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Abstract. We develop two variants of Cocks’ identity-based encryption. One variant has faster en-
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under suitable complexity assumptions, while its decryption efficiency is about twice lower than the first
one. Both the variants have ciphertext expansion twice larger than the original Cocks’ identity-based
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1 Introduction

The notion of identity-based cryptography was first proposed by Shamir [14] in 1984. This new paradigm of
cryptography aims at solving the issue of managing and recovering the public-key certificate by simplifying
the key management. For example, users’ identification information such as email addresses or names rather
than digital certificates can be used as their public key for encrypting or verifying digital signature. Shamir
constructed an identity-based signature scheme using the RSA function, but developing identity-based en-
cryption (IBE) schemes turns out to be much harder. Until the year 2001, Shamir’s open problem was solved
by Boneh and Franklin [3] and Cocks [10] independently. Recently, lattice was considered as an emergent
system for constructing IBE schemes [11]. The Boneh-Franklin IBE scheme makes use of bilinear maps and is
truly practical. Therefore, this work has attracted tons of attention from researchers over the years. However,
Cocks’ IBE scheme received less attention because of the lack of algebraic structure. Although Cocks’ IBE
scheme is inefficient for large messages, it is simple, elegant and secure under the standard quadratic residu-
osity (QR) assumption in the random oracle model. It can be used to encrypt short session keys in practice,
e.g., a 128-bit symmetric key. Thus, the scheme was followed up by some researchers [1, 4, 5, 7–9, 12, 15].

In 2016, Joye [12] made Cocks’ scheme amenable to applications including electronic voting, auction
systems, private information retrieval, or cloud computing; Joye proved that Cocks’ scheme is homomorphic
by considering Cocks’ ciphertext as elements of the algebraic group

Fp,δ2 = (Fp \ {±δ}) ∪ {∞} = {u ∈ Fp | u2 6= δ2} ∪ {∞}

for a odd prime p and δ ∈ F×p . A similar conclusion can also be reached by considering Cocks’ scheme over
the polynomial quotient ring ZN [x]/(x2 − Rid) for which N is an RSA modulus and Rid is the IBE public
key of an identity id [7, 8]. Our two variants are based on the latter structure.

It is well-known that Cocks’ scheme is not anonymous due to Galbraith’s test [2]. The test has been
studied by several researchers [1, 15]. Despite the test, some researchers [1, 9, 12] managed to propose
anonymous variant of Cocks’ scheme. In this work, we mainly follow the approach of Joye in [12], which does
not increase Cocks’ ciphertext size or sacrifice its security.

In this work, we use the time-space tradeoff method to propose two variants of Cocks’ IBE scheme [10]
in the following two aspects:



1. Our first proposal omits the computation of the Jacobi symbol
(
a
b

)
for κ-bit a and b, which has

O (M(κ) log κ)3 time complexity [6], and the modular multiplicative inverse in Cocks’ encryption. In
detail, the ciphertext extension is increased by a factor of 2, but the encryption in our proposal only
requires several modular multiplications of time complexity O (M(κ)). The proposal can also be proved
semantic secure under a complexity assumption slightly stronger than the QR assumption. Moreover, this
improvement hardly influences the decryption speed.

2. Inspired by the anonymous IBE scheme without ciphertext expansion proposed in [12, Section 6.2], our
second proposal makes the first proposal anonymous under suitable complexity assumptions. Also, this
improvement do not influence the ciphertext expansion.

The rest of the paper is organized as follows. In §2, we review the notion of semantic secure and the notion
of anonymity. In §3, we describe our first proposal and prove that it is semantic secure. In §4, we describe
our second proposal and prove that it is anonymous under suitable assumptions. Concluding remarks are
given in §5.

2 Preliminaries

2.1 Identity-based encryption

An identity-based encryption (IBE) scheme is defined as a tuple of probabilistic polynomial time (PPT)
algorithms (Setup, KeyGen, Enc, Dec):

Setup(1κ) The setup algorithm Setup is a randomized algorithm that takes a security parameter 1κ as input,
and outputs a tuple (mpk, msk), where mpk denotes the public parameter and msk denotes the master
secret key. The plaintext space is denoted by M.

KeyGen (msk, id) The key generation algorithm KeyGen is a deterministic algorithm that takes msk and an
identity id as inputs, and outputs a decryption key skid associated with the identity id.

Enc (mpk, id,m) The encryption algorithm Enc is a randomized algorithm that takes mpk, an identity id and
a plaintext m ∈ M as inputs, and outputs a ciphertext c.

Dec(mpk, skid, C) The decryption algorithm Dec is a deterministic algorithm that takes mpk, skid and a
ciphertext C as inputs, and outputs the corresponding plaintext m if C is a valid ciphertext, and ⊥
otherwise.

For any identity id and all plaintexts m ∈ M, the correctness property requires that

Dec (mpk, skid, C ← Enc (mpk, id,m)) = m.

2.2 Security notations

Semantic security. The semantic security property states that it is infeasible for any adversary with the
limited computation ability to get any information of a plaintext given the corresponding ciphertext. The
behaviors of an adversary A can be simulated by a pair of probabilistic PPT algorithms (A1,A2). The game
between an adversary and a challenger contains the following four successive phases:

Initialization phase: The challenger runs the algorithm Setup and keeps the master secret key msk. It
then gives the public parameter mpk to the adversary A.

The first query phase: After receiving mpk, A1 adaptively chooses an identity subspace ID1 ⊆ ID (The
identity space is denoted by ID), and issues the key generation queries and obtains the private key
corresponding to each identity in ID1.

Challenge phase: A1 chooses a challenge identity id∗ /∈ ID1 and two different plaintexts m0, m1 ∈ M of
the same length. It then outputs them along with some state information s.

3 M(κ) is the time to multiply κ-bit numbers.
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Guess phase: The challenger chooses a random bit b and encrypts mb with mpk and id∗. It then sends
the corresponding ciphertext C to the algorithm A2. A2 can issue more key generation queries in the
identity space ID2 ⊆ ID which does not contain id∗. The goal of A2 is to guess the bit b from C and s.
It wins the game (carries a successful attack) if the guess is right.

Formally, an IBE scheme is said to be semantically secure if the advantage

AdvIND-ID-CPAA (κ) =

∣∣∣∣∣∣∣Pr

 (mpk, msk)
R← Setup(1κ),

(id∗,m0,m1, s)← A
KeyGenmsk(·)
1 (mpk), : AKeyGenmsk(·)

2 (s, C) = b

b
R← {0, 1} , C ← Enc(mpk, id∗,mb)

− 1

2

∣∣∣∣∣∣∣
is negligible. The semantic security can also be called indistinguishable chosen-identity chosen-plaintext
security (IND-ID-CPA).

Anonymity. The notion of anonymity is a strong requirement of privacy: it is infeasible for any adversary
with the limited computation ability to get the identity of the recipient from a ciphertext. The behaviors of
an adversary A can also be simulated by a pair of probabilistic PPT algorithms (A1,A2). The game between
an adversary and a challenger contains the following four successive phases:

Initialization phase: The same as that in §2.2.
The first query phase: The same as that in §2.2.
Challenge phase: The adversary chooses two distinct challenge identities id∗0, id

∗
1 /∈ ID1 and a plaintext

m ∈ M. It then outputs them along with some state information s.
Guess phase: The challenger chooses a random bit b and encrypts m with mpk and id∗b . It then sends

the corresponding ciphertext C to A2. A2 can issue more key generation queries in the identity space
ID2 ⊆ ID which does not contain id∗0 and id∗1. The goal of A2 is to guess the bit b from C and s. It wins
the game if the guess is right.

Formally, an IBE scheme is said to be anonymous if the advantage

AdvANO-ID-CPAA (κ) =

∣∣∣∣∣∣∣Pr

 (mpk, msk)
R← Setup(1κ),

(id∗0, id
∗
1,m, s)← A

KeyGenmsk(·)
1 (mpk), : AKeyGenmsk(·)

2 (s, C) = b

b
R← {0, 1} , C ← Enc(mpk, id∗b ,m)

− 1

2

∣∣∣∣∣∣∣
is negligible in the security parameter κ for any PPT adversary A.

2.3 Complexity assumption

Let N be a product of two RSA primes p and q. Let JN =
{
x ∈ Z∗N

∣∣ ( x
N

)
= 1
}

, i.e., the set of integers whose

Jacobi symbols are 1. The set of all quadratic residues is denoted byQRN =
{
x
∣∣ ∃y ∈ Z∗N , x ≡ y2 (mod N)

}
.

The following complexity assumption slightly modify the QR assumption.

Definition 1 (Strong Quadratic Residuosity Assumption). Given a security parameter κ. A PPT

algorithm RSAgen (κ) generates two RSA primes p and q such that p+q
2 is even. Let N = pq and u

R←
JN \QRN . The Strong Quadratic Residuosity (SQR) Assumption with respect to RSAgen (κ) asserts that the
advantage AdvSQRA,RSAgen (κ) defined as∣∣∣Prob [A (N, u, x) = 1

∣∣∣ x R← QRN

]
− Prob

[
A (N, u, x) = 1

∣∣∣ x R← JN \QRN
]∣∣∣

is negligible for any PPT adversary A; the probabilities are taken over the experiment of running (N, p, q)←
RSAgen (κ) and choosing at random x ∈ QRN and x ∈ JN \QRN .
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3 Cocks’ IBE scheme with fast encryption

Define the function

JN (x) =

{
⊥, if gcd(x,N) 6= 1;

i, if gcd(x,N) = 1 and
(
x
N

)
= (−1)i.

Cocks’ original scheme proceeds in Appendix A. Our first proposal proceeds as follows.

Setup(1κ) Given a security parameter κ, Setup generates two RSA primes p and q such that p+q
2 is even.

Let N = pq. Setup samples an element u
R← JN \QRN . The public parameter is mpk = {N, u, H} where

H is a publicly available cryptographic hash function mapping an arbitrary binary string to JN . The
master secret key is msk = {p, q}.

KeyGen(mpk, msk, id) Using mpk and msk, KeyGen sets Rid = H (id). If Rid ∈ QRN , KeyGen computes rid =

H (id)
1/2

mod N ; otherwise it computes rid = (uH (id))
1/2

mod N . Finally, KeyGen returns skid = {rid}
as user’s private key.

Enc (mpk, id,m) On inputting mpk, an identity id and a plaintext m ∈ {0, 1}, Enc derives the hash value
Rid = H (id). Enc then chooses at random two polynomials f(x), f(x) of degree 1 from ZN [x] and
computes

g(x) = f(x)2 mod (x2 −Rid) and g(x) = f(x)2 mod (x2 − uRid).

The returned ciphertext is C = {(−1)m · g(x), (−1)m · g(x)}.
Dec(mpk, skid, C) On inputting mpk, a secret key skid = {rid} and a ciphertext C = {c(x), c(x)}. Dec

computes

m′ =


(
c(rid)
N

)
if r2id ≡ H(id) (mod N);(

c(rid)
N

)
otherwise.

and recovers the plaintext m as JN (m′).

Correctness. The correctness of the decryption follows by noticing that when r2id ≡ H(id) (mod N) we
have

m′ =

(
c(rid)

N

)
=

(
(−1)mf(rid)

2

N

)
= (−1)m,

and thus we can recover the plaintext m by the function JN . When r2id ≡ uH(id) (mod N), we can proceed
similarly.

Before proving that the above scheme is semantic secure, we need the following theorem.

Theorem 1. Let t ∈ Z∗N and R be an element in JN \ QRN . If c(x) = f(x)2

t mod (x2 − R) for some

f(x)
R← Z∗N [x] is a polynomial of degree 1, then the sets

Ωk =

{
g(x) ∈ Z∗N [x]

∣∣∣∣ deg g(x) = 1,
g(x)2

k
mod (x2 −R) = c(x)

}
are of the same size for each k ∈ Z∗N .

Proof. Consider the two sets Ωt, Ωt, to prove the theorem, it suffices to prove that #Ωt = #Ωt for fixed t

and any t ∈ Z∗N . Suppose that
(
t−1t
p

)
= (−1)it and

(
t−1t
q

)
= (−1)jt . Since(

Rit

p

)
=

(
t−1t

p

)
and

(
Rjt

q

)
=

(
t−1t

q

)
,

there exist Wp ∈ Z∗p and Wq ∈ Z∗q such that

W 2
pR

it ≡ t−1t (mod p)

W 2
qR

jt ≡ t−1t (mod q)
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According to the Chinese Remainder Theorem, we have

Z[x]/(N, x2 −R)∼= Z[x]/(p, x2 −R)⊕ Z[x]/(q, x2 −R).

Therefore, the map φ : Ωt → Ωt given by h(x) 7→ g(x) where deg g(x) = 1 and

g(x) ≡Wpx
ith(x) (mod (p, x2 −R))

g(x) ≡Wqx
jth(x) (mod (q, x2 −R))

is well defined. In the other direction, the inverse map ψ : Ωt → Ωt is given by g(x) 7→ h(x) where

h(x) ≡W−1p

(
R−1x

)it
g(x) (mod (p, x2 −R))

h(x) ≡W−1q

(
R−1x

)jt
g(x) (mod (q, x2 −R))

It is straightforward to verify that ψ ◦ φ = 1Ωt
and φ ◦ψ = 1Ωt

where 1Ωt
and 1Ωt

denote the identity maps
on Ωt and Ωt respectively. ut

Theorem 2. Let A = (A1,A2) be an adversary against the IND-ID-CPA security of the scheme in §3, making
qH queries to the random oracle H that are not followed by extraction queries, and a single query in the
Challenge phase. Then, there exists an adversary B against the SQR assumption such that

AdvIND-ID-CPAA (κ) =
qH
2
· AdvSQRB,RSAgen(κ)

The security proof is obtained by following the proof of [12, Appendix A].

Proof. Suppose that B is given an RSA modulus N ← RSAgen(κ), a random element w ∈ JN and u
R←

JN \ QRN and is asked to determine whether w ∈ JN \ QRN . B sets mpk = {N, u, H} and gives it to A1,
who has oracle access to hash queries and extraction queries, i.e., asking the private key corresponding to
each identity in the chosen set ID1. B answers the oracle queries as follows:

Hash queries Initially, B maintains a counter ctr initialized to 0 and a list SH ← ∅ whose entry is in the

form {id, Rid, rid}. In addition, B selects i∗
R← {1, 2, . . . , qH}.

When A queries oracle H on an identity id, B increments ctr and checks whether there is an entry whose
first component is id. If so, it returns Rid; otherwise,
1. If ctr = i∗, it returns w and appends {id, w,⊥} to SH.
2. Otherwise, it returns h = u−jr2 mod N for which r

R← ZN and j
R← {0, 1}, and appends {id, h, r}

to SH.
Extraction queries When A queries the secret key on id, B first checks whether there is an entry whose

first component is id. If not, it invokes H(id) to generate such an entry {id, Rid, rid}. Finally, if rid =⊥,
it aborts; otherwise, it returns rid.

Afterwards, A1 selects a challenge identity id∗ /∈ ID1. If H(id∗) 6= w, B returns b
R← {0, 1}; otherwise, B does

the following process:

1. Choose at random two polynomials f(x), f(x) of degree 1 from ZN [x] and b
R← {0, 1}. Compute

g(x) = f(x)2 mod (x2 − w)

g(x) = f(x)2 mod (x2 − uw)

The corresponding ciphertext is

Cb =

{
{g(x), −g(x)} , if b = 0;

{−g(x), g(x)} , otherwise.

5



2. Give Cb to A2. A2 may issue more hash queries and extraction queries on identities except for id∗. Finally,
A2 returns a bit b′.

3. If b = b′ return 1; otherwise return 0.

We only need to analyze the success probability of B solving the SQR assumption in the case of w = H(id∗)
since the analyse of other cases are the same as those in the proof of [12, Appendix A]. If w ∈ QRN ,
according to the fact that uw ∈ JN \ QRN and Theorem 1, we conclude that Cb is a valid ciphertext for
b. For the same reason, if w ∈ JN \ QRN , we conclude that Cb is a valid ciphertext for 1 − b. In this case,
B returns 1 if and only if A loses the game. Let ε = Prob [B (N, u,w) = 1 | w ∈ QRN ∧ w = H(id∗)] and
ε′ = Prob [B (N, u,w) = 1 | w ∈ JN \QRN ∧ w = H(id∗)]. We have

Prob [B (N, u,w) = 1 | w ∈ QRN ] = Prob [w = H(id∗)] · Prob [B (N, u,w) = 1 | w ∈ QRN ∧ w = H(id∗)]

+ Prob [w 6= H(id∗)] · Prob [B (N, u,w) = 1 | w ∈ QRN ∧ w 6= H(id∗)]

=
ε

qH
+

(
1− 1

qH

)
· 1

2

and similarly,

Prob [B (N, u,w) = 1 | w ∈ JN \QRN ] = Prob [w = H(id∗)] · Prob [B (N, u,w) = 1 | w ∈ JN \QRN ∧ w = H(id∗)]

+ Prob [w 6= H(id∗)] · Prob [B (N, u,w) = 1 | w ∈ JN \QRN ∧ w 6= H(id∗)]

=
1− ε′

qH
+

(
1− 1

qH

)
· 1

2

Consequently,

AdvSQRB,RSAgen(κ) = |Prob [B (N, u,w) = 1 | w ∈ QRN ]− Prob [B (N, u,w) = 1 | w ∈ JN \QRN ]|

=

∣∣∣∣ εqH +

(
1− 1

qH

)
· 1

2
−
(

1− ε′

qH
+

(
1− 1

qH

)
· 1

2

)∣∣∣∣
=

2

qH
·
∣∣∣∣12 −

(
1

2
ε+

1

2
ε′
)∣∣∣∣

=
2

qH
AdvIND-ID-CPAA (κ)

This completes the proof. ut

4 Anonymous Cocks’ IBE scheme with fast encryption

Galbraith developed a test which shows that Cocks’ scheme is not anonymous. It was rigorously proved in
[1, 15] that the test can distinguish the identity of the recipient from a ciphertext C with overwhelming
probability. It is not difficult to see that the scheme in §3 is also not anonymous when we modify Galbraith’s
test as:

GT (Rid, Ci(x)) =

(
c2i0 − c2i1αiRid

N

)
, i = 1, 2.

where α1 = 1, α2 = u and C = (C1(x), C2(x)) = (c10 + c11x, c20 + c21x) represents the ciphertext (we still
call it Galbraith’s test in what follows). To avoid this attack, we should generate two types of ciphertexts
whose Galbraith’s tests are −1 and +1 separately. Obviously, multiplying the ciphertext polynomial by a
scalar does not work since the corresponding Galbraith’s tests does not change. What about multiplying a
polynomial? In fact, a polynomial x is feasible since

GT (Rid, xCi(x)) = −GT (Rid, Ci(x)), i = 1, 2.

Therefore, inspired by the anonymous IBE scheme without ciphertext expansion from [12, Section 6.2], we
can construct the following anonymous IBE scheme with fast encryption and without ciphertext expansion.
The scheme proceeds as follows.
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Setup(1κ) Given a security parameter κ, Setup generates two RSA primes p and q such that p+q
2 is even.

Let N = pq. Setup samples an element u
R← JN \QRN . The public parameter is mpk = {N, u, H} where

H is a publicly available cryptographic hash function mapping an arbitrary binary string to JN . The
master secret key is msk = {p, q}.

KeyGen(mpk, msk, id) Using mpk and msk, KeyGen sets Rid = H (id). If Rid ∈ QRN , KeyGen computes rid =

H (id)
1/2

mod N ; otherwise it computes rid = (uH (id))
1/2

mod N . Finally, KeyGen returns skid = {rid}
as user’s private key.

Enc (mpk, id,m) On inputting mpk, an identity id and a plaintext m ∈ {0, 1}, Enc derives the hash value
Rid = H (id). Enc then chooses at random two polynomials f1, f2 of degree 1 from Z∗N [x] and computes
(only two of four)

g01(x) = (−1)mf1(x)2 mod (x2 −Rid)

g11(x) = (−1)mx · f1(x)2 mod (x2 −Rid)

g02(x) = (−1)mf2(x)2 mod (x2 − uRid)

g12(x) = (−1)mx · f2(x)2 mod (x2 − uRid)

Enc also chooses two bits β1, β2
R← {0, 1}. The returned ciphertext is

C =
{
gβ1

1 (x), gβ2

2 (x)
}
.

Dec(mpk, skid, C) On inputting mpk, a secret key skid = {rid} and a ciphertext polynomial set C =
{C1(x), C2(x)}. If r2id ≡ Rid mod N , Dec computes σ = GT (Rid, C1(x)); otherwise it computes σ =
GT (Rid, C2(x)). Finally, Dec computes

m′ =


(
h(rid)
N

)
, if σ = 1;(

ridh(rid)
N

)
, otherwise.

and recovers the plaintext m as JN (m′).

Correctness. According to the correctness proof of the scheme in §3, it is enough to show that the
decryption is correct when σ = −1 and r2id ≡ Rid mod N . In this case, we have C1(x) = g11(x) and

m′ =

(
ridC1(rid)

N

)
=

(
(−1)mr2idf1(rid)

2

N

)
= (−1)m.

Thus, the decryption works correctly.

Remark 1. The amount of computation in the decryption is about twice times larger than that in the scheme
from §3. However, the efficiency of the encryption and the size of the ciphertext expansion do not change.

It can be easily seen that the above scheme is also IND-ID-CPA secure by comparing the ciphertexts between
the above scheme and the scheme from §3: The ciphertext polynomials for the two schemes differ only by a
polynomial x. Therefore, assuming that there exists an IND-ID-CPA adversary A against the above scheme,
we can use A to break the IND-ID-CPA security of the scheme from §3. The following theorem estimates the
size of the first component of the scheme’s ciphertext space when β1 = 0.

Theorem 3. With the notations in the above scheme. Fix N , m ∈ {0, 1} and assume without loss that
Rid = H(id) ∈ QRN . The set

ZN,m,Rid
=
{
Ca,b(x) = (−1)m(ax+ b)2 mod (x2 −Rid) : a, b

R← Z∗N
∣∣∣ arid ± b ∈ Z∗N

}
has size at least ϕ(N)(p−3)(q−3)

16 (ϕ denotes the Euler’s totient function). Moreover, the set of the first com-

ponent of the scheme’s ciphertext has size at least ϕ(N)(p−3)(q−3)
8 when β1 = 0.
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Proof. We have

Ca,b(x) = (−1)m(ax+ b)2 ≡ (−1)m
(
a2Rid + b2 + 2abx

)
(mod x2 −Rid).

Suppose that Ca1,b1(x) = Ca2,b2(x), we have

a21Rid + b21 ≡ a22Rid + b22 (mod N)

2a1b1 ≡ 2a2b2 (mod N)

This is equivalent to

(a1rid + b1)
2 ≡ (a2rid + b2)

2
(mod N)

(a1rid − b1)
2 ≡ (a2rid − b2)

2
(mod N)

Fixing a1 and b1, if a1rid + b1 ∈ Z∗N and a1rid− b1 ∈ Z∗N (this means that GT (Rid, Ca,b(x)) = 1), then there
are at most 16 choices of a2 ∈ Z∗N and b2 ∈ Z∗N for which Ca1,b1(x) = Ca2,b2(x). The number of cases of
a1rid± b1 ∈ Z∗N for a1, b1 ∈ Z∗N is exactly ϕ(N)(p− 3)(q− 3). This proves the first assertion. It is then clear
that ZN,0,Rid

∩ZN,1,Rid
= ∅ since the decryption algorithm can recover the original plaintext. This proves

the remaining assertion. ut

Given an RSA modulus N = pq and 4 ∈ Z∗N , define the following sets:

– SN,4 =
{
u ∈ Z∗N

∣∣ gcd(u2 −4, N) = 1
}

– S[−1]N,4 =
{
u ∈ Z∗N

∣∣∣ (u2−4
N

)
= −1

}
– S[+1]

N,4 =
{
u ∈ Z∗N

∣∣∣ (u2−4
N

)
= 1
}

– (SN,4)
2

=
{
u ∈ Z∗N

∣∣∣ (u2−4
p

)
=
(
u2−4
q

)
= 1
}

Perron [13] proved that for a prime p and any r relatively prime to p, the set r +QRp (QRp represents the
set of quadratic residues containing 0) contains k quadratic residues4 and k quadratic non-residues when
p = 4k − 1, or k + 1 quadratic residues and k quadratic non-residues when p = 4k + 1 and r ∈ QRp.
Take r = −4 = −Rid and assume without loss that p ≡ 3 (mod 4), q ≡ 1 (mod 4) and Rid ∈ QRN .

There are
(
p+1
4 − 1

)
× 2 = p−3

2 elements u ∈ Z∗p for which
(
u2−4
p

)
= 1 and

(
q+3
4 − 2

)
× 2 = q−5

2 elements

u ∈ Z∗q for which
(
u2−4
q

)
= 1. Thus the size of (SN,4)

2
equals (p−3)(q−5)

4 and the size of S[+1]
N,4 equals

(p−3)(q−5)
4 + (p−3)(q−1)

4 = (p−3)(q−3)
2 (See also [15, Corollary 3.4]). Consequently, the set

S
[+1]
4 =

{
a+ bx : a, b

R← Z∗N
∣∣∣ 4 ∈ QRN , ab ∈ S[+1]

N,4

}
has size ϕ(N)(p−3)(q−3)

2 . It has been proved that the set of the first component of the scheme’s ciphertext has

size at least ϕ(N)(p−3)(q−3)
8 when β1 = 0. In order to prove that the scheme achieves anonymity we need to

make the following assumption:

Assumption 1 The set
{

(f, g)
∣∣∣ f ∈ S[+1]

Rid
, g ∈ S[+1]

uRid

}
is computationally equivalent to the scheme’s ci-

phertext space when the identity of the recipient is id and β1 = β2 = 0.

When β1 = β2 = 1, it is clear that each component of the ciphertext space has size at least ϕ(N)(p−3)(q−3)
8 .

However, the set

S
[−1]
4 =

{
c+ dx : c, d

R← Z∗N
∣∣∣ 4 ∈ QRN , cd ∈ S[−1]N,4

}
also has size ϕ(N)(p−3)(q−3)

2 . Again, we shall make another assumption:

4 Perron considered the integer 0 as a quadratic residue. We should deal with it carefully.
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Assumption 2 The set
{

(f, g)
∣∣∣ f ∈ S[−1]

Rid
, g ∈ S[−1]

uRid

}
is computationally equivalent to the scheme’s ci-

phertext space when the identity of the recipient is id and β1 = β2 = 1.

Theorem 4. If Assumption 1 and 2 hold, the above scheme is anonymous.

Proof. Let id∗0 and id∗1 be two distinct challenge identities. Without loss of generality, we assume that both
H(id∗0) and H(id∗1) are in QRN . Letting 4 = Rid∗r

= H(id∗r) for some r ∈ {0, 1}, consider the following two
distributions:

D0,r =
{
Enc (mpk, id∗r ,m) = {gβ1

1 (x), gβ2

2 (x)} : m ∈ {0, 1}
}

D1,r =
{
{a+ bx, c+ dx} : a, b, c, d

R← Z∗N ,
a

b
∈ SN,4,

c

d
∈ SN,4

}
We claim that D0,r and D1,r are indistinguishable with overwhelming probability. The first component of
an element in D0,r is {

a1 + b1x : a1
b1
∈ (SN,4)

2
, if β1 = 0;

a2 + b2x : a2
b2
∈ S[−1]N,4, otherwise.

It follows from Assumption 1 that S
[+1]
4 is computationally equivalent to the first component of the ciphertext

when β1 = 0, and from Assumption 2 that S
[−1]
4 is computationally equivalent to the first component of the

ciphertext when β1 = 1. Since S
[+1]
4 ∪S[−1]

4 =
{
a+ bx : a, b ∈ Z∗N

∣∣ a
b ∈ SN,4

}
and β1 is chosen at random,

we deduce that the first component of D0,r and D1,r are computationally equivalent. The similar arguments
are valid for the second component, and hence we have proved the claim. Since D1,0 and D1,1 are also
indistinguishable with overwhelming probability, this proves that D0,0 and D0,1 are indistinguishable with
overwhelming probability, and hence the scheme is anonymous. ut

5 Conclusion

The encryptions in known variants of Cocks’ scheme are much slower than the corresponding decryptions,
i.e., the scheme by Clear et al. [9] needs about 79 ms and 27 ms for a 128-bit message with a 1024-bit
RSA modulus N . Our proposals features both anonymity and the best encryption time compared with
other variants (i.e., nearly 10 times faster than those in the same setting). Furthermore, they inherits the
homomorphic property. These make Cocks’ scheme more competitive in the fields of IBE.
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A Cocks’ IBE scheme

Setup(1κ) Given a security parameter κ. Generate two RSA primes p and q and let N = pq. Sample
uniformly an element u ∈ JN \QRN . Output mpk = {N, u, H} and msk = {p, q}, where H : {0, 1}∗ 7→ JN .

KeyGen (msk, id) Compute a = H(id). If a ∈ QRN . Compute r = a1/2 mod N ; otherwise, compute r =
(ua)1/2 mod N . Output skid = {r}.

Enc (mpk, id,m ∈ {±1}) Compute a = H(id). Choose at random t, t ∈ ZN such that
(
t
N

)
=
(
t
N

)
= m.

Compute

c = t+
a

t
mod N and c = t+

ua

t
mod N

Output C = {c, c}.
Dec(mpk, skid, C) On input a secret key skid = {r} and a ciphertext C = {c, c}. Output the plaintext

m =

{(
c+2r
N

)
, if r2 ≡ a (mod N);(

c+2r
N

)
, otherwise.

where a = H(id).
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Remark 2. The above description generalizes the original Cocks’ IBE scheme [10] which only considers Blum
integers, i.e., N is an RSA moduli with p ≡ q ≡ 3 (mod 4). In this case, Cocks’ scheme corresponds to the
choice u = −1 in our description.
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