
Fault Location Identification By Machine Learning
Anubhab Baksi∗, Santanu Sarkar†, Akhilesh Siddhanti‡, Ravi Anand§, Anupam Chattopadhyay¶

∗¶Nanyang Technological University, Singapore
†Indian Institute of Technology, Madras, India
‡Georgia Institute of Technology, Atlanta, USA
§Indian Institute of Technology, Kharagpur, India

∗anubhab001@e.ntu.edu.sg, †santanu@iitm.ac.in, ‡akhilesh@gatech.edu,
‡ravianandsps@iitkgp.ac.in, ¶anupam@ntu.edu.sg

Abstract—As the fault based analysis techniques are becoming
more and more powerful, there is a need to streamline the existing
tools for better accuracy and ease of use. In this regard, we
propose a machine learning assisted tool that can be used in the
context of a differential fault analysis. In particular, finding the
exact fault location by analyzing the XORed output of a stream
cipher/ stream cipher based design is somewhat non-trivial. Tradi-
tionally, Pearson’s correlation coefficient is used for this purpose.
We show that a machine learning method is more powerful
than the existing correlation coefficient, aside from being simpler
to implement. As a proof of concept, we take two variants
of Grain-128a (namely a stream cipher, and a stream cipher
with authentication), and demonstrate that machine learning can
outperform correlation with the same training/testing data. Our
analysis shows that the machine learning can be considered as a
replacement for the correlation in the future research works.

Index Terms— differential fault analysis, stream cipher, ma-
chine learning

I. INTRODUCTION

Fault attacks or fault analysis are a common type of tech-
niques used in the cryptanalysis of primitives. This technique
works by injecting a disturbance on a device while it is
performing a cryptographic operation. This disturbance can
be induced by means of a power glitch, LASER shot etc. It
has been shown in the literature that such disturbance can
be injected by inexpensive equipment with high precision [1],
[2]. As with rise of the Internet-of-Things, small scale devices
performing cryptographic operations are almost ubiquitous; the
fault attacks are of an increasing concern for the community.

Among all the fault analysis techniques, the differential fault
attack or differential fault analysis (DFA) is one of the most
(if not the most) common in the academic community (see
Section II-A for more information) introduced by [3]. In this
case, a disturbance is able to flip one bit (0 → 1 or 1 → 0)
or more bits of an operation being carried out (known as a
fault). Then, by comparing the non-faulty and one/few faulty
outputs, the attacker (Eve) can learn information about the
secret key of the system. Since its first appearance, DFA is
being used extensively to cryptanalyze a variety of ciphers
which are considered secure against the classical attacks.

In the most commonly used DFA model, which we refer
to as the random fault model; it is assumed that Eve is able
to choose the round of cipher in question (possibly by means
of timing analysis), but not the precise location of the fault.

In other words, which bit(s) of the state of the cipher is not
known/controllable to the attacker; although Eve is able to
precisely choose the target round for fault injection.

When it comes to stream ciphers and stream cipher based
designs, the usual analysis method of DFA simulation can
be conceptually thought of comprised of two distinct phases.
In the first phase, the exact location of the fault injection is
determined by analyzing the effect of the fault propagation
(termed as the signature). When the location is determined, a
SAT solver is used to determine the state of the cipher at the
particular round when the fault is injected. For several ciphers,
the state is reversible; meaning the state can be reversed to the
initialization routine, from where could be possible to recover
the secret key. Also, in the related works involving DFA on
stream ciphers, it is assumed that at most one bit of the state
will be flipped. In this work, we focus on finding the exact
location of the fault (i.e., which state bit is flipped as a result
of fault injection) where the faulty round is known.

Our Contribution

One fundamental problem in analyzing stream cipher based
designs with respect to DFA is identifying the precise bit which
is flipped as a result of the fault injection. The current standard
is to use the correlation coefficient (more discussion can be
found in Section II-C). In a nutshell, this technique creates
the so-called signature during the offline phase, which is a
matrix with elements from [0, 1]. Then the XOR of faulty
and non-faulty key-stream is corresponding to each location is
computed. The location at which the correlation is maximum
is taken as the correct location of fault.

We choose two variants of the well-studied GRAIN-128A
cipher, one without authentication functionality and the other
with authentication [4]. For both the ciphers, we show that
a machine learning approach can outperform a the current
standard which uses correlation. Essentially, our work directly
improves from [5], which reports the best performance for
the correlation based method (refer to Section III for more
information).

II. BACKGROUND

A. Prior Works on Differential Fault Attack

Fault attacks have surely gained considerable attention of
the cryptographic research community in recent times. New



types of fault attack models, their countermeasures as well
as the practical validation by means of a real life set-up are
among the most focused topics. Thanks to the wide applicability
and practicality, many device implementations of high profile
ciphers in both the public key and private key domains like RSA,
DES, AES, etc. are analyzed by this technique. All the stream
ciphers in eStream1 hardware portfolio; namely GRAIN-v1
[6], MICKEY-2.0 [7] and TRIVIUM [8] are cryptanalyzed by
DFA. Other stream ciphers or similar designs like PLANTLET
[9], SPROUT [10], ACORN (which is an AEAD based on stream
cipher design paradigm) and LIZARD [11] are shown to be
vulnerable against DFA too.

In the above mentioned works, generally it is assumed that
the attacker, Eve, is not able to choose/decide the exact location
for fault (i.e., which particular bit/bits will be flipped). The
following points summarize the model, which is also adopted
here:
• The adversary can inject a 1-bit fault, thereby flipping

that particular bit of the state. Typically, such precision
of fault location is achieved by LASER shot, as in [2].

• Each bit of the state is equally likely be flipped as a result
of fault.

• The location bit where the fault is injected is not known
to the adversary.

• The attacker has precise control over which round she
injects the fault.

Therefore, the attacker attempts to find out the exact location
of fault by analyzing the key-stream bits [5].

We keep discussion DFA countermeasures out of scope for
this work. In case DFA countermeasures is solicited; one may
refer to, for example, [12].

B. Concise Description of GRAIN-128A

We take GRAIN-128A (as a stream cipher, i.e., without
authentication) and GRAIN-128A (stream cipher with authen-
tication) [4] as our target ciphers. The GRAIN-128A cipher
consists of a 128-bit non-linear feedback shift register (NFSR)
and a 128-bit linear feedback shift register (LFSR), denoted by
X and Y respectively. A schematic view of the construction
for both the ciphers is given in Figure 1. The exact description
of the variables and functions are given in Table I, where the
ith location of register Z is denoted by zi for Z = X,Y with
the index starting from 0. At each clock, both LFSR and NFSR
are updated by the update functions f(Y ) (which is linear) and
g(X) (which is non-linear) receptively. Note that the NFSR X
is also updated from the LFSR Y . Also, f(Y ) misses several
locations of Y and similarly g(X) misses several locations of
X . The output key-stream z is produced by passing several
locations of X and Y through a non-linear function h(X,Y ),
and then XORing its output with some locations of X and Y .

At first, the cipher is loaded with the key and initialization
vector (IV) during the key loading algorithm (KLA). After
this, the cipher state is updated for 256 clocks with the update
rules described already; but the output z is XORed back to the

1https://www.ecrypt.eu.org/stream/

update functions of X and Y . After this, the Pseudo-Random
Generation Algorithm (PRGA) produces the key-stream bits.

As for the Key Loading Algorithm (KLA), the ciphers use
a 128-bit key K, and a 96-bit IV. The key is loaded in the
NFSR and the IV is loaded in from the 0th to the 95th bits of
the LFSR. The remaining 95th to 127th bits of the LFSR are
loaded with some fixed pad P ∈ {0, 1}32.

g(X) f(Y )

NFSR (X)
⊕

LFSR (Y )

h(X, Y )

⊕

z

Fig. 1: Schematic view of GRAIN-128A

MAC Generation Algorithm in GRAIN-128A : The cipher
GRAIN-128A [4] optionally supports message authentication
code (MAC) generation. For this purpose, two registers, called
accumulator and shift register of size 32 bits each, are used.
The shift register is updated by z while the accumulator is
updated by both z and the message m. The tag is obtained
from the accumulator.

C. Correlation Based Method for Identifying Fault Location

Correlation based method to find fault location is the practical
standard for finding location of the fault, as can be seen from
several research works [9], [11], [10], [5]. To explain how it
works, we adopt the following notations:
• the fault-free key-stream sequence of length ` which the

adversary has access to: z0, z1, . . . , z`−1;
• the fault location, f ;
• the `-length key-stream obtained after injecting a fault

(faulty key-stream): z(f)0 , z
(f)
1 , . . . , z

(f)
`−1.

The fault identification procedure can be roughly classified
into two phases, namely offline and online. Overall, the attacker
Eve at first computes the off-line phase, where she has full
access to the target device and can perform the fault injection.
Being equipped with the information from this phase, the
attacker moves to the actual online phase of the attack.

Offline Phase : The attacker pre-computes the signature
vector Q(f) for each fault location f of the cipher. The
signatures are prepared by observing the probability of fault-
free key-stream bits being not equal to faulty key-stream bits
over several randomly generated keys and nonces: Q(f) =

{q(f)0 , q
(f)
1 , . . . , q

(f)
`−1} where, q(f)i = Pr(zi 6= z

(f)
i ).

Online Phase : The attacker injects a fault in an unknown
location g, and calculates the trail Γ(g) of the fault location as
follows: Γ(g) = {γ(g)0 , γ

(g)
1 , . . . , γ

(g)
`−1} where, γ(g)i = Pr(zi 6=

z
(g)
i ).

Hence, the fault signature is a matrix of values from [0, 1].
The number of columns of the matrix is same as the number

2

https://www.ecrypt.eu.org/stream/


TABLE I: Overview of GRAIN-128A (with and without authentication)

LFSR (Y ), NFSR (X) Size 128
Key Size 128
IV Size 96
Pad (used during KLA) FFFFFFFE

LFSR Update (f(Y )) y96 ⊕ y81 ⊕ y70 ⊕ y38 ⊕ y7 ⊕ y0

NFSR Update (g(X)) yt ⊕ xt ⊕ xt+26 ⊕ xt+56 ⊕ xt+91 ⊕ xt+96 ⊕ xt+3xt+67 ⊕ xt+11xt+13 ⊕ xt+17xt+18 ⊕ xt+27xt+59

⊕xt+40xt+48 ⊕ xt+61xt+65 ⊕ xt+68xt+84 ⊕ xt+88xt+92xt+93xt+95 ⊕ xt+22xt+24xt+25 ⊕ xt+70xt+78xt+82

h(X,Y ) xt+12xt+95yt+94 ⊕ xt+12yt+8 ⊕ yt+13yt+20 ⊕ xt+95yt+42 ⊕ yt+60yt+79

z xt+2 ⊕ xt+15 ⊕ xt+36 ⊕ xt+45 ⊕ xt+64 ⊕ xt+73 ⊕ xt+89 ⊕ yt+93 ⊕ h(X,Y )

of key-stream bits and that of rows is same as the number of
fault locations (typically the entire state).

The final goal for the attacker is to identify g. The value of f
for which Q(f) best matches the trail Γ(g) obtained corresponds
to the correct fault location. For checking this, correlation
coefficient is shown to work with good accuracy [5]. The
attacker calculates the correlation between the signature Q(f)

and trail Γ(g) for all possible values of f . This algorithm
provides the value of g with a reasonably high accuracy. The
same algorithm is repeated to identify fault location for all
faulty key-stream sequences. The equations are then gathered
and solved using an automated tool, typically a SAT solver
(e.g., [8]).

However, often the correct location does not have maximum
correlation. The rank metric measures the number of locations
where the correlation coefficients of those locations are greater
than or equal to the correlation coefficient of the correct
location. Hence, if the correlation coefficient of the correct
location is maximum, it has rank 1. Hence, if the rank is
small (close to 1), then the performance of the method can be
considered well. We also extend this notion of rank to machine
learning based fault location finding to have a comparison of
performances.

D. Fundamentals of Artificial Neural Network

Input Layer

Hidden Layer

Hidden Layer

Output Layer

Fig. 2: Structure of an artificial neural network

Here a very brief overview of machine learning is given here
for the sake of completeness. For more details, an interested
reader may refer to textbooks, e.g., [13].

Machine learning can be loosely defined by a collection
of various types of algorithms, of which Artificial Neural
Networks (ANNs) are of particular interest. ANNs are algo-
rithms employed for fitting a model to a given data that can

perform efficiently tasks like classification or regression, which
are generally considered difficult for a computer. ANNs are
capable of finding inherent characteristics of a user provided
data (called the training data) by iterating through it repeatedly
and gradually adjusting its parameters, until these parameters
are finally stabilized. Once training is completed, the model is
validated against the testing data.

The basic processing unit of an ANN is termed as a neuron,
which is inspired from the biological neuron found in brain
cells. The neurons arranged in a series of layers. More depth
of layers generally makes the ANN capable of handling more
complex data.

Here we use the basic forward-propagation ANN. A basic
structure of the generic construction of can be found in Figure
2.

III. OUR RESULTS

For experimentation purpose, we only take 120 bits of the
key-stream from starting of PRGA. We begin our analysis
by finding the fault signatures both the ciphers. As signa-
tures for a cipher is indeed a matrix, it can be pictorially
represented. Figure 3 shows such a representation (Figure
3(a) for GRAIN-128A stream cipher and Figure 3(b) for
GRAIN-128A stream cipher with authentication).

With the same data used in correlation based method, we
next mount an artificial neural network approach. For this
purpose, we use a 5 layer neural network with TensorFlow2

as the back-end and Keras3 API with the following properties
(refer to Section II-D for more information on these):
• Layer 1 The first layer is a dense layer with a dropout

rate of 0.2 and activation function as rectifier (ReLU). It
consists of 120 neurons (same as the number of key-stream
bits used).

• Layers 2, 3, 4 The second, third and fourth layers are
dense layers with rectifier as activation functions. The
number of neurons are respectively 252, 202 and 160.

• Layer 5 The final layer is a dense layer with 160 neurons
for GRAIN-v1 and 256 neurons for GRAIN-128A (same
as the size of the state) with softmax activation (one-hot
encoding). Depending on the firing rate of neurons at this
layer, the prediction on the fault location is made.

The summary of the model is given in Table II. As for the
choice of epochs, we choose 8. We compile the model with the

2https://www.tensorflow.org/
3https://keras.io/

3

https://www.tensorflow.org/
https://keras.io/


0 50 100 150 200 250

Location of fault in state →

0

20

40

60

80

100

←
K

ey
-s

tr
ea

m
b

it

(a) GRAIN-128A (without authentication)

0 50 100 150 200 250

Location of fault in state →

0

20

40

60

80

100

←
K

ey
-s

tr
ea

m
b

it

(b) GRAIN-128A (with authentication)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Visualization of signatures

adam optimizer, sparse categorical cross-entropy as the loss
function and accuracy as the metric. The trained models as
well as the signatures are available online4. The parameters are
chosen somewhat arbitrarily. We use the Adam algorithm [14]
as optimizer.

TABLE II: Model summary for the artificial neural network
used

Layer (Type) Output Shape Parameter #
dense (Dense) (None, 120) 14520
dropout (Dropout) (None, 120) 0
dense 1 (Dense) (None, 252) 30492
dense 2 (Dense) (None, 202) 51106
dense 3 (Dense) (None, 160) 32480
dense 4 (Dense) (None, 256) 41216
Total params: 169814
Trainable params: 169814
Non-trainable params: 0

Relative performance of the machine learning and correlation
based approaches are presented in Figure 4 for GRAIN-128A
(without authentication) and in Figure 5 for GRAIN-128A
(with authentication), and also in Table III. It is to be noted,
machine learning outperforms correlation for both the ciphers
(the difference is more prominent in GRAIN-128A with
authentication) with the same training and testing data.

Table III shows that the accuracy is higher in machine
learning, so the number of wrong identification is less in ma-
chine learning. Overall, the outcome from the machine learning
models have lower rank (see Section II-C for description of
rank), as both the average and the maximum ranks reported
by machine learning is smaller than its correlation counterpart.
For example, the maximum rank for machine learning is 12,
but the same for correlation is 19 for GRAIN-128A with
authentication. More details on rank can be seen from Figure 4
(Figure 4(a) for machine learning and Figure 4(b) for correlation
on GRAIN-128A without authentication) and Figure 5 (Figure
4(a) for machine learning and Figure 4(b) for correlation on
GRAIN-128A with authentication). Here, we plot the average
and maximum rank for each location of the 256-bit state.

4https://www.dropbox.com/sh/swr6bbbbfbuppkg/
AAALxmtjyqv-mpAWQUClKeg7a?dl=0

IV. CONCLUSION

In this work, we apply a machine learning method to the
problem of finding the location of fault in stream ciphers. The
conventional methods for finding the same involves creating a
so-called signature method, then to see which location shows
maximum correlation coefficient. We show for two variants of
GRAIN-128A (one as a stream cipher, while the other as a
stream cipher with authentication) that machine learning can
be used instead of correlation with greater efficiency, even
though both are trained and tested with the same data. Thus,
our work follows-up that of [5] and shows improvement on it.
On top, machine learning tools are standardized and easier to
use.

We believe this work can inspire multiple future research
works. For example, this method can be tested against other
ciphers. Multi-bit fault model (where more than one bit is
injected with fault) can be considered too. In case where the
attacker can only access a suppressed key-stream (e.g., first
20 key-stream bits are not available), one may be interested in
finding the performance of a machine learning model. Finally,
the selection of hyper-parameters and its sensitivity can be
thoroughly studied.

REFERENCES

[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan,
“The sorcerer’s apprentice guide to fault attacks.” IACR Cryptology
ePrint Archive, vol. 2004, p. 100, 2004. [Online]. Available:
http://dblp.uni-trier.de/db/journals/iacr/iacr2004.html#Bar-ElCNTW04

[2] M. Agoyan, J. Dutertre, A. Mirbaha, D. Naccache, A. Ribotta, and
A. Tria, “How to flip a bit?” in 2010 IEEE 16th International On-Line
Testing Symposium, July 2010, pp. 235–239.

[3] E. Biham and A. Shamir, “Differential Fault Analysis of Secret
Key Cryptosystems,” in Advances in Cryptology - CRYPTO ’97, ser.
Lecture Notes in Computer Science, J. Kaliski, BurtonS., Ed. Springer
Berlin Heidelberg, 1997, vol. 1294, pp. 513–525. [Online]. Available:
http://dx.doi.org/10.1007/BFb0052259

[4] M. Ågren, M. Hell, T. Johansson, and W. Meier, “Grain-128a: a
new version of grain-128 with optional authentication,” IJWMC,
vol. 5, no. 1, pp. 48–59, 2011. [Online]. Available: https:
//doi.org/10.1504/IJWMC.2011.044106

[5] S. Sarkar, P. Dey, A. Adhikari, and S. Maitra, “Probabilistic signature
based generalized framework for differential fault analysis of stream
ciphers,” Cryptography and Communications, vol. 9, no. 4, pp. 523–543,
2017. [Online]. Available: https://doi.org/10.1007/s12095-016-0197-2

4

https://www.dropbox.com/sh/swr6bbbbfbuppkg/AAALxmtjyqv-mpAWQUClKeg7a?dl=0
https://www.dropbox.com/sh/swr6bbbbfbuppkg/AAALxmtjyqv-mpAWQUClKeg7a?dl=0
http://dblp.uni-trier.de/db/journals/iacr/iacr2004.html#Bar-ElCNTW04
http://dx.doi.org/10.1007/BFb0052259
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.1007/s12095-016-0197-2


TABLE III: Summary of experiments for fault location identification

Cipher Size Machine Learning (Ours) Correlation [5]

Accuracy Rank∗ # Wrong
Identification Accuracy Rank∗ # Wrong

IdentificationTraining Testing Average Maximum Average Maximum
GRAIN-128A

(w/o Authentication) 218 214.551 0.9988 1.0013 3 27 0.9970 1.0032 3 72

GRAIN-128A
(w/ Authentication) 218 214.551 0.9799 1.0240 12 482 0.9448 1.1024 19 1324

∗ : Lower is better, 1 is ideal

0 50 100 150 200 250
Location of Fault in the State →

1.0

1.5

2.0

2.5

3.0

R
an

k
→

Maximum Average

(a) Machine learning

0 50 100 150 200 250
Location of Fault in the State →

1.0

1.5

2.0

2.5

3.0

R
an

k
→

Maximum Average

(b) Correlation

Fig. 4: Performances for machine learning and correlation based methods on GRAIN-128A (without authentication)

0 50 100 150 200 250
Location of Fault in the State →

5

10

15

R
an

k
→

Maximum Average

(a) Machine learning

0 50 100 150 200 250
Location of Fault in the State →

5

10

15

R
an

k
→

Maximum Average

(b) Correlation

Fig. 5: Performances for machine learning and correlation based methods on GRAIN-128A (with authentication)

[6] S. Sarkar, S. Banik, and S. Maitra, “Differential fault attack against grain
family with very few faults and minimal assumptions,” IEEE Transactions
on Computers, vol. 64, no. 6, pp. 1647–1657, 2014.

[7] S. Banik, S. Maitra, and S. Sarkar, “Improved differential fault attack
on mickey 2.0,” Journal of Cryptographic Engineering, vol. 5, no. 1, pp.
13–29, 2015.

[8] P. Dey and A. Adhikari, “Improved multi-bit differential fault analysis of
Trivium,” in INDOCRYPT 2014, New Delhi, India, Proceedings, 2014, pp.
37–52. [Online]. Available: https://doi.org/10.1007/978-3-319-13039-2 3

[9] S. Maitra, A. Siddhanti, and S. Sarkar, “A differential fault attack on
plantlet,” IEEE Transactions on Computers, vol. 66, no. 10, pp. 1804–
1808, 2017.

[10] S. Maitra, S. Sarkar, A. Baksi, and P. Dey, “Key recovery from state
information of sprout: Application to cryptanalysis and fault attack,”
IACR Cryptology ePrint Archive, vol. 2015, p. 236, 2015. [Online].
Available: http://eprint.iacr.org/2015/236

[11] A. Siddhanti, S. Sarkar, S. Maitra, and A. Chattopadhyay, “Differential
fault attack on grain v1, acorn v3 and lizard,” in International Conference
on Security, Privacy, and Applied Cryptography Engineering. Springer,
2017, pp. 247–263.

[12] A. Baksi, D. Saha, and S. Sarkar, “To infect or not to infect: A
critical analysis of infective countermeasures in fault attacks,” IACR
Cryptology ePrint Archive, vol. 2019, p. 355, 2019. [Online]. Available:
https://eprint.iacr.org/2019/355

[13] S. Haykin, Neural Networks and Learning Machines (third edition).
Pearson, 2008.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

5

https://doi.org/10.1007/978-3-319-13039-2_3
http://eprint.iacr.org/2015/236
https://eprint.iacr.org/2019/355

	Introduction
	Background
	Prior Works on Differential Fault Attack
	Concise Description of GRAIN-128A
	Correlation Based Method for Identifying Fault Location
	Fundamentals of Artificial Neural Network

	Our Results
	Conclusion
	References

