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Abstract. Today’s most compact zero-knowledge arguments are based on the hardness of the discrete
logarithm problem and related classical assumptions. If one is interested in quantum-safe solutions,
then all of the known techniques stem from the PCP-based framework of Kilian (STOC 92) which
can be instantiated based on the hardness of any collision-resistant hash function. Both approaches
produce asymptotically logarithmic sized arguments but, by exploiting extra algebraic structure, the
discrete logarithm arguments are a few orders of magnitude more compact in practice than the generic
constructions.

In this work, we present the first (poly)-logarithmic, potentially post-quantum zero-knowledge argu-
ments that deviate from the PCP approach. At the core of succinct zero-knowledge proofs are succinct
commitment schemes (in which the commitment and the opening proof are sub-linear in the message
size), and we propose two such constructions based on the hardness of the (Ring)-Short Integer So-
lution (Ring-SIS) problem, each having certain trade-offs. For commitments to N secret values, the
communication complexity of our first scheme is Õ(N1/c) for any positive integer c, and O(log2N)
for the second. Both of these are a significant theoretical improvement over the previously best lattice
construction by Bootle et al. (CRYPTO 2018) which gave O(

√
N)-sized proofs.
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1 Introduction

Zero-knowledge proofs are a crucial component in many cryptographic protocols. They are essential to
electronic voting, verifiable computation, cryptocurrencies, and for adding stronger security and privacy
guarantees to digital signature and encryption schemes. Across almost all applications, it is important to
be able to prove in zero-knowledge that one knows how to open a cryptographic commitment, and to prove
that the committed values have particular properties or satisfy some relations.

Recent years have seen an explosion of new zero-knowledge proof techniques, each with improvements
in proof-size, proving time, or verification time. These new constructions are based on a variety of crypto-
graphic assumptions, including the discrete logarithm assumption [14], various pairing-based assumptions in
the Generic and Algebraic Group Models [28,29], collision-resistant hash functions [8,7], and lattice-based
assumptions such as (R)SIS and (R)LWE [13,21,3,20].

Of these, only constructions from hash-functions and lattices stand any chance of being post-quantum
secure. At this point in time, general-purpose lattice-based proof systems still lag far behind, both asymp-
totically and in practice, in proof-size and usability. This may seem somewhat surprising, since unlike hash-
functions, lattices are endowed with algebraic structure that allows for constructions of rather efficient
encryption [36], signature [18,39], and identity-based encryption schemes [25,19]. One could hope that the
additional lattice structure can be also exploited for succinct zero-knowledge proofs as well.

? This work was supported by the SNSF ERC Transfer Grant CRETP2-166734 – FELICITY. The work was done
while the first author was at IBM Research – Zurich.



1.1 Our Contribution

In this paper, we present two novel lattice-based commitment schemes with associated zero-knowledge open-
ing protocols which prove knowledge of N secret integers with Õ(N1/c) and Õ(log2N) communication com-
plexity, for any constant c. For the former argument, we sketch out a method for constructing an argument
of knowledge of a satisfying assignment for an arithmetic circuit with N gates, with Õ(N1/c) communication
complexity (see Appendix B). Both arguments of knowledge follow the same basic methodology, which is to
replace the homomorphic commitment schemes used in earlier classically-secure protocols with a commitment
scheme based on the (Ring)-SIS problem, and adapt the security proofs to match.

Our constructions follow the usual framework of being interactive schemes converted to non-interactive
ones using the Fiat-Shamir transform. As with many schemes constructed in this fashion, their security is
proven in the ROM rather than the QROM. The latter would be very strong evidence of quantum security,4

but the former also appears to give strong evidence of quantum security in practice. To this day, there
is no example of a practical scheme that has been proven secure in the ROM based on a quantum-safe
computational assumption that has shown any weakness when the adversary was given additional quantum
access to the random oracle. A recent line of works (e.g. [30,17,32,16]) that prove security in the QROM of
schemes using the Fiat-Shamir transform which previously only known to be secure in the ROM give further
evidence that security in the ROM based on a quantum-safe assumption is a meaningful security notion in
practice.

Our first construction extends the classical interactive argument of [27] in which the prover commits
to message values using Pedersen commitments, and then commits to those commitments using a pairing-
based commitment scheme. The two-level structure means that a clever commitment-opening procedure
is possible, giving Õ(N1/3) communication costs. With a d-level commitment scheme, one could hope to
extend the technique and construct an argument with Õ(N1/(d+1))-sized proofs. However, in [27], Pedersen
commitments map finite field elements to source group elements, which are mapped to target group elements
by the second commitment scheme. In the classical setting, this is as far as the technique can take us, as no
homomorphic, compressing commitment scheme for target group elements is known. In the lattice setting,
however, the message space for SIS commitments are small integers and commitments are just made up of
larger integers. So there is no fundamental reason not to continue. Using careful manipulation of matrices
and moduli, our first new argument extends this technique to any constant number of levels.

The second argument is based on the techniques in the Bulletproofs protocol [14], and an earlier protocol
[12], which use Pedersen commitments to commit to long message vectors. The additional structure of the
Pedersen commitment scheme allows a neat folding technique, which reduces the length of committed message
vectors by a factor of two. The prover and verifier repeatedly employ the technique over logarithmically many
rounds of interaction until message vectors are reduced to a single value, which the prover can then easily
send to the verifier. This gives logarithmic proof sizes. Our new lattice protocol stems from the observation
that a SIS-based commitment scheme has some structure similarity to the Pedersen commitment scheme,
and thus can be made compatible with the same folding technique. A technical complication that is unique
to the lattice setting is keeping the coefficients of the extracted values from growing (too much) during each
fold, as a direct adaptation of the bulletproof technique would result in unconstrained growth for every fold
which would make the proof meaningless.

Finally, we make a comparison of these two techniques in terms of commitment/proof sizes as well as
sizes of the extracted solutions, alternatively called “slack”. Our conclusion is that the Bulletproofs folding
argument offers smaller poly-logarithmic proof size at the cost much larger slack. Hence, if one does not
necessarily need their extracted solution to be very small, then using Bulletproofs appears to be more
suitable. However, in many applications, such as group signatures or verifiable encryption, zero-knowledge
proofs are just one part of a more complex scheme. If the extracted witnesses are large, then we must adjust
parameters not only for the zero-knowledge proof but also for other components of the scheme. Thus, we
believe the leveled commitments can be applied in such scenarios at the cost of slightly larger proofs than
lattice-based Bulletproofs.

4 Though still technically heuristic because of the assumption that a concrete hash function acts as a random oracle.
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Discussion and Open Problems. The ultimate goal of the line of research that this paper is pursuing is con-
structing zero-knowledge proofs with concrete parameters smaller than those that can be achieved following
the PCP approach. Our current results achieve parameters that are essentially the same asymptotically, but
are larger in practice. The asymptotic equivalence comes from the fact that we succeeded in making the
dimension of the vector(s) representing the proof be logarithmic in the message size. And while we have also
somewhat restricted the coefficient growth of the proof vector, the coefficients still grow by some factor with
each “folding” of the vector dimension. Finding a technique to even further restrict the coefficient growth is
the main open problem stemming from this work.

From experience with other primitives, using the additional algebraic structure of concrete assumptions
should (eventually) result in size advantages over the generic PCP-based approaches that have the implicit
lower bounds (of around 100-200KB) posed by using Merkle-tree commitments. While lattice-based construc-
tions may not achieve the extreme compactness of discrete logarithm based approaches (e.g. Bulletproofs,
which have proofs sizes of a few kilobytes for reasonably-sized circuits), there is reason to hope that they
can be shorter (and faster) than generic constructions. As an analogy, when lattice-based signatures first
appeared [25,35], they were significantly larger than the generic quantum-safe signatures that one could
construct using techniques, such as one-way functions and Merkle trees, dating back to the 1970s [31,37].
But expanding upon these early lattice constructions via novel algorithms and techniques exploiting the
underlying mathematical structure of lattices, the current state-of-the-art lattice-based signatures [18,39]
are currently an order of magnitude smaller and two orders of magnitude faster than those stemming from
generic constructions [10]. We believe that the techniques of this paper can similarly be the beginning of the
path to more practical succinct quantum-safe zero-knowledge.

1.2 Technical Overview

Levelled Commitments. The commitment scheme in [5] arranged N elements of Zq to which one wants
to commit to, into an m× k matrix S and created the commitment

A · S = T mod q (1)

where A ← Zn×mp is a random matrix and p < q. Notice that T ∈ Zn×kq , and [5] showed that the proof of
knowledge of an S with small (but larger than the honest prover uses in the proof) coefficients satisfying (1)
can be done with λm elements in Zq 5 where λ is a security parameter. The total size of the proof is therefore
the size of T and the size of the proof of (1), which is nk+ λm elements in Zq. Since n = O(λ), the optimal

way to commit to N elements in Zq is to arrange them into a matrix S ∈ Zm×kq , where m = k = Õ(
√
N).

This makes the total proof size Õ(
√
N).

To illustrate our levelled commitment technique, we will describe a commitment scheme and a protocol
for achieving a proof size of Õ(N1/3). We will commit to S ∈ Zm1·m2×m3 as

A1 · ((Im1
⊗A2) · S mod q2) mod q1 = T , (2)

where A1 ← Zn×nm1
q1 ,A2 ← Zn×m2

q2 . Our proof will prove knowledge of an S̄ with somewhat larger coefficients

than S, and also an R̄ ∈ Zn·m1×m3 satisfying

A1 ·
(
(Im1

⊗A2) · S̄ mod q2 + R̄ · q2
)

mod q1 = T, (3)

Let us first show that the above extracted commitment of (S̄, R̄) is binding based on the hardness of
SIS when ‖S̄‖ � q2, ‖R̄‖ � q1/q2 and q2 � q1. Suppose, for contradiction, there are two (S̄, R̄) 6= (S̄′, R̄′)
satisfying (3). In the first case, suppose that R̄ 6= R̄′. By definition, the coefficients of (Im1

⊗A2) · S̄ mod q2
are smaller than q2, and thus R̄ 6= R̄′ implies that

(Im1
⊗A2) · S̄ mod q2 + R̄ · q2 6= (Im1

⊗A2) · S̄′ mod q2 + R̄′ · q2. (4)

5 We provide additional background in Section 2.3 for readers not familiar with previous work.
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P(A1,A2,S,T) V(A1,A2,T)

Y ← Dm2×λ
σ

W = A2Y mod q2

W ∈ Zn×λq2
-

C1 ← {0, 1}m3×λ

C1�
V := ((Im1 ⊗A2) · S mod q2) ·C1

V ∈ Znm1×λ
-

C2 ← {0, 1}λ·m1×λ

C2�

Write S :=

 S1

...
Sm1

 for Si ∈ Zm2×m3

Z :=
[
S1 ·C1 · · ·Sm1 ·C1

]
·C2 +Y

Rej(Z,
[
S1 ·C1 · · ·Sm1 ·C1

]
·C2, σ, ρ)

Z ∈ Zm2×λ
-

Write
[
z1 · · · zλ

]
:= Z

V :=

 V1

...
Vm1


Accept iff:
‖V‖∞ ≤ βvq2, ∀i, ‖zi‖ ≤ βz,
A2 · Z ≡

[
V1 · · · Vm1

]
·C2 +W (mod q2)

A1 ·V ≡ T ·C1 (mod q1)

Fig. 1. Levelled commitment with two levels. Here, βv and βz are parameters which satisfy βz � q2, βv � q1/q2.

If the parameters are set such that the coefficients of both sides of the above equation are less than q1, then
this gives a solution to SIS for A1. Now assume that R̄ = R̄′, and so S̄ 6= S̄′. If (Im1

⊗A2) ·S̄ ≡ (Im1
⊗A2) ·S̄′

(mod q2), then there must be some S̄i 6= S̄′i ∈ Zm2×m3 such that A2 · S̄i ≡ A2 · S̄′i (mod q2), and so we have
a SIS solution for A2. If (Im1 ⊗A2) · S̄ 6≡ (Im1 ⊗A2) · S̄′ (mod q2), then the inequality in (4) holds and we
have a SIS solution for A1.

We present the basic protocol in Fig. 1. The boxed text contains the parts necessary to make the protocol
zero-knowledge. In this overview, we will ignore these and only show that the protocol is a proof of knowledge.
First, let us show the correctness of the protocol. Because the coefficients of S,C1, and C2 are small, the
coefficients of Z are also small with respect to q2. Similarly, because the coefficients of V consist of a product
of a matrix with coefficients less than q2 with a 0/1 matrix C1, parameters can be set such that the coefficients
of the product are less than q1. Thus ‖zi‖ ≤ βz and ‖V‖ ≤ βvq2 can be satisfied with an appropriate choice
of parameters. We now move on to showing that the verification equations hold. Note that

V =

 V1

...
Vm1

 =


 A2S1

...
A2Sm1

 mod q2

 ·C1 ≡

 A2S1C1

...
A2Sm1

C1

 (mod q2), (5)

and so one can write

A2 ·
[
S1C1 · · · Sm1C1

]
≡
[
V1 · · · Vm1

]
(mod q2), (6)
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and therefore A2 ·Z ≡ A2 ·
[
S1C1 · · · Sm1C1

]
·C2 (mod q2), which is the first verification equation. For the

second verification equation, observe from (5) and (3) that

A1 ·V = A1 ·


 A2S1

...
A2Sm1

 mod q2

 ·C1 ≡ T ·C1 (mod q1).

Finally, ignoring constant terms, the total communication cost (including the statement) can be bounded
above by

m3 · (n log q1 + λ) +m2 · λ log βz +m1 · (nλ log(βvq2) + λ2) + nλ log q2.

Note that the last term does not depend on m1,m2,m3 hence we ignore it for now. Therefore, in order
to minimise the expression above, we want to set m1,m2,m3 such that all three corresponding terms are
(almost) equal. We select appropriate n, q1, q2 such that both A1 and A2 are binding (9) and we get log q2 <
log q1 = O(logN) and n = O(λ). Similarly, log βv = O(logN) and log βz = O(logN). Therefore, the total
communication cost is approximately Õ( 3

√
N).

In Section 3, we extend this approach to more than two levels. Generally, we propose a proof of knowledge
for d ≥ 1 levels with total communication size equal to

O
(
N

1
d+1 · (d3λ log2N + dλ2)

)
.

In Section 3.3, we also show how to apply techniques similar to previous work [14,12,5] in order to extract
a relatively short solution to the relaxed equation (e.g. (3) for d = 2). Due to space limitations, we skip the
details in this overview.

Bulletproofs folding. Our starting point is the lattice equation:

As = t (7)

where A ∈ R1×k, s ∈ Rk and R = Zq[X]/(Xn + 1). Thus, the number of secrets is N = kn. In the same
vein as [14,12], we are interested in constructing a protocol where proving knowledge of pre-image s of t
comes down to proving knowledge of some other pre-image, say s′, whose length k/2 is half that of s. By
recursively applying this argument log k times, we obtain poly-logarithmic proof size. Concretely, we fold
the initial statement (7) as follows. Let us write A and s as

A =
[
A1 A2

]
and s =

[
s1
s2

]
where s1, s2 ∈ Rk/2.

Let l := A1s2 ∈ R and r := A2s1 ∈ R. Then, for all c ∈ R,

(cA1 + A2)(s1 + cs2) = c2l + ct + r .

We observe that s1 + cs2 has length k/2, suggesting the following protocol for proving knowledge of s. First,
the prover P sends l, r to the verifier V. Then, V samples a challenge c uniformly at random from a challenge
space C ⊆ R and sends it to P. Finally, P sends z = s1 + cs2 to V. Note that if P is honest then z satisfies
the new lattice equation

Bz = t′

where B = cA1 + A2 and t′ = c2l + ct + r. Therefore, instead of sending z directly, the prover might repeat
the protocol and treat z as a new secret vector. By folding all the way down to vectors of length 1, we get
communication costs of order log k.

Using similar techniques to [14,12], one can extract a solution z̄ to the original equation Az̄ = t. The
problem is that unless we define the challenge space properly, we do not have any information on the size of
‖z̄‖. Hence, we let C be the set of monomials of R, i.e. C = {Xi : i ∈ Z}. Then, using the fact that polynomials
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of the form 2/(Xi −Xj) ∈ R have coefficients in {−1, 0, 1} [9], we bound the size of an extracted solution.
The only drawback of using this approach is that we only obtain a solution for a relaxed equation. Concretely,
if we apply the folding technique d times, then we only manage to find a small solution z̄ for the equation
Az̄ = 8dt such that ‖z̄‖ = O

(
n3d · 12d · p

)
where p = ‖s‖∞. For d = log k, the relaxation factor becomes k3.

The communication cost for the (2d+ 1)-round version of the protocol is equal to

N log(2dp)/2d + 2dn log q.

Then, we would just pick q which is a little bit larger than the slack. It is worth mentioning that the protocol
in its current state gives us soundness error of order 1/n, hence we would need to repeat it λ/ log n times in
order to achieve soundness error 2−λ. Therefore, the total proof size can be bounded by

O
(
λN log(2dp)

2d log n
+ λd2n

)
.

Comparison. We investigate in which applications one technique offers asymptotically smaller proof size
than the other (see Section 4 for more details). First of all, consider the case when we do not require the
extracted solution to be “very small”. Then, levelled commitments for d = logN −1 levels provide proof size
of order

O
(
λ log5N + λ2 logN

)
.

On the other hand, by applying Bulletproofs folding d = log k times, we obtain proof size6

O (λn logN · (logN + 1)) .

Consequently, the Bulletproofs approach achieves smaller proof size.
Next, consider the case when one could only afford limited slack, i.e. the extracted solution is smaller

than some set value B = Nα > N2. First, suppose that N = λr for some r ≥ 3 (we expect N to be much
bigger than λ). Then, we show that levelled commitments and Bulletproofs provide Õ(Nu) and Õ(Nv) proof
sizes respectively, where 7

u ≈ 1

(α− 2)r
and v ≈ 1− α− 1/2

3 log n+ 4
.

Assume the allowed slack is small enough that both u and v are larger than 1/ logN . Then, we just check
which one of u, v is bigger8. Since log n ≥ 1 and for all r ≥ 3, the function

fr(x) := (15− 2x)(x− 2)r − 14

is positive for 3 ≤ x ≤ 7, we deduce that u is smaller than v when α ≤ 7. This suggests that one should use
the levelled commitments protocol when one can only tolerate a limited amount of slack.

1.3 Related Work

In this paper, we investigate techniques from [14,12] and [27] in the lattice world. These papers are the most
closely related prior works, along with [14], which forms a key component of the argument in Section 3.

We review proof systems which can prove knowledge of a secret with N elements, or prove knowledge of
a satisfying assignment to an arithmetic circuit with N gates.

6 We note that more concrete bounds could be computed. However, this non-tight bound already shows that Bul-
letproofs folding offers smaller proof size.

7 Here, n denotes the degree of the underlying cyclotomic polynomial Xn + 1.
8 This would only asymptotically tell us which method offers smaller proof size.
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Lattice-Based Arguments. The zero-knowledge argument given in [5] is based on the SIS assumption, and
is capable of proving knowledge of commitment openings with proof size O(

√
N). It was the first and

only standard zero-knowledge protocol based on lattice assumptions to achieve a sublinear communication
complexity. Previously, the only other lattice-based arguments of knowledge with better asymptotic proof
size were lattice-based SNARKs [11,24,38]. Although they offer highly succinct, O(1)-sized proofs, the proofs
are only checkable by a designated verifier, and soundness is based on strong, non-falsifiable assumptions.

Hash-Based Arguments STARKs [6] and Aurora [8] are non-interactive argument systems. Both achieve
O(log2N)-sized proofs, with Aurora more efficient by an order of magnitude due to better constants. Ligero
[2] achieves O(

√
N)-sized proofs, but is highly efficient in practice.

Classically-Secure Arguments. In the discrete-logarithm setting, Bulletproofs [14] and a related argument
[12] give O(logN) communication complexity, using Pedersen commitments and the same recursive folding
technique that inspired the argument described in Section 4. The protocol of [27] gives O(N1/3) proof sizes,
and uses a two-tiered commitment scheme, based on Pedersen commitments and a related commitment
scheme based on pairings. We extend the same idea to a multi-levelled lattice-based commitment scheme in
Section 3.

There is also a long line of works on succinct non-interactive arguments based on pairings, culminating in
protocols including [28] and [29] which have O(1) proof size, but rely on strong, non-falsifiable assumptions
like the Knowledge-of-Exponent assumptions, or have security proofs in idealised models like the Generic
Group Model [40] or Algebraic Group Model [22].

2 Preliminaries

Algorithms in our schemes receive a security parameter λ as input (sometimes implicitly) written in unary.
Unless stated otherwise, we assume all our algorithms to be probabilistic. We denote by A(x) the probabilistic
computation of the algorithm A on input x. If A is deterministic, we write y := A(x). We write PPT (resp.
DPT) for probabilistic (resp. deterministic) polynomial time algorithms. The notation y ← A(x) denotes
the event that A on input x returns y. Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) when
|f(λ)−g(λ)| = λ−ω(1). We say that f is negligible when f(λ) ≈ 0 and that f is overwhelming when f(λ) ≈ 1.
For n ∈ N, we write [n] := {1, . . . , n}. Regular font letters denote elements in Z or Zq, for a prime q, and
bold lower-case letters represent column vectors with coefficients in Z or Zq. Bold upper-case letters denote
matrices. By default, all vectors are column vectors. Let In ∈ Zn×nq be the n× n identity matrix. We write
a list of objects with square brackets, e.g. [a1, . . . , ak] is a list of k objects: a1, . . . , ak. Also, we denote by []
the empty list. For any statement st, we define JstK to be equal to 1 if st is true and 0 otherwise.

Sizes of elements. For an even (resp. odd) positive integer α, we define r′ = r mod α to be the unique
element r′ in the range −α2 < r′ ≤ α

2 (resp. −α−12 ≤ r′ ≤ α−1
2 ) such that r′ = r mod α. For an element

w ∈ Zq, we write ‖w‖∞ to mean |w mod q|. Define the `∞ and `2 norms for w = (w1, . . . , wk) ∈ Zkq as
follows:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2∞ + . . .+ ‖wk‖2∞.

However, if we do not state explicitly that w ∈ Zkq but rather treat w as a vector of integers then the
standard notions of L2 and L∞ norms apply. We will also consider the operator norm of matrices over Z
defined by s1(A) = max

‖x‖6=0

(
‖Ax‖
‖x‖

)
.

Probability Distributions. Let D denote a distribution over some set S. Then, d← D means that d was

sampled from the distribution D. If we write d
$← S for some finite set S without a specified distribution this

means that d was sampled uniformly random from S. We let ∆(X,Y ) indicate the statistical distance between
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two distributions X,Y . Define the function ρσ(x) = exp
(
−x2

2σ2

)
and the discrete Gaussian distribution over

the integers, Dσ, as

Dσ(x) =
ρ(x)

ρ(Z)
where ρ(Z) =

∑
v∈Z

ρ(v).

We will write A← Dk×`
σ to mean that every coefficient of the matrix A is distributed according to Dσ.

Using the tail bounds for the 0-centered discrete Gaussian distribution (cf. [4]), we can show that for any
σ > 0 the norm of x← Dσ can be upper-bounded using σ. Namely, for any t > 0,

Pr
x←Dσ

[|x| > tσ] ≤ 2e−t
2/2,

and when x is drawn from Dm
σ , we have

Pr
x←Dmσ

[‖x‖ >
√

2m · σ] < 2−m/4. (8)

2.1 Lattice-based Commitment Schemes

A non-interactive commitment scheme is a pair of PPT algorithms (Gen, Com). The setup algorithm ck ←
Gen(1λ) generates a commitment key ck, which specifies message, randomness and commitment spaces
Mck,Rck,Cck. It also specifies an efficiently sampleable probability distribution DRck over Rck and a binding
set Bck ⊂ Mck × Rck. The commitment key also specifies a deterministic polynomial-time commmitment
function Comck : Mck × Rck → Cck. We define Comck(m) to be the probabilistic algorithm that given
m ∈ Mck samples r← DRck and returns c = Comck(m; r).

The commitment scheme is homomorphic, if the message, randomness and commitment spaces are abelian
groups (written additively) and we have for all λ ∈ N, and for all ck ← Gen(1λ), for all m0,m1 ∈ Mck and
for all r0, r1 ∈ Rck:

Comck(m0; r0) + Comck(m1; r1) = Comck(m0 + m1; r0 + r1).

Definition 2.1 (Hiding). The commitment scheme is hiding if for all PPT stateful interactive adversaries
A

Pr

[
ck ← Gen(1λ); (m0,m1)← A(ck); b← {0, 1};
r← DRck ; c← Comck(mb; r) : A(c) = b

]
≈ 1

2
,

where A outputs m0,m1 ∈ Mck.

Definition 2.2 (Binding). The commitment scheme is computationally binding if a commitment can only
be opened to one value within the binding set Bck. For all PPT adversaries A

Pr

[
ck ← Gen(1λ); (m0, r0,m1, r1)← A(ck) :

m0 6= m1 and Comck(m0; r0) = Comck(m1; r1)

]
≈ 0,

where A outputs (m0, r0), (m1, r1) ∈ Bck.

The commitment scheme is compressing if the sizes of commitments are smaller than the sizes of the
committed values.

Compressing Commitments Based on SIS. We work with the standard SIS (shortest integer solution)
commitment scheme, which was already implicit in the aforementioned work of Ajtai [1] and uses uniformly

random matrices A1 ∈ Zr×2r logp qq and A2 ∈ Zr×nq as a commitment key, where n is the number of elements
that one wishes to commit to and p < q. A commitment to a vector m ∈ Znp involves choosing a random

vector r ∈ Z2r logp q
p and outputting the commitment vector v = A1r + A2m mod q. By the leftover hash
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lemma, (A1,A1r mod q) is statistically close to uniform, and so the commitment scheme is statistically
hiding.9 To prove binding, note that if there are two different (r,m) 6= (r′,m′) such that

v = A1r + A2m ≡ A1r
′ + A2m

′ (mod q),

then
A1(r− r′) + A2(m−m′) ≡ 0 (mod q)

and the non-zero vector s =

[
r− r′

m−m′

]
is a solution to the SIS problem for the matrix A = [A1 A2], i.e.

As ≡ 0 (mod q). As long as the parameters are set such that ‖s‖ is smaller than

min{q, 22
√
r log q log δ}10, (9)

the binding property of the commitment is based on an intractable version of the SIS problem [23].
In this paper, we will use the following lattice commitment scheme.

Gen(1λ)→ ck: Select parameters p, q, r, v,N,B, σ.

Pick uniformly random matrices A1
$← Zr×r logp qq and A2

$← Zr×nq .
Return ck = (p, q, r, v, `,N, β,Zq,A1,A2).
The commitment key defines the following message, randomness, commitment and binding spaces and
randomness distribution

Mck = Rnq , Rck = R2r logp q
q , Cck = Zrq

Bck =

{
s =

[
m
r

]
∈ Rn+2r logp q

q

∣∣∣ ||s|| < B

}
, DRck = Dr

σ.

Comck(m; r): Given m ∈ Znq and r ∈ Z2r logp q
q return c = A1r + A2s.

In the following, when we make multiple commitments to vectors m1, . . . ,m` ∈ Mck we write C =
Comck(M; R) when concatenating the commitment vectors as C = [c1, · · · , c`]. This corresponds to com-
puting C = A1R + A2M with M = [m1, · · · ,m`] and randomness R = [r1, · · · , r`].

2.2 Arguments of Knowledge

We will now formally define arguments of knowledge. Let R be a polynomial-time-decidable ternary relation.
The first input will contain public parameters (a.k.a. common reference string) pp. We define the correspond-
ing language Lpp indexed by pp that consists of statement u with a witness w such that (pp, u, w) ∈ R. This
is a natural generalisation of standard NP languages, which can be cast as the special case of relations that
ignore the first input.

A proof system consists of a PPT parameter generator K, and interactive and stateful PPT algorithms
P and V used by the prover and verifier. We write (tr, b)← 〈P(pp),V(pp, t)〉 for running P and V on inputs
pp, s, and t and getting communication transcript tr and the verifier’s decision bit b. We use the convention
that b = 0 means reject and b = 1 means accept.

Definition 2.3. Proof system (K,P,V) is called an argument of knowledge for the relation R if it is complete
and knowledge sound as defined below.

Definition 2.4. (K,P,V) has statistical completeness with completeness error ρ : N → [0; 1] if for all
adversaries A

Pr

[
pp← K(1λ); (u,w)← A(pp); (tr, b)← 〈P(pp, u, w),V(pp, u)〉 :

(pp, u, w) ∈ R and b = 0

]
≤ ρ(λ).

9 For improved efficiency, one could reduce the number of columns in A1 and make the commitment scheme
computationally-hiding based on the hardness of the LWE problem.

10 This constant δ is related to the optimal block-size in BKZ reduction [23], which is the currently best way of solving
the SIS problem. Presently, the optimal lattice reductions set δ ≈ 1.005.
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Definition 2.5. (K,P,V) is knowledge sound with knowledge error ε : N → [0; 1] if for all DPT P∗ there
exists an expected polynomial time extractor E such that for all PPT adversaries A

Pr

[
pp← K(1λ); (u, s)← A(pp); (tr, b)← 〈P∗(pp, u, s),V(pp, u)〉;

w ← EP∗(pp,u,s)(pp, u, tr, b) : (pp, u, w) /∈ R and b = 1

]
≤ ε(λ).

It is sometimes useful to relax the definition of knowledge soundness by replacing R with a relation R̄ such
that R ⊂ R̄. For instance, in this work, our zero-knowledge proofs of pre-images will have “slack”. Thus,
even though v is constructed using r,m with coefficients in Zp, we will only be able to prove knowledge of
vectors r̄, m̄ with larger norms. This extracted commitment is still binding as long as the parameters are set

so that the norm of the vector

[
r̄− r̄′

m̄− m̄′

]
is smaller than the bound in (9).

We say the proof system is public coin if the verifier’s challenges are chosen uniformly at random inde-
pendently of the prover’s messages. A proof system is special honest-verifier zero-knowledge if it is possible
to simulate the proof without knowing the witness whenever the verifier’s challenges are known in advance.

Definition 2.6. A public-coin argument of knowledge (K,P,V) is said to be statistical special honest-verifier
zero-knowledge (SHVZK) if there exists a PPT simulator S such that for all interactive and stateful adver-
saries A

Pr

[
pp← K(1λ); (u,w, %)← A(pp); (tr, b)← 〈P(pp, u, w),V(σ, u; %)〉 :

(pp, u, w) ∈ R and A(tr) = 1

]

≈ Pr

[
pp← K(1λ); (u,w, %)← A(pp); (tr, b)← S(pp, u, %) :

(pp, u, w) ∈ R and A(tr) = 1

]
,

where % is the randomness used by the verifier.

2.3 Amortized Proofs of Knowledge

P V

A ∈ Zr×vq ,S ∈ Zv×`,T ∈ Zr×`q A,T
s.t. AS = T

Y ← Dv×n
σ

W = AY W -

C
$← {0, 1}`×n

C�
Z := SC + Y

Abort if Rej(Z,SC, σ, ρ) = 1 Z - [
z1, . . . , zn

]
:= Z

Check:

{
∀i ∈ [n], ‖zi‖ ≤ β
AZ = TC + W

Fig. 2. Amortized proof for ` equations.

Baum et al. [5] give an amortized proof of knowledge for preimages of SIS commitments (see Fig. 2). The
prover P wants to prove knowledge of the secret matrix S such that

AS ≡ T (mod q) ,

10



where A,T are known to the verifier V.
The protocol begins with P selecting a “masking” value Y with small coefficients and sending W =

AY mod q. Then V picks a random challenge matrix C ∈ {0, 1}`×n, and sends it to P. Then, P computes
Z = SC + Y and performs a rejection-sampling step (Fig. 3) to make the distribution of Z independent
of S, and if it passes, sends Z to V. Finally, V checks that all columns of Z have small norms and that
AZ ≡ TC + W (mod q).

Rej(Z,B, σ, ρ)
01 u← [0, 1)

02 if u > 1
ρ
· exp

(
−2〈Z,B〉+‖B‖2

2σ2

)
03 then return 0
04 else
05 return 1

Fig. 3. Rejection Sampling [33,34].

This protocol can be proved zero-knowledge using exactly the same techniques as in [33,34], i.e. Lemma
2.7. One proves knowledge-soundness using a standard heavy-row argument (Lemma A.1).

Lemma 2.7 ([34]). Let B ∈ Zr×n be any matrix. Consider a procedure that samples Y ← Dr×n
σ and then

returns the output of Rej(Z := Y+B,B, σ, ρ) where σ ≥ 12
ln ρ ·‖B‖. The probability that this procedure outputs

1 is within 2−100 of 1/ρ. The distribution of Z, conditioned on the output being 1, is within statistical distance
of 2−100 of Dr×n

σ .

By choosing appropriate parameters (r, v, n, `), Baum et al. obtain a Õ(
√
N) proof size for the standard SIS

commitment scheme where N = v` is the number of entries in the matrix S.

3 Levelled Commitments

In this section, we define levelled lattice commitments and show how to obtain proofs of knowledge with
proof size Õ(N1/c) where N is the number of secrets and c is a constant. Recall that Baum et al. [5] give an
amortized proof of knowledge for statements of the form T = AS mod q. We call this a level-one commitment.
Roughly speaking, the main idea is to apply lattice commitments c− 1 times to the secret S in a structured
way.

In Appendix B, we extend this result and sketch out the details of an arithmetic circuit satisfiability
argument which uses the proof of knowledge based on levelled commitments as a key component.

From now on, we assume that the secret matrix S already includes the randomness. This not only
significantly improves the readability of our protocol, but also ensures that the standard SIS commitment
defined in Section 2.1 is both binding and hiding.

3.1 Overview

We define our levelled commitment scheme with d levels for constant d. Let n,m0,m1, ...,md, md+1 ∈ N
such that m0 = 1 and N = m1 · . . . · md+1. We denote Mi,j = mi · mi+1 · . . . · mj and for simplicity, we
write Mi = M0,i. Consider d distinct moduli q1 > q2 > . . . > qd. Let Ad, . . . ,A1 be matrices such that
Ad ∈ Zn×mdqd

and Ai ∈ Zn×n·miqi for i ∈ [d − 1]. Then, the levelled commitment is a function F defined as
follows:

Fi,j (S) :=

{
AiS mod qi, if i = j

Fi,j−1
((

IMi,j−1 ⊗Aj

)
S mod qj

)
if i < j.

(10)
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For example, when d = 2, the explicit formula for F is

F1,2 (S) = A1 · ((Im1
⊗A2) · S mod q2) mod q1. (11)

When d = 3, the explicit formula for F is

F1,3 (S) = A1 · ((Im1
⊗A2) ((Im1·m2

⊗A3) · S mod q3) mod q2) mod q1. (12)

Observe that explicit formulae for F written without tensor notation bear some similarity to Merkle trees
of SIS commitments. For instance, if d = 3 then

T = F1,3


 S1

...
Sm1m2


 = A1 ·



A2 ·

 A3S1

...
A3Sm2


...

A2 ·

A3Sm1(m2−1)+1

...
A3Sm1m2




.

Here, T represents a commitment to the whole tree. In our protocol, the statement will be

F1,d (S) ≡ T (mod q1), (13)

where S is a matrix consisting of small elements.
For readability, let us introduce commitments for intermediate vertices in this tree. We start from the

leaves and denote them as S[i1,...,id−1] where each ik ∈ [mk]. More concretely, write

S =



S[1,...,1,1]

S[1,...,1,2]

...
S[1,...,1,md−1]

S[1,...,2,1]

...
S[m1,...,md−1]


, where S[i1,...,id−1] ∈ Zmd×md+1 . (14)

Now we can define commitments for the intermediate vertices in the commitment tree. Fix k ∈ [d − 2] and
recursively define

S[i1,...,ik] := (Imk+1
⊗Ak+2)


S[i1,...,ik,1]

S[i1,...,ik,2]

...
S[i1,...,ik,mk+1]

 mod qk+2 ∈ Znmk+1×md+1 . (15)

Let us also set S[] := (Im1
⊗A2)

 S[1]

...
S[m1]

 mod q2 ∈ Znm1×md+1 . Then, we have A1S[] ≡ T (mod q1).

Relaxed Opening. Recall that our protocol aims to prove knowledge of a small matrix S such that
F1,d (S) ≡ T (mod q1). However, our extraction algorithm finds a slightly larger (but still small) matrix S′

and additional matrices R1, . . . ,Rd−1 such that

F̃1,d (S′; R1, . . . ,Rd−1) ≡ T (mod q1)
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where F̃ is defined by

F̃i,j (S′; Ri, . . . ,Rj−1) := F̃i,j−1(X mod qj + qjRj−1; Ri, . . . ,Rj−2) (16)

and
X := (IMi−1,j−1

⊗Aj)S
′

for i < j and F̃i,i(S
′) := (Imi−1 ⊗Ai)S

′ mod qi. For example, if d = 2 then F̃1,d is defined to be

F̃1,d(S
′; R1) = A1 · ((Im1 ⊗A2) · S′ mod q2 + R1 · q2) mod q1 (17)

similarly to (3). Clearly, if R1, . . . ,Rd−1 are all zero matrices then F̃1,d (S′; R1, . . . ,Rd−1) = F1,d(S
′).

We observe that this is enough for practical applications as long as A1, . . . ,Ad are binding. Indeed,
one can show, using similar methods to Section 1.2, that Fi,j is binding based on the hardness of SIS for
appropriate parameter choice q1, . . . , qd (see Section 3.4).

Formally, given matrices Ad, . . . ,A1 such that Ad ∈ Zn×mdq and Ai ∈ Zn×n·miq for i ∈ [d−1], the relation
we give a zero-knowledge proof of knowledge for the relation

R =


(pp, u, w) =

(
(q,m, n,B,BR,A1, . . . ,Ad),T, (S

′, R̄)
) ∣∣∣∣

J‖si‖ ≤ 2dBKi∈[md+1] ∧ J‖Ri‖∞ ≤ BRKi∈[d−1] ∧ JRi ∈ ZnMi×md+1Ki∈[d−1]

∧ (S′,T) ∈ ZMd×md+1 × Zn×md+1
q1 ∧ F̃1,d

(
S′; R̄

)
≡ T (mod q1)


where we denote R̄ := (R1, . . . ,Rd−1),S′ := [s1 . . . smd+1

],q := (q1, . . . , qd) and m := (m0, . . . ,md+1).

3.2 The Main Protocol

We present our zero-knowledge proof of knowledge in Fig. 4. First, we describe supporting algorithms that
we will use in the protocol. Firstly, BTi takes a matrix Z which has a number of rows divisible by mi and
outputs its block transpose:

BTi(Z) :=
[
Z1 · · ·Zmi

]
, where Z =

 Z1

...
Zmi

 .

On the other hand, Foldi is a recursive algorithm which takes as input Mi matrices U1, . . . ,UMi
and i + 1

challenge matrices C1, . . . ,Ci+1. If i = 0 then it simply outputs U1C1. Otherwise, it splits the vector
(U1, . . . ,UMi

) intomi shorter ones, i.e. Ūj = (U(j−1)Mi−1+1, . . . ,UjMi
) and runs U′j = Foldi−1(Ūj ; C1, . . . ,Ci)

for each j ∈ [mi]. Eventually, it outputs
[
U′1 · · ·U′mi

]
Ci+1. We show more properties of this algorithm in

the correctness section.
The statement is F1,d (S) ≡ T (mod q1). The protocol begins with the prover P selecting a masking

value for Y with small coefficients and sending W = AdY mod qd. In the i-th round, the verifier V picks a
random challenge Ci and sends it to P. The prover applies Fold to the intermediate commitments

Vi = (S[1,...,1],S[2,1,...,1], . . . ,S[m1,1,...,1],S[1,2,...,1], . . . ,S[m1,...,mi−1])

as well as all the previous challenges C1, . . . ,Ci sent by V. If i = d then P also adds Y and runs rejection
sampling. Next, it returns

Zi = Foldi−1(Vi; C1, . . . ,Ci) + Ji = dKY.

Finally, the verifier checks that all the Zi are small and for all i ∈ [d− 1]:

Ai+1Zi+1 ≡ BTi(Zi)Ci+1 + Ji = d− 1KW (mod qi+1).

We assume that
(
IMd−1

⊗Ad

)
S mod qi is public, although this information is not used by the verifier.

Consequently, for all 0 ≤ k < d− 1 and any i1, . . . ik ∈ [m1]× . . .× [mk], S[i1,...,ik] is known as well.

13



P0(pp,S)

01 Y ← D
md×λ
σ

02 W := AdY mod qd
03 return (W, St = Y)

Pi(pp, (C1, . . . ,Ci),S, St = Y) for i ∈ [d]
04 if i = 1 then
05 Vi := S[]

06 else Vi := (S[1,...,1],S[2,1,...,1], . . . ,S[m1,...,mi−1])
07 V′i := Foldi−1(Vi;C1, . . . ,Ci)
08 if i = d then
09 Zd := V′d + Y
10 Abort if Rej(Zd,V

′
d, σ, ρ) = 1

11 else Zi := V′i
12 return (Zi, St = Y)

Foldi(U1, . . . ,UMi ;C1, . . . ,Ci+1)
13 if i = 0
14 then return U1C1

15 U′j := Foldi−1(U(j−1)Mi−1+1, . . . ,UjMi−1 ;C1, . . . ,Ci)

16 return
[
U′1 · · ·U′mi

]
Ci+1

BTi(Z)

17 Write Z =

 Z1

...
Zmi


18 return

[
Z1 · · ·Zmi

]
V(pp,T, (Ci,Zi) for i ∈ [d])

19
[
z1, . . . , zmd+1

]
:= Zd

20 Check:
21 1. ∀j ∈ [md+1], ‖zj‖ ≤ B
22 2. ∀i ∈ [d− 1], ‖Zi‖∞ ≤Mi−1md+1λ

i−1 qi+1−1

2

23 3. A1Z1 ≡ TC1 (mod q1)
24 4. ∀i ∈ [d− 2],Ai+1Zi+1 ≡ BTi(Zi)Ci+1 (mod qi+1)
25 5. AdZd ≡ BTd−1(Zd−1)Cd + W (mod qd)

Fig. 4. Levelled Lattice Commitment Protocol.

3.3 Security Analysis

We start by proving certain properties of the Fold algorithm defined in Fig. 4. They will be crucial when
proving correctness of our protocol.

Lemma 3.1. Let i ∈ [d] and k, `,m ∈ N. Take arbitrary U1, . . . ,UMi
∈ Zk×md+1 and C1, . . . ,Ci+1 such

that C1 ∈ {0, 1}md+1×λ and for j > 1, Cj ∈ {0, 1}mj−1λ×λ. Then, the following hold.

(i) There exist matrices D1, . . . ,DMi
∈ Zmd+1×λ such that ‖Di‖∞ ≤ λi and

Foldi(U1, . . . ,UMi
; C1, . . . ,Ci+1) =

Mi∑
t=1

UtDt.

(ii) For all A ∈ Zm×k,

A · Foldi(U1, . . . ,UMi ; C1, . . . ,Ci+1) = Foldi(AU1, . . . ,AUMi ; C1, . . . ,Ci+1).

(iii) Suppose that each Uj can be written as Uj =

Uj,1

...
Uj,`

, where all matrices Uj,j′ have the same dimensions.

Then:

Foldi(U1, . . . ,UMi
; C1, . . . ,Ci+1) =

Foldi(U1,1, . . . ,UMi,1; C1, . . . ,Ci+1)
...

Foldi(U1,`, . . . ,UMi,`; C1, . . . ,Ci+1)

 .
Proof. See Section A.1.

We are now ready to prove security properties of our protocol.

Theorem 3.2. Let s ≥ maxi1,...,id−1
s1(S[i1,...,id−1]), ρ > 1 be a constant, σ ∈ R be such that σ ≥ 12

ln ρMd−1sλ
d−1√md+1λ,

and B =
√

2mdσ. Then the protocol described in Fig. 4 is a zero-knowledge proof of knowledge for R.
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Proof. We prove correctness and zero-knowledge, and prove knowledge soundness separately in Theorem 3.3.
Correctness. If P and V are honest then the probability of abort is exponentially close to 1− 1/ρ (see

Lemma 2.7). Indeed, note that by Lemma 3.1 (i) and the triangle inequality we know that ‖V ′d‖ is bounded
above by Md−1sλ

d−1√md+1λ. In a similar manner, one can show that the second verification condition is
satisfied. Now, we show that the equations verified by V are true.

Firstly, note that
A1Z1 = A1Fold(S[]; C1) = A1S[]C1 ≡ TC1 (mod q1).

Now, fix i ∈ [d− 1]. We know that Zi = Foldi−1(Vi; C1, . . . ,Ci) (line 7) where

Vi = (S[1,...,1],S[2,1,...,1], . . . ,S[m1,1,...,1],S[1,2,...,1], . . . ,S[m1,...,mi−1]).

By definition, each S[j1,...,ji−1] is equal to  Ai+1S[j1,...,ji−1,1]

...
Ai+1S[j1,...,ji−1,mi]

 .
By Lemma 3.1 (ii) and (iii), we have

Zi =

 Ai+1Foldi−1(Vi,1; C1, . . . ,Ci)
...

Ai+1Foldi−1(Vi,mi ; C1, . . . ,Ci)

 ,
where

Vi,j = (S[1,...,1,j],S[2,1,...,1,j], . . . ,S[m1,1,...,1,j],S[1,2,...,1,j], . . . ,S[m1,...,mi−1,j]).

Observe that Vi+1 is indeed equal to the concatenation of vectors Vi,1, . . .Vi,mi . Then, by applying the BT
function to Zi and by definition of Fold, we obtain:

BTi(Zi)Ci+1 =
[
Ai+1V̄1 · · · Ai+1V̄mi

]
Ci+1

= Ai+1

[
V̄1 · · · V̄mi

]
Ci+1

= Ai+1Foldi(Vi+1; C1, . . . ,Ci+1)

= Ai+1Zi+1,

(18)

where V̄j := Foldi−1(Vi,j ; C1, . . . ,Ci). The last verification equation is also satisfied using the same argument
as before and noting that AdY = W.

Eventually, since each coefficient of Z is statistically close to Dσ, then according to (8) we have ‖zi‖ ≤√
2mdσ with overwhelming probability.

Honest-Verifier Zero-Knowledge. We will now prove that our protocol is honest-verifier zero-knowledge.
More concretely, we show that it is zero-knowledge when the prover does not abort prior to sending Zd. We
recall that for all 0 ≤ k < d− 1, S[i1,...,ik] is known to adversaries.

Define a simulator S as follows. It first selects C1
$← {0, 1}md+1×λ and Cj

$← {0, 1}mj−1λ×λ for j =

2, . . . , d. Next, S samples Zd ← D
Md−1×λ
σ . Then, for i ∈ [d−1], the simulator sets Zi := Foldi−1(Vi; C1, . . . ,Ci)

where
Vi = (S[1,...,1],S[2,1,...,1], . . . ,S[m1,1,...,1],S[1,2,...,1], . . . ,S[m1,...,mi−1]).

Finally, S sets W := AdZd − BTd−1(Zd−1)Cd and outputs

(W,C1,Z1, . . . ,Cd,Zd).

It is clear that V verifies with overwhelming probability. We already argued in the section on correctness
that in the real protocol when no abort occurs the distribution of Zd is within statistical distance 2−100 of

D
Md−1×λ
σ . Since W is completely determined by Ad,Zd−1,Zd,Cd and additionally, the distribution of Zi out-

put by S is identical to the one in the real protocol for i ∈ [d−1], the distribution of (W,C1,Z1, . . . ,Cd,Zd)
output by S is within 2−100 of the distribution of these variables in the actual non-aborting run of the
protocol. ut
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Knowledge Soundness. We describe a knowledge extractor E which finds small matrices S′ and R1, . . . ,Rd−1
such that T = F̃1,d (S′; R1, . . . ,Rd−1).

Theorem 3.3. For any prover P∗ who succeeds with probability ε > 2−λ+1 · (4dN)2d over its random tape

χ ∈ {0, 1}x and the challenge choice C1, . . . ,Cd, such that C1
$← {0, 1}md+1×λ and Cj

$← {0, 1}mj−1λ×λ

for j > 1, there exists a knowledge extractor E running in expected time poly(λ)/ε who can extract S′ and
R1, . . . ,Rd−1 such that

F̃1,d (S′; R1, . . . ,Rd−1) = T.

Moreover, each column of S′ has norm at most 2dB and ∀k ∈ [d− 1],

‖Rk‖∞ ≤ 2k
(
Mk−1md+1λ

k−1 + 2
)
.

Proof. We provide a sketch of the proof here and refer to Section A.2 for more details. In summary, the
extractor E constructs a tree T of partial transcripts similar to [14,12] where each vertex of T (apart from
the root) is created using extraction techniques from [5] based on the heavy-rows argument. For readability,
we describe the first few steps of extraction.

First, we can fix α ∈ [md+1] and define an extractor E which finds small vectors s′, r1, . . . , ri−1 such that

F1,d (s′; r1, . . . , rd−1) = tα,

where tα is the α-th column vector of T 11. Then, using the extraction strategy from [5], we can find Z′1,Z
′′
1

such that

A1(z′1,u − z′′1,u) ≡ tα (mod q1)

for some u, where z′1,u (resp. z′′1,u) is the u-th column of Z′1 (resp. Z′′1). Hence, E must find a preimage of
z′1,u and z′′1,u. We focus on the former. By symmetry, the latter can be obtained analogously.

Suppose that we continue running the prover P∗ given the first response Z′1. We want to get a preimage
of the u-th column of Z′1. Note that when applying BT1 to Z′1, the u-th column vector gets split into the
u-th, u + λ-th,..., u + (m1 − 1)λ-th columns. Take arbitrary j ∈ {u + iλ : 0 ≤ i < m1}. Then, again by
rewinding P∗, we can get Z′2,Z

′′
2 such that

A2ẑ2,j = A2(z′2,v − z′′2,v) ≡ BT(Z′1)j (mod q2)

for some v, where ẑ2,j := z′2,v − z′′2,v and BT1(Z′1)j denotes the j-th column of BT1(Z′1). By repeating this
argument for all possible j, we obtain:

(Im1
⊗A2)

 ẑ2,u
...

ẑ2,u+(m1−1)λ

 =

 BT1(Z′1)u
...

BT1(Z′1)u+(m1−1)λ

 = z′1,u (mod q2).

Observe how the tree structure appears in the argument. We first find Z′1 and Z′′1 which correspond to the
two children of the root. Then, for each such vertex V , we repeat the same argument m1 times and add new
children W1,W

′
1, . . . ,Wm1 ,W

′
m1

of V . In general, the tree T has exactly 2iMi−1 vertices on each level i > 0.
Eventually, the extracted solution consists of responses which correspond to the leaves of T. We also get

additional terms Ri since each verification equation holds for different moduli. Hence, in order to make any
implications from them, we need to first “lift” the previous verification equation and then we can apply it
to the next one. The Ri terms are the result of such lifting. ut

3.4 Asymptotic Parameter Choice

In this section, we set parameters for our protocol which minimise the total communication size (see Table

5). More concretely, we pick q1, . . . , qd and m1, . . . ,md+1 (conditioned on the fact that N =
∏d+1
i=1 mi is fixed
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Parameter Size Description

λ Security parameter
p poly(λ) The largest value of the secrets, i.e. ‖S‖∞
s Operator norm of S
N m1 · . . . ·md+1 = poly(λ) Number of secrets
n d · O(logN) Number of rows in A1, . . . ,Ad

qi O
(
Nd−i+2(2λ)dp2

)
Modulus corresponding to the commitment Ai

mi

(
O
(

d·logN
d2λ·log2 N+λ2

)
·N
) 1
d+1

i−th dimension of S for i ∈ [d− 1]

md O
(
d2·log2 N+λ
λd·logN

) d
d+1 ·

(
N
λ

) 1
d+1 d−th dimension of S

md+1

(
O
(

λdd·logN
d2·log2 N+λ

)
·N
) 1
d+1

(d+ 1)−th dimension of S

σ 12
ln ρ

Md−1sλ
d−1
√
md+1λ Standard deviation for rejection sampling

B
√

2md · σ Soundness slack from proof of knowledge

BR (2λ)dN · σ Infinity norm of extracted matrices R1, ...,Rd−1

Fig. 5. Parameter choice for our protocol.

and N = O(λr) for some constant, integer r). For readability, we consider asymptotic parameter choice,
neglecting constant terms and focussing on the leading terms using “big-O” notation.

To begin with, we compute simple upper bounds for the norms of the prover’s responses. First, let us
assume that secret elements in S have size at most p < N , i.e. ‖S‖∞ ≤ p. Using the Cauchy-Schwarz
inequality and the definition of an operator norm, we get a bound s ≤ Np2. Now, we provide a simple bound
on B which is defined in Theorem 3.2:

B =
√

2mdσ =
√

2md ·
12

ln ρ
Md−1sλ

d−1√md+1λ = O(λdN2p2).

We note this bound can be substantially improved. Concretely,

s ≤ mdmd+1p
2

since we only consider the operator norm of md×md+1 matrices in Zp. By picking the parameters set below,
we get s = O(λ2N2/d+1). However, for readability, we demonstrate a simpler bound.

We know from Theorem 3.3 that for k ∈ [d− 1] we have

‖Rk‖∞ ≤ 2k
(
Mk−1md+1λ

k−1 + 2
)
≤ (2λ)dN =: BR.

We are ready to set qd. In order to make Ad binding and satisfy (9), one needs to pick qd > 2‖s′i‖ where s′i is
the i-th column of the extracted matrix S′ in Theorem 3.2. We know that ‖s′i‖ ≤ 2dB and therefore choose

qd = O
(
(2λ)dN2p2

)
.

Next, let us fix i ∈ [d − 1] and consider the explicit formula for Fi,j in (16) without tensor notation. One
observes that each copy of the matrix Ai is multiplied from the right-hand side by a matrix of the form
U = (V mod qi+1) + qi+1R and we know that ‖R‖∞ ≤ (2λ)dN . Thus, we just need to choose qi which
satisfies

qi > 2N‖U‖∞ ≥ N ·
(
qi+1 + 2 · (2λ)dN

)
= Nqi+1 + 2 · (2λ)dN2 .

We solve this recursive formula for qi and obtain

qi = O
(
Nd−i

(
(2λ)dN2p2 +

2 · (2λ4)N2

N − 1

)
− 2 · (2λ4)N2

N − 1

)
= O

(
Nd+2−i(2λ)dp2

)
.

(19)

11 By collecting extracted solutions for all α, we can merge them and thus obtain the overall solution.
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Hence, we have log qi ≤ log q1 = d·O(logN) for i ∈ [d]. Finally, in order to make all commitments A1, . . . ,Ad

satisfy (9), we pick n = d · O(logN).
Now, let us set m1, . . . ,md+1 which minimise the total communication cost of our protocol, including the

statement T. First, note that the verifier V sends

λmd+1 + λ2 · (m1 + . . .+md−1)bits

as challenges. Next, consider the communication cost from the prover’s side. At the beginning, P sends W
which has nλ log qd = O(d2λ log2N) bits. Since it does not contain any m1, . . . ,md+1, we ignore this term
for now. Next, we note that from the second verification equation, each Zi sent by P satisfies:

log (2‖Zi‖∞) ≤ log
(
Mi−1md+1λ

i−1(qi+1 − 1)
)
≤ log(Nλdqi+1) = d · O(logN)

for i ∈ [d − 1]. On the other hand, with overwhelming probability we have ‖Zd‖∞ ≤ 6σ = O(λdN2p2) and
thus

log (2‖Zd‖∞) = O(d log λ+ logN) = d · O(logN).

Therefore, P sends in total (excluding W)

nmd+1 log q1 +

d−1∑
i=1

nmiλ log (2‖Zi‖) +mdλ log (2‖Zd‖∞)

≤

(
nmd+1 +

d−1∑
i=1

nmiλ+mdλ

)
d · O(logN)

(20)

bits. Eventually, this can be upper-bounded by:

d−1∑
i=1

(nλd · O(logN) + λ2) ·mi + λd · O(logN) ·md + (nd · O(logN) + λ) ·md+1.

In order to minimise this expression, we want to set m1, . . . ,md+1 in such a way that all these d+ 1 terms
are (almost) equal. Fix md+1. Then,

md =
nd · O(logN) + λ

λd · O(logN)
·md+1 and mi =

md+1

λ
for i ∈ [d− 1].

We compute an exact expression for md+1 as follows:

N =

d+1∏
i=1

mi =
nd · O(logN) + λ

λdd · O(logN)
(md+1)

d+1

and hence we can set

md+1 =

(
λdd · O(logN)

nd · O(logN) + λ
·N
) 1
d+1

<
(
λd+1N

) 1
d+1 = λ ·N

1
d+1 .

Then, the total communication cost (now including W) is bounded above by:

O(d2λ log2N) + (d+1)(nd · O(logN) + λ) ·md+1

= O
(
d2λ log2N + (d+ 1)(d2 · log2N + λ)λN

1
d+1

)
= O

(
N

1
d+1 · (d3λ log2N + dλ2)

)
.

(21)

To obtain logarithmic proof size, set d+ 1 = logN , giving communication cost

λ · O
(
log5N + λ logN

)
.
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4 Bulletproofs Folding Protocol

In the discrete logarithm setting, one can apply recursive arguments as in [14,12] and thus obtain logarithmic
proof sizes. We show how these techniques can also be used in the lattice setting. Concretely, suppose the
statement is as usual As = t where A ∈ R1×k, s ∈ Rk with ‖s‖∞ ≤ p and R = Z[X]/(Xn + 1). Then the
number of secrets N is equal to kn. We highlight that the only variables which are defined the same in this
section and the previous one are λ (security parameter), N (number of secrets) and p (the largest coefficient
of the secrets).

We fold the initial statement as follows. Let us write A and s as

A =
[
A1 A2

]
and s =

[
s1
s2

]
where s1, s2 ∈ Rk/2.

Hence, if we define l = A1s2 ∈ R and r = A2s1 ∈ R then for all c ∈ R,

(cA1 + A2)(s1 + cs2) = c2l + ct + r

. This gives the following proof of knowledge of s.

P V

l = A1s2, r = A2s1
l, r

c
$← {Xi : i ∈ Z2n} ⊂ R

c

z = s1 + cs2
z

(cA1 + A2)z
?
= c2l + ct + r

‖z‖∞
?
≤ 2p

The vector z has length k/2, so this protocol has half the communication cost of simply sending s. We can
repeat this protocol for the new statement Bz = t′ where

B = cA1 + A2 and t′ = c2l + ct + r.

Iterating the folding trick down to vectors of length 1 yields a protocol with communication cost O(log k).
Extraction works in principle as follows. First, let us focus on extracting in the one-round protocol presented
above. By rewinding we can get three equations

(ciA1 + A2)zi = c2i l + cit + r, i = 1, 2, 3

for three different challenges ci and answers zi. Combine these to obtain

A1

(
3∑
i=1

λicizi

)
+ A2

(
3∑
i=1

λizi

)
=

3∑
i=1

λic
2
i l +

3∑
i=1

λicit +

3∑
i=1

λir. (22)

If λ = (λ1, λ2, λ3)T is a solution of the systemc21 c22 c23c1 c2 c3
1 1 1

λ1λ2
λ3

 =

0
1
0

 ,

then Equation (22) implies

A1

(
3∑
i=1

λicizi

)
+ A2

(
3∑
i=1

λizi

)
= A

3∑
i=1

λi

[
cizi
zi

]
= t.
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Hence, we get a preimage of t but the problem is that in general it will not be short since λi can be large.
In order to estimate the size of λi, we use the fact that for i 6= j, polynomials of the form 2/(Xi −Xj) ∈ R
have coefficients in {−1, 0, 1} ([9]). Also, we know by the properties of Vandermonde matrices that λi are of
the form

± f

(Xu −Xv)(Xv −Xw)(Xw −Xu)

for some pairwise distinct u, v, w ∈ Z2n and ‖f‖1 ≤ 2. Therefore, we have ‖8λi‖∞ ≤ 2n2. Hence, we have
extracted a solution z̄ which satisfies Az̄ = 8t and

‖z̄‖∞ =

∥∥∥∥∥
3∑
i=1

8λi

[
cizi
zi

]∥∥∥∥∥
∞

≤
3∑
i=1

∥∥∥∥8λi

[
cizi
zi

]∥∥∥∥
∞
≤

3∑
i=1

2n2 · 2np = 12n3p.

The extractor for the full protocol constructs a tree of partial transcripts similar to [14,12] and applies
the strategy we described above at every level. Due to the small soundness error of order 1/n, the protocol
has to be repeated sufficiently many times to achieve negligible soundness error.

Proof size and slack. Let us consider the protocol with d ≤ log k rounds. Then, using the same extraction
strategy as above recursively, we obtain a relaxed opening z̄ to the modified equation: Az̄ = 8dt such that

‖z̄‖∞ =
(
(6n3)d · 2d · p

)
= O

(
n3d · 12d · p

)
.

Therefore, we set q = O
(
n3d · 12d · p

)
. The proof size is then equal to

N log(2dp)/2d + 2dn log q

which is
O(N log(2dp)/2d + d2n log n).

Since this gives a soundness error of O(1/n), we repeat the protocol λ/ log n times in order to get soundness
error 2−λ. This gives a total proof size of

O
(
λN log(2dp)

2d log n
+ λd2n

)
.

Suppose that we follow this protocol all the way down to vectors of length 1, i.e. d = log k. Then, we have a
“slack” 12 of

‖z̄‖∞ = O
(
n3 logNN4p

)
since k = N/n < N . The proof size is bounded by

O
(
λn logN + λn log2N

)
.

Comparison. We compare the Bulletproofs approach with levelled commitments introduced in Section 3 in
terms of both proof sizes and slack. The latter one is not clearly defined in context of levelled commitments
since one extracts some secret matrix S′ along with additional terms R1,R2, . . . ,Rd−1 (where d is a number
of levels). Therefore, we only focus on the size of S′ and ignore the other terms. We provide a comparison of
sizes for both techniques in Fig. 6. Firstly, we observe that none of these methods provide a way to extract
an exact solution to the original equation. Indeed, with lattice commitments we only manage to extract S′

along with extra terms R1, . . . ,Rd−1 which satisfy (16). On the other hand, with Bulletproofs we extract
a relaxed opening z̄ such that Az̄ = 8dt. In practice, this implies that the slack we have for z̄ gets also
multiplied by the relaxation factor 8d in front of t. For d = log k, this factor becomes k3 = N3/n3.

12 Slack here means the Euclidean norm of an extracted solution.
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Bulletproofs Levelled Commitments

Logarithmic proof size O
(
λn logN + λn log2N

)
O
(
λ log5N + λ2 logN

)
Corresponding slack O

(
n3 logNN4

√
Np
)

O(λlogNN3p2)

poly(λ,N1/c) proof size O
(
λN1/c logN + λn log2N

)
O
(
N1/c · (c3λ log2N + cλ2)

)
Corresponding slack O

(
n3(c−1) logN/c ·N4(c−1)/c

√
N · p

)
O
(
(2λ)cN2p2

)
Fig. 6. Comparison of lattice Bulletproofs and levelled commitments.

From Fig. 6 we deduce that Bulletproofs folding offers smaller proof size at the cost of larger slack. Indeed,
if one is not limited with any particular amount of slack then one can achieve quadratic-logarithmic proof
size as shown on the top-left part of the table. Now, suppose that we can only tolerate B = Nα of slack for
some α. The question would be which method achieves smaller proof size given this condition. Note that if
α = 7.5 then by the argument above, one would simply use Bulletproofs (by setting n = 2). Hence, assume
that 3 ≤ α ≤ 7. For readability, from now on we do not write the “big-O” for each expression. Nevertheless,
we still consider asymptotic parameters.

Let us first focus on levelled commitments – we find c such that (2λ)cN2p2 = B. Then

c =
log(B/N2p2)

log(2λ)
≈ (α− 2) · logN

log(2λ)
≈ (α− 2)r

where N = λr for some constant r 13. Then, the levelled commitments achieve Õ(N1/(α−2)r) proof size. Now
consider the Bulletproofs solution. To begin with, we would like to find d such that n3d · 12d ·

√
Np = B. By

solving this equation we have

d ≈ log(B/
√
N)

3 log n+ 4
=

(α− 1/2) logN

3 log n+ 4
= γ logN

where γ = (α − 1/2)/(3 log n + 4). Then, the Bulletproofs protocol has Õ(N1−γ) proof size. Therefore, we
just need to compare 1− γ with 1/(α− 2)r. The main observation is that for r ≥ 3, the quadratic function

fr(x) := (15− 2x)(x− 2)r − 14

is positive when 3 ≤ x ≤ 7. Hence

1

(α− 2)r
<

15− 2α

14
≤ 1− α− 1/2

3 log n+ 4
= 1− γ.

This shows that if one is given only a limited (and relatively small) slack, one should consider using the
levelled commitments approach to obtain small sub-linear proof sizes.
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A Security Proofs

A.1 Proof of Lemma 3.1

First, we prove (i) by induction on i. When i = 0, we have Fold0(U1; C1) = U1C1 and ‖C1‖∞ ≤ λ0 = 1.
Now, assume that the statement holds for some i− 1 ≥ 0. By definition, we have

Foldi(U1, . . . ,UMi
; C1, . . . ,Ci+1) =

[
U′1 . . .U

′
mi

]
Ci+1

where U′j := Foldi−1(U(j−1)Mi−1+1, . . . ,UjMi−1
; C1, . . . ,Ci). Using the induction hypothesis, we can write

U′j =

Mi−1∑
k=1

U(j−1)Mi−1+kD(j−1)Mi−1+k

for some D(j−1)Mi−1+k such that ‖D(j−1)Mi−1+k‖∞ ≤ λi−1. Let us write

Ci+1 =

 Ci+1,1

...
Ci+1,mi

 where Ci+1,j ∈ {0, 1}λ×λ.
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Then,

Foldi(U1, . . . ,UMi
; C1, . . . ,Ci+1)

=

mi∑
j=1

U′jCi+1,j

=

mi∑
j=1

Mi−1∑
k=1

U(j−1)Mi−1+kD(j−1)Mi−1+kCi+1,j .

(23)

To finish the proof, we observe that for any j, k we have

‖D(j−1)Mi−1+kCi+1,j‖∞ ≤ λi−1λ = λi.

Next, let us show (ii) using induction on i. Let i = 0. Then, we get

A · Fold0(U1; C1) = AU1C1 = Fold0(AU1; C1).

Suppose that the statement holds for some i− 1 ≥ 0. By definition, we have

A · Foldi(U1, . . . ,UMi
; C1, . . . ,Ci+1) = A

[
U′1 . . .U

′
mi

]
Ci+1

=
[
AU′1 . . .AU′mi

]
Ci+1,

(24)

where U′j is defined above. By the induction hypothesis, we know that

AU′j = Foldi−1(AU(j−1)Mi−1+1, . . . ,AUjMi−1
; C1, . . . ,Ci).

Thus, again by the definition of Fold:[
AU′1 · · ·AU′mi

]
Ci+1 = Foldi(AU1, . . . ,AUMi

; C1, . . . ,Ci+1)

hence the result holds.
We now prove (iii), again by induction on i. If i = 0 then

Fold0(U1; C1) = U1C1 =

U1,1

...
U1,`

C1 =

U1,1C1

...
U1,`C1

 =

Fold0(U1,1; C1)
...

Fold0(U1,`; C1)

 .
Assume that the statement is true for some i− 1 ≥ 0. Then, by definition of Fold we have

Foldi(U1, . . . ,UMi
; C1, . . . ,Ci+1) =

[
U′1 · · ·U′mi

]
Ci+1

where U′j is defined above. By the induction hypothesis, we get

U′j =

Foldi−1(U(j−1)Mi−1+1,1, . . . ,UjMi−1,1; C1, . . . ,Ci)
...

Foldi−1(U(j−1)Mi−1+1,`, . . . ,UjMi−1,`; C1, . . . ,Ci)

 .
Let V ′j,t = Foldi−1(U(j−1)Mi−1+1,t, . . . ,UjMi−1,t; C1, . . . ,Ci). Note that[

U′1,t · · ·U′mi,t
]
Ci+1 = Foldi(U1,t, . . . ,UMi,t; C1, . . . ,Ci+1). (25)

Therefore, Foldi(U1, . . . ,UMi ; C1, . . . ,Ci+1) is equal to

[
U′1 · · ·U′mi

]
Ci+1 =

U′1,1 · · · U′mi,1
... · · ·

...
U1,` · · · Umi,`

Ci+1 =


[
U′1,1 · · ·U′mi,1

]
Ci+1

...[
U′1,` · · ·U′mi,`

]
Ci+1


and thus, the result holds by applying (25). ut
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A.2 Proof of Theorem 3.3

Denote by s′k the k-th column vector of S′ and rj,k the k-th column vector of Rj . Then, using induction one
can show that

Fi,j (S′; Ri, . . . ,Rj−1) :=
[
r′1 . . . r

′
md+1

]
,

where
r′k = Fi,j (sk; ri,k, . . . , rj−i,k) .

Moreover, if we write

s′ =

 s′1
...

s′mi−1

 and r̂k =

 r̂1,k
...

r̂mi−1,k

 for k = i+ 1, . . . , j − 1,

then we also have:
Fi,j (s′; r̂i, . . . , r̂j−1) = (Imi−1 ⊗Ai)X̄ mod qi (26)

where

X̄ =


 Fi+1,j(s

′
1; r̂1,i+1, . . . , r̂1,j−1)

...
Fi+1,j(s

′
mi−1

; r̂mi−1,i+1, . . . , r̂mi−1,j−1)

+ qi+1r̂i

 .

This result can be easily shown by induction using the fact that

IMi−1,k−1
⊗Ak = Imi−1

⊗ (IMi,k−1
⊗Ak).

Therefore, we can just fix α ∈ [md+1] and define an extractor E which finds small vectors s′, r1, . . . , ri−1 such
that

F1,d (s′; r1, . . . , rd−1) = tα,

where tα is the α-th column vector of T.
Firstly, the extractor E constructs a tree T of partial transcripts using the algorithm TreeConstruct defined

in Fig. 7. Informally, a vertex V on level i of T represents a situation when prover P∗ did already receive
certain i challenges and sent i responses. Concretely, each vertex has the following attributes: chal, resp, index.
The former two represent the last challenge and the last response from P∗ respectively. For simplicity,
we denote respindex(V ) to be the index(V )-th column of the matrix resp(V ). Now, we define children of
V by picking candidates for the i + 1-th challenge using rewinding and techniques from [5], and get the
corresponding responses. One notices that the partial transcript (or even a full one if we consider a leaf) can
be obtained by starting at some vertex V and collecting values chal, resp for each node on the path up to the
root. On the other hand, index says for which column of resp(V ) we are interested in finding a corresponding
opening.

Extractor E starts by obtaining the masking matrix W from P∗ and running TreeConstruct0([],⊥,T, α).
Let root be the root of T , also denoted as T []. Then, set C(root) = ⊥, resp(root) = T and index(root) = α.
For a vertex V located on level i 14 of the tree T , we denote it by T [j1, . . . , ji] where each jk ∈ [mk−1]×{0, 1}
(or T [] if V = root). Children of V are of form T [j1, . . . , ji, j] where j ∈ [mi] × {0, 1}. Left children (resp.
right children) of V are the ones for which j ∈ [mi] × {0} (resp. j ∈ [mi] × {1}). We define LeftC(V ) to be
the vector  z0

...
zmi−1

 , where zk = respindex(T [j1, . . . , ji, (k, 0)]) ,

and define RightC(V ) in a similar fashion.

14 A vertex V is on level i if the distance from the root to V equals i.
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TreeConstructi([j1, . . . , ji],Ci,Zi, t)
01 V = T [j1, . . . , ji]
02 chal(V ) = Ci, resp(V ) = Zi, index(V ) = t
03 (root, V1, . . . , Vi) :=vertices on the path from root to V where V = Vi
04 if i = d then
05 return
06 zt := t-th column vector of Zi

07 Write zt =

 zt,0
...

zt,mi−1


08 tj := t+ (j − 1)λ for j ∈ [mi]
09 for j ∈ [mi] :
10 Select random C′i+1 and then C′′i+1 such that ∀u 6= tj , c

′T
i+1,u = c′′Ti+1,u and c′′Ti+1,tj is freshly sampled

11 Run P∗ on the i+ 1-th random challenge C′i+1 until it outputs Z′i+1

12 Rewind P∗ and re-run it on the i+ 1-th challenge C′′i+1 until it outputs Z′′i+1

13 T ′ := (W, chal(V1), resp(V1), . . . ,C′i+1,Z
′
i+1)

14 T ′′ := (W, chal(V1), resp(V1), . . . ,C′′i+1,Z
′′
i+1)

15 count = 0
16 while i = d− 1 and count < λ(4dN)2d/ε and T ′ is not a valid transcript:
17 Rewind P∗ and run P∗ on the new C′d until it outputs Z′d
18 T ′ = (W, chal(V1), resp(V1), . . . ,C′d,Z

′
d)

19 count = count + 1
20 if count ≥ λ(4dN)2d/ε then abort

21 count = 0
22 while i = d− 1 and count < 2λ(4dN)2d/ε and T ′′ is not a valid transcript:
23 Rewind P∗ and run P∗ on C′′i+1 such that ∀u 6= tj , c

′T
i+1,u = c′′Ti+1,u and c′′Ti+1,tj is freshly sampled

24 Get response Z′′d
25 T ′′ = (W, chal(V1), resp(V1), . . . ,C′′d ,Z

′′
d)

26 count = count + 1
27 if count ≥ 2λ(4dN)2d/ε then abort

28 Let ` be an index where c′Ti+1,u[`] 6= c′′Ti+1,u[`] (w.l.o.g. c′Ti+1,u[`]− c′′Ti+1,u[`] = 1, otherwise swap)
29 TreeConstructi+1([j1, . . . , ji, (j, 0)],C′i+1,Z

′
i+1, `)

30 TreeConstructi+1([j1, . . . , ji, (j, 1)],C′′i+1,Z
′′
i+1, `)

Fig. 7. Construction of a tree T of partial transcripts for P∗. We denote c′Ti+1,j (resp. c′Ti+1,j) to be the j-th row of
C′i+1 (resp. C′i+1).

Let us compute an upper bound on the probability of the event abort that TreeConstruct0([],⊥,T, α)
aborts. Let V be a vertex on level d− 1 and denote abort(V ) to be the event that the algorithm aborts in
line 20 for V . Also, define (V0, . . . , Vd−2, V ) to be the sequence of vertices on the path from V0 := root to V .
We know that each Vi, where i ≥ 1, is either a left child or a right child. Hence, denote r1, . . . , rγ to be all
the indices such that Vrj is a right child for all j ∈ [γ]. Now, in order to argue about Pr[abort(V )] we use
the generalised heavy-rows lemma which can be easily extended from [15].

Lemma A.1. Let K > 1 and H ∈ {0, 1}`×n for some n, ` > 1, such that a fraction ε of the inputs of H are
1. We say that a row of H is “heavy” if it contains a fraction at least ε/K of ones. Then less than 1/K of
the ones in H are located in heavy rows.

We introduce the matrices Hi where we apply Lemma A.1. First, consider the binary matrix H0 whose
rows are indexed by the value of (χ,C′1) and whose columns are indexed by the value of (C′2, . . . ,C

′
d). An

entry of H0 is 1 if P∗ succeeds for the corresponding challenges C′1, . . . ,C
′
d and the random tape χ. Here,

we say that a row of H0 is ε′-heavy if it contains a fraction of at least ε′ ones.
Define Ci = Chal(Vi) for i ∈ [d− 1] and cTi,j to be the j-th row of Ci (similarly c′Ti,j for a random matrix

C′i). Now, we introduce Hi for i ≥ 1. It is a binary matrix whose rows are indexed by the value of (χ,C′i+1)
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and whose columns are indexed by the value of (C′i+2, . . . ,C
′
d). The entries of Hi are defined by

Hi[(χ,C
′
i+1)][(C′i+2, . . . ,C

′
d)] := Hi−1[(χ,Ci)][C

′
i+1, . . . ,C

′
d].

Informally, Hi analyses the success probability of P∗ after i − 1 challenges C1, . . . ,Ci−1 have been fixed.
Similarly as before, we say that a row in Hi is ε′-heavy if it contains a fraction of at least ε′ ones. For
i ≤ d− 2, we define an event hi(ε

′) that Ci+1 is in a ε′-heavy row of Hi.
We also consider alternative matrices H′i defined as follows. For i ≥ 0, H′i is a binary matrix whose rows

are indexed by the value of

(χ, c′Ti+1,1, . . . , c
′T
i+1,index(Vi)−1, c

′T
i+1,index(Vi)+1, . . . , c

′T
i+1,λmi)

and whose columns are indexed by the value of (c′Ti+1,index(Vi)
,C′i+2, . . . ,C

′
d). Entries of H′i are defined as

follows:

H′i[(χ, Ĉi+1,index(Vi)][(c
′T
i+1,index(Vi)

,C′i+2, . . . ,C
′
d)] :=

Hi[(χ,C
′
i+1)][C′i+2, . . . ,C

′
d]

(27)

where
Ĉi+1,index(Vi) = (c′Ti+1,1, . . . , c

′T
i+1,index(Vi)−1, c

′T
i+1,index(Vi)+1, . . . , c

′T
i+1,ri),

ri = λmi for i ≥ 1, r0 = md+1 and

C′i+1 =

cTi+1,1
...

cTi+1,ri

 .

We need matrices H′i for analysing the success probability of P∗ when we send a second challenge which is
similar to the one sent earlier (line 10). Let h′i(ε

′) be the event that row corresponding to

(χ, cTi+1,1, . . . , c
T
i+1,index(Vi)−1, c

T
i+1,index(Vi)+1, . . . , c

T
i+1,ri)

is ε′-heavy in H′i, i.e. it contains a fraction of at least ε′ ones.
We are ready to give an upper bound on Pr[abort(V )]. For readability, let K = 4dN . Our strategy is as

follows. First, we check if V1 is a right child. If so, then using Lemma A.1 we have the following bound:

Pr[abort(V )] ≤ Pr[abort(V )|h′0(ε/K)] + Pr[¬h′0(ε/K)]

< Pr[abort(V )|h′0(ε/K)] + 1/K.
(28)

Next, we want to bound Pr[abort(V )|h′0(ε/K)]. Again, we apply Lemma A.1 and get

Pr[abort(V )|h′0(ε/K)] ≤ Pr
[
abort(V )|h′0(ε/K) ∧ h0

(
ε/K2

)]
+ Pr

[
¬h0(ε/K2)|h′0(ε/K)

]
< Pr

[
abort(V )|h′0(ε/K) ∧ h0

(
ε/K2

)]
+ 1/K.

(29)

Thus, if V1 is indeed a right child then we get

Pr[abort(V )] < Pr
[
abort(V )|h′0(ε/K) ∧ h0

(
ε/K2

)]
+ 2/K

and otherwise
Pr[abort(V )] < Pr [abort(V )|h0 (ε/K)] + 1/K.

In a similar manner we apply Lemma A.1 for events in the following order: h1, . . . , hd−2 and also h′rj−1
in-between hrj−2 and hrj−1 for each j ∈ [γ]. At the end, we have:

Pr[abort(V )] < Pr[abort(V )|E] +
d− 1 + γ

K
≤ Pr[abort(V )|E] +

2(d− 1)

K
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where

E = h0 (ε/K) ∧ . . . ∧ hr1−2
(
ε/Kr1−1

)
∧ h′r1−1 (ε/Kr1)

∧ hr1−1
(
ε/Kr1+1

)
∧ . . . ∧ hd−2

(
ε/Kd−1+γ) . (30)

Hence, we just need to bound Pr[abort(V )|E]. Since E holds (and also hd−2), the row of Hd−2 indexed by
(χ,Cd−1) is heavy. Therefore, the probability that we hit one of the ones in this row is at least ε/Kd−1+γ .
Thus, the algorithm aborts in line 20 with probability at most

(1− ε/Kd−1+γ)λK
2d/ε < (1− ε/K2d)λK

2d/ε < e−λ < 2−λ.

Suppose that the algorithm finds a suitable Cd := C′d. Then, we have two cases – either h′d−1(ε/Kd+γ) holds

or not. Note that Pr[¬h′d−1(ε/Kd+γ)|E] < 1/K. Let us assume that h′d−1(ε/Kd+γ) is true, i.e. the row of
H′d−1 indexed by

(χ, cTd,1, . . . , c
T
d,index(V )−1, c

T
d,index(V )+1, . . . , c

′T
d,λmd−1

)

is heavy. Thus, the probability that we pick a correct C′′d is at least ε/Kd+γ − 2−λ because we want a reply
for a challenge C′′d different from C′d. By assumption on ε, we know that

ε/Kd+γ − 2−λ > ε/2Kd+γ > ε/2K2d.

Hence, we can bound the probability that P∗ does not succeed on any of the 2λK2d/ε attempts by(
1− ε/2K2d

)2λK2d/ε
< e−λ < 2−λ.

Eventually, we get
Pr[abort(V )|E] < 2 · 2−λ + 1/K

and therefore
Pr[abort(V )] < 1/2λ−1 + 2d/K.

By the union bound, the probability that the algorithm aborts on any of the vertices of level d−1 is at most

N/2λ−1 + 2dN/K = N/2λ−1 + 1/2

since we set K = 4dN . Thus, by running O(λ) copies of TreeConstruct we manage to construct a tree of
transcripts. Note that the algorithm itself runs in expected time poly(λ)/ε since N = poly(λ) and we assumed
d is a constant term.

We now show a certain relationship between respindex(V ), LeftC(V ) and RightC(V ).

Lemma A.2. Let V = T [j1, . . . , ji] be a vertex of a tree T on level i < d. Then

(Imi ⊗Ai+1)(LeftC(V )− RightC(V )) ≡ respindex(V ) (mod qi+1).

Proof. Let t = index(V ),Z = resp(V ) and zt =

 zt,1
...

zt,mi

 = respindex(V ). Then, one observes that zt,j is

the t + (j − 1)λ-th column of BT(Z) for j ∈ [mi]. Let us first fix j and set W0 := T [j1, . . . , ji, (j, 0)] and
W1 := T [j1, . . . , ji, (j, 1)]. We will show that

Ai+1(respindex(W0)− respindex(W1)) ≡ zt,j (mod qi+1) . (31)

By following the TreeConstruct algorithm we get that:

Ai+1resp(W0) ≡ BTi(Z)chal(W0) (mod qi+1),

Ai+1resp(W1) ≡ BTi(Z)chal(W1) (mod qi+1)
(32)
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and also matrices chal(W0), chal(W1) have the same rows apart from the t + (j − 1)λ-th one. By defini-
tion of TreeConstruct, ` = index(W0) = index(W1) and the `-th coefficient of the t + (j − 1)λ-th row of
chal(W0)− chal(W1) is equal to 1. By subtracting the two equations in (32) and looking at the `-th column
of Ai+1(resp(W0)− resp(W1)), we obtain Equation 31.

The lemma follows from applying (31) for all j ∈ [mi] and the definitions of LeftC(V ) and RightC(V ). ut

After initializing the tree T , extractor E runs the Extract algorithm described in Fig. 8 on root. Roughly
speaking, given a vertex V , Extract runs its algorithm recursively for all children of V to obtain their relaxed
opening of the levelled commitments. Then it subtracts solutions for left children from the right ones and
merges them into a long vector. Clearly, running Extract from root takes polynomial time in the security
parameter λ assuming that

∏d+1
i=1 mi = N = poly(λ).

The following lemma shows that the solution E obtained at the end is indeed a relaxed opening of the
levelled commitment.

Extracti(V )
01 T [j1, . . . , ji] = V
02 if i = d then return respindex(V )
03 for j ∈ [mi]:
04 (s′j,0; rj,0,i+2, . . . , rj,0,d−1)← Extracti+1(T [j1, . . . , ji, (j, 0)])
05 (s′j,1; rj,1,i+2, . . . , rj,1,d−1)← Extracti+1(T [j1, . . . , ji, (j, 1)])
06 if i < d− 1 then
07 w = Fi+2,d(s

′
j,b; rj,b,i+2, . . . , rj,b,d−1)

08 rj,b,i+1 := (respindex(T [j1, . . . , ji, (j, b)])−w) /qi+2 for b ∈ {0, 1}
09 vb := (IMi+1,d−1 ⊗Ad)s

′
j,b mod qd for b ∈ {0, 1}

10 for k = d− 1, d− 2, . . . , i+ 1:
11 u := (v0 − v1 − (v0 − v1 mod qk)) /qk
12 r̂j,k := rj,0,k − rj,1,k + u
13 if k > i+ 1 then vb = (IMi+1,k−1 ⊗Ak)(vb + rj,b,k) mod qk for b ∈ {0, 1}

14 return ŝ =

 s′1,0 − s′1,1
...

s′mi,0 − s′mi,1

 and r̂k =

 r̂1,k
...

r̂mi,k

 for k = i+ 1, . . . , d− 1

Fig. 8. Extracting relaxed openings of levelled commitments, or more concretely, preimages of Fi+1,d.

Lemma A.3. Let V be a vertex in T of level i ≤ d− 1. Then,

Fi+1,d(Extracti(V )) ≡ respindex(V ) (mod qi+1) .

Proof. The proof is by induction on i. Let i = d − 1 and consider Extractd−1(V ). Note that s′0 = LeftC(V )
and s′1 = RightC(V ) by definition. Then, by Lemma A.2 we get

Fd,d(s
′
0 − s′1) ≡ respindex(V ) (mod qd).

Assume the statement holds for i+ 1 ≤ d− 1 and suppose that

(s′j,b; rj,b,i+2, . . . , rj,b,d−1)← Extracti+1(T [j1, . . . , ji, (j, b)])

for each child T [j1, . . . , ji, (j, b)] of V . Then, by induction hypothesis we have

Fi+2,d(s
′
j,b; rj,b,i+2, . . . , rj,b,d−1) + qi+2rj,b,i+1 = respindex(T [j1, . . . , ji, (j, b)])
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for some vector rj,b,i+1. Observe that this equation holds over the integers. Then, by definition of LeftC we
get:

LeftC(V ) =

 Fi+2,d(s
′
1,0; r1,0,i+2, . . . , r1,0,d−1) + qi+2r1,0,i+1

...
Fi+2,d(s

′
mi,0; rmi,0,i+2, . . . , rmi,0,d−1) + qi+2rmi,0,i+1


and similarly

RightC(V ) =

 Fi+2,d(s
′
1,1; r1,1,i+2, . . . , r1,1,d−1) + qi+2r1,1,i+1

...
Fi+2,d(s

′
mi,1; rmi,1,i+2, . . . , rmi,1,d−1) + qi+2rmi,1,i+1

 .
Then, we can write

LeftC(V )− RightC(V )

=

 Fi+2,d(s
′
1,0 − s′1,1; r̂1,i+2, . . . , r̂1,d−1) + qi+2r̂1,i+1

...
Fi+2,d(s

′
mi,0 − s′mi,1; r̂mi,i+2, . . . , r̂mi,d−1) + qi+2r̂mi,1,i+1

 (33)

where ‖r̂j,k‖∞ ≤ ‖rj,0,k‖∞ + ‖rj,1,k‖∞ + 1 (lines 10-13). Here, we use the fact that for any matrix A and
vectors u,v we have: (Av mod q)− (Au mod q) = A(v − u)x mod q + qr where ‖r‖∞ ≤ 1.

Finally, by Lemma A.2, (33) and the property of Fi,j described in (26), we get that

respindex(V ) ≡ (Imi ⊗Ai+1)(LeftC(V )− RightC(V )) (mod qi+1)

≡ Fi+1,d(ŝ; r̂i+1, . . . , r̂d−1) (mod qi+1),
(34)

where

ŝ =

 s′1,0 − s′1,1
...

s′mi,0 − s′mi,1

 and r̂k =

 r̂1,k
...

r̂mi,k

 for k = i+ 1, . . . , d− 1.

ut

In summary, Lemma A.3 implies that

F1,d(Extract0(root)) ≡ respindex(root) ≡ tk (mod q1)

and that Extract0(root) is indeed a relaxed opening of tk.
Eventually, we investigate the sizes that Extract outputs.

Lemma A.4. Let V be a vertex of T on level i ≤ d and (s′; ri+1, . . . , rd−1) ← Extracti(V ). Then, ‖s′‖ ≤
2d−iB and also for i ≤ d− 2 and k = i+ 1, . . . , d− 1 we have

‖rk‖∞ ≤ 2k−i

Mk−1md+1λ
k−1 +

k−i∑
j=0

1

2j

 .

Proof. The first part can be clearly proven by induction and this follows from the construction of Extract as
well as the triangle inequality. Hence, we focus on the latter part. We prove it by induction on i.

Consider the base case i = d − 2. Then, Extracti(V ) returns (s′; rd−1). For simplicity, we use notation
from Fig. 8. Line 08 tells us that

‖rj,b,d−1‖∞ ≤Md−2md+1λ
d−2 + 1
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for j ∈ [md−2] and b ∈ {0, 1}. Indeed, this follows from the second verification equation in Fig. 4 and the
triangle inequality. Then, from line 12 we get that

‖r̂j,d−1‖∞ ≤ 2(Md−2md+1λ
d−2 + 1) + 1 = 2

(
Md−2md+1λ

d−2 + 1 +
1

2

)
since ‖u‖∞ ≤ 1. This concludes the base case.

Suppose the statement holds for i + 1 ≤ d − 2 and consider Extracti(V ). Firstly, fix i + 2 ≤ k ≤ d − 1.
Then, using the induction hypothesis (in line 12) along with the triangle inequality we get that for j ∈ [mi],

‖r̂j,k‖∞ ≤ 2 · 2k−(i+1)

(
Mk−1md+1λ

k−1 +

k−(i+1)∑
j=0

1

2j

)
+ 1

≤ 2k−i
(
Mk−1md+1λ

k−1 +

k−i∑
j=0

1

2j

)
.

(35)

The only case left is when k = i+ 1. As before, we observe that

‖rj,b,i+1‖∞ ≤Mimd+1λ
i + 1,

and by the triangle inequality in line 12 we get

‖r̂j,k‖∞ ≤ 2(Mimd+1λ
i + 1) + 1 = 2(Mimd+1λ

i + 1 + 1/2).

Since the inequalities hold for every j ∈ [mi], the result holds. ut

The main conclusion of the lemma above is that for i = 0,

‖rk‖∞ ≤ 2k
(
Mk−1md+1λ

k−1 + 2
)

since
∑∞
j=0 1/2j = 2. Finally, the theorem holds by Lemmas A.2, A.3 and A.4. ut

B Applications to Circuit Satisfiability Arguments

We sketch out the details of an arithmetic circuit satisfiability argument which uses the proof of knowledge
based on levelled commitments as a key component. The approach is related to that of Baum et al [?] which
gives arguments with a square-root communication complexity based on lattices, and that of Groth [27]
which gives arguments with a cube-root communication complexity based on 2-level commitment schemes
from pairings.

We focus on using the protocol described in Section 1.2, which has a Õ(N1/3) communication complexity
for a secret with N elements. We use it to construct an argument for arithmetic circuit satisfiability which
has a Õ(N1/3) communication complexity, for a circuit with N gates.

It is not too difficult to see that the same ideas can be extended to work in conjunction with the Õ(N1/c)-
protocol presented in Section 3 to produce an arithmetic circuit satisfiability argument with Õ(N1/c) com-
munication complexity.

As in Section 1.2, the honest prover should commit to S ∈ Zm1·m2×m3 as

A1 · ((Im1
⊗A2) · S mod q2) mod q1 = T, (36)

where A1 ← Zn×nm1
q1 ,A2 ← Zn×m2

q2 .
Now, we explain how the verifier can interact with the prover to obtain useful linear combinations of the

committed secret values. Then we explain how these linear combinations can be used to check arithmetic
circuit satisfiability.
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Verifying Linear Combinations of Secrets. Let Λ ∈ Zm3×1. If the prover sends the verifier T′ =(
(Im1 ⊗A2) · S̄ mod q2

)
Λ, then the verifier can check that T′ is the correct linear combination of columns

of (Im1
⊗A2) S mod q2. The verifier can do this by checking the equation A1T

′ ≡ TΛ mod q1.

Write S =

 S1

...
Sm1

, where each Si is an m2 by m3 matrix. Denote

SΛ =

 S1Λ
...

Sm1
Λ

 =

 s′1
...

s′m1

 .

Next, note that

T′ = ((Im1
⊗A2) S mod q2) Λ

is congruent to


A2 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . A2




s′1
...
...

s′m1

 (mod q2).

Set S′ =
[
s′1 . . . s

′
m1

]
. Notice that A2S

′ ≡ BT1 (T′) (mod q2). Let w ∈ Zm1×1. Now, if the prover sends

s
′′

= S′w to the verifier then the verifier can check that s
′′

is the correct linear combination of columns of
S′. The verifier can do this by checking the equation A2s

′′ ≡ BT1 (T′) w mod q2.
Consider the form of s

′′
. Write w = (wi)i. Then s

′′
=
∑
i wis

′
i. We also know that s′i = SiΛ. Write

Λ = (Λj)j . If we write Si as the matrix with columns si,j , then s′i =
∑
j si,jΛj . So s

′′
=
∑
i,j wisi,jΛj .

The prover has sent T, T′ and s
′′

to the verifier, which have dimensions n × m3, nm1 × 1, and m2

respectively. Since the total number of secret integers in S is N = m1m2m3, we can obtain an argument
which requires the prover to send Õ( 3

√
N) integers to the verifier by setting m1 ≈ m2 ≈ m3 ≈ Õ( 3

√
N).

Figure 5 shows that when using levelled commitments, the modulus sizes of the commitment scheme can
also depend polynomially on N , which translates into an extra logarithmic factor of N when the proof size
is measured in bits.

Checking Useful Conditions. Previous works [?,26,12] use specially chosen linear combinations of com-
mitted secrets to help the verifier check that an arithmetic circuit is satisfiable using a sublinear communi-
cation complexity, and in zero-knowledge. Circuits consist of gates of two types. The first type is addition
gates and multiplication gates with one public input. Such gates compute affine functions of their inputs.
The second type is multiplication gates with neither input public. Thus, circuit satisfiability is often sepa-
rated into the two sub-tasks of proving that inputs satisfy some linear relations, and proving multiplicative
relations between inputs. We sketch out an approach for arithmetic circuits over prime fields.

For i ∈ [m1] and j ∈ [m3], let ai,j , bi,j and ci,j be vectors in [p]m2 for some prime p. Suppose that we
want to prove multiplicative relations ai,j ◦ bi,j = ci,j for each i and j. Let x and y be uniformly random

32



challenges chosen from [p]. For suitable d+
i,j ,d

−
i,j ∈ Zm2

p , we can write∑
i,j

ai,j(xy)i+m1j

 ◦
∑

i,j

bi,jx
−i−m1j


≡

∑
i,j

ci,jy
i+m1j

+ x

∑
i,j

d+
i,jx

i+m1j


+ x−1

∑
i,j

d−i,jx
−i−m1j

 (mod p).

(37)

Note that the d+
i,j ,d

−
i,j will depend on y. Collapsing each bracketed term into a single value, we have

a ◦ b ≡ c + xd+ + x−1d− (mod p).

We have seen that the verifier can check that the prover has sent linear combinations of the form

s
′′

=
∑
i,j

λisi,jΛj

correctly. If we set wi = (xy)i mod p and Λj = (xy)m1j mod p, then the verifier can obtain a in a verifiable
manner. With other, similar choices of w and Λ, the verifier can obtain b, c,d+ and d−, and check the
equality.

Comparing the terms with x0 on the left and right hand side, one sees that equality cannot hold unless∑
i,j

(ci,j − ai,j ◦ bi,j) y
i+m1j ≡ 0 (mod p). (38)

If ci,j 6= ai,j ◦ bi,j for some (i, j), then the Schwarz-Zippel lemma bounds the probability that (37), and
hence (38), still holds, over the random choices of x and y.

Linear relations between different witness values can be handled using similar types of polynomial ex-
pressions. Fuller explanations are given in [?,26,12].

A Real Argument. It still remains to see how to build a complete argument. In the first round of the
argument, before having seen any random challenge values, the prover commits to the ai,j , bi,j and ci,j , as
three large arrays, A, B and C. After receiving random challenge y from the verifier, the prover computes
and commits to the d+

i,j and d−i,j as two large arrays D+ and D−. The prover and verifier use the proof-of-
knowledge from Section 1.2 on all commitments. Then the prover and the verifier use the techniques given
above to allow the verifier to receive the correct linear combinations of committed values.

With care, it should be possible to interleave the many-round sub-protocols described above. Also, we
have not discussed how to achieve zero-knowledge. This could be done by committing to various randomly-
sampled masking values, and adding them into the bracketed terms of expression (37) in a way that does
not affect the conclusion about the committed values.

The Malicious Prover. In reality, we cannot be sure that the prover is honest, and cannot guarantee
that T is actually a commitment. However, the protocol in Section 3 is knowledge-sound. The knowledge
extractor produces S̄ and an R̄ ∈ Zn·m1×m3 satisfying the following equation.

A1 ·
(
(Im1

⊗A2) · S̄ mod q2 + R̄ · q2
)

mod q1 = T, (39)
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After receiving T′ from the prover, the verifier checks whether A1T
′ = TΛ mod q1. The collision resistance

property associated with A1 guarantees that

T′ =
(
(Im1 ⊗A2) · S̄ mod q2

)
Λ + q2 · R̄Λ

Then we have

T′ mod q2 ≡ (Im1
⊗A2) · S̄Λ mod q2

Therefore, continuing the opening procedure with T′ modulo q2, we see that the extra terms recovered by
the knowledge extractor will have no impact on the verifier’s checks.
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