= Pr
[
Valid ∧ Uninf ∧ (E = E′)

]
· Pr

[
r`0 6= r′`0

∣∣ Valid ∧ Uninf ∧ (E = E′)
]

=

= Pr
[
Valid ∧ Uninf ∧ (E = E′)

]
· Pr

[
ĉ`0 6= ĉ′`0

]
≥

≥α(λ)

4
− negl(λ) .

(22)

By the description of B, Eq. (22) provides a non-negligible lower bound for the
success probability of B in returning a valid preimage for the adaptive OWF

challenge d. In detail, by setting α′(λ) := α(λ)
4 − negl(λ), we conclude that

Pr
[
d← Uλ/ log2 λ : BO(tag,·,·)(tag, d) = f−1tag

(
IM(tag, d)

)]
≥ α′(λ) ,

which leads to contradiction, due to the security of F. Thus, it must hold that

Pr[Valid ∧ Uninf ∧ (E = E′)] = negl(λ) .

(End of proof of Claim) a
Finally, the crowd verifiable validity of our construction follows directly by ap-
plying the Claims 5 and 6, where we get that

Pr
[
w∗ ← CVZK.ExtA(x, Icorr) : (x,w∗) ∈ RL

]
≥

≥Pr
[
Valid ∧ (E 6= E′)

]
≥ Pr

[
Valid ∧ Uninf ∧ (E 6= E′)

]
=

= Pr
[
Valid ∧ Uninf

]
− Pr

[
Valid ∧ Uninf ∧ (E 6= E′)

]
≥

≥ (px)3

8(log λ)4
− negl(λ) .

Thus, if px is non-negligible, then CVZK.Ext extracts a valid witness with non-
negligible probability as well.

Crowd-verifiable ZK. For some x, t3, Icorr, s.t. |Icorr| ≤ t3 let A be a PPT
adversary against the crowd-verifiable zero-knowledge of the CVZK protocol
CVZK.Π (presented in Section 4) that can tamper at most t3 verifier challenges.
Namely, the adversary will win if it manages to distinguish the execution of
the experiments ExptCVZK

(Ideal,A,Icorr)(1
λ, x) and ExptCVZK

(Real,A,Icorr)(1
λ, x) (as defined

in Def. 3) for x ∈ L.
Assume that A has access to a helper HS from H, where (i) {tag`}`∈Icorr ⊆ S

and (ii) {tag`}`∈[n]\Icorr
∩ S = ∅. In addition, assume that Σ.Π and InD.Π are

sHVZK against PPT distinguishers that have access to the said helper HS . We
start by explaining how to construct the CVZK simulator pair CVZK.Sim =
(CVZK.Sim1,CVZK.Sim

HS
2) that will be used in ExptCVZK

(Ideal,A,Icorr)(1
λ, x).

Recall that our CVZK construction works over any Σ-protocol and utilizes a
fully input-delayed Σ-protocol so that the prover is convincing if it either knows
a witness for the underlying Σ-protocol or knows a witness for the underlying

64

InD.Σ-protocol. However, the witness for the InD.Sim proof is never known as
it depends on statements generated using the verifiers’ random challenges/bits
that are received in the second step of the CVZK protocol (thus the simulator
from InD.Π is used in the main CVZK construction).

In the construction of the simulator there are two key ideas:

1. Since the witness w of the underlying Σ-protocol is no longer known, we
replace the Σ-protocol prover by its corresponding simulator Σ.Sim. Thus,
in CVZK.Sim1 we now use Σ.Sim which when given the Σ-protocol challenges
from CVZK.Sim1 it simulates the full transcript of the Σ-protocol which is
stored in the state of the CVZK simulator stSim.

2. The input-delayed proof is relevant to the verifiers’ random coins. Since in
the ZK definition we allow for corruption of verifiers we will treat the input-
delayed part of the CVZK simulator in a separate way for corrupted and
non-corrupted verifiers. Namely, CVZK.Sim is identical to CVZK.Prv for all
` 6∈ Icorr, however it is no longer possible to use the InD.Sim simulator for
the corrupted verifiers. The reason is that the corrupted verifiers are now
allowed to flip their coins in the duration of the protocol (changing C to
C ′ between executions of CVZK.Sim1 and CVZK.Sim2). As a result, InD.Sim
cannot predict which coins to use in advance. To overcome this problem,
for all ` ∈ Icorr we use the actual InD.Π prover in the first step of the
CVZK simulator, CVZK.Prv1, which is fine since in input-delayed proofs the
statement does not have to be known in advance. Then, once the coins of all
verifiers are received (corrupted or not) and the statements are set, we use
the helper HS , as described in Fig. 1, to extract the witnesses (preimages)
for the statements corresponding to the corrupted verifiers and conclude the
input-delayed Σ-proof using the actual prover. Recall that {tag`}`∈Icorr ⊆ S,
so HS allows the extraction of witness for all statements corresponding to
the corrupted verifiers.

Formally, CVZK.Sim = (CVZK.Sim1, CVZK.Sim
HS
2) runs as follows:

1. CVZK.Sim1(x, Icorr): (where Icorr is the set of corrupted verifiers.)
– Pick random E ← { 0, 1 }n, and parse E = (e1, . . . , elog λ).
– For ` /∈ Icorr, choose a random bit c`.
– For ` /∈ Icorr, set r` as the XOR of c` and the `-th bit of E.
– For i ∈ [log λ], run (ai, zi)← Σ.Sim(x, ei).
– For ` ∈ [n]:
• If ` 6∈ Icorr: run (a∗` , st

∗
`)← InD.Sim1(r`, size).

• If ` ∈ Icorr: for all j ∈ [log λ] run (a∗`,j , st
∗
`,j)← InD.Σ.Prv1(size).

– Output A := ({ai}i∈[log λ], {a∗`,j}
j∈[log λ]
`∈[n]),〈c`〉`∈[n]\Icorr

,

and stSim := (E, {zi}i∈[log λ], {st∗`,j}
j∈[log λ]
`∈[n]

)
.

2. CVZK.SimHS2 (stSim, C
′, Icorr): (where C ′ can differ from C only for the indices

in Icorr.)
– Parse stSim = (E, {zi}i∈[log λ], {st∗`}`∈[n]).
– Set R′ := (r′1, . . . , r

′
n) := E ⊕ C ′.

65

– Compute (d1, . . . , dlog λ)← F (C ′)
– Compute (e1, . . . , elog λ)← E.
– For ` ∈ [n] and for j ∈ [log λ]:
• Run β`,j ← IM(tag`, dj) and define the statement x∗`,j = β`,j .
• If ` 6∈ Icorr: z

∗
`,j ← InD.Sim2(st∗`,j , x

∗
`,j). Note that for ` 6∈ Icorr, it holds

that r′` = r`, therefore InD.Sim2 can complete the proof consistently.
• If ` ∈ Icorr: make query (tag`, β`,j) to HS to obtain an α`,j such

that ftag`(α`,j) = β`,j . Then, complete the proof by running z∗` ←
InD.Prv2(x∗`,j , α`,j , r

′
`, x
∗
`,j , st

∗
`,j).

– Output Z := (E, {zi}i∈[log λ], {z∗`,j}
j∈[log λ]
`∈[n]).

We will now show that the view generated by CVZK.Sim is computationally
indistinguishable from the view of the adversary A in an execution with the
honest prover CVZK.Prv when CVZK.Sim is equipped with the helper oracle HS
. Our proof is done through a sequence of hybrid experiments defined below.

Hybrid 0 : The view of A is (x,A,C, Z) and is generated by CVZK.Sim, as in the
ideal experiment ExptCVZK

(Ideal,t3,A,Icorr)(1
λ, x).

Hybrid 1 : In this hybrid experiment, we consider an alternative CVZK simulator

CVZK.Sim′ = (CVZK.Sim′1, CVZK.Sim
′
2
HS) that is given the witness w. Thus,

for all i ∈ [log λ], CVZK.Sim′1 generates ai’s using the actual Σ-protocol prover
Σ.Prv1(x,w) and CVZK.Sim′2 generates zi’s using Σ.Prv2(sti, ei).

Hybrid 2 : This final hybrid is the real game ExptCVZK
(Real,t3,A,Icorr)(1

λ, x, w), i.e. the
view of A is generated by interacting with the actual prover CVZK.Prv.

– Indistinguishability between Hybrid 1 and Hybrid 0 : By the sHVZK prop-
erty against PPT distinguishers with access to HS of the underlying Σ-protocol
Σ.Π, Hybrid 1 is computationally indistinguishable from Hybrid 0. Note that
most common Σ-protocols achieve at least statistical (if not perfect) sHVZK,
thus computational sHVZK w.r.t. HS is implied. Namely, after the execution of

the updated CVZK.Sim′1, the view for A will be A := ({ai}i∈[log λ], {a∗`,j}
j∈[log λ]
`∈[n]),

〈c`〉`∈[n]\Icorr
where {a∗`,j}

j∈[log λ]
`∈[n] and 〈c`〉`∈[n]\Icorr

are computed exactly as in

Hybrid 0 (i.e. interacting with CVZK.Sim1), while {ai}i∈[log λ] are now com-
puted using Σ.Prv1(x,w) instead. Similarly, after the execution of the updated

CVZK.Sim′2 the output Z := (E, {zi}i∈[log λ], {z∗`,j}
j∈[log λ]
`∈[n]) will be identically

distributed to Hybrid 0 except {zi}i∈[log λ] that are now computed by Σ.Prv2
instead. Indistinguishability follows because the sHVZK property of Σ-protocol
Σ.Π is preserved under log λ parallel executions.

– Indistinguishability between Hybrid 2 and Hybrid 1 : Next, we will argue
that Hybrid 2 is indistinguishable from Hybrid 1 because of InD.Π is sHVZK
against PPT distinguishers with access to HS . Namely, the output of CVZK.Sim′1
being A := ({ai}i∈[log λ], {a∗`,j}

j∈[log λ]
`∈[n]), 〈c`〉`∈[n]\Icorr

, where {ai}i∈[log λ] are iden-

tically distributed and {a∗`,j}
j∈[log λ]
`∈[n] are parts of the input-delayed proof. In

Hybrid 2, {a∗`,j}
j∈[log λ]
`∈[n] are generated by using InD.Sim1; in Hybrid 1, for all

66

` ∈ Icorr, the corresponding {a∗`,j}
j∈[log λ]
`∈[n] are computed in the exact same way

(thus perfectly indistinguishable), while for ` 6∈ Icorr, {a∗`,j}
j∈[log λ]
`∈[n] are computed

by InD.Prv1. Note that InD.Prv1 does not need to receive any extra input com-
pared to InD.Sim1.

We now move to argue that the view of A is indistinguishable when running
CVZK.Sim′2 (Hybrid 1) and CVZK.Prv2 (Hybrid 2). Let Z := (E, {zi}i∈[log λ],
{z∗`,j}

j∈[log λ]
`∈[n]) be the output of CVZK.Sim′2. Observe that E is chosen uniformly

at random, i.e. identically to real experiment where CVZK.Prv2 outputs the
XOR of a random string R chosen by CVZK.Prv1 with the adversarial challenge.
In addition, {zi}i∈[log λ] are computed the exact same way. Thus, it remains

to argue about the indistinguishability of {z∗`,j}
j∈[log λ]
`∈[n] . First, note that for all

honest verifiers, i.e. ` 6∈ Icorr, CVZK.Sim
′
2 is identical to the real prover thus the

produced z∗` ’s are perfectly indistinguishable. Let us finally discuss the corrupted
verifiers, i.e. ` ∈ Icorr. In Hybrid 1, we use InD.Prv2 to produce the corresponding

{z∗`,j}
j∈[log λ]
`∈[n] , while in the real game InD.Sim2 is used. In order for InD.Prv2 to

be able to output a valid input-delayed Σ proof it needs the actual witness to
the corresponding statements being proved. As mentioned above, this is possible
due to the use of HS . Indistinguishability follows due to the sHVZK property of
the Σ-protocol InD.Π for every statement x∗`,j , ` ∈ [n], j ∈ [log λ].

By the transitive property of indistinguishability of Hybrid 0 → Hybrid 1 →
Hybrid 2, we conclude that ExptCVZK

(Ideal,t3,A,Icorr)(1
λ, x) and ExptCVZK

(Real,t3,A,Icorr)(1
λ, x, w)

are indistinguishable. Hence, our construction is crowd-verifiable ZK against
PPT adversaries with oracle access to HS . ut

D Comments on the strength of the VMPC Security
Model

We elaborate on the discussion intitiated in Section 5.
The necessity of trusting at least one server for privacy. Suppose that
all servers S1, . . . , Sk are corrupted, yet the private input x` is not leaked to the
simulator Sim. In the real world, corrupting all servers enables the real world
adversary A to completely run the Compute protocol. Since the users do not
engage simultaneously, the environment can schedule U` to participate first. The
correctness of the VMPC scheme Π implies that by receiving the data from U`,
A can run Compute as if U` was the only participant and learn the evaluation of
f for input (abstain, . . . , abstain, x`, abstain, . . . , abstain). Therefore, it can infer
information for x` that, in general, Sim can not obtain, for most functions of
interest, as it only receives the evaluation of f on the entire input vector.

The necessity of trusting the clients for privacy. Since U` has no other
communication channel with S1, . . . , Sk other than via C`, and also lacks access
to a trusted setup that could be used to provide cryptographic key information,
it cannot prevented that C` will infer x`. To see this, consider the view of C`
for two different values of x` that result in different outputs with respect to

67

f ; in such case, C` can mount the following attack to distinguish between the
two possible values of x`: simulate S1, . . . , Sk, for fixed values for all users other
than U`, and exploit the correctness of the VMPC evaluation to compute f and
hence infer x`. Thus, if C` ∈ Lcorr but the private input x` is not leaked to the
simulator Sim, then the ideal and the real world can be distinguished.

The necessity of trusting the verifier for end-to-end verifiability. Clearly,
in the ideal world setting Ff,Rvmpc(P), plays the role of a trusted verifier which out-
put depends on the fixed relation R that sets the rules of successful verification.
However, in the real world, if A corrupts the verifier, then it can recommend
arbitrary verdicts regardless if the intended evaluation y and the value y′ that
A returns is in relation R or not. Recall that in our setting, users consult the
verifier for end-to-end verifiability since they are computationally limited.

E Supplementary Material for Section 6

E.1 The intuition behind Theorem 3

According to the statement of Theorem 3, if R is not a δ-spreading relation over
Img[f], then for given values of κ, δ, there is a lower bound min{2−κδ−ε(λ), γ(λ)}
on the best possible error in the VMPC computation of f , if the latter is fea-
sible. For simplicity, ignoring the negligible term ε(λ) and considering the non-
negligible value γ(λ) sufficiently large, in the rest of this discussion we can as-
sume that the lower bound for the VMPC security error is practically 2−κδ, when
κ > 0. Given this assumption, we make the following interesting observations.

Reaching the optimal expectation in VMPC feasibility. Although not
δ-spreading, it can be the case (yet not necessarily) that R is δ′-spreading over
Img[f], obviously for some value δ′ < δ. Let SprR ⊆ R≥0 be the set non-negative
values δ′ s.t. R is δ′-spreading over Img[f]. Note that we can theoritically con-
sider cases where SprR = ∅, yet we choose to restrict to the interesting scenario
where SprR contains at least one value. Hence, given that SprR is non-empty,
there is a supremum value δ∗ := sup{SprR} s.t. R is δ∗-spreading over Img[f].
By the definition of δ∗ and Theorem 3, the value 2−κδ

∗
sets the best possible

error (ignoring negligible cryptographic error terms) that one can expect for the
VMPC feasibility of f w.r.t. R. As it is shown in Theorem 4, our VMPC con-
struction meets this essentially optimal expectation for the special case where
κ = 1.

The necessity for non-deterministic human behavior. The above obser-
vation reveals a crucial requirement on the “behavior” of the human users when
they engage in the VMPC execution. Namely, if the users engage in a deter-
ministic way, i.e. κ = 0, then VMPC feasibility with a reasonably small error
is not possible whatever the value of δ∗9. The latter fact captures the intuition
that against an all-malicious environment, the humans must behave in a way

9 In particular, since δ∗ ≤ n < +∞, we have that 2−κδ
∗

= 1, so the best possible
VMPC security error that we can expect is the non-negligible value γ(λ).

68

that is somehow “unpredictable” in the view of the adversary. This is a con-
clusion that not only formally expresses, but also extends to the general MPC
setting the intuition behind the design of all state-of-the-art end-to-end verifi-
able e-voting systems. There, the (human) voters are encouraged to engage in
a “cast-or-audit” ballot verification mechanism which can be seen as a form of
cut-and-choose proofs.

E.2 Proof of Theorem 3

Proof (sketch). Assume that condition (1) of Theorem 3 does not hold. Then,
by Definition 7, there exist x = (x1, . . . , xn),x′ = (x′1, . . . , x

′
n) ∈ Xn s.t.

Dcrn(x,x′) ≤ δ AND ¬R
(
f(x), f(x′)

)
.

Let ΠGBB,Fsc be a VMPC scheme operating with the parties in P with user min
entropy κ that achieves correctness and a helper functionality H. We will show
that condition (2) holds. Namely, there is a negligible function ε and a non-
negligible function γ such that ΠGBB,Fsc can not H-EUC realize Ff,Rvmpc(P) with

error less than min{2−κδ − ε(λ), 2−κγ(λ)}.
We denote by y, y′ the evaluations f(x), f(x′). respectively. We also denote

by τ, τ ′ the transcript committed on the BB when execution is run on inputs
x,x′, respectively

Since DcrnX
n(x,x′) ≤ δ, there is a subset of indices Idiff ∈ [n] of size δ that

contains all positions where components of the vectors x,x′ differ. Formally, we
have that

|Idiff | ≤ δ and ∀` ∈ [n] \ Idiff : x` = x′`

Let α`, α
′
` be the individual audit data of user U` when engaging on input

x`. We distinguish the following cases:

Case 1: The random variables 〈(α1, . . . , αn), τ ′〉 and 〈(α′1, . . . , α′n), τ ′〉 are in-
distinguishable.

This case refers to the concept of delegatable verification. Namely, the in-
dividual audit data should not leak information about the user’s input to the
verifier. This feature is desirable for privacy, but it can be exploited by an ad-
versary that manages to guess the users’ coins to break end-to-end verifiability
as described below.

We construct a real world adversary Ae2e against the end-to-end verifiability
of ΠGBB,Fsc , that executes the following steps:

1. It manages the VMPC execution by corrupting all the servers and the users’
clients.

2. For every ` ∈ Idiff , it guesses the randomness, r`, of user U` as the string r̃`.
3. It runs the VMPC execution normally except the following modification: for

every ` ∈ Idiff , regardless of the input of U`, it interacts with U` as if the
latter was provided with input x′` and generated internal randomness r̃`.

4. It runs the Compute protocol honestly on input x′ by running all servers.

69

5. It allows the verifier V to interact normally and send the message (y′, v) to
each U`, ` ∈ [n].

Let Ge2e be the event that for every ` ∈ Idiff , Ae2e guesses the coins of the
users U`, ` ∈ Idiff . By independency of the users’ interaction and the fact that
(a) |Idiff | ≤ δ and (b) the user min entropy in Π is κ, we have that

Pr[Ge2e] =
∏
`∈Idiff

Pr
[
Ae2e guesses r̃` = r`

]
≥ 2−κδ . (23)

Assume that Ge2e occurs. Then, by corrupting all servers and clients, Ae2e

can totally control the users’ interaction and the individual audit data that
they provide to the verifier V . In particular, V perform verification given (i) a
collection of individual audit data (α1, . . . , αn) corresponding to x and (ii) a BB
transcript τ ′ that corresponds to x′.

Observe that in an honest VMPC execution, where the individual audit data
(α′1, . . . , α

′
n) corresponding to x′, V will send the value 1 to all users if the execu-

tion was run honestly. Besides, by the assumption for Case 1, 〈(α1, . . . , αn), τ ′〉
and 〈(α′1, . . . , α′n), τ ′〉 are indistinguishable by any PPT algorithm, hence also
by V . Therefore, according to description of Ae2e, if for every ` ∈ Idiff : (i) U`
has input x` and (ii) Ae2e guesses the randomness of U` (i.e. r̃` = r`), then the
PPT verifier V can not distinguish between α′` and the honest execution data
α`, where it would be accepting verification. The latter implies that on input
〈(α1, . . . , αn), τ ′〉, the verifier V will send (y′, v` = 1) to each U`, ` ∈ [n] with
probability at least 1− negl(λ).where 〈ε`(·)〉`∈Idiff

are negligible functions.Given
the above, consider the following environment that takes advantage of Ae2e’s
strategy :

–Zy′,Ver: selects x ∈ Xn and sends the message (Cast, sid, x`) as input to
each user U`, ` ∈ [n]. It instructs the full corruption of the servers and the clients.
It outputs 1 iff all users return the message (Result, sid, y′, 1).

By the above analysis and Eq. (23), in the real world setting, we have that
for any helper H

Pr
[
EXECP,Π

GBB,Fsc

Ae2e,Zy′,Ver,H(λ) = 1] ≥

≥Pr[Ge2e] · Pr
[
EXECP,Π

GBB,Fsc

Ae2e,Zy′,Ver,H(λ) = 1
∣∣ Ge2e] ≥

≥ 2−κδ ·
(

1− negl(λ)
)

= 2−κδ − negl(λ).

(24)

On the other hand, in the ideal world, if the environment’s input vector is
x, then any ideal simulator Sim with access to H can follow either two of the
possible strategies:

(S.1). Neglect the strategy of Ae2e and send the message
(Verify response, sid, U`, y

′′, ṽ) to Ff,Rvmpc(P), for some ` ∈ [n], where y′′ 6=
y′ and ṽ ∈ {0, 1}.

(S.2). Simulate an execution respecting Ae2e’s steps and send (Verify response,
sid, U`, y

′, ṽ) to Ff,Rvmpc(P) for all ` ∈ [n].

70

Whenever the simulator follows (S.1), the environment Zy′,Ver will never output
1. Indeed, note that in any case, Ff,Rvmpc(P) will send either (Result, sid, y′′, 1)
or (Result, sid, y′′, 0) to U`, where y′′ 6= y′. Moreover, whenever the simulator
follows (S.2), Zy′,Ver will never output 1 as by assumption ¬R(y, y′) so Ff,Rvmpc(P)
will send (Result, sid, y′, 0) to all users. We conclude that

Pr
[
EXEC

Ff,Rvmpc(P),GBB

Sim,Zy′,Ver,H
(λ) = 1] = 0 .

Therefore, by Eq. (24), therefore there exists a negligible function ε(λ) s.t. Zy′,Ver

has distinguishing advantage at least∣∣∣Pr
[
EXEC

Ff,Rvmpc(P),GBB

Sim,Zy′,Ver,H
(λ) = 1]−

−Pr
[
EXECP,Π

GBB,Fsc

Ae2e,Zy′,Ver,H(λ) = 1] ≥ 2−κδ − ε(λ) .

Case 2: There exists a PPT algorithm D∗ that distinguishes 〈(α1, . . . , αn), τ ′〉
and 〈(α′1, . . . , α′n), τ ′〉 with non-negligible advantage β(λ).

Since all users derive their individual audit data independently and α` is
identically distributed to α′` for ` /∈ Idiff , we can assume that D∗ distinguishes
(α`)`∈Idiff

and (α′`)`∈Idiff
with non-negligible advantage β(λ). W.l.o.g, assume that

Pr
[
D∗
(
α`)`∈Idiff

)
= 1
]
− Pr

[
D∗
(
α′`)`∈Idiff

)
= 0
]
≥ β(λ) .

For |Idiff | ≤ δ ≤ n
2 , we construct the environment Z∗ that operates as follows:

1. It selects randomly a bit b ∈ {0, 1}.
2. If b = 0, it sets the users’ input vector x̃ = (x̃1, . . . , x̃n) as

x̃` :=

x`, if 1 ≤ ` ≤ |Idiff |
x′`, if |Idiff |+ 1 ≤ ` ≤ 2|Idiff |
abstain, otherwise

3. If b = 1, it sets the users’ input vector x̃ = (x̃1, . . . , x̃n) as above by swapping
the role of x` and x′`.

4. It instructs the corruption of V and schedules the rest of the execution
normally.

5. It obtains the audit data (α̃1, . . . , α̃|Idiff |) from V and provides them as input
to D∗.

6. If D∗ guesses b, then it returns 1. Otherwise, it returns a random bit.

Assume now a real world execution scheduled by Z∗ which is dummy except
from the fact that it corrupts V in order to forward the individual audit data to
Z∗. Then, clearly, it holds that

71

Pr
[
EXECP,Π

GBB,Fsc

A∗,Z∗,H (λ) = 1
]

=

=
1

2
· Pr

[
EXECP,Π

GBB,Fsc

A∗,Z∗,H (λ) = 1
∣∣ b = 1

]
+

+
1

2
· Pr

[
EXECP,Π

GBB,Fsc

A∗,Z∗,H (λ) = 1
∣∣ b = 0

]
=

=
1

2
·
(

Pr
[
D∗
(
α`)`∈Idiff

)
= 1

∣∣ b = 1
]
· 1

+ Pr
[
D∗
(
α`)`∈Idiff

)
= 0

∣∣ b = 1
]
· 1

2

)
+

+
1

2
·
(

Pr
[
D∗
(
α′`)`∈Idiff

)
= 0

∣∣ b = 0
]
· 1

+ Pr
[
D∗
(
α′`)`∈Idiff

)
= 1

∣∣ b = 0
]
· 1

2

)
+

=
1

2
+

1

2

(
Pr
[
D∗
(
α`)`∈Idiff

)
= 1
]
− Pr

[
D∗
(
α′`)`∈Idiff

)
= 0
])
≥

≥1

2
+
β(λ)

2
.

(25)

On the other hand, in the ideal world, an arbitrary simulator Sim with or-
acle access to H running under the instructions of Z∗, will send the message
(verify response, sid, U`∗ , y

∗, ṽ) to Ff,Rvmpc(P) without obtaining x`∗ , since the

users’ clients are not corrupted. By construction of Z∗, Ff,Rvmpc(P) will always out-
put the value ỹ = f(x̃) for any value of b ∈ {0, 1}, given that f is a symmetric
function. Therefore, Sim’s steps will be independent of b and it holds that

Pr
[
EXEC

Ff,Rvmpc(P),GBB

Sim,Z∗,H (λ) = 1
]

=
1

2
(26)

By Eq. (25) and (26), we have that the distinguishing advantage of Z∗ between

the ideal-world and the real-world execution is β(λ)
2 , which is non-negligible.

Completing the proof. Combining the results from Cases 1 and 2 and setting

γ(λ) = β(λ)
2 , we get that for any VMPC scheme Π and any helper H, it holds

that there is a real-world adversary (Ae2e or A∗) and an environment (Zy′Ver
or

Z∗) such that for every simulator Sim, it holds that

∣∣∣Pr
[
EXEC

Ff,Rvmpc(P),GBB

Sim,Z,H (λ) = 1
]
−

−Pr
[
EXECP,Π

GBB,Fsc

A∗,Z∗,H (λ) = 1
]∣∣∣ ≥ min{2−κδ − ε(λ), γ(λ)}.

Namely,Π does notH-realize Ff,Rvmpc(P) with error less than min{2−κδ−ε(λ), γ(λ)}.
ut

72

F Supplementary Material for VMPC Construction

F.1 Dual-mode Homomorphic Commitments

To enable VMPC, similar as [4], the MPC servers need to commit to every shared
value to the bulletin board. The commitment scheme should be additively ho-
momorphic (for both message and randomness); however, commitment schemes
like lifted ElGamal (presented above) or Pedersen commitment are not sufficient
in our setting. Given that in VMPC the commitment key is generated by the
servers, Pedersen commitment becomes not binding when all the servers are ma-
licious, while ElGamal commitment does not allow the simulator to equivocate.
To overcome these problems, we make use of dual-mode homomorphic commit-
ments which allow for two ways to choose the commitment key such that the
commitment is either perfectly binding or equivocal. In the following, we adopt
and modify the dual-mode commitment definition proposed by [52] to against
helger-aided PPT adversaries.

Definition 12. A dual-mode commitment scheme is a tuple of PPT algorithms
DC.Gen,DC.Com,DC.Sim such that

1. DC.Gen(1λ) outputs a commitment key denoted ck.

2. When ck ← DC.Gen(1λ) and m ∈ { 0, 1 }λ the algorithm DC.Comck(m; r)
with a random r is a non-interactive perfectly-binding commitment scheme
with de-commitment algorithm DC.Open and de-commitment verification al-
gorithm DC.Ver. We require that

DC.Verck(DC.Comck(m; r), DC.Openck(m; r)) = m except with negligible prob-
ability.

3. For every PPT adversary A aided by HS and every polynomial p(·), the
output of the following two experiments is computationally indistinguishable:

ExptRealCom,A(1λ)

- ck← DC.Gen(1λ)
- For i = 1, . . . , p(λ):

1. mi ← A(ck, c, r)

2. ri ← { 0, 1 }poly(1
λ)

3. ci = DC.Comck(mi; ri)
4. Set c = c1, . . . , ci and r =

r1, . . . , ri
- Output
A(cki,m1, r1, . . . ,mp(λ), rp(λ))

73

ExptSimulationDC.Sim (1λ)

- ck← DC.Gen(1λ)
- For i = 1, . . . , p(λ):

1. ci = DC.Sim
2. mi ← A(ck, c, r)
3. ri ← DC.Sim(mi)
4. Set c = c1, . . . , ci and r =

r1, . . . , ri
- Output
A(cki,m1, r1, . . . ,mp(λ), rp(λ))

Our construction is built on top of the perfectly binding commitment as pro-
posed in C.2. The resulting commitment should be either perfectly binding or
perfectly equivocatable, depending on the commitment key. Consistently with
our setting, we require that the servers jointly generate the commitment key
and post it in the GBB. Then, commitment executions may run among servers or
between servers and clients. We denote by CSF = (CSF.Gen,CSF.Com,CSF.Ver)
the perfectly binding commitment that is secure against helper-aided PPT ad-
versaries. Our dual mode commitment scheme DC works as follows:

DC.Gen(1λ):

– Generate ck← CSF.Gen(1λ);

– Commit c← CSF.Com(1; t) with fresh randomness t← (Zq)k;

– Output the commitment key as ck∗ := (ck, c).

DC.Comck∗(m; r):

– To commit a message m ∈ Zq, return commitment c∗ ← cm ·CSF.Com(0; r).

DC.Openck(c,m, r):

– To open commitment c, return (m, r).

DC.Verck(c,m, r):

– Output 1 iff c∗ = cm · CSF.Com(0; r).

By notation cm, we meant element-wisely power each element of c of m.
Similarly, c1 · c2 stands for element-wise product (a.k.a. Hadamard product).

Clearly, the commitment scheme is perfect binding when c is a commitment
of a non-zero message, say 1 w.r.t. CSF as proposed in C.2. However, if we set
the commitment key with c ← CSF.Com(0; t), then it is perfectly equivocat-
able, given the trapdoor information td := t. More specifically, we can open
DC.Comck(m; r) to any given m′ ∈ Zq and r′ = t(m−m′) + r. During our proof,
the simulator will switch these two types of commitment keys via rewinding.

74

F.2 A Σ-Protocol for Beaver Triples

We now propose a Σ-protocol for proving A,B,C commits to a, b, c and ab = c.
The protocol is depicted in Fig. 8.

Common input: ck.
Statement: A := DC.Comck(a; r1), B := DC.Comck(b; r2), and C := Ba ·
DC.Comck(0; r3).
Witness: a ∈ Zp, r1, r3 ∈ (Zp)k.

� Σ.Prv1
(
x := (A,B,C), w := (a, r1, r3)

)
:

• Pick t← Zq and s,y← (Zq)k;
• Compute T = Bt · DC.Comck(0; s), Y = DC.Comck(t;y);
• Send T, Y to the verifier and set the state st := (w, t, s,y).

� Σ.Prv2(st, e): after receiving the challenge e ∈ { 0, 1 }λ from the verifier, com-
pute t′ = a ·e+ t, s′ = r3 ·e+s and y′ = r1 ·e+y; send the response (t′, s′,y′)
to the verifier.

� Σ.Verify
(
(A,B,C), (T, Y), e, (t′, s′,y′)

)
: accept the proof if and only if:

Ce · T = Bt
′
· DC.Comck(0; s′) and Ae · Y = DC.Comck(t′;y′) .

Fig. 8: A Σ-protocol for commitments of Beaver triples.

Theorem 7. The protocol presented in Fig. 8 is a Σ-protocol for knowledge of
a, r1, r3 such that A := Comck(a; r1) and C := Ba · Comck(0; r3).

Proof. For perfect completeness, it is easy to verify that all the verification
equations hold when the prover is honest. For special soundness, assume we
have two valid transcript (T, Y, e1, t

′
1, s
′
1,y
′
1) and (T, Y, e2, t

′
2, s
′
2,y
′
2) for e1 6= e2.

The knowledge extractor computes a =
t′1−t

′
2

e1−e2 , r1 =
y′1−y

′
2

e1−e2 , and r3 =
s′1−s

′
2

e1−e2 .
For special honest verifier zero-knowledge, we have to construct a simulator that
given any challenge e can output a simulated transcript that is indistinguishable
to the real one. On challenge e, the simulator randomly picks t′ ← Zp and s′,y′ ←
(Zp)k and computes T = Bt

′ · Comck(0; s′) · C−e and Y = Comck(t′; y′) ·A−e. It
is straightforward that the simulated (T, Y, e, t′, s′,y′) has identical distribution
to the real one. ut

F.3 EUC helper H

The EUC helper definition is slightly different from the CVZK helper. Namely,
it is an externalized functionality that also interacts with the environment Z,
which allows Z to inform the EUC helper about which parties are corrupted.
Otherwise, it is identical to the CVZK helper.

75

The helper H functionality

It is parameterized by an adaptive one-way function f and a set S.
Initially, S = ∅.
– Upon receiving (sid,Corrupt, tag∗) from the environment Z, set S = S∪{ tag∗ }.
– Upon receiving (sid,Query, tag, β), if tag ∈ S, then it returns a value α ∈ Xtag

s.t. ftag(α) = β. Otherwise, it returns ⊥.

Fig. 9: The helper functionality H.

F.4 Straight-line simulatable zero-knowledge

To prove security of the construction, the VMPC simulator must be able to
simulate several ZK proofs, such as proving the correctness of shared Beaver
triples. However, in the EUC security setting, the simulator cannot rewind the
adversarial verifier, and thus the underlying ZK proofs must be straight-line
simulatable. In Fig. 10, we describe a three-move ZK protocol that is straight-line
simulatable (SLZK), when the simulator has access to the helper family described
in Fig. 9, that is essentially a simplification of our CVZK compiler, adjusted
as a standard ZK proof between a prover and a single (high entropy) verifier,
without the use of a coalescence function. Our SLZK protocol is a compiler
for any Σ-protocol Σ.Π = (Σ.Prv1, Σ.Prv2, Σ.Verify) for NP language L and
(x,w) ∈ RL, and makes use of an input-delayed InD.Σ-protocol InD.Σ.Π =
(InD.Σ.Prv1, InD.Σ.Prv2, InD.Σ.Verify) (for the family of languages

{
L∗tag`

}
`∈[n]

as defined in Section 4.3) and a publicly samplable adaptive one-way function
family F = {ftag : Xtag 7→ Ytag}tag∈{0,1}λ . We make use of fixed member ftag

of the family F and the same helper HS where S contains all the tags of the
malicious parties.

Theorem 8. Let F = {ftag : Xtag 7→ Ytag}tag∈{0,1}λ/log2 λ be a publicly samplable

adaptive one-way function family. For every Sigma protocol Σ.Π = (Σ.Prv1,
Σ.Prv2, Σ.Verify) for some language L ∈ NP, every input-delayed Σ-protocol
InD.Σ.Π = (InD.Σ.Prv1, InD.Σ.Prv2, InD.Σ.Verify) for language

{
L∗tag`

}
`∈[n] and

every tag ∈ {0, 1}λ, the protocol presented in Fig. 10 is a ZK protocol for L with

the following property: there is a simulator pair
(
SLZK.Sim1, SLZK.Sim

Htag

2

)
s.t.

the protocol simulation is straight-line.

Proof. Completeness. It follows by inspection. It is easy to see that if the
original Σ-protocol Σ.Π is perfectly complete, then the compiled SLZK protocol
is also perfectly complete.

Soundness. The compiled SLZK protocol also preserves the special soundness
property of the original Σ-protocol Σ.Π. First of all, the prover shows that
either the statement x ∈ L or he/she knows α such that ftag`(α) = β. Since
F is a publicly samplable adaptive one-way function family, the PPT adversary
has negligible probability to find the pre-image α such that ftag(α) = β, where
β ← IM(tag, C) and C ∈ {0, 1}λ is randomly chosen by the verifier. Therefore,

76

1. SLZK.Prv1(x,w):
– Run (a, st)← Σ.Prv1(x,w).
– Pick random R← { 0, 1 }λ.
– Run (a∗, st∗)← InD.Σ.Sim1(R, size), where size is the circuit size of ftag(·).
– Output A := (a, a∗) and the state stP := (R, st, st∗).

2. The verifier generates a random challenge C ← { 0, 1 }λ.
3. SLZK.Prv2(x,w,C, stP):

– Parse stP = (R, st, st∗) and set E := R⊕ C.
– Run z ← Σ.Prv2(st, E).
– Run β ← IM(tag, C) as in Def. 9 and define the statement as x∗ := β for L∗tag

as defined in Sec. 4.3, where tag is the verifier’s PID.
– Run z∗ ← InD.Σ.Sim2(st∗, x∗).
– Output Z := (E, z, z∗).

4. SLZK.Verify(x,A,C, Z):
– Parse A := (a, a∗) and Z := (E, z, z∗) and compute R := E ⊕ C.
– Output 1 iff (i) Σ.Verify(x, a, E, z) = 1 and InD.Σ.Verify(x∗, a∗, R, z∗) = 1.

Fig. 10: Three round straight-line simulatable ZK compiler.

the prover has to simulate the input-delayed proof for L∗tag. That means the
probability that a prover can produce an accepting tuple (x∗, a∗, R′, z∗) where
R′ 6= R is negligible. With overwhelming probability, after the prover outputs
the first message A, given C ′ 6= C, the prover shall output a tuple (x, a,E′, z′)
such that E′ = R⊕C 6= E. Hence, with two different challenges, we can obtain
two accepting tuples (x, a,E, z) and (x, a,E′, z′) with overwhelming probability.
By definition, there exist an extractor Σ.Ext that takes input as (x, a,E, z) and
(x, a,E′, z′), and outputs the witness w such that (x,w) ∈ RL.

Straight-line simulatable zero-knowledge. The zero-knowledge property is
based on the HVZK property of both the original Σ-protocol Σ.Π and the input-
delayed InD.Σ.Π-protocol. The simulator consists of two algorithms

(
SLZK.Sim1,

SLZK.Sim
Htag

2

)
as follows.

– SLZK.Sim1(x):
• Pick random E ← { 0, 1 }λ.
• Run (a,E, z)← Σ.Sim(x,E).
• Run (a∗, st∗)← InD.Σ.Prv1(R, size), where size is the circuit size of ftag(·).
• Output A := (a, a∗) and the state stS := ((E, z), st∗).

– SLZK.Sim
Htag

2 (C, stS):
– Parse stS = ((E, z), st∗) and set R := E ⊕ C.
– Run β ← IM(tag, C) and define the statement as x∗ := β for L∗tag.
• Query (ftag, β) to the helper Htag, and obtain α.
– Run z∗ ← InD.Σ.Prv2(st∗, x∗, α,R).
– Output Z := (E, z, z∗).

Due to the special HVZK property of Σ.Π, the simulated tuple (x, a,E, z) has
identical distribution as the real one. Similarly, the tuple (x∗, a∗, R, z∗) is indis-
tinguishable from the simulated one as in the real protocol transcript due to the

77

HVZK property of the InD.Σ-protocol. Moreover, SLZK.Sim1 does not require
the challenge to produce the first message; therefore, the proposed protocol is
straight-line simulatable zero-knowledge. ut

F.5 Fully simulatable zero-knowledge in the H-EUC model

The zero-knowledge functionality. In our construction, we also need the
zero-knowledge functionality FRLZK as decrypted in Fig. 11. In order to guarantee
privacy when there is at least one honest server, for every ZK proof in VMPC,
the server needs to prove it to all the rest servers. Note that this is important and
should not be confused with verifiability when all the servers are corrupted. This
is because in our construction, the CVZK proofs can only be verified at the end of
the protocol. It is too late to prevent privacy leakage due to malicious execution.
In addition, as the fully simulatable zero-knowledge proofs are between two
servers, they are not restricted to 3 moves. There is a prover, Si, i ∈ [k], and
several verifiers, {Sj}j∈[k]\{i}. The prover wants to convince the verifiers that a
statement x ∈ L, i.e. there exists (w, x) ∈ RL. When there is at least one honest
verifier, FRLZK returns (Verify, sid, 1) if and only if x ∈ L. When all the verifiers

are corrupted, the output of FRLZK can be decided by the adversary A.

The zero-knowledge FRLZK functionality

The functionality interacts with the prover P , the verifier V , and the adversary A.
It is parameterized by an NP relation RL for an NP language L.

– Upon receiving (Statement, sid, x) from the verifier V and (Prove, sid, 〈x,w〉)
the prover P :
• Send (Leak, sid, x) to the adversary A.
• Set b := 1 if (x,w) ∈ RL; otherwise, it sets b := 0.
• It sends (Verified, sid, b) to V via public delayed output.

Fig. 11: The zero-knowledge functionality FRLZK .

H-EUC Realization of FRL
ZK . To realize FRLZK in the H-EUC setting, we need

to construct a straight-line extractable and simulatable zero-knowledge with ac-
cess to the super-polynomial helper H. The construction uses the perfectly bind-
ing commitment scheme under the adaptive DDH assumption as described in
C.2. As depicted in Fig. 12, the prover needs to run the straight-line extractable
and simulatable zero-knowledge with each of the verifiers. To enable straight-line
extractability, we let the prover and the verifier first do a coin fliping protocol to
jointly setup a public key pk. The prover then encrypts its witness w using pk and
show that the encrypted w is a valid witness, i.e., (x,w) ∈ RL in zero-knowledge
using SLZK as constructed in F.4.

78

Upon receiving (Statement, sid, x) from the environment Z, the verifier V does:

– Run ck← CSF.Gen(1λ) and pk1 ← CSF.Gen(1λ).
– Compute e← CSF.Comck(pk1; r) with a fresh randomness r.
– Send (ck, e) to the prover P .

Upon receiving (Prove, sid, x, w) from the environment Z, the prover P does:

– Run pk2 ← CSF.Gen(1λ).
– Wait until it receives (ck, e) from the verifier V .
– Send pk2 to the verifier V .

Upon receiving pk2 from the prover P , the verifier V does:

– Run pk2 ← CSF.Gen(1λ).
– Wait until it receives (ck, e) from the verifier V .
– Set pk := pk1 · pk2.
– Send pk1 to the verifier V .

Upon receiving pk1 from the verifier V , the prover P does:

– Invoke a SLZK with V , letting V to prove there exists r s.t.
e = CSF.Comck(pk1; r).

– Set pk := pk1 · pk2.
– Compute c← CS.Compk(w; ρ) with a fresh randomness ρ.
– Send c to V .

Upon receiving c from the prover P , the verifier V does:

– Invoke a SLZK with P , letting P to prove there exists (w, ρ) s.t.

c← CS.Compk(w; ρ) ∧ (w, x) ∈ RL

– If it verifies, return (Verified, sid, 1) to the environment Z; otherwise, return
(Verified, sid, 0) to Z.

Fig. 12: Straight-line extractable and simulatable zero-knowledge ΠRLZK .

Theorem 9. The protocol ΠRLZK as described in Figure 12 H-EUC-realizes FRLZK

against static corruption.

F.6 Realization of FV.Offline in the H-EUC model

Many works, e.g., [12, 57, 29, 28, 4] in the literature provide various MPC re-
alizations of the SPDZ-type of offline functionality. However our FV.Offline func-
tionality is slightly different, as it needs to be crowd verifiable. Moreover, we
would like to realized it in the H-EUC model without trusted setups. It is shown
in [58, 18, 17] that any well-defined functionality can be realized in the H-EUC
model. Such a protocol can guarantee the correctness of the output as long as at

79

least one party remain honest. In addition, to achieve crowd verifiability when
all the servers are corrupted, we need to transform all the ZK proofs in the MPC
protocol to CVZK proofs. In the following, we provide one possible realization
of the FV.Offline functionality in the H-EUC model.

Fig. 14 depicts a more efficient realization of FV.Offline in the H-EUC model.
For readability, we assume there exists a protocol that secure realize F× in
the H-EUC mode; for instance, using Gilboa’s multiplication [34] as in [42] to
compute two party private multiplication in the FOT-hybrid world. The two-
party multiplication functionality F× is illustrated in Fig. 13.

The two-party multiplication functionality F×
The functionality interacts with two parties P1, P2 and the adversary A.

– Upon receiving (Multiply, sid, x,F) from P1 and (Multiply, sid, y,F), it com-
putes z = x × y, where × is the field operation according to F. It then sends
(Output, sid, z) to all the parties P1 and P2 via private delayed channel.

Fig. 13: The two-party multiplication functionality F×

First of all, note that we use the user’s coin b` ∈ {0, 1} as the verifier’s chal-
lenge in the CVZK. Namely, the prover first runs CVZK.Prv1 in the preparation
phase. Then the users post their coins on the Gbb during the input phase. Finally,
the prover finishes the proof using CVZK.Prv2 in the computing phase.

As such, CVZK has delayed confirmation, i.e., the result will be known after
the computing phase. It is sufficient for correctness, but it is not enough to
achieve the level of privacy we want. This is because we want to guarantee the
user’s input privacy as far as there is one honest server. However, all the CVZK
proofs are not verifiable during the input phase. Any malicious server can cause
privacy leakage by deviating from the protocol. Of course, this malicious behavior
can be detected in the computing phase from CVZK. However, the user’s privacy
is already leaked in the input phase.

To address this issue, all the zero-knowledge proofs must be proven to all
the servers using either SLZK or FZK. Therefore, if at least one server is honest,
the VMPC correctness can be ensured by SLZK or FZK; if all the servers are
corrupted, the VMPC correctness can be ensured by CVZK.

In Phase 1, each of the servers Si ∈ S generates a partial ElGamal public
key pki ← EG.Gen(Paramgp). It then commits pki using a perfectly binding
commitment. After posting the commitment of pki on the Gbb, Si prove the
knowledge of pki using FZK to all the other servers Sj ∈ S \ {Si}.

In Phase 2, each server Si ∈ S posts pki to the Gbb and proves the opening
is correct using SLZK. This would allow the simulator to equivocate the opening
in our proof.

80

The offline protocol Π
F×,FZK,Gbb
offline

– Upon receiving (Init, sid, n1, n2) from the environment, the server Si ∈ S does
the following.
Phase 1:

• Run cki ← EG.Gen(Paramgp) and pki ← EG.Gen(Paramgp).
• Compute ei ← EG.Comcki(pki; ri) with a fresh randomness ri ← Zp.
• Post ei (i.e. send (write, sid, pid, x)) to Gbb and prove the knowledge of

(pki, ri) using FZK.

Phase 2:

• Post pki to Gbb, and show that there exists ri ∈ Zp s.t. ei = EG.Comcki(pki; ri)
using SLZK.

Phase 3:

• Set pk =
∏k
i=1 pki. Compute ui ← Encpk(0; ti) with fresh randomness ti ← Zp.

• Post ui to Gbb and show that there exists ti ∈ Zp s.t. ui = Encpk(0; ti) using
both SLZK and CVZK.

Phase 4:

• Set u = Encpk(1; 0) ·
∏k
i=1 ui. Define ck := (pk, u).

• For j ∈ [n1], pick random (ri,j , ρi,j) ← (Zp)2; compute and post Ri,j ←
DC.Comck(ri,j , ρi,j) to Gbb; prove the knowledge of (ri,j , ρi,j) using FZK and
CVZK.

• For j ∈ [n2], pick random (ai,j , αi,j , bi,j , βi,j) ← (Zp)4; compute and post
Ai,j ← DC.Comck(ai,j , αi,j) and Bi,j ← DC.Comck(ai,j , βi,j) to Gbb; prove the
knowledge of (ai,j , αi,j , bi,j , βi,j) using FZK and CVZK.

Phase 5:

• For j ∈ [n1], set Rj =
∏k
i=1Ri,j .

• For j ∈ [n2], for all the x, y ∈ [k], do the following:
* If x = y, do the following step locally.
* Sx and Sy invoke F× to obtain t

(x)
x,y,j (for Sx) and t

(y)
x,y,j (for Sy) s.t. t

(x)
x,y,j +

t
(y)
x,y,j = ax,j · βy,j .

* Sx computes and posts Cx,y,j = B
ax,j
y,j · DC.Comck(0; t

(x)
x,y,j) to Gbb. It then

show the correctness of Cx,y,j using CVZK.

* Sy computes and posts C′x,y,j ← DC.Comck(0; t
(y)
x,y,j). It then show that

C′x,y,j is indeed a commitment of 0 using CVZK.

• For j ∈ [n2], set the Beaver triples as Aj =
∏k
i=1Ai,j , Bj =

∏k
i=1Bi,j , and

Cj =
∏k,k
x=1,y=1(Cx,y,j · C′x,y,j).

–

Fig. 14: The offline protocol Π
F×,FZK,Gbb
offline in the {F×,FZK,Gbb}-hybrid model.

In Phase 3, each server Si ∈ S sets pk =
∏k
i=1 pki and produces a ciphertext

ui ← Encpk(0; ti). It then shows the knowledge of ti with respect to ui using both
SLZK and CVZK.

81

In Phase 4, each server Si ∈ S defines the dual-mode commitment key as
u = Encpk(1; 0) ·

∏k
i=1 ui and ck := (pk, u). Note that ck is a perfectly binding

key. Each server Si ∈ S then generates commitments {Ri,j}j∈[n1], {Ai,j}j∈[n2]

and {Bi,j}j∈[n2], and proves the correctness of those commitments using FZK

and CVZK.
In Phase 5, we define Rj =

∏k
i=1Ri,j , j ∈ [n1]; Aj =

∏k
i=1Ai,j , j ∈ [n2]

and Bj =
∏k
i=1Bi,j , j ∈ [n2]. The servers use F× to compute all the cross terms

to produce Cj such that (Aj , Bj , Cj) are commitments of a Beaver triple.

Theorem 10. The protocol Π
F×,FZK,Gbb
offline described in Fig. 14 H-EUC realizes

FV.Offline in the {F×,FZK,Gbb}-hybrid model.

Proof. (Sketch) To prove the theorem, we construct a simulator Sim such that
no non-uniform PPT environment Z can distinguish between (i) the real execu-
tion in the {F×,FZK,Gbb}-hybrid world and the corrupted parties are controlled
by a dummy adversary A who simply forwards messages from/to Z, and (ii)
the ideal execution where the parties interact with functionality FV.Offline in the
Gbb-hybrid model and corrupted parties are controlled by the simulator Sim.
Moreover, there is a super-polynomial helper H that exists in both ideal and
real world. Let S∗ be the set of corrupted MPC servers. We consider the follow-
ing cases.

Case 1: 0 ≤ |S∗| < k (i.e. there is at least one honest server)

Simulator. The simulator Sim internally runs A, forwarding messages to/from
the environment Z. The simulator Sim simulates honest server Si ∈ S \ S∗ and
functionalities F×,FZK and Gbb. In addition, the simulator Sim simulates the
following interactions with A.

– In Phase 1, the simulator Sim extracts the committed pki for all the cor-
rupted servers Si ∈ S∗ by checking the internal state of the simulated FZK.
The simulator sends (Init, sid, n1, n2) to FV.Offline on behave of all the cor-
rupted servers Si ∈ S∗.

– In Phase 2, upon receiving (CK, sid, ck) from FV.Offline, the simulator Sim
parses ck = (pk∗, u∗). Define pki := pk∗/

∏
j∈[k],j 6=i pkj . It then posts pki to

Gbb and simulates the corresponding SLZK proof.
– In Phase 3, the simulator Sim acts as one of the honest servers Si ∈ S\S∗; it

generates ui = u∗/(Encpk(1; 0)·
∏k
j=1,j 6=i uj) and simulates the corresponding

SLZK and CVZK proofs.
– In Phase 4 and Phase 5, the simulator receives

(RandShare, sid, (ri,j , ρi,j)j∈[n1]) and
(TripleShare, , sid, (ai,j , αi,j , bi,j , βi,j , ci,j , γi,j)j∈[n2])
from FV.Offline. It then fakes the corresponding shares and commitments ac-
cordingly.

Indistinguishability. It is straightforward, as the SLZK, CVZK proofs are sim-
ulatable in H-EUC model, and FZK is extractable and simulatable.

Case 2: |S∗| = k

82

Simulator. Trivial case. There is nothing needs to extract, as the servers do
not have input. The simulator Sim just runs the corrupted servers internally and
submit to FV.Offline accordingly.

Indistinguishability. The indistinguishability in this case is straightforward,
as Sim never simulate a single message as all the servers are corrupted. It is easy
to see that the view of Z in the ideal execution has identical distribution to the
view of of Z in the real execution. ut

83

	Crowd Verifiable Zero-Knowledge and End-to-end Verifiable Multiparty Computation

