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Abstract. Time-locked puzzles—problems whose solution requires some amount of (inherently)
sequential effort—have seen a recent increase in popularity (e.g., in the context of verifiable delay

functions). Most constructions rely on the conjecture that, given a random x, computing x2
T

mod N
requires at least T (sequential) steps. We study the security of time-locked primitives from two
perspectives:

1. We give the first hardness result about the sequential squaring conjecture. Namely, we show that
even in (a quantitative version of) the algebraic group model, any speed up of sequential squaring
is as hard as factoring N .

2. We then focus on timed commitments, one of the most important primitives that can be obtained
from time-locked puzzles. We extend existing security definitions to settings that may arise when
using timed commitments in higher-level protocols. We then give the first construction of non-
malleable timed commitments. As a building block of independent interest, we also define (and
give constructions for) a new primitive called time-released public-key encryption.

1 Introduction

Time-locked puzzles, introduced by Rivest, Shamir, and Wagner [26], refer to a fascinating type of
computational problem that requires a certain amount of sequential effort to solve. Using
time-locked puzzles, it is possible to “encrypt a message into the future” such that it remains
computationally hidden for some time T , but can be recovered once this time has passed. Various
primitives can be built from time-locked puzzles, including verifiable delay functions [4, 5, 25, 28],
zero-knowledge proofs [11], non-malleable commitments [16], and timed commitments [6]. These,
in turn, have applications such as fair coin tossing, e-voting, auctions, and contract signing [6, 20].
In spite of the increasing popularity of time-locked puzzles and timed commitments, their formal
analysis has received only limited attention so far (to the best of our knowledge)—with few
exceptions [6, 20]. In this work, we seek to improve confidence in both of these primitives, by
(1) providing the first formal evidence supporting the hardness of the most widely used
time-locked puzzle [26], and (2) giving new, stronger security definitions (and constructions) for
timed commitments and related primitives.

Hardness in the (strong) AGM. The hardness assumption underlying the most popular time-
locked puzzle [26] is that, given a random element x in the quadratic residue1 group QRN (where

N is the product of two large safe primes), it is hard to compute x2
T

mod N in fewer than T steps.
We study this assumption in a new, strengthened version of the algebraic group model (AGM) [12]
called the strong AGM (SAGM) that lies in between the generic group model (GGM) [21, 27] and
the AGM. Roughly, an algorithm A in the AGM is constrained as follows: for any group element x
that A outputs, A must also output algebraic coefficients showing how x was computed from A’s

1 The problem was originally stated over the ring ZN . Subsequent works have studied it over both QRN [25] and JN
(the subgroup of elements of Z∗N with Jacobi symbol +1) [20].



inputs. The SAGM imposes the stronger constraint that A output the entire path of computation
(i.e., all intermediate group operations) resulting in output x. We show that if QRN is modeled as

a strongly algebraic group, then computing x2
T

mod N using fewer than T squarings is as hard as
factoring N . Our technique deviates substantially from standard proofs in the AGM, which work
with groups of (known) prime order. Moreover, to the best of our knowledge, our result is the first
formal argument supporting the sequential hardness of squaring in QRN . Our result immediately
implies the security of Pietrzak’s VDF [25] in the SAGM (assuming the hardness of factoring). We
also give a negative result: we show that in the standard AGM, it is not possible to reduce hardness
of speeding up sequential squaring to factoring, if factoring is hard.

Non-malleable timed commitments. The second part of our paper is concerned with
strengthening the definition and security of non-interactive timed commitments (NITICs). A
timed commitment differs from a regular one in that it additionally has a “forced” decommit
routine that can be used to force open the commitment in case the committer refuses to open it.
Moreover, a commitment comes with a proof that it can be forced open if needed. In Section 7 we
introduce a strong notion of non-malleability for such schemes. To construct a non-malleable
NITIC, we formalize as a stepping stone a timed public-key analogue that we call time-released
public-key encryption (TRPKE). We show how to achieve an appropriate notion of CCA-security
for TRPKE in both the ROM and the AGM model. We then show a generic transformation from
CCA-secure TRPKE to non-malleable NITIC. Although our main purpose for introducing
TRPKE is to obtain a non-malleable NITIC, we believe that TRPKE is an independently
interesting primitive worthy of further study.

1.1 Related Work

We have already mentioned most of the related work about time-locked puzzles and similar
primitives. Bitansky et al. [3] show an alternative approach to building time-locked puzzles from
randomized encodings [2]. Mahmoody et al. [19] show constructions of time-locked puzzles in the
random-oracle model. In very recent work, Malavolta and Thyagarajan [20] study a homomorphic
variant of time-locked puzzles. Another line of work initiated by May [22] and later formalized by
Rivest et al. [26] studies a model for timed message transmission between a sender and a receiver
in the presence of a trusted server. Bellare and Goldwasser [1] studied a notion of “partial key
escrow” in which a server can store keys in escrow, but only can learn some of them without
expending significant computational effort. They also propose a time-locked puzzle from heuristic
assumptions. Later works in this direction [9, 10] refine both the approaches and the models
suggested in those works. Liu et al. [18] propose a time-released encryption scheme based on
witness encryption in a model with a global trusted clock.

1.2 Overview of the Paper

We introduce notation and basic definitions in Section 2. In Section 3 we introduce the SAGM and
state our hardness result about the sequential squaring assumption. We define TRPKE in Section 5
and give a construction in the AGM in Section 6. In Section 7, we first formalize NITIC and then
state our generic instantiation for a non-malleable NITIC from TRPKE. For space restrictions,
some of the technical parts of our paper are deferred to the appendix.
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2 Notation and Preliminaries

Notation. Throughout the rest of the paper, we use “:=” to denote a deterministic assignment,
and “←” to denote a randomized assignment. In particular, “x← S” denotes sampling a uniform
element x from a set S. We denote the length of a bitstring x by |x|, and the length of the binary
representation of an integer n by ||n||. For a randomized algorithm A, we let {A(x)} be the set of
all possible outputs of A on input x. We denote the security parameter by κ. We write GA for the
output of game G in which A is the adversary.

Running time. We consider running times of algorithms in some unspecified (but fixed)
computational model, e.g., the Turing machine model. This is done both for simplicity of
exposition and generality of our results. To simplify things further, we omit from our
running-time analyses additive terms resulting from bitstring operations or passing arguments
between algorithms, and we scale units so that multiplication in QRN takes unit time. All
algorithms are assumed to have arbitrary parallel computing resources.

The quadratic residue group QRN . Let GenMod be an algorithm that, on input 1κ, outputs
(N, p, q) where N = pq and p 6= q are two safe primes (i.e., p−1

2 and q−1
2 are also prime) with

||p|| = ||q|| = τ(κ), where τ(κ) is defined such that the fastest factoring algorithm takes time Θ(2κ)
to factor N with constant probability. GenMod may fail with negligible probability, but we ignore
this from now on. It is well known that QRN is cyclic with |QRN | =

φ(N)
4 = (p−1)(q−1)

4 .

Definition 1 (Factoring Problem). For our purposes, we define the factoring problem relative
to GenMod via the following game FACAGenMod:

– Setup: FACAGenMod samples parameters (N, p, q)← GenMod(1κ). It then runs A on input N .
– Output: A outputs positive integers p, q /∈ {1, N}. Then FACAGenMod outputs 1 if N = pq, and

0 otherwise.

We say that the factoring problem is (ε, t)-hard relative to GenMod if for all adversaries A running
in time t,

Pr
[
FACAGenMod = 1

]
≤ ε.

The repeated squaring algorithm. In this work, we extensively make use of the idea of repeated
squaring and multiplying; this offers a simple, efficient way to compute gx given g in dlog xe steps.2

As a particularly important example, to compute g2
T

in T steps, the algorithm computes, in
sequence, the values g2, g4, . . . , g2

T−1
, g2

T
(all modulo N , for N ← GenMod(1κ)), i.e., without any

“multiplying” steps at all. We denote by RepSqr the algorithm that computes and outputs gx on
input (g,N, x) in this manner.

Sampling a random element in QRN can be done by sampling x ← {0, . . . , |QRN | − 1} and
running RepSqr(g,N, x) (this assumes that |QRN | and hence factorization ofN are known). If |QRN |
is unknown, we can sample x ← ZN2 instead, which results in a negligible statistical difference in
the output of RepSqr(g,N, x), which runs in at most

dlog xe ≤ dlogN2e ≤ 4τ(κ)

2 For positive i, a parallel algorithm can compute g2
i−1+1, . . . , g2

i

simultaneously in step i, hence computing gx (for
any positive x) within dlog xe steps.
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steps. We omit this error for simplicity from here on, and denote by θ(κ) = 4τ(κ) the upper bound
of the running time of RepSqr(g,N, x) when x ∈ ZN2 . Additional primitives we use in this paper
are defined in Appendix A.

2.1 The RSW Problem (with Preprocessing)

Definition 2 (RSW Problem). The T -RSW problem (with prepocessing) relative to GenMod
is defined via the following game T-RSWGenMod:

– Setup: T-RSWGenMod samples parameters (N, p, q)← GenMod(1κ).
– Preprocessing Phase: T-RSWGenMod runs A on input N .
– Online Phase: When A outputs “online”, T-RSWGenMod samples g ← QRN and returns g.
– Output Determination: When A outputs X ∈ QRN , T-RSWGenMod outputs 1 if X = g2

T
,

and 0 otherwise.

The T -RSW problem is (ε, tp, to)-hard relative to GenMod if for all adversaries A running in time
tp in the preprocessing phase and to in the online phase,

Pr
[
T-RSWA

GenMod = 1
]
≤ ε.

Clearly, an adversary can run RepSqr(g,N, 2T ) to win the T-RSWGenMod game with
probability 1. This means there is a threshold t∗ (which is roughly the time for T group
operations) such that the T -RSW problem is easy when to ≥ t∗ (i.e., there is an adversary
(ε, tp, to)-breaking the T -RSW problem for any ε < 1). In Section 3.1 we show that in the strong
algebraic group model, the T -RSW problem is (ε, tp, to)-hard (for negligible ε) when to < t∗ and
tp = o(2κ) is less than the time required to factor N . To put it another way, the fastest way to

compute g2
T

(short of factoring N) is to run RepSqr(g,N, 2T ).
It is easy to see that hardness of RSW implies hardness of factoring. Concretely, if there is an

adversary A (ε, t)-breaking the factoring problem, then a T -RSW (for T � κ and T � t) adversary
can run (p, q)← A(N), compute φ := φ(N) = (p− 1)(q− 1) and z := [2T mod φ

4 ], and output gz,
winning T-RSWGenMod with probability ε in time t+ θ(κ)� T .

3 Algebraic Hardness of the RSW Problem

In this section we explain how, in the AGM, the RSW assumption can be related to the factoring
assumption. To this end, we first briefly recall the AGM, and then introduce a refinement of the
AGM, called the strong algebraic group model (SAGM), which lies in between the GGM and the
AGM. In the subsequent section, we show that one cannot reduce the hardness of RSW from the
hardness of factoring in the plain AGM with respect to algebraic reductions.

3.1 The Strong Algebraic Group Model

The algebraic group model (AGM), introduced by Fuchsbauer, Kiltz, and Loss [12], lies between
the generic group model (GGM) and the standard model. As in the standard model, the adversary
is given actual group elements, rather than their encodings as in the GGM. Hence, the AGM covers
adversaries that exploit the representations of group elements (via, e.g., computing the Jacobi
symbol), a much wider category than those covered by the GGM. We first recall the notion of an
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algebraic algorithm [7,24]. In the following, assume that G is the description of a cyclic group that
has been output previously by a suitable group generation procedure. For our purposes, G will
always be QRN , where N is generated via N ← GenMod(1κ).

Definition 3 (Algebraic Algorithm). An algorithm A over G is called algebraic if, whenever
A outputs X ∈ G,3 it also outputs a vector λ s.t. X =

∏
i L

λi
i , where L denotes the list of group

elements that A has received as inputs up to that point.

In the AGM, all algorithms are treated as algebraic. In the original formulation of the AGM,
the authors considered prime-order groups, whereas we consider the composite order (albeit cyclic)
group QRN . Another distinction from their original work is that we consider a setting in which the
group may vary, whereas they consider a setting with a fixed group. The AGM does not support the
concept of “number of steps (i.e., group operations)” or “time” of computing a group element. As
we will see, if we only consider whether an adversary is polynomial-time or not, this does not cause
a problem, as all group elements output by an algebraic adversary can be computed in polynomial
steps. However, for time-sensitive assumptions such as hardness of the RSW problem (recall that
RSW becomes easy for an adversary making T group operations online), it is not sufficient for use:

given challenge g, an algebraic adversary can simply output g2
T

together with λ = (2T ), and there
is no way to analyze its running time in the AGM (other than counting the number of output group
elements, which is 1 in this case). (This point is made more formal in Appendix 4.) We develop
a stronger model which we call the strong AGM (SAGM), which captures the running time of an
algebraic algorithm via counting its group operations.

The Strong AGM. Recall that in the AGM, whenever an algorithm outputs a group element
X, it is required to also provide an algebraic representation of X, using all group elements it has
received so far. In the SAGM we require an algorithm to provide a multiplicative representation of
the output group element, using all group elements it has received so far and its previous outputs.

Definition 4 (Strong AGM). Algorithm A over G is called strongly algebraic if in each step A
outputs one or more tuples (X,X1,X2) ∈ G3, where X = X1X2 and X1,X2 were either previously
received by A or output by A in previous steps. In the strong AGM, all algorithms are treated as
strongly algebraic.

We allow an algorithm in the SAGM to output multiple new group elements in a step, as long
as all of them can be written in terms of previously received or output group elements. This
captures what a parallel algorithm can do.4 Summarizing, there are two fundamental differences
between the AGM and the SAGM: first, an algorithm in the SAGM has to output all its
intermediate steps for computing a group element; second, the AGM allows multiple sequential
multiplications/exponentiations to be done in one step, whereas the SAGM only allows a single
multiplication to be done (although many such multiplications can be done in parallel). As an
example of a strongly algebraic algorithm, given n group elements X1, . . . ,Xn, the following
algorithm M̃ult outputs X1 · · ·Xn in dlog ne steps: If n = 1 then M̃ult(X1) outputs X1, otherwise

M̃ult(X1, . . . ,Xn) runs Y := M̃ult(X1, . . . ,Xdn/2e) and Z := M̃ult(Xdn/2e+1, . . . ,Xn) in parallel,
and outputs (YZ,Y,Z). (Tilde denotes that the algorithm is strongly algebraic.) As another
example, in repeated squaring every step computes a new group element as the product of two

3 Following [12], we write elements of G (except for the fixed generator g) in bold, upper-case letters.
4 If we instead required the algorithm to output a single element in each step, this would rule out parallelism.
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known group elements, so it can be naturally turned into an algorithm in the SAGM. We use

R̃epSqr to denote such “strongly algebraic version” of repeated squaring. As mentioned in

Section 2, R̃epSqr(g, x) computes gx in dlog xe steps.

Comparison with the GGM and AGM. In the same way that the AGM lies between the GGM
and the standard model, the SAGM lies in between the GGM and the AGM. It is easy to construct
a strongly algebraic algorithm that operates in a group specific way (say, by computing a Jacobi
symbol over the quadratic residue group) and hence is not generic. The following theorem shows that
any algebraic algorithm (whose running time is measured via number of output group elements) can
be turned into a strongly algebraic algorithm with a polylogarithmic time loss (assuming that the
output length is polynomial). Therefore, if we only consider the asymptotic behavior of polynomial-
time algorithms, then the SAGM and the AGM are equivalent.

Theorem 1. Suppose A is an algebraic algorithm over G, which outputs X ∈ G together with its
algebraic representation (λ1, . . . , λn). (That is, X = Xλ1

1 · · ·Xλn
n where X1, . . . ,Xn ∈ G are A’s

inputs.) Then there exists a strongly algebraic algorithm BA in G (whose inputs are the same as
A’s) which also outputs X in max{dlog λ1e, . . . , dlog λne}+ dlog ne steps.

Proof. Consider the following strongly algebraic algorithm B(X1, . . . ,Xn):

1. Run A(X1, . . . ,Xn) and receive A’s output X together with (λ1, . . . , λn).

2. Run Xλ1
1 := R̃epSqr(X1, λ1), . . . ,X

λn
n := R̃epSqr(Xn, λn) in parallel.

3. Run M̃ult(Xλ1
1 , . . . ,X

λn
n ).

Clearly, B’s last output contains Xλ1
1 · · ·Xλn

n = X. Running R̃epSqr(X1, λ1), . . . , R̃epSqr(Xn, λn)

in parallel costs B max{dlog λ1e, . . . , dlog λne} steps; running M̃ult(Xλ1
1 , . . . ,X

λn
n ) costs B dlog ne

steps. So B runs in max{dlog λ1e, . . . , dlog λne}+ dlog ne steps in total.

Running time in the SAGM. Recall that hardness of the T -RSW problem is parameterized by
the advantage ε and the running time t. In the SAGM running time is counted in two ways: the
number of “steps” (i.e., group operations), and the “normal” running time as measured in some
underlying computational model (e.g., the Turing machine model). The exact relation between
them is determined by the computational model. We define the running time as a pair, so “running
time is (t1, t2)” is interpreted as carrying out t1 group operations and running in time t2.

3.2 Hardness of the RSW Problem in the Strong AGM

We prove hardness of the RSW problem in the SAGM. Theorem 2 states that solving the T -RSW
problem in fewer than T steps is as hard as factoring.

Factoring with a known multiple of φ(N). We will use the following well-known result which
states that N can be efficiently factored given a positive multiple of φ(N). The lemma follows from
a straightforward adaption of the proof for Theorem 8.50 in [14]. We will use the following folklore
factoring procedure that can be applied whenever N = p · q and a multiple m > 0 of φ(N) are
known.

Lemma 1. Suppose N ← GenMod(1κ) and m = α · φ(N) (where α ∈ Z+). Then there exists an
algorithm Factor(N,m) which runs in time at most 4dlogα·τ(κ)+τ(κ)2e and outputs p′, q′ 6∈ {1, N}
s.t. N = p′q′ with probability at least 1

2 .
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Theorem 2. Assume that factoring is (ε, tp + to + θ(κ) + 4dlogα · τ(κ) + τ(κ)2e)-hard relative to
GenMod. Let T be any positive integer. Then the T -RSW problem is (2ε, (0, tp), (T − 1, to))-hard
relative to GenMod in the SAGM. 5

Proof. Let A be a strongly algebraic algorithm that runs in time (0, tp) in the preprocessing phase
and (T − 1, to) in the online phase. That is, in the preprocessing phase, A runs in time tp but
does not output any group element (note that in the preprocessing phase A is not given any group
element, so by definition of the SAGM, A cannot output any group element); in the online phase
A runs in time to and can do at most T − 1 group operations. For A’s challenge g (given at the
beginning of the online phase of T-RSWGenMod), and any X ∈ QRN output by A during the online
phase of T-RSWGenMod, we recursively define the discrete logarithm of X (with respect to A and
g), DLA(g,X) ∈ Z+, as follows:

– DLA(g, g) = 1;
– If A outputs (X,X1,X2) in a certain step, then DLA(g,X) = DLA(g,X1) + DLA(g,X2).

Obviously, gDLA(g,X) = X for any X ∈ QRN output by A.

Lemma 2. Let s be a positive integer. For any strongly algebraic algorithm A running in at most
s steps, all of A’s outputs have discrete logarithm at most 2s.

Proof. The proof is by induction on s. If s = 1, then the only group elements A can output are g
and g2, so the lemma holds. Now suppose that the lemma holds for s−1. This means that all of A’s
outputs in steps 1, . . . , s− 1 have discrete logarithm at most 2s−1. Suppose A outputs (X,X1,X2)
in step s. Then X1 and X2 must be g or one of A’s outputs in steps 1, . . . , s − 1. We have that
DLA(g,X) = DLA(g,X1) + DLA(g,X2) ≤ 2s−1 + 2s−1 = 2s, so the lemma holds for s as well.

Going back to the theorem, we construct a reduction R which factors N as follows. R, on input
N , runs A(N). When A outputs “online”, R samples g ← QRN and sends g to A. If A outputs X

together with a flag (indicating that X is supposed to be g2
T

), R (recursively) computes DLA(g,X),
and outputs Factor(N, 4(2T − DLA(g,X))).

By Lemma 2, DLA(g,X) < 2T , so 4(2T − DLA(g,X)) > 0. Furthermore, if A wins, i.e., X = g2
T

,

we have g2
T−DLA(g,X) = 1, so |QRN | =

φ(N)
4 |

(
2T − DLA(g,X)

)
(here we need the fact that QRN

is cyclic), so 4(2T − DLA(g,X)) is a multiple of φ(N). By Lemma 1, R runs in time at most
tp + to + θ(κ) + 4dlogα · τ(κ) + τ(κ)2e, and successfully factors N with probability at least 1

2 . We
conclude that Pr

[
T-RSWA

GenMod = 1
]
≤ 2ε, which completes the proof.

4 The RSW Problem in the AGM

We show that the AGM is insufficient to reduce the factoring assumption to the T -RSW assumption
(assuming factoring is hard to begin with). This, combined with Theorem 2, forms a separation
result between the AGM and the SAGM. On the other hand, as we have seen in Theorem 1, the
AGM and the SAGM are equivalent if we only care about the asymptotic behavior of the adversary.
Specifically, we give a metareduction M that converts any efficient algebraic reduction R into an

5 To be precise, since the strongly algebraic A needs to output a number of group elements, we require A to output

a flag together with its final output, which is supposed to be g2
T

. That is, when A outputs X ∈ QRN together

with a flag, A wins the T -RSW game T-RSWGenMod if X = g2
T

.
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efficient algorithm for factoring. Below, we use RA to denote that R can run A as many times in
the AGM on any choice of R’s random coins. It must provide all of A’s random coins (as well as
A’s input) upon invoking A. In particular, R may not rewind (or restart) A to intermediary points
of its execution or write to A’s input tape while it is running A.

Theorem 3. Let R be a (reduction) algorithm s.t. for any algorithm A that runs in time tp in
the preprocessing phase and to in the online phase of game T-RSWGenMod, and for which
Pr
[
T-RSWA

GenMod = 1
]
≤ ε, the algorithm B := RA runs in time at most t′ and satisfies

Pr
[
FACBGenMod = 1

]
> ε′. Then there exists an algorithm M that runs in time at most

(Q+ 1) · T + t′ and satisfies Pr
[
FACMGenMod = 1

]
> ε′, where R runs A Q times.

Proof. Let R be as described in the theorem statement. Consider the following (metareduction)
algorithm M that plays in game FACGenMod:

– M, on input N , chooses some (fixed) random coins ρ for R.

– For i = 1, . . . , Q,

• M runs R(N ; ρ).

• For j = 1, . . . , i − 1, M simulates the behavior of A in R’s j-th run as follows: when R
outputs Nj , M replies with “online” immediately; when R outputs gj , M replies with Xj

immediately. (If i = 1 then skip this step.)

• In R’s i-th run of A, M computes Xi := RepSqr(gi, Ni, 2
T ) and restarts R(N ; ρ).

– When R outputs factors p, q of N , M forwards them as the result to its own challenger in
FACGenMod.

Note that the simulated adversary ignores the random coins that R might provide to it, as its
behavior is deterministic. The simulated adversary always wins the game FACGenMod, since in its
j-th run, its challenge is (Nj , gj) and it outputs Xj = RepSqr(gj , Nj , 2

T ). By assumption, B = RA
runs in time at most t′ and satisfies Pr

[
FACBGenMod = 1

]
> ε′, given that A runs in time at most

t and satisfies Pr
[
T-RSWA

GenMod = 1
]
> ε (which is the case above since the A simulated by M

runs in time 0 and wins with probability 1).M restarts R Q times (i.e., runs R Q+1 times). Thus,
M runs in time at most (Q+ 1) · T + t′ and Pr

[
FACMGenMod = 1

]
> ε′.

5 Definitions for Time-Released Public-Key Encryption

In this section, we define the syntax and security of a time-released public-key encryption
(TRPKE) scheme, which will serve as a central ingredient to our construction of a non-malleable
timed commitment scheme in the subsequent sections. TRPKE can be thought of the
time-released analogue to the standard notion of public-key encryption. The main difference is
that a ciphertext can now forced open within some (predefined) time by anybody. However, the
owner of the secret key should still be able to decrypt much faster.

Definition 5 (Time-Released Public-Key Encryption Scheme). A (te , tfd , tsd )-time-released
public-key encryption (TRPKE) scheme is a tuple of algorithms TRPKE = (PGen,KGen,Enc,Decf ,
Decs) with the following behavior:

– The randomized parameter generation algorithm PGen takes as input the security parameter 1κ

and outputs public parameters par.
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– The randomized key generation algorithm KGen takes as input public parameters par and
outputs a pair of keys (sk , pk). We assume, for simplicity, that for pk , sk generated as
(sk , pk)← KGen(par), the public key pk contains par and the secret key sk contains the public
key pk.

– The randomized encryption algorithm Enc takes as input a public key pk and a message m ∈
{0, 1}∗. It outputs a ciphertext c ∈ {0, 1}∗ and runs in time at most te for all m.

– The deterministic fast decryption algorithm Decf takes as input a secret key sk and a ciphertext
c ∈ {0, 1}∗. It outputs a message m ∈ {0, 1}∗ or ⊥ and runs in time at most tfd for all c.

– The deterministic slow decryption algorithm Decs takes as input a public key pk and a ciphertext
c ∈ {0, 1}∗. It outputs a message m ∈ {0, 1}∗ or ⊥ and runs in time at least tsd for all c.

As we will see, we are usually interested in schemes for which tfd < tsd , i.e., the running time of
fast decryption is always faster than the running time of slow decryption. Correctness requires that
decrypting a ciphertext (no matter in the “fast” or “slow” way) always yields the original message
that was encrypted.

Definition 6 (Perfect Correctness of TRPKE). A TRPKE scheme
TRPKE = (PGen,KGen,Enc,Decf ,Decs) satisfies perfect correctness if for all m ∈ {0, 1}∗, all
par ∈ {PGen(1κ)}, all (sk , pk) ∈ {KGen(par)}, and all c ∈ {Enc(pk ,m)}, it holds that
m = Decf (sk , c) = Decs(pk , c).

We next introduce a strong security notion for TRPKE that resembles the standard security
under Chosen Ciphertext Attacks (CCA) notion for public-key and secret-key encryption. (Defining
an analogous CPA security notion would be straightforward, but we do not consider this definition in
our work.) As in standard public-key encryption, the adversaryA in security game IND-CCATRPKE

is asked to provide messages m0,m1 and gets a challenge ciphertext computed via Enc on either
one of them, with probability 1

2 . A gets access to a decryption oracle DEC that allows the adversary
to decrypt arbitrary ciphertexts of its choice (except for the challenge ciphertext). To make DEC
“useful” to A, we require that it decrypts using the fast decryption algorithm Decf — if it used,
instead, Decs, the adversary could simply decrypt itself.

IND-CCAATRPKE:

– Setup: IND-CCATRPKE samples parameters par via par ← PGen(1κ) and a bit b← {0, 1}. It
then samples a pair of keys (sk , pk) as (sk , pk)← KGen(par).

– Preprocessing Phase: IND-CCATRPKE runs A on input pk . In this phase, A is given access
to a decryption oracle DEC, which on input c, returns a plaintext m := Decf (sk , c) in time tfd .

– Challenge Query: When A outputs (m0,m1), IND-CCATRPKE returns the challenge
ciphertext cb ← Enc(pk ,mb).

– Online Phase: After receiving cb, A continues to have access to DEC, except that A may not
query DEC on cb.

– Output Determination: When A outputs a bit b′, IND-CCATRPKE outputs 1 if b′ = b, and
0 otherwise.

We define the CCA-security of a TRPKE scheme in the following way. To capture the fact
that the challenge ciphertext will be trivially decryptable after time tsd , we only consider those
adversaries whose running time is less than tsd in the online phase.

9



Definition 7 (CCA Security for TRPKE). A TRPKE scheme TRPKE is (ε, tp, to)-CCA-secure
(where to < tsd) if for all adversaries A running in time tp in the preprocessing phase and to in the
online phase of IND-CCATRPKE,

Pr
[
IND-CCAATRPKE = 1

]
≤

1

2
+ ε.

6 TRPKE Constructions in the AGM

In this section, we present constructions for TRPKE schemes in the algebraic group model. We
begin by introducing the following problem:

Definition 8 (Decisional T -RSW Problem). The decisional T -RSW problem (with
prepocessing) relative to GenMod is defined via the following game T-DRSWGenMod:

– Setup: T-DRSWGenMod samples parameters (N, p, q)← GenMod(1κ) and a bit b← {0, 1}.
– Preprocessing Phase: T-DRSWGenMod runs A on input N .
– Online Phase: When A outputs “online”, T-DRSWGenMod samples g,X ← QRN . If b = 0,

it returns (g,X), otherwise (g, g2
T

).
– Output Determination: When A outputs b′, T-DRSWGenMod outputs 1 if b′ = b, and 0

otherwise.

We say that the decisional T -RSW problem is (ε, tp, to)-hard relative to GenMod if for any adversary
A running in time tp in the preprocessing phase and to in the online phase,

Pr
[
T-DRSWA

GenMod = 1
]
≤

1

2
+ ε.

Our problem is related to the Generalized BBS (GBBS) assumption that was introduced by Boneh
and Naor [6]. However, there are some key differences between the decisional T -RSW problem and
the GBBS assumption: first, the adversary in the GBBS assumption gets to see the group elements

g, g2, g4, g16, g256, ..., g2
2k

and is asked to distinguish g2
2k+1

from a random quadratic residue X.
Second, the adversary in the GBBS assumption does not get any preprocessing time. If we set
T = 2k+1 and allow for equal preprocessing time in both problem, then the hardness of the decisional
T -RSW problem is implied by the GBBS assumption. On the other hand, it is unclear how to
compare the two if preprocessing is allowed in the decisional T -RSW problem, but not in the
GBBS assumption. It is also very similar to the strong sequential squaring assumption defined
in [20]; however, in their version of the assumption the adversary is given a generator of the group
in the preprocessing phase.

6.1 CCA-Secure TRPKE in the AGM

We present our construction of a CCA-secure TRPKE scheme in Fig. 1. Our construction follows
the Naor-Yung paradigm [23].

Theorem 4. Suppose that

– NIZK is (εZK , tp + to +T + θ(κ))-zero-knowledge and (εSS , tp + to +T + θ(κ))-simulation sound,
and
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For any N = pq where p 6= q are two safe primes for ||p|| = ||q||, let NIZKN = (GenZKN ,ProveN ,VrfyN , SimGenN ,
SimProveN ) be a (tprove, tvrfy, tsgen, tsprove)-NIZK for relation

RN = {((R1,R2,X1,X2),W)|X1 = R2T

1 ·W ∧X2 = R2T

2 ·W}

(where all operations are over ZN ). Henceforth we drop the subscript N and write NIZK for NIZKN , and so on.

– Gen(1κ): Run (N, p, q)← GenMod(1κ), compute φ := φ(N) = (p− 1)(q − 1), and output par := (N,φ).
– KGen(N,φ): Choose g ← QRN , run crs← GenZK(1κ) and output (sk := (crs,N, φ, g), pk := (crs,N, g)).
– Enc((crs,N, g),M): Choose r1, r2 ← ZN2 and compute, for i = 1, 2,

Ri := RepSqr(g,N, ri),Zi := RepSqr(Ri, N, 2
T ),Ci := Zi ·M,

and π ← Prove(crs, (R1,R2,C1,C2),M). Output (R1,R2,C1,C2, π).

– Decf ((crs,N, φ, g), (R1,R2,C1,C2, π)): Compute z := [2T mod
φ

4
], Z1 := RepSqr(R1, N, z) and M :=

C1

Z1
.

If Vrfy(crs, (R1,R2,C1,C2), π) = 1 then output M, otherwise output ⊥.

– Decs((crs,N, g), (R1,R2,C1,C2, π)): Compute Z1 := RepSqr(R1, N, 2
T ) and M :=

C1

Z1
. If

Vrfy(crs, (R1,R2,C1,C2), π) = 1 then output M, otherwise output ⊥.

Fig. 1. A CCA-secure (tprove + 2θ(κ), 2θ(κ), T + tvrfy + θ(κ), T + tvrfy)-TRPKE scheme

– The decisional T -RSW problem is (εDRSW , tp + T + tsgen + θ(κ), to + tsprove)-hard relative to
GenMod.

Then the TRPKE scheme in Fig. 1 is (εZK + εSS + 2εDRSW , tp, to)-CCA-secure in the AGM.

The proof of this theorem is very similar to that of CCA security of the Naor-Yung scheme.
(Recall that the Naor-Yung scheme is CCA2-secure when using a simulation sound NIZK.) The
main difference is that there must be a way to simulate the decryption oracle in a fast manner, which
can be achieved in the AGM via preprocessing. Concretely, the simulator can compute H := g2

T

in the preprocessing phase, and when the adversary queries the decryption oracle on (R1, . . .), the

simulator can compute Z1 = R2T
1 as Hr1 , where logg R1 can be computed using the algebraic

representation that the adversary outputs. (All other steps in the decryption algorithm can be
computed fast.)

Proof. Let A be an algebraic adversary in Game IND-CCATRPKE, with preprocessing time tp
and online time to. Suppose A’s challenge ciphertext is (R∗1,R

∗
2,C

∗
1,C

∗
2, π
∗). The proof goes by a

sequence of games, which we describe next.

G0: G0 is the original CCA Security Game, IND-CCATRPKE. We assume that the game challenger
computes the discrete logarithm between g and all group elements which appear in the game; in
particular, since A is algebraic, and all group elements A receives are g and DEC oracle outputs, the
game challenger can eventually compute the discrete logarithm between g and all group elements
A outputs according to the algebraic coefficients A outputs.

G1: G1 is identical to G0, except that H := RepSqr(g,N, 2T ) is computed at the beginning of the

game (so H = g2
T

), and when A queries DEC(R1,R2,C1,C2, π), let r1 := logg R1 and Z1 :=

11



RepSqr(H, N, r1) (instead of Z1 := RepSqr(R1, N, 2
T )). Since

Z1 = R2T

1 = g2
T ·r1 = Hr1 ,

this is merely a conceptual change, so

Pr[GA1 = 1] = Pr[GA0 = 1].

Note that G1 spends time T computing H, and after that, a decryption oracle DEC query is
answered in time roughly θ(κ). The purpose of G1 is to move the slow computation while answering
DEC queries to preprocessing, so that DEC queries can be answered in a fast way.

G2: G2 is identical to G1, except that crs and π∗ are simulated. That is, in Gen run (crs, td) ←
SimGen(1κ), and in the challenge ciphertext compute π∗ ← SimProve((R∗1,R

∗
2,C

∗
1,C

∗
2), td).

We upper bound |Pr[GA2 = 1] − Pr[GA1 = 1]| by constructing a reduction RZK to the zero-
knowledge property of NIZK. RZK runs the code of G2, except that it publishes the CRS from the
zero-knowledge challenger, and uses the zero-knowledge proof from the zero-knowledge challenger
as part of the challenge ciphertext. Concretely, RZK works as follows:

– Setup: RZK , on input crs∗, chooses g ← QRN and computes H := RepSqr(g,N, 2T ); chooses
r∗1, r

∗
2 ← {0, . . . , |QRN | − 1} and computes

R∗1 := RepSqr(g,N, r∗1),R∗2 := RepSqr(g,N, r∗2),

Z∗1 := RepSqr(H, N, r∗1),Z∗2 := RepSqr(H, N, r∗2),

(note that R∗1, R∗2, Z∗1, Z∗2 can be computed in parallel). Then RZK runs A(N, g, crs∗).
RZK answers A’s DEC queries as described in G1. That is, on A’s query
DEC(R1,R2,C1,C2, π), RZK computes r1 = logg R1 according to the algebraic coefficients A

outputs, Z1 := RepSqr(H, N, r1), and M :=
C1

Z1
; if Vrfy(R1,R2,C1,C2, π) = 1 then RZK

returns M, otherwise RZK returns ⊥.
– Online phase: When A makes its challenge query on (M0,M1), RZK chooses b← {0, 1} and

C∗1 := Z∗1 ·Mb,C
∗
2 := Z∗2 ·Mb,

π∗ ← PROVE((R∗1,R
∗
2,C

∗
1,C

∗
2),Mb),

and outputs (R∗1,R
∗
2,C

∗
1,C

∗
2, π
∗). After that, R answers A’s DEC queries just as in setup.

– Output: On A’s output bit b′, RZK outputs 1 if b′ = b, and 0 otherwise.

Clearly, RZK runs in time tp + to + T + θ(κ) (i.e., tp + T + θ(κ) in the setup phase and to in
the online phase), and

|Pr[GA2 = 1]− Pr[GA1 = 1]| ≤ εZK .

G3: G3 is identical to G2, except that C∗2 is computed as Z∗2 (instead of Z∗2 ·Mb).
We upper bound |Pr[GA3 = 1]−Pr[GA2 = 1]| by constructing a reductionRDRSW to the decisional

T -RSW problem. The reduction works because R2 is not used in DEC, so RDRSW runs the code
of G3, except that it uses the group element from the decisional T -RSW challenger as part of the
challenge ciphertext. Concretely, RDRSW works as follows:

12



– Preprocessing phase: RDRSW , on input N , chooses g ← QRN and computes
H := RepSqr(g,N, 2T ); chooses r∗1 ← ZN2 and computes R∗1 := gr

∗
1 and H∗1 := Hr∗1 (note that

R∗1 and H∗1 can be computed in parallel); runs (crs, td) ← SimGen(1κ). Then RDRSW runs
A(N, g, crs). RDRSW answers A’s DEC queries as described in G1.

– Online phase: When A makes its challenge query on (M0,M1), RDRSW asks for (g∗,X∗) from
the decisional RSW challenger, chooses b ← {0, 1}, computes C∗1 := H∗1 · Mb and
π∗ ← SimProve((R∗1, g

∗,C∗1,X
∗), td), and returns (R∗1, g

∗,C∗1,X
∗, π∗). R answers A’s DEC

queries just as in preprocessing.

– Output: On A’s output bit b′, RDRSW outputs 1 if b′ = b, and 0 otherwise.

Clearly, RDRSW runs in time tp +T + tsgen + θ(κ) in the preprocessing phase, and time to + tsprove
in the online phase, and

|Pr[GA3 = 1]− Pr[GA2 = 1]| ≤ εDRSW .

G4: G4 is identical to G3, except that the DEC oracle uses R2 (instead of R1) to decrypt. That is,
when A queries DEC(R1,R2,C1,C2, π), let r2 := logg R2, and compute Z2 := RepSqr(H, N, r2)

and M :=
C2

Z2
.

G4 and G3 are identical unless A makes a query DEC(R1,R2,C1,C2, π) s.t.
C1

R2T
1

6=
C2

R2T
2

but

Vrfy(R1,R2,C1,C2, π) = 1 (in which case A receives
C1

R2T
1

in G3 and
C2

R2T
2

in G4; in all other cases A

receives either ⊥ in both games, or
C1

R2T
1

=
C2

R2T
2

in both games). Denote this event Fake. We upper

bound Pr[Fake] by constructing a reduction RSS to the simulation soundness property of NIZK:

– Setup: RSS , on input crs, chooses g ← QRN and computes H := RepSqr(g,N, 2T ); chooses
r∗1, r

∗
2 ← ZN2 and computes

R∗1 := RepSqr(g,N, r∗1),R∗2 := RepSqr(g,N, r∗2),

Z∗1 := RepSqr(H, N, r1),Z
∗
2 := RepSqr(H, N, r2)

(note that R∗1, R∗2, Z∗1, Z∗2 can be computed in parallel). Then RSS runs A(N, g, crs).
On A’s query DEC(R1,R2,C1,C2, π), RSS computes r1 = logg R1 and r2 = logg R2 according
to the algebraic coefficients A outputs, Z1 := RepSqr(H, N, r1), and Z2 := RepSqr(H, N, r2). If

Vrfy(R1,R2,C1,C2, π) = 0, then RSS returns ⊥; otherwise RSS checks if
C1

Z1
=

C2

Z2
, and if so,

it returns
C1

Z1
, otherwise it outputs ((R1,R2,C1,C2), π) to its challenger (and halts).

– Online phase: When A makes its challenge query on (M0,M1), RSS chooses b ← {0, 1} and
computes

C∗1 := Z∗1 ·Mb,C
∗
2 := Z∗2,

π∗ ← SPROVE(R∗1,R
∗
2,C

∗
1,C

∗
2),

and outputs (R∗1,R
∗
2,C

∗
1,C

∗
2, π
∗). After that, RSS answers A’s DEC queries just as in setup.
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Clearly, RSS runs in time at most tp + to + T + θ(κ) (i.e., tp + T + θ(κ) in the setup phase
and to in the online phase). Up to the point that RSS outputs, RSS simulates G3 perfectly. If Fake

happens, then RSS outputs ((R1,R2,C1,C2), π) s.t.
C1

R2T
1

6=
C2

R2T
2

but Vrfy(R1,R2,C1,C2, π) = 1,

winning the simulation-soundness game. It follows that

|Pr[GA4 = 1]− Pr[GA3 = 1]| ≤ Pr[Fake] ≤ Pr[RSS wins] ≤ εSS .

G5: G5 is identical to G4, except that C∗1 is computed as Z∗1 (instead of Z∗1 ·Mb).
This game hop is symmetric to the one from G2 to G3; the reduction works because R1 is not

used in DEC. We have that

|Pr[GA5 = 1]− Pr[GA4 = 1]| ≤ εDRSW .

Furthermore, since b is independent of A’s view in G5, we have that

Pr[GA5 = 1] =
1

2
.

Summing up all results above, we conclude that

Pr
[
IND-CCAATRPKE = 1

]
≤ 1

2
+ εZK + εSS + 2εDRSW ,

which completes the proof.

7 Non-Malleable Timed-Commitments

In this section, we show how our notion of CCA-secure TRPKE (for a wide range of schemes)
implies a very strong form of non-malleability for timed commitments as introduced by Boneh and
Naor [6]. Timed commitments allow to commit to message m via a commitment C in such a way
that C hides m up to some time T , yet the verifier can be sure that if the opening to C is not
provided at that time, C can be forced open (with some computational effort). Timed commitments
have several interesting applications in interactive protocols where the adversary could usually bias
the outcome of the protocol by observing the opening to honest parties’ commitments and then
choosing whether or not to provide the openings to its own commitments. Boneh and Naor gave
a (somewhat) informal description of the syntax of interactive timed-commitments and provided
some specific constructions for them. In the following section, we follow their work and begin by
introducing the syntax of a non-interactive timed commitment scheme. We then give appropriate
security definitions for hiding and binding properties in the timed setting.

Definition 9 (Non-Interactive Timed-Commitment Scheme [6]). A (tcm, tcv, tdv, tfo)-non-
interactive timed-commitment scheme (NITIC) is a tuple of algorithms TC = (PGen,Com,ComVrfy,
DecomVrfy,FDecom) with the following behavior:

– The randomized parameter generation algorithm PGen takes as input the security parameter 1κ

and outputs a common reference string crs.
– The randomized commit algorithm Com takes as input a string crs and a message m. It outputs

a commitment C, and proofs πCom, πDecom in time at most tcm.
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– The deterministic commitment verification algorithm ComVrfy takes as input a string crs, a
commitment C, and a proof πCom. It outputs 1 (accept) or 0 (reject) in time at most tcv.

– The deterministic decommitment verification algorithm DecomVrfy takes as input a string crs,
a commitment C, a message m, and a proof πDecom. It outputs 1 (accept) or 0 (reject) in time
at most tdv.

– The deterministic forced decommit algorithm FDecom takes as input a string crs and a
commitment C. It outputs a message m or ⊥ in time at least tfo.

We briefly give an intuition of how a NITIC works. To commit to message m, the committer
runs Com to get C, πCom and πDecom, and sends C and πCom to the verifier. The verifier can
(efficiently) run ComVrfy to check that C can be forcefully decommitted (if need be). To decommit,
the committer sends m and πDecom to the verifier. The verifier can (efficiently) run DecomVrfy to
verify the opening m. If the committer refuses to reveal m, C can instead be opened (inefficiently)
by running FDecom. We are mostly interested (similar to the TRPKE setting) in schemes s.t.
tcv < tfo and tdv < tfo, i.e., commitment verification and decommitment verification can always be
done faster than forced decommit. Correctness of a NITIC informally captures that honestly formed
commitments should verify correctly and that the forced decommit algorithm should produce the
same value m that was used to compute the commitment.

Definition 10. A NITIC scheme TC := (PGen,Com,ComVrfy,DecomVrfy,FDecom) is perfectly
correct if for all m ∈ {0, 1}∗, all crs ∈ {PGen(1κ)}, and all (C, πCom, πDecom) ∈ {Com(crs,m)}, it
holds that ComVrfy(crs, C, πCom) = DecomVrfy(crs, C,m, πDecom) = 1 and FDecom(crs, C) = m.

We next introduce the security game IND-CCATC associated with the hiding property of a
NITIC scheme. To capture the non-malleability property, we give the adversary access to an oracle
that provides the (forced) openings to commitments of the adversary’s choice. Our notion is directly
inspired by the CCA-security notion for commitments given by Canetti et al. [8]. In the timed
setting, the motivation behind providing the adversary with such an oracle is that parties may be
running machines that can force open commitments at different speeds. As such, the adversary (as
part of the higher-level protocol) could trick the committer into (quickly) forcing open commitments
of the adversary’s choice. This, in turn, may help the adversary to break the hiding property of the
timed-commitment provided by the challenger prematurely.

IND-CCAATC:

– Setup: IND-CCATC samples crs← PGen(1κ) and a bit b← {0, 1}.
– Preprocessing Phase: IND-CCATC runs A on input crs. In this phase, A is given access to

a decommit oracle DEC, which on input C, returns FDecom(crs, C) in time tdc.
– Challenge Query: When A outputs (m0,m1), IND-CCATC computes

(Cb, πb, ?)← Com(crs,mb) and returns the challenge (Cb, πb).
– Online Phase: After receiving (Cb, πb), A continues to have access to DEC, except that A may

not query DEC on Cb.
– Output Determination: When A outputs a bit b′, IND-CCATC outputs 1 if b′ = b, and 0

otherwise.

Definition 11 (CCA Security for NITIC). A NITIC scheme TC is (ε, tp, to)-CCA-secure if
for all adversaries A running in time tp in the preprocessing phase and in time to in the online
phase of IND-CCATC,

Pr
[
IND-CCAATC = 1

]
≤

1

2
+ ε.
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The binding and soundness properties are deferred to Appendix E.

7.1 Construction from TRPKE

We next show how a NITIC can be constructed from a TRPKE scheme. Our simple construction
is presented in Fig. 2. For an efficient construction, we require that proofs for the relation R can
be verified (very) efficiently, i.e., verifying takes less time than a forced decommit. This is satisfied
when instantiating the TRPKE scheme with our construction from the previous section, where this
relation can be expressed via an arithmetic circuit. Correctness of this scheme follows immediately

Let TRPKE = (PGen,KGen,Enc,Decf ,Decs) be a (te , tfd , tsd)-TRPKE scheme, NIZKCom = (GenZKCom,ProveCom,
VrfyCom, SimGenCom,SimProveCom) be a (tcp, tcv, tcsgen, tcsp)-NIZK for relation

RCom = {(c, (m, r))|c = Enc(pk ,m; r)},

and NIZKDecom = (GenZKDecom,ProveDecom,Vrfy,Decom ,SimGenDecom, SimProveDecom) be a (tdp, tdv, tdsgen, tdsp)-
NIZK for relation

RDecom = {((c,m), r)|c = Enc(pk ,m; r)}.

– PGen(1κ): Run par ← PGen(1κ) and (sk , pk) ← KGen(par), crsCom ← GenZKCom(1κ), crsDecom ←
GenZKDecom(1κ), and output crs := (pk , crsCom, crsDecom).

– Com((pk , crsCom, crsDecom),m): Choose r ← R, compute c := Enc(pk ,m; r), πCom ← Prove(crsCom, c, (m, r)),
πDecom ← Prove(crsDecom, (c,m), r), and output (c, πCom, πDecom).

– ComVrfy((pk , crsCom, crsDecom), c, πCom): Output VrfyCom(crsCom, c, πCom).
– DecomVrfy((pk , crsCom, crsDecom), c,m, πDecom): Output VrfyDecom(crsDecom, (c,m), πDecom).
– FDecom((pk , crsCom, crsDecom), c): Output Decs(pk , c).

Fig. 2. A (te + tcp + tdp, tcv, tdv, tsd)-NITIC scheme from TRPKE

from correctness of the underlying TRPKE and NIZK schemes; we next show its CCA security.

Theorem 5. Suppose that

– TRPKE is (εTRPKE , tp + tcsgen, tcsp)-CCA secure, and

– NIZKCom is (εZK , tp + to + te)-zero-knowledge.

Then the NITICS scheme in Fig. 2 is (εZK + εCCA, tp, to)-CCA-secure.

The proof is rather straightforward and is deferred to Appendix B.
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A Additional Definitions

A.1 Authenticated Encryption

Definition 12 (Authenticated Encryption Scheme). A (te, td)-authenticated encryption
scheme is a tuple of algorithms AE = (PGen,KGen,Enc,Dec) with the following behavior:

– The randomized parameter generation algorithm PGen takes as input the security parameter 1κ

and outputs public parameters par.
– The randomized key generation algorithm KGen takes as input public parameters par and

outputs a key k.
– The randomized encryption algorithm Enc takes as input a key k and a message m ∈ {0, 1}∗.

It outputs a ciphertext c ∈ {0, 1}∗ and runs in time at most te for all m.
– The deterministic decryption algorithm Dec takes as input a key k and a ciphertext c ∈ {0, 1}∗.

It outputs a message m ∈ {0, 1}∗ or ⊥ and runs in time at most td for all c.

We say that AE has perfect correctness if for all m ∈ {0, 1}∗, all par ∈ {PGen(1κ)}, all k ∈
{KGen(par)}, and all c ∈ {Enc(k,m)}, it holds that m = Dec(k, c).

In this work, we are interested in two different security properties of an authenticated encryption
scheme AE which we now define via the following two games. We remark that our game for CPA
security differs slightly from the literature in that we explicitly split the game into two phases: a
preprocessing phase that comes before the challenge query and an online phase that starts as soon
as the adversary A has made the challenge query.

IND-CPAAAE:

– Setup: IND-CPAAE samples parameters par via par ← PGen(1κ) and a bit b← {0, 1}. It then
samples a key k as k ← KGen(par).

– Preprocessing Phase: IND-CPAAE runs A. In this phase, A is given access to an encryption
oracle ENC, which on input m, returns a ciphertext c← Enc(k,m).

– Challenge Query: When A outputs (m0,m1), IND-CPAAE returns the challenge ciphertext
cb ← Enc(k,mb).

– Online Phase: After receiving cb, A continues to have access to ENC.
– Output Determination: When A outputs a bit b′, IND-CPAAE outputs 1 if b′ = b, and 0

otherwise.
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Definition 13 (CPA Security for Symmetric Encryption). An (authenticated) symmetric
encryption scheme AE is (ε, tp, to)-CPA secure if for all adversaries A running in time tp in the
preprocessing phase and to in the online phase of IND-CPAAE,

Pr
[
IND-CPAAAE = 1

]
≤ 1

2
+ ε.

We next formalize the integrity of ciphertexts property of an authenticated encryption scheme
AE via the following game.

INT-CTXTAAE:

– Setup: INT-CTXTAE samples public parameters par via par ← PGen(1κ). It then samples a
key k as k ← KGen(par) and initializes set S := ∅.

– Encryption Queries: INT-CTXTAE runs A. A is given access to an encryption oracle ENC,
which on input m, returns a ciphertext c← Enc(k,m) and sets S := S ∪ {c}.

– Output Determination: When A outputs a ciphertext c, INT-CTXTAE outputs 1 if c 6∈ S
and Dec(k, c) 6= ⊥. It outputs 0 otherwise.

Definition 14 (INT-CTXT Security for Authenticated Encryption). An authenticated
symmetric encryption scheme AE is (ε, t)-INT-CTXT secure if for all adversaries A running in
time t in INT-CTXTAE,

Pr
[
INT-CTXTAAE = 1

]
≤ ε.

A.2 Non-Interactive Zero-Knowledge

We recall the notion of a non-interactive zero-knowledge proof system, defined as follows.

Definition 15 (Non-Interactive Zero-Knowledge Proof System). Let LR be a language in
NP defined by relation R. A (tprove, tvrfy, tsgen, tsprove)-non-interactive zero-knowledge proof (NIZK)
system (for relation R) is a tuple of algorithms NIZK = (GenZK,Prove,Vrfy,SimGen, SimProve) with
the following behavior:

– The randomized parameter generation algorithm GenZK takes as input the security parameter
1κ and outputs a common reference string crs.

– The randomized prover algorithm Prove takes as input a string crs, an instance x, and a witness
w. It outputs a proof π and runs in time at most tprove for all crs, x and w.

– The deterministic verifier algorithm Vrfy takes as input a string crs, an instance x, and a proof
π. It outputs 1 (accept) or 0 (reject) and runs in time at most tvrfy for all crs, x and π.

– The randomized simulation parameter generation algorithm SimGen takes as input the security
parameter 1κ. It outputs a common reference string crs and a trapdoor td and runs in time at
most tsgen.

– The randomized simulation prover algorithm SimProve takes as input an instance x and a
trapdoor td. It outputs a proof π and runs in time at most tsprove for all x and td ∈ {SimGen(1κ).

We require perfect completeness: For all crs ∈ {GenZK(1κ)}, all (x,w) ∈ R, and all
π ∈ {Prove(crs, x, w)}, it holds that Vrfy(crs, x, π) = 1.

We next define zero-knowledge and soundness properties of a NIZK.
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Definition 16 (Zero-Knowledge). Let NIZK = (GenZK,Prove,Vrfy, SimGen,SimProve) be a
NIZK for relation R. The zero-knowledge property of NIZK is defined via the following game
ZKNIZK:

– Setup: ZKNIZK samples crs0, crs1 via crs0 ← GenZK(1κ), crs1 ← SimGen(1κ), and a bit
b← {0, 1}. It then runs A on input crsb.

– Online Phase: During this phase of the game, A is given access to a prover oracle PROVE.
On input (x,w), PROVE returns ⊥ if (x,w) 6∈ R. Otherwise, it generates
π0 ← Prove(crs0, x, w), π1 ← SimProve(crs1, x, w) and returns πb.

– Output Determination: When A returns b′, ZKNIZK outputs 1 if b′ = b, and 0 otherwise.

We say that NIZK is (ε, t)-zero-knowledge if for all adversaries A running in time t,

Pr
[
ZKANIZK = 1

]
≤

1

2
+ ε.

Definition 17 (Soundness). Let NIZK = (GenZK,Prove,Vrfy,SimGen, SimProve) be a NIZK for
relation R. The soundness of NIZK is defined via the following game SNDNIZK:

– Setup: SNDNIZK samples crs via crs← GenZK(1κ). It runs A on input crs.
– Output Determination: When A returns (x, π), SNDNIZK outputs 1 if Vrfy(crs, x, π) = 1

and x 6∈ LR. It outputs 0 otherwise.

We say that NIZK is (ε, t)-sound if for all adversaries A running in time t,

Pr
[
SNDANIZK = 1

]
≤ ε.

In our applications we also need the stronger notion of simulation soundness, which says that
the adversary cannot produce a fake proof even if it has oracle access to the simulated prover
algorithm.

Definition 18 (Simulation Soundness). Let NIZK = (GenZK,Prove,Vrfy,SimGen, SimProve)
be a NIZK for relation R. The simulation soundness of NIZK is defined via the following game
SIMSNDNIZK:

– Setup: SIMSNDNIZK samples crs via crs← SimGen(1κ) and initializes Q := ∅. It runs A on
input crs.

– Online Phase: During this phase of the game, A is given access to a simulated prover oracle
SPROVE. On input (x,w), SPROVE generates π ← SimProve(x, t), sets Q := Q ∪ {x}, and
returns π.

– Output Determination: When A returns (x, π), SIMSNDNIZK outputs 1 if x 6∈ Q,
Vrfy(crs, x, π) = 1, and x 6∈ LR.

We say that ZKNIZK is (ε, t)-simulation sound if for all adversaries A running in time t,

Pr
[
SNDANIZK = 1

]
≤ ε.

For integers N s.t. N = pq for primes p and q, let C be an arithmetic circuit over ZN , and let
SATC denote the set of all (x,w) ∈ {0, 1}∗ s.t. w is a satisfying assignment to C when C’s wires
are fixed according to x. The works of Groth and Maller [13] as well as Lipmaa [17] show NIZK
constructions for SATC which have soundness and simulation soundness (with suitable parameters),
perfect zero-knowledge, perfect correctness and are such that for all crs ∈ {GenZK(1κ)}, (crs′, td) ∈
{SimGen(1κ)}, all (x,w) ∈ SATC and all x′ ∈ {0, 1}∗:

20



– For all π ∈ {Prove(crs, x, w)}, Vrfy runs within time O(|x|) on input (crs, x, π).
– For all π′ ∈ {SimProve(x′, td)}, Vrfy runs within time O(|x′|) on input (crs′, x′, π′).
– On input (x′, td), SimProve runs in time O(|x′|).6

Crucial to our application is that both Vrfy and SimProve run in a fast manner, i.e., linear in the
scale of the input instance.

B Proof of Theorem 5

Proof. Let A be an adversary in the CCA Security Game for this NITICS scheme, IND-CCATC,
with preprocessing time tp and online time to. Suppose A’s challenge is (c∗, π∗). The proof goes by
a sequence of games, which we describe next.

G0: G0 is the original CCA Security Game, IND-CCATC.

G1: G1 is identical to G0, except that crsCom and π∗ are simulated. That is, in the setup phase run
(crsCom, td)← SimGenCom(1κ), and in the challenge compute π∗ ← SimProveCom(c∗, td).

We upper bound |Pr[GA1 = 1] − Pr[GA0 = 1]| by constructing a reduction RZK to the zero-
knowledge property of NIZKCom. RZK runs the code of G1, except that it publishes the CRS
from the zero-knowledge challenger, and uses the zero-knowledge proof from the zero-knowledge
challenger as part of the challenge ciphertext; also, RZK simulates the decommit oracle DEC by
running the fast decryption algorithm. Concretely, RZK works as follows:

– Setup: RZK , on input crs∗, runs par ← PGen(1κ), (sk , pk) ← KGen(par) and crsDecom ←
GenZKDecom(1κ), sets crs := (pk , crs∗, crsDecom), and runs A(crs).
On A’s query DEC(c), RZK returns Decs(sk , c).

– Online phase: When A makes its challenge query on (m0,m1), RZK chooses b ← {0, 1},
computes c∗ ← Enc(pk ,mb) and π∗ ← PROVE(c∗,mb), and outputs (c, π∗). After that, R
answers A’s DEC queries just as in setup.

– Output: On A’s output bit b′, RZK outputs 1 if b′ = b, and 0 otherwise.

Clearly, RZK runs in time tp + to + te (i.e., time tp in the setup phase and to + te in the online
phase), and

|Pr[GA1 = 1]− Pr[GA0 = 1]| ≤ εZK .

Now we analyze A’s advantage in G1. Since the challenge is (c, π) where c = Enc(pk ,m; r) and π is
simulated without knowledge of m or r, and DEC simply runs Decs, A’s advantage can be upper
bounded directly by the CCA security of TRPKE. Formally, we upper bound A’s advantage by
constructing a reduction RCCA to the CCA security of TRPKE (where RCCA’s decryption oracle
is denoted DECTRPKE):

– Preprocessing Phase: RCCA, on input pk , computes (crsCom, td) ← SimGenCom(1κ), and runs
A(crsCom).
On A’s query DEC(c), RCCA queries DECTRPKE(c) and returns the result.

– Challenge Query: When A outputs (m0,m1), RCCA makes its challenge query on (m0,m1), and
on its challenge ciphertext c∗, RCCA computes π∗ ← SimProveCom(c∗, td) and sends (c∗, π∗) to
A. After that, R answers A’s DEC queries just as in preprocessing phase.

6 These construction work over Zp for primes p only, but can translated to ZN , where N is composite, with constant
overhead, as shown in [15].
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– Output: When A outputs a bit b′, RCCA also outputs b′.

Clearly, RCCA runs in time at most tp + tcsgen in the preprocessing phase, and time at most
to+tcsp in the online phase. RCCA simulates G1 perfectly, and if A wins, then RCCA wins. It follows
that

Pr[GA1 = 1] = Pr[RCCA wins] ≤ 1

2
+ εCCA.

Summing up all results above, we conclude that

Pr
[
IND-CCAATC = 1

]
≤ 1

2
+ εZK + εCCA,

which completes the proof.

C Definition for Time-Released Encryption with Fast Encryption

In the following, we define time-released encryption with an additional property called fast
encryption that allows the holder of the secret key sk to encrypt much faster than what would be
possible using only pk . As we will see, this requires not only a modification to the definition of
TRPKE, but also to the security games, as it now makes sense to introduce an additional oracle
ENC that allows to encrypt plaintexts fast.

Definition 19 (Time-Released Encryption With Fast Encryption). A
(tfe , tse , tfd , tsd )-time-released encryption scheme with fast encryption (TRFE) is a tuple of
algorithms TRFE = (PGen,KGen,Encf ,Encs,Decf ,Decs) where (PGen,KGen,Encs,Decf ,Decs) is a
(tse , tfd , tsd )-time-released public-key encryption (TRPKE) scheme and the randomized fast
encryption algorithm Encf has the following behavior: it takes as input a secret key sk and a
message m ∈ {0, 1}∗. It outputs a ciphertext c ∈ {0, 1}∗ and runs in time at most tfe for all m.

In addition to tfd < tsd , we require that tfe < tse i.e., encrypting fast is faster than encrypting slow.
We begin by adapting the definition of perfect correctness to account for the two different ways to
encrypt:

Definition 20 (Perfect Correctness). A TRFE scheme TRFE = (PGen,KGen,Encf ,Encs,Decf ,
Decs) satisfies perfect correctness if for all m ∈ {0, 1}∗, all par ∈ {PGen(1κ)}, all (sk , pk) ∈
{KGen(par)}, and all c ∈ {Encf (sk ,m)} ∪ {Encs(pk ,m)}, it holds that Decf (sk , c) = Decs(pk , c) =
m.

We now define appropriate security notions for TRFE, this time giving two different notions
which (as for TRPKE) resemble the standard indistinguishability security notions. An interesting
feature of TRFE, however, is that it can be seen as lying in between public and secret key encryption,
as it bears resemblance to some aspects of both of these primitives. Namely, as for public-key
encryption, an adversary that has the public key of a TRFE scheme can compute ciphertexts
of arbitrary messages using Encs. However, these ciphertexts are not useful to the adversary in an
indistinguishability game if tse ≈ tsd (which is indeed the case for all of our proposed constructions),
because by the time it can encrypt even a single message, it could have just as well decrypted the
challenge ciphertext.
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Therefore, as for the symmetric-key setting, our games offer an oracle ENC which the adversary
can query for ciphertexts on arbitrary messages of its choice. The main point of ENC is that it
replies to queries within time at most tfe (by running the fast encryption algorithm), whereas the
adversary’s computation of a ciphertext via Encs would take time at least tse (because the adversary
does not know the secret key, so it can only run the slow encryption algorithm).

We describe the CPA Security Game IND-CPATRFE for a TRFE scheme TRFE and an
adversary A.

IND-CPAATRFE:

– Setup: IND-CPATRFE samples parameters par via par ← PGen(1κ) and a bit b ← {0, 1}. It
then samples a pair of keys (sk , pk) as (sk , pk)← KGen(par).

– Preprocessing Phase: IND-CPATRFE runs A on input pk . In this phase, A is given access
to an encryption oracle ENC, which on input m, returns a ciphertext c← Encf (sk ,m) in time
tfe .

– Challenge Query: WhenA outputs (m0,m1), IND-CPATRFE returns the challenge ciphertext
cb ← Encf (sk ,mb).

– Online Phase: After receiving cb, A continues to have access to ENC.

– Output Determination: When A outputs a bit b′, IND-CPATRFE returns 1 if b′ = b, and 0
otherwise.

Definition 21 (CPA Security for TRFE). A TRFE scheme TRFE is (ε, tp, to)-CPA-secure
(where to < tsd) if for all adversaries A running in time tp in the preprocessing phase and to in the
online phase of IND-CPATRFE,

Pr
[
IND-CPAATRFE = 1

]
≤ 1

2
+ ε.

We next consider the security notion of Indistinguishability under Chosen Ciphertext Attacks
(CCA). Its security game IND-CCATRFE is identical to IND-CPATRFE, except that it offers an
oracle DEC which the adversary can query for plaintexts on arbitrary ciphertexts of its choice
(except for the challenge ciphertext). DEC replies to queries within time at most tfd (by running
the fast decryption algorithm), similar to the encryption oracle in IND-CPATRFE.

IND-CCAATRFE:

– Setup: IND-CCATRFE samples parameters par via par ← PGen(1κ) and a bit b ← {0, 1}. It
then samples a pair of keys (sk , pk) as (sk , pk)← KGen(par).

– Preprocessing Phase: IND-CCATRFE runs A on input pk . In this phase, A is given access
to an encryption oracle ENC, which on input m, returns a ciphertext c← Encf (sk ,m) in time
tfe ; as well as a decryption oracle DEC, which on input c, returns a plaintext m := Decf (sk , c)
in time tfd .

– Challenge Query: When A outputs (m0,m1), IND-CCATRFE returns the challenge
ciphertext cb ← Encf (sk ,mb).

– Online Phase: After receiving cb, A continues to have access to ENC and DEC, except that A
may not query DEC on cb.

– Output Determination: When A outputs a bit b′, IND-CCATRFE returns 1 if b′ = b, and 0
otherwise.
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Definition 22 (CCA Security for TRFE). A TRFE scheme TRFE is (ε, tp, to)-CCA-secure
(where to < tsd) if for all adversaries A running in time tp in the preprocessing phase and to in the
online phase of IND-CCATRFE,

Pr
[
IND-CCAATRFE = 1

]
≤ 1

2
+ ε.

D TRFE Constructions in the ROM

D.1 An CPA-Secure Construction

We construct a CPA-secure TRFE scheme over QRN in Fig. 3, based on the hardness of the RSW
problem and in the random oracle model. The key observation is that if φ = φ(N) is known, then

H
(
R2T

)
(where R is a random element in QRN and H is modeled as a random oracle) can be

computed fast; otherwise it is pseudorandom until a certain time t. Therefore, if we take any secret-

key encryption scheme and replace the key with H
(
R2T

)
, then we get a TLE scheme where the

public and secret keys are N and (N,φ), respectively. Importantly, a fresh R is chosen every time
an encryption is done, hence preventing any form of preprocessing attacks. In our construction we
use one-time pad as the underlying secret-key encryption scheme, so the ciphertext is(

R, H
(
R2T

)
⊕m

)
.

Furthermore, since R is freshly chosen every time the adversary queries the encryption oracle
(and generates an independent random “pad” every time), the encryption oracle is useless to the
adversary. Thus, the TRFE scheme is CPA-secure.

Let ` be polynomial in κ, and H : QRN → {0, 1}` be a hash function (modeled as a random oracle).
The message space and the ciphertext space are {0, 1}` and QRN × {0, 1}`, respectively.

– PGen(1κ): Run (N, p, q)← GenMod(1κ), compute φ := φ(N) = (p− 1)(q − 1) and output par := (N,φ).
– KGen(N,φ): Output (sk := (N,φ), pk := N).

– Encf ((N,φ),m): Choose R ← QRN , compute z := [2T mod
φ

4
] and Z := RepSqr(R, N, z), and output

(R, c := H(Z)⊕m).
– Encs(N,m): Choose R← QRN , compute Z := RepSqr(R, N, 2T ), and output (R, c := H(Z)⊕m).

– Decf ((N,φ), (R, c)): Compute z := [2T mod
φ

4
] and Z := RepSqr(R, N, z), and output m := H(Z)⊕ c.

– Decs(N, (R, c)): Compute Z := RepSqr(R, N, 2T ), and output m := H(Z)⊕ c.

Fig. 3. An CPA-secure (2θ(κ), T + θ(κ), 2θ(κ), T )-TLE scheme

Theorem 6. Suppose that the T -RSW problem is (εRSW , tp+T+θ(κ), to)-hard relative to GenMod.

Then the TRFE scheme in Fig. 3 is (QH · εRSW + QE
2θ(κ)

, tp, to)-CPA-secure, where the adversary
queries the encryption oracle ENC at most QE times and the random oracle H at most QH times.
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Proof. Let A be an adversary in the CPA Security Game for this TRFE scheme, IND-CPATRPKE,
with preprocessing time tp and online time to, querying the encryption oracle ENC at most QE
times and the random oracle H at most QH times. Suppose A’s challenge ciphertext is (R∗, c∗),
and its i-th ENC query (i = 1, . . . , QE) is answered with (R(i), c(i)). Let Repeat be the event that

R∗ = R(i) for some i, and Query be the event that A queries H
(

(R∗)2
T
)

. Since R∗ and all R(i)

are independently chosen at random from QRN , we have that

Pr[Repeat] ≤
QE

|QRN |
<

QE

2θ(κ)
.

We upper bound Pr[Query] by constructing a reduction R to the T -RSW problem (where the
inputs are N and g∗):

– Preprocessing phase: R, on input N , chooses j′ ← {1, . . . , QH} (a guess that A causes Query to
happen for the first time when it makes the j′-th H query). For i = 1, . . . , QE , R chooses R(i) ←
QRN , computes Z(i) := RepSqr(R(i), N, 2T ), and records (R(i),Z(i)). (These QE operations can
be done in parallel.) Then R runs A(N) and answers A’s oracle queries as follows:
• When A makes the i-th encryption oracle query ENC(m(i)), R finds its record (R(i),Z(i)),

sets c(i) := H(Z(i)) ⊕ m(i) (R chooses H(Z(i)) ← {0, 1}` if it is undefined), and outputs
(R(i), c(i)) to A.
• R answers A’s H queries via lazy sampling.

– Challenge query: When A makes its challenge query, R asks for R∗ from the RSW challenger.
If R∗ = R(i) for some i, then R outputs Z(i) (and halts). Otherwise R chooses c∗ ← {0, 1}` and
returns (R∗, c∗).

– Online phase: R answers A’s oracle queries just as in preprocessing.
– Output: As soon as A makes its j′-th H query (suppose it is H(Z)), R outputs Z.

Clearly, R runs in time at most tp + T + θ(κ) in the preprocessing phase, and time at most to
in the online phase. Up to the point that R outputs, R simulates the CPA game perfectly. If Query
happens and R’s guess j′ is correct, then R outputs Z = (R∗)2

T
, solving the T -RSW problem. It

follows that
1

QH
· Pr[Query] ≤ Pr[R wins] ≤ εRSW ,

hence
Pr[Query] ≤ QH · εRSW .

If neither Repeat nor Query happens, then A does not query H
(

(g∗)2
T
)

, and (g∗, c∗) is

independently random of everything else in A’s view, so b is independent of A’s view. We have
that

Pr
[
IND-CPAATRPKE = 1|Repeat ∨ Query

]
=

1

2
.

Combining the three results above, we get

Pr
[
IND-CPAATRPKE = 1

]
≤

1

2
+QH · εRSW +

QE

2θ(κ)
,

which completes the proof.
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D.2 An CCA-secure Construction

Obviously, the TRFE scheme in Section D.1 is malleable (i.e., if the last bit of the ciphertext is
flipped, then so is the last bit of the message), and thus not CCA-secure. In this section we present
an CCA-secure scheme. At first glance, simply replacing the one-time pad with a CCA-secure
secret-key encryption scheme would work, i.e., we let the ciphertext be(

R,Enc′
(
H
(
R2T

)
,m
))

(where Enc′ is the encryption algorithm in the underlying secret-key encryption scheme, and
R ← QRN ). However, closer scrutiny shows that proving the CCA security of this scheme seems
impossible, as the decryption oracle cannot be simulated in a fast way. Concretely, consider an
adversary A who chooses a random m and a random R ← QRN , computes R2T , and queries

H
(
R2T

)
in the preprocessing phase; after that A makes the challenge query, and then inputs(

R,Enc′
(
H
(
R2T

)
,m
))

to the decryption oracle. The reduction to the T -RSW problem must

answer with m. Since the only way to verify whether A has queried H
(
R2T

)
or not is to

compute R2T , the fastest way to answer the decryption oracle query is to compute R2T and then
run the slow decryption algorithm, which takes time longer than allowed.

Trapdoor VDF. To resolve this issue, we make use of verifiable delay functions (VDFs). A VDF
evaluates a function F with needs a prescribed time (e.g., T ) to compute, while allowing for much
faster verification given the function input and output, as well as an additional proof. We let the
underlying function be F (X) = X2T , and include the proof π in the random oracle. In this way,
the decryption oracle can be simulated in a fast manner: to check if the adversary’s RO query is
R2T , the reduction only needs to verify π, which is much faster than computing R2T on its own.

In order to enable fast encryption, we need a VDF with a trapdoor, with which both the function
output and the proof can be computed in a fast manner. The formal definition of a trapdoor VDF
is presented below.

Definition 23 (Trapdoor Verifiable Delay Function). A (tfeval, tseval, tvrfy)-trapdoor
verifiable delay function (trapdoor VDF) for function F : {0, 1}∗ ×X → Y is a tuple of algorithms
TVDF = (PGen,Evalf ,Evals,Vrfy) with the following behavior:

– The randomized parameter generation algorithm PGen takes as input the security parameter 1κ

and outputs public parameters par and a trapdoor td.
– The deterministic fast evaluation algorithm Evalf takes as input public parameters par, a

trapdoor td, and a function input x ∈ X . It outputs a function output y ∈ Y and a proof π and
runs in time at most tfeval for all (par , td) ∈ {PGen(1κ)} and x ∈ X .

– The deterministic slow evaluation algorithm Evals takes as input public parameters par and a
function input x ∈ X . It outputs a function output y ∈ Y and a proof π and runs in time at
most tseval for all (par , ?) ∈ {PGen(1κ)} and x ∈ X .

– The deterministic verifier algorithm Vrfy takes as input public parameters par, a function input
x ∈ X , a function output y ∈ Y, and a proof π. It outputs 1 (accept) or 0 (reject) and runs in
time at most tvrfy for all x ∈ X , y ∈ Y and π.

We require perfect uniqueness: For all (par , td) ∈ {PGen(1κ)} and all x ∈ X , there exists a proof
π s.t. Evalf (par , td, x) = Evals(par , x) = (Fpar (x), π) and Vrfy(par , x, Fpar (x), π) = 1.
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Soundness requires that it is hard to generate a “fake” pair of (y, π) for some function input x.

Definition 24 (Soundness). Let TVDF = (PGen,Evalf ,Evals,Vrfy) be a trapdoor VDF for
function F . The soundness of TVDF is defined via the following game SNDTVDF:

– Setup: SNDTVDF samples (par , td) via (par , td)← PGen(1κ). It runs A on input par.

– Output Determination: When A returns (x, y, π), SNDTVDF outputs 1 if Vrfy(par , x, y, π) =
1 and (y, π) 6= Evals(par , x). It outputs 0 otherwise.

We say that TVDF is (ε, t)-sound if for all adversaries A running in time t,

Pr[SNDATVDF = 1] ≤ ε.7

Pietrzak’s VDF. The trapdoor VDF used in our application can be instantiated using Pietrzak’s
VDF [25], which evaluates the function FM (X) = X2T (where X is an element in QRN ). We recall
the scheme in Fig. 4, adjusted to our syntax; in particular, we add the fast evaluation algorithm,
where the trapdoor is defined as φ(N).8

[25] shows that the scheme in Fig. 4 is (3Q2κ , Q)-sound, where the adversary queries the random
oracle H at most Q times.9

We are now ready to present our CCA-secure TRFE scheme in Fig. 5.

Theorem 7. Suppose that

– The T -RSW problem is (εRSW , tp, to)-hard relative to GenMod,

– TVDF is an (εSND, tp + to)-sound trapdoor VDF, and

– AE is an (εCPA, tp, to)-CPA-secure and (εCTXT , tp + to)-INT-CTXT secure authenticated
encryption scheme.

Then the TRFE scheme in Fig. 5 is (εSND +QD · εCTXT + εCPA + εRSW , tp, to)-CCA-secure, where
the adversary queries the decryption oracle DEC at most QD times.

Proof. Let A be an adversary in the CCA Security Game for this TLE scheme, IND-CCATRPKE,
with preprocessing time tp and online time to. Suppose A’s challenge ciphertext is (R∗, c∗). The
proof goes by a sequence of games, which we describe next.

G0: G0 is the original CCA Security Game, IND-CCATRPKE.

G1: G1 is identical to G0, except that (1) when A makes an H(R,Z, π) query, check if
Vrfy(N,R,Z, π) = 1, and if so (call such query a “crucial query for R”), record (R,Z, π); (2)
abort if there is more than one “crucial query” for the some R.

Let Fake be the event that A makes an H(R,Z, π) query s.t. (Z, π) 6= Evals(N,R) but
Vrfy(R,Z, π) = 1. We can see that G1 and G0 are identical unless (a subevent of) Fake happens.
We upper bound Pr[Fake] by constructing a reduction RSND to the soundness property of TVDF:

7 The standard notion of soundness [4] only requires that y cannot be “faked”, i.e., in SNDTVDF condition (y, π) 6=
Evals(par , x) is replaced by y 6= Fpar (x). However, in our application we need the property that π cannot be “faked”
either.

8 The scheme is defined for arbitrary T ∈ Z+, but in the presentation we assume that T is a power of 2 for simplicity.
9 In fact, [25] only shows standard soundness, but our stronger soundness property can be derived via inspection of

the proof.
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Let H : QRN×QRN×Z+×QRN → Primes(κ) be a hash function (modeled as a random oracle), where Primes(κ)
is the set of the first κ prime numbers.

– PGen(1κ): Run (N, p, q)← GenMod(1κ), compute φ := φ(N) = (p− 1)(q − 1) and output par := (N,φ).

– Evals(N,X): Compute Y := RepSqr(N,X, 2T mod
φ

4
). For i = 1, . . . , log T , compute

Vi := RepSqr(N,Xi−1, 2
T/2i mod

φ

4
), ri := H

(
X,Y,

T

2i
,Vi

)
,

Xi := RepSqr(N,Xi−1, ri mod
φ

4
) ·Vi,Yi := RepSqr(N,Vi, ri mod

φ

4
) ·Yi−1

(where X0 = X), and output (V1, . . . ,Vlog T ).
– Evals(N,X): Compute Y := RepSqr(N,X, 2T ). For i = 1, . . . , log T , compute

Vi := RepSqr(N,Xi−1, 2
T/2i), ri := H

(
X,Y,

T

2i
,Vi

)
,

Xi := RepSqr(N,Xi−1, ri) ·Vi,Yi := RepSqr(N,Vi, ri) ·Yi−1

(where X0 = X), and output (V1, . . . ,Vlog T ).
– Vrfy(N,X,Y, (V1, . . . ,Vlog T )): For i = 1, . . . , log T , compute

ri := H

(
X,Y,

T

2i
,Vi

)
,

Xi := RepSqr(N,Xi−1, ri) ·Vi,Yi := RepSqr(N,Vi, ri) ·Yi−1

(where X0 = X). If Ylog T = X2
log T , then output 1, otherwise output 0.

Fig. 4. Pietrzak’s (θ(κ) + 2
√
θ(κ), T + 2

√
T , 2 log T )-trapdoor VDF

Let ` be polynomial in κ, and H : QRN → {0, 1}` be a hash function (modeled as a random oracle). Let

TVDF = (PGenVDF,Evalf ,Evals,Vrfy) be a (tfeval, tseval, tvrfy)-trapdoor VDF for the function FN (X) = X2T

where PGenVDF is the same with PGen below, and AE = (PGen′,KGen′,Enc′,Dec′) be a (t′e, t
′
d)-authenticated

encryption scheme where PGen′(1κ) outputs ` and KGen′(`) outputs a random string in {0, 1}`.

– PGen(1κ): Run (N, p, q)← GenMod(1κ), compute φ := φ(N) = (p− 1)(q − 1) and output par := (N,φ).
– KGen(N,φ): Output (sk := (N,φ), pk := N).
– Encf ((N,φ),m): Choose R ← QRN , compute (Z, π) := Evalf (N,φ,R), and output (R, c ←

Enc′(H(R,Z, π),m)).
– Encs(N,m): Choose R← QRN , compute (Z, π) := Evals(N,R), and output (R, c← Enc′(H(R,Z, π),m)).
– Decf ((N,φ), (R, c)): Compute (Z, π) := Evalf (N,φ,R) and output Dec′(H(R,Z, π), c).
– Decs((N,φ), (R, c)): Compute (Z, π) := Evals(N,R) and output Dec′(H(R,Z, π), c).

Fig. 5. An CCA-secure (tfeval + t′e + θ(κ), tseval + t′e + θ(κ), tfeval + td, tseval + td)-TLE scheme
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RSND runs the code of G1 (including PGen, so RSND knows φ and hence can answer A’s ENC
queries in a fast way), except that when A queries H(R,Z, π), RSND checks if Fake happens, and
if so, it outputs (R,Z, π) (and halts).

Clearly, RSND runs in time at most tp + to. If Fake happens, then up to the point that RSND
outputs,RSND simulates the CCA game perfectly. Furthermore,RSND outputs a tuple s.t. (Z, π) 6=
Evals(N,R) but Vrfy(R,Z, π) = 1, breaking the soundness property of TVDF. It follows that

|Pr[GA1 = 1]− Pr[GA0 = 1]| ≤ Pr[Fake] ≤ Pr[RSND wins] ≤ εSND.

G2: G2 is identical to G1, except that when A makes a “new” decryption oracle query DEC(R, c)
(i.e., (R, c) is not the answer of any of A’s previous encryption oracle ENC queries), check if there
is a record (R,Z, π) (i.e., A has previously made a “crucial query” for R). If not, then output ⊥
to A; otherwise output Dec′(H(R,Z, π), c) to A.

For every A’s “new” DEC query DEC(R, c), let (Z, π) := Evals(N,R) = Evalf (N,φ,R). There
are two possible cases:

– A has previously made a “crucial query” H(R,Z, π): Then both G2 and G1 output
Dec′(H(R,Z, π), c), and thus are identical.

– A has not made a “crucial query” for R: Then G2 outputs ⊥, while G1 outputs
Dec′ (H (R,Z, π) , c).

(Note that A could not have made more than one “crucial query” for R; otherwise both G2 and G1
would have aborted earlier.)

We can see that G2 and G1 are identical unless there exists an A’s “new” DEC query DEC(R, c)
s.t. A has not previously made a “crucial query” for R, but Dec′(H(R,Z, π), c) 6= ⊥. Denote such
event NotAbort. Since A does not query H(R,Z, π), its output is random in A’s view; by the INT-
CTXT property of AE, it is hard for A to come up with a valid ciphertext c under H(R,Z, π).
Formally, we upper-bound Pr[NotAbort] by constructing a reduction RCTXT to the INT-CTXT
property of AE:
RCTXT chooses i′ ← {1, . . . , QD} (a guess that NotAbort happens for the first time when A

makes its i′-th “new” DEC query). Then RCTXT runs the code of G2 (including PGen, so RCTXT
knows φ and hence can answer A’s ENC queries in a fast way), except that in A’s i′-th “new” DEC
query DEC(R, c), RCTXT checks if A has not made a “crucial query” for R, and if so, RCTXT
outputs c (otherwise RCTXT aborts).

Clearly, RCTXT runs in time at most tp + to. If NotAbort happens and RCTXT ’s guess i′ is
correct, then up to the point that RCTXT outputs, RCTXT simulates the CCA game perfectly.
Furthermore, RCTXT outputs a valid ciphertext c under H(R,Z, π) (which is a random string in
{0, 1}` in RCTXT ’s view), breaking the INT-CTXT property of AE. It follows that

1

QD
· Pr[NotAbort] ≤ Pr[RAUTH wins] ≤ εCTXT ,

hence

|Pr[GA2 = 1]− Pr[GA1 = 1]| ≤ Pr[NotAbort] ≤ QD · εCTXT .

G2 makes A’s decryption oracle DEC essentially useless, because the only case that DEC does
not return ⊥ is that A has made a “crucial query”, but then A could decrypt on its own.

29



G3: G3 is identical to G2, except that (1) when A makes an encryption oracle query ENC(m), choose
R← QRN and h← {0, 1}`, record (R, h), compute c← Enc′(h,m), and output (R, c) to A; and (2)
when A makes an H query H(R,Z, π), check if Vrfy(R,Z, π) = 1 (i.e., if it is a “crucial query” for
R), and if there is a record (R, h). If both checks pass, then “program” H(R,Z, π) := h (otherwise
this H query is answered via lazy sampling, just as in G2).

The only difference between G3 and G2 is that G2 answers A’s ENC(m) with (R, c) where
c ← Enc′(H(R,Z, π),m), while in G3 c ← Enc′(h,m) where h ← {0, 1}`, and H(R,Z, π) is
“programmed” to be h if A queries it. This is merely a conceptual change, so

Pr[GA3 = 1] = Pr[GA2 = 1].

G4: Recall that A’s challenge ciphertext is (R∗, c∗), and let

(Z∗, π∗) := Evals(N,R
∗) = Evalf (N,φ,R∗) (so Z∗ = (R∗)2

T
). G4 is identical to G3, except that G4

aborts if A queries H(R∗,Z, π∗). Denote such event Query.
We upper bound Pr[Query] by constructing a reduction RRSW to the T -RSW problem (where

the inputs are N and R∗):

– Preprocessing phase: RRSW , on input N , runs A(N) and answers A’s oracle queries as in G3.
– Challenge query: When A makes its challenge query on (m0,m1), RRSW asks for R∗ from the

RSW challenger, chooses h∗ ← {0, 1}`, computes c∗ ← Enc′(h∗,mb) and returns (R∗, c∗).
– Online phase: RRSW answers A’s encryption queries, H queries and DEC queries as in G3.
– Output: When A makes a query H(R∗,Z, π), RRSW checks if Vrfy(R∗,Z, π) = 1, and if so, it

outputs Z.

Clearly, RRSW runs in time at most tp in the preprocessing phase, and time at most to in the

online phase. RRSW simulates G3 perfectly, and if Query happens, RRSW outputs Z = (R∗)2
T

,
solving the RSW problem. It follows that

|Pr[GA4 = 1]− Pr[GA3 = 1]| ≤ Pr[Query] ≤ Pr[RRSW wins] ≤ εRSW .

Now we analyze A’s advantage in G4. Since A is not allowed to query H(R∗,Z, π∗) (denote the
output h∗), h∗ is random in A’s view; by the CPA property of AE, Enc′(h∗,m0) and Enc′(h∗,m1)
are indistinguishable. Formally, we upper bound A’s advantage by constructing a reduction RCPA
to the CPA property of AE:
RCPA runs the code of G4, except that whenAmakes its challenge query on (m0,m1),RCPA also

makes its challenge query on (m0,m1), and on its challenge ciphertext c∗, R3 chooses R∗ ← QRN
and sends (R∗, c∗) to A. RCPA copies A’s output bit b′.

Clearly, RCPA runs in time at most tp in the preprocessing phase, and time at most to in the
online phase. RCPA simulates G4 perfectly, and if A wins, then RCPA wins. It follows that

Pr[GA4 = 1] = Pr[RCPA wins] ≤ 1

2
+ εCPA.

Summing up all results above, we conclude that

Pr
[
IND-CCAATRPKE = 1

]
≤ 1

2
+ εSND +QD · εCTXT + εCPA + εRSW ,

which completes the proof.
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E Deferred Definitions for NITICs

In this section, we give definitions for binding and soundness properties of a NITIC. Similarly as for
our definition of hiding, we also define them relative to a decommit oracle that allows the adversary
to open arbitrary commitments.

Binding. The binding property states that the verifier cannot be convinced that C ← Com(crs,m)
is a commitment of some other message m′ 6= m.

BND-CCAATC:

– Setup: BND-CCATC samples a common reference string crs via crs← PGen(1κ).
– Online Phase: BND-CCATC runs A on input crs. In this phase, A is given access to a

decommit oracle DEC, which on input C, returns FDecom(crs, C) in time tdc.
– Output Determination: When A outputs (m, r,C,m′, π′), BND-CCATC returns 1 if m′ 6=
m, C = Com(crs,m; r), and DecomVrfy(crs, C,m′, π′) = 1. It returns 0 otherwise.

Definition 25 (BND-CCA Security for Commitments). We say that a NITIC scheme TC
is (ε, t, tdc)-BND-CCA-secure if for all adversaries A running in time t,

Pr
[
BND-CCAATC = 1

]
≤ ε.

It is easy to see that our NITIC scheme in Fig. 2 actually has perfect binding, i.e., there does
not exist (m, r,C,m′, π′) s.t. m′ 6= m, C = Com(crs,m; r), and DecomVrfy(crs, C,m′, π′) = 1.
Indeed, C = Com(crs,m; r) implies that m = Decs(pk , C), and DecomVrfy(crs, C,m′, π′) = 1
implies m′ = Decs(pk , C), so if both conditions hold, then it must be the case that m = m′.

Soundness. For soundness, we essentially wish to capture the requirement that the adversary
cannot produce a valid commitment (no matter with how much time it is given) which cannot be
forcibly decommitted.

SND-CCAATC:

– Setup: SND-CCATC samples a common reference string crs via crs← PGen(1κ).
– Online Phase: SND-CCATC runs A on input crs. In this phase, A is given access to a

decommit oracle DEC, which on input C, returns FDecom(crs, C) in time tdc.
– Output Determination: When A outputs (C, π), SND-CCATC returns 1 if

ComVrfy(crs, C, π) = 1 and FDecom(crs, C) = ⊥. It returns 0 otherwise.

Definition 26 (SND-CCA Security for Commitments). We say that a NITIC scheme TC
is (ε, t)-SND-CCA-secure if for all adversaries A running in time t in SND-CCATC,

Pr
[
SND-CCAATC = 1

]
≤ ε.

In our NITIC scheme in Fig. 2, FDecom(crs, C) = ⊥ implies that Decs(pk , C) = ⊥, i.e., there
does not exist (m, r) s.t. C = Enc(pk,m; r). On the other hand, ComVrfy(crs, C, π) outputs
VrfyCom(crsCom, c, πCom), which is the verification algorithm for the relation
RCom = {(c, (m, r))|c = Enc(pk ,m; r)}. Therefore, soundness of our NITIC scheme is directly
implied by soundness of the underlying NIZKCom scheme.
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