
Generic Constructions of Incremental and
Homomorphic Timed-Release Encryption

Peter Chvojka1, Tibor Jager1,
Daniel Slamanig2, and Christoph Striecks2

1 University of Wuppertal, Germany
{chvojka,tibor.jager}@uni-wuppertal.de

2 AIT Austrian Institute of Technology, Vienna, Austria
firstname.lastname@ait.ac.at

Abstract. Timed-release encryption (TRE) makes it possible to send
information “into the future” such that a pre-determined amount of time
needs to pass before the information can be decrypted, which has found
numerous applications. The most prominent construction is based on
sequential squaring in RSA groups, proposed by Rivest et al. in 1996.
Malavolta and Thyagarajan (CRYPTO’19) recently proposed an inter-
esting variant of TRE called homomorphic time-lock puzzles (HTLPs).
Here one considers multiple puzzles which can be independently gener-
ated by different entities. One can homomorphically evaluate a circuit
over these puzzles to obtain a new puzzle. Solving this new puzzle yields
the output of a circuit evaluated on all solutions of the original puzzles.
While this is an interesting concept and enables various new applica-
tions, for constructions under standard assumptions one has to rely on
sequential squaring.

We observe that viewing HTLPs as homomorphic TRE gives rise to a
simple generic construction that avoids the homomorphic evaluation on
the puzzles and thus the restriction of relying on sequential squaring. It
can be instantiated based on any TLP, such as those based on one-way
functions and the LWE assumption (via randomized encodings), while
providing essentially the same functionality for applications. Moreover,
it overcomes the limitation of the approach of Malavolta and Thyagara-
jan that, despite the homomorphism, one puzzle needs to be solved per
decrypted ciphertext. Hence, we obtain a “solve one, get many for free”
property for an arbitrary amount of encrypted data, as we only need to
solve a single puzzle independent of the number of ciphertexts. In ad-
dition, we introduce the notion of incremental TLPs as a particularly
useful generalization of TLPs, which yields particularly practical (ho-
momorphic) TRE schemes. Finally, we demonstrate various applications
by firstly showcasing their cryptographic application to construct dual
variants of timed-release functional encryption and also show that we
can instantiate previous applications of HTLPs in a simpler and more
efficient way.

1 Introduction

Timed-release encryption (TRE) has the goal of sending information into the
future in a way that the sender can be sure that a pre-determined amount
of time needs to pass before the information can be decrypted. This idea was
firstly discussed by May [May93], who introduced this notion and proposed a
solution based on trusted agents. The idea is to rely on some trusted entity,
which after the pre-determined time has passed, releases some secret that allows
to efficiently obtain the hidden information (e.g., [DOR99,CHKO08]). In this
paper we will not focus on this agent-based variant of TRE, but rather on an
alternative idea proposed by Rivest et al. in [RSW96] and which relies on so
called time-lock puzzles (TLPs). TLPs allow to seal messages in such a way that
one is able to obtain the sealed message only by executing an expensive sequential
computation. Thereby, the amount of time required to perform this sequential
computation is a hardness parameter of the TLP which can be freely chosen.
This approach does not involve a trusted agent and a sender can just publish a
puzzle whose solution is the hidden message, and this message stays hidden until
enough time has elapsed for the puzzle to be solved. TLPs have found numerous
applications such as sealed-bid auctions [RSW96], fair contract signing [BN00],
zero-knowledge arguments [DN00], or non-malleable commitments [LPS17].

The solution proposed by Rivest et al. in [RSW96] uses iterated squaring
in an RSA group Z∗N where N it the product of two large primes p and q.
More precisely, a time lock puzzle Z with solution s for hardness T is defined

as Z = (N,T, x, x2
T · k,Enc(k, s)) where (x, k)

$← (Z∗N)2 and Enc is a symmetric
encryption scheme. Note that this TLP can be equivalently viewed as a timed-
release encryption (TRE) that encrypts message s. An interesting feature of this
TLP construction is that creating a puzzle is much faster than the expensive
sequential computation to solve the puzzle, i.e., knowing the factorization of N

and thus ϕ(N) one can compute x2
T

by first computing 2T mod ϕ(N). This
is an important property of TLPs when the required amount of time until the
puzzle should be solved is very large. Interestingly, TLPs with this property
seem hard to find. In [MMV11] Mahmoody et al. show that in the random-
oracle model it is impossible to construct TLPs from one-way permutations and
collision-resistant hash-functions that require more parallel time to solve than
the total work required to generate a puzzle and thus ruling out black-box con-
structions of such TLPs. On the positive side, Bitansky et al. [BGJ+16] show
how to construct TLPs with the aforementioned property from randomized en-
codings [IK00,AIK06]. However, this approach relies on indistinguishability ob-
fuscation. Interestingly, when slightly relaxing the requirements and allowing
efficient parallel computation in the generation (so-called weak TLPs) of the
puzzles or a solution independent preprocessing, then such TLPs can be con-
structed generically from one-way functions and the learning with errors (LWE)
assumption, respectively, via randomized encodings.

Recently, Malavolta and Thyagarajan [MT19] proposed an interesting vari-
ant of TLPs called homomorphic TLPs (HTLPs). Here one considers multiple
puzzles (Z1, . . . , Zn) which can be independently generated by different entities

2

and without knowing the corresponding solutions (s1, . . . , sn) one can homomor-

phically evaluate a circuit C over these puzzles to obtain as result a puzzle Ẑ
with solution C(s1, . . . , sn), where the hardness of this resulting puzzle does not
depend on the size of the circuit C that was evaluated (which is called com-
pactness). Consequently, this allows to aggregate a potentially large number of
puzzles in a way that only a single puzzle needs to be solved. While this concept
is interesting on its own, Malavolta and Thyagarajan [MT19] also show that
it extends the applications of TLPs and in particular present applications to
e-voting, multi-party coin flipping as well as multi-party contract signing. More-
over, it is reasonable to conjecture (as done by Malavolta and Thyagarajan) that
any application that involves a large number of users and thus the constraint of
requiring to solve multiple puzzles constitute one of the main obstacles that so
far prevented the large scale adoption of TLPs. And exactly this problem can
be overcome with HTLPs. Later Brakerski et al. in [BDGM19] further studied
the concept of HTLPs and proposed the first fully homomorphic TLP (FHTLP)
from standard assumption (whereas the FHTLP in [MT19] required the exis-
tence of sub-exponentially hard indistinguishability obfuscation). In contrast to
the basic definition of HTLPs where the time required to solve the puzzles starts
with the generation of the parameters, latter construction achieves an alternative
notion where the time starts to run for every single puzzle at the point where
the puzzle is generated.

1.1 Motivation for our Work

Our motivation stems from some observations about the approach to HTLPs by
Malavolta and Thyagarajan [MT19]. Loosely speaking, they construct a linearly
homomorphic TLP (LHTLP) from the iterated squaring TLP and Paillier en-

cryption [Pai99]. They set up public parameters (N,T, g, h = g2
T

) for a suitable
choice of g and to create a puzzle to solution s, one re-randomizes g, h for fresh

r
$← [N2] and sets Z = (gr (mod N), hr·N (1 +N)s (mod N2)). It is easy to see

that this puzzle is linearly homomorphic where the evaluation is independent of
the hardness T (and one can also turn this into a multiplicatively homomorphic
TLP). Now this is the basis for all applications (apart from the FHTLP which
requires indistinguishability obfuscation) and also the FHTLP due to Brakerski
et al. in [BDGM19] requires an LHTLP (where to the best of our knowledge the
aforementioned is the only known construction). So our first observation is that
we can equivalently view their HTLPs as homomorphic timed-release encryption
(HTRE), i.e., a TRE scheme that supports homomorphic evaluation on the en-
crypted messages. Secondly, all these constructions are not generic as they rely
on a single particular construction of an HTLP from sequential squaring. More-
over, one can see that for every such puzzle one can only start to attempt to solve

it when gr is available as solving it requires sequentially computing (gr)2
T

. The
same also holds for the puzzle obtained from homomorphically evaluating on
many such puzzles. Thirdly, while the homomorphic property makes it scalable
in a setting where one is only interested in the homomorphic evaluation over

3

all encrypted messages, it would be convenient to have an approach that also
supports this “solve one, get many for free” property even if one wants to obtain
all encrypted messages instead of only the result of the homomorphic evaluation.
Our final observation is that for all the applications discussed in [MT19] it seems
sufficient, and in some applications even more desirable, when the runtime of the
puzzle is counted from the point of running the puzzle setup algorithm. For in-
stance, in the e-voting application from [MT19] it rather seems to complicate
issues when the puzzle only starts after the last voter cast its vote. And even if
this is not required, it might be easy to adjust the setup in a way that it outputs
a set of public parameters, and a user can choose which public parameters to
use when computing a puzzle.

Motivated by these observations, we ask whether it is possible to come up
with an alternative approach that allows to have multiple puzzles computed
by different parties, evaluate functions on their solutions and also only require
solving a single puzzle, i.e., provide this “solve one, get many for free” property
for homomorphic evaluations on many messages but also when it is required
to decrypt all single messages. Ideally this approach is generic in nature and
thus would allow to construct (homomorphic) timed-release encryption (TRE)
generically from any TLP.

1.2 Our Contributions and Techniques

In this paper, among other contributions, we answer the aforementioned ques-
tion to the affirmative. Subsequently, we summarize our contributions and the
techniques used to obtain them.

Generic (Homomorphic) Timed-Release Encryption. We recall that we can equiv-
alently view the construction of HTLPs by Malavolta and Thyagarajan in [MT19]
as homomorphic timed-release encryption (HTRE). This observation allows us to
come up with an approach that is orthogonal to the one described by Malavolta
and Thyagarajan and enables us to encrypt an arbitrary number of messages
with respect to one puzzle. Nevertheless, we thereby achieve the same goals.
The basic and indeed very simple idea is that given any TLP we can use it to
generate a puzzle Z and its solution s, and we can use s as the random coins for
the key generation algorithm Gen(1λ; s) of a public key encryption scheme. Then,
we provide the respective public key pk as parameters of the TRE and solving
the puzzle Z reveals s and thus sk allowing to decrypt all of the ciphertexts
computed with respect to pk. We note that in contrast to Malavolta and Thya-
garajan who need to rely on their specific HTLP from sequential squaring (when
relying on standard assumptions and avoiding indistinguishability obfuscation),
our approach can also be instantiated from TLPs based on one-way functions
and the LWE assumption (via randomized encodings). Using s as the random
coins for a (fully) homomorphic encryption scheme, immediately yields (fully)
homomorphic TRE. Interestingly, this approach then allows us to obtain the
“solve one, get many for free” property for both, the result of a homomorphic
evaluation of many ciphertexts, but also if we want to decrypt all ciphertexts

4

individually. While this property for homomorphic evaluation provided by Mala-
volta and Thyagarajan is advantageous over solving many puzzles especially if
one is interested in some aggregated data over all the ciphertexts, we believe
that our solution offers additional benefits. In particular, it allows when solving
one puzzle to decrypt all ciphertexts from this time period, independent of the
encrypted amount of data. Thus, it would also support complex functions after
decryption for which constructions of HTLPs are practically inefficient. Note
that in the case of TLPs from sequential squarings, we can then also combine
this with a single CPU (e.g., running on a public server) that computes and
outputs the result of the sequential squarings, such that the amortized complex-
ity is minimal, which is particularly interesting for incremental TLPs discussed
below.

Incremental (Homomorphic) Timed-Release Encryption. We introduce the no-
tion of incremental TLPs as a particularly useful generalization of TLPs, which
yields particularly practical TRE schemes. In contrast to our basic TRE, how-
ever, instantiations need to rely on TLPs from the sequential squaring assump-
tion. The basic idea is that the puzzle generation takes a sequence of hardness
parameters T1, . . . , Tn (where we assume that Ti < Ti+1 for all i ∈ [n− 1]) and
outputs a sequence of puzzles and solutions (Zi, si)i∈[n]. Now the distinguish-
ing features is that puzzles can be solved incrementally in a way that solving
Zi additionally considers solution si−1 and the time required to solve puzzle Zi
is determined by the hardness Ti − Ti−1 (note that having n = 1 this yields
a conventional TLP). This is interesting since one can use a single centralized
server that continuously computes and publishes solutions to decrypt an arbi-
trary number of ciphertexts. Most importantly, the server would be independent
of these ciphertexts, which is not achieved by prior constructions. Moreover, the
decrypting parties would not have to solve any puzzle at all, but merely would
have to wait until the server publishes a solution.

Since incremental TLPs are just a variant of TLPs, we can use our generic
TRE framework to construct incremental (homomorphic) TRE schemes follow-
ing the same ideas as outlined above, where homomorphic computations based on
a conventional homomorphic encryption scheme are only supported within a time
period. If one requires computations among different time periods, this can be
achieved by using a multi-key (fully) homomorphic encryption scheme [LTV12]
instead.

Applications. We present two types of applications of our TRE framework.
Firstly, we demonstrate that our TRE framework can be used to obtain other
more powerful variants of TRE in a generic way. Therefore, we showcase this us-
ing the regime of functional encryption. Recall, that in a functional encryption
scheme decryption keys are associated to functions f and ciphertexts are com-
puted with respect to some public key pk. Given a ciphertext c = Enc(pk, x),
a secret key skf for function f allows to compute a decryption of f(x) but
reveals nothing beyond this about the encrypted message x. We now propose
two variants which we call functional timed-release encryption (FTRE) as well

5

as timed-release functional encryption (TRFE). Loosely speaking, in FTRE we
time-lock a function f and after a certain time has passed everyone can learn
the function f of any ever encrypted message x. In TRFE on the other hand,
messages x are locked in a way that after a certain time has passed anyone
in possession of a secret key for any function f can learn f(x). We discuss
two applications based on incremental TRE. Firstly, an FTRE instantiation of
identity-based encryption (IBE) [BF01] with locked keys, where the key gen-
erator at registration gives locked IBE secret keys for various validity periods
(e.g., each for a month) to the user and the respective secret keys then unlock
over time. Secondly, an TRFE instantiation of timed-release inner-product func-
tional encryption (IPFE) [ABDP15], where it can be guaranteed that statistical
analysis or encrypted data is only feasible after a certain amount of time has
passed.

Secondly, we investigate existing applications of HTLPs and in particular
the applications proposed by Malavolta and Thyagarajan. Concretely, using our
approach all their applications can be redesigned using our TRE which leads to
more efficient protocols without requirement to use homomorphic evaluation on
puzzles.

Notation. We denote our security parameter as λ. For all n ∈ N, we denote

by 1n the n-bit string of all ones. For any element x in a set S, we use x
$← S

to indicate that we choose x uniformly random from S. All algorithms may be
randomized. For any PPT algorithm A, we define x ← A(1λ, a1, . . . , an) as the
execution of A with inputs security parameter λ, a1, . . . , an and fresh randomness
and then assigning the output to x (we will usually omit λ and assume that all
algorithms take λ as input). We use the notation [n] to denote the set {1, . . . , n}.
For set {a1, . . . , an} we use notation (ai)i∈[n] and in similar way we use this
notation also for set of tuples. We write (xi ← A(inputi))i∈[n] to denote running
n times the algorithm A with fresh randomness on inputs input1, . . . , inputn and
assigning the output to x1, . . . , xn. We use poly(·) to denote some polynomial
and polylog(·) to denote a polylogarithmic function.

Outline. In Section 2 we present our definition for time-lock puzzles, variants
of existing time-lock puzzles and discuss how they are related to our notion.
We then introduce incremental time-lock puzzles and provide instantiations of
(incremental) time-lock puzzles from sequential squarings and randomized en-
codings. Section 3 presents our generic construction of timed-release encryption,
also covering incremental and homomorphic variants thereof. Finally, in Sec-
tion 4 we discuss cryptographic as well as real-world applications of our generic
TRE framework.

2 Time-Lock Puzzles

The terms time-lock puzzle [RSW96], timed-release encryption [May93], and
time-lock encryption [LJKW18] are often interchangeably used in the literature

6

to denote an encryption scheme which enables us to send messages in the future.
In this work we use the former two notions in a slightly different way, and hence
we need to distinguish between them.

Timed-release encryption will denote an encryption scheme which allows us
send messages “into the future”, while providing confidentiality of message
before the release time. This scheme may have additional properties, such
as being additively/multiplicatively/fully homomorphic.

Time-lock puzzles provide the core functionality of a puzzle that needs a cer-
tain amount of time to be solved, and will be used as a building block for
timed-release encryption.

2.1 Simple Time-Lock Puzzles

In this section we give a new definition for time-lock puzzles and explain how it
relates to the old definition.

Definition 1. A time-lock puzzle is pair of algorithms TLP = (Gen,Solve) with
the following syntax.

– (Z, s)← Gen(T) is a probabilistic algorithm which takes as input a hardness
parameter T ∈ N and outputs a puzzle Z together with the unique solution
s of the puzzle. We require that Gen runs in time at most poly(log T, λ) for
some polynomial poly.

– s ← Solve(Z) is a deterministic algorithm which takes as input a puzzle Z
and outputs a solution s ∈ S, where S is a finite set. We require that Solve
runs in time at most T · poly(λ). There will also be a lower bound on the
running time, which is part of the security definition.

We say TLP is correct if for all λ ∈ N and for all polynomials T in λ it holds:

Pr[s = s′ : (Z, s)← Gen(T), s′ ← Solve(Z)] = 1.

Relation to prior definitions. In the definitions of time-lock puzzles from Bi-
tansky et al. [BGJ+16] and Malavolta and Thyagarajan [MT19] algorithm Gen
receives s as an additional input and output a puzzle Z. This immediately yields
a timed-release encryption scheme by viewing s as a message that is encrypted.
Our definition enables a slightly simpler generic construction of (homomorphic)
timed-release encryption. Intuitively, our new definitions relates to the prior one
in a similar way like a key encapsulation mechanism relates to an encryption
scheme. Concretely, let TLP = (Gen,Solve) be a puzzle according to our new
definition. Then we obtain a puzzle TLP′ = (Gen′,Solve′) of the old form as
follows:

– Gen′(T,m) computes Z ← Gen(T) outputs Z ′ = (Z,m⊕ s).
– Solve′(Z ′ = (Z, c)) computes s← Solve(Z) and outputs c⊕ s.

7

Security. For security we require that the solution of a time lock puzzle is indis-
tinguishable from random, unless the adversary has sufficient running time to
solve the puzzle. The following definition is inspired by those from Bitansky et al.
[BGJ+16] and Malavolta and Thyagarajan [MT19], but adopted to our slightly
modified definition of the Gen algorithm.

Definition 2. Consider the security experiment ExpTLPbA(1λ) in Figure 1. We
say that a time lock puzzle TLP is secure with gap ε < 1, if there exists a poly-
nomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size
adversary A = {Aλ}λ∈N of depth ≤ T ε(λ) there exists a negligible function
negl(·) such that for all λ ∈ N it holds

AdvTLP
A =

∣∣Pr
[
ExpTLP0

A(1λ)
]
− Pr

[
ExpTLP1

A(1λ)
]∣∣ ≤ negl(λ).

Other Variants of TLPs. Here we briefly discuss weaker forms of TLPs as
introduced by Bitansky et al. [BGJ+16]. First, weak TLPs (wTLPs) that do
not require that Gen can be computed in time poly(log T, λ), but either in fast
parallel time (Gen can be computed by a uniform circuit of size poly(T, λ) and
depth poly(log T, λ)) or there can be an (expensive) setup independent of the
solution s and Gen then runs in (sequential) time poly(log T, λ).

Definition 3 (Weak Time-Lock Puzzles [BGJ+16]). A weak time-lock
puzzle (wTLP) wTLP = (Gen,Solve) is satisfying the syntax and completeness
requirements as per Definition 1, but with the following efficiency requirements:
Gen can be computed by a uniform circuit of size poly(T, λ) and depth poly(log T, λ)
and Solve can be computed in time T · poly(λ).

Definition 4 (Time-Lock Puzzles with Pre-processing [BGJ+16]). A
time-lock puzzle with pre-processing (ppTLP) is a tuple of algorithms ppTLP =
(Preproc,Gen,Solve):

– (P,K) ← Preproc(T) is a probabilistic algorithm that takes as input a diffi-
culty parameter T and outputs a state P and a short K ∈ {0, 1}λ. It can be
computed by a uniform circuit of total size T ·poly(λ) and depth poly(log T, λ).

– (Z, s)← Gen(s,K) is a probabilistic algorithm that takes as input a solution
s ∈ {0, 1}λ and secret key K and outputs a puzzle Z. It can be computed in
(sequential) time poly(log T, λ).

– s ← Solve(P,Z) is a deterministic algorithm that takes as input a state P
and puzzle Z and outputs a solution s. It can be computed in time T ·poly(λ).

A time-lock puzzle with pre-processing is correct if for all λ, for all polynomials
T in λ and solution s ∈ {0, 1}λ it holds:

Pr [s = s′ : (P,K)← Preproc(T), Z ← Gen(s,K), s′ ← Solve(P,Z)] = 1.

Remark 1. We note that it is straightforward to adapt our definition of TLPs
to ones with pre-processing. As this will not have an impact of any of our con-
structions that use TLPs, we will not make this explicit henceforth.

8

ExpTLPbA(1λ):

(Z, s)← Gen(T (λ)), b
$← {0, 1}

if b = 0 : c := s

if b = 1 : c
$← S

return b′ ← Aλ(Z, c)

Fig. 1. Security experiment for time lock puzzles.

2.2 Incremental Time-Lock Puzzles

We introduce incremental time-lock puzzles as a particularly useful generaliza-
tion of basic time-lock puzzles, which yields particularly practical time-lock en-
cryption schemes. To this end, we generalize Definition 1 by allowing the Gen
algorithm to take multiple different time parameters as input. Algorithm Gen
produces a corresponding set of puzzles.

Definition 5. An incremental time-lock puzzle is tuple of algorithms TLP =
(Gen,Solve) with the following syntax.

– (Zi, si)i∈[n] ← Gen((Ti)i∈[n]) is a probabilistic algorithm which takes as in-
put n integers (Ti)i∈[n] and outputs n puzzles together with their solutions
(Zi, si)i∈[n] in time at most poly((log Ti)i∈[n], λ). Without loss of generality
we assume in the sequel that set (Ti)i∈[n] is ordered and hence Ti < Ti+1 for
all i ∈ [n− 1].

– si ← Solve(Zi, si−1) is a deterministic algorithm which takes as input a
puzzle Zi and a solution for puzzle Zi−1 and outputs a solution si, where we
define s0 := ⊥. We require that Solve runs in time at most (Ti−Ti−1)·poly(λ),
where we define T0 := 0.

We say incremental time-lock puzzle is correct if for all λ, n ∈ N, for all i ∈ [n]
and for polynomials Ti in λ such that Ti < Ti+1 it holds:

Pr
[
si = s′i : (Zi, si)i∈[n] ← Gen((Ti)i∈[n]), s

′
i ← Solve(Zi, si−1)

]
= 1.

Security. In order to define a security notion for incremental time-lock puzzle
that is useful for our application of constructing particularly efficient timed-
release encryption schemes, we need to introduce an additional function F :
S → Y which takes as input elements of S and outputs elements of some set
Y . Instead of requiring that elements si are indistinguishable from random,
we require that yi = F(si) is indistinguishable from random. We explain the
necessity for function F after the following definition.

Definition 6. Consider the security experiment ExpiTLPbA(1λ) in Figure 2. We
say that an incremental time lock puzzle TLP is secure with respect to function F
and with gap ε < 1, if there exists a polynomial T̃ (·) such that for all n ∈ N, for
all i ∈ [n], for all polynomials Ti such that Ti(·) ≥ T̃ (·) and every polynomial-size

9

ExpiTLPbA(1λ):

(i, st)
$← A1,i(1

λ); b
$← {0, 1}

(Zj , sj)j∈[n] ← Gen((Tj)j∈[n])
(yj := F(sj))j∈[i−1]

if b = 0 : ∀j ∈ (i, . . . , n) : yj := F(sj)

if b = 1 : ∀j ∈ (i, . . . , n) : yj
$← Y

return b′ ← A2,i((Zj , yj)j∈[n], st)

Fig. 2. Security experiment for incremental time lock puzzles.

adversary A = {(A1,i,A2,i)λ}λ∈N where the depth of A2,i is bounded from above
by T εi (λ) there exists a negligible function negl(·) such that for all λ ∈ N it holds

AdvTLP
A =

∣∣Pr
[
ExpiTLP0

A(1λ)
]
− Pr

[
ExpiTLP1

A(1λ)
]∣∣ ≤ negl(λ).

On the need for function F. The introduction of function F in our definition
is new and does not appear in prior work. Let us explain why function F is
necessary to achieve security.

In Section 3.3 we will build an incremental timed-release encryption scheme,
where security is based on the security of an incremental time-lock puzzle. We
will consider this scheme insecure, if an adversary runs in time T < Ti and is
able to break the security of an encryption with respect to time slot Ti (see Def-
inition 11 for a precise definition). For such an adversary, we need to simulate
all values up to Ti−1, in particular all time lock puzzle solutions s1, . . . , si−1
up to Ti−1, properly, as otherwise the reduction would not simulate the secu-
rity experiment properly for an adversary running in time T = Ti−1 < Ti, for
instance.

Note that we cannot build a reduction which receives as input s1, . . . , si−1
as part of the time-lock puzzle instance, because then the reduction would only
be able break the assumption that the puzzle is hard if it runs in time less
than Ti−Ti−1. However, the considered running time T of the adversary is only
guaranteed to be less than Ti, so we cannot achieve any security if Ti > T ≥
Ti − Ti−1. This would hold, however, impose a minimal distance Ti > 2Ti−1
between each two consecutive time slots, which we consider as very undesirable
and impractical for applications. We would rather allow a constant distance d
such that Ti = Ti−1 + d.

Note that we also cannot build a reduction which computes s1, . . . , si−1 itself,
since then the running time of the reduction without the adversary would already
be Ti−1, such that together with the running time T of the adversary we would
have a total running time of the reduction of Ti−1 + T , which is again too large
to yield a meaningful reduction if Ti−1 + T > Ti.

Our solution to overcome this difficulty is to construct a timed-release en-
cryption scheme which does not directly use the real solutions si, but instead
F(si) where one can think of F as a hard-to-invert function. This way we are
able to formulate a hardness assumption for time-lock puzzles where the re-

10

duction in the security proof of the timed-release encryption scheme) receives
F(s1), . . . ,F(si−1) as additional “advice”, and thus is able to provide a proper
simulation. At the same time it is reasonable to assume that no adversary (here:
our reduction) is able to distinguish F(si) from random, even if it runs in time up
to T < Ti, which is exactly the upper bound that we have on the timed-release
encryption adversary.

The work of Malavolta and Thyagarajan [MT19, Section 5.2] also proposed
a construction that allows to use multiple time slots, by describing a specific
construction which is similar to our notion of incremental timed-release encryp-
tion. The technical difficulty described here should arise in their construction as
well. Unfortunately, they do not provide a formal security analysis, so that this
is not clarified. We believe that a similar assumption involving an “advice” for
the reduction is also necessary for a security proof of this construction suggested
in their work.

2.3 Instantiating (Incremental) TLPs from Sequential Squaring

Subsequently, we discuss instantiations of TLPs based on the sequential squaring
assumption. Therefore, we recall a definition of the sequential squaring assump-
tion which was implicitly introduced by Rivest et al. [RSW96]. Let p be an odd
prime number. We say that p is a strong prime, if p = 2p′ + 1 for some prime
number p′. Let GenModulus be a probabilistic polynomial-time algorithm which,
on input 1λ, outputs two λ-bit strong primes p and q and modulus N that is
the product of p and q. We denote by JN the cyclic subgroup of elements of Z∗N
with Jacobi symbol +1.

Definition 7 (Sequential Squaring Assumption). Let T (·) be a polynomial.
The Sequential Squaring Assumptions holds relative to GenModulus if there exists
some 0 < ε < 1 such that for every polynomial-size adversary A = {Aλ}λ∈N of
depth bounded from above by T ε(λ) there exists a negligible function negl(·) such
that for all λ ∈ N it holds

Pr


b = b′ :

(p, q,N)← GenModulus(1λ)

x
$← JN , b

$← {0, 1}

if b = 0 : y := x2
T (λ)

mod N

if b = 1 : y
$← JN

b′ ← Aλ(N,T (λ), x, y)


≤ 1

2
+ negl(λ).

The instantiation of TLP from the sequential squaring assumption is straight-
forward:

– Gen(T): Run (p, q,N) ← GenModulus(1λ). Randomly sample x
$← JN and

compute the value s := x2
T

mod N . Notice that value s can be efficiently
computed knowing the values p and q. Set Z := (N,T, x) and output (Z, s).

– Solve(Z): compute s := x2
T

mod N by repeated squaring.

11

The security of this construction is directly implied by the security of the
sequential squaring assumption.

In order to obtain an incremental time-lock puzzle, we propose the following
instantiation:

– Gen((Ti)i∈[n]): Run (p, q,N) ← GenModulus(1λ). Randomly sample x
$←

JN and compute values si := x2
Ti

mod N for all i ∈ {1, . . . , n}. Output
((N, x, Ti, Ti−1), si))i∈[n]. Value si can be efficiently computed knowing the
values p and q.

– Solve((N, x, Ti, Ti−1), si−1): Compute value s
Ti−Ti−1

i−1 mod N by repeated
squaring.

– F(si): return F (si).

Our assumptions is that combination of the time lock-puzzle with function
F is a secure incremental time-lock puzzle in the sense of Definition 6. We think,
that suitable candidate for function F is for example SHA-3.

2.4 Instantiating TLPs from Randomized Encodings

Subsequently, we discuss instantiations of TLPs based on and different vari-
ants of randomized encodings [IK00,AIK06] and in particular the approach of
constructing TLPs from them by Bitansky et al. [BGJ+16].

We first recall TLPs from randomized encodings (REs) in [BGJ+16] and show
how to cast them into our TLP framework to obtain secure TLPs according to
Definition 1. Subsequently, we focus on constructions of TLPs from standard
assumptions and in particular one-way functions (yielding so called weak TLPs)
as well as the sub-exponential Learning with Errors (LWE) problem (yielding
so called TLPs with pre-processing). Although we omit it here, we note that we
could also realize TLPs with the efficiency as in Definition 1 when relying on
succinct REs which can be constructed assuming one-way functions and indis-
tinguishability obfuscation (cf. [KLW15]).

First, we recall a TLP TLP′ = (Gen′,Solve′) as defined in [BGJ+16], where
the difference to Definition 1 is that the puzzle generation is defined as Z ←
Gen′(T, s), i.e., the generation of the puzzle already takes it solution s. Observe,
however, that any such TLP can easily be modified to meet our definition in that

Gen(T) simply internally samples s
$← S and then runs Gen′(T, s) and Solve′ =

Solve. We note that this can essentially be viewed as the trivial construction of
obtaining a KEM from a public key encryption (PKE) scheme. Consequently, the
security of our TLP when based on the one from [BGJ+16] (where the adversary
outputs two solutions (s0, s1) and obtains a puzzle for one of them) can be argued
analogously to how arguing security for the KEM from PKE construction.

Randomized encodings. Now, we recall the notion of (reusable) randomized
encodings.

12

Definition 8 (Randomized Encoding [BGJ+16]). A randomized encoding
scheme consists of two algorithms RE = (Encode,Decode) satisfying the following
requirements:

– M̂(x) ← Encode(M,x, T) is a probabilistic algorithm that takes as input a
machine M , input x and time bound T . The algorithm outputs a randomized
encoding M̂(x). It can be computed by a uniform circuit of depth polylog(T) ·
poly(|M |, |x|, λ) and total size T · poly(|M |, λ).

– y ← Decode(M̂(x)) is a deterministic algorithm that takes as input a ran-

domized encoding M̂(x) and computes an output y ∈ {0, 1}λ. It can be com-
puted in (sequential) time T · poly(|M |, |x|, λ).

For correctness and security we refer to [BGJ+16]. Using the fact that garbled
circuits yield randomized encodings (cf. e.g., for discussion [App17]), we have
the following:

Corollary 1. Assuming one-way functions, there exists a randomized encoding
scheme.

Definition 9 (Reusable Randomized Encoding [BGJ+16]). A reusable
randomized encoding scheme consists of algorithms RE = (Preproc,Encode,Decode)
satisfying the following requirements:

– (Û ,K) ← Preproc(m,n, T) is a probabilistic algorithm that takes as input
bounds m, n, T on machine size, input size, and time. It outputs an encoded
state Û and a short secret key K ∈ {0, 1}λ. It can be computed by a uniform
circuit of depth polylog(T) · poly(m,n, λ) and total size T · poly(m,λ).

– M̂(x) ← Encode(M,x,K) is a probabilistic algorithm that takes as input a
machine M , input x, secret key K ∈ {0, 1}λ and outputs a randomized en-

coding M̂(x). It can be computed in sequential time polylog(T) ·poly(m,n, λ).

– y ← Decode(Û , M̂(x)) is a deterministic algorithm that takes as input an

encoded state Û and a randomized encoding M̂(x) and computes an output
y ∈ {0, 1}λ. It can be computed in (sequential) time T · poly(m,n, λ).

For correctness and security we refer to [BGJ+16].

Theorem 1 ([GKP+13]). Assuming sub-exponential hardness of the LWE prob-
lem, there exists a reusable randomized encoding scheme.

TLPs from Randomized Encodings. Finally, we discuss the construction
of wTLPs and ppTLPs from randomized encodings. For wTLPs, let RE be a
randomized encoding scheme. For s ∈ {0, 1}λ and T ≤ 2λ, let MT

s be a machine
that, on any input x ∈ {0, 1}λ outputs the string s after T steps. Furthermore,
MT
s is described by 3λ bits (which is possible for large enough λ). Then the

(w)TLP is constructed as follows:

– Gen(T, s) : sample M̂T
s (0λ)← RE.Encode(MT

s , 0
λ, T) and output Z = M̂T

s (0λ).

13

– Solve(Z) : return RE.Decode(Z).

Theorem 2 (Thm 3.10 [BGJ+16]). Let ε < 1. Assume that, for every poly-
nomial bounded function T (·), there exists a non-parallelizing language L ∈
Dtime(T (·)) with gap ε. Then, for any ε′ < ε, the above construction is a weak
time-lock puzzle with gap ε′.

For ppTLPs, the construction is as follows:

– Preproc(T) : sample (Û ,K ′)← RE.Preproc(3λ, λ, T) and return (P = Û ,K =
K ′).

– Gen(T, s) : sample M̂T
s (0λ)← RE.Encode(MT

s , 0
λ,K) and output Z = M̂T

s (0λ).
– Solve(P,Z) : return RE.Decode(P,Z).

For the construction we have the following:

Theorem 3 (Thm 4.8 [BGJ+16]). Let ε < 1. Assume that, for every poly-
nomial bounded function T (·), there exists a non-parallelizing language L ∈
Dtime(T (·)) with gap ε. Then, for any ε′ < ε, the above construction is a time-
lock puzzle with pre-processing with gap ε′.

Remark 2. We mention here that Malavolta and Thyagarajan [MT19] stress
that for certain applications (e.g., e-voting or sealed bid auctions) it might be
perfectly acceptable to an expensive setup ahead of time to run the parameters
such that the time required to solve puzzles start from the moment the setup is
finished.

3 Generic Constructions of Timed-Release Encryption

In this section we will give generic constructions of (incremental) timed-release
encryption schemes based on (incremental) time-lock puzzles. There exist several
definitions for a timed-release encryption scheme, we base ours on that of Unruh
[Unr14]. However, we introduce two additional algorithms Setup and Solve which
leads to better modularity and applicability of timed-release encryption scheme,
as we will illustrate in Section 4.

Definition 10. An incremental timed-release encryption is tuple of algorithms
TRE = (Setup,Enc, Solve,Dec) with the following syntax.

– (ppe,i, ppd,i)i∈[n] ← Setup(1λ, (Ti)i∈[n]) is a probabilistic algorithm which

takes as input a security parameter 1λ and a set of time hardness param-
eters (Ti)i∈[n] with Ti < Ti+1 for all i ∈ [n − 1], and outputs set of public
encryption parameters and public decryption parameters (ppe,i, ppd,i)i∈[n].
We require that Setup runs in time poly((log Ti)i∈[n], λ).

– si ← Solve(ppd,i, si−1) is a deterministic algorithm which takes as input
public decryption parameters ppd,i and a solution from a previous iteration
si−1, where s0 := ⊥, and outputs a solution si. We require that Solve runs
in time at most (Ti − Ti−1) · poly(λ).

14

– c ← Enc(ppe,i,m) is a probabilistic algorithm that takes as input public en-
cryption parameters ppe,i and message m, and outputs a ciphertext c.

– m← Dec(si, c) is a deterministic algorithm which takes as input a solution
si and a ciphertext c, and outputs m.

We say timed-release encryption with multiple time slots is correct if for all
λ, n ∈ N, for all i ∈ [n] and for polynomials Ti in λ such that Ti < Ti+1 and all
set of messages m it holds:

Pr

m = m′ :

(ppe,j , ppd,j)j∈[n] ← Setup(1λ, (Tj)j∈[n])

si ← Solve(ppd,i, si−1)

m′ ← Dec(si,Enc(ppe,i,mi))

 = 1.

Note that the above definition also defines “non-incremental” timed-release en-
cryption, by setting n = 1.

Definition 11. An incremental timed-release encryption is secure with gap ε <
1 if there exists a polynomial T̃ (·) such that for all polynomials n in λ, for
all i ∈ [n], for all polynomials Ti such that Ti(·) ≥ T̃ (·) and every adversary
{(A1,A2)λ}λ∈N there exists a negligible function negl(·) such that for all λ ∈ N
it holds

AdvTRE
A =

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

PP← Setup(1λ, (Tj)j∈[n])

(i,m0,m1, st)← A1(1λ,PP)

b
$← {0, 1}; c← Enc(ppe,i,mb)

b′ ← A2(c, st)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

We require that an adversary A = (A1,A2) where A1 outputs i in the second
step of the above security experiment consists of two circuits with total depth at
most T εi (λ) (i. e., the total depth is the sum of the depth of A1 and A2).

3.1 Basic Construction

Building blocks. Our construction combines a time-lock puzzle with a stan-
dard public-key encryption scheme.

Definition 12. A public key encryption scheme PKE = (Gen,Enc,Dec) with
message space M is triple of efficient algorithms.

– (pk, sk) ← Gen(1λ) is a probabilistic algorithm which on input 1λ outputs a
public/secret key pair.

– c ← Enc(pk,m) is a probabilistic algorithm that takes as input a public key
pk and a message m and outputs a ciphertext c.

– m ← Dec(sk, c) is a deterministic algorithm which on input a secret key sk
and a ciphertext c outputs m ∈M∪ {⊥}.

15

We say PKE is correct if for all λ ∈ N and all m ∈M holds:

Pr[Dec(sk,Enc(pk,m)) = m : (pk, sk)← Gen(1λ)] = 1

We require standard IND-CPA security of the public-key encryption scheme,
since this is sufficient to construct a timed-release encryption scheme achieving
Definition 11. A stronger “CCA-style” security notion for timed-release encryp-
tion would be achievable by replacing the below definition with IND-CCA secu-
rity. However, we consider this as not very useful for timed-release encryption,
since it is unclear where in an application a “CCA-oracle” could plausibly exist
in an application before the release time is reached, since the decryption key
is hidden until this point in time. After the release time the ciphertext will be
decryptable, anyway, so we have no security expectations. However, some appli-
cations may require non-malleability of ciphertexts, which could be achieved via
an IND-CCA secure public-key encryption scheme, for instance.

Definition 13. A PKE scheme is secure if for all PPT adversaries A there is a
negligible function negl such that

AdvPKE
A =

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk, sk)← Gen(1λ)

(m0,m1)← A(1λ, pk)

b
$← {0, 1}; c← Enc(pk,mb)

b′ ← A(c)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Construction. Let TLP = (TLP.Gen, TLP.Solve) be a time-lock puzzle with solu-
tion space S and let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a public key encryp-
tion scheme. Figure 3 describes our construction of a timed-release encryption
scheme. Observe that correctness is directly implied by correctness of the public
key encryption scheme and the time-lock puzzle.

Setup(1λ, T) Solve(ppd)

(Z, s)← TLP.Gen(T) s← TLP.Solve(ppd)
(pk, sk)← PKE.Gen(1λ; s) return s
return ppe := pk, ppd = Z

Enc(ppe,m) Dec(s, c)

return c← PKE.Enc(ppe,m) (pk, sk)← PKE.Gen(1λ; s)
return m← PKE.Dec(sk, c)

Fig. 3. Construction of TRE

Theorem 4. If TLP = (TLP.Gen, TLP.Solve) is secure time-lock puzzle with gap ε
in the sense of Definition 2 and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is a CPA se-
cure encryption scheme according to Definition 13, then TRE = (Setup,Solve,Enc,

16

Setup′(1λ, T)

(Z, s)← TLP.Gen(T); s′
$← S

(pk, sk)← PKE.Gen(1λ; s′)
return ppe := pk, ppd = Z

Fig. 4. Alternative setup

Dec) defined in Figure 3 is a secure timed-release encryption scheme with gap
ε < ε in the sense of Definition 11.

Proof. To prove security we define two games G0 and G1 and show that these
are computationally indistinguishable.

Game 0. Game G0 corresponds to original security experiment, where we use
the Setup directly from our construction.

Game 1. In game G1 we replace Setup with the alternative setup algorithm
Setup′ from Figure 4, in which we sample s′ independently at random from S
and use it as randomness for PKE.Gen.

Let polyPKE(λ) be the fixed polynomial which bounds the time required to
run PKE.Gen and PKE.Enc. Set T := (polyPKE(λ))1/ε.

Lemma 1. From any adversary A = {(A1,A2)λ}λ∈N whose depth is bounded
from above by T ε(λ) for some T (·) ≥ T (·) we can construct an algorithm B
whose depth is bounded by T ε(λ) with

AdvTLP
B ≥ |Pr[G0 = 1]− Pr[G1 = 1]|

To prove this claim we construct an adversary B as follows.

1. B receives (Z, s) and begins to simulate the security experiment from Defi-
nition 11 by generating (pk, sk)← PKE.Gen(1λ, s).

2. Then it runs A1 which yields (m0,m1, st)
$← A1(1λ, pk, Z).

3. B picks b
$← {0, 1} and computes c← PKE.Enc(pk,mb).

4. Finally, it runs b′ ← A2(c, st) and returns the truth value of b′ = b.

Note that if s is the solution of the puzzle Z, then B simulates G0 perfectly.
If s is random, then G1. Moreover, B meets the depth constraint:

depth(B(λ)) = polyPKE(λ) + depth(A(λ)) = T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Thus, we can conclude that |Pr[G0 = 1]− Pr[G1 = 1]| = AdvTLP
B as required.

Now we can show that we can construct an adversary B′ against the PKE
scheme.

17

Lemma 2. From any adversary A = {(A1,A2)λ}λ∈N we can construct an al-
gorithm B′ such that the running time of B′ consists of running A once plus a
small number of additional operations to simulate G1 such that

AdvPKE
B′ = Pr[G1 = 1]− 1

2

The proof of this claim is straightforward. Notice that in G1 we use fresh
randomness which is independent of the puzzle Z. We construct B′ as follows:

1. B′ has pk as input and starts to simulate G1 by running (Z, s)← TLP.Gen(T).
2. Then it runs adversary (m0,m1, st)← A1(1λ, pk, Z).
3. It outputs (m0,m1) to its experiment and receives c.
4. Finally it returns b← A2(c, st).

Adversary B′ simulates G1 perfectly. Since A has polynomially-bounded size,
this proves the claim.

By combining Lemma 1 and Lemma 2 we obtain following:

AdvTLP
B + AdvPKE

B′ = |Pr[G0 = 1]− Pr[G1 = 1]|+
∣∣∣∣Pr[G1 = 1]− 1

2

∣∣∣∣ ≥ AdvTRE
A

which concludes the proof of security.

3.2 Discussion

Malavolta et al. [MT19] have introduced homomorphic timed-release encryption
(called time-lock puzzles in [MT19]), which enables the homomorphic evaluation
of functions on encrypted messages. This is extremely useful, because in prior
constructions it was necessary to solve one puzzle per ciphertext.

The very clever idea in [MT19] is that the homomorphism makes it possible
to first combine many encrypted messages into a single ciphertext, such that then
only a single puzzle needs to be solved in order to obtain the result. This “solve
one, get many for free” property scales well across multiple ciphertexts, since it
avoids expensive parallel computations to solve one puzzle per ciphertext, while
it still achieves the desired security against time-bounded adversaries.

Note however that the approach is still somewhat limited with respect to
applicability. The homomorphic evaluation of ciphertexts is only useful when
an application needs to decrypt only a function f(m1, . . . ,mn) of all encrypted
messages m1, . . . ,mn. However, if it needs to learn all n messages m1, . . . ,mn ex-
plicitly, then [MT19] still requires to solve n puzzles in parallel. Also a homomor-
phic encryption scheme that supports the homomorphic evaluation of function
f is required in order to take advantage of the “solve one, get many” property.
Practically efficient instantiations of additively and multiplicatively homomor-
phic schemes are readily available, but fully-homomorphic schemes [Gen09] are
currently still much less practical. So for applications that require a complex
function f , the homomorphic approach from [MT19] is conceptually interesting,
but not yet practical.

18

“Solve one, get many for free” in our construction. Our construction achieves
this “solve one, get many” property as well, even without requiring an under-
lying homomorphic encryption schem. This is because solving a puzzle yields
the secret key of the PKE scheme, which makes it possible to decrypt all ci-
phertexts efficiently without requiring to solve many puzzles in parallel. This
makes it possible to achieve this property even for applications that require the
full decryption of all encrypted messages m1, . . . ,mn, for instance in order to
obtain practical schemes that evaluate a complex function f(m1, . . . ,mn) after
decryption.

Our scheme is the first to achieve an amortized complexity of decryption per
ciphertext of

n · TPKE.Dec + TTLP
n

(1)

where TPKE.Dec is the time required to run the decryption algorithm PKE.Dec and
TTLP is the time required to solve the puzzle. Note that this approaches TPKE.Dec

with increasing n.

Using homomorpic encryption in our construction. In some applications it may
be desirable to enable the homomorphic evaluation of ciphertexts before decryp-
tion. This might be useful to save space, since it does not require storage of n
encryptions of m1, . . . ,mn, but only of their homomorphic evaluation.

Note that our modular approach readily supports this in a black-box man-
ner, by simply replacing the PKE scheme with a homomorphic PKE scheme
that supports homomorphic evaluation of ciphertexts. Since the existence of an
additional homomorphic evaluation algorithm is merely an additional functional
feature of the encryption scheme, the security analysis carries over without any
modifications. In particular, note that our construction readily supports any (ad-
ditively/multiplicatively/fully) homomorphic encryption scheme in a modular
way, based on arbitrary hardness assumptions and without introducing further
additional requirements, such as the need for indistinguishability obfuscation
for the fully-homomorphic construction in [MT19], or the need for a multi-key
fully-homomorphic encryption scheme [LTV12] as in [BDGM19].

3.3 Incremental TRE

Next we construct incremental timed-release encryption scheme, which can make
timed-release encryption even more useful for practical applications. In the se-
quel let TLP = (TLP.Gen, TLP.Solve) be an incremental time-lock puzzle in the
sense of Definition 5 and let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a public key
encryption scheme. Let F : S → Y be a function that maps the solution space
S of TLP to the randomness space of algorithm PKE.Gen. Our constructions of
an incremental timed-release encryption scheme TRE = (Setup,Enc,Solve,Dec)
is given in Figure 5.

Note that correctness of the scheme is directly implied by correctness of the
public key encryption scheme and the incremental time-lock puzzle.

19

Setup(1λ, (Ti)i∈[n]) Solve(ppd,i, si−1)

(Zi, si)i∈[n] ← TLP.Gen((Ti)i∈[n]) si ← TLP.Solve(ppd,i, si−1)

((pki, ski)← PKE.Gen(1λ;F(si)))i∈[n] return si
return (ppe,i := pki, ppd,i := Zi)i∈[n]

Enc(ppe,i,m) Dec(si, c)

return c← PKE.Enc(ppe,i,m) (pki, ski)← PKE.Gen(1λ;F(si))
return m← PKE.Dec(ski, c)

Fig. 5. Construction of incremental TRE

Theorem 5. If TLP = (TLP.Gen, TLP.Solve) is a secure incremental time-lock
puzzle with gap ε w.r.t. function F and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is a
CPA secure encryption scheme, then TRE = (Setup,Enc,Solve,Dec) defined in
Figure 5 is secure incremental timed-release encryption with gap ε < ε.

Proof. To prove security we define a short sequence of games G0, G1, and G2.
Individual games differ in how the setup is realized.

Game 0. Game G0 is the original security experiment with scheme TRE.

Game 1. This game is identical to G0, except that at the beginning of game G1 we

guess an index i∗
$← [n] uniformly at random. When A1 outputs (i,m0,m1, st),

then we check whether i = i∗. If i 6= i∗, then we sample and output a random

bit b
$← {0, 1} and abort. Otherwise, we continue as in G0.

Lemma 3. We have
AdvG0

A = n ·AdvG1

A

This lemma is proven using a standard argument:

Pr[G1 = 1] = Pr[G1 = 1|i 6= i∗] Pr[i 6= i∗] + Pr[G1 = 1|i = i∗] Pr[i = i∗]

=
1

2
(1− Pr[i = i∗]) + Pr[G1 = 1|i = i∗] Pr[i = i∗]

= Pr[i = i∗](Pr[G1 = 1|i = i∗]− 1

2
) +

1

2

=
1

n
(Pr[G0 = 1]− 1

2
) +

1

2

In the last equality we use the fact output of A is the same in both experiments
if i = i∗ and hence Pr[G1 = 1|i = i∗] = Pr[G0 = 1]. Now we can rearrange the
terms:

Pr[G1 = 1]− 1

2
=

1

n
(Pr[G0 = 1]− 1

2
) ⇐⇒ AdvG1

A =
1

n
AdvG0

A

20

Game 2. In Game G2 we replace Setup with the alternative setup algorithm
Setup′ from Figure 6, which takes as input i∗. For all j ∈ [i∗ − 1] we produce
keys pkj using F(sj). The remaining keys pkj for j ∈ [i∗, n] are generated using
fresh randomness sampled uniformly from the domain of the function F.

Setup′(1λ, (Tj)j∈[n], i
∗)

(Zj , sj)j∈[n] ← TLP.Gen((Tj)j∈[n])

((pkj , skj)← PKE.Gen(1λ;F(sj)))j∈{[i∗−1]}

∀j ∈ {i∗, . . . , n} : yj
$← Y, (pkj , skj)← PKE.Gen(1λ; yj)

return (ppe,j := pkj , ppd,j := Zj)j∈[n]

Fig. 6. Alternative setup

Let polyPKE(λ) be the fixed polynomial which bounds the time required to
sample random index from the set [n], to run PKE.Gen n-times and to run
PKE.Enc. Set T := (polyPKE(λ))1/ε.

Lemma 4. From any adversary A = {(A1,A2)λ}λ∈N whose depth is bounded
from above by T ε(λ) for some T (·) ≥ T (·) we can construct an algorithm B
whose depth is bounded by T ε(λ) with

AdvTLP
B ≥ |Pr[G1 = 1]− Pr[G2 = 1]|

To prove this claim we construct an adversary B = (B1,B2) as follows.

1. B1 chooses i∗
$← [n], sets st := i∗ and outputs it to its experiment.

2. B2 receives (Zj , yj)j∈[n] and simulates the game by running ((pkj , skj) ←
PKE.Gen(1λ; yj))j∈[n].

3. Then it runs adversary (i,m0,m1, st)
$← A1(1λ, (pkj , Zj)j∈[n], st).

4. If i 6= i∗, then it returns a random bit b′
$← {0, 1}.

5. Otherwise it picks b
$← {0, 1} and compute c← PKE.Enc(pki,mb).

6. It runs b′ ← A2(c, st) and returns the truth value of b′ = b.

If yj = F(sj) for all j ∈ [n], then B simulates Game G1 perfectly. If the yj are
random for j ≥ i∗, then it simulates Game G2 perfectly. Therefore we obtain

Pr[G1 = 1] = Pr
[
ExpTLP0

B(1λ) = 1
]

and Pr[G2 = 1] = Pr
[
ExpTLP1

B(1λ) = 1
]

and thus

AdvTLP
B ≥

∣∣Pr
[
ExpTLP0

B(1λ) = 1
]
− Pr

[
ExpTLP1

B(1λ) = 1
]∣∣

= |Pr[G1 = 1]− Pr[G2 = 1]|

Moreover, B fulfils the depth constraint:

depth(B(λ)) = polyPKE(λ) + depth(A(λ)) = T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

21

Lemma 5. From any adversary A = {(A1,A2)λ}λ∈N we can construct an al-
gorithm B′ such that the running time of B′ consists of running A once plus a
small number of additional operations to simulate G2 such that

AdvPKE
B′ = Pr[G2 = 1]− 1

2

The proof is essentially identical to the corresponding step from proof of
Theorem 4, adopted to the incremental setting. We construct B′ as follows:

1. B′ receives as input pk as input and starts to simulate G2 by sampling i∗
$←

[n] uniformly random and running (Zj , sj)j∈[n] ← TLP.Gen((Tj)j∈[n]).

2. For all j ∈ [i∗ − 1] it sets pkj := PKE.Gen(1λ;F(sj)). The i∗-th public key is
defined as pki∗ := pk. For all j ∈ [i∗ + 1, n], the corresponding public key is

defined as pkj := PKE.Gen(1λ, yj), where yj
$← Y .

3. B′ runs adversary (i,m0,m1, st)← A1(1λ, (pkj , Zj)j∈[n], st).

4. If i 6= i∗ it samples and putpits b′
$← {0, 1}.

5. Else it sends (m0,m1) to its experiment and receives c.
6. Finally, it returns b← A2(c, st).

Note that adversary B′ simulates G2 perfectly, which yields Lemma 5.
Finally, combining Lemmas 3-5 we obtain

n
(
AdvTLP

B + AdvPKE
B′
)

= n

(
|Pr[G1 = 1]− Pr[G2 = 1]|+

∣∣∣∣Pr[G2 = 1]− 1

2

∣∣∣∣)
≥ n ·AdvG1

A = n

∣∣∣∣Pr[G1 = 1]− 1

2

∣∣∣∣ = AdvTRE
A

which concludes the proof of security.

3.4 Incremental Timed-Release Encryption with Public Servers

One particularly nice feature of our notion of incremental timed-release encryp-
tion is that one can use a single centralized server that continuously computes
and publishes solutions si = Solve(si−1) to decrypt an arbitrary number of
ciphertexts. Most importantly, the server would be independent of these cipher-
texts, which is not achieved by prior constructions.

This yields timed-release encryption where the decrypting parties would not
have to solve any puzzle, but merely would have to wait until the server publishes
a solution. Note that here the fact that the amortized complexity of decrypting
n ciphertexts approaches the complexity of running PKE.Dec with increasing n
is particularly useful (cf. Equation (1)).

Third-party servers and trusted setup. If one is worried about a trusted setup
performed by a third-party server, or about the fact that one server might run out
of service, then one could use N servers. The public parameters of each server
would be used to encrypt a share of the message, using an (K,N)-threshold

22

secret sharing scheme (e.g., [Sha79]). Even with K − 1 colluding servers, the
message would remain hidden. Even if up to N − K servers go out of service,
messages would still be recoverable using the K shares obtained from the re-
maining servers.

3.5 Incremental Homomorphic Timed-Release Encryption

Note our contruction of incremental timed-release encryption also immediately
achieves the “solve one, get many for free” property described in Section 3.2.
Furthermore, with the same arguments as in Section 3.2, it readily supports any
(additively/multiplicatively/fully) homomorphic encryption scheme in a modu-
lar way. However, note that efficient homomorphic computations with a standard
homomorphic encryption scheme are only supported within a single time period.
Homomorphic computations across different time slots require multi-key homo-
morphic encryption scheme [LTV12], as in [BDGM19].

4 Applications

In this section, we give two application flavors of our timed-released encryption
paradigm. The first one is a cryptographic application related to the public-key
encryption concept of functional encryption (FE) [BSW12], where we integrate
the timed-release features into FE. The second one is the real-world application
towards e-voting, multi-party coin flipping, sealed bid auctions, and multi-party
contract signing, where we discuss more efficient variants of protocols described
by Malavolta and Thyagarajan in [MT19].

4.1 Cryptographic Application: Integrating Timed-Release Features
into Functional Encryption

In this section, we provide (incremental) timed-release features for functional
encryption (FE) in two flavors. We recap FE and its correctness and security no-
tions in Supplementary Material A, where we also discuss two concrete variants,
namely identity-based encryption (IBE) and inner-product functional encryption
(IPBE).

Functional Timed-Release Encryption. We introduce the notion of a func-
tional timed-release encryption (FTRE) scheme. The basic idea is that in such a
scheme like in an FE scheme there is a public key pk used for encryption of any
message x and a master secret key sk which is associated to a class of functions
F : X → Y. In contrast to an FE scheme, however, in an FTRE scheme the master
secret key can generate public decryption parameters and decryption keys for
subclasses F ′ ⊆ F of functions which are associated to time hardness parameters
(Ti)i∈[n]. The decryption algorithm takes the i-th decryption key dki, a function
f ∈ F ′ and a ciphertext to message x and outputs f(x).

23

Definition 14. An FTRE scheme FTRE for functionality F : X → Y consists
of four PPT algorithms (Setup,Gen,Enc,Dec):

– (pk,msk) ← Gen(1λ,F) is a probabilistic algorithm which on input 1λ and
class of functions F , outputs a public key pk and a master secret key msk.

– (ppd,i, dki)i∈[n] ← KeyGen(msk,F ′, (Ti)i∈[n]) is a probabilistic algorithm that
takes as input a master secret key msk, a class of functions F ′ ⊆ F with
|F ′| = n and time hardness parameters (Ti)i∈[n], and outputs public decryp-
tion parameters and decryption keys (ppd,i, dki)i∈[n].

– c← Enc(pk, x) is a probabilistic algorithm that takes on input pk and x ∈ X ,
outputs a ciphertext c for x.

– si ← Solve(ppd,i, si−1), is a deterministic algorithm which on input public
decryption parameters ppd,i, and solution si−1, outputs solution si.

– fi(x
′) ← Dec(dki, si, fi, c) is a deterministic algorithm which on input de-

cryption key dki, solution si, a function fi ∈ F , and ciphertext c, outputs
f(x′) ∈ Y ∪ {⊥}.

We say an FTRE scheme FTRE is correct if for all λ, n ∈ N and for all T
that is a polynomial in λ, for any F : X → Y, for any x ∈ X , F ′ ⊆ F with
|F ′| = n, for any fi ← F ′, for all i ∈ [n], it holds:

Pr

Dec(dki, si, fi, c) = fi(x) :

(pk,msk)← Gen(1λ,F)

(ppd,i, dki)i ← KeyGen(msk,F ′, (Ti)i)
si ← Solve(ppd,i, si−1), s0 = ⊥

c← Enc(pk, x)

 = 1

Definition 15. An FTRE scheme FTRE is FTRE-IND-CPA secure (indistin-
guishable under chosen-plaintext attacks) if for all PPT adversaries A, we have

AdvFTRE
A =

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk,msk)← Gen(1λ,F)

(x0, x1, st)← AKeyGen(msk,·,·)(pk)

b← {0, 1}, c∗ ← Enc(pk, xb)

b′ ← AKeyGen(msk,·,·)(st, c∗)

− 1

2

∣∣∣∣∣∣∣∣∣∣
= negl(λ),

for negligible function negl, where we require that A only queries KeyGen with
functions F ′ = (f1, . . . , fn) such that fj(x0) = fj(x1), for all j ∈ [n].

In the following, we show how to construct FTRE from incremental timed-
released encryption and functional encryption.

Construction of FTRE. Let TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) be
a TRE scheme and FE = (FE.Gen, FE.KeyGen, FE.Enc, FE.Dec) be an FE scheme.
We construct an FTRE scheme FTRE = (Setup,KeyGen,Enc,Dec) as given in
Figure 7.

24

Gen(1λ,F) Enc(pk, x)

(pk,msk)← FE.Gen(1λ,F) return c← FE.Enc(pk, x)
return (pk,msk)

KeyGen(msk,F ′, (Ti)i∈[n]) Dec(dki, si, fi, c)

(f1, . . . , fn) := F ′ ci := dki
(ppe,i, ppd,i)i ← TRE.Setup(1λ, (Ti)i) skfi := TRE.Dec(ci, si)
skfi ← FE.KeyGen(msk, fi), i ∈ [n] return fi(x) := FE.Dec(skfi , c)
ci ← TRE.Enc(ppe,i, skfi), i ∈ [n]
return (ppd,i, dki := ci)i

Solve(ppd,i, si−1)

return si := TRE.Solve(ppd,i, si−1)

Fig. 7. Construction of FTRE.

Theorem 6. If TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) is a secure TRE
scheme and FE = (FE.Gen, FE.KeyGen, FE.Enc, FE.Dec) is a FE-IND-CPA secure
FE scheme, then FTRE = (Setup,KeyGen,Enc,Dec) defined in Figure 7 is a
FTRE-IND-CPA secure FTRE scheme.

Proof. We show how to construct an adversary BFE on the FE-IND-CPA security
of FE and an adversary BTRE on the security of the TRE scheme TRE from an
adversary AFTRE on the FTRE-IND-CPA security.

We first construct BFE as follows:

1. BFE receives pk as input. For any query to KeyGen, BFE runs (ppe,i, ppd,i)i ←
TRE.Setup(1λ, (Ti)i) where the FE key queries are forwarded to its challenger
and the results are TRE encrypted under (ppe,i)i.

2. BFE runs (x0, x1, st)← AFTRE(1
λ, pk).

3. It outputs (x0, x1) to its FE challenger and receives c∗.
4. Finally, BFE sends b′ ← AFTRE(c

∗, st) to its challenger.

BFE simulates the FTRE experiment perfectly. See that if AFTRE is a success-
ful adversary, then BFE is a successful adversary in the FE-IND-CPA security
experiment.

We now construct BTRE as follows:

1. BTRE receives (ppe,i, ppd,i)i for time hardness parameters (Ti)i as input and

runs (pk,msk)← FE.Gen(1λ,F).
2. If BTRE is queried on some Ti and function fi, set f0 := fi and a uniform

function f1 ← F . Send (1, skf0 , skf1) to the challenger and receives c∗ where
c∗ is embedded at the fi-index in the KeyGen-answer.

3. BTRE runs (x0, x1, st) ← AFTRE(1
λ, pk) and computes c ← Enc(pk, xb), for

b← {0, 1}.
4. For b′ ← AFTRE(c, st), if b = b′, then BTRE sends 0 to its challenger, else 1.

25

BFE simulates the FTRE experiment perfectly. See that if AFTRE is a successful
adversary, then BTRE is a successful adversary in the TRE security experiment.

Application to locked-key IBE. With FTRE, we are able to lock secret keys
of an IBE scheme with a incremental timed-release feature. When the central
authority in an IBE scheme generates the identity-based secret keys, it can attach
hardness parameters to it such that those keys only become usable incrementally.
This, for example, enables an IBE key authority to produce all secret keys in
the beginning and afterwards can go offline.

Timed-Release Functional Encryption. We define timed-release functional
encryption (TRFE) scheme which is notably different to the notion of KTR-
FE where the hardness parameter is bound to the key; here, we associate the
functional ciphertexts with a hardness parameter.

Definition 16. A TRFE scheme TRFE for functionality F : X → Y consists of
four PPT algorithms (Setup,Gen,Enc,Dec):

– (pk,msk)← Gen(1λ,F , (Ti)i∈[n]) is a probabilistic algorithm which on input

1λ, a class of functions F , and hardness parameters (Ti)i∈[n], outputs public
key pk and a master secret key msk.

– skf ← KeyGen(msk, f) is a probabilistic algorithm which on input a master
secret key msk and a function f ∈ F , outputs secret key skf for f .

– ci ← Enc(pk, x, i) is a probabilistic algorithm which on input pk, x ∈ X ,
and index of the hardness parameter i ∈ [n], outputs a ciphertext ci for x
associated to index i.

– f(x′) ← Dec(skf , ci) is a deterministic algorithm which on input the secret
key skf and ci, outputs f(x′) ∈ Y ∪ {⊥}.

We say a TRFE scheme TRFE is correct if for all λ, n ∈ N and for all (Ti)i∈[n]
that are polynomials in λ, for any F : X → Y, for any x ∈ X , for any f ← F ,
for all i ∈ [n], it holds:

Pr

Dec(skf , ci) = f(x) :

(pk,msk)← Gen(1λ,F , (Ti)i∈[n]))
skf ← KeyGen(msk, f)

ci ← Enc(pk, x, i)

 = 1

Definition 17. A TRFE scheme TRFE is TRFE-IND-CPA secure (indistin-
guishable under chosen-plaintext attacks) if for all PPT adversaries A, we have

AdvTRFE
A =

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk,msk)← Gen(1λ,F , (Ti)i∈[n]))
(x0, x1, i

∗, st)← AKeyGen(msk,·)(pk)

b← {0, 1}, c∗i∗ ← Enc(pk, xb, i
∗)

b′ ← AKeyGen(msk,·)(st, c∗i∗)

− 1

2

∣∣∣∣∣∣∣∣∣∣
= negl(λ),

for negligible function negl, where we require that A only queries KeyGen with
functions f such that f(x0) = f(x1).

26

In the following, we show how to construct TRFE from time-release encryp-
tion and functional encryption.

Construction of TRFE. Let TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) be
a TRE scheme and FE = (FE.Gen, FE.KeyGen, FE.Enc, E.Dec) be an FE scheme.
We construct a TRFE scheme TRFE = (Setup,KeyGen,Enc,Dec) as given in
Figure 8.

Gen(1λ,F , (Ti)i∈[n]) Enc(pk, x, i′)

(ppe,i, ppd,i)i∈[n] ← TRE.Setup(1λ, (Ti)i∈[n]) ((ppe,i)i∈[n], pk
′) := pk

(pk′,msk′)← FE.Gen(1λ,F) c← FE.Enc(pk′, x)
pk := ((ppe,i)i∈[n], pk

′) return ci′ ← TRE.Enc(ppe,i′ , c)
msk := ((ppd,i)i∈[n],msk′)
return (pk,msk)

KeyGen(msk, f) Dec(skf , ci′)

((ppd,i)i∈[n],msk′) := msk ((ppd,i)i∈[n], sk
′
f) := skf , s0 := ⊥

sk′f ← FE.KeyGen(msk′, f) si ← TRE.Solve(ppd,i, si−1), i ∈ [i′]
return skf := ((ppd,i)i∈[n], sk

′
f) c← TRE.Dec(ci′ , si′)

return f(x)← FE.Dec(skf , c)

Fig. 8. Construction of TRFE.

Theorem 7. If TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) is a secure time-
release encryption scheme and FE = (FE.Gen, FE.KeyGen, FE.Enc, FE.Dec) is a
FE-IND-CPA secure FE scheme, then TRFE = (Setup,KeyGen,Enc,Dec) defined
in Figure 8 is a TRFE-IND-CPA secure TRFE scheme.

Proof. We show how to construct an adversary BFE on the FE-IND-CPA security
of FE and an adversary BTRE on the security of the TRE scheme TRE from an
adversary ATRFE on the TRFE-IND-CPA security.

We first construct BFE as follows:

1. BFE receives pk′ as input. For any query to KeyGen, BFE computes (ppe,i,

ppd,i)i∈[n] ← TRE.Setup(1λ, (Ti)i∈[n]) and sets pk := (ppe,i, pk
′).

2. BFE answers KeyGen-queries for f by querying its own challenger KeyGen-
oracle with f to receive sk′f and returns skf := ((ppd,i)i∈[n], sk

′
f).

3. BFE runs (x0, x1, i
∗, st)← ATRFE(1λ, pk).

4. It outputs (x0, x1) to its FE challenger and receives c.
5. Finally, BFE sends b′ ← ATRFE(st, c∗), for c∗ = TRE.Enc(ppe,i∗ , c) to its chal-

lenger.

BFE simulates the TRFE experiment perfectly. See that if AFTRE is a success-
ful adversary, then BFE is a successful adversary in the FE-IND-CPA security
experiment.

We now construct BTRE as follows:

27

1. BTRE receives (ppe,i, ppd,i)i∈[n] as input and runs (pk′,msk′)← FE.Gen(1λ,F).

KeyGen-queries are answered using msk′ and ppd,i.

2. BTRE runs (x0, x1, i
∗, st) ← AFTRE(1

λ, pk), for pk := ((ppe,i)i∈[n], pk
′), and

computes c0 ← FE.Enc(pk′, x0) and c1 ← FE.Enc(pk′, x1). BTRE forwards
(i∗, c0, c1) to its challenger to receive c∗.

3. BTRE returns b′ ← AFTRE(st, c
∗) to its challenger.

BTRE simulates the TRFE experiment perfectly. See that if ATRFE is a successful
adversary, then BTRE is a successful adversary in the TRE security experiment.

Application to inner-product FE (IPFE). With TRFE, we are able to
release the possibility for inner-product function evaluations on ciphertexts in-
crementally so that they only get available after a certain time has passed. Thus,
it is possible to publish data in a way to ensure that statistics about the data
can only be computed after some point certain point in time. We note that IPFE
is already used for practical applications (e.g., within the FENTEC project3).

4.2 Real-World Application: Simpler and More Efficient
Instantiations

Subsequently, we discuss more efficient variants of protocols which are described
in [MT19]. All these protocols require decrypting a set of encrypted messages at
some required time. Our approach to TRE allows to decrypt arbitrary number of
messages at the specified time by solving one puzzle. In [MT19] this is achieved
by homomorphic evaluation of puzzles and then solving one or more resulting
puzzles. The drawback of this solution is that one needs to wait until all puzzles
of interest have been collected, then execute homomorphic evaluation and only
after that the resulting puzzles can be solved. Our scheme allows to start to solve
the puzzle immediately after Setup is run. In all of this applications we are able
to use a timed-release encryption scheme without any homomorphic property.

E-voting. We focus on designing an e-voting protocol in absence of trusted
party, where voters are able to cast their preference without any bias. Similarly
to [MT19], we do not consider privacy nor authenticity of the votes. The crucial
property of our TRE is that setup can be reused for producing an arbitrary
number of ciphertexts and for that reason it is enough to run Solve only once.
The output s of Solve allows to obtain the secret key which is then used to decrypt
all ciphertexts that have been produced using corresponding ppe. Therefore, if
we encrypt all votes using the same ppe, we are able to decrypt all ciphertexts
at the same time. Then it is easy to obtain final result by combining decrypted
plaintexts.

Notice that the security of the timed-release encryption scheme guarantees
that all votes remain hidden during the whole voting phase. In the e-voting
protocol proposed by Malavolta and Thyagarajan [MT19] we have to wait until

3 http://fentec.eu/

28

http://fentec.eu/

the voting phase is finished and then we can combine puzzles from voting phase
to m resulting puzzles. After that these m puzzles can be solved, which requires
at least time T . Hence, we need time T after the voting phase is over to be
able to announce the results. This is in contrast to our protocol in which we can
start to solve the puzzle immediately after Setup is run and hence the results
are available at the beginning of the counting phase.

Multi-Party Coin Flipping. In multi-party coin flipping we assume n parties
which want to flip a coin in the following way: 1) The value of the coin is unbiased
even if n − 1 parties collude and 2) all parties agree on the same value for the
coin.

Malavolta and Thyagarajan [MT19] proposed to use their homomorphic time-
lock puzzle. Their protocol consist of three phases: Setup, Coin Flipping, An-
nouncement of the Result. Similarly to e-voting protocol, we are able to start
solve puzzle only in the last phase and hence obtain results after time T . We are
able to avoid this problem, by using our timed-release encryption scheme, where
we can start to solve the puzzle already after the Setup phase.

Sealed Bid Auctions. Here we consider an auction with n bidders. The proto-
col consist of two phases - the bidding phase and the opening phase. Bids should
be kept secret during the bidding phase and later revealed in opening phase.
Time-lock puzzles are used in this scenario to mitigate the issue that some bid-
ders can go offline after the bidding phase. If we use only standard time-lock
puzzles, then the number of puzzles which has to be solved in opening phase
is equal to number of bidders who went offline. In [MT19] this problem was
resolved by using homomorphic time-lock puzzles. Their solution has the same
issue assume the two previous applications and we can avoid it using the TRE
approach.

Multi-Party Contract Signing. In multi-party contract signing we assume n
parties which want to jointly sign a contract. The parties are mutually distrust-
ing and the contract is valid only if it is signed by all parties. The protocol of
Malavolta and Thyagarajan [MT19] consists of four phases - Setup, Key Gener-
ation, Signing and Aggregation Phase, and combines RSA-aggregate signatures
with multiplicatively homomorphic time-lock puzzles with reusable setup. We
remark that time-lock puzzles with reusable setup are in some sense equivalent
to our incremental timed-release encryption (though they do only discuss them
informally in [MT19]). The protocol runs in `-rounds. In the i-th round every
party should create a puzzle with hardness T`−i+1 which contains a signature
of the required message. Hence, the hardness of the puzzles decrease in every
round. If some parties haven’t broadcasted their puzzles in any round, the par-
ties will homomorphically evaluate puzzles from previous round and solve the
resulting puzzle.

Consider a scenario, where in the i-th round some party does not broadcast
its puzzle. Then if we do not take into account time for homomorphic evaluation
we need time T`−i+1 to solve the resulting puzzle after this event happened. On
the other hand, if we use incremental TRE, we are able to obtain result in time

29

T`−i+1 after the setup was executed. Moreover, we can combine incremental TRE
with arbitrary aggregate signature scheme, because we do not need to perform
homomorphic evaluation.

Acknowledgements. This work was supported by the German Federal Min-
istry of Education and Research (BMBF) project REZEIVER, the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme, grant agreement n◦802823, the EU’s Horizon 2020
ECSEL Joint Undertaking under grant agreement n◦783119 (SECREDAS) and
by the Austrian Science Fund (FWF) and netidee SCIENCE under grant agree-
ment P31621-N38 (PROFET).

References

ABDP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.
Simple functional encryption schemes for inner products. In Jonathan Katz,
editor, PKC 2015: 18th International Conference on Theory and Practice
of Public Key Cryptography, volume 9020 of Lecture Notes in Computer
Science, pages 733–751, Gaithersburg, MD, USA, March 30 – April 1, 2015.
Springer, Heidelberg, Germany.

AIK06. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally
private randomizing polynomials and their applications. Comput. Complex.,
15(2):115–162, 2006.

App17. Benny Applebaum. Garbled circuits as randomized encodings of functions:
a primer. In Tutorials on the Foundations of Cryptography, pages 1–44.
2017.

BDGM19. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Lever-
aging linear decryption: Rate-1 fully-homomorphic encryption and time-
lock puzzles. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th
Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 407–437, Nuremberg, Germany, December 1–5,
2019. Springer, Heidelberg, Germany.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the Weil pairing. In Joe Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
213–229, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidel-
berg, Germany.

BGJ+16. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-lock puzzles from randomized
encodings. In Madhu Sudan, editor, ITCS 2016: 7th Conference on Inno-
vations in Theoretical Computer Science, pages 345–356, Cambridge, MA,
USA, January 14–16, 2016. Association for Computing Machinery.

BN00. Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in
Computer Science, pages 236–254, Santa Barbara, CA, USA, August 20–24,
2000. Springer, Heidelberg, Germany.

BSW12. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new
vision for public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

30

CHKO08. Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. Prov-
ably secure timed-release public key encryption. ACM Trans. Inf. Syst.
Secur., 11(2):4:1–4:44, 2008.

DN00. Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual
Symposium on Foundations of Computer Science, pages 283–293, Redondo
Beach, CA, USA, November 12–14, 2000. IEEE Computer Society Press.

DOR99. Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Conditional oblivious transfer and timed-release encryption. In
Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 74–89, Prague, Czech
Republic, May 2–6, 1999. Springer, Heidelberg, Germany.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory
of Computing, pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009.
ACM Press.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and succinct
functional encryption. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, 45th Annual ACM Symposium on Theory of Computing,
pages 555–564, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

IK00. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In 41st
Annual Symposium on Foundations of Computer Science, pages 294–304,
Redondo Beach, CA, USA, November 12–14, 2000. IEEE Computer Society
Press.

KLW15. Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguisha-
bility obfuscation for turing machines with unbounded memory. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on
Theory of Computing, pages 419–428, Portland, OR, USA, June 14–17,
2015. ACM Press.

LJKW18. Jia Liu, Tibor Jager, Saqib A Kakvi, and Bogdan Warinschi. How to build
time-lock encryption. Designs, Codes and Cryptography, 86(11):2549–2586,
2018.

LPS17. Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-interactive
concurrent non-malleable commitments from time-lock puzzles. In Chris
Umans, editor, 58th Annual Symposium on Foundations of Computer Sci-
ence, pages 576–587, Berkeley, CA, USA, October 15–17, 2017. IEEE Com-
puter Society Press.

LTV12. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Howard J. Karloff and Toniann Pitassi, editors, 44th Annual
ACM Symposium on Theory of Computing, pages 1219–1234, New York,
NY, USA, May 19–22, 2012. ACM Press.

May93. Timothy C. May. Timed-release crypto. Technical report, February 1993.

MMV11. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puz-
zles in the random oracle model. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Com-
puter Science, pages 39–50, Santa Barbara, CA, USA, August 14–18, 2011.
Springer, Heidelberg, Germany.

31

MT19. Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic
time-lock puzzles and applications. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part I, vol-
ume 11692 of Lecture Notes in Computer Science, pages 620–649, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, Advances in Cryptology – EU-
ROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages
223–238, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg,
Germany.

RSW96. Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles
and timed-release crypto. Technical report, 1996.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
Unr14. Dominique Unruh. Revocable quantum timed-release encryption. In

Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology
– EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science,
pages 129–146, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidel-
berg, Germany.

A Functional Encryption

Definition 18. A functional encryption scheme FE for functionality F : X → Y
consists of four PPT algorithms (Gen,KeyGen,Enc,Dec):

– (pk,msk) ← Gen(1λ,F) is a probabilistic algorithm which on input 1λ and
F , outputs a public key and a master secret key.

– skf ← KeyGen(msk, f) is a probabilistic algorithm which on input msk and
f ∈ F , outputs a secret key skf for f .

– c ← Enc(pk, x) is a probabilistic algorithm which on input pk and x ∈ X ,
outputs a ciphertext c for x.

– f(x) ← Dec(skf , c) is a deterministic algorithm which on input skf and c,
outputs f(x) ∈ Y ∪ {⊥}.

We say an FE scheme FE is correct if for all λ ∈ N, for any F : X → Y, for any
x ∈ X , for any f ∈ F , it holds:

Pr

Dec(skf , c) = f(x) :

(pk,msk)← Gen(1λ,F)

skf ← KeyGen(msk, f)

c← Enc(pk, x)

 = 1

Definition 19. An FE scheme FE is FE-IND-CPA secure (indistinguishable un-
der chosen-plaintext attacks) if for all PPT adversaries A, we have

AdvFE
A =

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk,msk)← Gen(1λ,F)

(x0, x1, st)← AKeyGen(msk,·)(pk)

b← {0, 1}, c← Enc(pk, xb)

b′ ← AKeyGen(msk,·)(st, c)

− 1

2

∣∣∣∣∣∣∣∣∣∣
= negl(λ),

for negligible function negl, where we require that A only queries KeyGen with
functions f such that f(x0) = f(x1).

32

Example: identity-based encryption. We recall that in identity-based en-
cryption (IBE) messages can be encrypted with respect to any strings as “public
keys” (called identities) and decryption requires a secret key for the correspond-
ing identity. Now, an IBE scheme can be obtained from an FE scheme as in
Definition 18 by setting the message space X := ID ×M representing pairs of
identities and messages (id,m) and F being an equality testing functionality.
A function secret key skfid∗ for identity id∗ is generated with respect to fid∗

defined as:

fid∗((id,m)) =

{
m if id = id∗,

⊥ otherwise.

Example: inner-product functional encryption. Inner-product functional
encryption (IPFE) allows for computing inner products on encrypted data. The
ciphertext in an IPFE is associated to a vector x = (x1, . . . , x`) while the secret
keys are associated to a function fy, for vector y = (y1, . . . , y`). An IPFE scheme
can be obtained from an FE scheme as in Definition 18 by setting the space
X := {(xi)i} and F realizes the inner-product functionality. A function secret
key sky for vector y is generated with respect to the function fy defined as:

fy(x) = 〈x,y〉 = x1y1 + · · ·+ x`y`.

33

	Generic Constructions of Incremental and Homomorphic Timed-Release Encryption

