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Abstract. We provide a simple and complete proof of the famous Pi⊕Pj
Theorem in the particular case where ξmax = 2. This Theorem gives
a lower bound for the number of solutions of simple linear systems
of equations in the case where all the variables have to be pairwise
distinct. Such systems often occur in cryptographic proofs of security,
and this particular Theorem can be used to prove that the function
x 7→ P (0||x) ⊕ P (1||x) is an optimally secure pseudorandom function
when P is a uniformly random permutation.
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1 Introduction

1.1 Our Motivation

In general, the H coefficients technique [Pat08b] can always be used to turn a
cryptographic problem involving block ciphers into a problem of counting the
number of solutions of linear systems of equations under the constraint that
some (or all) the variables are pairwise distinct. In some cases, it is possible
to work around this difficulty by using another proof strategy, such as the Chi-
Squared technique [DHT17]. However, if we are concerned with optimal security
bounds, it is often necessary to solve the underlying combinatorial problem. The
mathematical theory that focuses on such problems has been dubbed Mirror
Theory by Patarin. A small number of results are already known, some of which
have proofs whose credibility has recently been a subject of debate. Our goal
in this work is to address some of this criticism by providing an updated and
simplified proof of the following Theorem.

Theorem 1 (Pi ⊕ Pj Theorem with ξmax = 2). Let q ≤ 2n
72 and λ =

(λ1, . . . , λq) ∈ ({0, 1}n \ {0})q. Let hq(λ) be the number of solutions of the system
P1 ⊕ P2 = λ1
P3 ⊕ P4 = λ2
...
P2α−1 ⊕ P2α = λα.



such that the Pis are also pairwise distinct. Then one has

hq(λ) ≥ (2n)2q

2nq ,

where (2n)2q = 2n(2n−1) · · · (2n−2q+1).

Remark 1. It is easy to see that Theorem 1 is true for q = 1, 2.

1. When q = 1, since λ1 6= 0, P1 6= P2 necessarily holds. Thus one has h1(λ) =
2n ≥ 2n − 1;

2. When q = 2, like in the previous case, P1 can take any value. Finally, P3
must be chosen such that P3 6= P1, P2 and P4 = λ2 ⊕ P3 6= P1, P2. Thus one
has h2(λ) ≥ 2n(2n − 4) ≥ (2n)4

22n
3.

Hence, in our proof, we are going to focus on the case where q ≥ 3.

1.2 Related Work

Theorem 1 has first been introduced in [Pat10a]. Patarin has given an alternative
proof of this result in [Pat13]. Unfortunately, some intermediate results were
stated without proof in all these articles. More recently, a complete proof has
been given in [NPV17], but it has some flaws that make it difficult to verify. In
this work, we incorporate the refinements that have been introduced throughout
the years and we aim to provide a clear, concise and rigorous proof. Dutta et
al. [DNS20] have done a similar work, using a slightly different strategy and
presentation. We hope that the existence of two different proofs will help rebuild
confidence in Mirror Theory, and will also serve as a good tutorial for this type
of combinatorial proofs.

Several variants of Theorem 1 have also been studied, for example the Pi⊕Pj
Theorem with any ξmax [Pat03, Pat10b], or the Pi⊕Qj Theorem, where only the
Pis and Qjs have to be pairwise distinct [Pat08a, CLP14]. Several other security
bounds have also been proved using different specialized Mirror Theory results
(see e.g. [DDNY18, DNT19, BN18, DN20, JN20]).

2 Preliminaries

We adopt the general convention that tuples are bold variables and that, for
any non-empty set S, any integer s, and any x = (x1, . . . , xs) ∈ Ss, x||y =
(x1, . . . , xs, y) for any y ∈ S. For any positive integers d and α such that d > 1,
Ind(d)

α is the set of all tuples (k1, . . . , kd−1) ∈ {1, . . . , 2α}d such that the values
dkl/2e are pairwise distinct for l = 1, . . . , d− 1. Moreover, for any x ∈ Sα and
any k ∈ Ind(d)

α , we denote xk = (xk)k 6=dk1/2e,...,dkd−1/2e the tuple x where the
coordinates at index dkl/2e have been removed for l = 1, . . . , d− 1.

3Note that for the case q = 2, the theorem only applies when n ≥ 8, where this
inequality also holds.
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Let n be any positive integer. We denote by {0, 1}n the set of all n-bit strings.
For any x, y ∈ {0, 1}n, x⊕ y denotes the bitwise XOR of x and y. As usual, we
also denote (a)b the falling factorial, i.e. for any positive integers a, b such that
a ≥ b, one has (a)b = a(a− 1) · · · (a− b+ 1). By convention, we fix (a)0 = 1.

3 Proof Strategy

3.1 Description of Mirror Systems

Let α, n be fixed integers such that 2α ≤ 2n. For any λ = (λ1, . . . , λα) ∈
({0, 1}n)α, we denote by (Sα(λ)) the following system of equations in 2α variables:

(Sα(λ))


P1 ⊕ P2 = λ1
P3 ⊕ P4 = λ2
...
P2α−1 ⊕ P2α = λα.

In such a system, fixing the value of a variable implies fixing the value of exactly
2 variables. In this case, we say that these two variables are in the same block,
and the maximum size of every block is ξmax = 2. Our goal is to find an accurate
lower bound for the number hα(λ) of solutions of (Sα(λ)) such that all the Pi
variables are pairwise distinct variables of {0, 1}n, for all 1 ≤ i ≤ 2α.

As we are going to see in section 3.3, we will have to consider slightly more
general systems. For any λ = (λ1, . . . , λα) ∈ ({0, 1}n)α, any integer d and any
µ = (µ1, . . . , µ2d−1) ∈ ({0, 1}n)2d−1, we denote by

(
S(d)
α,λ(µ)

)
the following

system of equations in 2α+ 2d variables:

(
S(d)
α,λ(µ)

)


P1 ⊕ P2 = λ1
P3 ⊕ P4 = λ2
...
P2α−1 ⊕ P2α = λα
P2α+1 ⊕ P2α+2 = µ1
P2α+1 ⊕ P2α+3 = µ2
...
P2α+1 ⊕ P2α+2d = µ2d−1.

Such a system has α blocks of 2 variables and a final block of 2d variables. As in
the previous case, we denote by h(d)

α,λ(µ) the number of solutions of
(

S(d)
α,λ(µ)

)
such that all the Pi variables are pairwise distinct variables of {0, 1}n, for
1 ≤ i ≤ 2α+ 2d. Note that for

(
S(d)
α,λ(µ)

)
to have solutions, the tuple µ has to be

chosen such that it does not trigger collisions in the last block. In more details,
one needs µi 6= 0 for 1 ≤ i ≤ 2d− 1, and µi 6= µj for every 1 ≤ i < j ≤ 2d− 1.
When this condition is fulfilled, we say that µ is block compatible.
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In order to more easily navigate our systems of equations, we are going to
add a few notations. For any 1 ≤ i ≤ 2α, we are going to denote by Pi ⊕ P̂i =
λ(i) the (unique) equation in which the variable Pi is involved.4 Moreover, for
any θ ∈ {0, 1}n, we denote by δλ(θ) the number of occurences of θ in λ, and
∆λ = maxθ∈{0,1}n {δλ(θ)}.

3.2 Basic Properties

As we will see in section 3.3, most of our proof will revolve around the evaluation
of the maximum difference between values of the type h(d)

α,λ(µ) where α, d, λ and
the first coordinate of µ are fixed. As such, we introduce the following notation.

Definition 1. Let α, d be integers such that 2α + 2d ≤ 2n, and let λ ∈
({0, 1}n \ {0})α and θ ∈ {0, 1}n \ {0}. We define the following quantities:

– BcT(d)
θ is the set of all block compatible tuples of the form (θ, µ2, . . . , µ2d−1);

–
[
h(d)
α,λ,θ

]
is the maximum over every µ ∈ BcT(d)

θ of h(d)
α,λ(µ);

– Dist(d)
α,λ,θ is the maximum over every µ,µ′ ∈ BcT(d)

θ of
∣∣∣h(d)
α,λ(µ)− h(d)

α,λ(µ)
∣∣∣;

– E
[
h(d)
α,λ,θ

]
is the expectancy of h(d)

α,λ(µ) when µ is chosen uniformly at random

in BcT(d)
θ ;

– ε
(d)
α,∆ is the smallest value such that, for any λ such that ∆λ ≤ ∆, any θ, and
any µ,µ′ ∈ BcT(d)

θ , one has

Dist(d)
α,λ,θ ≤ E

[
h(d)
α,λ,θ

]
ε

(d)
α,∆.

In the case where α < 0, by convention we define those quantities to be 0.

In the following Lemma, we present several basic properties of these quantities
that will prove useful later. Its proof will also serve as a good warm-up for the
other proofs in this paper.

Lemma 1. Let α, β, d be positive integers such that α ≤ β ≤ 2n/72 and α+ d ≤
2n/72. Let also θ ∈ {0, 1}n \ {0}, λ ∈ ({0, 1}n \ {0})α and µ ∈ ({0, 1}n \ {0})β
such that, for every i ∈ {1, . . . , α}, one has δλ(λi) ≤ δµ(λi). One has

1.
[
h(d)
α,λ,θ

]
≤ hα+1(λ||θ), 2.E

[
h(d)
α,λ,θ

]
≤ hα+1(λ||θ),

3.E
[
h(d)
α,λ,θ

]
≥
(

35
36

)2(d−1)
hα+1(λ||θ), 4. hα(λ)

hβ(µ) ≤
(18/17)β−α

2n(β−α) .

Proof. The first inequality is obvious, since every solution of
(

S(d)
α,λ(µ)

)
for

µ ∈ BcT(d)
θ yields a solution of (Sα+1(λ||θ)), and every solution of hα+1(λ||θ)

4Note that one has (i) = di/2e.
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yields at most one solution of
(

S(d)
α,λ(µ)

)
. The second inequality is also clearly

a consequence of the first one. For the third inequality, we have to use the
following two general remarks. First, by definition of BcT(d)

θ , it is clear that
|BcT(d)

θ | = (2n − 2)2(d−1). Indeed, this corresponds to the number of possible
µ2, . . . , µ2d−1 such that 0, θ, µ2, . . . , µ2d−1 are pairwise disctinct. Second, one has∑

µ∈BcT(d)
θ

h(d)
α,λ(µ) = (2n − 2α− 2)2(d−1)hα+1(λ||θ).

Indeed, this sum corresponds exactly to the number of P1, . . . , P2α+2d that are
pairwise distinct, and such that P1, . . . , P2α+2 is a solution of (Sα+1(λ||θ)). Hence,
using the fact that 2α+ 2d ≤ 2n/36, one has

E
[
h(d)
α,λ,θ

]
=

(2n − 2α− 2)2(d−1)

(2n − 2)2(d−1)
hα+1(λ||θ)

≥ (2n − 2α− 2d)2(d−1)

22n(d−1) hα+1(λ||θ)

≥
(

35
36

)2(d−1)
hα+1(λ||θ).

The last inequality is obvious if α = β. Thus, we assume that α < β. We are
now going to lower bound the number of P1, . . . , P2β that are pairwise distinct
and solution of (Sβ(µ)). First, since reordering the equations does not change the
number of solutions, we are going to reorder the equations of (Sβ(µ)) such that
the α ones that are common between (Sβ(µ)) and (Sα(λ)) appear first and in the
same order (the fact that all the equations from (Sα(λ)) are also in (Sβ(µ)) comes
from our assumption that for every i ∈ {1, . . . , α}, one has δλ(λi) ≤ δµ(λi)). Let
us fix P1, . . . , P2α that are pairwise distinct and solution of the first α equations
of (Sβ(µ)). By our choice of ordering for the equations, there are exactly hα(λ)
possible choices. Now, we have to lower bound the number of possible choice for
the remaining Pis. For i = 1, . . . , β − α, we have to choose P2α+2i−1 such that it
is different from Pj and from Pj ⊕ λα+i for j < 2α+ 2i− 1. Thus, there are at
least (2n − 4α)(2n − 4α− 4) · · · (2n − 4β + 4) possible choices for P2α+1, . . . , P2β .
Overall, one has

hα(λ)
hβ(µ) ≤

1
(2n − 4α)(2n − 4α− 4) · · · (2n − 4β + 4)

≤ 1
(2n − 4β)β−α ≤

(18/17)β−α

2n(β−α) .

3.3 Orange Equation and Consequences

In this section, we are going to explain how systems of the type
(

S(d)
α,λ(µ)

)
for

d > 1 come into play, and how they can be studied to derive Theorem 1. Namely,
we prove the following classical Lemma.
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Lemma 2 (Orange Equation). Let α > 0, λ ∈ ({0, 1}n \ {0})α and µ ∈
{0, 1}n \ {0}. One has

hα+1(λ||µ) = h(1)
α,λ(µ) = (2n − 4α+ 2δλ(µ))hα(λ) +

∑
(i,j)∈Mλ(µ)

h(2)
α−2,λi,j (µi,j),

where

λi,j =(λk)k 6=(i),(j),

µi,j =(µ, λ(i), µ⊕ λ(j)),
Mλ(µ) ={(i, j), 1 ≤ i, j ≤ 2α, (i) 6= (j), µ 6= λ(i), µ 6= λ(j), and µ 6= λ(i) ⊕ λ(j)}.

The proof of this Lemma can be found in Section 3.4. It links the number of
solutions of the system (Sα+1(λ||µ)) in α+ 1 blocks of 2 variables to:

– the number of solutions of the system (Sα(λ)) that consists in α blocks of
two variables;

– the number of solutions of the systems
(

S(2)
α−2,λi,j (µi,j)

)
that consist in α− 2

blocks of two variables and one last block of 4 variables.

Recursively evaluating the number of solutions of a system of equations as
a function of the number of solutions of new systems of equations that use a
smaller number of blocks will be at the heart of our proof. Moreover, it highlights
the need to study systems of the type

(
S(d)
α,λ(µ)

)
for d > 1. The following Lemma

will give us a sufficient condition for Theorem 1 to hold.

Lemma 3. Let q ≤ 2n
72 and λ0 ∈ ({0, 1}n \ {0})q. Let us assume that there there

exists a constant C ≤ 100 such that ε(2)
α−2,∆λ ≤ C

∆λ
2n . Then one has

hq(λ0) ≥ (2n)2q

2nq .

Lemma 3 clearly states that, in order to prove Theorem 1, it is sufficient
to focus our attention on the ratio between the deviation of the values h(2)

α,λ(µ)
and their average value. In Section 4, we are actually going to prove that we
can choose C = 93. Moreover, the proofs of Lemmas 2 and 3 can be found in
Sections 3.4 and 3.5 respectively.

3.4 Proof of Lemma 2

The proof of this lemma is classical, and we state it for the sake of completeness.
In this proof, we want to evaluate the number of solutions of the system

(Sα+1(λ||µ)) such that P1, . . . , P2α+2 are pairwise distinct.
Let us fix any integer α and any λ ∈ ({0, 1}n \ {0})α. For i = 1 . . . , 4α, we

denote with Bi the set of all (P1, . . . , P2α+2) such that:

– P1, . . . , P2α are solutions to the (Sα(λ)) system of equations,
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– P1, . . . , P2α are pairwise distinct,
– P2α+1 ⊕ P2α+2 = µ,
– if i ≤ 2α, P2α+1 = Pi, otherwise P2α+2 = Pi−2α.

One clearly has |Bi| = hα(λ). We also denote with B the set of all (P1, . . . , P2α+2)
such that:

– P1, . . . , P2α are solutions to the (Sα(λ)) system of equations,
– P1, . . . , P2α are pairwise distinct,
– P2α+1 ⊕ P2α+2 = µ.

Then, it is clear that |B| = 2nhα(λ), and

hα+1(λ||µ) =
∣∣B \ (∪4α

i=1Bi
)∣∣ .

It is also easy to see that, for any three pairwise distinct indexes i1, i2, i3, then
Bi1 ∩Bi2 ∩Bi3 = ∅. This is due to the fact that at least two Bi sets will involve
P2α+1 or P2α+2, which implies an equality between two variables from P1, . . . , P2α.
Thus, the inclusion-exclusion principle yields:

hα+1(λ||µ) = (2n − 4α)hα(λ) +
∑
i<j

|Bi ∩Bj |. (1)

The last step of the proof is to evaluate |Bi ∩Bj | for every i < j. Several cases
can occur.

1. One has i, j ≤ 2α or i, j > 2α. In that case, there exists i < j ≤ 2α such that
Pi = Pj , which contradicts the requirement that P1, . . . , P2α are pairwise
distinct. Hence, in that case, |Bi ∩Bj | = 0.

2. Otherwise, since i < j, one has i ∈ {1, . . . , α} and j ∈ {2α + 1, . . . , 4α}.
This means that the equations added in |Bi ∩ Bj | imply a new equation
Pi ⊕ Pj−2α = µ. Let us denote j′ = j − 2α. We have to consider several
subcases.
(a) j′ = i. One has

µ = P2α+1 ⊕ P2α+2 = Pi ⊕ Pi = 0,

which is impossible since µ 6= 0. Thus, in this case, one has |Bi ∩Bj | = 0.
(b) {i, j′} = {2k − 1, 2k} for k ∈ {1, . . . , α}. This means that the constraints

for the set Bi ∩Bj contains the following equations:

Pi ⊕ Pj′ =µ,
Pi ⊕ Pj′ =λk.

Overall, if µ = λ(i) (which can occur exactly 2δλ(µ) times), then |Bi ∩
Bj | = hα(λ). Otherwise, the set is empty.
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(c) Otherwise, Bi ∩Bj can be seen as the set of all (P1, . . . , P2α) such that
P1, . . . , P2α are pairwise distinct and solutions of the following system of
equations:

P1 ⊕ P2 = λ1
...

Pi ⊕ P̂i = λ(i)
...

Pj′ ⊕ Pĵ′ = λ(j)
...

P2α−1 ⊕ P2α = λα
Pi ⊕ Pj′ = µ

⇐⇒



P1 ⊕ P2 = λ1
...

Pi ⊕ P̂i = λ(i)
...

Pi ⊕ Pĵ = µ⊕ λ(j)
...

P2α−1 ⊕ P2α = λα
Pi ⊕ Pj′ = µ

Up to a reordering of the unknowns, this is equivalent to the system(
S(2)
α−2,λi,j′

(µi,j′)
)
, where λi,j′ and µi,j′ are as in Lemma 2. Two possible

cases can occur: if µ = λ(i), λ(j′) or λ(i) ⊕ λ(j′), then the system cannot
have a solution such that P1, . . . , P2α are pairwise distinct. Otherwise,
one has exactly |Bi ∩Bj | = h(2)

α−2,λi,j′
(µi,j′).

Overall, one has∑
i<j

|Bi ∩Bj | = 2δλ(µ)hα(λ) +
∑

(i,j)∈Mλ(µ)

h(2)
α−2,λi,j (µi,j). (2)

Combining Eqs (1) and (2) ends the proof of Lemma 2.

3.5 Proof of Lemma 3

Let q ≤ 2n
72 and λ0 ∈ ({0, 1}n)q. For i = 1, . . . , q, we write λ0,i = (λ0,1, . . . , λ0,i).

First step: reordering the equations

It is clear that reordering the equations (i.e. reordering the coefficients of λ0)
does not change the value of hq(λ0). Thus, we are now going to choose a specific
ordering such that, for every i = 1, . . . , q − 1, one has δλ0,i(λ0,i+1) + 1 ≥ ∆λ0,i .
This can be done as follows. Let Ai denote the subset of all λ0,j values such that
δλ0(λ0,j) ≥ i (i.e. values that appear at least i times in λ0) for i = 1, . . . ,∆λ0 .
We write Ai = {ai,1, . . . , ai,ai} using an arbitrary ordering of the elements of Ai.
Then we are going to choose

λ0 = (a1,1, . . . , a1,a1 , a2,1, . . . , a2,a2 , . . . , a∆λ0 ,1, . . . , a∆λ0 ,a∆λ0
).

It is easy to check that, in this case, one has δλ0,i(λ0,i+1) + 1 = ∆λ0,i as long as
i 6=

∑k
j=1 aj for k = 1, . . . ,∆λ0 − 1, and δλ0,i(λ0,i+1) = ∆λ0,i otherwise.

Second step: relation between hα+1(λ||µ) and hα(λ)
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Let 2 ≤ α ≤ q, λ ∈ ({0, 1}n)α and µ 6= 0n. From Lemma 2, one has

hα+1(λ||µ) =h(1)
α,λ(µ)

=(2n − 4α+ 2δλ(µ))hα(λ)

+
∑

(i,j)∈Mλ(µ)

h(2)
α−2,λi,j (µi,j), (3)

where
µi,j = (µ, λ(i), µ⊕ λ(j)).

By definition of Mλ, it is easy to see that, for every µ 6= 0, one has

4α2 − 16∆λα ≤ 4α2 − 4α− 12∆λα ≤ |Mλ(µ)| ≤ 4α2 − 4α ≤ 4α2, (4)

where ∆λ = maxµ6=0(δλ(µ)). Indeed, the number of (i, j) such that 1 ≤ i, j ≤ 2α
and (i) 6= (j) is exactly 2α(2α− 2). The number of possible values for i (resp. j)
such that λ(i) = µ (resp. λ(j) = µ) is at most 2∆λ, and the number of possible
values for (i, j) such that λ(i) ⊕ λ(j) = µ is at most 4α∆λ.

Let us now denote X(µ) =
∑

(i,j)∈Mλ(µ) h(2)
α−2,λi,j (µi,j). We also denote with

Sλ,i,j the set of all µ ∈ {0, 1}n \ {0} such that (i, j) ∈ Mλ(µ) and Aλ,i,j the
average, when µ ∈ Sλ,i,j , of h(2)

α−2,λi,j (µi,j). Like in the proof of Lemma 1, it is
easy to see that

∑
µ∈Sλ,i,j h(2)

α−2,λi,j (µi,j) = hα(λ) by definition of µi,j . Hence,
since 2n− 2 ≥ |Si,j | ≥ 2n− 4, one has hα(λ)/(2n− 2) ≤ Aλ,i,j ≤ hα(λ)/(2n− 4).
Moreover, by definition of ε(2)

α−2,∆λ , it is easy to see that

h(2)
α−2,λi,j (µi,j) ≥ Aλ,i,j − ε

(2)
α−2,∆λE

[
h(2)
α−2,λi,j

]
.

Using (4) and our hypothesis on ε(2)
α−2,∆, one has

X(µ) ≥
∑

(i,j)∈Mλ(µ)

(
Aλ,i,j − ε(2)

α−2,∆λE
[
h(2)
α−2,λi,j

])
≥ (4α2 − 16∆λα)hα(λ)

2n − 4α2ε
(2)
α−2,∆λ max

(i,j)∈Mλ(µ)
E
[
h(2)
α−2,λi,j ,λ(i)

]
≥ (4α2 − 16∆λα)hα(λ)

2n − 4Cα2∆λ
2n max

(i,j)∈Mλ(µ)
E
[
h(2)
α−2,λi,j ,λ(i)

]
. (5)

The next step is to evaluate the value of max(i,j)∈Mλ(µ) E
[
h(2)
α−2,λi,j ,λ(i)

]
. Let us

fix any (i, j) ∈Mλ(µ). Using Lemma 1, one has, for every (i, j) ∈Mλ(µ) ,

E
[
h(2)
α−2,λi,j ,λ(i)

]
≤ hα−1(λi,j ||λ(i)) ≤ hα(λ)18/17

2n . (6)

Combining Eqs (3), (5), (6) and using the fact that

2n − 4α = (2n − 2α)2

2n − 1 − 4α2 − 2α
2n − 1 ≥ (2n − 2α)2

2n − 1 − 4α2

2n − 1 ,
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one has

hα+1(λ||µ)
hα(λ) ≥ (2n − 2α)2

2n − 1 − 4α2

2n − 1 + 2δλ(µ) + 4α2 − 16∆λα
2n − 4.25Cα2∆λ

22n

≥ (2n − 2α)2

2n − 1 + 2δλ(µ)− 16∆λα
2n − 4.25Cα2∆λ

22n . (7)

Third step: finalization

We can now apply formula (7) to λ0,α and λ0,α+1 for α = 1, . . . , q − 1. Recall
that one has 2 ≤ α ≤ q, 6q + 4 ≤ 8q ≤ 2n and

∆λ0,i ≤ δλ0,i(λ0,i+1) + 1,

which gives

2δλ(µ)− 16∆λα
2n − 4.25Cα2∆λ

22n

≥ δλ(µ)
(

2− 16 α2n − 4.25C α2

22n

)
− 16α

2n −
4.25Cα2

22n

≥ −1
3 .

The second inequality comes from the fact that C ≤ 100 and α ≤ q ≤ 2n/72.
Thus, one has

hα+1(λ0,α+1)
hα(λ0,α) ≥ (2n − 2α)2

2n − 1 − 1
3

≥ (2n − 2α)2

2n

(
1 + 1

2n − 1 −
2n/3

(2n − 2α)2

)
. (8)

Since q ≤ 2n
72 , it is easy to see that 2α+ 1 ≤ 3q ≤ 2n

24 . This yields

(2n − 2α− 1)2 − 22n/3 ≥ 22n
(

232

242 −
1
3

)
≥ 0,

and

hα+1(λ0,α+1)
hα(λ0,α) ≥ (2n − 2α)2

2n . (9)

Using (9) recursively and combining it with Remark 1, one gets

hq(λ0) =h2(λ0,2)
q−1∏
α=2

hα+1(λ0,α||λα+1)
hα(λ0,α) ≥ (2n)4

22n

q−1∏
α=2

(2n − 2α)2

2n = (2n)2q

2qn .

(10)
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4 General Purple Equations and their Consequence

4.1 Statement of the Results and Discussion

In this section, our goal is to compute an appropriate upper bound for ε(d)
α,∆ in

order to enable us to use Lemma 3. In a sense, this amounts to prove that the
maximum deviation for h(d)

α,λ(()µ) when µ varies in BcT(d)
θ is small in front of its

average value when µ is chosen uniformly at random in BcT(d)
θ . The first step of

the proof is to upper bound this difference with a bound which involves mirror
systems that have a strictly smaller number of blocks, which will allow us to
conclude by induction on the number of blocks. One has the following result.

Lemma 4 (Differential General Purple Equation). Let α, d be positive
integers such that α + d ≤ 2n/72. For any λ ∈ ({0, 1}n \ {0})α and any θ ∈
{0, 1}n \ {0}, one has

Dist(d)
α,λ,θ

≤ 16(d− 1)∆λ max
k∈Ind(2)

α

([
h(2)
α−1,λk,θ

])
+ 4(d− 1)α max

k∈Ind(2)
α

(
Dist(2)

α−1,λk,θ

)
+

2(d−1)∑
φ=2

(
2(d− 1)

φ

)
· (2α)φ max

k∈Ind(φ+1)
α

(
Dist(φ+1)

α−φ,λk,θ

)

+ 2
2(d−1)∑
φ=2

(
2(d− 1)

φ

)
· (2α)φ−1 · 5φ2∆λ max

k∈Ind(φ+1)
α

([
h(φ+1)
α−φ,λk,θ

])

+ 2
2(d−1)∑
φ=2

bφ/2c∑
m=1

(
2(d− 1)

φ

)(
φ− 2
m− 1

)
φ2∆λ(2α)φ−m−1

× max
k∈Ind(φ−m+1)

α

([
h(φ−m+1)
α−φ+m,λk,θ

])
.

Proof. The proof of this Lemma is deferred to Section 4.2.

Lemma 4 may seem complicated, but the intuition behind it as actually quite
simple. Like in the proof of the orange equation, collisions between variables
in the last block and the other variables will be added one by one, and we are
going to consider the maximum difference between two coefficients of the type
h(φ)
α,λ,θ(µ). Several cases can occur:

– the variables that are involved in the collisions come from different blocks
and no contradiction occur in either case: this is the source of the Dist(φ+1)

α−φ,λ,θ
terms in the bound;

– the variables that are involved in the collisions also come from different
blocks but some contradiction occurs: in this case we simply upper bound
the number of such cases, and introduce a term in

[
h(φ+1)
α−φ,λ,θ

]
;

11



– there exists collisions with variables from the same block, but no incompat-
ibility occurs: this means that some equations are redundant and can be
removed from the system; like in the previous case, we simply upper bound
the number of such cases and introduce a term in

[
h(φ−m+1)
α−φ+m,λ,θ

]
, where m is

the number of redundant equations.

As we will see, the last two types of terms can be shown to be negligible. This
means that most of our efforts will be focused on the first type of terms. It is
important to note that, while there are terms of the form Dist(d′)

α′,λ′,θ′ in both sides
of the inequality, the ones that appear in the right hand side actually involve
a number of blocks that is strictly smaller than the ones on the left hand side.
This fact will allow us to derive an upper bound for ε(d)

α,∆ by induction over the
number of blocks that appear in a system of equations. Namely, we prove the
following result.

Lemma 5. Let α, d,∆ be positive integers such that α+ d ≤ 2n/72 and ∆ ≤ α.
One has

ε
(d)
α,∆ ≤

(
36
35

)2(d−1)
∆

2n
(
c1(d− 1) + c222(d−1)(d− 1)2

)
,

where c1 = 23 and c2 = 16

Applying Lemma 5 to the case where d = 2 yields the following corollary which
ends the proof of Theorem 1 when combined with Lemma 3.
Corollary 1. Let α,∆ be positive integers such that α ≤ 2n/72 and ∆ ≤ α− 2.
One has

ε
(2)
α−2,∆ ≤ 93∆2n .

The proof of this Lemma is deferred to Section 4.3.

4.2 Proof of Lemma 4

Let α, d be positive integers such that α + d ≤ 2n/72. Let us fix any λ ∈
({0, 1}n \ {0})α, θ ∈ {0, 1}n \ {0}, and any two block compatible 2d− 1-tuples
µ1 and µ2 such that µ1,1 = µ2,1 = θ. The goal of this proof is to upper bound
the difference between the number of (P1, . . . , P2α+2d) such that P1, . . . , P2α+2d
are pairwise distinct, and are also solutions of the following system

(
S(d)
α,λ(µi)

)


P1 ⊕ P2 = λ1
...

P2α−1 ⊕ P2α = λα
P2α+1 ⊕ P2α+2 = µi,1 = θ
P2α+1 ⊕ P2α+3 = µi,2

...
P2α+1 ⊕ P2α+2d = µi,2d−1

12



for i = 1, 2.
We are going to proceed very similarly to the proof of Lemma 2, by using the

inclusion-exclusion principle and then analysing every possible set intersection.
For every P1, . . . , P2α+2d that are pairwise distinct and solution of

(
S(d)
α,λ(µi)

)
,

the following facts hold:

– P1, . . . , P2α+2 are pairwise distinct and solution of (Sα+1(λ||θ));
– for i = 1, 2 and j = 3, . . . , 2d, P2α+j = P2α+1 ⊕ µi,j−1 6= Pk for k ≤ 2α5.

Let us denote with Bi the set of all P1, . . . , P2α+2d such that P1, . . . , P2α+2

are pairwise distinct and solution of
(

S(d)
α,λ(µi)

)
for i = 1, 2. We also denote

with Bij,k the subset of Bi that also satisfies P2α+j = Pk for j = 3, . . . , 2d and
k = 1, . . . , 2α. As usual, one has Bij,k1

∩Bij,k2
= ∅ for any i = 1, 2, j = 3, . . . , 2d

and any 1 ≤ k1 < k2 ≤ 2α, since this would imply an equality between Pk1 and
Pk2 . Thus, using the inclusion-exclusion principle, the following holds for i = 1, 2:

h(d)
α,λ(µi) =

∣∣∣∣∣∣Bi \
 ⋃

3≤j≤2d

⋃
1≤k≤2α

Bij,k

∣∣∣∣∣∣
=hα+1(λ||θ)−

∣∣∣∣∣∣
⋃

3≤j≤2d

⋃
1≤k≤2α

Bij,k

∣∣∣∣∣∣
=hα+1(λ||θ)−

2d−2∑
φ=1

(−1)φ+1
∑

3≤j1<...<jφ≤2d
1≤k1,...,kφ≤2α

∣∣∣∣∣
φ⋂
l=1

Bijl,kl

∣∣∣∣∣ .
Finally, the triangular inequality yields

∣∣∣h(d)
α,λ(µ1)− h(d)

α,λ(µ2)
∣∣∣ ≤ 2d−2∑

φ=1

∑
3≤j1<...<jφ≤2d
1≤k1,...,kφ≤2α

∣∣∣∣∣
∣∣∣∣∣
φ⋂
l=1

B1
jl,kl

∣∣∣∣∣−
∣∣∣∣∣
φ⋂
l=1

B2
jl,kl

∣∣∣∣∣
∣∣∣∣∣ . (11)

In order to conclude this proof, we have to consider the maximum variation
between every possible intersection of Bij,k sets.

Case φ = 1. In this case, there exists j ∈ {3, . . . , 2d} and k ∈ {1, . . . , 2α} such
that P2α+j = Pk. Recall that the only constraints we have on P2α+j′ for j 6= j
come from the equations P2α+j′ ⊕ P2α+1 = µi,j′−1. This means that |Bij,k| is
equal to the number of possible P1, . . . , P2α+2 that are pairwise distinct, satisfy

5Remark that once P2α+1 is fixed, then so is Pi for i = 2α + 2, . . . , 2α + 2d. The
fact that µ1 and µ2 are block compatible implies that the P2α+k for k = 1, . . . , 2d are
necessarily pairwise distinct.
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the equations Pl ⊕ Pl̂ = λ(l) when (l) 6= (k) along with the following block of
three equations:

P2α+1 ⊕ Pk =µi,j−1

P2α+1 ⊕ Pk̂ =λ(k) ⊕ µi,j−1

P2α+1 ⊕ P2α+2 =θ.

For this block to admit solutions, we need the following conditions to hold:
µi,j−1 6= λ(k), θ, λ(k) ⊕ θ. Since µi is block compatible and µi,1 = θ, we already
know that µi,j−1 6= θ. Thus, as long as µi,j−1 6= λ(k), θ ⊕ λ(k), we have:

|Bij,k| = h(2)
α−1,λ(k)

(µi,j−1,k) ≤
[
h(2)
α−1,λ(k),θ

]
,

where λ(k) = (λi)i 6=(k) and µi,j−1,k = (µi,j−1, θ, µi,j−1 ⊕ λ(k)). If (j, k) is such
that µi,j−1 = λ(k) or µi,j−1 = θ ⊕ λ(k), then |Bij,k| = 0. Note that this final case
can occur at most 8(d− 1)∆λ times for each value of i. Finally, one has∑

3≤j≤2d
1≤k≤2α

∣∣|B1
j,k| − |B2

j,k|
∣∣ ≤ 16(d− 1)∆λ max

k∈Ind(2)
α

([
h(2)
α−1,λk,θ

])

+ 4(d− 1)α max
k∈Ind(2)

α

(
Dist(2)

α−1,λk,θ

)
. (12)

Case 1 < φ ≤ 2(d− 1). In this case, there exists 3 ≤ j1 < · · · < jφ ≤ 2d and
1 ≤ k1, . . . , kφ ≤ 2α such that the kl are pairwise distinct and P2α+jl = Pkl for
l = 1, . . . , φ. We denote j = (j1, . . . , jφ) and k = (k1, . . . , kφ).

Two different cases have to be considered. First, let us assume that the (kl)
values are pairwise distinct. As above, |Bij1,k1

∩ · · · ∩ Bijφ,kφ | is equal to the
number of possible P1 . . . , P2α+2 that are pairwise distinct, satisfy the equations
Pl ⊕ Pl̂ = λ(l) when (l) 6= (k1), (k2), along with the following block of 2φ + 1
equations:

P2α+1 ⊕ P2α+2 = θ

P2α+1 ⊕ Pk1 = µi,j1−1

P2α+1 ⊕ Pk̂1
= µi,j1−1 ⊕ λ(k1)

...

P2α+1 ⊕ Pkφ = µi,jφ−1

P2α+1 ⊕ Pk̂φ = µi,jφ−1 ⊕ λ(kφ).

As in the previous case, |Bij1,k1
∩· · ·∩Bijφ,kφ | = 0 if one of the following conditions

is fulfilled:

– there exist l ∈ {1, . . . , φ} such that λ(kl) = µi,jl−1 or λkl = µi,jl−1 ⊕ θ,
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– there exist 1 ≤ l < l′ ≤ φ such that λ(kl) = µi,jl−1 ⊕ µi,jl′−1, λ(kl′ ) =
µi,jl−1 ⊕ µi,jl′−1 or λ(kl) ⊕ λ(kl′ ) = µi,jl−1 ⊕ µi,jl′−1.

The first case can occur at most 2
(

2(d− 1)
φ

)
·φ·(2α)φ−1·2∆λ times for each value

of i, while the second case can occur at most 3
(

2(d− 1)
φ

)
·
(
φ
2

)
(2α)φ−1 · 2∆λ

times for each value of i. Overall, the intersection will be empty at most(
2(d− 1)

φ

)
· (2α)φ−1 · 5φ2∆λ

times for each value of i. For the at most
(

2(d− 1)
φ

)
(2α)φ other cases, one

simply has |Bij1,k1
∩ · · · ∩Bijφ,kφ | = h(φ+1)

α−φ,λk(µi,j,k), where

µi,j,k = (θ, µi,j1−1, µi,j1−1 ⊕ λ(k1), . . . , µi,jφ−1, µi,jφ−1 ⊕ λ(kφ))

is block compatible for i = 1, 2.
Second, let us consider the case where there exist collisions between the (kl)

values. Since one cannot have P2α+j1 = P2α+j2 because of the block compatibility
of µi, the only case we have to consider is the existence of colliding pairs, i.e.
pairs of indices l1 and l2 such that kl1 = k̂l2 . In this case, the last block includes
the following four equations:

P2α+1 ⊕ Pkl1 = µi,jl1−1

P2α+1 ⊕ Pk̂l1
= µi,jl1−1 ⊕ λ(kl1 )

P2α+1 ⊕ Pk̂l1
= µi,jl2−1

P2α+1 ⊕ Pkl1 = µi,jl2−1 ⊕ λ(kl1 ).

This system only admits solutions if λ(kl1 ) = µi,jl1−1 ⊕ µi,jl2−1, and in this case
we can simply eliminate the last two equations of the system. Let us now break
the counting down depending on the number m of colliding pairs of indices. Let

us fix m ∈ {1, . . . , bφ/2c} and one of the at most
(

2(d− 1)
φ

)
possible choices

for j. We are first going to count the number of possible choices for the pairs
of colliding indices (l1, l′1), . . . , (lm, l′m), along with the corresponding choice of
kls (knowing that in this case kl′s = k̂ls) for s = 1, . . . ,m. There are actually two
ways of counting the number of such triples: we can either fix ls and l′s, and then
choose ks, or fix ls and ks, then choose l′s. Both approaches yield different results,
and we are going to use a mised strategy in order to get the desired bound. Let us
first deal with the first pair. There are exactly φ(φ−1)/2 possible choice for l1, l′1,
and then at most 2∆λ possible choices for kl1 such that λ(kl1 ) = µi,jl1−1⊕µi,jl′1−1.

Let us now deal with the m− 1 remaining pairs. There are
(
φ− 2
m− 1

)
possible
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indices for l2, . . . , lm, and (2α)m−1 possible choices for the corresponding kls .
Recall that, for the system to admit solutions, we need λ(kls ) = µi,jls−1⊕µi,jl′s−1.
Since µ is block compatible, its components are pairwise distinct. Thus, once jls
and kls are fixed, there is at most one possible choice for l′s. For the remaining
components of k, there are as usual at most (2α)φ−2m possible choices. Once
such a pair of tuples (j,k) is fixed, then one has

|Bij1,k1
∩ · · · ∩Bijφ,kφ | ≤

[
h(φ−m+1)
α−φ+m,λk,θ

]
since exactly 2m equations have been removed from the final block of 2φ + 2
equations.

Overall, one has∑
3≤j1<·<jφ≤2d
1≤k1,...,kφ≤2α

∣∣∣|B1
j1,k1

∩ · · · ∩B1
jφ,kφ
| − |B2

j1,k1
∩ · · · ∩B2

jφ,kφ
|
∣∣∣

≤
(

2(d− 1)
φ

)
· (2α)φ max

k∈Ind(φ+1)
α

(
Dist(φ+1)

α−φ,λk,θ

)
+ 2

(
2(d− 1)

φ

)
· (2α)φ−1 · 5φ2∆λ max

k∈Ind(φ+1)
α

([
h(φ+1)
α−φ,λk,θ

])
+ 2

bφ/2c∑
m=1

(
2(d− 1)

φ

)(
φ− 2
m− 1

)
φ2∆λ(2α)φ−m−1

× max
k∈Ind(φ−m+1)

α

([
h(φ−m+1)
α−φ+m,λk,θ

])
. (13)

Combining Eqs (11), (12) and (13) yields the result.

4.3 Proof of Lemma 5

We are going to prove this lemma using a recursion on the number of blocks.
For any d such that d ≤ 2n/72, and any block compatible µ it is easy to see

that h(d)
α,()(µ) = 2n. Indeed, once P1 is fixed, all the other variables will be fixed

and, thanks to the block compatibility of µ, they will be pairwise distinct. Hence,
ε

(d)
α,0 = 0.

Let us now assume that, for any α < α0, any ∆ ≤ α and any d such that
α+ d ≤ 2n/72, one has

ε
(d)
α,∆ ≤

(
36
35

)2(d−1)
∆

2n
(
c1(d− 1) + c222(d−1)(d− 1)2

)
.

Our goal is now to prove that this inequality also holds for ε(d)
α0,∆

for any d ≤
2n/72− α0.
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Let us fix any λ ∈ ({0, 1}n \ {0})α0 such that ∆λ ≤ ∆, any θ ∈ {0, 1}n \ {0},
and any two block compatible 2d− 1-tuples µ1 and µ2 such that µ1,1 = µ2,1 = θ.
Using Lemma 1, for any 1 ≤ φ ≤ 2(d− 1) and any k ∈ Ind(φ+1)

α0
, one has:[

h(φ+1)
α0−φ,λk,θ

]
E
[
h(d)
α0,λ,θ

] ≤ (36
35

)2(d−1) hα0−φ+1(λk||θ)
hα0+1(λ||θ) ≤

(
36
35

)2(d−1) (18/17)φ

2nφ ;

Dist(φ+1)
α0−φ,λk,θ

E
[
h(d)
α0,λ,θ

] ≤ ε(φ+1)
α0−φ,∆

E
[
h(φ+1)
α0−φ,λk,θ

]
E
[
h(d)
α0,λ,θ

] ≤
(

36
35

)2(d−1)
ε

(φ+1)
α0−φ,∆

hα0−φ+1(λk||θ)
hα0+1(λ||θ)

≤
(

36
35

)2(d−1)
ε

(φ+1)
α0−φ,∆

(18/17)φ

2nφ .

By combining Lemma 4 with those inequalities and the fact that
(

2(d− 1)
φ

)
≤

22(d−1) for every 0 ≤ φ ≤ 2(d− 1), one gets(
36
35

)−2(d−1) Dist(d)
α0,λ,θ

E
[
h(d)
α,λ,θ

]
≤ 17(d− 1)∆

2n +
4.5(d− 1)α0ε

(2)
α0−1,∆

2n + 22(d−1)
2(d−1)∑
φ=2

ε
(φ+1)
α0−φ,∆

(
2.25α0

2n

)φ

+ 40∆(d− 1)2 · 22(d−1)
2(d−1)∑
φ=2

(2α0)φ−1 (18/17)φ

2nφ

+ 22d−1∆(d− 1)2
2(d−1)∑
φ=2

2φ
bφ/2c∑
m=1

(2α0)φ−m−1 (18/17)φ−m

2n(φ−m) . (14)

Let us now upper bound each sum appearing in Eq (14) in turn. This step will
be computationally heavy, but most of it will be centered around the use of the
following classical inequality:

n∑
i=0

xi ≤ 1
1− x (15)

when |x| < 1. Since α ≤ 2n/72, one has 2.25α
2n ≤ 1

32 . Moreover, α0 − 1 < α0 and,
for φ = 2, . . . , 2(d− 1), (α0 − φ) + (φ+ 1) ≤ α0 + d ≤ 2n/72, which means that
we can apply our induction hypothesis to all the ε(φ+1)

α0−φ,∆ terms. Thus, one has

4.5(d− 1)α0ε
(2)
α0−1,∆

2n ≤ 4.5(d− 1)α0

2n

(
36
35

)2
∆

2n (c1 + 4c2)

≤ (c1 + 4c2)(d− 1)
15

∆

2n .
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Moreover, one has

2(d−1)∑
φ=2

ε
(φ+1)
α0−φ,∆

(
2.25α0

2n

)φ

≤
2(d−1)∑
φ=2

(
36
35

)2φ
∆

2n
(
c1φ+ c222φφ2)(2.25α0

2n

)φ

≤ 2
(

36
35

)4
c1(d− 1)∆2n

(
2.25α0

2n

)2 +∞∑
φ=0

(
36
35

)2φ(2.25α0

2n

)φ

+ 4
(

36
35

)4
c2(d− 1)2 ∆

2n

(
2.25α0

2n

)2 +∞∑
φ=0

(
36
35

)2φ
22φ

(
2.25α0

2n

)φ

Using Eq (15) yields

2(d−1)∑
φ=2

ε
(φ+1)
α0−φ,∆

(
2.25α0

2n

)φ

≤ 2
(

36
35

)4
c1(d− 1)∆2n

(
2.25α0

2n

)2 +∞∑
φ=0

(
3α0

2n

)φ

+ 4
(

36
35

)4
c2(d− 1)2 ∆

2n

(
2.25α0

2n

)2 +∞∑
φ=0

(
10α0

2n

)φ

≤ 2.5c1(d− 1)∆2n

(
2.25α0

2n

)2
+ 6c2(d− 1)2 ∆

2n

(
2.25α0

2n

)2

≤ 2.5c1 + 6c2

1024 (d− 1)2 ∆

2n .

Similarly, one has

2(d−1)∑
φ=2

(2α0)φ−1 (18/17)φ

2nφ ≤ 2.25α0

22n

+∞∑
φ=0

(
2.25α0

2n

)φ
≤ 2.25α0

22n
(
1− 2.25α0

2n
) ≤ 2.5α0

22n ,
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and
2(d−1)∑
φ=2

2φ
bφ/2c∑
m=1

(2α0)φ−m−1 (18/17)φ−m

2n(φ−m)

≤
2(d−1)∑
φ=2

2φ
+∞∑

m=dφ/2e−1

(2α0)m
(

18/17
2n

)m+1

≤
2(d−1)∑
φ=2

2φ
(

2.25α0

2n

)dφ/2e−1 18/17
2n
(
1− 2.25α0

2n
)

≤ 1.1
2n

2(d−1)∑
φ=2

2φ
(

2.25α0

2n

)dφ/2e−1
≤ 4.4

2n + 2.2
2n

+∞∑
φ=1

22φ+3
(

2.25α0

2n

)φ

≤ 4.4
2n + 17.6

2n
+∞∑
φ=1

(
9α0

2n

)φ
≤ 4.4

2n + 161α0

22n .

Hence, Eq (14) yields(
36
35

)−2(d−1) Dist(d)
α,λ,θ

E
[
h(d)
α,λ,θ

]
≤ 17(d− 1)∆

2n + (c1 + 4c2)(d− 1)
15

∆

2n + 22(d−1) 2.5c1 + 6c2

1024 (d− 1)2 ∆

2n

+ 2∆(d− 1)222(d−1)

2n + 2∆(d− 1)222(d−1) 4.4
2n + 2∆(d− 1)222(d−1) 161α0

22n .

This inequality holds regardless of our choice of λ and θ, which means that it
also holds for ε(d)

α0,∆
, and one has

ε
(d)
α0,∆

≤
(

36
35

)2(d−1)
∆

2n

((
17 + c1 + 4c2

15

)
(d− 1)

+
(

2.5c1 + 6c2

1024 + 2 + 2× 4.4 + 2161α0

2n

)
22(d−1)(d− 1)2

)
.

In order for our hypothesis to hold, we need the following inequalities:

17 + c1 + 4c2

15 ≤ c1,
2.5c1 + 6c2

1024 + 10.8 + 2161α0

2n ≤ c2.

Both inequalities hold if c1 = 23, c2 = 16 and α0 ≤ 2n/72.
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