
Multi-Party Revocation in Sovrin: Performance
through Distributed Trust

Lukas Helminger1,2, Daniel Kales1, Sebastian Ramacher3, and Roman Walch1,2

1 Graz University of Technology, Graz, Austria
{lukas.helminger,daniel.kales,roman.walch}@iaik.tugraz.at

2 Know-Center GmbH, Graz, Austria
3 AIT Austrian Institute of Technology, Vienna, Austria

sebastian.ramacher@ait.ac.at

Abstract. Accumulators provide compact representations of large sets
and enjoy compact membership witnesses. Besides constant-size wit-
nesses, public-key accumulators provide efficient updates of both the
accumulator itself and the witness; however, they come with two draw-
backs: they require a trusted setup and – without knowledge of the secret
trapdoors – their performance is not practical for real-world applications
with large sets. Recent improvements in the area of secure multi-party
computation allow us to replace the trusted setup with a distributed
generation of the public parameters.

In this paper, we introduce multi-party public-key accumulators dubbed
dynamic linear secret-shared accumulators. We present versions of dy-
namic public-key accumulators in bilinear groups giving access to more
efficient witness generation and update algorithms that utilize the shares
of the secret trapdoors sampled by the parties generating the public pa-
rameters.Specifically, for the t-SDH-based accumulators, we provide a
maliciously-secure variant sped up by a secure multi-party computation
(MPC) protocol (IMACC’19) built on top of SPDZ. For this scheme, a
performant proof-of-concept implementation is provided, which substan-
tiates the practicability of public-key accumulators in this setting. With
our implementation in two MPC frameworks, MP-SPDZ and FRESCO,
we obtain more efficient accumulators for both medium-sized (210) and
large (214 and above) accumulated sets.

Finally, we explore applications of dynamic linear secret-shared accumu-
lators to revocations schemes of group signatures and credentials system.
In particular, we consider it as part of Sovrin’s system for anonymous
credentials where credentials are issued by the a foundation of trusted
nodes. Hence, our accumulators naturally fit this setting.

Keywords: multiparty computation, dynamic accumulators, distributed
trust

1 Introduction

Digital identity management systems become an increasingly important corner
stone of digital workflows. Self-sovereign identity (SSI) systems such as Sovrin4

are of central interest as underlined by a recent push in the European Union for
a cross-boarder SSI system.5 But all these systems face a similar issue, namely
that of efficient revocation. Regardless of whether they are built from signatures,
group signatures or anonymous credentials, such systems have to consider mecha-
nisms to revoke a user’s identity information. Especially for identity management
systems with a focus on privacy, revocation may threaten those privacy guar-
antees. As such various forms of privacy-preserving revocations have emerged
in the literature including approaches based on various forms of blacklists or
whitelists including [67,78,22,23,24,6,25,39,68,69,42].6

One promising approach regarding efficiency represents the blacklist (or whitelist)
via cryptographic accumulators which were introduced by Benaloh and de Mare [18].
They allow one to accumulate a finite set X into a succinct value called the accu-
mulator. For every element in the accumulated set, one can efficiently compute
a witness certifying its membership, and additionally, some accumulators also
support efficient non-memberships witnesses. However, it should be computa-
tionally infeasible to find a membership witness for non-accumulated values and
a non-membership witness for accumulated values, respectively. Accumulators
facilitate privacy-preserving revocation mechanisms, which is especially relevant
for privacy-friendly authentication mechanisms like group signatures and creden-
tials. For a blacklist approach, the issuing authority accumulates all revoked users
and users prove in zero-knowledge that they know a non-membership witness for
their credential. Alternatively, for a whitelist approach, the issuing authority ac-
cumulates all users and users then prove in zero-knowledge that they know a
membership witness. As both approaches may involve large lists, efficient up-
dates of the accumulator as well as efficient proofs are important for building an
overall efficient system. For example, in Sovrin [54] such an accumulator-based
approach with whitelists following the ideas of [42] is used. Their credentials
contain a unique revocation ID attribute, iR, which are accumulated. Each user
obtains a membership witness proofing that their iR is contained in the accu-
mulator. Once a credential is revoked, the corresponding iR gets removed from
the accumulator and all users have to update their proofs accordingly. The re-
voked user is not longer able to prove knowledge of a verifying witness and thus
verification fails.

Accumulators in general are an important primitive and building block in
many cryptographic protocols. In particular, Merkle trees [63] have seen many
applications as accumulators in both the cryptographic literature but also in
practice. For example, they have been used to implement Certificate Trans-
parency (CT) [55,56,38] where all issued certificates are publicly logged, i.e.,

4 https://sovrin.org/
5 https://www.tno.nl/en/about-tno/news/2019/12/essif-lab/
6 For a discussion of approaches for group signatures, see, for example, [75].

2

https://sovrin.org/
https://www.tno.nl/en/about-tno/news/2019/12/essif-lab/

accumulated, and then clients can check that the server’s certificate is included
in a log by requesting witnesses from the log servers. Accumulators also find
application in redactable signatures [73,35], credentials [25,7], ring, and group
signatures [57,36,51], anonymous cash [64], authenticated hash tables [72], among
many others.

Interestingly, when looking at applications of accumulators deployed in prac-
tice, many systems rely on Merkle trees. Most prominently we can observe this
fact in CT. Even though new certificates are continuously added to the log, the
system is designed around a Merkle tree that gets recomputed all the time in-
stead of updating a dynamic public-key accumulator. The reason is two-fold:
first, for dynamic accumulators to be efficiently computable, knowledge of the
secret trapdoor used to generate the public parameters is required. Without
this information, witness generation and accumulator updates are simply too
slow for large sets (as recently observed in [50]). Secondly, in this setting it is
of paramount importance that the log servers do not have access to the secret
trapdoor. Otherwise malicious servers would be able to present membership wit-
nesses for each and every certificate even if it was not included in the log.

The latter issue can also be observed in other applications of public-key accu-
mulators. The approaches due to Garman et al. [42] and the one used in Sovrin
rely on the Strong-RSA accumulator and the t-SDH accumulators, respectively.
Both these accumulators have trapdoors: in the first case the factorization of the
RSA modulus and in the second case a secret exponent. Therefore, the security
of the system requires those trapdoors to stay secret. Hence, in these types of
protocols, the generation of the public parameters is problematic. In fact, it re-
quires to put significant trust in the parties generating those parameters. If they
would act maliciously and not delete the secret trapdoors, they would be able
to break all these protocols in one way or another. To circumvent this problem,
Sander [74] proposed a variant of an RSA-based accumulator from RSA mod-
uli with unknown factorization. Alternatively, secure multi-party computation
(MPC) protocols make it possible to compute the public parameters and thereby
replace the trusted third party. As long as a large enough subset of parties partic-
ipating is honest, the secret trapdoor is not available to malicious parties. Over
the years, efficient solutions for distributed parameter generation have emerged,
e.g., for distributed RSA key generation [40], or distributed ECDSA key genera-
tion [58]. One very prominent and wildly publicized example of such an approach
is the “ceremony” executed for Zcash, where an MPC protocol involving hun-
dreds of participants was used to generate the public parameters for the proof
system [21].

Based on the recent progress in efficient MPC protocols, we ask the following
question: what if the parties kept their shares of the secret trapdoor? Are the
algorithms of the public-key accumulators exploiting knowledge of the secret
trapdoor faster if performed within an (maliciously-secure) MPC protocol than
their variants relying only on the public parameters?

3

1.1 Our Techniques

We give a short overview of how our construction works which allows us to pos-
itively answer this question for accumulators in the discrete logarithm setting.
Let us consider the accumulator based on the t-SDH assumption. The construc-
tion is based on the fact that given powers gs

i ∈ G for all i up to t where s ∈ Zp
is unknown, it is possible to evaluate polynomials f ∈ Zp[X] up to degree t at
s in the exponent, i.e., gf(s). To evaluate the polynomial in the exponent, one
takes the coefficients of the polynomial, i.e., f =

∑t
i=0 aiX, and computes gf(s)

as
t∏
i=0

(
gs
i
)ai

.

The idea of the accumulator is to then define a polynomial involving all ele-
ments of the set as roots. The accumulator is then comprised of that polynomial
evaluated at s in the exponent. A witness is simply the corresponding factor can-
celed out, i.e., gf(s)(s−x)−1

. Verification of the witness is performed by checking
whether the corresponding factor and the witness match gf(s) using a pairing.

If s is known, all the computations are significantly more efficient: f(s) can
be directly evaluated in Zp and then the generation of the accumulator only
requires one exponentiation in G. Similarly, computation of the witness also
only requires one exponentiation in G, since (s− x)−1 can first be computed in
Zp. For the latter, the asymptotic runtime is thereby reduced from O(|X |) (i.e.,
linear in the number of accumulated elements) to O(1). But the improvement
comes at a cost: if s is known, witnesses for non-members can be produced.

On the other hand, if s is first produced by multiple parties in an additively
secret-shared fashion, these parties can cooperate in a secret-sharing based MPC
protocol. Thereby, all the computations can still benefit from the knowledge
of s. Indeed, the parties would compute their share of gf(s) and gf(s)(s−x)−1

respectively and thanks to the partial knowledge of s could still perform all
operations – except the final exponentiation – in Zp.

1.2 Our Contribution

Our contributions can be summarized as follows:

– Starting from the very recent treatment of accumulators in the UC model [27]
by Baldimtsi et al. [8], we introduce the notion of linear secret-shared accu-
mulators. As the name suggests, it covers accumulators where the trapdoor
is available in a linearly secret-shared fashion with multiple parties running
the parameter generation as well as the algorithms that profit from the avail-
ability of the trapdoor. Since the MPC literature discusses security in the
UC model, we also chose to do so for our accumulators.

– Based on recent improvements on distributed key generation of discrete loga-
rithms, we provide dynamic public-key accumulators without trusted setup.
During the parameter generation, the involved parties keep their shares of
the secret trapdoor. Consequently, we can provide MPC protocols secure in

4

the semi-honest and the malicious security model, respectively, implementing
the algorithms for accumulator generation, witness generation, and accumu-
lator updates exploiting the shares of the secret trapdoor. To the best of our
knowledge, this is the first work that uses secure multiparty computation
to build distributed cryptographic accumulators and in particular, linear
secret-shared accumulators.

– We provide a protocol for both semi-honest and malicious security models,
for t-SDH accumulators, and especially for the dynamic accumulator due
to Derler et al [34], which is based on the accumulator by Nguyen [70]. In
particular, this protocol enables updates to the accumulator independent of
the size of the accumulated set. For increased efficiency, we also transport
this accumulator to the Type-3 pairing setting. Due to the structure of the
bilinear groups setting, the construction nicely generalizes to any number of
parties.

– We provide a proof-of-concept implementation of our protocols in two MPC
frameworks, MP-SPDZ [77] and FRESCO [3]. We evaluate the efficiency of
our protocols and compare them to the performance of an implementation,
having no access to the secret trapdoors as usual for the public-key accu-
mulators. We evaluate our protocol in the LAN and WAN setting in the
semi-honest and malicious security model for various choices of parties and
accumulator sizes. For the latter, we choose sizes up to 214. Specifically, for
the t-SDH accumulator, we observe the expected O(1) runtimes for witness
creation and accumulator updates, which cannot be achieved without ac-
cess to the trapdoor. Notably, for the tested numbers of up to 5 parties, the
MPC-enabled accumulator creation algorithms are faster for 210 elements
in the LAN setting than its non-MPC counterpart (without access to the
secret trapdoor); for 214 elements the algorithms are also faster in the WAN
setting. We expect even greater improvements as the size of the accumulated
set grows further.

On top of that, we discuss how our proposed MPC-based accumulators might
impact revocation in distributed credential systems such as Sovrin [54]. In this
scenario, the trust in the nodes run by the Sovrin foundation members can fur-
ther be reduced. We also discuss applications like CT and the privacy-preserving
extension based on private information retrieval (PIR) [50]. In particular, the
size of the witnesses stored in certificates or sent as part of the TLS handshake
is significantly reduced without running into performance issues.

1.3 Related Work

When cryptographic protocols are deployed that require the setup of public
parameters by a trusted third party, issues similar to those mentioned for public-
key accumulators may arise. As discussed before, especially cryptocurrencies had
to come up with ways to circumvent this problem for accumulators but also the
common reference string (CRS) of zero-knowledge SNARKs [26]. Here, trust in
the CRS is of paramount importance on the verifier side to prevent malicious

5

provers from cheating. But also provers need to trust the CRS as otherwise
zero-knowledge might not hold. We note that there are alternative approaches,
namely subversion-resilient zk-SNARKS [16] to reduce the trust required in the
CRS generator. However, subversion-resilient soundness and zero-knowledge at
the same time has been shown to be impossible by Bellare et al. Abdolmaleki
et al. [1] provided a construction of zk-SNARKS, which was later improved by
Fuchsbauer [41], achieving subversion zero-knowledge, by adding a verification
algorithm for the CRS and then only the verifier needs to trust the correctness
of the CRS. Groth et al. [47] recently introduced the notion of an updatable
CRS where first generic compilers [2] are available to lift any zk-SNARK to
an updatable simulation sound extractable zk-SNARK. There the CRS can be
updated and if the initial generation or one of the updates was done honestly,
neither soundness nor zero-knowledge can be subverted. In the random oracle
model (ROM), those considerations become less of a concern and the trust put
into the CRS can be minimized, e.g., as done in the construction of STARKs [17].

Approaches that try to fix the issue directly in the formalization of accu-
mulators and corresponding constructions have also been studied. For example,
Lipmaa [60] proposed a modified model tailored to the hidden order group set-
ting. In this model, the parameter setup is split into two algorithms, Setup and
Gen, whereas the adversary can control access the trapdoors output by Setup,
but cannot influence nor access the randomness used by Gen. However, secure
constructions in this model so far have been provided for rather unstudied as-
sumptions based on modules over Euclidean rings, and are not applicable to the
efficient standard constructions we are interested in. More recently, Boneh et
al. [20] revisited the RSA accumulator without trapdoor which allows the ac-
cumulator to be instantiated from unknown order groups without trusted setup
such as class groups of quadratic imaginary orders [48] and hyperelliptic curves
of genus 2 or 3 [37]. While this line of research has already shown promising
results, some functionalities, e.g., creating membership witnesses, are still not
practical for large sets.

The area of secure multiparty computation has seen a lot of interest both
in improving the MPC protocols itself to a wide range of practical applications.
In particular, SPDZ [33,30] has seen a lot of interest, improvements and ex-
tensions [52,53,28,71]. This interest also lead to multiple MPC frameworks, e.g.
MP-SPDZ [77], FRESCO [3] and SCALE-MAMBA [4], enabling easy prototyp-
ing for researchers as well as developers. For practical applications of MPC, one
can observe first MPC-based systems turned into products such as Unbound’s
virtual hardware security model (HSM).7 For such a virtual HSM, one essen-
tially wants to provide distributed key generation [40] together with threshold
signatures [31] allowing to replace a physical HSM. Similar techniques are also
interesting for securing wallets for the use in cryptocurrencies, where especially
protocols for ECDSA [44,43,59] are of importance to secure the secret key ma-
terial. Similarly, such protocols are also of interest for securing the secret key
material of internet infrastructure such as DNSSEC [29]. Additionally, addressing

7 https://www.unboundtech.com/usecase/virtual-hsm/

6

https://www.unboundtech.com/usecase/virtual-hsm/

privacy concerns in machine learning algorithms has become increasingly pop-
ular recently, with MPC protocols being one of the building blocks to achieve
private classification and private model training [66,79,14,65]. Recent works [76]
also started to generalize the algorithms that are used as parts of those proto-
cols allowing group operations on elliptic curve groups with secret exponents or
secret group elements.

1.4 Paper Organization

This work is structured as follows: first we recap some basics on the UC model
and MPC protocols in Section 2. In Section 3 we recall the definition of cryp-
tographic accumulators and instantiations. Then we introduce dynamic linear
secret-shared accumulators and constructions in Section 4, which is followed by
the evaluation of our implementation in Section 5. Finally, in Section 6, we dis-
cuss the application of the construction in the context of certificate transparency.

2 Preliminaries

In this section, we introduce cryptographic primitives and constructions that
we subsequently use as building blocks. Notation-wise, let [n] := {1, . . . , n} for
n ∈ N. For an algorithm A, we write A(· · · ; r) to make the random coins explicit.
We say that an algorithm is efficient, if it runs in probabilistic polynomial time
(PPT). For the cryptographic assumptions, we refer to Appendix A.

2.1 UC security and ABB

In this paper, we mainly work in the UC model first introduced by Canetti [27].
The success of the UC model stems from its universal composition theorem,
which, informally speaking, states that it is safe to use a secure protocol as
a sub-protocol in a more complex one. This strong statement enables one to
analyze and proof the security of involved protocols in a modular way, allowing
us to build upon work that was already proven to be secure in the UC model.
In preparation for the security analysis of our MPC accumulators, we recall the
definition of the UC model.

Definition 1 ([27]). Let EXECΠ,A,E respectively EXECF,SIM,E denote the
random variables describing the output of environment E when interacting with
an adversary A and parties performing protocol Π, respectively when interacting
with a simulator SIM and an ideal functionality F . Protocol Π UC emulates the
ideal functionality F if for any adversary A there exists a simulator SIM such
that, for any environment E the distribution of EXECΠ,A,E and EXECF,SIM,E
are indistinguishable.

The importance of the UC model for secure multiparty computation stems
from the arithmetic black box (ABB) as introduced by Damg̊ard and Nielsen [32].
The ABB models a secure general-purpose computer in the UC model. It allows

7

performing arithmetic operations on private input provided by the parties. The
result of these operations is then revealed to all parties. Working with the ABB
provides us with a tool of abstracting arithmetic operations, including addition
and multiplication in fields.

2.2 SPDZ and Derived Protocols

Our protocols build upon SPDZ [33,30], a concrete implementation of the ab-
stract ABB. SPDZ itself is based on an additive secret-sharing over a finite field
Fp with information-theoretic MACs making the protocol statistically UC se-
cure against an active adversary corrupting all but one player. We will denote
the ideal functionality of SPDZ (the online protocol) by FSPDZ. For an easy use
of the SPDZ protocol later in our accumulators, we give a high-level description
of the functionality together with an intuitive notation. We assume that the
computations are performed by n parties and by 〈s〉 ∈ Fp denote a secret-shared
value between the parties in a finite field with p elements, where p is prime. The
ideal functionality FSPDZ provides us with the following operations:

Add(〈a〉, 〈b〉) : The parties locally compute 〈a+ b〉 ← 〈a〉+ 〈b〉.
Multiply(〈a〉, 〈b〉) : A secret-shared multiplication triple set up during prepro-

cessing is used in a 1 round interactive protocol to compute 〈ab〉 ← 〈a〉 · 〈b〉.
sRand(Fp) : Samples 〈r〉 ←R Fp.
Open(〈a〉) The value a is send to every party.

The ability to add two secret-shared values locally implies linear functions can
be computed locally. More precisely, given two constants a, b ∈ Fp and a secret-
shared value 〈x〉 ∈ Fp the parties can non-interactively compute 〈c〉 ← a〈x〉+ b.
Further, we assume for convenience in describing the main protocol that we have
access to the following function derived from FSPDZ.

Inverse(〈a〉) : Joint secret randomness set up during preprocessing is used in a
1 round interactive protocol to compute 〈a−1〉

Computation of the inverse can be efficiently implemented using a standard form
of masking as first done in [9]. That is, given a joint secret randomness 〈r〉 ∈ Fp,
compute 〈z〉 ← 〈ra〉 and immediately open the result and invert it in plain. The
inverse of 〈a〉 is then z−1〈r〉. However, there is a small failure probability if either
a or r is zero. In our case, the field size is large enough that the probability of a
random element being zero is negligible.

There is one additional sub-protocol which we will often need and therefore
explain here. Recently, Smart et al. [76] introduced protocols – in particular
based on SPDZ – for group operations of elliptic curve groups supporting secret
exponents and secret group elements. The central high-level idea is to use the
original SPDZ in the exponent group and for the authentication of the shares of
an elliptic curve point a similar protocol as in SPDZ to compute the MACs. For
this work, we only need the protocol Multiply-G-P for exponentiating a public
point with a secret exponent. We rewrite it in a slightly more general version to

8

fit our setting. Let G be a cyclic group of prime order p and g ∈ G. Further, let
〈a〉 ∈ Fp be a secret-shared exponent.

ExpG(〈a〉, g) : The parties locally compute 〈ga〉 ← g〈a〉.

Since the security proof (in the UC model) of this sub-protocol in [76] does not
use any exclusive property of an elliptic curve group, it automatically translates
to any cyclic group of prime order.

At this point, we want to summarize that all protocols discussed so far are
secure in the UC model, making them safe to use in our accumulators as sub-
protocols. Therefore, we will refer to their ideal functionality as FSPDZ+. As a
result, our protocols become secure in the UC model as long as we do not reveal
any intermediate values.

3 Accumulators

3.1 Definitions

We rely on the formalization of accumulators by Derler et al. [34]. Based on this
formalization, we then state the bilinear accumulator within this framework. We
start with the definition of a static accumulator and then recall the definition of
a dynamic accumulator.

Definition 2 (Static Accumulator). A static accumulator is a tuple of effi-
cient algorithms (Gen,Eval,WitCreate,Verify) which are defined as follows:

Gen(1κ, t) : This algorithm takes a security parameter κ and a parameter t. If
t 6= ∞, then t is an upper bound on the number of elements to be accumu-
lated. It returns a key pair (skΛ, pkΛ), where skΛ = ∅ if no trapdoor exists.
We assume that the accumulator public key pkΛ implicitly defines the accu-
mulation domain DΛ.

Eval((skΛ, pkΛ),X) : This algorithm takes a key pair (skΛ, pkΛ) and a set X to
be accumulated and returns an accumulator ΛX together with some auxiliary
information aux.

WitCreate((skΛ, pkΛ), ΛX , aux, xi) : This algorithm takes a key pair (skΛ, pkΛ),
an accumulator ΛX , auxiliary information aux and a value xi. It returns ⊥,
if xi /∈ X , and a witness witxi for xi otherwise.

Verify(pkΛ, ΛX ,witxi , xi) : This algorithm takes a public key pkΛ, an accumula-
tor ΛX , a witness witxi and a value xi. It returns 1 if witxi is a witness for
xi ∈ X and 0 otherwise.

Definition 3 (Dynamic Accumulator). A dynamic accumulator is a static
accumulator with an additional tuple of efficient algorithms (Add,Delete,WitUpdate)
which are defined as follows:

Add((skΛ, pkΛ), ΛX , aux, x) : This algorithm takes a key pair (skΛ, pkΛ), an ac-
cumulator ΛX , auxiliary information aux, as well as an element x to be
added. If x ∈ X , it returns ⊥. Otherwise, it returns the updated accumulator
ΛX ′ with X ′ ← X ∪ {x} and updated auxiliary information aux′.

9

Delete((skΛ, pkΛ), ΛX , aux, x) : This algorithm takes a key pair (skΛ, pkΛ), an
accumulator ΛX , auxiliary information aux, as well as an element x to be
added. If x 6∈ X , it returns ⊥. Otherwise, it returns the updated accumulator
ΛX ′ with X ′ ← X \ {x} and updated auxiliary information aux′.

WitUpdate((skΛ, pkΛ),witxi , aux, x) : This algorithm takes a key pair (skΛ, pkΛ),
a witness witxi to be updated, auxiliary information aux and an x which
was added to/deleted from the accumulator, where aux indicates addition or
deletion. It returns an updated witness wit′xi on success and ⊥ otherwise.

Note that the formalization of accumulators by Derler et al. gives access to a
trapdoor if it exists. If the trapdoor is not available, then skΛ is set to ∅. Giving
those algorithms access to the trapdoor can often be beneficial performance-wise,
but requires additional trust assumptions as we have discussed before.

Finally, we recall the notion of collision freeness:

Definition 4 (Collision Freeness). A cryptographic accumulator is collision-
free, if for all PPT adversaries A there is a negligible function ε(·) such that:

Pr

 (skΛ, pkΛ)← Gen(1κ, t),
(witxi

?, xi
?,X ?, r?)← AO(pkΛ) :

Verify(pkΛ, Λ
?,witxi

?, xi
?) = 1 ∧ xi? /∈ X ?

≤ ε(κ),

where Λ? ← Eval((skΛ, pkΛ),X ?; r?) and the adversary gets access to the oracles

O = {Eval((skΛ, pkΛ), ·),WitCreate((skΛ, pkΛ), ·, ·, ·)}

and, if the accumulator is dynamic, additionally to

{Add((skΛ, pkΛ), ·, ·, ·),Delete((skΛ, pkΛ), ·, ·, ·),
WitUpdate((skΛ, pkΛ), ·, ·, ·)}.

3.2 Pairing-based Accumulator

We recall the t-SDH-based accumulator from [34], which is based on the accumu-
lator by Nguyen [70]. The idea here is to encode the accumulated elements in a
polynomial. This polynomial is then evaluated for a fixed element and the result
is randomized to obtain the accumulator. A witness consists of the evaluation
of the same polynomial with the term corresponding to the respective element
cancelled out. For verification, a pairing evaluation is used to check whether
the polynomial encoded in the witness is a factor of the one encoded in the
accumulator.

As it is typically more efficient to work in the Type-3 setting, we state this
accumulator in the asymmetric pairing. The scheme is presented accumulator in
Scheme 1.

Remark 1 (On the hash function). Note that for support of arbitrary accumu-
lation domains, the accumulator requires a suitable hash function mapping to
Z∗p. For the MPC-based accumulators that we will define later, it is clear that
the hash function can be evaluated in public. Hence, for simplicity, we omit the
hash function in our discussion.

10

Gen(1κ, t) : Let BG = (p,G1,G2,GT , e, g1, g2) ← BGen(κ). Choose s←R Z∗p and return

skΛ ← s and pkΛ ← (BG, (gs
i

1)ti=1, g
s
2).

Eval((skΛ, pkΛ),X) : Parse X as subset of Z∗p. Choose r←R Z∗p. If skΛ 6= ∅, com-

pute ΛX ← g
r
∏
x∈X (x+s)

1 . Otherwise, expand the polynomial
∏
x∈X (x + X) =∑n

i=0 aiX
i, and compute ΛX ← ((

∏n
i=0 g

si

1)ai)r. Return ΛX and aux ← (add ←
0, r,X).

WitCreate((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r,X). If x 6∈ X , return ⊥. If

skΛ 6= ∅, compute and return witx ← Λ
(x+s)−1

X . Otherwise, run (witx, . . .) ←
Eval((skΛ, pkΛ),X \ {x}; r), and return witx.

Verify(pkΛ, ΛX ,witx, x) : If e(ΛX , g2) = e(witx, g
x
2 ·gs2) holds, return 1, otherwise return

0.
Add((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r,X). If x ∈ X , return ⊥. Set X ′ ← X∪{x}.

If skΛ 6= ∅, compute and return ΛX ′ ← Λx+sX and aux′ ← (r,X ′, add ←
1, ΛX , ΛX ′). Otherwise, return Eval((skΛ, pkΛ),X ′; r) with aux extended with
(add← 1, ΛX , ΛX ′).

Delete((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r,X). If x 6∈ X , return ⊥. Set X ′ ←

X \{x}. If skΛ 6= ∅, compute and return ΛX ′ ← Λ
(x+s)−1

X and aux′ ← (r,X ′, add←
−1, ΛX , ΛX ′). Otherwise, return Eval((skΛ, pkΛ),X ′; r) with aux extended with
(add← 0, ΛX , ΛX′).

WitUpdate((skΛ, pkΛ),witxi , aux, x) : Parse aux as (r,X ′, add, ΛX , ΛX ′). If add = 0,

return ⊥. Return ΛX · witx−xixi if add = 1. If instead add = −1, return (Λ−1
X ′ ·

witxi)
(x−xi)−1

. In the last two cases in addition return aux← (add← 0).

Scheme 1: t-SDH-based accumulator in the Type-3 setting.

Correctness is clear. The proof of collision freeness follows from the t-SDH
assumption. For completeness, we still restate the theorem from [34] adopted to
the Type-3 setting:

Theorem 1. If the t-SDH assumption holds relative to BGen, then Scheme 1 is
collision-free.

For the proof, we refer to Appendix B.1.

3.3 UC Secure Accumulators

Only recently, Baldimtsi et al. [8] formalized the security of accumulators in the
UC framework. Interestingly, they showed, that any correct and collision-free
standard accumulator is automatically UC secure. We, however, want to note,
that their definitions of accumulators are slightly different then the framework
by Derler et al. (which we are using). Hence, we adapt the ideal functionality
FAcc from [8] in the following way.

First our ideal functionality FAcc consists of two more sub-functionalities.
This is due to a separation of the algorithms responsible for the evaluation, ad-
dition, and deletion. Secondly, our FAcc is simplified to our purpose, whereas

11

FAcc from Baldimtsi et al. is in their words “an entire menu of functionali-
ties covering all different types of accumulators ...”. Thirdly, we added identity
checks to sub-functionalities (where necessary) to be consistent with the given
definitions of accumulators.

The resulting ideal functionality is depicted in Functionality 1. Note that
the ideal functionality has up to three parties. First, the party which holds
the set X is the accumulator manager AM, responsible for the algorithms
Gen,Eval,WitCreate,Add and Delete. The second party H owns a witness and
is interested in keeping it updated and for this reason, performs the algorithm
WitUpdate. The last party V can be seen as an external party. V is only able to
use Verify to check the membership of an element in the accumulated set.

In the following theorem we adapt the proof from [8] to our setting:

Theorem 2. Let ΠAcc = (Gen,Eval,WitCreate,Verify,Add,Delete,WitUpdate)
be a correct and collision-free dynamic accumulator scheme (in the sense of
Definition 3), and let Verify be deterministic. Then ΠAcc UC emulates FAcc.

Proof. We will proceed by contraposition. Assume to the contrary that ΠAcc

does not UC emulate FAcc, i.e., there exists an environment E , for all simulators
SIM such that E can distinguish between the distributions of the random vari-
ables EXECF,SIM,E and EXECΠ,A,E with non-negligible probability. Since the
last statement holds for all simulators, we can choose one. We want a simulator
SIM that interacts with the ideal functionality FAcc in a way such that their
distribution can not be distinguished by any environment from the real world,
except when it violates either correctness or collision-freeness. Such a simulator
would be a contradiction to our assumption and thereby prove the theorem.

Consider a simulator SIM that uses the standard corruption model from [27].
Further, SIM interacts with the environment E by forwarding any input to the
real adversary A and conversely forwarding any output from A directly to E .
When SIM receives the request (GEN,sid) from FAcc, it replies with the actual
accumulator algorithms.

By construction of SIM, the only differences to the real world that are
visible for the environment E are the following instances where FAcc returns ⊥:
(i) WitCreate: 4., (ii) Verify: 1.b, (iii) Add: 6. and (iv) WitUpdate : 3.

The occurrence of one of the above cases would immediately imply a violation
of the classical definition. More concretely, if Verify 1.b would return ⊥, then the
collision-freeness would be violated. In the other instances, correctness would
not be given any more.

As a direct consequence of Theorems 1 and 2, the accumulator from Scheme 1
is also secure in the UC model of [8] since it is correct and collision-free:

Corollary 1. Scheme 1 emulates FAcc in the UC model.

12

GEN: On input (gen, sid) from AM the functionality does the following:
1. If this is not the first gen command, or if sid does not encode the identity of AM, ignore

this command. Otherwise, continue.
2. t← 0.
3. Initialize an empty list A (keeps track of all accumulator states).
4. Initialize map S, and set S[0]← ∅ (maps operation counters to current accumulated sets).
5. Send (gen, sid) to SIM.
6. Get (algorithms, sid, (Gen, Eval,WitCreate,Verify,Add,Delete,WitUpdate)) from SIM. Their

expected input output behavior is described in Definition 3. All of them should be
polynomial-time and Verify should be deterministic.

7. Run (sk, pk)← Gen(1λ).
8. Store sk, pk; add Λ∅ ← ∅ to A.
9. Send (algorithms, sid, (Gen, Eval,WitCreate,Verify,Add,Delete,WitUpdate)) to AM.

EVAL: On input (eval, sid,X) from AM the functionality does the following:
1. If sid does not encode the identity of AM, or if X 6⊂ DΛ, ignore this command. Otherwise,

continue.
2. t← t+ 1, and S[t]← X .
3. Run (ΛX , aux)← Eval((sk, pk),X).
4. Store aux; add ΛX to A.
5. Send (eval, sid, ΛX ,X) to AM.

WITCREATE: On input (witcreate, sid, x) from AM the functionality does the following:
1. If sid does not encode the identity of AM, or if x /∈ DΛ, ignore this command. Otherwise,

continue.
2. Run w ← WitCreate((sk, pk), ΛX , aux, x).
3. If x /∈ S[t], send ⊥ to AM and halt. Otherwise, continue.
4. If Verify(pk, ΛX , w, x) = 1 continue. Otherwise, send ⊥ to AM and halt.
5. Send (witness, sid, x, w) to AM.

VERIFY: On input (verify, sid, Λ,Verify′, x, w) from party V the functionality does the following:
1. If Verify′ = Verify ∧ Λ ∈ A:

(a) t← largest t such that S[t] corresponds to Λ.
(b) If AM not corrupted ∧ x 6∈ S[t] ∧ Verify(pk, Λ, x, w) = 1, send ⊥ to P. Otherwise,

continue.
(c) b← Verify(pk, Λ, w, x)
Otherwise, set b = Verify′(pk, Λ, w, x).

2. Send (verified, sid, Λ,Verify′, x, w, b) to V.
ADD: On input (add, sid, x) from AM the functionality does the following:

1. If sid does not encode the identity of AM, or if x /∈ DΛ, ignore this command. Otherwise,
continue.

2. If x ∈ S[t] send ⊥ to AM and halt. Otherwise, continue.
3. t← t+ 1, and S[t]← S[t− 1].
4. Run (ΛX′ , aux

′)← Add((sk, pk), ΛX , aux, x).
5. Run w ← WitCreate((sk, pk), ΛX′ , aux

′, x).
6. If Verify(pk, ΛX′ , w, x) = 0, send ⊥ to AM and halt. Otherwise, continue.
7. Store aux′; add x to S[t] and ΛX′ to A.
8. Send (added, sid, ΛX′ , x) to AM.

DELETE: On input (delete, sid, x) from AM the functionality does the following:
1. If sid does not encode the identity of AM, or if x /∈ DΛ, ignore this command. Otherwise,

continue.
2. If x /∈ S[t] send ⊥ to AM and halt. Otherwise, continue.
3. t← t+ 1, and S[t]← S[t− 1].
4. Run (ΛX′ , aux

′)← Delete((sk, pk), ΛX , aux, x).
5. Store aux′; remove x from S[t] and add ΛX′ to A.
6. Send (deleted, sid, ΛX′ , x) to AM.

WITUPDATE: On input (witupdate, sid, ΛXold
, ΛXnew , x, wold) from a partyH, the functionality

does the following:
1. If ΛXold

/∈ A ∨ ΛXnew /∈ A, send ⊥ to H and halt. Otherwise continue.

2. Run wnew ← WitUpdate((sk, pk), wold, aux, x).
3. If Verify(pk, ΛXold

, wold, x) = 1∧x ∈ S[t]∧Verify(pk, ΛXnew , wnew, x) = 0, send ⊥ to V and
halt. Otherwise, continue.

4. Send (updatedwit, sid, ΛXold
, ΛXnew , x, wold, wnew) to H.

Functionality 1: Ideal Functionality FAcc for dynamic accumulators

13

4 Multi-Party Public-Key Accumulators

With the building blocks in place, we are now able to go into the details of
our construction. We first present the formal notion of linearly secret-shared
accumulators, their ideal functionality, and then present our constructions.

For the syntax of the MPC-based accumulator, which we dub linear secret-
shared accumulator, we use the bracket notation 〈s〉 from Section 2.2 to denote
a secret shared value. If we want to explicitly highlight the different shares, we
write 〈s〉 = s1 + · · ·+ sn, where the share si belongs to a party Pi. We base the
definition on the framework of Derler et al. [34], where our algorithms behave in
the same way, but instead of taking an optional secret trapdoor, the algorithms
are given shares of the secret as input. Consequently, Gen outputs shares of the
secret trapdoor instead of the secret key. The static version of the accumulator
is defined as follows:

Definition 5 (Static Linear Secret-Shared Accumulator). Let us as-
sume that we have a linear secret sharing-scheme. A static linear secret-shared
accumulator for n ∈ N parties P1, . . . , Pn is a tuple of efficient algorithms
(Gen,Eval,WitCreate,Verify) which are defined as follows:

Gen(1κ, t) : This algorithm takes a security parameter κ and a parameter t. If
t 6=∞, then t is an upper bound on the number of elements to be accumulated.
It returns a key pair (skiΛ, pkΛ) to each party Pi such that skΛ = sk1

Λ +
· · ·+ sknΛ, denoted by 〈skΛ〉. We assume that the accumulator public key pkΛ
implicitly defines the accumulation domain DΛ.

Eval((〈skΛ〉, pkΛ),X) : This algorithm takes a secret-shared private key 〈skΛ〉 a
public key pkΛ and a set X to be accumulated and returns an accumulator
ΛX together with some auxiliary information aux to every party Pi.

WitCreate((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private
key 〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux
and a value x. It returns ⊥, if x /∈ X , and a witness witx for x otherwise to
every party Pi.

Verify(pkΛ, ΛX ,witx, x) : This algorithm takes a public key pkΛ, an accumulator
ΛX , a witness witx and a value x. It returns 1 if witx is a witness for x ∈ X
and 0 otherwise.

In analogy to the non-interactive case, dynamic accumulators provide ad-
ditional algorithms to add elements to the accumulator and remove elements
from it, respectively, and update already existing witnesses accordingly. These
algorithms are defined as follows:

Definition 6 (Dynamic Linear Secret-Shared Accumulator). A dynamic
linear secret-shared accumulator is a static linear secret-shared accumulator with
an additional tuple of efficient algorithms (Add,Delete,WitUpdate) which are de-
fined as follows:

Add((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private key
〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux, as

14

well as an element x to be added. If x ∈ X , it returns ⊥ to every party Pi.
Otherwise, it returns the updated accumulator ΛX ′ with X ′ ← X ∪ {x} and
updated auxiliary information aux′ to every party Pi.

Delete((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private key
〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux, as
well as an element x to be added. If x 6∈ X , it returns ⊥ to every party Pi.
Otherwise, it returns the updated accumulator ΛX ′ with X ′ ← X \ {x} and
updated auxiliary information aux′ to every party Pi.

WitUpdate((〈skΛ〉, pkΛ),witxi , aux, x) : This algorithm takes a secret-shared pri-
vate key 〈skΛ〉 a public key pkΛ, a witness witxi to be updated, auxiliary
information aux and an element x which was added to/deleted from the ac-
cumulator, where aux indicates addition or deletion. It returns an updated
witness wit′xi on success and ⊥ otherwise to every party Pi.

Correctness and collision-freeness naturally translate from the non-interactive
accumulators to the linear secret-shared ones. The work of Baldimtsi et al.
also introduced the property creation-correctness. Informally speaking, creation-
correctness allows the generation of witnesses during addition. In the above defi-
nitions, we see that adding an element to the accumulator and creating a witness
are two separate algorithms. Therefore, the notion of creation-correctness does
not immediately apply to our accumulators.

For our case, the ideal functionality for linear secret-shared accumulators,
dubbed FMPC-Acc is more interesting. FMPC-Acc is very similar to FAcc and is
depicted in Functionality 2. The only difference in describing the ideal function-
ality for accumulators in the MPC setting arises from the fact that we now have
not only one accumulator manager but n, denoted by AM1, . . . ,AMn. More
concretely, whenever a sub-functionality of FMPC-Acc - that makes use of the
secret key - gets a request from a manager identity AMi, it now also gets a
participation message from the other managers identities Aj for j 6= i. Further-
more, the accumulator managers take the role of the witness holder. The party
V, however, stays unchanged.

15

GEN: On input (gen, sidi) from all parties AMi, the functionality does the following:
1. If this is not the first gen command, or if for any i ∈ [n], sidi does not encode the identity

of AMi, ignore this command. Otherwise, continue.
2. t← 0.
3. Initialize an empty list A (keeps track of all accumulator states).
4. Initialize map S, and set S[0]← ∅ (maps operation counters to current accumulated sets).
5. Send (gen, sidi)i∈[n] to SIM.
6. Get (algorithms, (sid1, . . . , sidn), (Gen, Eval,WitCreate,Verify,Add,Delete,WitUpdate)) from
SIM. Their expected input output behavior is described in Definition 6. All of them should
be polynomial-time and Verify should be deterministic.

7. Run (sk, pk)← Gen(1λ). Store sk, pk; add Λ∅ ← ∅ to A.
8. Send (algorithms, sidi, (Gen, Eval,WitCreate,Verify,Add,Delete,WitUpdate)) to AMi, for all

i = 1, . . . , n.
EVAL: On input (eval, sidk,X) from AMk and (eval, sidj , ?) from all other parties AMj , for

j 6= k, the functionality does the following:
1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if X 6⊂ DΛ, ignore this

command. Otherwise, continue.
2. t← t+ 1, and S[t]← X .
3. Run (ΛX , aux)← Eval((sk, pk),X). Store aux; add ΛX to A.
4. Send (eval, sidi, ΛX ,X) to AMi, for all i = 1, . . . , n.

WITCREATE: On input (witcreate, sidk, x) from AMk and (witcreate, sidj , ?) from all parties
AMj , for j 6= k, the functionality does the following:

1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if x /∈ DΛ, ignore this
command. Otherwise, continue.

2. Run w ← WitCreate((sk, pk), ΛX , aux, x).
3. If x /∈ S[t], send ⊥ to all AMi and halt. Otherwise, continue.
4. If Verify(pk, ΛX , w, x) = 1 continue. Otherwise, send ⊥ to all AM〉 and halt.
5. Send (witness, sidi, x, w) to AMi, for all i = 1, . . . , n.

VERIFY: On input (verify, sid, Λ,Verify′, x, w) from party V the functionality does the following:
1. If Verify′ = Verify ∧ Λ ∈ A:

(a) t← largest t such that S[t] corresponds to Λ.
(b) If at least one AMi is not corrupted ∧ x 6∈ S[t]∧Verify(pk, Λ, x, w) = 1, send ⊥ to V.

Otherwise, continue.
(c) b← Verify(pk, Λ, w, x)
Otherwise, set b = Verify′(pk, Λ, w, x).

2. Send (verified, sid, Λ,Verify′, x, w, b) to V.
ADD: On input (add, sidk, x) from AMk and (add, sidj , ?) from all parties AMj , for j 6= k, the

functionality does the following:
1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if x /∈ DΛ, ignore this

command. Otherwise, continue.
2. If x ∈ S[t] send ⊥ to all AMi and halt. Otherwise, continue.
3. t← t+ 1, and S[t]← S[t− 1].
4. Run (ΛX′ , aux

′)← Add((sk, pk), ΛX , aux, x). Run w ← WitCreate((sk, pk), ΛX′ , aux
′, x).

5. If Verify(pk, ΛX′ , w, x) = 0, send ⊥ to all AMi and halt. Otherwise, continue.
6. Store aux′; add x to S[t] and ΛX′ to A.
7. Send (added, sidi, ΛX′ , x) to AMi, for all i = 1, . . . , n.

DELETE: On input (delete, sidk, x) from AMk and (delete, sidj , ?) from all parties AMj , for
j 6= k, the functionality does the following:

1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if x /∈ DΛ, ignore this
command. Otherwise, continue.

2. If x /∈ S[t] send ⊥ to all AMi and halt. Otherwise, continue.
3. t← t+ 1, and S[t]← S[t− 1].
4. Run (ΛX′ , aux

′)← Delete((sk, pk), ΛX , aux, x).
5. Store aux′; remove x from S[t] and add ΛX′ to A.
6. Send (deleted, sidi, ΛX′ , x) to AMi, for all i = 1, . . . , n.

WITUPDATE: On input (witupdate, sidk, ΛXold
, ΛXnew , x, wold) from AMk and

(witupdate, sidj , ?, ?, ?, ?) from all parties AMj , for j 6= k, the functionality does the
following:

1. If for any i ∈ [n], sidi does not encode the identity of AMi, or if x /∈ DΛ, ignore this
command. Otherwise, continue.

2. If ΛXold
/∈ A ∨ ΛXnew /∈ A, send ⊥ to all AMi and halt. Otherwise continue.

3. Run wnew ← WitUpdate((sk, pk), wold, aux, x).
4. If Verify(pk, ΛXold

, wold, x) = 1∧x ∈ S[t]∧Verify(pk, ΛXnew , wnew, x) = 0, send ⊥ to V and
halt. Otherwise, continue.

5. Send (updatedwit, sidi, ΛXold
, ΛXnew , x, wold, wnew) to AMi, for all i = 1, . . . , n.

Functionality 2: Ideal Functionality FAcc-MPC

16

4.1 Dynamic Linear Secret-Shared Accumulator from the t-SDH
Assumption

Let’s start with the generation of the public parameters, Gen. For this algorithm,
we can rely on already established methods to produce ECDSA key pairs and
to calculate with secret exponents, respectively. These methods can directly be
applied to the accumulators. If we take the t-SDH accumulator as an example,
then the first step is to sample the secret scalar s ∈ Zp. Intuitively, each party
samples its own share si of s, which are then combined to s =

∑
si. The next step

is the calculation of the basis elements gs
j

for j = 1, . . . , t. All of these elements
can be computed using ExpG and the secret-shared s, respectively its powers.
Note that producing the powers is necessary to provide public parameters that
are useful even to parties without knowledge of s.

For the accumulator evaluation, Eval, the idea is that, first, the parties sample
their shares of r. Then, they cooperate to compute shares of r · f(s) using their
respective shares of r and s. Again, the so-obtained exponent and ExpG produce
the final result.

For witness creation, WitCreate, it gets more interesting. Of course, one could
simply run Eval again with one element removed from the set. In this case, we can
do better, though. The difference between the accumulator and a witness is that
in the latter, one factor of the polynomial is canceled. Since s is available, it is
thus possible to cancel this factor without recomputing the polynomial from the
start. Indeed, to compute the witness for element an x, we can compute (s+x)−1

and then apply that inverse using ExpG to the accumulator to get the witness.
Note though, that before the parties perform this step, they need to check if
x is actually contained in X . Otherwise, they would produce a membership
witness for a non-member. In that case, the verification would check whether
f(s)(s + x)−1(s + x) matches f(s), which of course also holds even if s + x is
not a factor of f(s). In contrast, when performing Eval with only the publicly
available information, this issue does not occur since then the witness will not
verify. Similarly, Add and Delete can be implemented in a similar manner. When
adding an element to the accumulator, the polynomial is extended by one factor.
Removal of an element requires that one factor is canceled. Both operations can
be performed by first computing the factor using the shares of s and then running
ExpG.

Now, we present the MPC version of the t-SDH accumulator in Scheme 2
following the intuition outlined above. Note that we let Gen choose the bilinear
group BG, but this group can already be fixed a priori.

Theorem 3. Scheme 2 UC emulates FAcc-MPC in the FSPDZ+-hybrid model.

Proof. At this point, we make use of the UC model. Informally speaking, ac-
cumulators are UC secure, and SPDZ and the derived operations UC emulate
FSPDZ+. Therefore, according to the universal composition theorem, the use of
the SPDZ protocol in the accumulator Scheme 2 can be done without losing UC
security. For a better understanding, we elaborate this argumentation. We begin
by showing the desired standard accumulator properties for Scheme 2.

17

Gen(1κ, t) : BG = (p,G1,G2,GT , e, g1, g2) ← BGen(κ). Compute 〈skΛ〉 ← sRand(Z∗p).
Compute h← Open(g

〈skΛ〉
2). Return pkΛ ← (BG, h).

Eval((〈skΛ〉, pkΛ),X) : Parse pkΛ as (BG, h) and X as subset of Z∗p. Choose 〈r〉 ←
sRand(Z∗p). Compute 〈q〉 ←

∏
x∈X (x+〈skΛ〉) ∈ Z∗p and 〈t〉 ← 〈q〉·〈r〉. The algorithm

returns ΛX ← Open(g
〈t〉
1) and aux← (add← 0,X).

WitCreate((〈skΛ〉, pkΛ), ΛX , aux, x) : Returns ⊥ if x /∈ X . Otherwise, 〈z〉 ← 〈(x +

〈skΛ〉)−1〉. Return witx ← Open(Λ
〈z〉
X).

Verify(pkΛ, ΛX ,witx, x) : Parse pkΛ as (BG, h). If e(ΛX , g2) = e(witx, g
x
2 · h) holds,

return 1, otherwise return 0.
Add((〈skΛ〉, pkΛ), ΛX , aux, x) : Returns ⊥ if x ∈ X . Otherwise set X ′ ← X ∪ {x}.

Return ΛX ′ ← ΛxX · Open(Λ
〈skΛ〉
X) and aux← (add← 1,X ′).

Delete((〈skΛ〉, pkΛ), ΛX , aux, x) : If x /∈ X , return ⊥. Otherwise set X ′ ← X \{x}, and

compute 〈y〉 ← 〈(x + 〈skΛ〉)−1〉. Return ΛX ′ ← Open(Λ
〈y〉
X) and aux ← (add ←

−1,X ′).
WitUpdate((〈skΛ〉, pkΛ),witxi , aux, x) : Parse aux as (add,X). Return ⊥ if add = 0

or xi /∈ X . In case add = 1, return witxi ← witxxi · Open(wit
〈skΛ〉
xi) and aux ←

(add ← 0,X). If instead add = −1, it compute 〈y〉 ← 〈(x + 〈skΛ〉)−1〉. Return

witxi ← Open(wit
〈y〉
xi) and aux← (add← 0,X).

Scheme 2: MPC-t-SDH: Dynamic linear secret-shared accumulator from t-SDH
for n ≥ 2 parties.

The proof of the correctness follows directly from the correctness proof from
Scheme 1 for the case where the secret key is known. Collision-freeness is also
derived from the non-interactive t-SDH accumulator. (It is true that now each
party has a share of the trapdoor, but without all the other shares no party can
create a valid witness.) Since Verify is obviously deterministic, Scheme 2 fulfills
all necessary assumption of Theorem 2.

After applying Theorem 2, we get a simulator SIMAcc interacting with the
ideal functionality FAcc. Since we now also have to simulate the non-interactive
sub-protocols, we have to extend SIMAcc. We construct SIMAcc-MPC by build-
ing upon SIMAcc and in addition internally simulate FSPDZ+.

As described in Section 2.2, the MPC protocols used in the above algorithms
are all secure in the UC model. Since we do not open any secret-shared values
besides uniformly random elements and the output or values that can be imme-
diately derived from the output, the algorithms are secure due to the universal
composition theorem.

Note, that the algorithm for WitUpdate is unlikely to be faster than its non-
MPC version from Scheme 1. Indeed, the non-MPC version requires only ex-
ponentiations in G1 and a multiplication without the knowledge of the secret
trapdoor. We provide the version using the trapdoor for completeness but will
use the non-MPC version of the algorithm in the remainder.

Remark 2. In Gen of Scheme 2 we explicitly do not compute hi ← gs
i

1 . Hence,
using Eval without access to s is not possible. But, on the positive side, the

18

public key is significantly smaller and so is the runtime of the Gen algorithm. If,
however, these values are needed to support a non-secret-shared Eval, one can
modify Gen to also compute the following values: 〈t1〉 ← 〈s〉, 〈ti〉 ← 〈ti−1〉 · 〈s〉,
and hi ← Open(g

〈ti〉
1) for i = 1, . . . , t.

5 Implementation and Performance Evaluation

We implemented the proposed dynamic linear secret-shared accumulator from
t-SDH and evaluated it against small to large sets8. Our primary implementa-
tion is based on MP-SPDZ [77]; however, to demonstrate the usability of our
accumulator, we additionally build an implementation in the malicious security
setting based on the FRESCO [3] framework. We discuss the benchmarks for
the MP-SPDZ implementation in this section; for a discussion of the FRESCO
benchmarks we refer the reader to Appendix E. MP-SPDZ implements the SPDZ
protocol and various extensions [33,52,53,28]. For pairing and elliptic curve group
operations, we rely on the Relic library [5] and integrate ExpG, Output-G, and
the corresponding operations to update the MAC described in [76] into MP-
SPDZ. We use the pairing friendly BLS12-381 curve [12], which provides around
120 bit of security following recent estimates [10,62].

For completeness, we also implemented the unmodified versions of the t-
SDH accumulator from Scheme 1, and also a Merkle-tree accumulator (cf. Ap-
pendix C) using SHA256. This enables us to compare the performance in cases
where the secret trapdoors are available in the MPC case and when they are
not. In Table 1, we present the numbers for various sizes of the accumulated set.

Table 1. Performance of the accumulator algorithms without access to the secret
trapdoors. Time in milliseconds averaged over 100 executions.

Accumulator t-SDH Merkle-tree
Operation |X | = 210 214 |X | = 210 214

Gen 649 9 062 - -

Eval 1 117 116 031 1.12 15.53
WitCreate 1 116 115 870 0.05a 0.83a

Add 1 116 115 575 1.12 15.53
WitUpdateAdd 0.6 0.6 0.05a 0.83a

Delete 1 120 116 154 1.12 15.53
WitUpdateDelete 0.7 0.7 0.05a 0.83a

a Here we assume that the full Merkle-tree is known as
auxiliary data. If this is not the case, the tree has to be
rebuilt, which adds the Eval-time.

8 The source code is available at https://github.com/IAIK/MPC-Accumulator.

19

https://github.com/IAIK/MPC-Accumulator

Table 2. Number of Beaver-triples and shared random values for each MPC-t-SDH
operation.

Operation Beaver-triples Random values

Gen 0 1
Eval |X | 1
WitCreate 1 1

Add 0 0
WitUpdateAdd 0 0

Delete 1 1
WitUpdateDelete 1 1

The evaluation of the MPC protocol was performed on a cluster with a
Xeon E5-4669v4 CPU, where each party was assigned only 1 core. The hosts
were connected via a 1 Gbit/s LAN network, and an average round-trip time of
< 1 ms. For the WAN setting, a network with a round-trip time of 100 ms and
a bandwidth of 100 Mbit/s was simulated. For the MPC protocol, we provide
benchmarks for both preprocessing and online phases. Note that the cost of
the preprocessing phase is determined by the number of shared multiplications,
whereas the performance of the online phase is given by the multiplicative depth
of the circuit and the number of openings.

5.1 Evaluation of MPC-t-SDH

In the offline phase of the SPDZ protocol, the required Beaver-triples [15] for
shared multiplication and the pre-shared random values are generated. A shared
inverse operation requires one multiplication and one shared random value. In
Table 2, we list the number of triples required for each operation for the MPC-
t-SDH accumulator. Each of the operations requires a constant number of mul-
tiplications and inverse operations and, therefore, a constant number of Beaver-
triples and shared random elements – with the exception of the Eval operation.
In Eval, the number of required Beaver-triples is determined by |X |. As discussed
in Remark 2, Gen is not producing the public parameters hi, which enable ac-
cumulation of elements without the use of MPC. If this feature is desired, the
time and communication of Eval for the respective set sizes should be added to
the time and communication of Gen to obtain an estimate of its performance.

Table 3 compares the offline performance of the MPC-t-SDH accumulator
in different settings. We give both timings for the accumulation of |X | elements
in Eval and the necessary pre-computation for a single inversion, which is used
in several other operations (e.g. WitCreate). Additionally we also give the time
for pre-computing a single random element, which is required to generate the
authenticated share of the secret-key in Eval. Further note that batching the
generation of many triples together like for the Eval phase is more efficient in
practice than producing a single triple and as these triples are not dependant on

20

Table 3. Offline phase performance of different steps of the MPC-t-SDH accumulator
with access to the secret trapdoor implemented in MP-SPDZ. Time in milliseconds.

LAN setting WAN setting
Operation |X | n = 2 3 4 5 n = 2 3 4 5

BaseOTs
210 0.03 0.08 0.14 0.23 0.14 0.31 0.56 0.84
214 0.03 0.08 0.14 0.23 0.14 0.31 0.56 0.84

Semi-Honest

Inverse
210 0.78 1.72 3.06 4.03 209.9 227.5 322.8 331.0
214 0.78 1.72 3.06 4.03 209.9 227.5 322.8 331.0

Gen
210 0.44 1.21 1.76 3.01 207.7 223.6 325.9 332.0
214 0.44 1.21 1.76 3.01 207.7 223.6 325.9 332.0

Eval
210 189 397 706 959 4 695 8 215 13 680 25 725
214 4000 8 308 14 380 17 928 55 542 109 720 214 585 356 330

Malicious

Inverse
210 4.34 7.93 11.5 15.3 840.5 1 262 1 538 1 914
214 4.34 7.93 11.5 15.3 840.5 1 262 1 538 1 914

Gen
210 2.56 4.23 6.80 9.32 841.3 1 235 1 540 1 856
214 2.56 4.23 6.80 9.32 841.3 1 235 1 540 1 856

Eval
210 1 601 2 849 4 345 6 227 25 737 45 254 87 328 141 181
214 31 099 62 978 89 132 145 574 412 747 682 033 1 364 660 2 236 860

the input, all parties can continuously generate triples in the background to fill
a triple-buffer for use in the online phase.

In Table 4, we present the online performance of our MPC-t-SDH accumula-
tor for different set sizes, parties, security settings, and network settings. It can
clearly be seen, that – except for the Eval operation – the runtime of each opera-
tion is independent of the set size. In other words, after an initial accumulation of
a given set, every other operation has constant time. In comparison, the runtime
of the non-MPC accumulators without access to the secret trapdoor, as depicted
in Table 1, depends on the size of the accumulated set. Our MPC-accumulator
outperforms the non-MPC t-SDH accumulators the larger the accumulated set
gets. In the LAN setting MPC-t-SDH’s Eval is faster than the non-MPC ver-
sion for all benchmarked players, even in the WAN settings it outperforms the
non-MPC version in the two player case. For 214 elements, it is even faster for
all benchmarked players in all settings, including the WAN setting. In any case,
the witnesses have constant size contrary to the log2(|X |) sized witnesses of the
Merkle-tree accumulator.

The numbers for the evaluation of the online phase in the WAN setting
are also presented in Table 4. The overhead that can be observed compared
to the LAN setting is influenced by the communication complexity. Since our
implementation implements all multiplications in Eval in a depth-optimized tree-
like fashion, the overhead from switching to a WAN setting is not too severe.

21

Table 4. Online phase performance of the MPC-t-SDH accumulator with access to the
secret trapdoor implemented in MP-SPDZ, for both the LAN and WAN settings with
n parties. Time in milliseconds averaged over 50 executions.

Semi-Honest Malicious
LAN setting WAN setting LAN setting WAN setting

Operation |X | n = 2 3 4 5 n = 2 3 4 5 n = 2 3 4 5 n = 2 3 4 5

Gen
210 4 4 7 19 53 110 170 219 11 13 25 37 169 278 395 505
214 4 4 9 20 56 111 172 220 11 13 28 48 179 280 396 506

Eval
210 3 13 58 231 635 1 277 1 916 2 558 10 17 50 131 966 1 327 1 669 1 995
214 26 47 117 315 949 1 948 3 166 4 571 89 94 174 225 1 297 1 979 2 830 3 872

WitCreate
210 2 2 32 39 168 320 482 645 5 10 35 75 372 606 823 1 050
214 2 2 28 51 168 320 473 638 5 6 28 80 365 606 835 1 052

Add
210 2 2 8 17 47 107 166 213 5 5 17 31 170 273 388 499
214 2 2 5 14 50 108 170 214 5 5 17 42 173 271 383 491

WitUpdateAdd
210 2 2 5 30 60 108 154 214 5 7 12 34 159 276 390 495
214 2 2 3 20 60 107 152 217 5 6 10 54 154 275 390 500

Delete
210 2 2 21 58 156 319 488 639 5 10 47 78 379 598 818 1 034
214 2 2 23 55 158 318 489 642 5 6 38 87 385 603 822 1 033

WitUpdateDelete
210 2 2 52 47 165 320 475 643 5 10 26 100 374 604 828 1 044
214 2 4 43 57 162 323 475 639 5 10 35 74 365 599 827 1 048

On the first look, one can observe an irregularity in our benchmarks. More
specifically, notice that for four or more parties, the maliciously secure evaluation
of the Eval online phase is consistently faster than the semi-honest evaluation
of the same phase. However, this is a direct consequence of a difference in how
MP-SPDZ handles the communication in those security models, where commu-
nication is handled in a non-synchronized send-to-all approach in the malicious
setting and a synchronized broadcast approach in the semi-honest setting. The
synchronization in the latter case scales worse for more parties and, therefore,
introduces some additional delays.

Finally, Table 5 depicts the size of the communication between the parties
for both offline and online phases. The communication of Eval has to account
for a number of multiplications dependant on X and therefore scales linearly
with its size. As we already observed for the runtime of MPC-t-SDH, also the
communication of WitCreate, Add, Delete and WitUpdate is independent of the
size of the accumulated set, and additionally less than 200 kB for all algorithms.
Combined with the analysis of the runtime, we conclude that the performance of
the operations that might be performed multiple times per accumulator is very
efficient in both runtime and communication. When compared to the perfor-
mance of the non-MPC accumulators in Table 1, we see that the performance of
operations that benefit from access to the secret trapdoor are multiple orders of
magnitude faster in the MPC accumulators and, in the LAN setting, even come
close to the performance of the standard Merkle-tree accumulator, for both the
semi-honest and malicious variant.

6 Applications

In this section, we discuss the applications of MPC-based accumulators.

22

Table 5. Communication complexity of the MPC-t-SDH accumulator with access to
the secret trapdoor implemented in MP-SPDZ, per party. Communication in kB.

Semi-Honest Malicious
Operation |X | Offlinea Online Offlinea Online

Gen
210 20 0.10 86 0.24
214 20 0.10 86 0.24

Eval
210 12 571 66 79 549 66
214 200 823 1 049 1 271 484 1 049

WitCreate
210 33 0.15 164 0.37
214 33 0.15 164 0.37

Add
210 4 0.05 4 0.14
214 4 0.05 4 0.14

WitUpdateAdd
210 4 0.05 4 0.14
214 4 0.05 4 0.14

Delete
210 33 0.15 164 0.37
214 33 0.15 164 0.37

WitUpdateDelete
210 33 0.15 164 0.37
214 33 0.15 164 0.37

a Includes BaseOTs for a new connection

6.1 Revocation of Credentials in Distributed Credential Systems

As first application of MPC-based accumulators, we focus on distributed cre-
dential systems [42], and in particular, on the implementation in Sovrin [54]. In
general, anonymous credentials provide a mechanism for making identity asser-
tions while maintaining privacy, yet, in classical, non-distributed systems require
a trusted credential issuer. This central issuer, however, is both a single point
of failure and a target for compromise and can make it challenging to deploy
such a system. In a distributed system credential system, on the other hand, this
trusted credential issues is eliminated, e.g. by using distributed ledgers.

We shortly recall how Sovrin implements revocation. When issuing a creden-
tial, every user gets a unique revocation identifier iR. All valid revocation IDs
are accumulated using the t-SDH accumulator and the accumulator gets pub-
lished. Additionally, the users also obtains a witness certifying membership of
its iR in the accumulator. Whenever a user shows their credential, they have
to prove that they know this witness for their iR with respect to the published
accumulator. When a new user joins, the accumulator has to be updated. Conse-
quently, all the witnesses have to be updated as well, as otherwise they would no
longer be able to provide a valid proof. Similar, in the case that a user is revoked
and thus removed from the accumulator, all other users have to update their
witnesses accordingly. Also, the verifiers also always have to check for updated
accumulators.

23

Now, recall the that t-SDH accumulator supports all the required operations
without needing access to the trapdoor. Hence, all operations can be performed
and, especially, the users can update their witnesses on their own as long as
the corresponding iRs are published on the ledger. While functionality-wise all
operations are supported, performance-wise a large number of users becomes an
issue. With potentially millions to billions of users, adding and deleting members
from the accumulator becomes increasingly expensive (cf. Table 1). Hence, at a
certain size, having access to the trapdoor would be beneficial. But, on the other
side, generating membership witnesses for non-members would become possible
in that case.

The latter is also an issue during the setup of the system. Trusting one third
party to generate the public parameters of the accumulator might be undesired
in a distributed system as in this case. The special structure of the Sovrin ecosys-
tem with their semi-trusted foundation members, however, naturally fits to our
multi-party accumulator. First, the foundation members can setup the public
parameters in a distributed manner. Secondly, as all of them have shares of the
trapdoor, they can also run the updates of the accumulator using the MPC-t-
SDH-accumulator. The change to this accumulator is completely transparent to
the clients and verifiers and no changes are required there.

6.2 Certificate-Transparency Logs and Privacy-preserving Variants

We finally look at the application of accumulators in the CT ecosystem. Cer-
tificate Authorities request the inclusion of certificates in the log whenever they
sign a new certificate, and once the certificate was included in the log, audi-
tors can check the consistency of this log. Additionally, TLS clients also verify
whether all certificates that they obtain were actually logged, thereby ensur-
ing that log servers do not hand out promises of certificate inclusion without
following through. Technically, the CT log is realized as a Merkle-tree accumu-
lator containing all certificates. As certificates need to be added continuously,
it is made dynamic by simply recalculating the root hash and all the proofs.
While dynamic accumulators would perfectly fit the use-case from a functional-
ity point of view, their real-world performance without secret trapdoors is not
good enough – recalculating hash trees is just more efficient. Knowledge of the
secret trapdoors would however be catastrophic for this application, as the guar-
antees of the whole system break down: log servers could produce witnesses for
any certificate they get queried on, even if it was never submitted to the log
servers for inclusion.

In the CT ecosystem, the clients need to contact the log servers for the
inclusion proof, and therefore verifying certificates has negative privacy impli-
cations, as querying the inclusion status of a certificate reveals the browsing
behavior of the client to the log server. Based on previous work by Lueks and
Goldberg [61], Kales et al. [50] proposed to rethink retrieval of the inclusion
proofs by employing multi-server private information retrieval (PIR) to query
the proofs. Specifically, they build their system using a 2-server PIR from dis-
tributed point functions [46]. To further improve performance, the accumulator

24

is split into sub-accumulator based on, e.g., time periods. The sub-accumulators
for a given time period are then accumulated in a top-level accumulator. Con-
sequently, the witnesses with respect to the sub-accumulator stay constant and
can be embedded in the server’s certificate and only the membership-proofs of
the sub-accumulators need to be updated when new certificates are added to
the log. Only these top-level proofs have to be queried using PIR, thus greatly
improving the overall performance, as smaller databases are more efficient to
query.

However, one drawback of this solution is the increase in certificate size if
one were to include this static membership witness for the sub-accumulator in
the certificate itself. Kales et al. [50] propose to build sub-accumulators per
hour, which would result in sub-accumulators that hold about 216 certificates.
A Merkle-tree membership proof for these sub-accumulators is 512 bytes in size
when using SHA-256. In contrast, a membership proof for the t-SDH accumulator
is only 48 bytes in size (using point compression for the 381-bit BLS curve we use
in our implementation). A typical DER-encoded X509 certificate using RSA-2048
as used in TLS is about 1-2 KB in size, meaning inclusion of the Merkle-tree sub-
accumulator membership proof would increase the certificate size by 25− 50%,
whereas the t-SDH sub-accumulator membership proof only increases the size
by 2.5− 5%.

We can now leverage the fact that their solution already requires two non-
colluding servers for the multi-server PIR. In their original solution, these servers
hold copies of the Merkle-tree accumulator and answer private membership
queries for the top-level accumulator. We suggest that switching the accumu-
lators from Merkle-trees to our MPC-t-SDH accumulator would give the benefit
of small, constant size membership proofs, while still being performant enough
to accumulate and produce witnesses for all elements of a sub-accumulator in
one hour.

7 Conclusion

In this work, we introduced dynamic linear secret-shared accumulators which
remove the need of a trusted third party for public-key accumulators. By replac-
ing the trusted party by a distributed setup algorithm, we achieved even more:
since shares of the secret trapdoor are now available, the otherwise expensive al-
gorithms can also be implemented as MPC protocol making use of the trapdoor.
Thereby we obtained – especially in the bilinear groups setting – an efficient
accumulator even for large sizes of accumulated sets.

Since our constructions are generic in a sense, improvements in the underlying
MPC protocols will directly translate to our accumulators. Also, more efficient
implementations of those protocols in the respective frameworks will have the
same impact.

25

Acknowledgments

This work was supported by EU’s Horizon 2020 project Safe-DEED, grant agree-
ment n◦825225, and KRAKEN, grant agreement n◦871473, and EU’s Horizon
2020 ECSEL Joint Undertaking project SECREDAS, grant agreement n◦783119,
and by the ”DDAI” COMET Module within the COMET – Competence Centers
for Excellent Technologies Programme, funded by the Austrian Federal Ministry
for Transport, Innovation and Technology (bmvit), the Austrian Federal Min-
istry for Digital and Economic Affairs (bmdw), the Austrian Research Promo-
tion Agency (FFG), the province of Styria (SFG) and partners from industry
and academia. The COMET Programme is managed by FFG.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: ASIACRYPT (3). LNCS, vol. 10626, pp. 3–33. Springer (2017)

2. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: Obtaining simula-
tion extractable subversion and updatable snarks generically. Cryptology ePrint
Archive, Report 2020/062 (2020), https://eprint.iacr.org/2020/062, to appear
at CCS’20

3. Alexandra Institute: FRESCO - a FRamework for Efficient Secure COmputation
(2019), https://github.com/aicis/fresco

4. Aly, A., Keller, M., Rotaru, D., Scholl, P., Smart, N.P., Wood, T.: SCALE-
MAMBA (2019), https://homes.esat.kuleuven.be/~nsmart/SCALE/

5. Aranha, D.F., et al.: RELIC is an Efficient LIbrary for Cryptography. https:

//github.com/relic-toolkit/relic

6. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: CT-RSA. LNCS, vol. 5473, pp. 295–308. Springer (2009)

7. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L.,
Samelin, K., Yakoubov, S.: Accumulators with applications to anonymity-
preserving revocation. In: EuroS&P. pp. 301–315. IEEE (2017)

8. Baldimtsi, F., Canetti, R., Yakoubov, S.: Universally composable accumulators.
In: CT-RSA. LNCS, vol. 12006, pp. 638–666. Springer (2020)

9. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: PODC. pp. 201–209. ACM (1989)

10. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. IACR
ePrint 2017, 334 (2017)

11. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: EUROCRYPT. LNCS, vol. 1233, pp. 480–494. Springer
(1997)

12. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: SCN. Lecture Notes in Computer Science, vol. 2576, pp.
257–267. Springer (2002)

13. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Selected Areas in Cryptography. LNCS, vol. 3897, pp. 319–331. Springer (2005)

14. Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A., Kounev, S.: Chameleon: A hybrid,
proactive auto-scaling mechanism on a level-playing field. IEEE Trans. Parallel
Distrib. Syst. 30(4), 800–813 (2019)

26

https://eprint.iacr.org/2020/062
https://github.com/aicis/fresco
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic

15. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO. LNCS, vol. 576, pp. 420–432. Springer (1991)

16. Bellare, M., Fuchsbauer, G., Scafuro, A.: Nizks with an untrusted CRS: security
in the face of parameter subversion. In: ASIACRYPT (2). LNCS, vol. 10032, pp.
777–804 (2016)

17. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: CRYPTO (3). LNCS, vol. 11694, pp. 701–732. Springer (2019)

18. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative
to digital sinatures (extended abstract). In: EUROCRYPT. LNCS, vol. 765, pp.
274–285. Springer (1993)

19. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

20. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to iops and stateless blockchains. In: CRYPTO (1). LNCS, vol. 11692, pp.
561–586. Springer (2019)

21. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-snark
parameters in the random beacon model. IACR ePrint 2017, 1050 (2017)

22. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: PKC. LNCS,
vol. 1992, pp. 190–206. Springer (2001)

23. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware au-
thentication and attestation. IJIPSI 1(1), 3–33 (2011)

24. Brickell, E., Li, J.: Enhanced privacy ID: A direct anonymous attestation scheme
with enhanced revocation capabilities. IEEE Trans. Dependable Sec. Comput. 9(3),
345–360 (2012)

25. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: CRYPTO. LNCS, vol. 2442, pp. 61–76.
Springer (2002)

26. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contin-
gent payments revisited: Attacks and payments for services. In: ACM CCS. pp.
229–243. ACM (2017)

27. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS. pp. 136–145. IEEE (2001)

28. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : Efficient

MPC mod 2k for dishonest majority. In: CRYPTO (2). LNCS, vol. 10992, pp.
769–798. Springer (2018)

29. Dalskov, A.P.K., Keller, M., Orlandi, C., Shrishak, K., Shulman, H.: Securing
DNSSEC keys via threshold ECDSA from generic MPC. IACR ePrint 2019, 889
(2019)

30. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
ESORICS. LNCS, vol. 8134, pp. 1–18. Springer (2013)

31. Damg̊ard, I., Koprowski, M.: Practical threshold RSA signatures without a trusted
dealer. In: EUROCRYPT. LNCS, vol. 2045, pp. 152–165. Springer (2001)

32. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: CRYPTO. LNCS, vol. 2729, pp.
247–264. Springer (2003)

33. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO. LNCS, vol. 7417, pp. 643–662.
Springer (2012)

27

34. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: CT-RSA. LNCS, vol. 9048,
pp. 127–144. Springer (2015)

35. Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for
redactable signatures and new constructions. In: ICISC. LNCS, vol. 9558, pp. 3–19.
Springer (2015)

36. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In: PQCrypto. LNCS, vol. 10786, pp. 419–440. Springer (2018)

37. Dobson, S., Galbraith, S.D.: Trustless groups of unknown order with hyperelliptic
curves. IACR ePrint 2020, 196 (2020)

38. Dowling, B., Günther, F., Herath, U., Stebila, D.: Secure logging schemes and
certificate transparency. In: ESORICS (2). LNCS, vol. 9879, pp. 140–158. Springer
(2016)

39. Fan, C., Hsu, R., Manulis, M.: Group signature with constant revocation costs for
signers and verifiers. In: CANS. LNCS, vol. 7092, pp. 214–233. Springer (2011)

40. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: CRYPTO (2). LNCS, vol.
10992, pp. 331–361. Springer (2018)

41. Fuchsbauer, G.: Subversion-zero-knowledge snarks. In: PKC (1). LNCS, vol. 10769,
pp. 315–347. Springer (2018)

42. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS.
The Internet Society (2014)

43. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: ACM CCS. pp. 1179–1194. ACM (2018)

44. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: ACNS. LNCS, vol. 9696,
pp. 156–174. Springer (2016)

45. Gilboa, N.: Two party RSA key generation. In: CRYPTO. LNCS, vol. 1666, pp.
116–129. Springer (1999)

46. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: EU-
ROCRYPT. LNCS, vol. 8441, pp. 640–658. Springer (2014)

47. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-snarks. In: CRYPTO
(3). LNCS, vol. 10993, pp. 698–728. Springer (2018)

48. Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary
quadratic orders. In: ASIACRYPT. LNCS, vol. 1976, pp. 234–247. Springer (2000)

49. Hanser, C., Ramacher, S.: IAIK ECCelerate (2019), https://jce.iaik.tugraz.
at/sic/Products/Core_Crypto_Toolkits/ECCelerate

50. Kales, D., Omolola, O., Ramacher, S.: Revisiting user privacy for certificate trans-
parency. In: EuroS&P. pp. 432–447. IEEE (2019)

51. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM CCS. pp. 525–537. ACM (2018)

52. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: CRYPTO (1). LNCS, vol. 9215, pp. 724–741. Springer (2015)

53. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM CCS. pp. 830–842. ACM (2016)

54. Khovratovich, D., Law, J.: Sovrin: digitial signatures in the blockchain area (2016),
https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf

55. Laurie, B.: Certificate transparency. ACM Queue 12(8), 10–19 (2014)

28

https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate
https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf

56. Laurie, B., Langley, A., Käsper, E.: Certificate transparency. RFC 6962, 1–27
(2013)

57. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In: EUROCRYPT (2). LNCS, vol. 9666, pp. 1–31. Springer (2016)

58. Lindell, Y.: Fast secure two-party ECDSA signing. In: CRYPTO (2). LNCS, vol.
10402, pp. 613–644. Springer (2017)

59. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: ACM CCS. pp. 1837–
1854. ACM (2018)

60. Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In:
ACNS. LNCS, vol. 7341, pp. 224–240. Springer (2012)

61. Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private information re-
trieval. In: Financial Cryptography. LNCS, vol. 8975, pp. 168–186. Springer (2015)

62. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography. In: Mycrypt. LNCS, vol.
10311, pp. 83–108. Springer (2016)

63. Merkle, R.C.: A certified digital signature. In: CRYPTO. LNCS, vol. 435, pp. 218–
238. Springer (1989)

64. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: IEEE S&P. pp. 397–411. IEEE (2013)

65. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: ACM CCS. pp. 35–52. ACM (2018)

66. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-
chine learning. In: IEEE S&P. pp. 19–38. IEEE (2017)

67. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: PKC. LNCS, vol. 5443, pp. 463–
480. Springer (2009)

68. Nakanishi, T., Kubooka, F., Hamada, N., Funabiki, N.: Group signature schemes
with membership revocation for large groups. In: ACISP. LNCS, vol. 3574, pp.
443–454. Springer (2005)

69. Nakanishi, T., Sugiyama, Y.: A group signature scheme with efficient member-
ship revocation for reasonable groups. In: ACISP. LNCS, vol. 3108, pp. 336–347.
Springer (2004)

70. Nguyen, L.: Accumulators from bilinear pairings and applications. In: CT-RSA.
LNCS, vol. 3376, pp. 275–292. Springer (2005)

71. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: Efficient secure MPC over
Z2k from somewhat homomorphic encryption. IACR Cryptology ePrint Archive
2019, 153 (2019)

72. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
ACM CCS. pp. 437–448. ACM (2008)

73. Pöhls, H.C., Samelin, K.: On updatable redactable signatures. In: ACNS. LNCS,
vol. 8479, pp. 457–475. Springer (2014)

74. Sander, T.: Efficient accumulators without trapdoor extended abstracts. In: ICICS.
LNCS, vol. 1726, pp. 252–262. Springer (1999)

75. Slamanig, D., Spreitzer, R., Unterluggauer, T.: Linking-based revocation for group
signatures: A pragmatic approach for efficient revocation checks. In: Mycrypt.
LNCS, vol. 10311, pp. 364–388. Springer (2016)

76. Smart, N.P., Alaoui, Y.T.: Distributing any elliptic curve based protocol. In:
IMACC. LNCS, vol. 11929, pp. 342–366. Springer (2019)

29

77. University of Bristol: Multi-Protocol SPDZ (2019), https://github.com/data61/
MP-SPDZ

78. Verheul, E.R.: Practical backward unlinkable revocation in fido, german e-id,
idemix and u-prove. IACR ePrint 2016, 217 (2016)

79. Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation for
neural network training. PoPETs 2019(3), 26–49 (2019)

A Assumptions

Let G1,G2,GT be cyclic groups of prime order p. A pairing e : G1 × G2 → GT
is a map that is bilinear (i.e., for all g1, g

′
2 ∈ G1 and g2, g

′
2 ∈ G2, we have

e(g1 · g′1, g2) = e(g1, g2) · e(g′1, g2) and e(g1, g2 · g′2) = e(g1, g2) · e(g1, g
′
2), non-

degenerate (i.e., for generators g1 ∈ G1, g2 ∈ G2, we have that e(g1, g2) ∈ GT
is a generator), and efficiently computable. Let BGen be a PPT algorithm that,
on input of a security parameter κ, outputs BG = (p,G1,G2,GT , e, g1, g2) ←
BGen(κ) for generators g1 and g2 of G1 and G2, respectively, and Θ(κ)-bit prime
p. If G1 = G2 the pairing is of Type-1 and if G1 6= G2 and no non-trivial
efficiently computable homomorphism G2 → G1 exists, then it is of Type-3.

We recall the t-SDH assumption for Type-3 bilinear groups [19].

Definition 7 (t-SDH assumption). For t > 0, we define the advantage of an
adversary A as

Advt−SDH
BGen,A(κ) = Pr

x←R Zp, (c, y)← A

(
BG,

(
gx

i

1

)
i∈[t]

, gx2

)
:

y = g
(x+c)−1

1

.

The t-SDH assumption holds if Advt−SDH
BGen,A is a negligible function in the security

parameter κ for all PPT adversaries A.

In the Type-1 setting, the assumption can be simplified to only providing the
powers of g1 to the adversary, since g1 = g2.

B Omitted Proofs

B.1 Proof of Theorem 1

Proof. Assume that A is an adversary against the collision freeness of the ac-
cumulator. We show that this adversary can be transformed into an efficient
adversary B against the t-SDH assumption. We perform a proof by reduction in
the following way:

– When B is started on a t-SDH instance (BG, (gs
i

1)i∈[t], g
s
2), set pkΛ ← (BG,

(gs
i

1)i∈[t], g
s
2) and start A on pkΛ. The oracles for A are simulated by for-

warding the inputs directly to the corresponding algorithms with (∅, pkΛ) as
argument for the keys.

30

https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ

OEval(X) : Return Eval((∅, pkΛ),X).
OWitCreate(ΛX , aux, x) : Return WitCreate((∅, pkΛ),X).
OAdd(ΛX , aux, x) : Return Add((∅, pkΛ), ΛX , aux, x).
ODelete(ΛX , aux, x) : Return Delete((∅, pkΛ), ΛX , aux, x).
OWitUpdate(witx′ , aux, x) : Return WitUpdate((∅, pkΛ),witx′ , aux, x).

– At some point A outputs a set X ?, an element x? 6∈ X ?, a witness wit?x?
for x?, and the randomizer r?, such that for ΛX? , aux ← Eval((∅, pkΛ),X ?),
the verification relation e(ΛX? , g2) = e(wit?x? , g

x?

2 · gs2) holds. Now, compute
h(X) =

∏
x∈X?(x+X) and φ(X) such that h(X) = φ(X)(x?+X)+d, which

exists since x? 6∈ X ?. Then compute g
r?φ(s)
1 by expanding the polynomial

φ(X) and the gs
i

1 stored in pkΛ. Then, B outputs(
wit?x? ·

(
g
r?φ(s)
1

)−1
) 1
r?d

=

(
g
r?h(s)
x?+s

1 · g
−r?(h(s)−d)

x?+s

1

) 1
r?d

=

(
g
r?d
x?+s

1

) 1
r?d

= g
1

x?+s

1

and x? as solution to the t-SDH problem instance.

Hence, B succeeds with the same probability as A.

C Merkle-tree Accumulator

In Scheme 3, we cast the Merkle-tree accumulator in the framework of [34] as
done in [36,50]. In practical instantiations, the requirement that Eval only works
on sets of a size that is a power of 2 can be dropped. It is always possible to
repeat the last element until the tree is of the correct size. Correctness can easily
be verified. We restate the well-known fact that this accumulator is collision-free.

Lemma 1. If {Hk}k∈Kκ is a family of collision-resistant hash functions, the
static accumulator in Scheme 3 is collision-free.

D Strong-RSA Accumulator

We recall the strong RSA assumption [11].

Definition 8 (Strong RSA assumption). Given two appropriately chosen
primes p and q such that N = pq has bit-length κ, then it holds for all PPT
adversaries A that

Pr
[
u←R Z∗N , (v, w)← A(u,N) : vw ≡ u (mod N)

]
is negligible in the security parameter κ.

31

Gen(1κ, t) : Fix a family of hash functions {Hk}k∈Kκ with Hk : {0, 1}∗ → {0, 1}κ ∀ k ∈
Kκ. Choose k←R Kκ and return (skΛ, pkΛ)← (∅, Hk).

Eval((skΛ, pkΛ),X) : Parse pkΛ as Hk and X as (x0, . . . , xn−1). If @ k ∈ N so that

n = 2k return ⊥. Otherwise, let `u,v refer to the u-th leaf (the leftmost leaf is
indexed by 0) in the v-th layer (the root is indexed by 0) of a perfect binary tree.
Return ΛX ← `0,0 and aux← ((`u,v)u∈[n/2k−v])v∈[k], where

`u,v ←
{
Hk(`2u,v+1||`2u+1,v+1) if v < k, and
Hk(xi) if v = k.

WitCreate((skΛ, pkΛ), ΛX , aux, xi) : Parse aux as ((`u,v)u∈[n/2k−v])v∈[k] and return witxi
where

witxi ← (`bi/2vc+η,k−v)0≤v≤k, η =

{
1 if bi/2vc (mod 2) = 0
−1 otherwise.

Verify(pkΛ, ΛX ,witxi , xi) : Parse pkΛ as Hk, ΛX as `0,0, set `i,k ← Hk(xi). Recursively
check for all 0 < v < k whether the following holds and return 1 if so. Otherwise
return 0.

`bi/2v+1c,k−(v+1) =

{
Hk(`bi/2vc,k−v||`bi/2vc+1,k−v) if 2|bi/2vc
Hk(`bi/2vc−1,k−v||`bi/2vc,k−v) otherwise.

Scheme 3: Merkle-tree accumulator.

Major lines of work investigated accumulators in the hidden order groups,
i.e., RSA-based, and the known order groups, i.e., discrete logarithm-based, set-
ting. The first collision-free RSA-based accumulator is due to Baric and Pfitz-
mann [11]. The accumulator in this construction consists of a generator raised
to the product of all elements of the set. Then witnesses essentially consist of
the same value skipping the respective elements in the product. Thereby, the
witness can easily be verified by raising the power of the witness to the element
and checking if the result matches the accumulator. We recall the RSA-based
accumulator in Scheme 4.

Note that, whenever the factorization ofN is available, the Chinese remainder
theorem can be used to speed up the computations. For WitCreate and WitUpdate
we can use the factorization to compute inverses mod (p− 1) · (q− 1). Deletion
of values from the accumulator is not possible if the factorization is unknown.

Correctness can easily be verified and collision freeness follows from the
strong RSA assumption:

Theorem 4 ([11]). If the strong RSA assumption holds, Scheme 4 is collision-
free.

Again, from Theorems 2 and 4, it follows that Scheme 4 is also secure in the UC
model:

Corollary 2. Scheme 4 emulates FAcc in the UC model.

32

Gen(1κ, t) : Choose an RSA modulus N = p · q with two large safe primes p, q, and let
g be a random quadratic residue mod N . Set skΛ ← ∅ and pkΛ ← (N, g).

Eval((skΛ, pkΛ),X) : Parse pkΛ as (N, g) and let X ⊂ P. Return ΛX ← g
∏
x∈X x

mod N and aux← (add← 0,X).

WitCreate((skΛ, pkΛ), ΛX , aux, x) : If x 6∈ X , return ⊥. If skΛ 6= ∅, return witx ← Λx
−1

X

mod N , otherwise return witx ← g
∏
x′∈X\{x} x

′
mod N .

Verify(pkΛ, ΛX ,witx, x) : Parse pkΛ as (N, g). If witxx = ΛX mod N holds, return 1,
otherwise return 0.

Add((skΛ, pkΛ), ΛX , aux, x) : Parse pkΛ as (N, g) and aux as X . If x ∈ X , return ⊥.

Set X ′ ← X ∪ {x}, aux′ ← (X ′, add ← 1), and ΛX ′ ← ΛxX mod N . Return ΛX ′

and aux′.
Delete((skΛ, pkΛ), ΛX , aux, x) : Parse pkΛ as (N, g) and aux as X . If x /∈ X , return ⊥.

If skΛ 6= ∅, set X ′ ← X \ {x}, aux′ ← (X ′, add← −1), and ΛX ′ ← Λx
−1

X mod N .
Otherwise, compute (ΛX ′ , aux

′)← Eval((∅, pkΛ),X \ {x}) with add← −1 in aux′.
Return ΛX ′ and aux′.

WitUpdate((skΛ, pkΛ),witxi , aux, x) : Parse pkΛ as (N, g) and aux as (X , add). If add =
0, return ⊥. Return witxxi mod N if add = 1. If instead add = −1 and skΛ 6= ∅,
then return witx

−1

xi mod N . Otherwise, compute a, b ∈ Z such that axi+bx = 1 and
return witbxi ·Λ

a
X mod N . In the last two cases in addition return aux← (add← 0).

Scheme 4: Strong RSA-based accumulator.

D.1 Dynamic Linear Secret-Shared Accumulator From the Strong
RSA Assumption

For our dynamic linear secret-shared accumulator from the strong RSA assump-
tion, observe that the two main operations that have to be performed in the
context of an MPC protocol are the sampling of the secret prime factors as
well as the computation of the inverses of the public elements in the exponent.
Both operations are also performed during RSA key generation with the sole
difference that in this case, the public exponent is inverted. Therefore, we can
make use of any protocol for distributed RSA key generation. In particular, our
construction makes use of the state-of-the-art protocol by Frederiksen et al. [40]
for the two-party case.

In the following, we will recap the structure of this UC secure two-party pro-
tocol and highlight the most essential parts of the protocol. The key generation
in the malicious setting consists of the following four phases:

Candidate Generation: Both parties P1 and P2 choose random shares p1 ∈ N
respectively p2 ∈ N and commit to it. Based on maliciously secure OT, they
do a secure trial division of p = p1 + p2 with public threshold B1 ∈ N.

Construct Modulus: Given shared candidate primes p = p1 + p2, q = q1 + q2

the parties compute N = pq by a custom version of the Gilboa protocol [45].
The candidate modulus N is send to both parties.

Verify Modulus: This phase consists of three steps:
1. Second trial division with threshold B2 > B1.

33

2. Secure biprimality test.
3. Proof of honesty that checks the commitments and whether gcd(e, φ(N)) =

1, where e is the public exponent.
Construct Keys: Computes the shares of d = d1 +d2 such that e(d1 +d2) ≡ 1

mod φ(N) (uses additional output from the proof of honesty).

We will denote this protocol by ΠRSA and by FRSA its ideal functionality. At a
later point in the RSA-based accumulator, we need to invert an element x ∈ P
in Z∗N . Since neither P1 nor P2 knows the order φ(N) of this ring, we employ
parts of the MPC protocol. For this task, we will perform the 3rd step of Verify
Modulus with e = x, and then immediately run Construct Keys. The output
of this sub-protocol, which we will denote by Invertφ(N)(x), is a secret-shared
value 〈y〉 = y1+y2, where yi is the share of party i, s.t. x(y1+y2) ≡ 1 mod φ(N).

Gen(1κ, t) : Generate an RSA modulus N = (p1 +p2) ·(q1 +q2) via the protocol ΠRSA,
where the party Pi receives (pi, qi) for i = 1, 2. Further, let g be a random quadratic
residue mod N . Set pkΛ ← (N, g).

Eval((skΛ, pkΛ),X) : Parse pkΛ as (N, g) and X ⊂ P. Return ΛX ← g
∏
x∈X x mod N

and aux← X .
WitCreate(((p1, q1), (p2, q2), pkΛ), ΛX , aux, x) : If x 6∈ X , return ⊥. Compute 〈y〉 ←

Invertφ(N)(x) and return witx ← Open(Λ
〈y〉
X mod N).

Verify(pkΛ, ΛX ,witx, x) : Parse pkΛ as (N, g). If witxx = ΛX mod N holds, return 1,
otherwise return 0.

Add(pkΛ, ΛX , aux, x) : Parse pkΛ as (N, g) and aux as X . If x ∈ X , return ⊥. Set

X ′ ← X ∪ {x}, aux′ ← (X ′, add ← 1), and ΛX ′ ← ΛxX mod N . Return ΛX ′ and
aux′.

Delete(((p1, q1), (p2, q2), pkΛ), ΛX , aux, x) : Parse pkΛ as (N, g) and aux as X . If x /∈ X ,

return ⊥. Set X ′ ← X \ {x}, aux′ ← (X ′, add ← −1), and 〈y〉 ← Invertφ(N)(x).

Return ΛX ′ ← Open(Λ
〈y〉
X mod N) and aux′.

WitUpdate(((p1, q1), (p2, q2), pkΛ),witxi , aux, x) : Parse pkΛ as (N, g) and aux as
(X , add). Return ⊥ if add = 0∨xi /∈ X . Return witxxi mod N if add = 1. If instead

add = −1 and compute 〈y〉 ← Invertφ(N)(x), then return Open(wit
〈y〉
xi mod N). In

the last two cases in addition return aux← (add← 0).

Scheme 5: MPC-RSA: Dynamic linear secret-shared accumulator based on RSA
for two parties.

However, we have to note that the used distributed RSA key generation
protocols may leak a small amount of secret information. We refer to the full
version of [40] for a detailed discussion of this leakage. Since our protocol may
invert multiple elements, the parties might need to add bounds on the maximum
number of operations to prevent leakage of the secret key.

The last open point during Gen is the sampling of the quadratic non-residue
mod N . An option here is to simply sample g at random from Z∗N and checking
whether the Jacobi symbol satisfies (gN) = −1. Despite its definition as the

34

product of the Legendre symbols of the prime factors of N , the Jacobi symbol
can be computed efficiently without knowledge of the prime factors using an
algorithm analogous to the Euclidean algorithm. Hence, we perform this step
outside of the MPC protocol once N was generated.

In the security analysis of Scheme 5, we can reuse the arguments of Theo-
rem 3. Therefore, we will omit the proof of the following theorem. We, however,
note, that the theorem only holds provided that the parties keep track of the
number of potentially leaked bits and abort if this number gets too large.

Theorem 5. Scheme 5 UC emulates FAcc-MPC in the FSPDZ+,FRSA-hybrid
model.

E FRESCO Benchmarks

In this section, we discuss the benchmarks of our t-SDH implementation in the
maliciously secure setting in the FRESCO [3] framework. FRESCO is a Java
framework facilitating fast prototyping of MPC-based applications and proto-
cols. FRESCO implements the SPDZ protocol and various extensions [33,52,53,28].
For pairing and elliptic curve group operations, we rely on the ECCelerate li-
brary [49] and integrate ExpG, Output-G, and the corresponding MACCheckECC

algorithms of [76] into FRESCO. As a pairing-friendly curve, a 400-bit Barreto-
Naehrig curve [13] is used, which provides around 100 bit of security following
recent estimates [10,62].

The offline phase performance of our FRESCO implementation can be seen
in Table 6. A comparison to our MP-SPDZ implementation (Table 3) shows
that the offline phase in FRESCO is not yet as optimized as the one of MP-
SPDZ (as an example, the BaseOTs used in FRESCO are not using elliptic
curve arithmetic) and that the performance of the latter is more indicative of an
optimized implementation. Further note that batching the generation of many
triples together like for the Eval phase is more efficient in practice than producing
a single triple and as these triples are not dependant on the input, all parties
can continuously generate triples in the background to fill a triple-buffer for use
in the online phase.

In Table 7, we present the online phase performance of our t-SDH imple-
mentation in the FRESCO framework. Since the FRESCO implementation does
not support a depth-optimized tree-like multiplication, the Eval operation scales
worse with the number of parties. Compared to our MP-SPDZ implementation
(Table 4) it is, therefore, much slower, especially in the WAN setting.

Finally, we present the communication complexity of our t-SDH implemen-
tation in the FRESCO framework in Table 8. Again, a comparison to our MP-
SPDZ implementation (Table 5) shows, that the FRESCO framework requires
more communication to achieve the same result. While some of this overhead
can be attributed to the different choice of elliptic curve, the rest is inherent to
the implementation of the framework.

35

Table 6. Offline phase performance of different steps of the MPC-t-SDH accumulator
with access to the secret trapdoor implemented in FRESCO. Time in seconds.

LAN setting WAN setting
Operation |X | n = 2 3 4 5 n = 2 3 4 5

BaseOTs
210 21.5 60.3 104.6 148.9 76.5 215.0 364.2 504.3
214 21.5 60.3 104.6 148.9 76.5 215.0 364.2 504.3

Eval
210 54.4 154.0 265.0 409.1 95.7 283.1 465.2 683.3
214 825.8 2 259.5 4 048.8 6 150.9 1 449.8 3 587.1 6 578.4 10 056.3

Inverse
210 1.3 15.3 16.8 19.7 3.2 68.2 70.4 72.8
210 1.3 15.3 16.8 19.7 3.2 68.2 70.4 72.8

Table 7. Online phase performance of the MPC-t-SDH accumulator with access to the
secret trapdoor implemented in FRESCO, for both the LAN and WAN settings with
n parties. Time in milliseconds averaged over 50 executions.

LAN setting WAN setting
Operation |X | n = 2 3 4 5 n = 2 3 4 5

Gen
210 78 106 301 772 604 1 124 1 399 1 684
214 75 110 246 766 608 1 118 1 401 1 673

Eval
210 133 354 4 062 14 193 52 316 56 802 58 728 60 043
214 1 389 4 362 61 222 196 563 828 522 892 293 918 445 935 274

WitCreate
210 40 84 279 906 1 109 1 858 2 156 2 444
214 41 98 267 992 1 120 1 853 2 152 2 442

Add
210 43 78 231 646 574 1 088 1 373 1 650
214 41 74 225 706 571 1 087 1 363 1 642

WitUpdateAdd
210 40 72 259 745 569 1 094 1 372 1 649
214 40 85 213 732 564 1 088 1 369 1 644

Delete
210 47 80 299 958 1 075 1 849 2 150 2 454
214 42 92 297 857 1 071 1 847 2 152 2 446

WitUpdateDelete
210 40 82 258 977 1 071 1 852 2 151 2 447
214 38 38 294 880 1 077 1 852 2 149 2 441

36

Table 8. Communication complexity of the MPC-t-SDH accumulator with access to
the secret trapdoor implemented in FRESCO, per party. Communication in MiB.

Operation |X | Offline phasea Online Phaseb

Gen
210 0.297 0.103
214 0.297 0.103

Eval
210 220.971 0.176
214 3 530.148 3.164

WitCreate
210 0.634 0.041
214 0.634 0.041

Add
210 0.297 0.039
214 0.297 0.039

WitUpdateAdd
210 0.297 0.039
214 0.297 0.039

Delete
210 0.634 0.041
214 0.634 0.041

WitUpdateDelete
210 0.634 0.041
214 0.634 0.041

a Includes BaseOTs for a new connection
b Includes the setup of a fresh MAC for each share

of the secret trapdoor

37

	Multi-Party Revocation in Sovrin: Performance through Distributed Trust

