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Abstract

Secret sharing enables a dealer to split a secret into a set of shares, in such a way
that certain authorized subsets of share holders can reconstruct the secret, whereas all
unauthorized subsets cannot. Non-malleable secret sharing (Goyal and Kumar, STOC 2018)
additionally requires that, even if the shares have been tampered with, the reconstructed
secret is either the original or a completely unrelated one.

In this work, we construct non-malleable secret sharing tolerating p-time joint-tampering
attacks in the plain model (in the computational setting), where the latter means that, for
any p > 0 fixed a priori, the attacker can tamper with the same target secret sharing up to
p times. In particular, assuming one-to-one one-way functions, we obtain:

• A secret sharing scheme for threshold access structures which tolerates joint p-time
tampering with subsets of the shares of maximal size (i.e., matching the privacy thresh-
old of the scheme). This holds in a model where the attacker commits to a partition of
the shares into non-overlapping subsets, and keeps tampering jointly with the shares
within such a partition (so-called selective partitioning).

• A secret sharing scheme for general access structures which tolerates joint p-time tam-
pering with subsets of the shares of size O(

√
log n), where n is the number of parties.

This holds in a stronger model where the attacker is allowed to adaptively change the
partition within each tampering query (so-called adaptive partitioning).

At the heart of our result for selective partitioning lies a new technique showing that every
one-time statistically non-malleable secret sharing against joint tampering is in fact leakage-
resilient non-malleable (i.e., the attacker can leak jointly from the shares prior to tampering).
We believe this may be of independent interest, and in fact we show it implies lower bounds
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on the share size and randomness complexity of statistically non-malleable secret sharing
against independent tampering.
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1 Introduction

In the past 40 years, secret sharing [Sha79, Bla79] became one of the most fundamental cryp-
tographic primitives. Secret sharing schemes allow a trusted dealer to split a message m into
shares s1, . . . , sn and distribute them among n participants, such that only certain authorized
subsets of share holders are allowed to recover m. The collection A of authorized subsets is
called the access structure. The most basic security guarantee is that any unauthorized subset
outside A collectively has no information about the shared message. Shamir [Sha79] and Blak-
ley [Bla79] showed how to construct secret sharing schemes with information-theoretic security,
and Krawczyk [Kra94] presented the first computationally-secure construction with improved
efficiency parameters.

Non-malleable secret sharing. A long line of research [RB89, CDV94, GK18a, GK18b,
BS19, ADN+19a, FV19, SV19, KMS19, BFV19, CL18] has focused on different settings with
active adversaries that were allowed to tamper with the shares in one or another way. In
verifiable secret sharing [RB89] the dealer is considered to be untrusted and the share holders
want to ensure they hold shares of a consistent secret. In robust secret sharing [CDV94] some
parties may act maliciously and try to prevent the correct reconstruction of the shared secret
by providing incorrect shares. It is well known that robust secret sharing is impossible when
more than half of the parties are malicious.

A recent line of works considers an adversary that has some form of restricted access to
all shares. In non-malleable secret sharing [GK18a] the adversary can partition the shares in
disjoint sets and can then independently tamper with each set of shares. Security guarantees
that whatever is reconstructed from the tampered shares is either the original secret, or a
completely unrelated value.

Most previous works have focused on the setting of independent tampering [GK18a, GK18b,
BS19, ADN+19a, FV19, SV19, KMS19, BFV19], where the adversary is only allowed to tam-
per with each share independently. Only a few papers [GK18a, GK18b, CL18, BFV19] have
considered the stronger setting where the adversary is allowed to tamper with subsets of shares
jointly.

Continuous non-malleability. The first notions of non-malleability only focused on secu-
rity against a single round of tampering. A natural extension of this setting is to consider
adversaries that may perform several rounds of tampering attacks on a secret sharing scheme.
Badrinarayanan and Srinivasan [BS19] and Aggarwal et al. [ADN+19a] considered p-time tam-
pering attacks in the information-theoretic setting, where p must be a-priori bounded. The
works of Faonio and Venturi [FV19] and Brian, Faonio and Venturi [BFV19] considered con-
tinuous, i.e., poly-many tampering attacks in the computational setting. It is well known that
cryptographic assumptions are inherent in the latter case [FMNV14, BS19, FV19].

An important limitation of all works mentioned above is that, with the exception of [BFV19],
they only consider the setting of independent tampering. Brian Faonio, and Venturi [BFV19]
achieve continuous non-malleability against joint tampering, where each tampering function can
tamper with O(log n)-large sets of shares assuming a trusted setup in the form of a common
reference string. This leads to the following question:

Can we obtain continuously non-malleable secret sharing against joint tampering in
the plain model?
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1.1 Our Contributions

In this work, we make progress towards answering the above question. Our main contribution is
a general framework for reducing p-time non-malleability against joint tampering to statistical
one-time non-malleability against joint tampering. Our framework encompasses the following
models:

• Selective partitioning. Here, the adversary has to initially fix any k-sized partition1 of
the n shares, at the beginning of the experiment. Afterwards, the adversary can tamper
p times with the shares within each subset in a joint manner. We call this notion k-joint
p-time non-malleability under selective partitioning.

• Adaptive partitioning. In this setting, the adversary can adaptively choose differ-
ent k-sized partitions for each tampering query. We call this notion k-joint p-time non-
malleability under adaptive partitioning.

Combining known constructions of one-time statistically non-malleable secret sharing schemes
against joint tampering [GK18a, GK18b, CL18] with a new secret sharing scheme that we
present in this work, we obtain the following result:

Theorem 1 (Main Theorem, Informal). Assuming the existence of one-to-one one-way func-
tions, there exist:

(i) A τ -out-of-n secret sharing scheme satisfying k-joint p-time non-malleability under selec-
tive partitioning,2 for any τ ≤ n, k ≤ τ − 1, and p > 0.

(ii) An (n, τ)-ramp3 secret sharing scheme with binary shares satisfying k-joint p-time non-
malleability under selective partitioning, for τ = n−nβ, k ≤ τ−1, β < 1, and p ∈ O(

√
n).

(iii) A secret sharing scheme satisfying k-joint p-time non-malleability under adaptive parti-
tioning, for k ∈ O(

√
log n) and p > 0, and for any access structure that can be described

by a polynomial-size monotone span program for which authorized sets have size greater
than k.

1.2 Technical Overview

Our initial observation is that a slight variant of a transformation by Ostrovsky et al. [OPVV18]
allows to turn a bounded leakage-resilient, statistically one-time non-malleable secret sharing Σ
into a bounded-time non-malleable secret sharing Σ∗ against joint tampering. Bounded leakage
resilience here means that, prior to tampering, the attacker may also repeatedly leak information
jointly from the shares of Σ, as long as the overall leakage is bounded.

In the setting of joint tampering under selective partitioning, the leakage resilience property
of Σ has to hold w.r.t. the same partition used for tampering. For joint tampering under adaptive
partitioning, we need Σ to be leakage resilient under an adaptive choice of the partitions too.
A nice feature of this transformation is that it only requires perfectly binding commitments,
which can be built from injective one-way functions. Moreover, it preserves the access structure
of the underlying secret sharing scheme Σ.

1This a sequence of non-overlapping subsets B1, . . . ,Bt covering [n], such that each subset Bi has size at most
k.

2Here, we inherit a technical restriction from [GK18a] which requires the subsets of the partition to have
non-equal sizes. We can remove this restriction relying on the scheme from [GK18b], which however only works
for the n-out-of-n access structure.

3This means that privacy holds with threshold τ , but all of the n shares are required to reconstruct the
message.
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Given the above result, we can focus on the simpler task of constructing bounded leakage-
resilient, statistically one-time non-malleable secret sharing under both selective and adaptive
partitioning, instead of directly attempting to construct their multi-time counterparts. We show
several ways of constructing our desired primitive for both selective and adaptive partitioning.

Selective partitioning. First, we show that every statistically one-time non-malleable secret
sharing scheme Σ is also resilient to bounded leakage under selective partitioning. Let ` be
an upper bound on the total bit-length of the leakage over all shares. We use an argument
reminiscent to standard complexity leveraging to prove that every one-time non-malleable secret
sharing scheme with statistical security ε ∈ [0, 1) is also `-bounded leakage-resilient one-time
non-malleable under selective partitioning with statistical security ε/2`. The proof roughly
works as follows. Given an unbounded attacker A breaking the leakage-resilient one-time non-
malleability of Σ, we construct an unbounded attacker Â against one-time non-malleability of
Σ (without leakage). The challenge is how Â can answer the leakage queries done by A. Our
strategy is to simply guess the overall leakage Λ by sampling it uniformly at random, and use
this guess to answer all of A’s leakage queries.

The problem with this approach is that, whenever our guess was incorrect, the attacker
A may notice that it is being used in a simulation and start behaving arbitrarily. We solve
this issue with the help of Â’s final tampering query. Recall that in the model of selective
partitioning, all leakage queries and the tampering query, act on the same arbitrary but fixed
subsets B1, . . . ,Bt of a k-sized partition of the shares. Hence, when A outputs its tampering
query (f1, . . . , ft), the reduction Â defines a modified tampering query (f̂1, . . . , f̂t) that first
checks whether the guessed leakage from each subset Bi was correct; if not, the tampering
function sets4 the modified shares within Bi to ⊥, else it acts identically to fi. This strategy
intuitively ensures that our reduction either performs a correct simulation or destroys the secret.
Destroying the secret whenever we guessed incorrectly ensures that the success probability of
Â is exactly the success probability of A times the probability of guessing the leakage correct,
which is 2−`.

By plugging the schemes from [GK18a, Thm. 2], [GK18b, Thm. 6], and [CL18, Thm. 3],
together with our refined analysis of the transformation by Ostrovsky et al. [OPVV18], the
above insights directly imply items i and ii of Thm. 1.

Adaptive partitioning. Unfortunately, the argument for showing that one-time non-mallea-
bility implies bounded leakage resilience breaks in the setting of adaptive partitioning. Intu-
itively, the problem is that the adversary can leak jointly from adaptively chosen partitions,
and thus it is unclear how the reduction can check whether the simulated leakage was correct
using a single tampering query.

Hence, we take a different approach. We directly construct a bounded leakage-resilient,
statistically one-time non-malleable secret sharing scheme for general access structures. Our
construction Σ combines a 2-out-of-2 non-malleable secret sharing scheme Σ2 with two auxiliary
leakage-resilient secret sharing schemes Σ0 and Σ1 realizing different access structures. Impor-
tantly, when taking Σ0 to be the secret sharing scheme from [KMS19, Thm. 1], our construction
achieves k-joint bounded leakage-resilient statistical one-time non-malleability under adaptive
partitioning for k ∈ O(

√
log n). This implies item iii of Thm. 1. We refer the reader directly to

§5 for a thorough description of our new secret sharing scheme and its security analysis.

4We assume that the reconstruction algorithm outputs ⊥ whenever one of the input shares is set to ⊥. As we
will see later this is without loss of generality.
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Lower bounds. Our complexity leveraging argument implies that every statistically one-
time non-malleable secret sharing scheme against independent tampering with the shares is also
statistically bounded leakage resilient against independent leakage (and no tampering).

By invoking a recent result of Nielsen and Simkin [NS20], we immediately obtain lower
bounds on the share size and randomness complexity of any statistically one-time non-malleable
secret sharing scheme against independent tampering.

1.3 Related Works

Non-malleable secret sharing is intimately related to so-called non-malleable codes [DPW10].
The difference between the two lies in the privacy property: While any non-malleable code
in the split-state model [DPW10, LL12, DKO13, CG14, FMNV14, ADKO15a, ADKO15b,
AAG+16, CGL16, Li17, AKO17, OPVV18, FNSV18, AO19, CFV19] is also a 2-out-of-2 se-
cret sharing [DKO13], for any n ≥ 3 there are n-split-state non-malleable codes that are not
necessarily private.

Continuously non-malleable codes in the n-split-state model are currently known for n =
8 [ADN+19b] (with statistical security), and for n = 2 [FMNV14, OPVV18, CFV19] (with
computational security).

Non-malleable secret sharing schemes have useful cryptographic applications, such as non-
malleable message transmission [GK18a] and continuously non-malleable threshold signatures
[ADN+19a, FV19].

1.4 Paper Organization

The rest of this paper is organized as follows. In §2, we recall a few standard definitions. In §3,
we define our model of k-joint non-malleability under selective and adaptive partitioning.

In §4 and §5, we describe our constructions of bounded leakage-resilient statistically one-
time non-malleable secret sharing schemes under selective and adaptive partitioning. The lower
bounds for non-malleable secret sharing, and the compiler for achieving p-time non-malleability
against joint tampering are presented in §6. Finally, in §7, we conclude the paper with a list of
open problems for further research.

2 Preliminaries

2.1 Standard Notation

For a string x ∈ {0, 1}∗, we denote its length by |x|; if X is a set, |X | represents the number
of elements in X . We denote by [n] the set {1, . . . , n}. For a set of indices I = (i1, . . . , it) and
a vector x = (x1, . . . , xn), we write xI to denote the vector (xi1 , . . . , xit). When x is chosen
randomly in X , we write x←$ X . When A is a randomized algorithm, we write y←$ A(x)
to denote a run of A on input x (and implicit random coins r) and output y; the value y is a
random variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is
probabilistic polynomial-time (PPT for short) if A is randomized and for any input x, r ∈ {0, 1}∗,
the computation of A(x; r) terminates in a polynomial number of steps (in the size of the input).

Negligible functions. We denote with λ ∈ N the security parameter. A function p is poly-
nomial (in the security parameter), denoted p ∈ poly(λ), if p(λ) ∈ O(λc) for some constant
c > 0. A function ν : N → [0, 1] is negligible (in the security parameter) if it vanishes faster
than the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials
p(λ). We often write ν(λ) ∈ negl(λ) to denote that ν(λ) is negligible. Unless stated otherwise,
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throughout the paper, we implicitly assume that the security parameter is given as input (in
unary) to all algorithms.

Random variables. For a random variable X, we write P[X = x] for the probability that X
takes on a particular value x ∈ X , with X being the set where X is defined. The statistical
distance between two random variables X and Y over the same set X is defined as

∆(X,Y) :=
1

2

∑
x∈X
|P[X = x]− P[Y = x]| .

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote that they

are identically distributed, X
s
≈ Y to denote that they are statistically close, i.e. ∆(Xλ,Yλ) ∈

negl(λ), and X
c
≈ Y to denote that they are computationally indistinguishable, i.e. for all PPT

distinguishers D:
|P [D(Xλ) = 1]− P [D(Yλ) = 1]| ∈ negl(λ) .

Sometimes we explicitly denote by X
s
≈ε Y the fact that ∆(Xλ,Yλ) ≤ ε for a parameter ε =

ε(λ). We also extend the notion of computational indistinguishability to the case of interactive
experiments (a.k.a. games) featuring an adversary A. In particular, let GA(λ) be the random
variable corresponding to the output of A at the end of the experiment, where wlog. we may
assume A outputs a decision bit. Given two experiments GA(λ, 0) and GA(λ, 1), we write

{GA(λ, 0)}λ∈N
c
≈ {GA(λ, 1)}λ∈N as a shorthand for

|P [GA(λ, 0) = 1]− P [GA(λ, 1) = 1]| ∈ negl(λ) .

The above naturally generalizes to statistical distance, which we denote by ∆(GA(λ, 0),GA(λ, 1)),
in case of unbounded adversaries.

2.2 Secret Sharing Schemes

An n-party secret sharing scheme Σ consists of polynomial-time algorithms (Share,Rec) specified
as follows. The randomized sharing algorithm Share takes a message m ∈ M as input and
outputs n shares s1, . . . , sn, where each si ∈ Si. The deterministic algorithm Rec takes some
number of shares as input and outputs a value in M ∪ {⊥}. We define µ := log |M| and
σi := log |Si| respectively, to be the bit length of the message and of the ith share.

Which subsets of shares are authorized to reconstruct the secret and which are not is defined
via an access structure, which is the set of all authorized subsets.

Definition 1 (Access structure). We say that A is an access structure for n parties if A is a
monotone class of subsets of [n], i.e., if I1 ∈ A and I1 ⊆ I2, then I2 ∈ A. We call authorized
or qualified any set I ∈ A, and unauthorized or unqualified any other set. We say that an
authorized set I ∈ A is minimal if any proper subset of I is unauthorized, i.e., if U ( I, then
U /∈ A.

Intuitively, a perfectly secure secret sharing scheme must be such that all qualified subsets of
players can efficiently reconstruct the secret, whereas all unqualified subsets have no information
(possibly in a computational sense) about the secret.

Definition 2 (Secret sharing scheme). Let n ∈ N and A be an access structure for n parties. We
say that Σ = (Share,Rec) is a secret sharing scheme realizing access structure A with message
spaceM and share space S = S1 × . . .×Sn if it is an n-party secret sharing with the following
properties.
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(i) Correctness: For all λ ∈ N, all messages m ∈ M and all authorized subsets I ∈ A, we
have that Rec((Share(m))I) = m with overwhelming probability over the randomness of
the sharing algorithm.

(ii) Privacy: For all PPT adversaries A, all pairs of messages m0,m1 ∈M and all unautho-
rized subsets U /∈ A, we have that

{(Share(1λ,m0))U}λ∈N
c
≈ {(Share(1λ,m1))U}λ∈N.

If the above ensembles are statistically close (resp. identically distributed), we speak of
statistical (resp. perfect) privacy.

2.3 Non-Interactive Commitments

A non-interactive commitment scheme Commit is a randomized algorithm taking as input a
message m ∈ M and outputting a value c = Commit(m; r) called commitment, using random
coins r ∈ R. The pair (m, r) is called the opening.

Intuitively, a secure commitment satisfies two properties called binding and hiding. The first
property says that it is hard to open a commitment in two different ways. The second property
says that a commitment hides the underlying message. The formal definition follows.

Definition 3 (Binding). We say that a non-interactive commitment scheme Commit is com-
putationally binding if for all PPT adversaries A, all messages m ∈ M, and all random coins
r ∈ R, the following probability is negligible:

P
[
m′ 6= m ∧ Commit(m′; r′) = Commit(m; r) : (m′, r′)←$ A(m, r)

]
.

If the above holds even in the case of unbounded adversaries, we say that Commit is statistically
binding. Finally, if the above probability is exactly 0 for all adversaries (i.e., each commitment
can be opened to at most a single message), then we say that Commit is perfectly binding.

Definition 4 (Hiding). We say that a non-interactive commitment scheme Commit is compu-
tationally hiding if, for all m0,m1 ∈M, it holds that{

Commit(1λ;m0)
}
λ∈N

c
≈
{
Commit(1λ;m1)

}
λ∈N

.

In case the above ensembles are statistically close (resp. identically distributed), we say that
Commit is statistically (resp. perfectly) hiding.

3 Our Leakage and Tampering Model

In this section we define various notions of non-malleability against joint tampering and leakage
for secret sharing.

Very roughly, in our model the attacker is allowed to partition the set of share holders into
t (non-overlapping) blocks with size at most k, covering the entire set [n]. This is formalized
through the notion of a k-sized partition.

Definition 5 (k-sized partition). Let n, k, t ∈ N. We call B = (B1, . . . ,Bt) a k-sized partition
of [n] when:

(i)
⋃t
i=1 Bi = [n];

(ii) ∀i1, i2 ∈ [t] such that i1 6= i2, Bi1 ∩ Bi2 = ∅.
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(iii) ∀i ∈ [t] : |Bi| ≤ k.

Let B = (B1, . . . ,Bt) be a k-sized partition of [n]. To define non-malleability, we consider an
adversary A interacting with a target secret sharing s = (s1, . . . , sn) via the following queries:

• Leakage queries. For each i ∈ [t], the attacker can leak jointly from the shares sBi . This
can be done repeatedly and in an adaptive5 fashion, as long as the total number of bits
that the adversary leaks from each share does not exceed ` ∈ N.

• Tampering queries. For each i ∈ [t], the attacker can tamper jointly with the shares
sBi . Each such query yields mauled shares (s̃1, . . . , s̃n), for which the adversary is allowed
to see the corresponding reconstructed message w.r.t. a reconstruction set T ∈ A of his
choice. This can be done for at most p ∈ N times, and in an adaptive fashion.

Depending on the partition B being fixed, or chosen adaptively with each leakage/tampering
query, we obtain two different flavors of non-malleability, as defined in the following subsections.

3.1 Joint Leakage/Tampering under Selective Partitioning

Here, we restrict the adversary to jointly leak from and tamper with subsets of shares belonging
to a fixed partition of [n].

Definition 6 (Selective bounded-leakage and tampering admissible adversary). Let n, k, t, `, p ∈
N, and fix an arbitrary message spaceM, sharing space S = S1×· · ·×Sn, and access structure
A for n parties. We say that a (possibly unbounded) adversary A is selective k-joint `-bounded
leakage p-tampering admissible (selective (k, `, p)-BLTA for short) if, for every fixed k-sized
partition (B1, . . . ,Bt) of [n], A satisfies the following conditions:

• A outputs a sequence of poly-many leakage queries (g
(q)
1 , . . . , g

(q)
t ), such that for all q ∈

poly(λ) and all i ∈ [t],

g
(q)
i :×

j∈Bi
Sj → {0, 1}`

(q)
i ,

where `
(q)
i is the length of the output Λ

(q)
i of g

(q)
i . The only restriction is that |Λ| ≤ `,

where Λ is the string containing the total leakage performed (over all queries).

• A outputs a sequence of tampering queries (T (q), (f
(q)
1 , . . . , f

(q)
t )), such that, for all q ∈ [p],

and for all i ∈ [t], it holds that

f
(q)
i :×

j∈Bi
Sj →×

j∈Bi
Sj and T (q) ∩ Bi 6= ∅,

and moreover T (q) ∈ A is a minimal authorized subset.

• All queries performed by A are chosen adaptively, i.e. each query may depend on the
information obtained from all the previous queries.

• If p > 0, the last query performed by A is a tampering query.

Note that A can choose a different reconstruction set T (q) with each tampering query, in a
fully adaptive manner. This feature is known as adaptive reconstruction [FV19]. However, we
consider the following two restrictions (that were not present in previous works): (i) Each set

5This means that the choice of the next leakage query depends on the overall leakage so far.
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T (q) must be minimal and contain at least one mauled share from each subset Bi; (ii) The last
query asked by A is a tampering query. Looking ahead, these technical conditions are needed
for the complexity leveraging argument used in Thm. 3. Note that the above restrictions are
still meaningful, as they allow, e.g., to capture the setting in which the attacker first leaks from
all the shares and then tampers with the shares in a minimal authorized subset.

3.2 Joint Leakage/Tampering under Adaptive Partitioning

Next, we generalize the above definition to the stronger setting in which the adversary is allowed
to change the k-sized partition with each leakage and tampering query. Here, we also remove
the restrictions (i) and (ii) mentioned above as they are not needed for the analysis of our secret
sharing scheme in §5.

Definition 7 (Adaptive bounded-leakage and tampering admissible adversary). Let n, k, `, p ∈
N andM,S,A as in Def. 6. We say that a (possibly unbounded) adversary A is adaptive k-joint
`-bounded leakage p-tampering admissible (adaptive (k, `, p)-BLTA for short) if it satisfies the
following conditions:

• A outputs a sequence of poly-many leakage queries (B(q), (g
(q)
1 , . . . , g

(q)

t(q)
)), chosen adap-

tively, such that, for all q ∈ poly(λ), and for all i ∈ [t(q)], it holds that B(q) = (B(q)
1 , . . . ,

B(q)

t(q)
) is a k-sized partition of [n] and

g
(q)
i : ×

j∈B(q)
i

Sj → {0, 1}`
(q)
i ,

where `
(q)
i is the length of the output. The only restriction is that |Λ| ≤ `, where Λ =

(Λ(1),Λ(2), . . .) is the total leakage (over all queries).

• A outputs a sequence of p tampering queries (B(q), T (q), (f
(q)
1 , . . . , f

(q)
t )), chosen adaptively,

such that, for all q ∈ [p], and for all i ∈ [t(q)], it holds that B(q) is a k-sized partition of
[n] and

f
(q)
i : ×

j∈B(q)
i

Sj → ×
j∈B(q)

i

Sj .

3.3 The Definition

Very roughly, leakage-resilient non-malleability states that no admissible adversary, as defined
above, can distinguish whether it is interacting with a secret sharing of m0 or of m1.

Definition 8 (Leakage-resilient non-malleability). Let n, k, `, p ∈ N and ε ∈ [0, 1] be parameters,
and A be an access structure for n parties. We say that Σ = (Share,Rec) is a k-joint `-bounded
leakage-resilient p-time ε-non-malleable secret sharing scheme realizing A, shortened (k, `, p, ε)-
BLR-NMSS, if it is an n-party secret sharing scheme realizing A, and additionally, for all pairs
of messages m0,m1 ∈M, we have one of the following:

• For all selective (k, `, p)-BLTA adversaries A, and for all k-sized partitions B of [n],{
JSTamperB,m0,m1

Σ,A (λ, 0)
}
λ∈N

s
≈ε
{

JSTamperB,m0,m1

Σ,A (λ, 1)
}
λ∈N

. (1)

In this case, we speak of (k, `, p, ε)-BLR-NMSS under selective partitioning.
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JSTamperB,m0,m1

Σ,A (λ, b):

s := (s1, . . . , sn)←$ Share(mb)
stop← false

Return AOnmss(s,B,·,·),Oleak(s,B,·)(1λ)

JATamperm0,m1

Σ,A (λ, b):

s := (s1, . . . , sn)←$ Share(mb)
stop← false

Return AOnmss(s,·,·,·),Oleak(s,·,·)(1λ)

Oracle Oleak(s,B, (g1, . . . , gt)):

Return g1(sB1), . . . , gt(sBt)

Oracle Onmss(s,B, T , (f1, . . . , ft)):

If stop = true
Return ⊥

Else
∀i ∈ [t] : s̃Bi := fi(sBi)
s̃ = (s̃1, . . . , s̃n)
m̃ = Rec(s̃T )
If m̃ ∈ {m0,m1}

Return �
If m̃ = ⊥

Return ⊥
stop← true

Else return m̃

Figure 1: Experiments defining selective (JSTamper) and adaptive (JATamper) joint
leakage-resilient (continuously) non-malleable secret sharing. The oracle Onmss is implicitly
parameterized by the flag stop.

• For all adaptive (k, `, p)-BLTA adversaries A,{
JATamperm0,m1

Σ,A (λ, 0)
}
λ∈N

s
≈ε
{

JATamperm0,m1

Σ,A (λ, 1)
}
λ∈N

. (2)

In this case, we speak of (k, `, p, ε)-BLR-NMSS under adaptive partitioning.

Experiments JSTamperB,m0,m1

Σ,A (λ, b) and JATamperm0,m1

Σ,A (λ, b), for b ∈ {0, 1}, are depicted
in Fig. 1.

In case there exists ε = ε(λ) ∈ negl(λ) such that indistinguishability still holds computa-
tionally in the above definitions for any p = p(λ) ∈ poly(λ), and any PPT adversaries A, we call
Σ bounded leakage-resilient continuously non-malleable, shortened (k, `)-BLR-CNMSS, under
selective/adaptive partitioning.

Non-malleable secret sharing. When no leakage is allowed (i.e., ` = 0), we obtain the
notion of non-malleable secret sharing as a special case. In particular, an adversary is k-joint
p-time tampering admissible, shortened (k, p)-TA, if it is (k, 0, p)-BLTA. Furthermore, we say
that Σ is a k-joint p-time ε-non-malleable secret sharing, shortened (k, p, ε)-NMSS, if Σ is a
(k, 0, p, ε)-BLR-NMSS scheme.

Leakage-resilient secret sharing. When no tampering is allowed (i.e., p = 0), we obtain
the notion of leakage-resilient secret sharing as a special case. In particular, an adversary is
k-joint `-bounded leakage admissible, shortened (k, `)-BLA, if it is (k, `, 0)-BLTA. Furthermore,
we say that Σ is a k-joint `-bounded ε-leakage-resilient secret sharing, shortened (k, `, ε)-BLRSS,
if Σ is a (k, `, 0, ε)-BLR-NMSS scheme.

Finally, we denote by JSLeakB,m0,m1

Σ,A (λ, b) and JALeakm0,m1

Σ,A (λ, b) the experiments in Def. 8
defining leakage resilience against selective and adaptive partitioning respectively.

Augmented leakage resilience. We also define a seemingly stronger variant of leakage-
resilient secret sharing, in which A is further allowed to obtain all the shares within a subset of
the partition B (in the case of selective partitioning, or any unauthorized subset of at most k
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shares in the case of adaptive partitioning) at the end of the experiment. In particular, in the
case of selective partitioning, an augmented admissible adversary is an attacker A+ = (A+

1 ,A
+
2 )

such that:

• A+
1 is an admissible adversary in the sense of Def. 6 (or its modification for bounded

leakage), the only difference being that A+
1 outputs a tuple (α, i∗), where α is an auxiliary

state, and i∗ ∈ [t];

• A+
2 takes as input α and all the shares sBi∗ , and outputs a decision bit.

In case of adaptive partitioning, the definition changes as follows: the adversary A+
1 is admissible

in the sense of Def. 7 (or its modification for bounded leakage) and outputs an unauthorized
subset U /∈ A of size at most k instead of the index i∗, and A+

2 takes as input the shares sU
instead of the shares sBi∗ .

This flavor of security is called augmented leakage resilience. The theorem below, which was
established by [BFV19, KMS19] for the case of independent leakage, shows that any joint LRSS
is also an augmented LRSS at the cost of an extra bit of leakage.

Theorem 2. Let Σ be a (k, `+1, ε)-BLRSS realizing access structure A under selective/adaptive
partitioning. Then, Σ is an augmented (k, `, ε)-BLRSS realizing A under selective/adaptive
partitioning.

Proof. By reduction to non-augmented leakage-resilience. Let A+ = (A+
1 ,A

+
2 ) be a (k, `, ε)-

BLA adversary violating augmented leakage-resilience; we construct an adversary A breaking
the non-augmented variant of leakage-resilience. Fix m0,m1 ∈ M and a k-sized partition
B = (B1, . . . ,Bt). Attacker A works as follows.

• Run A+
1 and, upon input a leakage query (g1, . . . , gt), forward the same query to the target

leakage oracle and return the answer to A+
1 .

• Let (α, i∗) be the final output of A+
1 . Define the leakage function ĝ

α,A+
2

i∗ which hard-wires
α and a description of A+

2 , takes as input the shares sBi∗ and returns the decision bit
b′←$ A+

2 (α, sBi∗ ).

• Forward (ε, . . . , ε, ĝ
α,A+

2
i∗ , ε, . . . , ε) to the target leakage oracle, obtaining a bit b′, and output

b′.

The statement follows by observing that A’s simulation to A+’s leakage queries is perfect, thus
they have the same advantage, and moreover, A leaks a total of at most `+ 1 bits.

4 Selective Partitioning

In this section, we construct bounded leakage-resilient, statistically one-time non-malleable
secret sharing under selective partitioning. We achieve this in two steps. First, in §4.1, we prove
that every statistically one-time non-malleable secret sharing is in fact bounded leakage-resilient,
statistically one-time non-malleable under selective partitioning at the price of a security loss
exponential in the size of the leakage. Then, in §4.2, we provide concrete instantiations using
known results from the literature.
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4.1 Non-Malleability Implies Bounded Leakage Resilience

Theorem 3. Let Σ = (Share,Rec) be a (k, 1, ε/2`)-NMSS realizing A. Then, Σ is also a
(k, `, 1, ε)-BLR-NMSS realizing A under selective partitioning.

Proof. By contradiction, assume that there exist a pair of messages m0,m1 ∈M, a k-partition
B = (B1, . . . ,Bt) of [n], and a (k, `, 1)-BLTA unbounded adversary A such that∣∣∣P [JSTamperB,m0,m1

Σ,A (λ, 0) = 1
]
− P

[
JSTamperB,m0,m1

Σ,A (λ, 1) = 1
]∣∣∣ > ε.

Consider the following unbounded reduction Â trying to break (k, 0, 1, ε/2`)-non-malleability
using the same partition B, and the same messages m0,m1.

1. Run A(1λ).

2. Upon input the q-th leakage query g(q) = (g
(q)
1 , . . . , g

(q)
t ), generate a uniformly random

string Λ(q) = (Λ
(q)
1 , . . . ,Λ

(q)
t ) compatible with the range of g(q), and output Λ(q) to A.

3. Upon input the final tampering query f = (f1, . . . , ft), construct the following tampering
function f̂ = (f̂1, . . . , f̂t):

• The function hard-wires (a description of) all the leakage functions g(q), the tamper-
ing query f , and the guess on the leakage Λ = Λ(1)||Λ(2)|| . . ..

• Upon input the shares (sj)j∈Bi , the function f̂i checks that the guess on the leakage

was correct, i.e. g
(q)
i ((sj)j∈Bi) = Λ

(q)
i for all q. If the guess was correct, compute and

output fi((sj)j∈Bi); else, output ⊥.

4. Send f̂ to the tampering oracle and pass the answer m̃ ∈M∪ {�,⊥} to A.

5. Output the same guessing bit as A.

For the analysis, we now compute the distinguishing advantage of Â. In particular, call Missb
the event in which the guess on the leakage was wrong in experiment JSTamperB,m0,m1

Σ,A (λ, b),

i.e. there exists i ∈ [t] such that f̂i outputs ⊥ in step 3, and call Hitb its complementary event.
We notice that the probability of Hit0 is equal to the probability of Hit1, since the strings Λ(q)

are sampled uniformly at random:

P[Hitb] =
∑

Λ∈{0,1}`
P[U` = Λ ∧ g(Sb) = Λ] = 2−`

∑
Λ∈{0,1}`

P[g(Sb) = Λ] = 2−`,

where Sb is the random variable corresponding to Share(mb), U` is the uniform distribution
over {0, 1}`, and g is the concatenation of all the leakage functions. Then, we can write:∣∣∣P [JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

]
− P

[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

]∣∣∣
=
∣∣∣P [Hit0]P

[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Hit0

]
(3)

− P [Hit1]P
[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Hit1

]
+ P [Miss0]P

[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Miss0

]
− P [Miss1]P

[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Miss1

]∣∣∣
11



= 2−`
∣∣∣P [JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Hit0

]
(4)

− P
[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Hit1

]∣∣∣
= 2−`

∣∣∣P [JSTamperB,m0,m1

Σ,A (λ, 0) = 1
]

(5)

−P
[
JSTamperB,m0,m1

Σ,A (λ, 1) = 1
]∣∣∣ > ε

2`
, (6)

In the above derivation, Eq. (3) follows from the law of total probability, Eq. (4) comes from the
fact that, when Miss happens, the view of A (i.e. the leakage Λ and the output of the tampering
query) is independent6 of the target secret sharing, and thus its distinguishing advantage is zero,
and Eq. (5) follows because P[Hit] = 2−` and moreover, when Hit happens, the view of A is
perfectly simulated and thus Â has the same distinguishing advantage of A, which is at least ε
by assumption.

Therefore, Â has a distinguishing advantage of at least ε/2`. Finally, note that Â performs no
leakage and uses only one tampering query, and thus Â is (k, 0, 1)-BLTA. The lemma follows.

4.2 Instantiations

Using known constructions of one-time non-malleable secret sharing schemes against joint tam-
pering, we obtain the following:

Corollary 1. For every λ, `, n ≥ 0, and every k, τ ≥ 0 such that k < τ ≤ n, there exists a
τ -out-of-n secret sharing Σ that is a (k, `, 1, 2−λ)-BLR-NMSS under selective partitioning.

Proof. Follows by combining Thm. 3 with the secret sharing scheme of [GK18a, Thm. 4] with
security parameter λ′ + ` and choosing λ ≥ (λ′ + `)Ω(1) − ` in order to obtain

ε = 2` · 2−(λ′+`)Ω(1) ≤ 2−λ.

Corollary 2. For every `, n ≥ 0, any β < 1, and every k, τ ≥ 0 such that k < τ ≤ n, there
exists an (n, τ)-ramp secret sharing Σ that is a (k, `, 1, 2` · 2−nΩ(1)

)-BLR-NMSS under selective
partitioning with binary shares.

Proof. Follows directly by combining Thm. 3 with the secret sharing scheme of [CL18, Thm.
4.1].

5 Adaptive Partitioning

As mentioned in the introduction, the proof of Thm. 3 breaks in the setting of adaptive partition-
ing. To overcome this issue, in §5.1, we give a direct construction of a bounded leakage-resilient,
one-time statistically non-malleable secret sharing (for general access structures) under adap-
tive partitioning. We explain the main intuition behind our design in §5.2, and formally prove
security in §5.3. Finally, in §5.4, we explain how to instantiate our construction using known
results from the literature.

6Here is where we use the restriction that the reconstruction set T must be minimal and contain at least one
share from each subset Bi; otherwise, we cannot argue that the output of the tampering query is ⊥, and thus
independent of the target.
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5.1 Our New Secret Sharing Scheme

Let Σ0 be a secret sharing realizing access structure A, let Σ1 be a k1-out-of-n secret sharing,
and let Σ2 be a 2-out-of-2 secret sharing. Consider the following scheme Σ = (Share,Rec):

• Algorithm Share: Upon input m, first compute (s0, s1)←$ Share2(m), (s0,1, . . . , s0,n)←$

Share0(s0), and (s1,1, . . . , s1,n)←$ Share1(s1). Then set si := (s0,i, s1,i) for all i ∈ [n], and
output (s1, . . . , sn).

• Algorithm Rec: Upon input (si)i∈I , parse si = (s0,i, s1,i) and I = {i1, . . . , i|I|}, and
define I|k1

:= {i1, . . . , ik1}; compute s1 = Rec1((s1,i)i∈I|k1
) and s0 = Rec0((s0,i)i∈I), and

finally output m′ = Rec2((s0, s1)).

With the above defined scheme, we achieve the following:

Theorem 4. Let n, k(λ), `(λ), σ0(λ) ∈ N and ε0, ε1, ε2 ∈ [0, 1] be parameters, and set k1 :=
√
k,

`0 := `+ 1 and `1 := `+ n · σ0. Let A be an arbitrary access structure for n parties, where for
any I ∈ A we have |I| > k1. Assume that:

1. Σ0 is a (k, `0, 0, ε0)-BLR-NMSS realizing A under adaptive partitioning, with share space
such that log |S0,i| ≤ σ0 (for any i ∈ [n]);

2. Σ1 is a (k1 − 1, `1, 0, ε1)-BLR-NMSS realizing the k1-out-of-n threshold access structure
under adaptive partitioning;

3. Σ2 is a one-time ε2-non-malleable 2-out-of-2 secret sharing (i.e. a (1, 0, 1, ε2)-BLR-NMSS).

Then, the above defined Σ is a (k1−1, `, 1, 2(ε0+ε1)+ε2)-BLR-NMSS realizing A under adaptive
partitioning.

5.2 Proof Overview

In order to prove Thm. 4, we first make some considerations on the tampering query (T ,B, f).
In particular, we construct two disjoint sets T ∗0 and T ∗1 that are the union of subsets from the
partition B, in such a way that (i) T ∗0 ∩ T contains at least k1 elements (so that it can be used
as a reconstruction set for Rec1); and (ii) each subset Bi of the partition B intersects at most
one of T ∗0 , T ∗1 (so that both leakage and tampering queries can be computed on T ∗0 and on T ∗1
independently). Hence, we define four hybrid experiments as described below.

First Hybrid: In the first hybrid experiment, we change how the tampering query is computed.
Namely, after the last leakage query, we replace all the left shares s0,β within T ∗1 with
new shares s∗0,β that are valid shares of s0 and consistent with the leakage obtained by
the adversary. Since the old and the new shares are sampled from the same distribution,
this does not affect the view of the adversary and thus does not modify its advantage.

Second Hybrid: In the second hybrid experiment, we change the distribution of the left
shares. Namely, we discard the original ones and we replace them with left shares of
some unrelated message (i.e. ŝ0, where (ŝ0, ŝ1)←$ Share2(0)). In order to prove that this
hybrid experiment is ε0-close to the previous one, we construct an admissible reduction to
leakage-resilience of Σ0, thus proving that, if some admissible adversary is able to notice
the difference between the old and the new experiment with advantage more than ε0, then
our reduction can distinguish between a secret sharing of s0 and a secret sharing of ŝ0

with the exact same advantage, thus violating leakage-resilience of Σ0.
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The key idea here is to forward leakage queries to the oracle and, once the adversary
outputs its tampering query, obtain all the shares in T ∗0 from the leakage oracle, using
the augmented property given by Theorem 2; the reduction remains admissible because
Σ0 has security against adaptive k-partitioning and |T ∗0 | ≤ k. After receiving such shares,
the reduction can sample the shares s∗0,β in T ∗1 introduced in the first hybrid experiment
and compute the tampering on both s0 (using the shares in T ∗0 and the sampled shares
in T ∗1 ) and s1 (only using the shares in T ∗0 ), thus obtaining the mauled message m̃.

Third Hybrid: In the third hybrid experiment, we change how the tampering query is com-
puted. Similarly to the modification introduced in the first hybrid experiment, after the
last leakage query, we replace all the right shares s1,β within T ∗0 with new shares s∗1,β that
are valid shares of s1 and consistent with the leakage obtained by the adversary. However,
we further request that this modification does not affect the outcome of the tampering
query on the left shares; in particular, if the tampering function applied to (ŝ0,β, s1,β) leads
to (s̃0,β, . . .), the same tampering function applied to (ŝ0,β, s

∗
1,β) must lead to (s̃0,β, . . .).

This request is necessary in order not to break the modifications introduced in the second
hybrid experiment. As in the first hybrid experiment, since the old and the new shares are
sampled from the same distribution, this does not modify the advantage of the adversary.

Fourth Hybrid: In the fourth hybrid experiment, we change the distribution of the right
shares. Similarly to the modification introduced in the third hybrid experiment, we discard
the original shares and we replace them with the right shares of the previously computed
unrelated message, i.e. ŝ1. In order to prove that this hybrid experiment is ε1-close to the
previous one, we construct another admissible reduction, this time to leakage-resilience of
Σ1, with the same purpose on the one in the second hybrid experiment.

The key idea here is to simulate the tampering query with a leakage query that obtains
the result of the tampering on all the left shares. This is allowed because of the restriction
on the shares of Σ0 being at most σ0 bits long, so that the total performed leakage is
bounded by ` + nσ0. In particular, after sampling the fake shares ŝ0,β, forwarding the
leakage queries to the oracle and receiving the tampering query, the reduction samples
the shares s∗0,β as in the third hybrid experiment and hard-wires it, along with the shares
ŝ0,β, inside a leakage function that computes the tampering (s̃0,β, s̃1,β) and outputs the
shares s̃0,β. After receiving the mauled shares, the reduction samples the shares s1,β

within T ∗0 accordingly and computes the tampering function on them. At the end of the
computation, the reduction has all the mauled shares (s̃0,β)β∈T and (s̃1,β)β∈T0 and can
thus compute the mauled message m̃.

Since the above defined hybrid experiments are all statistically close, it only remains to show
that no adversary can distinguish between the last hybrid experiment with bit b = 0 and the
same experiment with b = 1 with an advantage more than ε2, thus proving the security of our
scheme. In order to prove this fact, we once again construct a reduction, this time to one-time
ε2-non-malleability, that achieves the same advantage of an adversary distinguishing between
the two experiments.

The key idea here is to use s0 to sample the shares s∗0,β within T ∗1 and s1 to sample the
shares s∗1,β within T ∗0 . In particular, all the other shares needed for the computation are the
one sampled from (ŝ0, ŝ1) and, since T ∗0 ∩ T ∗1 = ∅, the computation does not overlap and the
tampering can be split between two functions f0, f1 that hard-wire the sampled values. These
two functions take as input s0 and s1 respectively and can thus compute the mauled values
s̃0 and s̃1 respectively, so that the reduction can then use this output in order to compute the
mauled message m̃.
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5.3 Security Analysis

Notation. Before proceeding with the analysis, we introduce some useful notation. We define
a sequence of hybrid experiments Hi(λ, b) for i ∈ N and b ∈ {0, 1}. Let H0(λ, b) be the
JATamperΣ,A(λ, b) experiment. Recall that, after the leakage phase, the adversary sends the
tampering query (T ,B, f):

• Let τ ∈ N and let T = {β1, . . . , βτ}. We write ξ(i) for the index such that βi ∈ Bξ(i).
Namely, the i-th share of the reconstruction is tampered by the ξ(i)-th tampering function.

• We define some subsets starting from T . Call

T ∗0 =
⋃

β∈T|k1

Bξ(β) and T0 = T ∗0 ∩ T .

Then, use the above to define

T1 = T \ T0 and T ∗1 =
⋃
β∈T1

Bξ(β).

Finally, let T ∗ = T ∗0 ∪ T ∗1

Note that, with the above notation,
⋃
β∈T|k1

Bξ(β) =
⋃
β∈T0 Bξ(β) since they define the same

Bξ(β). Moreover, T0 and T1 are defined such that |T0| ≥ k1 and, if Bi ∩ T 6= ∅, then either
Bi ∩ T0 6= ∅ or Bi ∩ T1 6= ∅, but not both. In this way, we also obtain that T ∗0 ∩ T ∗1 = ∅.

Hybrid 1. Let H1(λ, b) be the same as H0(λ, b) except for the shares of s0 being re-sampled
at the end of the leakage phase. Namely, in H1(λ, b) we sample (s∗0,β)β∈T ∗1 such that (s0,β)β∈T ∗0 ,
(s∗0,β)β∈T ∗1 are valid shares of s0 and consistent with the leakage. Then, we answer to A’s queries
as follows:

• upon receiving a leakage query, use (s0,1, s1,1), . . . , (s0,n, s1,n) to compute the answer;

• upon receiving the tampering query, use (s0,β, s1,β)β∈T ∗0 , (s
∗
0,β, s1,β)β∈T ∗1 to compute the

answer.

Lemma 1. For b ∈ {0, 1}, ∆(H0(λ, b),H1(λ, b)) = 0.

Proof. Let (S0,β)β∈T ∗1 and (S∗0,β)β∈T ∗1 be the random variables for the values (s0,β)β∈T ∗1 and
(s∗0,β)β∈T ∗1 in experiments H0 and H1. For any string s̄, let Bs̄

0 (resp. Bs̄
1) be the event that

(S0,β)β∈T ∗1 = s̄ (resp. (S∗0,β)β∈T ∗1 = s̄). Then,

P [H0(λ, b) = 1]− P [H1(λ, b) = 1]

=
∑
s̄

P
[
Bs̄

0

]
P
[
H0(λ, b)=1

∣∣Bs̄
0

]
−
∑
s̄

P
[
Bs̄

1

]
P
[
H1(λ, b)=1

∣∣Bs̄
1

]
=
∑
s̄

P
[
Bs̄

0

] (
P
[
H0(λ, b)=1

∣∣Bs̄
0

]
− P

[
H1(λ, b)=1

∣∣Bs̄
1

])
(7)

= 0, (8)

where (7) holds because of (S∗0,β)β∈T ∗1 being re-sampled from the same distribution of (S0,β)β∈T ∗1 ,
and (8) holds because, once fixed the value of s̄, if both Bs̄

0 and Bs̄
1 happen, then (S0,β)β∈T ∗1 =

s̄ = (S∗0,β)β∈T ∗1 and the two hybrids are the same.
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Hybrid 2. Let H2(λ, b) be the same as H1(λ, b) except for the leakage being performed on fake
shares of s0. Namely, compute (ŝ0, ŝ1)←$ Share2(0), let ŝi = (ŝ0,i, s1,i), where (ŝ0,1, . . . , ŝ0,n)←$

Share0(ŝ0), and sample the shares (s∗0,β)β∈T ∗1 of H1 such that (ŝL,β)β∈T ∗0 , (s
∗
0,β)β∈T ∗1 are valid

shares of s0 and consistent with the leakage. Compute the tampering query using these re-
sampled shares, thus

• upon receiving a leakage query, use (ŝ0,1, s1,1), . . . , (ŝ0,n, s1,n) to compute the answer;

• upon receiving the tampering query, use (ŝ0,β, s1,β)β∈T ∗0 , (s
∗
0,β, s1,β)β∈T ∗1 to compute the

answer.

Lemma 2. For b ∈ {0, 1}, ∆((H1(λ, b),H2(λ, b))) ≤ ε0(λ).

Proof. By reduction to leakage resilience of Σ0. Suppose towards contradiction that there exists
an adversary A able to tell apart H1 and H2 with advantage more than ε0(λ). Fix values (s0, s1)
and ŝ0 and call starget0 the target secret sharing in the leakage oracle. Consider the following
reduction:

Adversary ÂOleak((s
target
0,i )i∈[n],·,·)(1λ):

1. Sample s1,1, . . . , s1,n←$ Share1(s1) and run the experiment as in H1 with the
adversary A; upon receiving each leakage function, hard-code into it the shares
of s1 and forward it to the leakage oracle.

2. Eventually, the adversary sends its tampering query. Ask for the shares (starget0,β )β∈T ∗0
(using the augmented property from Theorem 2).

3. For all β ∈ T0, compute (s̃0,j , s̃1,j)j∈Bξ(β)
= fξ(β)((s

target
0,j , s1,j)j∈Bξ(β)

) and com-
pute s̃1 = Rec1((s̃1,β)β∈T|k1

).

4. Sample (s∗0,β)β∈T ∗1 as described in H2 and compute s̃0 as follows: for all
β ∈ T1, compute (s̃0,j , s̃1,j)j∈Bξ(β)

= fξ(β)((s
∗
0,j , s1,j)j∈Bξ(β)

) and compute s̃0 =
Rec0((s̃0,β)β∈T ).

5. Compute and send to A the value m̃ = Rec2(s̃0, s̃1).

6. Output the same as A.

For the analysis, note that the reduction is perfect. In particular, the reduction perfectly simu-
lates H1 when (starget0,i )i∈[n] is a secret sharing of s0 and perfectly simulates H2 when (starget0,i )i∈[n]

is a secret sharing of ŝ0. Moreover, the leakage requested by A is forwarded to the leakage oracle
of Â and perfectly simulated by it. Finally, the reduction gets in full (starget0,β )β∈T ∗0 , which allows
it to compute s̃1, and then it computes s̃0 sampling the values (s∗0,β)β∈T ∗1 , as in H1.

Let us now analyze the admissibility of Â. The only leakage performed by Â is the one
requested by A, and augmented leakage-resilience can be obtained with 1 extra bit of leakage
by Theorem 2. Finally, by |T ∗0 | ≤ k1(k1 − 1) ≤ k follows that if A is (k1 − 1, `, 1)-BLTA, Â is
(k, `+ 1, 0)-BLTA.

Hybrid 3. Let H3(λ, b) be the same as H2(λ, b) except for the shares of s1 are re-sampled at
the end of the leakage phase. Namely, in H3(λ, b) we sample (s∗1,β)β∈T ∗0 such that (1) both sets
of shares (s1,β)β∈T ∗0 and (s∗1,β)β∈T ∗0 agree with the same leakage and the same reconstructed
secret s1 and (2) for all β ∈ T0, applying the tampering function fξ(β) to (ŝ0,j , s

∗
1,j)j∈Bξ(β)

or to
(ŝ0,j , s1,j)j∈Bξ(β)

leads to the exact same (s̃0,j)j∈Bξ(β)
. Then, we answer to A’s queries as follows:

• upon receiving a leakage query, use (ŝ0,1, s1,1), . . . , (ŝ0,n, s1,n) to compute the answer;
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• upon receiving the tampering query, use (ŝ0,β, s
∗
1,β)β∈T ∗0 , (s

∗
0,β, s1,β)β∈T ∗1 to compute the

answer.

Lemma 3. For b ∈ {0, 1}, ∆(H2(λ, b),H3(λ, b)) = 0.

The proof of the lemma is similar to the proof of Lemma 1 and thus omitted.

Hybrid 4. Let H4(λ, b) be the same as H3(λ, b) except for the leakage being performed on
fake shares of s1. Namely, let (ŝ1,i)i∈[n]←$ Share1(ŝ1), where ŝ1 comes from Share2(0) as in H2.
Compute the tampering query using these re-sampled shares, thus

• upon receiving a leakage query, use (ŝ0,1, ŝ1,1), . . . , (ŝ0,n, ŝ1,n) to compute the answer;

• upon receiving the tampering query, use (ŝ0,β, s
∗
1,β)β∈T ∗0 , (s

∗
0,β, ŝ1,β)β∈T ∗1 to compute the

answer.

Lemma 4. For b ∈ {0, 1}, ∆(H3(λ, b),H4(λ, b)) ≤ ε1(λ).

Proof. By reduction to the leakage resilience of Σ1. Suppose towards contradiction that there
exists an adversary A able to tell apart H3 and H4 with advantage more than ε1(λ). Fix values
(s0, s1) and (ŝ0, ŝ1) and call starget1 the target secret sharing in the leakage oracle. Consider the
following reduction:

Adversary ÂOleak((s
target
1,i )i∈[n],·,·)(1λ):

1. Sample (ŝ0,1, . . . , ŝ0,n)←$ Share0(ŝ0) and run the experiment as in H3 with the
adversary A; upon receiving each leakage function, hard-code into it the shares
of ŝ0 and forward it to the leakage oracle.

2. Eventually, the adversary sends its tampering query (T ,B, f).

3. Sample (s∗0,β)β∈T ∗1 as in H2 and set

s′0,β :=

{
ŝ0,β if β ∈ T ∗0 ,
s∗0,β if β ∈ T ∗1 .

Note that this is well defined since T ∗0 ∩ T ∗1 = ∅.
4. For all i = 1, . . . , t, construct the leakage function gi that, given as input

(starget1,β )β∈Bi , computes (s̃0,β, s̃1,β)β∈Bi = fj((s
′
0,β, s

target
1,β )β∈Bi) and outputs (s̃0,β)β∈Bi .

Send (B, (g1, . . . , gt)) to the leakage oracle obtaining values (s̃0,β)β∈T ∗ .

5. Sample the values (s∗1,β)β∈T ∗0 as in H3 using (s̃0,β)β∈T ∗ .

6. Compute, for all j ∈ T0, (s̃0,β, s̃1,β)β∈Bξ(j) = fj((s
′
0,β, s

∗
1,β)β∈Bξ(j)); then, com-

pute s0 = Rec0((s̃0,β)β∈T ) and s1 = Rec1((s̃1,β)β∈T|k1
) and output the value

m̃ = Rec2(s0, s1) to A.

7. Output the same as A.

For the analysis, note that the reduction is perfect. In particular, the reduction perfectly simu-
lates H3 when (starget1,i )i∈[n] is a secret sharing of s1 and perfectly simulates H4 when (starget1,i )i∈[n]

is a secret sharing of ŝ1. Moreover, the leakage requested by the adversary A is forwarded to the
leakage oracle of Â and perfectly simulated by it. Finally, the reduction obtains all the shares
(s̃0,β)β∈T ∗ , thus it is able to both compute s̃0 and sample the values (s∗1,β)β∈T ∗0 .
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Let us now analyze the admissibility of Â. The only leakage performed by Â is the one
requested by A in step 1 plus the one needed in order to get values (s̃0,β)β∈T ∗ in step 4;

summing up, the overall leakage performed by Â is

`+
∑
β∈T ∗

log |S0,β| ≤ `+
∑
i∈[n]

log |S0,i| ≤ `+ nσ0,

being, for all i ∈ [n], log |S0,i| ≤ σ0. Therefore, we can conclude that Â is (k1 − 1, ` + nσ0, 0)-
BLTA.

Final step. Finally, we show:

Lemma 5. ∆(H4(λ, 0),H4(λ, 1)) ≤ ε2(λ).

Proof. By reduction to non-malleability of (Share2,Rec2). Suppose by contradiction that there
exists an adversary A telling apart H4(λ, 0) and H4(λ, 1) with advantage more than ε2(λ). Fix
values (ŝi)i∈[n] = ((ŝ0,i, ŝ1,i)i∈[n]) and (s0, s1) being either a (2-out-of-2) secret sharing of m0 or
of m1. Consider the following reduction:

Adversary ÂOnmss((s
target
0 ,starget1 ),·)(1λ):

1. Run the experiment as in H4 with the adversary A; upon receiving each leakage
function, answer using the values (ŝi)i∈[n].

2. Upon input the tampering query (T ,B, f), construct the following two tam-
pering functions:

• f0, upon input s0, samples (s∗0,β)β∈T ∗1 as in H2; then computes (s̃0,j , s̃1,j)j∈Bξ(β)
=

fξ(β)((ŝ0,j , ŝ1,j)j∈Bξ(β)
) for all β ∈ T0 and (s̃0,j , s̃1,j)j∈Bξ(β)

= fξ(β)((s
∗
0,j , ŝ1,j)j∈Bξ(β)

)
for all β ∈ T1 and outputs s̃0 = Rec0((s̃0,β)β∈T ).

• f1, upon input s1, samples (s∗1,β)β∈T ∗0 as in H3; then, computes (s̃0,j , s̃1,j)j∈Bξ(β)
=

fξ(β)((ŝ0,j , s
∗
1,j)j∈Bξ(β)

) for all β ∈ T0 and outputs s̃1 = Rec1((s̃1,β)β∈T ).

3. Send (f0, f1) to the tampering oracle, receiving the secret m̃.

4. Return m̃ to A and output the same as A.

For the analysis, note that the reduction is perfect. In particular, shares (s∗0,β)β∈T ∗1 and
(s∗1,β)β∈T ∗0 are computed using s0 and s1 respectively; moreover, both s̃0 and s̃1 are computed
as in experiment H4 and thus the tampering query is perfectly simulated. Finally, the leakage
is computed using the fake shares (ŝi)i∈[n] as in H4 and thus, once again, perfectly simulated.
The lemma follows.

Theorem 4. Follows by the above lemmas and the triangular inequality:

∆(H0(λ, 0),H0(λ, 1))

≤
∑

b∈{0,1}

∑
i∈[4]

∆(Hi−1(λ, b),Hi(λ, b)) + ∆(H4(λ, 0),H4(λ, 1))

≤ 2 (∆(H1(λ, b),H2(λ, b)) + ∆(H3(λ, b),H4(λ, b))) + ∆(H4(λ, 0),H4(λ, 1))

≤ 2(ε0 + ε1) + ε2.
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5.4 Instantiation

Using a previous construction of bounded leakage-resilient secret sharing scheme against joint
leakage under adaptive partitioning, we obtain the following:

Corollary 3. For every `, n, λ ≥ 0, every k ∈ O(
√

log n), and every access structure A over n
parties that can be described by a polynomial-size monotone span program for which authorized
sets have size greater than k, there exists a (k, `, 1, 2−Ω(λ/ log(λ)))-BLR-NMSS with message
length Ω(λ/ log(λ)) realizing A under selective partitioning.

Proof. By Thm. 4, we need to instantiate Σ0, Σ1, and Σ2. Using [KMS19, Thm. 1] and [KMS19,
Cor. 2], we can take ε0 = ε1 = 2−Ω(λ/ log(λ)), k ∈ O(log n), and thus k1 ∈ O(

√
log n), σ0 =

poly(λ) and any `0, `1 > 0. As for Σ2, we can take the split-state non-malleable code in [Li17,
Thm. 1.12], which achieves error 2−Ω(λ/ log(λ)).

6 Applications

6.1 Lower Bounds for Non-Malleable Secret Sharing

Combining our result from Thm. 3 with the lower bound of Nielsen and Simkin [NS20], we
obtain a lower bound on the share size and randomness complexity of non-malleable secret
sharing schemes. In particular, we obtain the following:

Corollary 4. Any τ -out-of-n (1, 1, ε)-NMSS must satisfy

σ ≥ (log(1/ε)− 1)(1− τ/n)

τ̂
,

where τ̂ is the number of shares needed to reconstruct the full vector of shares and σ is the
bit-length of each share.

Observe that τ̂ is a simplified notion of entropy. If τ = τ̂ , then any authorized set can
reconstruct all remaining shares, meaning that those shares have no entropy left.

6.2 Bounded-Time Non-Malleability

Here, we revisit the compiler from Ostrovsky et al. [OPVV18] in the setting of non-malleable
secret sharing against joint tampering.

The basic idea is as follows. First, we commit to the message m using random coins r,
thus obtaining a cryptographic commitment c. Then, we secret share the string m||r using an
auxiliary secret sharing scheme Σ, thus obtaining shares s1, . . . , sn. The final share of the i-th
party is set to be s∗i = (c, si). Given an authorized set I, the reconstruction first checks that
all commitments in s∗I are equal, and then uses sI to recover m||r, and verifies consistency of
the commitments. If any of these checks fails, it outputs ⊥; else, it returns m.

The original analysis by Ostrovsky et al. shows that if Σ is a 2-out-of-2 secret sharing that is
bounded leakage-resilient, statistically one-time non-malleable, and further satisfies additional
non-standard properties, then Σ∗ is continuously non-malleable. In a follow up work, Brian
et al. [BFV19] proved that the additional properties on Σ can be avoided if one assumes that
Σ satisfies a stronger form of leakage resilience known as noisy leakage resilience, and further
extended the original analysis to any value n ≥ 2 and for arbitrary access structures.

Both the proofs in [OPVV18, BFV19] are for the setting of independent tampering. The
theorem below says that the same construction works also in the case of joint p-time tampering
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Let Commit be a non-interactive commitment scheme with message spaceM, randomness space
R and commitment space C. Let Σ = (Share,Rec) be an auxiliary secret sharing scheme realizing
access structure A with message space M×R and share space S = S1 × . . . × Sn. Define the
following secret sharing scheme Σ∗ = (Share∗,Rec∗) with message space M and share space
S∗ = S∗1 × . . .× S∗n, where, for each i ∈ [n], we have S∗i = C × Si

Sharing algorithm Share∗: Upon input a value m ∈ M, sample random coins r←$R
and compute c = Commit(m; r) and (s1, . . . , sn)←$ Share(m||r). Return the shares
s∗ = (s∗1, . . . , s

∗
n) where, for each i ∈ [n], s∗i = (c, si).

Reconstruction algorithm Rec∗: Upon input shares (s∗i )i∈I , parse s∗i = (ci, si) for each i ∈ I.
Hence, proceed as follows.

1. If ∃i1, i2 ∈ I for which ci1 6= ci2 , return ⊥; else, let the input shares be s∗i = (c, si).

2. Run m||r = Rec((si)i∈I); if the outcome equals ⊥, return ⊥.

3. If c = Commit(m; r), return m; else, return ⊥.

Figure 2: Compiler for obtaining bounded-time non-malleability against joint tampering.

under selective/adaptive partitioning as long as Σ tolerates joint bounded leakage resilience,
where there is a natural trade off between the leakage bound and the number of tampering
queries. The main idea behind the proof is to reduce the security of Σ∗ to that of Σ, where the
bounded leakage is used to simulate multiple tampering queries. The main difference with the
original proof is that we need a small leakage for each tampering query, and thus the analysis
only works in case the number of tampering queries is a priori bounded.

Theorem 5. Let n ∈ N and let A be an arbitrary access structure for n parties without single-
tons. Assume that:

1. Commit is a perfectly binding and computationally hiding non-interactive commitment;

2. Σ is a n-party k-joint `-bounded leakage-resilient one-time non-malleable secret sharing
scheme realizing access structure A against joint adaptive (resp., selective) partitioning
with information-theoretic security and with message spaceM such that |M| ∈ ω(log(λ)).

Then, the secret sharing scheme Σ∗ described in Fig. 2 is a n-party k-joint p-time non-malleable
secret sharing scheme realizing access structure A against joint adaptive (resp., selective) par-
titioning with computational security, as long as ` = p · (γ+n) + 1, where γ = log |C| is the size
of a commitment.

Proof. The proof of privacy (w.r.t. access structure A) was already given in [BFV19]. In what
follows, we focus on showing joint non-malleability under adaptive partitioning. The proof for
the case of selective partitioning is almost the same, the only difference being that the partition
B is fixed at the beginning of the experiment instead of given by the adversary.

Let JATamperm0,m1

Σ∗,A (λ, b), for m0,m1 ∈M, b ∈ {0, 1}, be the original experiment defining

p-time non-malleability of Σ∗. Consider a modified experiment Hm0,m1

Σ∗,A (λ, b) where we replace
(s1, . . . , sn) with a secret sharing of a random and independent value m̂||r̂←$M×R. Both
the original and the hybrid experiments are depicted in Fig. 3. We first prove that the above
experiments are computationally close by induction over the number of tampering queries p∗ ≤
p asked by the adversary A; towards this, let us denote by JATamperm0,m1

Σ∗,A (λ, p∗, b) (resp.

Hm0,m1

Σ∗,A (λ, p∗, b)) the original (resp. hybrid) experiment where the adversary A is limited to ask
exactly p queries to the oracle Onmss. The lemma below constitutes the basis of the induction.
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JATamperm0,m1

Σ,A (λ, b) Hm0,m1

Σ,A (λ, b) :

r←$R, m̂||r̂←$M×R
c := Commit(mb; r)
(s1, . . . , sn)←$ Share(mb||r)
(s1, . . . , sn)←$ Share(m̂||r̂)
s∗ := ((c, s1), . . . , (c, sn))
stop← false

Return AOnmss(s∗,·,·,·),Oleak(s
∗,·,·)(1λ, α)

Oracle Oleak(s
∗,B, (g1, . . . , gt)):

Return g1(s∗B1
), . . . , gt(s

∗
Bt)

Oracle Onmss(s
∗, T ,B, (f1, . . . , ft)):

If stop = true, return ⊥
∀i ∈ [t] : s̃∗Bi := fi(s

∗
Bi)

s̃∗ = ((c̃1, s̃1), . . . , (c̃n, s̃n))
If ∃i1, i2 ∈ T : c̃i1 6= c̃i2

stop← true and return ⊥
Else, let c̃ := c̃i
m̃||r̃ = Rec(s̃T )
If m̃||r̃ = ⊥

stop← true and return ⊥
If c 6= Commit(m̃; r̃)

stop← true and return ⊥
If m̃ ∈ {m0,m1}

Return �
If m̃ = m̂

If c̃ = c return �
Else return ⊥

Return m̃

Figure 3: Experiment JATamperm0,m1

Σ,A (λ, b) applied to our scheme. The instructions boxed
in red are the modifications introduced by the hybrid experiment.

Lemma 6. For all pairs of distinct messages m0,m1 ∈M and for all b ∈ {0, 1},

{JATamperm0,m1

Σ∗,A (λ, 1, b)}λ∈N
s
≈ {Hm0,m1

Σ∗,A (λ, 1, b)}λ∈N.

Proof. The proof is down to the statistical leakage-resilient one-time non-malleability of the
underlying scheme Σ. Fix b = 0 (the proof for the other case being identical). Assume that
there exist two distinct messages m0,m1 and an unbounded adversary A which can distinguish
between JATamperm0,m1

Σ∗,A (λ, 1, 0) and Hm0,m1

Σ∗,A (λ, 1, 0) with non-negligible advantage. By an
averaging argument, this means that there must exist values r ∈ R and m̂||r̂ ∈ M × R such
that A distinguishes the two experiments when we fix these particular values of r and m̂||r̂. Let
m̂0 = m0||r, m̂1 = m̂||r̂ and c = Commit(m0; r) and let s = (s1, . . . , sn) be the target secret
sharing of either m̂0 or m̂1. Without loss of generality, we can assume that A is deterministic.7

Consider the following adversary Â attacking Σ.

1. Run A(1λ).

2. Upon input the only tampering query (T ,B, (f1, . . . , ft)) from A, proceed as follows.

(a) Choose any i ∈ [t] such that Bi ∩ T 6= ∅ and define the leakage function ĝi that
hard-wires (a description of) fi and c and returns the commitment c̃ such that
fi((c, sj)j∈Bi) = (c̃j , s̃j)j∈Bi and c̃ = c̃j for all j ∈ Bi ∩ T ; if such commitment
does not exist (i.e. there are at least two different c̃j1 and c̃j2 , with j1, j2 ∈ Bi ∩ T ),
let c̃ = ⊥.

(b) Forward (ε, . . . , ε, ĝi, ε, . . . , ε) to the target leakage oracle, obtaining the commitment
c̃.

7It is always possible to fix the random coins of A in order to maximize its distinguishing advantage.
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(c) For each i ∈ [t], define the leakage function ĥi that hard-wires (a description of) fi
and c, c̃ and returns a bit bi such that bi = 1 if and only if c̃j = c̃ for all j ∈ Bi ∩ T ,
where c̃j comes from fi((c, sj)j∈Bi) = (c̃j , s̃j)j∈Bi .

(d) Forward (ĥ1, . . . , ĥt) to the target leakage oracle, obtaining bits (b1, . . . , bt).

(e) If there exist i ∈ [t] such that bi = 0 and Bi ∩ T 6= ∅, return ⊥ to A; otherwise,
continue as follows.

(f) Define the tampering functions f̂i that hard-wires c and (a description of) fi and,
upon input (sj)j∈Bi , returns the values (s̃j)j∈Bi specified by fi((c, sj)j∈Bi) = (c̃j , s̃j)j∈Bi .

(g) Forward (T ,B, (f̂1, . . . , f̂t)) to the tampering oracle, obtaining m̃||r̃ ∈M×R∪{⊥, �}.
Hence:

• If m̃||r̃ = ⊥ or is not a valid opening of c̃, return ⊥ to A.

• If m̃ ∈ {m0,m1}, return � to A. Else, if m̃ = m̂ return � to A in case c̃ = c and
⊥ otherwise.

• Else, return m̃ to A.

3. Output the same guess as that of A.

For the analysis, we next prove that the simulation performed by the above reduction is perfect
with overwhelming probability. First, since A is deterministic and no random sampling is
involved, Â is deterministic. Second, depending on the target (s1, . . . , sn) being either a secret
sharing of m̂0 or of m̂1, for every i ∈ [t], being t the number of subsets of the partition
in the current query, the input to the tampering function fi (resp. leakage function gi) is
identically distributed to the shares in Bi of the target secret sharing in either experiment
JATamperm0,m1

Σ∗,A (λ, 0, 1) or Hm0,m1

Σ∗,A (λ, 0, 1), with our fixed choice of r, m̂, r̂. Third, the answer
to A’s tampering query is simulated correctly with all but a negligible probability. Indeed:

• If Rec(s̃T ) yields ⊥, both the real and the hybrid experiment would return ⊥, which is
perfectly emulated by the reduction.

• If Rec(s̃T ) yields �, it means that the inner secret sharing reconstructs to either m̂0 = m0||r
or to m̂1 = m̂||r̂. Without loss of generality, assume further that the commitments in the
tampered shares are all equal to a single value c̃.8 There are 4 possible cases: either both
experiments output the same m̂0 or m̂1 or one experiment outputs m̂0 while the other one
outputs m̂1. However, since the view in the real experiment is independent of the value
m̂, except with negligible probability 2−ω(log(λ)), we can condition on the event that the
real experiment does not output this value. Thus, there are only two cases to consider:

1. Both the real and the hybrid experiment return m̂0 = m0||r.
2. The real experiment returns m̂0 = m0||r whereas the hybrid returns m̂1 = m̂||r̂.

In both cases, the output of the two experiments is equal to � in case c̃ = c and ⊥
otherwise. This is exactly what the reduction does. Hence, the simulation is perfect
except with negligible probability.

• If Rec(s̃T ) yields some value m̃||r̃ /∈ {�,⊥}, it means in particular that m̃||r̃ /∈ {m̂0, m̂1}.
In such a case both experiments return ⊥ in case the modified commitment c̃ does not
match the opening (m̃, r̃). Otherwise, it means that the modified shares produced by A
lead to a valid message m̃ ∈ M. Thus, the output of both experiment would be either �
(in case m̃ is equal to one of the two messages m0,m1) or m̃.

8In fact, if this is not the case, both experiments would have returned ⊥, which is once again perfectly emulated
by the reduction.
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Finally, note that the overall leakage performed by Â amounts to a commitment and t ≤ n
bits and thus it is `-admissible whenever γ + n ≤ `. Therefore, we can conclude that the
distinguishing advantage of Â is the same as that of A with overwhelming probability, which
concludes the proof of the lemma.

The lemma below constitutes the inductive step.

Lemma 7. Fix any p∗ ≤ p − 1 and assume that for all b ∈ {0, 1} and all pairs of distinct
messages m0,m1 ∈M,

{JATamperm0,m1

Σ∗,A (λ, p∗, b)}λ∈N
s
≈ {Hm0,m1

Σ∗,A (λ, p∗, b)}λ∈N.

Then, {JATamperm0,m1

Σ∗,A (λ, p∗+ 1, b)}λ∈N
s
≈ {Hm0,m1

Σ∗,A (λ, p∗+ 1, b)}λ∈N for all b ∈ {0, 1} and all
pairs of distinct messages m0,m1 ∈M.

Proof. The proof is down to the statistical leakage-resilient one-time non-malleability of Σ. Fix
b = 0 (the proof for the other case being identical). Assume that there exist two distinct mes-
sages m0,m1 ∈ M an unbounded adversary A which can distinguish between the experiments
JATamperm0,m1

Σ∗,A (λ, p∗+ 1, 0) and Hm0,m1

Σ∗,A (λ, p∗+ 1, 0). By an averaging argument, this means
that there must exist values r ∈ R and m̂||r̂ ∈ M × R such that A distinguishes the two
experiments when we fix these particular values of r and m̂||r̂. Let m̂0 = m0||r, m̂1 = m̂||r̂
and c = Commit(m0; r) and let s = (s1, . . . , sn) be the target secret sharing of either m̂0 or
m̂1. Without loss of generality, we can assume that A is deterministic. Consider the following
adversary Â attacking Σ.

1. Run A(1λ).

2. For each q ∈ [p∗], upon input the q-th tampering query (T (q),B(q), (f
(q)
1 , . . . , f

(q)

t(q)
)), pro-

ceed as follows.

(a) Choose any i ∈ [t(q)] such that B(q)
i ∩ T (q) 6= ∅ and define the leakage function ĝi

that hard-wires (a description of) fi and c and returns the commitment c̃ such that

f
(q)
i ((c, sj)j∈B(q)

i

) = (c̃j , s̃j)j∈B(q)
i

and c̃ = c̃j for all j ∈ Bi ∩ T ; if such commitment

does not exist (i.e. there are at least two different c̃j1 and c̃j2 , with j1, j2 ∈ B(q)
i ∩T (q)),

let c̃ = ⊥.

(b) Forward (B(q), (ε, . . . , ε, ĝi, ε, . . . , ε)) to the target leakage oracle, obtaining the com-
mitment c̃(q).

(c) For each i ∈ [t], define the leakage function ĥi that hard-wires (a description of)
fi and c, c̃(q) and returns a bit bi such that bi = 1 if and only if c̃j = c̃(q) for all

j ∈ B(q)
i ∩ T (q), where c̃j comes from f

(q)
i ((c, sj)j∈B(q)

i

) = (c̃j , s̃j)j∈B(q)
i

.

(d) Forward (B(q), (ĥ1, . . . , ĥt)) to the target leakage oracle, obtaining bits (b
(q)
1 , . . . , b

(q)
t ).

(e) If c̃(q) = ⊥ or there exist i ∈ [t] such that b
(q)
i = 0 and B(q)

i ∩ T (q) 6= ∅, return ⊥ to A
and self-destruct; otherwise, proceed as follows:

• Find by brute force the opening m̃(q) of c̃(q) (i.e. c̃(q) = Commit(m̃(q); r̃(q)) for
some r̃(q) ∈ R); if no such value is found, set m̃(q) = ⊥ and self-destruct.

• If m̃(q) ∈ {m0,m1}, re-define m̃(q) = �. Else, if m̃(q) = m̂, re-define m̃(q) = � in
case c̃(q) = c and m̃(q) = ⊥ otherwise; in the latter case, self-destruct.

• Return m̃(q) to A.
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3. Upon input the last tampering query (T (p∗+1),B(p∗+1), (f
(p∗+1)
1 , . . . , f

(p∗+1)

t(p
∗+1) )), proceed as

follows.

(a) Check that the simulation up to the first p∗ queries did not cause any inconsistency
due to the fact that the outcome of the q-th tampering query should have been ⊥
because (s̃i)i∈T (q) was not a valid secret sharing.

i. Without loss of generality, assume that the output of A is equal to 0 whenever
it believes that the target secret sharing is distributed as in the real experiment.

ii. Define the special set Ŝ ⊆ S1× . . . ,×Sn such that Ŝ contains all the possible se-
cret sharings of m0 and m1 that are compatible with the answer to the tampering
queries being m̃(1), . . . , m̃(p).

iii. Define the following special leakage function ĥcheck : S1 → {0, 1}.
• The function hard-wires a description of A, the values (c,m0,m1), a descrip-

tion of the final tampering query (T (p∗+1),B(p∗+1), (f
(p∗+1)
1 , . . . , f

(p∗+1)

t(p
∗+1) )), the

answer to the previous tampering queries (m̃(1), . . . , m̃(p∗)) and the set Ŝ.

• Let ŝ∗ = ((c, s1), (c, ŝ2), . . . , (c, ŝn)) be the target secret sharing for each
possible set of compatible shares (s1, ŝ2, . . . , ŝn) ∈ Ŝ.

• The output of the function is a bit b̃ such that b̃ = 1 if and only if A(m̃(1), . . . ,
m̃(p∗), m̃∗) = 0 more often when ŝ∗ is a valid secret sharing of message m0,
where m̃∗ is the output of the Onmss oracle in the hybrid experiment upon

input (T (p∗+1),B(p∗+1), (f
(p∗+1)
1 , . . . , f

(p∗+1)

t(p
∗+1) )) with target secret sharing ŝ∗.

iv. Forward (({1}, . . . , {n}), (ĥcheck, ε, . . . , ε)) to the target leakage oracle,9 obtaining
a bit b̃.

(b) Define the same functions g
(p∗+1)
i and ĥ

(p∗+1)
i considered in step 2a and 2c and

forward them to the target leakage oracle, obtaining either the mauled commitment
c̃(p∗+1) or ⊥; in the latter case, return ⊥ to A and self-destruct.

(c) Define the tampering function f̂i that hard-wires c and (a description of) f
(p∗+1)
i and,

upon input (sj)j∈Bi , returns the values (s̃
(p∗+1)
j )j∈Bi specified by f

(p∗+1)
i ((c, sj)j∈Bi) =

(c̃
(p∗+1)
i , s̃

(p∗+1)
j )j∈Bi .

(d) Forward (T (p∗+1),B(p∗+1), (f̂1, . . . , f̂t(p∗+1))) to the target tampering oracle, obtaining
m̃(p∗+1)||r̃(p∗+1) ∈M×R∪ {�,⊥}. Hence:

• If m̃(p∗+1)||r̃(p∗+1) = ⊥ or is not a valid opening of c̃(p∗+1), return ⊥ to A.

• If m̃(p∗+1)||r̃(p∗+1) = �, return � to A in case c̃(p∗+1) = c and ⊥ otherwise.

• If m̃(p∗+1) ∈ {m0,m1}, return � to A. Else, if m̃(p∗+1) = m̂, return � to A in case
c̃(p∗+1) = c and ⊥ otherwise.

• Else, return m̃(p∗+1) to A.

4. Upon receiving a bit b′ from A, in case b̃ = 1 output b′ and else return 0.

Attacker Â runs in exponential time. Since A is deterministic and no random sampling is
involved, Â is deterministic. We now show that its distinguishing advantage is negligibly close
to that of A. Indeed:∣∣∣P [JATamperm0,m1

Σ∗,Â
(λ, 1, 0) = 1

]
− P

[
JATamperm0,m1

Σ∗,Â
(λ, 1, 1) = 1

]∣∣∣
9Note that this query is an independent-leakage query and can be performed using any other partition B.
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=
∣∣∣P [JATamperm0,m1

Σ∗,Â
(λ, 1, 0) = 1 ∧ b̃ = 1

]
(9)

−P
[
JATamperm0,m1

Σ∗,Â
(λ, 1, 1) = 1 ∧ b̃ = 1

]∣∣∣
≥ 1

poly(λ)

∣∣∣P [JATamperm0,m1

Σ∗,Â
(λ, 1, 0) = 1

∣∣∣b̃ = 1
]

(10)

−P
[
JATamperm0,m1

Σ∗,Â
(λ, 1, 1) = 1

∣∣∣b̃ = 1
]∣∣∣

≥ 1

poly(λ)

(
1

poly(λ)
− negl(λ)

)
, (11)

where Eq. (9) follows because when b̃ = 0, the reduction Â returns 0 unconditionally and
this cancels its distinguishing advantage; Eq. (10) holds as the induction hypothesis implies
that b̃ = 1 with non-negligible probability, otherwise A generates an invalid secret sharing
(s̃∗1, . . . , s̃

∗
n) within the first p tampering queries with overwhelming probability, which in turn

means that A can distinguish using less than p+ 1 outputs from the decoding. Finally, Eq. (11)
holds because an analysis identical to that of Lemma 6 shows that the view of A is perfectly
simulated (except with negligible probability) conditioned on b̃ = 1, and thus in this case Â
retains essentially the same advantage as that of A.

In order to conclude the proof, it remains to show that Â is `-admissible, for ` as in the state-
ment of the theorem. Note that the adversary Â makes leakage queries in steps 2b, 2d, 3(a)iv
and 3b. In particular, Â performs in step 3b the exact same leakage performed in each tam-
pering query in steps 2b and 2d, that is, the mauled commitment and up to n bits. Moreover,
the leakage performed in step 3(a)iv amounts to exactly 1 bit. Therefore, the total leakage
performed by Â amounts to at most

(p∗ + 1)(γ + n) + 1 ≤ p · (γ + n) + 1 = `.

The lemma follows.

Combining Lemma 6 and Lemma 7, we get that, for all b ∈ {0, 1} and all pairs of distinct
messages m0,m1 ∈M,

{JATamperm0,m1

Σ∗,A (λ, b)}λ∈N
s
≈ {Hm0,m1

Σ∗,A (λ, b)}λ∈N.

The lemma below concludes the proof of the theorem.

Lemma 8. For all pairs of distinct messages m0,m1 ∈M,

{Hm0,m1

Σ∗,A (λ, 0)}λ∈N
c
≈ {Hm0,m1

Σ∗,A (λ, 1)}λ∈N.

Proof. The proof is down to the computational hiding property of the non-interactive commit-
ment scheme. Assume that there exist two distinct messages m0,m1 ∈M and a PPT adversary
A telling apart Hm0,m1

Σ∗,A (λ, 0) and Hm0,m1

Σ∗,A (λ, 1) with non-negligible advantage. Fix r ∈ R and
let ĉ = Commit(mb; r) be the target commitment, where b ∈ {0, 1}. Consider the following
adversary Â attacking the hiding property of Commit.

1. Sample (s1, . . . , sn)←$ Share(m̂||r̂), where m̂||r̂←$M×R. Then, sample random coins
rA←$RA and run A(rA).

2. Upon input the q-th tampering query (T (q),B(q), (f
(q)
1 , . . . , f

(q)
t )) from A, proceed as fol-

lows:
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• For each i ∈ [t], compute

(s̃∗j )j∈Bi = f
(q)
i ((ĉ, sj)j∈Bi) = ((c̃j , s̃j)j∈Bi)

and let m̃(q)||r̃(q) = Rec(s̃T (q)), where s̃ = (s̃1, . . . , s̃n).

• If ∃ii, i2 ∈ T (q) s.t. c̃i1 6= c̃i2 , return ⊥ to A and self-destruct.

• If m̃(q) = ⊥ or c̃1 6= Commit(m̃(q); r̃), return ⊥ to A and self-destruct.

• If m̃(q) ∈ {m0,m1}, return � to A.

• If m̃(q) = m̂, return � to A in case c̃1 = ĉ1 and ⊥ otherwise; in the latter case,
self-destruct.

• Else, return m̃(q) to A.

3. Return the same guess as A.

For the analysis, note that the simulation done by Â is perfect. In particular, depending on
the value ĉ being a commitment to either m0 or m1, the view of A is identical to the one in
either experiment Hm0,m1

Σ∗,A (λ, 0) or Hm0,m1

Σ∗,A (λ, 1), therefore Â distinguishes with non-negligible
advantage. Finally, the only random sampling occurs in step 1 and can be de-randomized by
fixing the initial random tape of Â and; once the random tape is fixed, all the subsequent steps
of the reduction are deterministic and thus Â is deterministic. This concludes the proof.

Combining together Thm. 5 with Cor. 1–3 yields Thm. 1.

7 Conclusions

We presented new constructions of non-malleable secret sharing schemes against joint tampering
with the shares, both in the setting of selective and adaptive partitioning.

Our constructions for selective partitioning are for threshold access structures and tolerate
joint tampering with maximal subsets of unauthorized parties, i.e., of size equal to the privacy
threshold. Our construction for adaptive partitioning is for general access structures, but tol-
erates joint tampering with much smaller subsets of size k ∈ O(

√
log n) (where n is the number

of parties).
The above results hold for any a priori fixed bound p > 0 on the number of tampering queries,

and under computational assumptions. We leave it as an open problem to design continuously
non-malleable (i.e., for p = p(λ) being an arbitrary polynomial in the security parameter) secret
sharing schemes tolerating joint tampering under selective/adaptive partitioning.

Another interesting question would be to improve the rate, i.e., the ratio between message
size and maximal size of a share, for non-malleable secret sharing against joint tampering. Note
that, in the computational setting, it is always possible to boost the rate as follows: First, share
the secret key κ ∈ {0, 1}λ of an authenticated symmetric encryption using a secret sharing
scheme with poor rate, obtaining shares s1, . . . , sn; hence, encrypt the message m using κ,
obtaining a ciphertext c, and define the final i-th share to be s∗i = (c, si). Such a rate-optimizing
compiler was originally analyzed in the setting of (continuously) non-malleable codes [DPW10,
AAG+16, CFV19], and more recently in the setting of continuously non-malleable secret sharing
against independent tampering [FV19]. While this transformation may be proven secure even
in the setting of joint tampering with the shares, it yields a rate asymptotically approaching
one, which is still far from the optimal share size of O(µ/n) [Kra94] (where µ is the message
size).
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