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Abstract. The common approach in secure channel protocols is to rely on ciphertexts arriving in-order
and to close the connection upon any rogue ciphertext. Cryptographic security models for channels
generally reflect such design. This is reasonable when running atop lower-level transport protocols like
TCP ensuring in-order delivery, as for example is the case with TLS or SSH. However, channels such
as QUIC or DTLS which run over a non-reliable transport protocol like UDP, do not—and in fact
cannot—close the connection if packets are lost or arrive in a different order. Those protocols instead
have to carefully catch effects arising naturally in unreliable networks, usually by using a sliding-window
technique where ciphertexts can be decrypted correctly as long as they are not misplaced too far.
To accommodate such handling of unreliable network messages, we introduce a generalized notion of
robustness of cryptographic channels. This property can capture unreliable network behavior and guar-
antees that adversarial tampering cannot hinder ciphertexts that can be decrypted correctly from being
accepted. We show that robustness is orthogonal to the common notion of integrity for channels, but
together with integrity and chosen-plaintext security it provides a robust analogue of chosen-ciphertext
security of channels. We then discuss two particularly interesting targets, namely the packet encryption
in the record layer protocols of QUIC and of DTLS 1.3. We show that both protocols achieve the
intended level of robust chosen-ciphertext security based on certain properties of their sliding-window
techniques and on the underlying AEAD schemes. Notably, the robustness needed in handling unreliable
network messages require both record layer protocols to tolerate repeated adversarial forgery attempts,
which means we can only establish non-tight security bounds (in terms of AEAD integrity). Our bounds
have led the responsible IETF working groups to introduce concrete forgery limits for both protocol
drafts.
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1 Introduction
Cryptographic channel protocols should provide confidentiality and authenticity in the presence of network
adversaries. Consider for example the latest version of TLS in version 1.3 [Res18]. Ignoring subtle issues
like fragmentation, the record layer protocol should ensure that the sender’s ciphertexts c1, c2, c3, . . . are
correctly decrypted to the encapsulated messages at the receiver’s side if they arrive in this order. Any
(accidental or malicious) reordering or modifications of the ciphertexts should be detectable and, in case
of a suspicious behavior, the standard specifies that the connection must be closed:

If the decryption fails, the receiver MUST terminate the connection with
a "bad_record_mac" alert.

TLS therefore assumes, or at least hopes, that packets are delivered reliably on the network. If a ciphertext
accidentally gets lost on the transport layer then this most likely closes the channel connection on the
application level. Put differently, this way of dealing with errors is closely associated to the TCP protocol
as the underlying reliable, connection-oriented transport layer.

Other cryptographic channels like QUIC [IT20, TT20] or DTLS 1.3 [RTM20], however, run atop an
unreliable, datagram-oriented transport layer, UDP in these cases. From the channel’s point of view this
means that ciphertexts (or, fragments of ciphertexts) may be lost on the network or arrive in different
order. Such protocols thus need to support more ample error handling. Usually, these protocols use a
sliding-window technique to decrypt ciphertexts within the window, moving the window forward whenever
a valid ciphertext beyond the current window arrives.

The sliding-window technique is interesting for the cryptographic channel for two reasons. One is
that, currently, most cryptographic models for secure channels focus on the aborting type of protocols
and thus do not touch upon the window technique (this includes, e.g., the initial formalization of state-
ful authenticated encryption [BKN02, BKN04] used to analyze the SSH protocol [YL06], length-hiding
authenticated encryption variants used to study the TLS protocol [PRS11, JKSS12], as well as more
specialized models covering fragmentation [BDPS12], streaming [FGMP15], bidirectionality [MP17], or
ratcheting security [JS18]). Another interesting aspect is that such protocols necessitate another property
besides correctness and the common security notions, which was mostly neglected so far.

1.1 Robustness of Channels as a First-class Property

In this work, we bring out robustness as a core property of cryptographic channels, which primarily
focuses on protocols over an unreliable network, but also extends to reliable networks under active attacks.
Robustness roughly says that malicious ciphertexts on the network cannot disturb the expected behavior
of the channel. As a concrete example, robustness guarantees that an adversarially injected ciphertext
cannot make the window of the sliding technique shift further, such that previous ciphertexts, which would
otherwise have been inside the admissible window, would now get rejected.

We remark that robustness as a notion has so far not been captured by previous security definitions
for channels when it comes to where it is most relevant, namely, for unreliable network transmission. In
the realm of ratcheting [BSJ+17], Jaeger and Stepanovs [JS18] discuss a restricted form of robustness for
bidirectional channels as part of their correctness definition, but intentionally only treat reliable transport
protocols. Boyd et al. [BHMS16], in their generalization of different levels of authentication/AEAD in a
hierarchy similar to that introduced by Kohno, Palacio, and Black [KPB03], come closest to the idea of
a more fine-grained approach to different properties like reordering or dropping of ciphertexts. Likewise,
Rogaway and Zhang [RZ18] capture different level sets for permissible ordering for stateful authenticated
encryption, capturing a hierarchy similar to [BHMS16, KPB03]. Yet, it turns out that QUIC [IT20, TT20]
and DTLS 1.3 [RTM20] for example would be declared as insecure according to their models, for technically

3



subtle reasons related to the way the sliding-window technique can lead to previously rejected ciphertexts
being later (rightfully) accepted when packet numbers are only partially transmitted.1

In a different light, Chen et al. [CJJ+19] (and similarly Lychev et al. [LJBN15] in prior work for an
early version) study the QUIC record layer as part of an overall ACCE-type analysis [JKSS12]. While
their formalism treats QUIC as having no reordering and replay protection (level 1 in the hierarchy
of [BHMS16]), they argue that sequence number authentication in QUIC “essentially” achieves TLS-like
authentication and reordering protection. Our work aims at providing a more fine-grained analysis of the
properties that sliding-window cryptographic channel protocols achieve over an unreliable network.

1.2 Defining General Robustness

Defining robustness as a general notion is delicate because we need to compare the behavior in presence
of an active adversary to the expected behavior of the channel under non-malicious alteration due to
the network, be it reliable or unreliable. To capture different expected channel behaviors like the ability
to recover from ciphertext losses or from ciphertext reordering in a single definition, we parameterize
the channel protocol by a predicate supp describing supported ciphertexts, i.e., ciphertexts which should
be processed correctly by the channel.2 This predicate operates on the sequences of sent and received
ciphertexts so far, and thus represents a global view on the network communication.

We show how such support predicates allow us to capture various scenarios for desired channel behavior,
spanning both reliable and unreliable networks. On the extreme ends this includes a strict ordering of
ciphertexts at the receiver’s side, as in TLS 1.3 over reliable networks, and (almost) no guarantees as
in DTLS 1.2 with no replay protection. Our notion also allows to portray the different sliding-window
techniques with both static or dynamic window sizes.

Introducing supp as a parameter already affects the correctness definition of a channel. Correctness
then says that the protocol acts as expected on supported ciphertext sequences, now defined as a game with
a weak network adversary which can only tamper with the order of ciphertexts. Once we have the advanced
notion of correctness we can define robustness in a generalized way. Our robustness notion, denoted ROB,
compares the real behavior of the channel with the correct behavior that would be obtained when filtering
out any maliciously modified or injected ciphertext by an active adversary. For a robust channel we expect
both behaviors to be quasi identical, implying that the malicious ciphertexts cannot make the protocol
deviate. In particular, if a channel uses sliding windows to identify admissible ciphertexts, then malicious
network data cannot falsely modify the window boundaries.

1.3 Relationships of Security Notions

We then relate the notion of robustness to the classical notions of channel integrity and indistinguishability
(under network-passive (IND-CPA) and -active attacks (IND-CCA)). For this we first lift the (stateful)
notion of ciphertext integrity INT-sfCTXT [BKN04] to our framework with the predicate supp, yielding
our integrity definition of INT. For chosen-ciphertext security we adopt the (stateless) IND-CCA3 notion

1More precisely, for basic authentication with replay protection both the model by Boyd et al. [BHMS16] (“level 2”) as
well as that by Rogaway and Zhang [RZ18] (“basic level-set 1”) demand that a scheme must reject any ciphertext that has
already been processed earlier (to prevent replays). A scheme with a sliding-window technique may however first reject a
ciphertext which is “too new” (too far ahead of the current window), but then later rightfully accept this ciphertext (when it
is within the window) without opening up to replay attacks. Accepting the ciphertext the second time however violates the
notions in [BHMS16, RZ18], meaning they cannot capture the behavior in QUIC or DTLS 1.3.

2To be precise, we will optionally allow the predicate supp to associate an index with a positive decision, recovering a
received ciphertext’s position in the original sequence of sent ciphertexts. This enables us to capture non-unique ciphertexts
in channels that rely on sliding windows.
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Figure 1: Overview over relationships of robustness, integrity, and indistinguishability notions for any
fixed predicate supp; with notions encoding robustness highlighted in gray. Solid arrows from A to C via
B indicate implications A ∧ B ⇒ C. Dotted arrows from A to B indicate explicitly shown implications
A ⇒ B; further implications follow by transitivity. Dashed, struck-through arrows between A and B
indicate separations of A and B. Numbers indicate the corresponding propositions.

of Shrimpton [Shr04] which combines integrity and confidentiality into a single game. The notion is called
INT-IND-CCA in our setting.

We first argue that robustness and integrity are orthogonal in the sense that neither one implies
the other. But we can define a combined notion called robust integrity (ROB-INT) which is implied by
both notions together, and vice versa implies both notions. We next define a notion ROB-INT-IND-CCA
which is the “robust analogue” of INT-IND-CCA security for channels. We show that this robust notion
can be achieved either by considering an IND-CPA secure channel which also provides robust integrity.
Alternatively, one can add robustness to a INT-IND-CCA channel to derive the notion, too. Conversely,
ROB-INT-IND-CCA implies robust integrity and IND-CPA security and thus also INT-IND-CCA. Our results
about the relationship of the notions are summarized in Figure 1.

1.4 Robustness of QUIC and DTLS 1.3

Turning to the record layer protocols of QUIC and DTLS 1.3 we provide an abstract representation of
their packet encryption as a cryptographic channel. Both protocols rely on an AEAD scheme to protect
the payload. With minor differences both use sequence numbers as nonces for AEAD encryption but
only transmit parts of the sequence number with the ciphertext. This of course requires the receiver to
be able to recover the correct sequence number from the fraction transmitted with the ciphertext. This
is accomplished by using a sliding window for determining the nearest sequence number to the received
partial information. Remarkably, the window size is variable, e.g., can be between 1 and 4 bytes for QUIC,
and chosen by the sender when creating the ciphertext. Note that this approach is different from previous
approaches such as DTLS 1.2 which transmits the full nonce in clear.

The above window is required to determine the full packet number but does not necessarily provide
protection against replay attacks. For instance, sending the same ciphertext twice immediately would yield
the correct sequence number in both cases, since the window has not progressed too far the second time.
Therefore, both protocols use another (fixed-size) sliding window on the receiver side to detect replayed
ciphertexts. Both these replay-check windows reach backwards from the last valid sequence number on
the receiver’s side.
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We go on to establish that QUIC achieves the intended level of robustness with respect to its supported
in-window reordering with replay protection. Robustness of QUIC, beyond the appropriate encoding of
(truncated) nonces within the sliding window, relies on the underlying AEAD scheme’s integrity. Our
proof actually shows robustness and integrity in one go, so that we can immediately deduce that the
channel achieves the ROB-INT property above. Arguing that QUIC is IND-CPA is straightforward using
the confidentiality of the AEAD scheme, such that we can immediately conclude with our general results
that the protocol provides robust combined integrity and indistinguishability (ROB-INT-IND-CCA). We
achieve similar results in our robustness analysis of DTLS 1.3.

The robustness results for QUIC and DTLS 1.3 surface a noteworthy security degradation: The fact that
channels over unreliable networks need to keep the connection open when receiving (possibly maliciously)
disordered ciphertexts gives an adversary multiple forgery attempts. This induces a non-tight security
bound for robustness in the reduction to the underlying AEAD scheme’s integrity. Upon closer inspection,
this loss coincides with the security bounds of many AEAD schemes [Jon03, IOM12a, Pro14], including
those underlying DTLS 1.3 and QUIC, and also is reminiscent of experiences with practical attacks being
easier to mount on unreliable networks, e.g., as observed in the Lucky Thirteen attack on the (D)TLS
record protocols [AP13]. Maybe surprisingly, this higher security loss (compared to reliable-transport
protocols like TLS) so far has not been considered in prior DTLS versions and earlier drafts of the QUIC
and DTLS 1.3 protocols. We communicated our security bounds to the respective IETF working groups,
which led them to specify concrete forgery limits for packet protection for QUIC in draft-29 [TT20, Tho20a]
and for DTLS 1.3 in draft-38 [RTM20, Tho20b].

2 Preliminaries
We introduce some notation used throughout the paper. Additionally, we provide a brief recap of syntax
and security of authenticated encryption with associated data [Rog02].

2.1 Notation

We write a bit as b ∈ {0, 1} and a (bit) string as s ∈ {0, 1}∗ with |s| indicating its (binary) length. We
implicitly interpret natural numbers as bit strings (of appropriate length) and vice versa, depending on the
context, en-/decoding to/from big-endian binary encoding. For a bit string s and i, j ∈ [1, |s|], we denote
with s[i] the i-th bit of s and with s[i..j] the substring of s starting with the i-th bit and ending with, and
including, the j-th bit, where for j < i we set s[i..j] to be the empty string, denoted by ε. We write s 4 t
if s is a prefix of t (i.e., t[1..|s|] = s), s‖t for the concatenation and s⊕ t for the bit-wise XOR of s, t. For
a bit string s of length |s| = n and m ∈ N ∪ {0} we denote by s� m the string s[1 +m..n+m]‖0min(m,n)

of same length n resulting from shifting in m zeros from the right. Note that the notation also covers the
case that m > n and hence the resulting (shifted) substring s[1 +m..n+m] is outside of the original range
of the string. Hence this substring is initially empty and we concatenate a zero-string of length min(m,n)
to assign each position in s[1 +m..n+m] a bit 0.

Similarly, for lists s, t, s‖t denotes concatenation, with s ‖←− x being a shorthand for s ← s‖(x), i.e.,
appending x as the next entry to s. We write |s| for the number of entries, s[i] = si for the i-th entry
in s, starting with index 1, and s[i, j] the sub-list of s starting with the i-th entry and ending with the
j-th entry. We write x ∈ s if s[i] = x for some i and i = index(x, s) if this i is unique, () for the empty list,
s 4 t if s prefixes t. For an m-entries list of n-entries lists t = ((t11, t12, . . . , t1n), . . . , (tm1 , tm2 , . . . , tmn )) and
i ∈ [1, n] we denote by t〈i〉 = (t1i , . . . , tmi ) the m-entries list consisting of all i-th entries of t’s sublists.

We provide all security results in terms of concrete security but occasionally also need asymptotic
behaviors, e.g., when defining a general property like robustness (ROB). In this case it is understood that
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ExptINT-CTXT
AEAD,A :

1 K $←− K
2 C ← ∅
3 win← 0
4 AEnc,Dec

5 return win

Enc(N, AD, m):
6 c← Enc(K, N, AD, m)
7 C ← C ∪ {(N, AD, c)}
8 return c

Forge(N, AD, c):
9 if (N, AD, c) /∈ C and Dec(K, N, AD, c) 6= ⊥ then

10 win← 1
11 return ⊥

Figure 2: Multi-target authenticity of an AEAD scheme.

all algorithms, including the adversary, then receive the security parameter in unary. In this case terms
like “negligible” and “polynomial time” then refer to this security parameter.

2.2 Authenticated Encryption with Associated Data

Definition 2.1 (AEAD). An authenticated encryption with associated data (AEAD) scheme AEAD =
(Enc,Dec) is a pair of efficient algorithms associated with key, nonce, associated-data, and message spaces K,
N , H, resp.M such that:

• Deterministic encryption Enc : K×N ×H×M→ {0, 1}∗ takes as input a secret key K, a nonce N ,
associated data AD, and a message m, and outputs a ciphertext c.

• Deterministic decryption Dec : K × N × H × {0, 1}∗ → M ∪ {⊥} takes as input a secret key K,
a nonce N , associated data AD, and a ciphertext c, and outputs either a message m ∈ M or a
dedicated error symbol ⊥ indicating that the ciphertext is invalid.

We say that an AEAD scheme is correct if for all K ∈ K, N ∈ N , AD ∈ H and m ∈M, it holds that

Dec(K,N,AD,Enc(K,N,AD,m)) = m.

We define confidentiality (IND-CPA security) of an AEAD scheme as the distinguishing advantage of an
adversary querying inputs (N,AD,m0,m1), with |m0| = |m1|, to a left-or-right encryption oracle EncK,b

returning Enc(K,N,AD,mb) under a random key K ∈ K and bit b ∈ {0, 1}: AdvIND-CPA
AEAD,A = Pr[AEncK,b ⇒

b | K $←− K, b $←− {0, 1}]− 1/2.
Authenticity, or integrity of ciphertexts, INT-CTXT, of an AEAD scheme is classically [Rog02] de-

fined wrt. an adversary’s ability to forge a single ciphertext (i.e., to output a fresh triple (N,AD, c)
decrypting to a non-error). As we will see in our analyses of QUIC and DTLS 1.3, channels running
atop unreliable transport however have to tolerate multiple attempts of an attacker trying to break the
channels integrity. The reason is that the connection is not closed when receiving an invalid cipher-
text. We therefore define a more general, multi-target INT-CTXT notion for AEAD schemes in Figure 2
in which the adversary is permitted multiple forgery attempts through a (responseless) Forge oracle.
(The notion is equivalent to adaptively learning the forgery’s validity, cf. Bellare et al. [BN00, BGM04].)
We define the authenticity advantage of an adversary A making at most qF queries to its Forge ora-
cle as AdvINT-CTXT

AEAD,A (qF) = Pr
[
ExptINT-CTXT

AEAD,A ⇒ 1
]
. Clearly, AdvINT-CTXT

AEAD,A (1) corresponds to the classical
one-forgery authenticity by Rogaway [Rog02]. By a standard hybrid argument, we furthermore have
AdvINT-CTXT

AEAD,A (qF) ≤ qF ·AdvINT-CTXT
AEAD,A (1). This linear loss in the number of forgery attempts indeed surfaces in

the security bounds of many AEAD schemes, including AES-CCM [Jon03], AES-GCM [IOM12a, IOM12b],
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and ChaCha20+Poly1305 [Pro14] underlying DTLS 1.3 and QUIC. The forgery limits for packet encryp-
tion recently added to QUIC and DTLS 1.3 [TT20, Tho20a, RTM20, Tho20b] are determined based on
these AEAD schemes’ integrity bounds (see also [LP17]).

3 Channels
In this section we give an augmented definition of channel protocols which will allow us to capture channel
behavior over unreliable networks. As usual, a channel consists of three algorithms, for initialization,
sending messages on the sender side, and receiving messages on the receiver side. However, we introduce
two definitional twists that will allow us to capture different and possibly dynamic channel behaviors
(depending on the underlying network): First, we parameterize the definition of correctness to capture
different levels of supported variations in the ciphertext sequence (caused by the underlying network).
Second, we provide the sending algorithm with an additional, auxiliary information (beyond the message
to be transmitted) which is generic and recoverable from the ciphertext; this allows to capture dynamic
sending behavior (like the variable-length packet number encoding we will see in QUIC and DTLS 1.3)
that affects correctness properties.

Definition 3.1 (Channel protocol). A channel (protocol) Ch = (Init, Send,Recv, aux) with associated
sending and receiving state space SS resp. SR, message spaceM⊆ {0, 1}≤M for some maximum message
length M ∈ N, ciphertext space C, auxiliary information space X , error symbol ⊥ with ⊥ /∈ {0, 1}∗, consists
of three main algorithms and one helper algorithm defined as follows.

• Init() $−→ (stS , stR). This probabilistic algorithm outputs initial sending and receiving states stS ∈ SS,
resp. stR ∈ SR.

• Send(stS ,m, aux) $−→ (stS , c). On input a sending state stS ∈ SS, a message m ∈ M, and auxiliary
information aux ∈ X , this (possibly) probabilistic algorithm outputs an updated state stS ∈ SS and a
ciphertext (or error symbol) c ∈ C ∪ {⊥}.

• Recv(stR, c)→ (stR,m). On input a receiving state stR ∈ SR and a ciphertext c ∈ C, this deterministic
algorithm outputs an updated state stR ∈ SR and a message (or error symbol) m ∈M∪ {⊥}.

• aux(c) → aux. On input a ciphertext c ∈ C, this deterministic helper algorithm outputs the corre-
sponding auxiliary information aux ∈ X .

3.1 Correctness

We define correctness of a channel protocol in terms of a correctness experiment. In order to capture
the underlying network possibly arbitrarily dropping or reordering (yet not modifying) packets, we define
correctness with a “semi-malignant” adversary which determines the message inputs to the sender and the
arrival order of ciphertexts (but cannot modify or inject ciphertexts). In the experiment we specify cor-
rectness with respect to a supported sequence of received ciphertexts, formalized through a predicate supp.
The predicate supp(CS , DCR, c), on input a sequence of sent ciphertexts CS , a (combined) sequence of
so-far supportedly received ciphertexts and support decisions DCR, as well as a next ciphertext c to be
received, outputs a decision d ∈ D = N ∪ {true, false} whether this next ciphertext is supported, with d
being true (for simple predicates) or an index i ∈ N (for what we call index-recovering predicates) if c is
supported, and d = false otherwise.3 Formally, supp is a function

supp : C∗ × (D × C)∗ × C → D.
3Capturing correctness as a (Boolean) predicate-based experiment borrows from a similar approach taken by Back-

endal [Bac19], combining the level-set concepts from [RZ18] with channel correctness games as in [MP17, JS18].
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Exptcorrect(supp)
Ch,A :

1 (stS , stR) $←− Init()
2 CS , DCR, C∗R, T ← ()
3 win← 0
4 ASend,Recv

5 return win

Send(m, aux):
6 (stS , c) $←− Send(stS , m, aux)
7 if aux(c) 6= aux then
8 win← 1 // incorrect aux
9 CS

‖←− c

10 T
‖←− (m, c)

11 return c

Recv(j):
12 if j > |T | then
13 return  
14 (m, c)← T [j]
15 d← supp(CS , DCR, c)
16 C∗R

‖←− c

17 if C∗R 4 CS and d = false then
18 win← 1 // must support in-order
19 if d = false then
20 return  // we’re only concerned with re-

ceiving supported ciphertexts
21 (stR, m′)← Recv(stR, c)
22 if m′ 6= m then
23 win← 1 // incorrect message
24 DCR

‖←− (d, c)
25 return m′

Figure 3: Experiment for correctness wrt. support class supp of a channel protocol Ch.

We require that supp(CS , DCR, c) = false for any support predicate supp, sequences CS and DCR, and
any c /∈ CS . This requirement encodes that supp is a correctness predicate and should only be true for
genuinely sent ciphertexts. Correctness wrt. supp further encodes that supp must at least support channel
ciphertext sequences delivered perfectly in-order.

The correctness experiment Exptcorrect(supp)
Ch,A in Figure 3 initializes the channel state, three empty lists

CS , DCR, and T for keeping track of processed data, and a flag win which shall indicate the adversary’s
success in violating correctness. Then the adversary is run with access to both Send and Recv oracles,
providing interfaces to sending/receiving, with the restriction that Recv may be queried only on cipher-
texts output by Send which are supported.4 (Recall that correctness captures the channel’s operation
under normal, yet unpredictably unreliable network behavior, hence the restriction to a “semi-malignant”
adversary.) The adversary’s goal is to violate correctness wrt. supp by either (1) making aux incorrectly
recover the auxiliary information used in Send (Line 7); (2) making supp reject a ciphertext in a perfectly
in-order sequence (Line 18); or (3) making Recv output an incorrect message on input a supported ci-
phertext (Line 22, this is the usual, core correctness requirement). More specifically, the Send and Recv
oracles work as follows:

Send. On input a messagem and auxiliary information aux the Send algorithm is run to obtain a ciphertext
and an updated sending state. The oracle then enforces condition (1) from above, checking that
aux correctly recovers the auxiliary information from the ciphertext; otherwise, the flag win is set
to 1 indicating that the adversary has won. The ciphertext is then appended to the list of sent
ciphertexts CS and, together with m, stored in the lookup table T . Finally, the oracle returns the
ciphertext to the adversary.

Recv. The oracle is invoked with an index j indicating that the j-th ciphertext output by Send should
be received. (This encodes the “semi-malignant” adversary capturing the unreliable network, which
reorders but does not modify or inject ciphertexts.) In case the index j is outside of the range, the

4Disallowed requests are rejected by returning a dedicated symbol  /∈ {0, 1}∗∪{⊥}; here and in all following experiments,
such rejection happens purely as bookkeeping and is decided on information known to the adversary. As such, the dedicated
symbol merely serves improved readability; returning ⊥ would be equivalent.

9



oracle rejects (with  ). Otherwise, the oracle considers the message-ciphertext pair (m, c) from T
at position j, and determines the support decision d for that ciphertext. It then checks that, if
all ciphertexts C∗R so far (including c) have been received in the same order as they were sent,
supp decides on true, declaring the adversary won by violating condition (2) from above otherwise
in Line 18. Further, nothing is done (and the query rejected) if c is not supported; this encodes
that correctness is concerned with the correct receipt of supported ciphertexts only. If supported,
c is now received through Recv and the resulting message m′ compared with the sent message m;
the adversary wins if the two differ, encoding the main correctness property (condition (3) above)
that receiving supported ciphertexts (only) must yield the correct sent messages. Finally, DCR is
appended with (d, c) and m′ returned to the adversary.

Definition 3.2 (Correctness of channels). Let Ch = (Init, Send,Recv, aux) be a channel, supp a correctness
support predicate, and experiment Exptcorrect(supp)

Ch,A for an adversary A be defined as in Figure 3.
We define the advantage of A in breaking correctness wrt. supp of Ch as

Advcorrect(supp)
Ch,A := Pr

[
Exptcorrect(supp)

Ch,A ⇒ 1
]
,

and say that Ch is (perfectly) correct wrt. supp if Advcorrect(supp)
Ch,A = 0 for any (unbounded) A.

Note that one can easily define ε-correctness of the channel by requiring that the above advantage term
is bounded by ε.

3.2 Examples of Support Classes

In the following, we discuss a few examples of different support classes which reflect different protocol
purposes and environments (in terms of accepted reordering and replay protection). The examples illustrate
the versatility of our supported predicate approach through a series of more and more complex designs;
to assist understanding we underline for each predicate the major change wrt. to the previous one. Our
examples in particular encompass the Internet security protocols DTLS [RM12, RTM20] and QUIC [IT20,
TT20], but additionally include conceivable alternative support classes of channel protocols; some also link
to authentication hierarchy levels put forward by Boyd et al. [BHMS16].

To ease readability, let us define the following shorthands. We write CR = DCR〈2〉 and DR = DCR〈1〉
for the separated sequences of supportedly received ciphertexts and corresponding support decisions, re-
spectively, in DCR. For index-recovering support predicates (i.e., DR ⊆ N), we furthermore let midx =
max(DR) be the largest recovered index among all supportedly received ciphertexts, and nxt = midx + 1
denote the “next expected” ciphertext index on the receiver’s end (one past midx). Finally, when defining
support predicates capturing sliding windows, we often have to check if a ciphertext c is contained within
a certain window CS [x, y] in the sequence of sent ciphertexts CS , and if so, determine that occurrence’s
index within the full CS . For this, we define the following check-index shorthand:

cindex(c, CS [x,y]) :=
{

index(c,CS [x,y])+x−1 if c∈CS [x,y]
false otherwise

We are now ready to specify the support classes. Note that, in particular, all support predicates adhere
to the requirement that supp(CS , DCR, c) = false for any support predicate supp, sequences CS and DCR,
and any c /∈ CS ; i.e., they are false for any non-genuine ciphertext.

No ordering. A channel that accepts packets in any order where the packets can also be duplicates; e.g.,
DTLS 1.2 without replay protection [RM12]. This is equivalent to Level 1 in the authentication
hierarchy of Boyd et al. [BHMS16], essentially capturing plain authenticated encryption.
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The corresponding predicate only ensures that each ciphertext was genuinely sent. Formally,

suppno(CS , DCR, c):

1 return
[
c ∈ CS

]
No ordering with global anti-replay. A channel that accepts packets in any order, but rejects dupli-

cates. This is equivalent to Level 2 in [BHMS16].
The corresponding predicate ensures that each ciphertext was genuinely sent and not received before.
Formally,

suppno-r(CS , DCR, c):

1 return
[
c ∈ CS ∧ c /∈ CR

]
While Boyd et al. [BHMS16] classify DTLS 1.2 with replay protection in their Level 2 (equivalent
to suppno-r), DTLS 1.2 indeed suggests a sliding anti-replay window [RM12, Section 4.1.2.6] and
hence cannot provide global (anti-)replay decisions. Indeed, DTLS 1.2 would not achieve correctness
wrt. suppno-r since it rejects old ciphertexts past its replay window which suppno-r would require to
be supported. We hence consider a more fine-grained approach towards replay protection next.

No ordering with anti-replay window. A channel that accepts packets in a window of size wr be-
fore midx (the highest last received packet index), or newer, rejecting duplicates; e.g., DTLS 1.2
with replay protection [RM12]. Here, wr defines the size of the anti-replay window in which the
channel checks for duplicates; any ciphertext older than what fits in this sliding window is conserva-
tively rejected.
The corresponding predicate ensures that each ciphertext was genuinely sent, not received before,
and is not older than wr positions before the highest supportedly received ciphertext. Formally,

suppno-r[wr](CS , DCR, c):

1 i← cindex(c, CS [midx − wr, |CS |]) // is c∈CS at index≥midx−wr?

2 if i ∈ DR then i← false // do not accept c twice at index i

3 return i

Observe that an infinite anti-replay window equals global anti-replay, i.e., suppno-r[∞] = suppno-r.

Static sliding window. A channel that accepts packets in any order within a sliding window around the
next expected ciphertext index nxt, reaching back wb positions and forward wf positions. Formally,

suppsw[wb,wf ](CS , DCR, c):

1 return cindex(c, CS [n− wb, n+ wf ])

Observe that an infinite static window equals no ordering and that a zero-sized static window equals
strict ordering, i.e., suppsw[∞,∞] = suppno and suppsw[0,0] = suppso.

Static sliding window with anti-replay window. A channel that accepts packets in any order within
a sliding window (reaching wb positions backward and wf positions forward) around the next expected
ciphertext index, if they additionally check as non-duplicates within an anti-replay window of size wr.
The corresponding predicate combines wr and wb in its in-window check since the received ciphertext
index must be greater than or equal to both nxt− wb and midx − wr = nxt− (wr + 1). Formally,
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suppsw[wb,wf ]-r[wr](CS , DCR, c):

1 i← cindex(c, CS [nxt−min(wb, wr + 1), nxt + wf ])
2 if i ∈ DR then i← false // do not accept c twice at index i

3 return i

Observe that an infinite static window equals no ordering with the same anti-replay window, i.e.,
suppsw[∞,∞]-r[wr] = suppno-r[wr] for any wr.

Dynamic sliding window with anti-replay window. A channel that accepts packets in any order
within a sliding window (around the expected next ciphertext index nxt) that is dynamically deter-
mined for each sent ciphertext, if they additionally check as non-duplicates within an anti-replay
window of size wr; e.g., DTLS 1.3 with replay protection [RTM20] and QUIC [IT20, TT20].
We assume the dynamic backward and forward window size wb, resp. wf , is encoded in the auxiliary
information provided to Send as tuple aux = (wb, wf ) ∈ X . (For concrete instances see the treatments
of QUIC and DTLS 1.3 in Section 6 and Section 7, respectively.) The supported predicate then
individually determines for each ciphertext c whether it was received within the dynamic window de-
termined by wc

b, wc
f as specified for c. Again, the backward window combines wc

b and the anti-replay
window size wr. Formally,
suppdw-r[wr](CS , DCR, c):

1 (wc
b, w

c
f )← aux(c)

2 i← cindex(c, CS [nxt−min(wc
b, wr + 1), nxt + wc

f ])
3 if i ∈ DR then i← false // do not accept c twice at index i

4 return i

Observe that for a single-entry auxiliary information space X = {(wb, wf )}, dynamic and static
sliding window (with same replay window) coincide, i.e., suppdw-r[wr] = suppsw[wb,wf ]-r[wr] for any wr.

Note that one cannot make a fair comparison between the support predicates. For example, the support
predicate suppno is “more robust” when receiving ciphertexts compared to suppno-r[wr] since the latter one
rejects replays. However, this does not entail that a protocol secure wrt. the former is “better,” but rather
illustrates that the usage of a support predicate primarily depends on the network and application context.

The need to handle non-unique ciphertexts. Prior work on channels over unreliable networks
[BHMS16, RZ18] defined somewhat simpler notions based on the (implicit) assumption that channel ci-
phertexts are unique. The sliding-window approach and packet encoding specified for QUIC and DTLS 1.3
however requires us to handle non-unique ciphertexts. As we will see in more detail in Sections 6 and 7,
both protocols transmit truncated packet numbers as part of the overall channel ciphertext, which means
that, in principle, such ciphertexts are unique only within a sliding window, but may repeat across differ-
ent sliding windows—without hindering correct receipt. While one can argue such repetitions are unlikely
based on the core AEAD ciphertexts not colliding, this would mean to take such security properties into
account even for correctness. Our more fine-grained approach instead allows the supp predicate to re-
cover indices, enabling us to precisely capture the nature of these sliding-window approaches and their
(unconditionally) correct functioning.

A Note on TLS. We focus on modeling robust channel behavior for unreliable transport. For com-
pleteness we discuss in Appendix A how reliable-transport channels like TLS can be captured through
extended support predicates, relating it further to the authentication hierarchy of Boyd et al. [BHMS16].
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ExptROB(supp)
Ch,A :

1 (stS , stR) $←− Init()
2 str

R ← stc
R ← stR

3 CS , DCR ← ()
4 win← 0
5 ASend,Recv

6 return win

Send(m, aux):
7 (stS , c) $←− Send(stS , m, aux)
8 CS

‖←− c

9 return c

Recv(c):
10 (str

R, mr)← Recv(str
R, c)

11 mc ← ⊥
12 d← supp(CS , DCR, c)
13 if d 6= false then
14 (stc

R, mc)← Recv(stc
R, c)

15 DCR
‖←− (d, c)

16 if mr 6= mc then
17 win← 1
18 return ⊥

Figure 4: Experiment for robustness wrt. support class supp of a channel protocol Ch.

4 Robust Channels
We now introduce our new notion of robustness for channel protocols. With this notion, we aim to model
behavior that is already present in protocols like QUIC [IT20, TT20] and DTLS 1.3 [RTM20], namely that
ciphertexts can be delivered out-of-order within a certain (sliding) window, and in addition the receiver
is robust against any interleaved ciphertext which do not fit into the window (or are even maliciously
crafted by a network adversary). Robustness here refers to a channel’s property to filter out any misplaced
ciphertexts and correctly receive those ciphertexts that fit into the supported order.

We define robustness according to Figure 4. The experiment processes the received sequence of ci-
phertexts (into which the adversary is free to inject forged ciphertexts) through two separate receiving
instances: The first, “real” receiving instance (run on state str

R) is called on every received ciphertext
(Line 10). The second, “correct” receiving instance (run on state stc

R) is only given those ciphertexts that
are supported according to the predicate supp (Lines 12 and 14). Robustness then demands that, on any
supported ciphertext, the output of the “correct” receiving instance never differs from the “real” instance’s
output.

To unpack the intuition behind our robustness formalism, recall first that we require supp(CS , DCR,
c) = false on any non-genuine ciphertext c /∈ CS . In the robustness experiment, the “correct” receiving
instance is hence only called on (and DCR augmented with) genuine and supported ciphertexts c ∈
CS . Observe that this exactly corresponds to the Recv oracle’s behavior in the correctness experiment
(Figure 3), where the adversary may only submit genuine and supported ciphertexts. Correctness hence
ensures that the “correct” receiving instance (run on state stc

R) outputs the expected (i.e., correct) messages,
and so, transitively, the “real” instance, too, does so on supported ciphertexts.

Definition 4.1 (Robustness of channels, ROB). Let Ch = (Init,Send,Recv) be a channel, supp a correctness
support predicate, and experiment ExptROB(supp)

Ch,A for an adversary A be defined as in Figure 4. We define
the advantage of A in breaking robustness wrt. supp of Ch as

AdvROB(supp)
Ch,A := Pr

[
ExptROB(supp)

Ch,A ⇒ 1
]
,

and say that Ch is robust wrt. supp if AdvROB(supp)
Ch,A is negligible for any polynomial-time A.

5 Robustness, Integrity, and Indistinguishability
In this section we relate the notion of robustness to the classical notions of channel integrity and indistin-
guishability.
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Recv(c) // robustness:
10 (str

R, mr)← Recv(str
R, c)

11 mc ← ⊥
12 d← supp(CS , DCR, c)
13 if d 6= false then
14 (stc

R, mc)← Recv(stc
R, c)

15 DCR
‖←− (d, c)

17 if mr 6= mc then
18 win← 1
19 return ⊥

Recv(c) // integrity:
20 (stR, m)← Recv(stR, c)

22 d← supp(CS , DCR, c)
23 if d 6= false then

25 DCR
‖←− (d, c)

26 else
27 if m 6= ⊥ then
28 win← 1
29 return ⊥

Recv(c) // integrity (alternative):
30 (str

R, mr)← Recv(str
R, c)

31 mc ← ⊥
32 d← supp(CS , DCR, c)
33 if d 6= false then
34 (stc

R, mc)← Recv(stc
R, c)

35 DCR
‖←− (d, c)

36 else // mc = ⊥

37 if mr 6= mc then

38 win← 1
39 return ⊥

Recv(c) // robust integrity:
40 (str

R, mr)← Recv(str
R, c)

41 mc ← ⊥
42 d← supp(CS , DCR, c)
43 if d 6= false then
44 (stc

R, mc)← Recv(stc
R, c)

45 DCR
‖←− (d, c)

47 if mr 6= mc then

48 win← 1
49 return ⊥

Figure 5: Receiver oracles in the experiments for robustness (upper left), integrity (upper right), alternative
integrity (lower left) and robust integrity (lower right) wrt. support class supp of a channel protocol Ch.
Differences are highlighted in grey boxes .

5.1 Defining Robustness and Integrity

Robustness of a channel allows to make a statement about the behavior of the channel on supported
sequences, even if there are malicious ciphertexts in-between. We can also define a notion of integrity of
channels over unreliable networks. This notion says that the receiver should not decrypt any ciphertext to
a valid message, unless the ciphertext is supported. We first give a “classical” definition of integrity and
then introduce an equivalent version which is cast in the style of our notion of robustness.

On the upper right-hand side of Figure 5, we present the notion of integrity, and in the lower left-hand
side our alternative notion of integrity. Note that the given experiment ExptINT(supp)

Ch,A only differs in the
receive oracle compared to the robustness experiment (cf. Figure 4) and hence we simply provide the
details of the receive oracle as a description of the experiment. In more detail, in this experiment we check
only on unsupported ciphertexts if they decrypt to a valid message mr different from mc. The latter is
always set to ⊥ in Line 31 and not changed for unsupported ciphertexts, because the if-clause in Line 33
is skipped.

We first argue that the notions of integrity, the classical one and our alternative notion, are equivalent.
This is easy to see since in both experiments the receiver’s oracle behavior on supported ciphertexts
is identical—in our notion one only performs the redundant step of decrypting—and on unsupported
ciphertexts the receiver checks the decrypted message against ⊥. Hence, we can define integrity with
respect to either receive oracle:
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Definition 5.1 (Integrity of channels, INT ). Let Ch = (Init, Send,Recv, aux) be a channel, supp a support
predicate, and experiment ExptINT(supp)

Ch,A for an adversary A be defined as on the upper right hand side or
lower left hand side in Figure 5. We define the advantage of A in breaking integrity wrt. supp of Ch as

AdvINT(supp)
Ch,A := Pr

[
ExptINT(supp)

Ch,A ⇒ 1
]
.

We say that Ch provides integrity wrt. supp if AdvINT(supp)
Ch,A is negligible for any polynomial-time A.

The lower right hand side of Figure 5 shows a combination of both notions which we call robust integrity.
The difference compared to integrity is that we now check if the message decrypts to the expected value
(correct mc, resp. mc = ⊥) on both supported and unsupported ciphertexts.

Definition 5.2 (Robust integrity of channels, ROB-INT). Let Ch = (Init, Send,Recv, aux) be a channel,
supp a support predicate, and experiment ExptROB-INT(supp)

Ch,A for an adversary A be defined as on the lower
right hand side in Figure 5. We define the advantage of A in breaking robust integrity wrt. supp of Ch as

AdvROB-INT(supp)
Ch,A := Pr

[
ExptROB-INT(supp)

Ch,A ⇒ 1
]
,

and say that Ch achieves robust integrity wrt. supp if AdvROB-INT(supp)
Ch,A is negligible for any polynomial-time

adversary A.

5.2 Relating Robustness and Integrity

We next show that robustness and integrity imply robust integrity and vice versa. We start by showing
that robust integrity implies the other two notions.

Proposition 5.3 (ROB-INT⇒ ROB ∧ INT). Let Ch = (Init, Send,Recv, aux) be a channel, supp a support
predicate. Then for any adversary A we have

AdvROB(supp)
Ch,A ≤ AdvROB-INT(supp)

Ch,A , AdvINT(supp)
Ch,A ≤ AdvROB-INT(supp)

Ch,A .

Proof. The proposition is straightforward from the experiments. Consider an adversary against robustness
resp. against integrity. Consider the first query c to the receive oracle which causes win to become true.
Up to this point all three experiments for integrity, robustness, and robust integrity display an identical
behavior, always returning ⊥ in the receiver’s oracle and keeping the same lists CS , DCR of sent ciphertexts
and supportedly received ciphertexts and support decisions. If an adversary now triggers win to become
1 in either the robustness experiment (on a supported ciphertext) or the integrity experiment (on an
unsupported ciphertext), then the if-clause in Line 47 of the robust-integrity experiment (cf. Figure 5) also
sets win to 1.

Robustness and integrity individually are incomparable, though. Assume that we have a channel which
processes supported ciphertexts as expected, but on unsupported ciphertexts always outputs the message
m = 0. This channel would be robust because it works correctly on supported ciphertexts, but it does
not provide integrity nor robust integrity, because it returns the message m = 0 6= ⊥ on all unsupported
ciphertexts. Note that this channel would nonetheless be correct.

Next, assume that we have a channel which, when receiving the first unsupported ciphertext will
output ⊥ but from then on decrypt all supported ciphertexts to message m = 0. This behavior is encoded
in the channel’s state. This channel is still correct because the bad event is never triggered on genuine
ciphertext sequences. Furthermore, the channel provides integrity because on all unsupported ciphertexts
the behavior correctly returns errors ⊥. However, the channel clearly does not provide robustness nor
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robust integrity because of the wrong decryption on supported ciphertexts after the first unsupported
ciphertext, returning m = 0 6= ⊥ on all such ciphertexts.

The above examples show that robustness or integrity alone do not suffice to guarantee robust integrity.
In combination, though, they achieve the stronger notion as the next proposition shows.

Proposition 5.4 (ROB ∧ INT⇒ ROB-INT). Let Ch = (Init, Send,Recv, aux) be a channel, supp a support
predicate. Then for any adversary A we have

AdvROB-INT(supp)
Ch,A ≤ AdvROB(supp)

Ch,A + AdvINT(supp)
Ch,A .

Proof. Assume that we have an adversary A which causes win to become true because the if-clausemr 6= mc

in Line 47 of Figure 5 is satisfied. Consider the first query where this happens. Up to this point all
experiments behave identically. In particular, the sequence DCR is the same in all runs in all cases. This
implies that the set of supported ciphertexts is also identical up till then. There are now two cases when
the robust integrity adversary triggers the bad event:

• Either the call is for a supported ciphertext c, in which case we will run the “correct” receiver to get
mc and will thus also reach Line 17 in the robustness experiment (cf. Figure 5) for the same value
mc, setting win to true there.

• Or, the call is for an unsupported ciphertext c, in which case mc = ⊥ and we will reach Line 37 in
the integrity experiment (cf. Figure 5), and win will become true there.

Hence, any break in the robust integrity experiment means that the adversary breaks robustness or in-
tegrity, such that we can bound the advantage for the former by the sum of the advantages for the
latter.

We give a more formal separation of robustness and integrity here, based on the support predicates for
no ordering (suppno) and no ordering with global anti-replay (suppno-r) as put forward in Section 3.2.

Proposition 5.5 (ROB 6⇒ INT). Let Ch = (Init,Send,Recv, aux) be a perfectly correct, robust, and in-
tegrous channel wrt. support predicate suppno with unique ciphertexts. Then there is a channel protocol
Ch∗ = (Init∗,Send∗,Recv∗, aux∗) such that for any adversary A, there exist adversaries B and C such that

Advcorrect(suppno-r)
Ch∗,A = 0, AdvROB(suppno-r)

Ch∗,A = AdvROB(suppno)
Ch,B ,

but
AdvINT(suppno-r)

Ch∗,C = 1.

Proof. The new channel Ch∗ only modifies the receiver algorithm Recv from Ch and leaves Init, Send and
aux essentially unchanged, only the initial receiver state becomes st∗R = (stR, ()). Define

Recv∗(st∗R, c):
1 parse st∗R = (stR, CR)
2 (stR, m)← Recv(stR, c)
3 if c /∈ CR ∧m 6= ⊥ then
4 CR

‖←− c

5 else
6 m← 0
7 return ((stR, CR), m)
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Observe that since Ch is correct, robust and integrous, Recv outputs m 6= ⊥ if and only if suppno(CS ,
DCR, c) =

[
c ∈ CS

]
= true. The check in Line 3 exactly corresponds to the check by suppno-r(CS , DCR,

c) =
[
c ∈ CS ∧ c /∈ CR

]
.

We first argue that correctness is preserved. This follows as the receiver in the correctness experiment
is only invoked on supported ciphertexts, in which case Recv∗ behaves like Recv. The sender-side and
in-order receiving conditions are satisfied as Send is unchanged and by ciphertext uniqueness.

For robustness, the output of Recv∗ deviates (m ← 0) from that of Recv only on unsupported cipher-
texts, without modifying stR. Since any ciphertext supported by suppno-r is also supported by suppno, any
robustness violation on Ch∗ translates to one on Ch via a reduction B relaying the Recv calls to its Recv
oracle.

Finally consider an adversary C against the integrity of Ch∗ which sends an arbitrary ciphertext c twice
to the receiver oracle. The second query will be unsupported (as c ∈ CR at this point), so Recv∗ returns
the message 0. The integrity game then sets win to true as mr = 0 6= ⊥ = mc.

Proposition 5.6 (INT-IND-CCA 6⇒ ROB). Let Ch = (Init, Send,Recv, aux) be a perfectly correct, robust,
and INT-IND-CCA-secure channel wrt. support predicate suppno with unique ciphertexts. Then there is a
channel protocol Ch∗ = (Init∗,Send∗,Recv∗, aux∗) such that for any adversary A, there exist adversaries B
and C such that

Advcorrect(suppno-r)
Ch∗,A = 0, AdvINT-IND-CCA(suppno-r)

Ch∗,A = AdvINT-IND-CCA(suppno)
Ch,B ,

but
AdvROB(suppno-r)

Ch∗,C = 1.

Proof. The channel protocol Ch∗ alters the receiver algorithm Recv from Ch and leaves Init, Send and aux
unmodified, only the initial receiver state becomes st∗R = (stR, (), 0). Define

Recv∗(st∗R, c):
1 parse st∗R = (stR, CR, f)
2 (stR, m)← Recv(stR, c)
3 if c ∈ CR then
4 m← ⊥
5 if c /∈ CR ∧m 6= ⊥ then
6 CR

‖←− c

7 if f = 1 then
8 m← 0
9 else

10 f ← 1
11 return ((stR, CR, f), m)

As in the proof of Proposition 5.5, the check in Line 5 mimics the check by suppno-r(CS , DCR, c) =
[
c ∈

CS ∧ c /∈ CR

]
.

Correctness is preserved because the receiver in the correctness experiment is only executed on sup-
ported ciphertexts, such that the bit f remains 0 and the receiver algorithms answers faithfully for all
queries. The sender-side and in-order receiving conditions are satisfied as Send is unchanged and by
ciphertext uniqueness.

In order to violate INT-IND-CCA security, the adversaryA needs to make Recv∗ output a messagem 6= ⊥
on an unsupported ciphertext c, i.e., for c /∈ CS or c ∈ CR. In the latter case, Recv∗ always outputs ⊥.
Otherwise, it relays the output of Recv, so if c /∈ CS , Recv outputting m 6= ⊥ is a violation of the
INT-IND-CCA security of Ch wrt. suppno. A simple relaying reduction B hence yields the claim.
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ExptIND-CPA
Ch,A :

1 (stS , stR) $←− Init()
2 b $←− {0, 1}
3 b′ ← ASend

4 return b = b′

Send(m0, m1, aux):
5 if |m0| 6= |m1| then
6 return  
7 (stS , c) $←− Send(stS , mb, aux)
8 return c

Figure 6: Experiment for IND-CPA of a channel protocol Ch.

The adversary C against robustness first calls the sender about the message m = 1 to get a ciphertext
c. Then it calls the receiver oracle on c twice. Since this ciphertext is supported in the first call and
unsupported in the second call, the latter turns the receiver’s state st∗,rR to (stR, (c), 1), but leaves st∗,cR

unaltered from the previous valid call. Then the adversary calls the sender about message m = 1 again
to get a ciphertext c′ and forwards c′ to the receiver oracle. According to correctness of the original
channel the ciphertext c′ must be supported and result in the message mc = 1; the reason is that from
the receiver’s viewpoint with state stc

R it has received two genuine ciphertexts so far such that correctness
ensures that the message decrypts correctly. Our modified receiver state st∗,rR , on the other hand, yields
mr = 0 by construction, because f = 1 at this point. Hence our adversary wins the robustness game with
probability 1.

Note that Proposition 5.6 in particular separates INT 6⇒ ROB, since INT-IND-CCA⇒ INT.

5.3 Robustness and Chosen Ciphertext Security

Let us begin this section with defining IND-CPA security.

Definition 5.7 (IND-CPA). Let Ch = (Init, Send,Recv) be a channel and experiment ExptIND-CPA
Ch,A for an

adversary A be defined as in Figure 6.
We define the advantage of A in breaking indistinguishability of chosen plaintexts of Ch as

AdvIND-CPA
Ch,A := Pr

[
ExptIND-CPA

Ch,A ⇒ 1
]
− 1

2 ,

and say that Ch is IND-CPA-secure if AdvIND-CPA
Ch,A ≈ 0 for any polynomial-time A.

We next define ROB-INT-IND-CCA for channels which follows the paradigm to combine confidentiality
and integrity into a single experiment, called IND-CCA3 in [Shr04]. The formal details are displayed
in Figure 7. The idea is to return a message different from m by the receiver oracle if the adversary has
broken robustness or integrity via the submitted ciphertext c, and if b = 1 (whereas we always return ⊥
if b = 0). This enables the adversary to determine the bit b when breaking robust integrity. For this we
overwrite mr with ⊥ if mr = mc and no break has occurred (Line 21). But if the messages are distinct we
return the message which is not ⊥ (Line 23).

Definition 5.8 (Robust integrity/indistinguishability of channels, ROB-INT-IND-CCA ). Let Ch = (Init,
Send,Recv, aux) be a channel, supp a support predicate, and experiment ExptROB-INT-IND-CCA(supp)

Ch,A for an
adversary A be defined as in Figure 7. We define the advantage of A in breaking robust integrity/in-
distinguishability of chosen ciphertexts wrt. supp of Ch as

AdvROB-INT-IND-CCA(supp)
Ch,A := Pr

[
ExptROB-INT-IND-CCA(supp)

Ch,A ⇒ 1
]
− 1

2 ,

and say that Ch is ROB-INT-IND-CCA-secure wrt. supp if AdvROB-INT-IND-CCA(supp)
Ch,A is negligible for any

polynomial-time adversary A.
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ExptROB-INT-IND-CCA(supp)
Ch,A :

1 (stS , stR) $←− Init()
2 b $←− {0, 1}
3 str

R ← stc
R ← stR

4 CS , DCR ← ()
5 b′ ← ASend,Recv

6 return b = b′

Send(m0, m1, aux):
7 if |m0| 6= |m1| then
8 return  
9 (stS , c) $←− Send(stS , mb, aux)

10 CS
‖←− c

11 return c

Recv(c) // Rob-INT-IND-CCA:
12 (str

R, mr)← Recv(str
R, c)

13 mc ← ⊥
14 if b = 0 then
15 mr ← ⊥
16 else
17 d← supp(CS , DCR, c)
18 if d 6= false then
19 (stc

R, mc)← Recv(stc
R, c)

20 DCR
‖←− (d, c)

21 if mr = mc then
22 mr ← ⊥
23 elseif mr = ⊥ and mc 6= ⊥ then
24 mr ← mc

25 return mr

Figure 7: Experiment for ROB-INT-IND-CCA wrt. support class supp of a channel protocol Ch.

The next proposition says that a channel achieves ROB-INT-IND-CCA if it has both robust integrity
(ROB-INT) and IND-CPA confidentiality.

Proposition 5.9 (ROB-INT∧ IND-CPA⇒ ROB-INT-IND-CCA). Let Ch = (Init,Send,Recv, aux) be a chan-
nel, supp a support predicate. Then for any adversary A there exist adversaries B and C with comparable
run time such that

AdvROB-INT-IND-CCA(supp)
Ch,A ≤ AdvROB-INT(supp)

Ch,B + AdvIND-CPA
Ch,C .

Proof. Consider an attacker A in experiment ExptROB-INT-IND-CCA(supp)
Ch,A against the ROB-INT-IND-CCA

property. Assume that we change A’s experiment by letting the receiver oracle in the experiment al-
ways return ⊥. We claim that the difference is negligible from A’s perspective, since the oracle never
returns a message m 6= ⊥ with overwhelming probability. We argue this by embedding A into an ad-
versary B playing the robust integrity experiment ExptROB-INT(supp)

Ch,B . If the receiver oracle in A’s original
attack ever returns m 6= ⊥ then we claim that B immediately breaks (robust) integrity.

Adversary B initially picks a bit b $←− {0, 1} and starts a simulation of A. Any Send call (m0,m1, aux)
of A is answered by first checking that |m0| = |m1|, returning  if not, and otherwise forwarding (mb, aux)
to B’s own oracle Send, feeding the reply back to A. Adversary B answers any query c of A to the receiver
oracle as follows: If b = 0 then B immediately returns ⊥. Else it sends c to its own oracle Recv and
receives ⊥. It returns ⊥ to A.

First observe that, up to the first query of A to Recv yielding a message m 6= ⊥ as output, B’s
simulation perfectly mimics the actual attack from A’s point of view in the sense that even the concrete
executions match. In particular, the lists of sent and received ciphertexts are identical. Assume that A
in its original attack at some point obtains a response distinct from ⊥ from the (genuine or simulated)
receiver oracle for a ciphertext c. This can only happen if b = 1 and

• the decrypted message mr is different from ⊥ and from mc (Line 21), or

• mr = ⊥ but mc 6= ⊥ (Line 23).

In this case, the receiver’s oracle of B will evaluate the condition mr 6= mc in Line 47 (cf. Figure 5) to true
and make win become 1. It follows that B wins against robust integrity if A ever makes the receiver oracle
return a message m 6= ⊥.
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Given that we have now turned the receiver oracle in A’s attack into the always rejecting ⊥(·) oracle,
we can easily wrap A into an adversary C against the IND-CPA property. For this we let C answer each
receiver query of A with ⊥, and let C relay all send queries faithfully. It follows that A’s advantage is
bounded by C’s advantage.

In the following, we show that robust integrity (ROB-INT) and IND-CPA are both necessary to achieve
the ROB-INT-IND-CCA property.

Proposition 5.10 (ROB-INT-IND-CCA ⇒ ROB-INT ∧ IND-CPA). Let Ch = (Init,Send,Recv, aux) be a
channel, supp a support predicate. Then for any adversary A there exists adversary B with comparable run
time such that we have

4 · AdvROB-INT(supp)
Ch,A ≤ AdvROB-INT-IND-CCA(supp)

Ch,B ,

AdvIND-CPA
Ch,A ≤ AdvROB-INT-IND-CCA(supp)

Ch,B .

Proof. Clearly, if we can break IND-CPA security of the channel, then we also break ROB-INT-IND-CCA
security (by omitting calls to the receiver oracle). We next argue that we can break ROB-INT-IND-CCA
if we can break robust integrity, too. Assume that we have an attacker A against robust integrity. We
build an attacker B against the ROB-INT-IND-CCA property. Algorithm B simulates A by answering each
call (m, aux) to the Send oracle by forwarding (m,m, aux) to its own Send oracle and handing back the
ciphertext c. Each of A’s call to Recv is forwarded by B to its own receiver oracle, and B returns ⊥ to
A. If the receiver oracle at some point returns a message m 6= ⊥ to B then B immediately outputs 1; in
any other case it outputs a random bit.

Note that B perfectly simulates the environment for A’s attack, independently of the secret bit b. By
assumption, A hence breaks robust integrity in the simulation with the same probability. Whenever this
happens and b = 1 then B obtains a message m 6= ⊥ and thus outputs b′ = 1. If we denote this event,
that A breaks integrity and that b = 1, by Succ, then the probability of B predicting b correctly if lower
bounded by the sum that the event happens plus the probability that the event does not occur but B’s
random guess is correct:

Pr[b′ = b] ≥ Pr[Succ] + 1
2 · Pr[Succ]

= 1
2 + 1

2 · Pr[Succ]

≥ 1
2 + 1

4 · AdvROB-INT(supp)
Ch,A ,

where the latter follows since A’s success probability is independent of the random bit b in B’s experiment.

We next show that instead of starting from IND-CPA and using robust integrity to achieve
ROB-INT-IND-CCA, we can also add robustness to a channel which already provides INT-IND-CCA to
arrive there. This gives an alternative construction and proof method for such channels. One option
to show this would be to argue that INT-IND-CCA implies integrity. This would allow to conclude that
robustness with integrity implies robust integrity, and that the latter yields ROB-INT-IND-CCA together
with the IND-CPA security of the channel. Here, we show the security of the transform directly starting
from INT-IND-CCA and adding robustness.

Definition 5.11 (INT-IND-CCA). Let Ch = (Init,Send,Recv, aux) be a channel, supp a support predicate,
and experiment ExptINT-IND-CCA(supp)

Ch,A for an adversary A be defined as in Figure 8. We define the advantage
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ExptINT-IND-CCA(supp)
Ch,A :

1 (stS , stR) $←− Init()
2 b $←− {0, 1}
3 CS , DCR ← ()
4 b′ ← ASend,Recv

5 return b = b′

Send(m0, m1, aux):
6 if |m0| 6= |m1| then
7 return  
8 (stS , c) $←− Send(stS , mb, aux)
9 CS

‖←− c

10 return c

Recv(c) // INT-IND-CCA:
11 (stR, m)← Recv(stR, c)
12 if b = 0 then
13 m← ⊥
14 else
15 d← supp(CS , DCR, c)
16 if d 6= false then
17 DCR

‖←− (d, c)
18 m← ⊥
19 return m

Figure 8: Experiment for INT-IND-CCA wrt. support class supp of a channel protocol Ch.

of A in breaking integrity/indistinguishability of chosen ciphertexts wrt. supp of Ch as

AdvINT-IND-CCA(supp)
Ch,A := Pr

[
ExptINT-IND-CCA(supp)

Ch,A ⇒ 1
]
− 1

2 ,

and say that Ch is INT-IND-CCA-secure wrt. supp if AdvINT-IND-CCA(supp)
Ch,A ≈ 0 for any polynomial-time A.

Proposition 5.12 (ROB ∧ INT-IND-CCA ⇒ ROB-INT-IND-CCA). Let Ch = (Init,Send,Recv, aux) be a
channel, supp a support predicate. Then for any adversary A there exist adversaries B and C with compa-
rable run time such that

AdvROB-INT-IND-CCA(supp)
Ch,A ≤ AdvROB(supp)

Ch,B + 4 · AdvINT-IND-CCA(supp)
Ch,C .

Proof. Assume that we have an attacker against ROB-INT-IND-CCA. Note that the only way for A to get
some output m 6= ⊥ from the receiver oracle for a query c is when b = 1 and

• the ciphertext is supported and mr 6= mc, or

• the ciphertext is unsupported, in which case mc = ⊥, and we then have mr 6= ⊥.

Note that one of the two cases must happen first. We first show that if this is the first case then we can
break robustness of the channel protocol. The second case will be covered by the INT-IND-CCA property
which only overwrites the message for supported ciphertexts.

For the first case note that all queries of A to the receiver oracle up to the point where it submits
an supported ciphertext c yielding mr 6= mc return ⊥. We argue that this cannot happen too often by
the robustness of the channel protocol. We can therefore simulate A through an adversary B playing the
robustness game. Algorithm B first picks a random bit b and answers A’s oracle queries (m0,m1, aux)
to Send by checking that |m0| = |m1|, returning  if not, and otherwise forwarding (mb, aux) to its own
Send oracle. Adversary B returns the oracle’s reply to A. To simulate the receive oracle B replies to each
query c of A with ⊥ if b = 0, and otherwise forwards the query to its own Recv oracle, but returns ⊥
to A.

The simulation through B is perfect up to the submission of A’s supported ciphertext c in question,
because we assume that all queries to Recv before return ⊥. For query c attacker B then causes its
experiment to satisfy the if-clause mr 6= mc in Line 16 in the robust experiment in Figure 4. This sets win
to true and thus makes B break robustness.

If the first query in A’s attack to Recv returning a message different from ⊥ is for an unsupported
ciphertext c, then it holds that mr 6= ⊥. We can now run a black-box simulation C of A, where C answers
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each Recv call with ⊥ but forwards the query to its own oracle. If at some point C receives a reply distinct
from ⊥ in one of such queries then it immediately outputs 1, else it eventually outputs a random bit. An
analysis similar to the one of Proposition 5.10 shows that C succeeds with an advantage of at least 1

4 times
the probability that A wins with an unsupported ciphertext.

6 QUIC
QUIC was initially designed and implemented by Google. Currently, QUIC is in the process of being
standardized by the IETF [IT20, TT20].

QUIC distinguishes a variety of different packet types, mostly following either a long or short packet
format [IT20, Section 17]. For reference, we illustrate both formats in Figure 9. Our analysis focuses on
the short packet format, which in particular is used for sending main application data.

6.1 QUIC Encryption Specifications

In the following, we provide a brief overview of the encryption specifics of QUIC. QUIC packets consist
of a header and a payload, the latter being encrypted using an AEAD scheme. For this encryption, the
packet number forms the AEAD nonce (with a random offset per key), and the unprotected header is used
as the associated data. Headers in particular contain between 1 and 4 bytes of the packet number, allowing
the receiver to reconstruct the correct nonce of (possibly reordered) packets within an appropriately-sized
sliding window.

After packet encryption, QUIC additionally applies a header protection mechanism based on one of the
nonce-hiding AE constructions proposed by Bellare et al. [BNT19], and further allows keys to be updated
during the channel’s lifetime. Delignat-Lavaud et al. [DLFP+20] treat the header protection mechanism
in their analysis of the QUIC protocol, and we defer the interested reader to their paper as well as the
specification [IT20, TT20]. Following TLS 1.3 [Res18], QUIC further allows to update encryption keys
within a connection; see Günther and Mazaheri [GM17] for a security model for such multi-key channel
design over reliable transport. In our analysis of QUIC, we do not treat header protection or key updates.
We argue that our results still provide reasonable insights into the robustness of the QUIC channel, if one
is willing to assume that header protection (happening after our sending, resp. before our receiving steps)
and key updates (corresponding to a sequence of robust channels per phase) work as intended. Confirming
these assumptions and analyzing the QUIC channel in a model treating all these aspects is left as an
avenue for future work.

6.2 QUIC as a Channel Protocol

When capturing QUIC as a cryptographic channel protocol, the first question arising is which interfaces
to higher- and lower-level protocols should be considered. The lower-level interface is simple: running
over UDP, QUIC outputs distinct (atomic) chunks of ciphertexts accompanied by headers in a datagram-
oriented manner.

For the higher-level interface, things are less clear: While QUIC offers a multiplexed interface of several
parallel data streams to an application using it, its cryptographic packet protection merely works on atomic
chunks of payload data which results from QUIC-internal, higher-level multiplexing and other processing.

The focus of this work being robustness of channels, we restrict ourselves to the core cryptographic
packet protection mechanism of QUIC which handles robustness in transmitting a sequence of atomic
payload chunks over the underlying UDP protocol. This means we do not consider meta-information
(like handling connection identifiers), handling of multiplexed streams of data or the option to switch
encryption keys (see [FGMP15, GM17, PS18] for treatments of reliable-transport channel notions treating
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+
|1|1|T T|R R|P P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version (32) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DCID Len (8) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Connection ID (0..160) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SCID Len (8) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Connection ID (0..160) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Length (8/16/32/64) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Packet Number (8/16/24/32) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Protected Payload (*) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+
|0|1|S|R|R|K|P P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Connection ID (0..160) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Packet Number (8/16/24/32) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Protected Payload (*) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 9: QUIC packet formats for long (left) and short (right) packets [IT20, Section 17]. The first byte
contains flags T: Type, R: Reserved, P: Packet number length, S: Spin, K: Key phase. Field bit-length is
given in parentheses, (*) indicating variable length.

those aspects); we accordingly consider a restricted packet header. Note that this still goes beyond the
basic AEAD encryption process itself. In particular, we treat the parsing process of QUIC packet headers
which play a crucial role for robustness in determining which packets can (still) be correctly received within
a reordered sequence, and capture the integrity security loss arising from QUIC’s robust treatment of the
underlying network.

6.2.1 Construction

We capture QUIC as the channel protocol ChQUIC = (Init,Send,Recv, aux) described in Figure 10. It is built
from any AEAD scheme AEAD = (Enc,Dec) with associated key space K and error symbol ⊥, the latter
being inherited by the construction. QUIC employs a dynamic sliding window with an anti-replay window
(for some arbitrary, but fixed replay window size wr), i.e., we can precisely capture the supported network
behavior by QUIC through the support predicate suppdw-r[wr] as defined in Section 3.2. QUIC’s sliding
window is set dynamically on the sender side, spanning 1–4 bytes wide around the next expected packet
number pnR (i.e., the one subsequent to the highest successfully received packet number), where pnR is
the rightmost entry in the left half of the window. We formalize this through an auxiliary information
space X = {(27 − 1, 27), (215 − 1, 215), (223 − 1, 223), (231 − 1, 231)} corresponding to 8, 16, 24, and 32 bit
wide windows respectively, with (almost) half-sized wb + 1 = wf .5

Packet numbers play a crucial role for the sliding-windows technique in QUIC, and hence also in the
construction. As described in Section 6.1, QUIC packet numbers determine the nonce and also (partially)
the associated data for the AEAD scheme. Packet numbers are a running integer counter on the sender’s
side in the range from 0 to 262 − 1. QUIC then derives the nonce for packet encryption as the XOR of a
(static) initialization vector IV (a 96-bit value obtained through key generation) and the packet number
(accordingly padded with 0-bits). In our construction, this translates to sampling IV at random upon
channel initialization and deriving the sending nonce based on a running sending counter pnS . While
QUIC puts various header information in its packets (which enters the AEAD encryption as associated
data), we focus here only on the partial, encoded packet number epn; i.e., the ciphertext space C =
{0, 1}8,16,24,32×{0, 1}∗ consists of the encoded nonce (of length n ∈ {8, 16, 24, 32}) and a (variable-length)

5Recall that in the formalization of suppdw-r[wr ], the next expected packet index nxt is always contained in the dynamic
window, hence the backwards window reaches back only l/2− 1 positions for an l-sized window.
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Init():
1 K $←− K
2 IV $←− {0, 1}96

3 pnS ← pnR ← 0 // next packet number to be
sent/received

4 R ← 0wr+1 // wr-sized replay-check bitmap for received
ciphertexts

5 stS ← (K, IV, pnS)
6 stR ← (K, IV, pnR, R)
7 return (stS , stR)

Send(stS , m, aux):
8 parse stS as (K, IV, pnS)
9 if pnS ≥ 262 then return (stS ,⊥) // exceeded PN space

10 epn← Encode(pnS , aux)
11 N ← IV ⊕ pnS

12 AD ← epn

13 c′ ← Enc(K, N, AD, m)
14 c← (epn, c′)
15 pnS ← pnS + 1
16 stS ← (K, IV, pnS)
17 return (stS , c)

Recv(stR, c):
18 parse stR as (K, IV, pnR, R)
19 parse c as (epn, c′)
20 pn← Decode(epn, pnR) // decode pn wrt. next expected packet

number
21 N ← IV ⊕ pn

22 AD ← epn

23 m← Dec(K, N, AD, c′)
24 if m = ⊥ // AEAD decryption error
25 or pn < pnR − 1− wr // older than replay-check window
26 or (pn < pnR and R[pn− pnR + wr + 2] = 1) // replay
27 return (stR,⊥) // reject
28 if pn < pnR then // pn within replay window
29 R[pn− pnR + wr + 2]← 1 // mark pn as received
30 else // pn beyond replay window
31 R← R� (pn− pnR + 1) // shift window
32 R[wr + 1]← 1 // mark pn as received (last entry in window)
33 pnR ← pn + 1 // set next expected pn
34 stR ← (K, pnR, R)
35 return (stR, m)

aux(c):

36 parse c as (epn, c′); n← |epn|
37 (wc

b , wc
f ) ← (2n−1 − 1, 2n−1) // half-sized backward/forward

windows from encoded nonce size
38 return (wc

b , wc
f )

Figure 10: The abstract ChQUIC channel protocol based on a generic AEAD scheme AEAD = (Enc,Dec).
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Figure 11: Exemplary illustration of a dynamic sliding receiving window of (toy) size 2n = 8 (i.e., wb =
3 and wf = 4) around the next expected packet number pnR = 5 = 01012, replay-check window of
size wr + 1 = 4. Packet numbers 1 and 4 have been received before, crossed-out in the replay-window.
Grayed-out packet numbers are outside the current sliding window.
In this situation, a received partial packet number epn = 0002 will be (uniquely) decoded to pn = 8 = 10002
within the window (marked with diagonal lines), leading pnR to be updated to pn′R = 9, moving both
windows forward next.

24



AEAD ciphertext. Upon sending, epn is derived as the last n bits (for a dynamic sliding window size n)
of the sending packet number pnS . Upon receiving, epn (of length n) is decoded to the (unique) packet
number matching epn in its last n bits number which is contained in the 2n-sized window centered around
the next expected packet number pnR [IT20, Appendix A]. We capture these encoding and decoding steps
through the following sub-algorithms, and illustrate decoding within a sliding window in Figure 11 as
follows:

Encode(pnS , aux):

1 parse aux as (2n−1 − 1, 2n−1)
2 return pnS [62− n..62] // n-bit string

Decode(epn, pnR):
1 n← |epn|
2 return pn ∈ [0, 262 − 1] s.t.

pn[62− n..62] = epn and
pnR − 2n−1 < pn ≤ pnR + 2n−1

In more detail, the construction works as follows.

Init. The initialization algorithm samples uniformly at random a key K from the AEAD key space K and
(static) initialization vector IV of 96 bits length. The sending and receiving state, beyond K and IV ,
contain counters for the next packet number to be sent pnS , resp. to be received pnR, initialized to 0.
Furthermore, the receiving state holds a (initially all-zero) bitmap R of size wr + 1 later used to
record previously seen packet numbers in a window of size wr before the last successfully received
packet number (+1 to account for the latter, too).

Send. The sending algorithm first ensures that the sending packet number pnS does not exceed the maximal
value of 262− 1. It derives the encoded packet number epn to be transmitted as the least significant
1–4 bytes of pnS , captured through the Encode algorithm given above. It then computes the packet
encryption nonce N as the XOR of the static IV and the running packet number pnS (implicitly
padded to a 96-bit bitstring). The ciphertext c′ is computed as the AEAD-encryption of the input
message m, using N as nonce and epn as associated data. The encoded packet number epn together
with c′ form the full ciphertext c. The final output is the sending state, with the packet number
incremented, together with c.

Recv. The receiving algorithm begins with decoding the encoded packet number epn in the ciphertext
to the full packet number pn within the dynamic sliding window around pnR determined by |epn|;
captured in the Decode algorithm given above. It then AEAD-decrypts the ciphertext c′ using
N = IV ⊕ pn as nonce and epn as associated data, rejecting if this step fails (Line 24 of Figure 10).
The algorithm also rejects if pn is older than what is represented in the replay-check window (of wr

positions before the last successfully received packet number pnR − 1) and hence cannot be ensured
to not be replayed (Line 25). Finally, it rejects if pn has been processed previously (determined
by the bitmask R being 1 at the position corresponding to pn, Line 26). Otherwise, R is marked
with a 1 at the position corresponding to pn, possibly shifted before in case pn is greater than the
previously highest received packet number. The final output is the updated state and message m.

aux. The auxiliary sliding-window information of a ciphertext (epn, c′) is recovered as backward/forward
windows half the size of epn, i.e., aux = (wc

b, w
c
f ) = (2n−1 − 1, 2n−1), where n = |epn|.

6.2.2 Correctness

To establish correctness wrt. support class suppdw-r[wr] (as defined in Section 3.2), we have to show that
(1) aux correctly recovers the auxiliary information used to sent a ciphertext; (2) suppdw-r[wr] = true when
ciphertexts are delivered in perfect order; and (3) Recv correctly receives messages of supported, genuinely
sent ciphertexts. We will show that this holds unconditionally, i.e., Advcorrect(suppdw-r[wr ])

ChQUIC,A = 0.
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Observe that (1) follows directly from the definition of Encode, and (2) follows from the construction,
as ciphertexts are unique within their dynamic sliding window and hence always supported when delivered
perfectly in-order. For (3), observe that a genuine QUIC channel ciphertext (epn, c′) is unique within the
sliding window (of size |epn|) it defines. This gives rise to the following property of QUIC’s nonce encoding,
which we denote as correct decodability: For any expected next packet number to be received pnR ∈ [0, 262−
1], sliding window (wb, wf ) ∈ X , and (sending) packet number pnS ∈ [pnR −min(wb, wr + 1), pnR + wf ],
it holds that

Decode(Encode(pnS , aux), pnR) = pnS .

This is achieved in QUIC by interpreting the encoded packet number in a window of bit-size the encoded
number’s length (i.e., (wb+1+wf ) ∈ {28, 216, 224, 232}) [IT20, Appendix A], while dropping packets outside
of the replay window wr before the last successfully received packet.

In order to violate correct message receipt, an adversary needs to invoke Recv on a supported ci-
phertext (i.e., d = suppdw-r[wr](CS , DCR, c) needs to be true in Line 19 of Figure 3) such that c decrypts
to a different message than was sent. The support predicate suppdw-r[wr] ensures that the sent index
of a ciphertext (corresponding to pnS + 1, as QUIC packet number begins with 0) is in the interval
[nxt −min(wc

b, wr + 1), nxt + wc
f ], where (wc

b, w
c
f ) is the auxiliary information from the Send call and nxt

is the next expected index (corresponding to pnR + 1). QUIC’s correct decodability then ensures that
the decoded packet number pn equals the pnS value used within the call to Send that output c. Hence,
as AD = epn and c′ is part of c, Recv invokes AEAD decryption Dec on c′ with the same nonce and
associated data as in the corresponding encryption step in Send. By correctness of the AEAD scheme, the
decrypted message will hence always equal the sent message.

6.3 Robust Security of the QUIC Channel Protocol

We can now turn towards the security analysis of QUIC, taking its robust handling of the underlying
unreliable network into account. As we will show, QUIC achieves robust confidentiality and integrity
(according to the combined notion ROB-INT-IND-CCA), receiving ciphertexts within a dynamic sliding
window and with a window-based replay protection; i.e., formally wrt. the support predicate suppdw-r[wr]
from Section 3.2. Leveraging the relations between notions, we separately establish robust integrity as
well as indistinguishability under chosen-plaintext attacks, yielding the combined robust confidentiality
and integrity guarantees via Proposition 5.9.

Compared to secure channels over reliable transports (like TLS over TCP), the integrity bound is
not tight but, at its core, contains a loss linear in the number of received ciphertexts (denoted by qR in
the theorem statement below): the channel’s robustness leads to the adversary being able make multiple
forgery attempts on the underlying AEAD scheme—in principle with every delivered ciphertext. This result
matches both the linear loss in the security bounds of many AEAD schemes, including AES-CCM [Jon03],
AES-GCM [IOM12a, IOM12b], and ChaCha20+Poly1305 [Pro14] underlying QUIC and DTLS 1.3. It also
coincides with the observation that vulnerabilities in a channel’s encryption scheme are easier to exploit
over non-reliable networks; see, e.g., the Lucky Thirteen attack on the (D)TLS record protocols [AP13].
Surprisingly, this higher security loss (compared to TLS) was so far not considered in DTLS version
up to 1.2 and earlier versions of QUIC (prior to draft-29) and DTLS 1.3 (prior to draft-38). Based
on our work, both protocol’s IETF working groups recently specified concrete forgery limits on packet
protection [TT20, Tho20a, RTM20, Tho20b], requiring that implementations “MUST count the number
of received packets that fail authentication” and ensure this number stays below certain thresholds (236 for
AES-GCM and ChaCha20+Poly1305, 223.5 for AES-CCM, factoring in the precise security degradation of
each scheme and a targeted INT-CTXT advantage of at most 2−57).
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Theorem 6.1 (Robust integrity of QUIC). Let ChQUIC be the channel construction from Figure 10 from
an AEAD scheme AEAD = (Enc,Dec), and support predicate suppdw-r[wr] be defined as in Section 3.2. Let
A be an adversary against ChQUIC in the robust integrity experiment ExptROB-INT(suppdw-r[wr ])

ChQUIC,A from Figure 5
making qS queries to Send and qR queries to Recv. There exists an adversary B (given in the proof)
against the multi-target authenticity of AEAD that makes qS queries to its encryption oracle Enc and at
most qR queries to its Forge oracle, such that

AdvROB-INT(suppdw-r[wr ])
ChQUIC,A ≤ AdvINT-CTXT

AEAD,B (qR).

Proof. The core idea of the proof is to show that whenever the receiving oracle Recv is called in the
robust integrity experiment ExptROB-INT(suppdw-r[wr ])

ChQUIC,A on a ciphertext c = (epn, c′) such that suppdw-r[wr](CS ,

DCR, c) = false (and hence correct receiving is skipped), we have that (a) the real receiving state str
R

remains unchanged in that oracle call, and (b) the real received message is an error, i.e., mr = ⊥. We argue
these properties by showing that Recv(str

R, c), in Lines 24–26 of Figure 10, for such a call to Recv always
returns an error due to the replay checks or AEAD decryption yielding an error; hence Recv(str

R, c) returns
(a) unchanged receiving state and (b) an error output, as claimed. Having shown (b), the adversary
cannot win anymore on input a non-supported ciphertext, as mr = mc = ⊥ in Line 47 of experiment
ExptROB-INT(suppdw-r[wr ])

ChQUIC,A (Figure 5) in this case. Furthermore, property (a), str
R remaining unchanged on

non-supported ciphertexts, implies that in any query to Recv on a supported ciphertext, leaves str
R = stc

R

in the two calls to Recv in Lines 40 and 44 in Figure 5. Thus, the two states are always in-sync. Due to
Recv being deterministic, this implies that mr = mc always holds in Line 47, preventing A from winning.

We show (a) and (b) hold for unsupported ciphertexts because Recv always returns an error in this
case, either due to replay checks or AEAD decryption yielding an error. This holds unconditionally for
the replay checks, while we argue the AEAD error case via a reduction B to the INT-CTXT security of
the AEAD scheme. We call the event that an unsupported ciphertext is not rejected because of replay
checks—and we are hence relying on the AEAD error—a “forgery attempt.” Observe that B can identify
such forgery attempts itself by checking the results of supp and the replay check. In the argument below,
we show that upon such a forgery attempt, B can send some (N,AD, c′) to its Forge oracle which is (in
principle) a permissible forgery because c′ was never output by encryption using nonce N and associated
data AD. The reduction B will make at most qR such calls, and if any of the forgery attempt event does
not yield in an AEAD decryption error, B breaks the multi-target integrity of the AEAD scheme, which
gives the bound of the theorem.

The reduction B simulates the robust integrity game ExptROB-INT(suppdw-r[wr ])
ChQUIC,A for A by not sampling a

key K itself but using its encryption oracle to emulate the Enc calls within Send (qS times overall). To
simulate the Recv oracle, B proceeds as follows: Whenever suppdw-r[wr](CS , DCR, c) = true, B accounts
for changes of pnR, obtaining the packet number regularly as Decode(epn, pnR). Otherwise, it checks
for replays and in case of a “forgery attempt”, B submits (N = IV ⊕ Decode(epn, pnR), epn, c′) as an
attempted forgery to its Forge oracle. It does not need to update pnR. In either case, B does not need
to perform decryption as Recv always returns ⊥.

First observe that, with unsupported ciphertexts being rejected in Lines 24–26, we have that pnR is
only updated on supported ciphertexts and equals nxt = max(DR) + 1 in the support predicate. Let us
consider the cases in which a ciphertext c = (epn, c′) input to Recv is unsupported (i.e., suppdw-r[wr](CS ,
DCR, c) = false).

1. If c /∈ CS [nxt−min(wc
b, wr + 1), nxt +wc

f ] is not in the admissible window (and hence cindex returns
false), then we distinguish the cases according to the relationship of the replay-window size and
the backward-window size:
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1.1. If wr + 1 < wc
b, it might be that c ∈ CS [nxt−wc

b, nxt−wr − 2] still lies in the overhanging part
of the sliding window. But then Recv decodes a packet number pn < nxt − 1 − wr, leading to
rejection (Line 25).

1.2. If wc
b ≤ wr + 1, we know from c /∈ CS [nxt − wc

b, nxt + wc
f ] that c was never output by Send

using the decoded packet number pn. This is the “forgery attempt” event, enabling B to send
(N = IV ⊕ pn,AD = epn, c′) to its Forge oracle.

2. If cindex(c, CS [nxt − min(wc
b, wr + 1), nxt + wc

f ] ∈ DR then this index has been output by supp
before, and in particular the ciphertext has been processed by Recv earlier. The index corresponds
to (one plus) the decoded packet number pn ∈ [pnR − wc

b..pnR + wc
f ], which is unique as |epn| =

log2(wc
b +wc

f + 1). This packet number is either within the replay-check window (hence was marked
previously, and is now rejected in Line 26) or is beyond that window (and hence rejected in Line 25).

Finally, observe that properties (a) and (b) above may only be violated in case 1.2. above when
Dec(N = IV ⊕ pn,AD = epn, c′) 6= ⊥. In this case, B wins through its Forge call; B making at most qR
such calls yields the overall ROB-INT bound of AdvINT-CTXT

AEAD,B (qR).

On closer examination, the INT-CTXT reduction B in the ROB-INT proof for QUIC makes one Forge
call per AEAD decryption which should output ⊥. The upper bound on the number of failed forgery
attempts is precisely what QUIC (and DTLS 1.3, cf. Section 7) chose to limit in order to keep the
AEAD INT-CTXT advantage for the deployed algorithms (AES-CCM, AES-GCM, ChaCha20+Poly1305)
small [TT20, Tho20a].

Theorem 6.2 (Confidentiality of QUIC). Let ChQUIC be the channel construction from Figure 10 from an
AEAD scheme AEAD = (Enc,Dec), and support predicate suppdw-r[wr] be defined as in Section 3.2. Let A
be an adversary against ChQUIC in the IND-CPA experiment ExptIND-CPA

ChQUIC,A from Figure 6 making qS queries
to Send. There exists an adversary B (given in the proof) against the IND-CPA security of AEAD that
makes qS queries to its encryption oracle Enc such that

AdvIND-CPA
ChQUIC,A ≤ AdvIND-CPA

AEAD,B .

Proof. From an adversary A against the IND-CPA security of ChQUIC we construct a reduction B to the
IND-CPA security of AEAD as follows. Adversary B simulates the (left-or-right) IND-CPA experiment for
A faithfully, with the only exception that it does not pick a challenge bit b and AEAD encryption key
itself. Instead, it uses its encryption oracle Enc (on the derived nonce and associated data, and the two
left-or-right messages m0 and m1) in place of the AEAD encryption step within Send. When A eventually
outputs a bit b′ guess, B forwards b′ as its own guess.

Having B perfectly simulating the ExptIND-CPA
ChQUIC,A experiment for A, inheriting the challenge bit from its

own IND-CPA game, we have that AdvIND-CPA
ChQUIC,A ≤ AdvIND-CPA

AEAD,B .

7 DTLS 1.3
DTLS can be seen as a variant of TLS, running atop the unreliable transport protocol UDP, aiming
to provide similar security guarantees even if records arrive out-of-order or may be duplicated—by the
network, or an active adversary. Currently, the next protocol version DTLS 1.3 [RTM20] is in the process
of being standardized by the IETF.

In the following we provide the full details on our channel construction for DTLS 1.3. We first describe
the encryption specification for DTLS 1.3 and then provide the full details about the construction. In the
final part, we show that this channel construction is ROB-INT-IND-CCA secure. Our analysis reveals that
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0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|0|0|1|C|S|L|E E|
+-+-+-+-+-+-+-+-+
| Connection ID |
| (if any, |
/ length as /
| negotiated) |
+-+-+-+-+-+-+-+-+
| 8 or 16 bit |
|Sequence Number|
+-+-+-+-+-+-+-+-+
| 16 bit Length |
| (if present) |
+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|0|0|1|1|1|1|E E|
+-+-+-+-+-+-+-+-+
| 16 bit |
|Sequence Number|
+-+-+-+-+-+-+-+-+
| |
/ Connection ID /
| |
+-+-+-+-+-+-+-+-+
| 16 bit |
| Length |
+-+-+-+-+-+-+-+-+
| |
| Encrypted |
/ Record /
| |
+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|0|0|1|0|0|0|E E|
+-+-+-+-+-+-+-+-+
| 8 bit Seq.No. |
+-+-+-+-+-+-+-+-+
| |
| Encrypted |
/ Record /
| |
+-+-+-+-+-+-+-+-+

Figure 12: DTLS header types: General ciphertext header (left), and examples for full (middle) and
minimal (right) DTLS 1.3 ciphertext structures [RTM20, Section 4]. The three leftmost bits of the first
byte are set to 001 indicating that the packet is a ciphertext. Furthermore, the first byte also contains
flags, indicated as C: Connection ID, S: size of sequence number, L: length, E: Epoch. If the bit in C and
L are set then those parts are present. In case S is set to 0 then the ciphertext structure contains an 8-bit
sequence number, otherwise 16 bits. E includes the low order two bits of the epoch.

DTLS 1.3, like QUIC, has to tolerate multiple forgery attempts leading to a loss linear in the number of re-
ceived ciphertexts (qR) through a multi-target INT-CTXT bound with (up to) this many forgeries. We have
informed the responsible IETF TLS working group about our observation. Based on this input, the work-
ing group has added concrete forgery limits on packet protection in DTLS 1.3 draft-38 [RTM20, Tho20b].
Those place an effective upper bound on the robust integrity loss by requiring that implementations ensure
that the number of received packets that fail authentication remains below certain specified thresholds (cf.
Section 6.3).

7.1 DTLS Encryption Specifications

The record layer of DTLS 1.3 is different from the one in TLS 1.3 in the sense that DTLS 1.3 adds an
explicit sequence number and an epoch to the ciphertext. DTLS 1.3 ciphertexts follow either the full or
minimal format illustrated in Figure 12.

Let us have a closer look at the encryption specifics in DTLS 1.3. A DTLS ciphertext consists of a
(protected) header and an encrypted record which is generated using an AEAD scheme. As an input, the
encryption algorithm takes (as usual) four inputs, namely the key K, the nonce N , the associated data
AD, as well as the message m. The specification of DTLS 1.3 [RTM20] details how the above inputs
are derived. The (per-record) nonce [RTM20, Section 4] is derived by concatenating a 16-bit (key) epoch
number with a 48-bit sequence number obtaining a 64-bit record sequence number.6 This value is then
left-padded with zeros up to the nonce length. Finally this padded sequence number is XORed with a
static, random initialization vector IV (derived along with the key) to obtain the nonce. The associated
data covers the ciphertext header (full or minimal, cf. Figure 12), in particular including the truncated 8-
or 16-bit sequence number field.

Similar to QUIC, DTLS 1.3 employs a form of header protection [RTM20, Section 4.2.3], namely
encrypting the sequence number. For this, a separate sequence number key is derived that is used with
the underlying encryption algorithm to generate a mask which is then XORed with the sequence number.

We do not treat key updates and header protection in our following channel construction of DTLS 1.3.
6The epoch number is increased upon a key update, which also resets the sequence number to 0.
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Init():
1 K $←− K
2 IV $←− {0, 1}r

3 snS ← snR ← 0
4 R← 0wr+1 // bitmap of received ciphertexts in window
5 stS ← (K, IV, snS)
6 stR ← (K, IV, snR, R)
7 return (stS , stR)

Send(stS , m, aux):
8 parse stS as (K, IV, snS)
9 if snS ≥ 248 then return (stS ,⊥) // exceeded SN space

10 AD ← snS

11 N ← snS ⊕ IV

12 c′ ← Enc(K, N, AD, m)
13 esn← Encode(snS , aux)
14 c← (esn, c′)
15 snS ← snS + 1
16 stS ← (K, IV, snS)
17 return (stS , c)

Recv(stR, c):
18 parse stR as (K, IV, snR, R)
19 parse c as (esn, c′)
20 sn ← Decode(esn, snR) // decode sn wrt. next expected se-

quence number
21 AD ← sn

22 N ← sn⊕ IV

23 m← Dec(K, N, AD, c′)
24 if m = ⊥ // AEAD decryption error
25 or sn < snR − 1− wr // older than replay-check window
26 or (sn < snR and R[sn− snR + wr + 2] = 1) // replay
27 return (stR,⊥) // reject
28 if sn < snR then // sn within replay window
29 R[sn− snR + wr + 2]← 1 // mark sn as received
30 else // sn beyond window
31 R← R� (sn− snR + 1) // shift window
32 R[wr + 1]← 1 // mark sn as received in last entry
33 snR ← sn + 1 // set new expected sn

34 stR ← (K, snR, R)
35 return (stR, m)

aux(c):

36 parse c as (esn, c′); n← |esn|
37 (wc

b , wc
f ) ← (2n−1 − 1, 2n−1) // half-sized backward/forward

windows from encoded nonce size
38 return (wc

b , wc
f )

Figure 13: The abstract ChDTLS channel protocol based on a generic AEAD scheme AEAD = (Enc,Dec).

However, we argue that our results provide meaningful insights into the robustness of the DTLS 1.3 channel
as long as one assumes that both the key updates and header protection function as intended. Similar to
QUIC, we leave it as an avenue for future work to confirm these assumptions and analyze the DTLS 1.3
channel covering all of these aspects.

7.2 DTLS as a Channel Protocol

In the following, we aim to provide a cryptographic channel protocol capturing DTLS 1.3. As in Section 6,
our focus for DTLS 1.3 is to show that our construction is indeed a robust channel.

7.2.1 Construction

We capture DTLS as the channel protocol ChDTLS = (Init, Send,Recv, aux) described in Figure 13. It uses
an arbitrary AEAD scheme AEAD = (Enc,Dec) (as defined in Section 2.2) with associated key space K and
error symbol ⊥, the latter being inherited by the construction. Similar to QUIC’s behavior of ciphertext
processing, the construction of DTLS 1.3 also employs a dynamic sliding-window technique with an anti-
replay window as derived from the support predicate suppdw-r[wr] for some scheme-dependent fixed replay
window size wr as detailed in Section 3.2. The sliding window is set dynamically on the sender side which
is spanned around the next expected sequence number snR and has a size of either 8 or 16 bits. Note that
the expected sequence number corresponds to the largest successfully received sequence number (on the
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receiving side) plus one modeling that the channel expects that the next receiving sequence number is being
incremented since a new ciphertext may be received and hence the window “moves” towards the right. We
formalize this through an auxiliary information space X = {(27 − 1, 27), (215 − 1, 215)} corresponding to
8-bit and 16-bit wide windows, respectively, with (almost) half-sized limits wb + 1 = wf .

In DTLS, sequence numbers and epochs play a crucial role for the sliding-window technique. Both
values are used to compute the nonce and additionally the epoch serves the purpose to keep track of key
updates, i.e., the epoch is incremented whenever a key update has occurred. As mentioned above, we do
not model key updates here and hence do not consider epochs explicitly in the construction and only rely
on sequence numbers. Note that the concept of sequence numbers is in spirit very close to the packet
numbers being used in QUIC.

As described in Section 7.1, sequence numbers are used in deriving the nonce and also (partially)
the associated data for the AEAD scheme. Sequence numbers are a running 48-bit integer counter on
the sender’s side in the range from 0 to 248 − 1. DTLS 1.3 then derives the nonce as the XOR of the
initialization vector IV which is an r-bit value (where r is the AEAD scheme’s nonce length) obtained
though key generation, and the sequence number which is accordingly padded with zeros from the left.
In our construction, this translates to sampling IV at random upon channel initialization and deriving
the nonce on sending based on the running snS counter. DTLS 1.3 includes various header information
into the associated data that enters the AEAD encryption process, we limit that information for modeling
purposes to the encoded sequence number consisting of the least 8 or 16 bits of the full sequence number.
The ciphertext space C = {0, 1}n × {0, 1}∗ accordingly consist of the encoded sequence number of length
n ∈ {8, 16} and a variable-length AEAD ciphertext. Upon sending the encrypted record, DTLS 1.3 includes
in the header an encoded sequence number whose encoding is derived in the sending algorithm based on
the sequence number snS and the dynamic sliding window size given through the auxiliary input. While
receiving the ciphertext, the receiver algorithm aims to reconstruct the (full) sequence number from the
encoded one which is numerically closest to the next expected sequence number snR (cf. [RTM20, Section
4.2.2]). Note that this corresponds to the same encoding/decoding principle as put forward by QUIC (cf.
Section 6.2.1). Therefore, we have the following two sub-algorithms that handle encoding and decoding
respectively:

Encode(snS , aux):

1 parse aux as (2n−1 − 1, 2n−1)
2 return snS [48− n..48] // n-bit string

Decode(esn, snR):
1 n← |esn|
2 return sn ∈ [0, 248 − 1] s.t.

sn[48− n..48] = esn and
snR − 2n−1 < sn ≤ snR + 2n−1

In more detail, the construction works as follows.

Init. The initialization algorithm starts with sampling a key K uniformly at random from the key space K
of the AEAD scheme, as well as a random (static) initialization vector IV of r bits length (where r
is the AEAD scheme’s nonce length). The sending and receiving state, beyond K and IV , contain
sending and receiving packet numbers pnS and pnR, respectively, initialized to 0. The receiving state
furthermore contains an (initially all-zero) bitmap R of size wr + 1 to record previously received
sequence numbers and providing for later use a replay protection mechanism.

Send. The sending algorithm first ensures that the sending (record) sequence number snS does not exceed
the maximal value of 248 − 1. It then sets this sequence number to correspond to associated data.
Then it continues computing the per-record nonce N as the XOR of the sequence number (implicitly
padded to an r-bit string) with the initialization vector. The ciphertext c′ is the computed as the
AEAD-encryption of the input message m, using N as nonce and snS as associated data. Next
it derives the encoded sequence number esn as the least 8 or 16 bits of snS which is captured by
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running the above Encode algorithm. The full ciphertext c is then formed as the pair consisting of
encoded sequence number esn and the AEAD ciphertext c′. The final output is the sending state,
with the sequence number incremented, together with c.

Recv. The receiving algorithm begins with decoding the encoded sequence number in the ciphertext to the
full sequence number sn within the dynamic sliding window centered around snR and determined
through the length of esn which we capture by running the above decoding algorithm Decode. In
order to avoid timing attacks, the algorithm first prepares the required inputs to perform the AEAD
decryption algorithm and only checks afterwards if the sequence number is valid ensuring that no
replay has occurred. In more detail, the algorithm rejects if the AEAD decryption failed, or if the
received sequence number is older than (and hence before) the current replay window, or if the
sequence number has indeed been previously processed which is determined by checking whether
R contains a bit 1 at the respective position of the sequence number. Otherwise, if the previous
checks were successful then R is marked with 1 at the corresponding position of sn (either directly or
after shifting the replay window in case sn is greater than the previously highest received sequence
number snR). The final output is the receiving state, with the sequence number being incremented,
and the successfully decrypted message m.

aux. This helper algorithm recovers the auxiliary sliding-window information of a ciphertext (esn, c′) as
backward/forward windows that are half of the size of esn. Hence we obtain aux = (wc

b, w
c
f ) =

(2n−1 − 1, 2n−1), where n = |esn|.

7.2.2 Correctness

In order to argue correctness for the DTLS 1.3 channel construction wrt. support class suppdw-r[wr], we
need to show that (1) aux correctly recovers the auxiliary information used to sent a ciphertext; (2)
suppdw-r[wr] = true when ciphertexts are delivered in perfect order; and (3) Recv correctly receives messages
of supported, genuinely sent ciphertexts. We will show that this holds unconditionally.

For (1), we can conclude from the definition of the encoding algorithm Encode that aux correctly
recovers the auxiliary information. For (2), ciphertexts being unique within their dynamic sliding window
ensures they are always supported when delivered perfectly in-order. For (3), we need to argue that
DTLS 1.3 correctly receives messages from ciphertexts wrt. to the support predicate suppdw-r[wr]. Let
us first observe that we require the same property as in QUIC about the nonce encoding for the AEAD
scheme, namely correct decodability (cf. Section 6.2.1). In more detail, we require that for any next
expected sequence number to be received snR ∈ [0, 248 − 1], any sliding window (wb, wf ) ∈ X , and any
sequence number snS ∈ [snR −min(wb, wr + 1), snR + wf ], it holds that

Decode(Encode(snS , aux), snR) = snS .

The above construction of DTLS achieves this property by interpreting the encoded sequence number
within a window of the sequence number’s length, i.e., (wb + 1 +wf ) ∈ {28, 216}. Furthermore, any packet
containing a sequence number which is outside of the replay window will be discarded.

In order to violate correct receipt of a message, an adversary needs to invoke Recv on a supported
ciphertext (i.e., suppdw-r[wr](CS , DCR, c) = false in Line 19 of Figure 3) such that c decrypts to a different
message than the one that was originally sent. The given support predicate suppdw-r[wr] ensures that the
sent index of a ciphertext is in the interval [nxt−min(wc

b, wr +1), nxt+wc
f ], where (wc

b, w
c
f ) is the auxiliary

sliding-window information from the aux call and nxt is the next expected index (corresponding to snR+1).
The correct decodability property of DTLS 1.3 ensures that the decoded (full) sequence number sn equals
the snS sequence number used within the call to Send that output c. Hence, as AD = sn and c′ is part of c,
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Recv invokes AEAD decryption Dec on c′ with the same nonce and associated data as in the corresponding
encryption step in Send. By correctness of the AEAD scheme, the decrypted message will hence always
equal the sent message, and thus the adversary has no further advantage in breaking correctness.

7.3 Robust Security of the DTLS Channel Protocol

We finally turn to analyzing the robust security of DTLS 1.3. In more detail, we wish to show on the
one hand that our above channel construction from Figure 13 achieves robust integrity for the support
predicate suppdw-r[wr]. Additionally, we show that this construction also achieves confidentiality for the
same support predicate. Following the implication that we established in Section 5.3 with Proposition 5.9,
we then finally argue that our channel construction for DTLS 1.3 achieves the combined ROB-INT-IND-CCA
notion.

Before diving into the formal details, let us emphasize that—similar to our QUIC analysis—the integrity
bound is not tight and contains a loss linear in the number of received ciphertexts (denoted by qR in the
following theorem statement).

Theorem 7.1 (Robust Integrity of DTLS). Let ChDTLS be the channel construction from Figure 13 from
an AEAD scheme AEAD = (Enc,Dec), and support predicate suppdw-r[wr] be defined as in Section 3.2. Let
A be an adversary against ChDTLS in the robust integrity experiment ExptROB-INT(suppdw-r[wr ])

ChDTLS,A from Figure 5
making qS queries to Send and qR queries to Recv. There exists an adversary B (given in the proof)
against the multi-target authenticity of AEAD that makes qS queries to its encryption oracle Enc and at
most qR queries to its Forge oracle, such that

AdvROB-INT(suppdw-r[wr ])
ChDTLS,A ≤ AdvINT-CTXT

AEAD,B (qR).

Proof. The idea of the proof is identical to the robust integrity proof of QUIC (cf. Theorem 6.1) and
mainly only the syntax differs. We start with reviewing the idea and then provide the respective details
for our channel construction ChDTLS.

The main idea of the proof is to show that whenever the receiving oracle Recv is called in the robust
integrity experiment ExptROB-INT(suppdw-r[wr ])

ChDTLS,A on a ciphertext c such that suppdw-r[wr](CS , DCR, c) = false
(and hence correct receiving is skipped), we have that (a) the real receiving state str

R remains unchanged
in that oracle call, and (b) the real received message is an AEAD error, i.e., mr = ⊥.

Observe that for such a ciphertext call to Recv(str
R, c), i.e., executing Line 23 of Figure 13, it calls the

Recv oracle always resulting into a AEAD decryption error which is output in Line 24 or it returns an error
due to the replay checks failing in Lines 25 and 26, respectively. This simply results in (a) outputting an
unchanged receiving state str

R, and (b) an erroneous output as claimed. Having shown (b), the adversary
cannot win anymore on input of a non-supported ciphertext, as mr = mc = ⊥ in Line 47 of experiment
ExptROB-INT(suppdw-r[wr ])

ChQUIC,A in this case. Furthermore (a), the receiving state str
R remains unchanged on non-

supported ciphertexts which implies that in any query to Recv on a supported ciphertext, str
R = stc

R in
the two calls to Recv in Lines 40 and 44 in Figure 5. Due to Recv being deterministic, this implies that
mr = mc always holds in Line 47, preventing A from winning.

In the following, we show that both properties (a) and (b) hold for non-supported ciphertexts since
Recv always returns an error wither due to the AEAD decryption error or the employed replay checks.
This holds unconditionally for the latter case, and for the former one (AEAD decryption error) we argue
via a reduction B to the INT-CTXT of the AEAD scheme. We start with calling such an event a “forgery
attempt”. Observe that the reduction B can identify such forgery attempts by checking the results of the
support predicate supp and the replay check. In the following, we show that upon such a forgery attempt,
B sends some triple of the form (N,AD, c′) to its Forge oracle since the ciphertext was never an output
by an AEAD encryption using the nonce N and associated data AD. B will make at most qR calls of this
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form, and if any of these forgery attempts does not output an AEAD decryption error, then B breaks the
multi-target integrity of the AEAD scheme yielding our bound of the theorem.

The reduction B simulates the robust integrity game ExptROB-INT(suppdw-r[wr ])
ChDTLS,A for A by not sampling a

key K itself but using its encryption oracle to emulate the Enc calls within Send. To simulate the Recv
oracle, B proceeds as follows: Whenever the ciphertext is supported, i.e., suppdw-r[wr](CS , DCR, c) = true,
then B accounts for changes of snR (obtaining the sequence number as usual via Decode(esn, snR)).
Otherwise, it checks for replays and in case of a forgery attempt, B provides (IV ⊕Decode(esn, snR), esn, c′)
as its forgery attempt to its Forge oracle, and does not need to update snR here. Note that in both cases,
B does not perform decryption as Recv always simply returns ⊥.

Observe that an unsupported ciphertext is rejected in Lines 24–26, and hence the sequence number snR

is only updated on supported ciphertexts and equals nxt = max(DR) + 1 in the support predicate. Let us
now consider the cases where a ciphertext of the form c = (esn, c′) as input to Recv can be unsupported.

1. If c /∈ CS [nxt−min(wc
b, wr + 1), nxt +wc

f ] is not in the admissible window (and hence cindex returns
false), then we have to distinguish the two cases according to the relationship of the replay-window
size and backwards window size:

1.1. If wr +1 < wc
b, it might be that c ∈ CS [nxt−wc

b, nxt−wr−2] still lies in the overhanging part of
the sliding window. However, Recv then decodes a sequence number sn < nxt− 1−wr, leading
to rejection (Line 25).

1.2. If wc
b ≤ wr + 1, we know from c /∈ CS [nxt−wc

b, nxt +wc
f ] that c was never output by Send using

the decoded sequence number sn. This is the forgery attempt, enabling B to send (N = IV ⊕sn,
AD = esn, c′) to its Forge oracle.

2. If cindex(c, CS [nxt−min(wc
b, wr + 1), nxt + wc

f ] ∈ DR then this index has been an output from supp
before, and in particular the ciphertext hash been processed by Recv. The index corresponds to (one
plus) the uniquely decoded sequence number sn ∈ [snR−wc

b..snR +wc
f ] which is indeed unique since

|esn| = log2(wc
b + wc

f + 1). This sequence number is either within the replay-check window (hence
was marked previously, and is now rejected in Line 26) or is beyond that window (and hence rejected
in Line 25).

Finally, we can observe that the properties (a) and (b) can only be violated in Case 1.2. when Dec(N =
IV ⊕ sn,AD = esn, c′) 6= ⊥, in which case B wins through this Forge call. Since B makes at most qR
such calls, the overall bound is AdvINT-CTXT

AEAD,B (qR).

Theorem 7.2 (Confidentiality of DTLS). Let ChDTLS be the channel construction from Figure 13 from an
AEAD scheme AEAD = (Enc,Dec), and support predicate suppdw-r[wr] be defined as in Section 3.2. Let A
be an adversary against ChDTLS in the IND-CPA experiment ExptIND-CPA

ChDTLS,A from Figure 6 making qS queries
to Send. There exists an adversary B (given in the proof) against the IND-CPA security of AEAD that
makes qS queries to its encryption oracle Enc such that

AdvIND-CPA
ChDTLS,A ≤ AdvIND-CPA

AEAD,B .

Proof. Assume that A is an adversary attacking ChDTLS in the IND-CPA sense. Then we construct a new
adversary B, running A as a sub-routine, attacking the IND-CPA security of AEAD.

Adversary B simulates the (left-or-right) IND-CPA experiment for A faithfully with the only exception
that it does not sample its own key K as well as does not pick the challenge bit b. To simulate the
Send oracle, B proceeds as follows. It performs an initialization phase where it samples at random an
initialization vector IV as well as initializes the sending sequence number snS to 0. Furthermore, B prepares
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the nonce and associated data by setting the sequence number to correspond to the associated data, and it
performs an XOR operation of the initialization vector and the (appropriately padded) sequence number
obtaining the nonce. Upon receiving a message pair (m0,m1) from A, B sends the tuple (N,AD,m0,m1)
to its oracle. It receives back a ciphertext c′. B then encodes the sequence number obtaining esn which
together with c′ builds the full ciphertext c and it increments the sequence number. Next, it provides the
ciphertext c to A. When A eventually outputs a guess b′, then B simply forwards b′ as its own guess.

Note that B perfectly simulates the experiment ExptIND-CPA
Ch,A for A, inheriting the challenge bit from its

own IND-CPA experiment. Thus, we have that AdvIND-CPA
ChDTLS,A ≤ AdvIND-CPA

AEAD,B .

Using the results from the above proofs, we can conclude that by Proposition 5.9 it follows that our
channel construction for DTLS 1.3 achieves ROB-INT-IND-CCA security.
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A Capturing TLS
Our formalism of support predicates capturing robust behavior focuses on channel over unreliable transport
like DTLS or QUIC. In principle, we can however further extend this formalism to capture (non-robustness
and robustness of) reliable transport channels like TLS. Although simpler, traditional channel model
exists for capturing TLS, such extension allows further connection to prior work, especially completing the
comparison to the authentication hierarchy of Boyd et al. [BHMS16].
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We leave a fully formal extension as potential future work to not further increase complexity, but briefly
outline how support predicates for TLS may be captured.

Strict ordering (with termination). A channel that accepts (on the receiver’s end) ciphertexts only
exactly in the order they were sent and terminates upon deviation (always rejecting from thereon);
e.g., TLS [Res18]. This is equivalent to Level 4 in the authentication hierarchy of Boyd et al. [BHMS16].
To capture TLS’ terminating behavior after receiving any misplaced ciphertext, we further allow
supp(CS , DCR, c) to output a value terminate; indicating that c is unsupported and that supp will
output terminate from here on. Formally, (terminate, c) is added to DCR as a “marker”.
The predicate capturing strict ordering with termination then requires that the sequence of received
ciphertexts CR together with the (next) ciphertext c is a prefix of the sent ciphertext sequence CS ;
terminating (forever) otherwise. Formally,

suppso(CS , DCR, c):

1 if CR‖(c) 4 CS ∧ terminate /∈ DR then
2 return |CR|+ 1
3 else return terminate

Robust strict ordering. One might also conceive a robust version of TLS, which exhibits some form of
resilience against denial-of-service attacks by ignoring any invalid ciphertext without terminating the
connection, allowing continued operation when the correct next in-sequence ciphertext is delivered.
Formally this can be captured as

supprso(CS , DCR, c):

1 return
[
CR‖(c) 4 CS

]
It is important to be aware that such a robust version of TLS would need to tolerate a similar
degradation in the integrity bound as exhibit by QUIC and DTLS 1.3, due to granting an adversary
possibly many forgery attempts.
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