
Versatile and Sustainable Timed-Release Encryption
and Sequential Time-Lock Puzzles

Peter Chvojka1, Tibor Jager1,
Daniel Slamanig2, and Christoph Striecks2

1 University of Wuppertal, Germany
{chvojka,tibor.jager}@uni-wuppertal.de
2 AIT Austrian Institute of Technology, Vienna, Austria

firstname.lastname@ait.ac.at

Abstract. Timed-release encryption (TRE) makes it possible to send messages
“into the future” such that a pre-determined amount of time needs to pass be-
fore a message can be accessed. The most prominent construction is based on
sequential squaring in RSA groups, proposed by Rivest et al. in 1996. Mala-
volta and Thyagarajan (CRYPTO’19) recently introduced an interesting variant
of TRE called homomorphic time-lock puzzles (HTLPs), making TRE more ver-
satile and greatly extending its applications. Here one considers multiple indepen-
dently generated puzzles and the homomorphic evaluation of a circuit over these
puzzles. Solving the so obtained puzzle yields the output of a circuit evaluated on
the messages locked by the original puzzles.
We observe that viewing HTLPs more abstractly gives rise to a simple generic
construction of homomorphic TRE (HTRE) that is not necessarily based on se-
quential squaring, but can be instantiated based on any TLP, such as those based
on one-way functions and the LWE assumption (via randomized encodings). This
construction has slightly different properties, but provides essentially the same
functionality for applications. It makes TRE versatile and can be used beyond
HTRE, for instance to construct timed-release functional encryption. Interest-
ingly, it achieves a new “solve one, get many for free” property, which supports
that an arbitrary number of independently time-locked (homomorphically eval-
uated) messages can all be obtained simultaneously after solving only a single
puzzle. This puzzle is independent of the number of time-locked messages and
thus achieves optimal amortized cost.
As a second contribution we define and construct sequential TLPs as a particu-
larly useful generalization of TLPs and TRE. Such puzzles can be solved sequen-
tially in a way that solving a puzzle additionally considers the previous solution
and the time required to solve the puzzle is determined by the difference in the
time parameters. When instantiated from sequential squaring, this allows to re-
alize public “sequential squaring services”, where everyone can time-lock mes-
sages, but only one entity needs to perform the computations required to solve
puzzles. Thus, this removes the burden of wasting computational resources by
every receiver and makes TRE economically and ecologically more sustainable.

1 Introduction

Timed-release encryption (TRE) has the goal of sending information into the future in
a way that the sender can be sure that a pre-determined amount of time needs to pass

before the information can be decrypted. This idea was firstly discussed by May [27],
who introduced this notion and proposed a solution based on trusted agents. The idea is
to rely on some trusted entity, which after the pre-determined time has passed, releases
some secret that allows to efficiently obtain the hidden information (see also [12,11]).
In this work we will not focus on this agent-based variant of TRE, but rather on an
alternative idea proposed by Rivest et al. in [31] and which they called time-lock puz-
zles (TLPs). TLPs allow to seal messages in such a way that one is able to obtain the
sealed message only by executing an expensive sequential computation. The amount
of time required to perform this sequential computation is determined by a hardness
parameter T of the TLP, which can be freely chosen. This approach does not involve a
trusted agent and a sender can just publish a puzzle whose solution hides the message
until enough time has elapsed for the puzzle to be solved. TLPs have found numerous
applications such as sealed-bid auctions [31], fair contract signing [7], zero-knowledge
arguments [13], or non-malleable commitments [22].

The solution proposed by Rivest et al. in [31] uses sequential squaring in an RSA
group Z∗N where N it the product of two large primes p and q. More precisely, a time-
lock puzzle Z with solution s = x2

T

for hardness T is defined as Z = (N,T, x, x2
T ·

k,Enc(k,m)) where (x, k) $← (Z∗N)2 and Enc is a symmetric encryption scheme. Note
that this TLP can be equivalently viewed as a timed-release encryption (TRE) that en-
crypts message m. An interesting feature of this TLP construction is that creating a
puzzle is much faster than the expensive sequential computation to solve the puzzle,
i.e., knowing the factorization of N and thus ϕ(N) one can compute x2

T

quickly by
taking the shortcut of computing 2T mod ϕ(N) directly. This is an important prop-
erty of TLPs when the required amount of time until the puzzle should be solved is
very large. Interestingly, TLPs with this property seem hard to find. In [25] Mahmoody
et al. show that in the random-oracle model it is impossible to construct TLPs from
one-way permutations and collision-resistant hash-functions that require more parallel
time to solve than the total work required to generate a puzzle and thus ruling out black-
box constructions of such TLPs. On the positive side, Bitansky et al. [5] show how to
construct TLPs with the aforementioned property from randomized encodings [19,3]
relying on indistinguishability obfuscation. Interestingly, when slightly relaxing the re-
quirements and allowing efficient parallel computation in the generation of the puzzles
or a solution independent preprocessing (so-called weak TLPs), then such TLPs can
be constructed generically from one-way functions and directly from the learning with
errors (LWE) assumption, respectively, via randomized encodings.

Recently, Malavolta and Thyagarajan [26] (MT19 henceforth) proposed an interest-
ing variant of TLPs called homomorphic TLPs (HTLPs). Here one considers multiple
puzzles (Z1, . . . , Zn) with hardness parameter T , which can be independently gener-
ated by different entities. Without knowing the corresponding solutions (s1, . . . , sn)
one can homomorphically evaluate a circuit C over these puzzles to obtain as result a
puzzle Ẑ with solution C(s1, . . . , sn), where the hardness of this resulting puzzle does
not depend on the size of the circuit C that was evaluated (which is called compact-
ness). Consequently, this allows to aggregate a potentially large number of puzzles in
a way that only a single puzzle needs to be solved. While this concept is interesting
on its own, MT19 also shows that it extends the applications of TLPs and in particular

2

present applications to e-voting, multi-party coin flipping as well as multi-party con-
tract signing, or more recently verifiable timed signatures [35], again yielding a number
of interesting further applications.

MT19 conjecture that any application that involves a large number of users and thus
the constraint of requiring to solve multiple puzzles (in parallel) constitute one of the
main obstacles that so far prevented the large scale adoption of TLPs. As already, men-
tioned, this can be partly mitigated via HTLPs by MT19 and in particular if one is only
interested in homomorphic evaluations over multiple messages. We additionally stress
that applications requiring to solve multiple puzzles will also represent a huge waste
of resources and are thus problematic from an economic and ecological perspective.
Moreover, even the requirement for a receiver to only solve a single puzzle on its own
may already prevent the application of TRE, e.g., for resource constrained receivers of
messages as omnipresent within the Internet of Things (IoT).

1.1 Motivation for our Work

The motivation of our work is twofold. Firstly, our goal is to make TRE more versatile
in order to improve on existing applications and to broaden the scope of applications
even further. For instance, when we look at the HTLPs in MT19, they construct a lin-
early homomorphic TLP (LHTLP) from the sequential squaring TLP and Paillier en-
cryption [30]. They set up public parameters (N,T, g, h = g2

T

) for a suitable choice
of g and to create a puzzle to solution s, one re-randomizes g, h for fresh r $← [N2] and
sets Z = (gr (mod N), hr·N (1 + N)s (mod N2)). It is easy to see that this puzzle
is linearly homomorphic where the evaluation is independent of the hardness T (and
one can also turn this into a multiplicatively homomorphic TLP). In order to extend
this to fully HTLPs (FHTLPs), MT19 requires sub-exponentially hard indistinguisha-
bility obfuscation, whereas in follow-up work Brakerski et al. in [9] proposed FHTLPs
from standard assumption which itself requires an LHTLP (where to the best of our
knowledge the aforementioned is the only known construction). In particular, the idea
in [9] is to use a multi-key fully-homomorphic encryption (MK-FHE) scheme [24] to
encrypt every message with a fresh key and an LHTP to lock the respective MK-FHE
secret keys. To be compatible with the LHTLP, Brakerski et al. in particular require a
MK-FHE scheme with a linear decryption algorithm.

Unfortunately, all these constructions are not generic as they rely on a single partic-
ular construction of an HTLP from sequential squaring (and additionally a very specific
MK-FHE scheme in [9]). Moreover, one can observe that for every such puzzle one can
only start to attempt to solve it when gr is available as solving it requires sequentially
computing (gr)2

T

. The same also holds for the puzzle obtained from homomorphically
evaluating on many such puzzles. Although the homomorphic property makes it scal-
able in a setting where one is only interested in the homomorphic evaluation over all
encrypted messages, it would be convenient to have an approach that also supports a
“solve one, get many for free” property. And this even if one wants to obtain all en-
crypted messages in full, instead of only the result of a homomorphic evaluation. Note
that, if in contrast to the homomorphically evaluated function over all the messages,
one wants to unlock n of the input messages with the approaches in [26,9], it requires

3

to solve n puzzles. Consequently, we ask whether it is possible to come up with an ap-
proach that provides the “solve one, get many for free” property on an arbitrary number
of independently time-locked messages such that it is possible to decrypt all single mes-
sages and at the same time. So essentially having a solution that can be homomorphic
but does not need to be if one is only interested in the single messages and all with only
solving a single puzzle. Ideally this approach is generic in nature and thus would allow
to construct (homomorphic) timed-release encryption (TRE) generically from any TLP.

Secondly, a central drawback of TRE is that it puts considerable computational
overhead on the message receiver, i.e., the receiver has to invest lots of computational
resources to solve the puzzle to obtain the time-locked message. This makes it undesir-
able for real-life scenarios from an economic as well as ecological perspective. While
HTLPs of MT19 address this problem from a different angle, i.e., homomorphically
combine many TLPs such that only one puzzle needs to be solved, this will not reveal
the individual messages without solving all puzzles. And while this functionality is a
helpful feature in certain applications, it can not be considered a general purpose so-
lution, because the amount of recoverable data is bounded by the amount of data that
can be encapsulated in a single ciphertext. Moreover, it still requires the receiver to
waste potentially significant resources for solving a new puzzle. Consequently, we ask
whether this can be avoided. Looking ahead, we remedy this issue via the notion of se-
quential TLPs from which one obtains sequential TRE. The basic idea is that the puzzle
generation takes an increasing sequence of hardness parameters T1, . . . , Tn and outputs
a sequence of puzzles and solutions (Zi, si)i∈[n]. The distinguishing feature is that puz-
zles can be solved sequentially in a way that solving Zi additionally considers solution
si−1 and the time required to solve puzzle Zi is determined by the hardness Ti − Ti−1.
In particular, one does not need to start from the beginning for solving additional puz-
zles. The interesting aspect now is that the puzzle generator can outsource the solving
of the puzzles to an external entity, i.e., a sequential squaring service for TLPs based
on sequential squaring. Note that this service has no means to solve the puzzles faster
than anyone else (excluding the puzzle generator) and thus there could be a single such
service performing the computation instead of requiring to have every receiver doing
this wasteful computation on its own.

1.2 Technical Overview and Contributions

Before we discuss our contributions we stress (as already seen in above), that the terms
time-lock puzzle (TLP) [31], timed-release encryption (TRE) [27], and time-lock en-
cryption (TLE) [23] are often used interchangeably in the literature to denote an en-
cryption scheme which enables us to send messages in the future. For our constructions
we use the former two notions in a slightly different way, and hence we need to distin-
guish between them. In particular, TRE will denote an encryption scheme which allows
us send messages “into the future”, while providing confidentiality of message before
the release time. A TLP provides the core functionality of a puzzle that needs a certain
amount of time to be solved, without considering any messages. TLPs will be used as a
building block for TRE. Now, we are ready to discuss our contributions.

4

Versatile Timed-Release Encryption. We introduce a generic approach to construct
TRE. The basic and indeed very simple idea is that given any TLP we can use it to
generate a puzzle Z and its solution s, and we can use s as the random coins for the key
generation algorithm Gen(1λ; s) of a public key encryption (PKE) scheme. Then, we
provide the respective public key pk as parameters of the TRE and solving the puzzle Z
reveals s and thus sk allowing to decrypt all of the ciphertexts computed with respect to
pk. Note that when using s as the random coins for a partially homomorphic encryption
scheme, e.g., ElGamal [14], or a fully homomorphic encryption scheme, e.g., BGV
[10], this immediately yields (fully) homomorphic TRE. Interestingly, this approach
then allows us to obtain the “solve one, get many for free” property for both, the result
of a homomorphic evaluation of many ciphertexts, but also if we want to decrypt all
ciphertexts individually. Consequently, solving one puzzle allows to decrypt all cipher-
texts associated to a hardness parameter (generated by many potentially independent
entities). We note that our approach to HTRE satisfies the basic definition of HTLPs
from MT19, where the time required to solve the puzzles starts with the generation of
the parameters. In contrast, MT19 also provides the notion of a reusable setup for their
LHTLP, where one can use the same parameters to generate many puzzles in a way
that for every single puzzle the time only starts to run from the point where the puzzle
is generated (this characteristic is also inherited by [9]). However, we observe that for
all the applications discussed in [26] it seems sufficient, and in some applications even
more desirable, when the runtime of the puzzle is counted from the point of running the
puzzle setup algorithm. For instance, MT19 discuss an application to e-voting, where
it rather seems to complicate issues when one can only start solving the puzzle after
the last voter cast its vote. It seems more practical to set-up the puzzle such that the
solution can be made available at a certain pre-defined point in time. And even if this is
not required, it might be easy to adjust the setup in a way that it outputs a set of public
parameters, and a user can choose which public parameters to use when computing a
puzzle (we defer a detailed discussion to the Appendix D).

Moreover, we demonstrate that our TRE framework can be used to obtain other
variants of TRE in a generic way. We showcase this using the regime of functional en-
cryption. In particular, we introduce timed-release functional encryption (TRFE) which
allows to time-lock a function f . After a certain time has passed everyone can learn the
function f(x) of any ever encrypted message x. As an application we discuss identity-
based encryption (IBE) [6] with locked keys, where the key generator at registration
gives locked IBE secret keys for various validity periods (e.g., each for a month) to the
user and the respective secret keys then unlock over time.

Sustainable Timed-Release Encryption. We introduce the notion of sequential TLPs
as a particularly useful generalization of TLPs, which yields practical and particularly
sustainable TRE schemes (from the perspective of consumption of computational re-
sources). The basic idea is that the puzzle generation takes a sequence of hardness
parameters T1, . . . , Tn (where we assume that Ti < Ti+1 for all i ∈ [n − 1]) and out-
puts a sequence of puzzles and solutions (Zi, si)i∈[n]. Now the distinguishing feature is
that puzzles can be solved sequentially in a way that solving Zi additionally considers
solution si−1 and the time required to solve puzzle Zi is determined by the hardness

5

Ti − Ti−1 (note that having n = 1 this yields a conventional TLP). From this, we then
build a sequential TRE scheme, where security is based on the security of a sequen-
tial TLP. Unfortunately, it turns out that such a construction is non-trivial. For a TRE
scheme to be secure, we require that any adversary that runs in time T < Ti is not able
to break the security of an encryption with respect to time slot Ti. For such an adversary,
we need to simulate all values up to Ti−1, in particular all TLP solutions s1, . . . , si−1 up
to Ti−1, properly, as otherwise the reduction would not simulate the security experiment
properly for an adversary running in time T = Ti−1 < Ti, for instance. However, it is
not possible to build a reduction which receives as input s1, . . . , si−1 as part of the TLP
instance, because then the reduction would only be able to break the assumption that
the puzzle is hard if it runs in time less than Ti − Ti−1 (cf. Section 3 for a detailed dis-
cussion). Our solution to overcome this difficulty is to construct a TRE scheme which
does not directly use the real solutions si, but instead F(Ti, si), where one can think of
F as a hard-to-invert function. This way we are able to formulate a hardness assump-
tion for TLPs where the reduction in the security proof of the TRE scheme receives
F(T1, s1), . . . ,F(Ti−1, si−1),F(Ti+1, si+1), . . . ,F(Tn, sn) as additional “advice”, and
thus is able to provide a proper simulation. At the same time it is reasonable to assume
that no adversary is able to distinguish F(Ti, si) from random, even if it runs in time
up to T < Ti, which is exactly the upper bound that we have on the TRE adversary.
We note that MT19 [26, Section 5.2] also proposed a construction that allows to use
multiple time slots, by describing a specific construction which is similar to our no-
tion of sequential TRE. The technical difficulty that we encounter should arise in their
construction as well. Unfortunately, they do not provide a formal security analysis, so
that this is not clarified. We, however, believe that a similar assumption involving an
“advice” for the reduction is also necessary for a security proof of the construction
suggested in their work.

In order to construct sequential TLPs, we introduce the so called gap sequential
squaring assumption, which extends the sequential squaring assumption by an oracle
which takes as input the hardness parameter T ′ and a value y′ and outputs 1 if and
only if y′ = x2

T ′

mod N . This is akin to other gap problems [28] such as the well
known gap Diffie-Hellman problem. As evidence for the hardness of this assumption,
we provide an analysis in the strong algebraic group model (SAGM) and in particular
show that our assumption holds as long as factoring is hard. The SAGM was introduced
by Katz et al. [20] as a variant of the algebraic group model (AGM) [16] and enables
to work with time-sensitive assumption. Finally, when modeling the above mentioned
function F as a random oracle, we obtain a provably secure construction of a sequential
TLP and finally a sequential TRE.

1.3 Summary and Discussion of Properties of Our Approach

There exist different approaches to construct TRE in the literature, which all aim at
achieving a similar goal from a high-level perspective, but which provide very different
properties from a low-level perspective, with sometimes subtle but crucial differences.
Therefore let us briefly summarize the properties achieved by our (sequential) TRE
approach again and discuss how it enables novel applications.

6

Homomorphic TRE. We recall that the homomorphic timed-release encryption from
MT19 (called HTLPs in [26]) supports homomorphic evaluation of functions on en-
crypted messages and avoids expensive parallel computations to solve one puzzle per
ciphertext, while it still achieves the desired security against time-bounded adversaries.
In some applications it may be desirable to enable the homomorphic evaluation of ci-
phertexts before decryption. This might be useful to save space, since it does not re-
quire storage of n encryptions of m1, . . . ,mn, but only of their homomorphic eval-
uation. Also a sufficiently expressive homomorphic encryption scheme that supports
the homomorphic evaluation of function f is required in order to take advantage of
the “solve one, get many” property. Practically efficient instantiations of additively and
multiplicatively homomorphic schemes are readily available, but fully-homomorphic
schemes [17] are currently still much less practical. So for applications that require a
complex function f , the homomorphic approach from [26] is conceptually interesting,
but not yet practical.

Our modular TRE costruction follows a different approach, which supports this in
a black-box manner by simply replacing the PKE scheme with a homomorphic PKE
scheme that supports homomorphic evaluation of ciphertexts. Since the existence of an
additional homomorphic evaluation algorithm is merely an additional functional feature
of the encryption scheme, the security analysis carries over without any modifications.
In particular, note that our construction readily supports any (additively/multiplicatively/
fully) homomorphic encryption scheme in a modular way. It thus can be based on ar-
bitrary hardness assumptions and without introducing further requirements, such as the
need for indistinguishability obfuscation for the fully-homomorphic TLP construction
in [26], or the need for a specific multi-key fully-homomorphic encryption scheme [24]
as in [9]. We note also that our construction of sequential TRE equally provides homo-
morphic computations within a single time period. Homomorphic computations across
different time slots can easily be realized using any multi-key homomorphic encryption
scheme [24].

Optimal amortized costs. Note that while MT19 [26] achieve the “solve one, get
many” property only for homomorphic evaluations over many time-locked messages
and thus only for functions evaluated over the time-locked messages, our TRE con-
struction achieves this even without requiring an underlying homomorphic encryption
scheme, but for all the original ciphertexts. This is because solving a puzzle yields the
randomness to generate the secret key sk of the PKE scheme, which makes it possible
to decrypt all ciphertexts efficiently without requiring to solve many puzzles in parallel.
Note that the approach of MT19 is thus limited with respect to applicability. The homo-
morphic evaluation of ciphertexts is only useful when an application needs to decrypt
only a function f(m1, . . . ,mn) of all encrypted messages m1, . . . ,mn. However, if it
needs to learn all n messages m1, . . . ,mn explicitly, then MT19 still requires to solve
n puzzles in parallel.

With our TRE approach it is possible to achieve the “solve one, get many” property
even for applications that require the full decryption of all independently encrypted
encrypted messages. Note that for a number n of independently time-locked messages
m1, . . . ,mn our scheme is thus the first one to achieve an optimal amortized cost of

7

decryption per ciphertext of

n · TPKE.Dec + TTLP
n

where TPKE.Dec is the time required to run the decryption algorithm PKE.Dec and TTLP is
the time required to solve the puzzle. Note that this approaches TPKE.Dec with increasing
n. We note that this equally applies to our sequential TRE approach.

Public verifiability. In [15], Ephraim et al. recently introduced the notion of pub-
lic verifiability for TLPs, meaning that after a party solves the puzzle, they can pub-
lish the underlying solution together with a proof which can be later used by any-
one to quickly verify the correctness of the solution. Moreover, Ephraim et al. re-
quire that an honest party can prove that published puzzle has no valid solution. We
briefly discuss how our TRE construction provides this public verifiability property.
Note that in our TRE construction from the generated puzzle (Z, s)← TLP.Gen(T) the
solution s is used as the random coins to obtain (pk, sk) ← PKE.Gen(1λ; s). Now,
our public TRE parameters include ppe := pk and ppd = Z and given a poten-
tial solution s′ one wants to guarantee that (pk, sk) ← PKE.Gen(1λ; s′) generates
the same public key and an equivalent secret key. Therefore, if the used PKE scheme
PKE = (PKE.Gen, PKE.Enc, PKE.Dec) provides perfect correctness, this public verifia-
bility property is perfectly satisfied, i.e,. for one pk there cannot be different secret keys
output by PKE.Gen that behave differently in their decryption behavior. In particular, the
publicly verifiable proof is then simply the solution s′ and the verification is to check
whether s′ ∈ R, to run (pk′, sk′) ← PKE.Gen(1λ; s′) and to check whether pk′ = ppe,
which represents an efficient check.

Sequential TRE with public servers. One particularly interesting feature of our no-
tion of sequential TRE is that one can use a single centralized server that continuously
computes and publishes solutions si = Solve(si−1) to decrypt an arbitrary number of
ciphertexts. Most importantly, the server would be independent of these ciphertexts,
which is not achieved by prior constructions. This yields TRE where the decrypting
parties would not have to solve any puzzle, but merely would have to wait until the
server publishes a solution. Note that here the fact that the amortized complexity of de-
crypting n ciphertexts approaches the complexity of running PKE.Dec with increasing
n is particularly useful.

We stress that this must not be confused with TRE schemes in a trusted-agent based
setting. Loosely speaking, in such schemes a so called time server publishes a single
time-dependent trapdoor that then allows decryption of ciphertexts. As shown in [11],
this concept is essentially equivalent to identity-based encryption (IBE) [6]. Most im-
portantly, in any such agent-based TRE scheme there is a trusted party which is not only
involved in running the setup, but this party then also needs to be online and, in particu-
lar, needs to be trusted to keep the secret keys that are supposed to be released at a later
point in time confidential until the time has passed. In our approach of sequential TRE
with public servers, however, only the setup needs to be trusted. Even for the service

8

that actually performs the squaring there are no shortcuts to revealing the decryption
keys before the respective time has passed.

If one is worried about a trusted setup performed by a third-party server, or about
the fact that one server might run out of service, then one could use N > 1 servers.
The public parameters of each server would be used to encrypt a share of the message,
using an (K,N)-threshold secret sharing scheme (e.g., [32]). Even with K − 1 collud-
ing servers, the message would remain hidden. Even if up to N − K servers go out
of service, messages would still be recoverable using the K shares obtained from the
remaining servers.

1.4 Concurrent and Independent Work

Recently, there have been some independent and concurrent works investigating differ-
ent aspects of TLPs, which we want to briefly discuss. Most closely related to our work
is the one of Katz et al. [20] who show that sequential squaring is as hard as factoring in
the strong algebraic group model (SAGM) and construct non-malleable timed commit-
ments based upon a novel building block called timed public-key encryption (TPKE).
The similarities are that we will also rely on the SAGM to prove the generic hard-
ness of our new gap sequential squaring assumption. However, their TRPKE approach
is different to our TRE approach. Firstly, they support a fast and a slow decryption,
where former uses the secret key and latter requires solving a TLP. Secondly, while in
our setting encryption is efficient, in their TPKE which is constructed from sequential
squaring and the Naor-Yung double encryption paradigm one has to compute twice a
T -times sequential squaring. This construction achieves CCA security, but they also
discuss a CPA secure version where encryption is equivalently expensive. Note that in
contrast to our TRE, in their TPKE time starts running with encryption and not with
parameter generation.

In [15] Ephraim et al. investigate efficient constructions of concurrent non-malleable
TLPs in the auxiliary-input random oracle model (whereas previous constructions in the
plain model [4] are not practically efficient). The idea, which is similar to our idea, is es-
sentially to evaluate random oracle on hardness parameter T and solution s of a puzzle
Z and use the output of the oracle as a randomness for Gen algorithm of any TLP. An
interesting property introduced and investigated in [15] is public verifiability of TLPs.
As we have already discussed we can achieve public verifiability for our generic TRE
when basing them on perfectly correct PKE schemes.

Abadi and Kiayias [1] construct so-called Multi-Instance Time-Lock Puzzles (MITLPs)
which are similar to our notion of sequential timed-release encryption. The crucial dif-
ference is that MILTPs allow to encrypt messages with respect to consecutive multiples
of one hardness parameter by chaining TLPs which requires that all messages of interest
must be known at the time when MITLP is generated.

1.5 Outline

In Section 2 we present our definition for time-lock puzzles, variants of existing time-
lock puzzles and discuss how they are related to our notion. We then introduce sequen-
tial time-lock puzzles and provide instantiations of sequential time-lock puzzles from a

9

variant of the sequential squaring problem in Section 3. Finally, Section 4 presents our
generic construction of timed-release encryption, also covering sequential homomor-
phic and functional variants thereof. As already mentioned, we defer the discussion of
applications to the Appendix D.

2 Definitions and Constructions of Time Lock-Puzzles

Before we start with the definitions, we introduce some required notation. We denote
our security parameter as λ. For all n ∈ N, we denote by 1n the n-bit string of all ones.
For any element x in a set S, we use x $← S to indicate that we choose x uniformly
at random from S. All algorithms may be randomized. For any PPT algorithm A, we
define x ← A(1λ, a1, . . . , an) as the execution of A with inputs security parameter λ,
a1, . . . , an and fresh randomness and then assigning the output to x (we will usually
omit λ and assume that all algorithms take λ as input). We use the notation [n] to denote
the set {1, . . . , n}. For set {a1, . . . , an} we use notation (ai)i∈[n] and in similar way
we use this notation also for set of tuples. We write (xi ← A(inputi))i∈[n] to denote
running n times the algorithm A with fresh randomness on inputs input1, . . . , inputn
and assigning the output to x1, . . . , xn. We use poly(·) to denote some polynomial and
polylog(·) to denote a polylogarithmic function.

2.1 Simple Time-Lock Puzzles

In this section we give a new definition for time-lock puzzles (TLPs) and explain how
it relates to the old definition.

Definition 1. A time-lock puzzle is pair of algorithms TLP = (Gen,Solve) with the
following syntax.

– (Z, s) ← Gen(T) is a probabilistic algorithm which takes as input a hardness
parameter T ∈ N and outputs a puzzle Z together with the unique solution s of the
puzzle. We require that Gen runs in time at most poly(log T, λ) for some polynomial
poly.

– s ← Solve(Z) is a deterministic algorithm which takes as input a puzzle Z and
outputs a solution s ∈ S, where S is a finite set. We require that Solve runs in time
at most T · poly(λ). There will also be a lower bound on the running time, which is
part of the security definition.

We say TLP is correct if for all λ ∈ N and for all polynomials T in λ it holds:

Pr[s = s′ : (Z, s)← Gen(T), s′ ← Solve(Z)] = 1.

Relation to prior definitions. In the definitions of TLPs from Bitansky et al. [5] and
Malavolta and Thyagarajan [26] algorithm Gen receives s as an additional input and
output a puzzle Z. This immediately yields a timed-release encryption (TRE) scheme
by viewing s as a message that is encrypted. Our definition enables a slightly simpler
generic construction of (homomorphic) TRE. Intuitively, our new definitions relates

10

to the prior one in a similar way like a key encapsulation mechanism relates to an
encryption scheme. Concretely, let TLP = (Gen,Solve) be a puzzle according to our
new definition. Then we obtain a puzzle TLP′ = (Gen′,Solve′) of the old form as
follows:

– Gen′(T,m) computes Z ← Gen(T) outputs Z ′ = (Z,m⊕ s).
– Solve′(Z ′ = (Z, c)) computes s← Solve(Z) and outputs c⊕ s.

Security. For security we require that the solution of a TLP is indistinguishable from
random, unless the adversary has sufficient running time to solve the puzzle. The fol-
lowing definition is inspired by those from Bitansky et al. [5] and Malavolta and Thya-
garajan [26], but adopted to our slightly modified definition of the Gen algorithm.

Definition 2. Consider the security experiment ExpTLPbA(λ) in Figure 1. We say that a
time-lock puzzle TLP is secure with gap ε < 1, if there exists a polynomial T̃ (·) such that
for all polynomials T (·) ≥ T̃ (·) and every polynomial-size adversary A = {Aλ}λ∈N
of depth ≤ T ε(λ) there exists a negligible function negl(·) such that for all λ ∈ N it
holds

AdvTLP
A =

∣∣Pr [ExpTLP0
A(λ)

]
− Pr

[
ExpTLP1

A(λ)
]∣∣ ≤ negl(λ).

Other Variants of TLPs. We briefly discuss weaker forms of TLPs as introduced
by Bitansky et al. [5]. First, weak TLPs (wTLPs) that do not require that Gen can be
computed in time poly(log T, λ), but either in fast parallel time (Gen can be computed
by a uniform circuit of size poly(T, λ) and depth poly(log T, λ)) or there can be an
(expensive) setup independent of the solution s and Gen then runs in (sequential) time
poly(log T, λ).

Definition 3 (Weak Time-Lock Puzzles [5]). A weak time-lock puzzle (wTLP) wTLP =
(Gen,Solve) is satisfying the syntax and completeness requirements as per Definition 1,
but with the following efficiency requirements: Gen can be computed by a uniform cir-
cuit of size poly(T, λ) and depth poly(log T, λ) and Solve can be computed in time
T · poly(λ).

Definition 4 (Time-Lock Puzzles with Pre-processing [5]). A time-lock puzzle with
pre-processing (ppTLP) is a tuple of algorithms ppTLP = (Preproc,Gen,Solve):

– (P,K) ← Preproc(T) is a probabilistic algorithm that takes as input a difficulty
parameter T and outputs a state P and a short K ∈ {0, 1}λ. It can be computed
by a uniform circuit of total size T · poly(λ) and depth poly(log T, λ).

– (Z, s) ← Gen(s,K) is a probabilistic algorithm that takes as input a solution s ∈
{0, 1}λ and secret keyK and outputs a puzzle Z. It can be computed in (sequential)
time poly(log T, λ).

– s ← Solve(P,Z) is a deterministic algorithm that takes as input a state P and
puzzle Z and outputs a solution s. It can be computed in time T · poly(λ).

A time-lock puzzle with pre-processing is correct if for all λ, for all polynomials T in λ
and solution s ∈ {0, 1}λ it holds:

Pr [s = s′ : (P,K)← Preproc(T), Z ← Gen(s,K), s′ ← Solve(P,Z)] = 1.

11

ExpTLPbA(λ):

(Z, s)← Gen(T (λ)), b
$← {0, 1}

if b = 0 : c := s

if b = 1 : c
$← S

return b′ ← Aλ(Z, c)

Fig. 1. Security experiment for time-lock puzzles.

Remark 1. We note that it is straightforward to adapt our definition of TLPs to ones
with pre-processing. As this will not have an impact of any of our constructions that
use TLPs, we will not make this explicit henceforth.

2.2 Instantiating TLPs from Sequential Squaring

Subsequently, we discuss instantiations of TLPs based on the sequential squaring. There-
fore, we recall a definition of the sequential squaring assumption which was implicitly
introduced by Rivest et al. [31]. Let p be an odd prime number. We say that p is a
strong prime, if p = 2p′ + 1 for some prime number p′. Let GenMod be a probabilis-
tic polynomial-time algorithm which, on input 1λ, outputs two λ-bit strong primes p
and q and modulus N that is the product of p and q. Let ϕ(·) denotes Euler’s totient
function. We denote by QRN the cyclic group of quadratic residues which has order
|QRN | =

ϕ(N)
4 = (p−1)(q−1)

4 .

Definition 5 (The Sequential Squaring Assumption). The sequential squaring as-
sumption with gap 0 < ε < 1 holds relative to GenMod if there exists a polynomial
T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for every non-uniform polynomial-
size adversary A = {Aλ}λ∈N, where the depth of Aλ is at most T ε(λ), there exists a
negligible function negl(·) such that for all λ ∈ N∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

b = b′ :

(p, q,N)← GenMod(1λ)

x
$← QRN , b

$← {0, 1}

if b = 0 : y := x2
T (λ)

mod N

if b = 1 : y
$← QRN

b′ ← Aλ(N,T (λ), x, y)

− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

The instantiation of TLP from the sequential squaring assumption is straightfor-
ward:

– Gen(T): Run (p, q,N) ← GenMod(1λ). Randomly sample x $← QRN and com-
pute the value s := x2

T

mod N . Notice that value s can be efficiently computed
knowing the values p and q. Set Z := (N,T, x) and output (Z, s).

– Solve(Z): compute s := x2
T

mod N by repeated squaring.

The security of this construction is directly implied by the security of the sequential
squaring assumption.

12

2.3 Instantiating TLPs from Randomized Encodings

Subsequently, we discuss instantiations of TLPs based on different variants of random-
ized encodings [19,3] and in particular the approach of constructing TLPs from them
by Bitansky et al. [5].

We first recall TLPs from randomized encodings (REs) in [5] and show how to cast
them into our TLP framework to obtain secure TLPs according to Definition 1. Subse-
quently, we focus on constructions of TLPs from standard assumptions and in partic-
ular one-way functions (yielding so called weak TLPs) as well as the sub-exponential
Learning with Errors (LWE) problem (yielding so called TLPs with pre-processing).
Although we omit it here, we note that we could also realize TLPs with the efficiency
as in Definition 1 when relying on succinct REs which can be constructed assuming
one-way functions and indistinguishability obfuscation (cf. [21]).

First, we recall a TLP TLP′ = (Gen′,Solve′) as defined in [5], where the difference
to Definition 1 is that the puzzle generation is defined as Z ← Gen′(T, s), i.e., the
generation of the puzzle already takes it solution s. Observe, however, that any such
TLP can easily be modified to meet our definition in that Gen(T) simply internally
samples s $← S and then runs Gen′(T, s) and Solve′ = Solve. We note that this can
essentially be viewed as the trivial construction of obtaining a KEM from a public key
encryption (PKE) scheme. Consequently, the security of our TLP when based on the
one from [5] (where the adversary outputs two solutions (s0, s1) and obtains a puzzle
for one of them) can be argued analogously to how arguing security for the KEM from
PKE construction.

Randomized encodings. Now, we recall the notion of (reusable) randomized encod-
ings.

Definition 6 (Randomized Encoding [5]). A randomized encoding scheme consists
of two algorithms RE = (Encode,Decode) satisfying the following requirements:

– M̂(x) ← Encode(M,x, T) is a probabilistic algorithm that takes as input a ma-
chine M , input x and time bound T . The algorithm outputs a randomized encoding
M̂(x). It can be computed by a uniform circuit of depth polylog(T)·poly(|M |, |x|, λ)
and total size T · poly(|M |, λ).

– y ← Decode(M̂(x)) is a deterministic algorithm that takes as input a random-
ized encoding M̂(x) and computes an output y ∈ {0, 1}λ. It can be computed in
(sequential) time T · poly(|M |, |x|, λ).

For correctness and security we refer to [5]. Using the fact that garbled circuits yield
randomized encodings (cf. e.g., for discussion [2]), we have the following:

Corollary 1. Assuming one-way functions, there exists a randomized encoding scheme.

Definition 7 (Reusable Randomized Encoding [5]). A reusable randomized encod-
ing scheme consists of algorithms RE = (Preproc,Encode,Decode) satisfying the fol-
lowing requirements:

13

– (Û ,K)← Preproc(m,n, T) is a probabilistic algorithm that takes as input bounds
m, n, T on machine size, input size, and time. It outputs an encoded state Û and
a short secret key K ∈ {0, 1}λ. It can be computed by a uniform circuit of depth
polylog(T) · poly(m,n, λ) and total size T · poly(m,λ).

– M̂(x) ← Encode(M,x,K) is a probabilistic algorithm that takes as input a ma-
chine M , input x, secret key K ∈ {0, 1}λ and outputs a randomized encoding
M̂(x). It can be computed in sequential time polylog(T) · poly(m,n, λ).

– y ← Decode(Û , M̂(x)) is a deterministic algorithm that takes as input an encoded
state Û and a randomized encoding M̂(x) and computes an output y ∈ {0, 1}λ. It
can be computed in (sequential) time T · poly(m,n, λ).

For correctness and security we refer to [5].

Theorem 1 ([18]). Assuming sub-exponential hardness of the LWE problem, there ex-
ists a reusable randomized encoding scheme.

TLPs from Randomized Encodings. Finally, we discuss the construction of wTLPs
and ppTLPs from randomized encodings. For wTLPs, let RE be a randomized encoding
scheme. For s ∈ {0, 1}λ and T ≤ 2λ, let MT

s be a machine that, on any input x ∈
{0, 1}λ outputs the string s after T steps. Furthermore, MT

s is described by 3λ bits
(which is possible for large enough λ). Then the (w)TLP is constructed as follows:

– Gen(T, s) : sample M̂T
s (0

λ)← RE.Encode(MT
s , 0

λ, T) and output Z = M̂T
s (0

λ).
– Solve(Z) : return RE.Decode(Z).

Theorem 2 (Thm 3.10 [5]). Let ε < 1. Assume that, for every polynomial bounded
function T (·), there exists a non-parallelizing language L ∈ Dtime(T (·)) with gap ε.
Then, for any ε′ < ε, the above construction is a weak time-lock puzzle with gap ε′.

For ppTLPs, the construction is as follows:

– Preproc(T) : sample (Û ,K ′) ← RE.Preproc(3λ, λ, T) and return (P = Û ,K =
K ′).

– Gen(T, s) : sample M̂T
s (0

λ)← RE.Encode(MT
s , 0

λ,K) and output Z = M̂T
s (0

λ).
– Solve(P,Z) : return RE.Decode(P,Z).

For the construction we have the following:

Theorem 3 (Thm 4.8 [5]). Let ε < 1. Assume that, for every polynomial bounded
function T (·), there exists a non-parallelizing language L ∈ Dtime(T (·)) with gap ε.
Then, for any ε′ < ε, the above construction is a time-lock puzzle with pre-processing
with gap ε′.

Remark 2. As mentioned in [26], for certain applications (e.g., e-voting or sealed bid
auctions) it might be perfectly acceptable to an expensive setup ahead of time to run the
parameters such that the time required to solve puzzles start from the moment the setup
is finished.

14

3 Sequential Time-Lock Puzzles

In this section we introduce sequential time-lock puzzles along with their security and
propose an instantiation which we prove secure under a new assumption called the
gap sequential squaring assumption. We also show this assumption to hold, assuming
factoring is hard, in the strong algebraic group model (SAGM) of Katz et al. [20].

3.1 Defining Sequential Time-Lock Puzzles

Sequential time-lock puzzles are a particularly useful generalization of basic TLPs,
which yields particularly practical time-lock encryption schemes. To this end, we gen-
eralize Definition 1 by allowing the Gen algorithm to take multiple different time pa-
rameters as input, which then produces a corresponding set of puzzles.

Definition 8. A sequential time-lock puzzle is tuple of algorithms sTLP = (Gen,Solve)
with the following syntax.

– (Zi, si)i∈[n] ← Gen((Ti)i∈[n]) is a probabilistic algorithm which takes as input n
integers (Ti)i∈[n] and outputs n puzzles together with their solutions (Zi, si)i∈[n]
in time at most poly((log Ti)i∈[n], λ). Without loss of generality we assume in the
sequel that set (Ti)i∈[n] is ordered and hence Ti < Ti+1 for all i ∈ [n− 1].

– si ← Solve(Zi, si−1) is a deterministic algorithm which takes as input a puzzle Zi
and a solution for puzzle Zi−1 and outputs a solution si, where we define s0 := ⊥.
We require that Solve runs in time at most (Ti − Ti−1) · poly(λ), where we define
T0 := 0.

We say a sequential time-lock puzzle is correct if for all λ, n ∈ N, for all i ∈ [n] and for
polynomials Ti in λ such that Ti < Ti+1 it holds:

Pr
[
si = s′i : (Zi, si)i∈[n] ← Gen((Ti)i∈[n]), s

′
i ← Solve(Zi, si−1)

]
= 1.

Security. In order to define a security notion for sequential time-lock puzzles that is
useful for our application of constructing particularly efficient timed-release encryption
schemes, we need to introduce an additional function F : N × S → Y , which takes
as input a pair a hardness parameter T ∈ N together with solution s ∈ S and outputs
elements of some set Y . Instead of requiring that elements si are indistinguishable from
random, we require that yi = F(Ti, si) is indistinguishable from random. We explain
the necessity for function F after the following definition.

Definition 9. Consider the security experiment ExpsTLPbAi(λ) in Figure 2. We say that
a sequential time-lock puzzle sTLP is secure with gap 0 < ε < 1 and with respect to
the function F, if for all polynomials n in λ there exists a polynomial T̃ (·) such that
for all sets of polynomials (Tj(·))j∈[n] fulfilling that ∀j ∈ [n] : Tj(·) ≥ T̃ (·), for all
i ∈ [n] and every polynomial-size adversary Ai = {Ai,λ}λ∈N, where the depth of Ai,λ
is bounded from above by T εi (λ), there exists a negligible function negl(·) such that for
all λ ∈ N it holds

AdvsTLP
Ai =

∣∣Pr [ExpsTLP0
Ai(λ) = 1

]
− Pr

[
ExpsTLP1

Ai(λ) = 1
]∣∣ ≤ negl(λ).

15

ExpsTLPbAi(λ):
(Zj , sj)j∈[n] ← Gen(1λ, (Tj(λ))j∈[n])
(yj := F(Tj(λ), sj))j∈{[n]\{i}}
if b = 0 : yi := F(Ti(λ), si)

if b = 1 : yi
$← Y

return b′ ← Ai,λ((Zj , yj)j∈[n])

Fig. 2. Security experiment for sequential time-lock puzzles.

On the need for function F. The introduction of function F in our definition is new
and does not appear in prior work. Let us explain why function F is necessary to achieve
security.

In Section 4.2 we will build a sequential timed-release encryption (TRE) scheme,
where security is based on the security of a sequential TLP. We will consider this
scheme insecure, if an adversary that runs in time T < Ti is able to break the security of
an encryption with respect to time slot Ti (see Definition 14). For such an adversary, we
need to simulate all values up to Ti−1 and in particular all TLP solutions s1, . . . , si−1 up
to Ti−1, properly. Otherwise the reduction would not simulate the security experiment
properly for an adversary running in time T = Ti−1 < Ti, for instance.

Note that we cannot build a reduction which receives as input s1, . . . , si−1 as part of
the TLP instance, because then the reduction would only be able break the assumption
that the puzzle is hard if it runs in time less than Ti − Ti−1. However, the considered
running time T of the adversary is only guaranteed to be less than Ti, so we cannot
achieve any security if Ti > T ≥ Ti − Ti−1.

Note that we also cannot build a reduction which computes s1, . . . , si−1 itself, since
then the running time of the reduction without the adversary would already be Ti−1,
such that together with the running time T of the adversary we would have a total
running time of the reduction of Ti−1+T , which is again too large to yield a meaningful
reduction if Ti−1 + T > Ti.

Our solution to overcome this difficulty is to construct a TRE scheme which does
not directly use the real solutions si, but instead F(Ti, si) where one can think of F
as a hard-to-invert function. This way we are able to formulate a hardness assump-
tion for TLPs where the reduction in the security proof of the TRE scheme receives
F(T1, s1), . . . ,F(Ti−1, si−1),F(Ti+1, si+1), . . . ,F(Tn, sn) as additional “advice” that
can be used to provide a proper simulation. At the same time it is reasonable to assume
that no adversary (our reduction, here) is able to distinguish F(Ti, si) from random,
even if it runs in time up to T < Ti, which is exactly the upper bound that we have on
the TRE adversary.

We again note that the work of Malavolta and Thyagarajan [26, Section 5.2] also
proposes an approach that allows to use multiple time slots, by describing a specific
construction which is similar to our notion of sequential TRE. The technical difficulty
described here should arise in their construction as well. Unfortunately, they do not
provide a formal security analysis, so that this is not clarified. We believe that a similar

16

assumption involving an “advice” for the reduction is also necessary for a security proof
of the construction suggested in their work.

3.2 Instantiating Sequential TLPs from Sequential Squaring

In order to obtain a sequential TLP, we define a variant of the sequential squaring as-
sumption in which an adversary is given oracle access to a decisional sequential squar-
ing verification function DSSvf. DSSvf takes as input hardness parameter T ′ and value
y′ ∈ QRN and outputs 1 if y′ = x2

T ′

mod N , otherwise it outputs 0. The values x
and N are defined in security experiment. The assumption essentially states that com-
putational sequential squaring assumption remains hard, even if the adversary is given
access to DSSvf, akin to other gap assumptions [28].

Definition 10 (The Gap Sequential Squaring (GGS) Assumption). The gap sequen-
tial squaring assumption with gap 0 < ε < 1 holds relative to GenMod if there exists a
polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for every polynomial-
size adversaryA = {Aλ}λ∈N, where the depth ofAλ is bounded from above by T ε(λ),
there exists a negligible function negl(·) such that for all λ ∈ N it holds

AdvGSS
A = Pr

[
y = x2

T

mod N :
(p, q,N)← GenMod(1λ), x

$← QRN
y ← ADSSvf(·,·)

λ (N,T (λ), x)

]
≤ negl(λ),

where DSSvf(·, ·) is an oracle which takes as input a hardness parameter T ′ and a

value y′ and outputs 1 if and only if y′ = x2
T ′

mod N .

Now we are ready to construct our sequential TLP:

– Gen((Ti)i∈[n]): Run (p, q,N)← GenMod(1λ). Randomly sample x $← QRN and
compute values si := x2

Ti
mod N for all i ∈ [n]. Value si can be efficiently

computed knowing the values p and q. Output ((N, x, Ti, Ti−1), si))i∈[n].
– Solve((N, x, Ti, Ti−1), si−1): Compute value sTi−Ti−1

i−1 mod N by repeated squar-
ing.

Theorem 4. If the gap sequential squaring assumption with gap ε holds relative to
GenMod and F is modelled as a random oracle, then for any ε < ε, the sTLP =
(Gen,Solve) defined above is a secure sequential time-lock puzzle with gap ε and with
respect to the function F.

Proof. Let T̃GSS(λ) be the polynomial whose existence is guaranteed by the GSS as-
sumption. Let polyRO(λ) be the fixed polynomial which bounds the time required to
execute Step 1 and simulate random oracle answers as specified in Step 2 of the adver-
sary Bλ defined below. Set T (λ) := (polyRO(λ))

1/ε. Set T̃sTLP := max(T̃GSS, T)
For any n which is polynomial in λ, any tuple (Tj(·))j∈[n] fulfilling that ∀j ∈

[n] holds Tj(·) ≥ T̃sTLP(·), any i ∈ [n], from any polynomial-size adversary Ai =
{Ai,λ}λ∈N, where the depth ofAi,λ is bounded from above by T εi (λ), we can construct

17

a polynomial-size adversary B = {Bλ}λ∈N whose depth is bounded from above by
T εi (λ) such that

AdvGSS
B = AdvsTLP

Ai .

Intuitively, an adversary cannot distinguish F(Ti, si) from random without asking
(Ti, si) to F, since F is a random oracle. More formally, let Query be the event that Ai
asks (Ti, si) to F, where si is the correct solution of the puzzle (N,Ti, x). Then, by
arguing as in Shoup’s Difference Lemma [34], we get:

AdvsTLP
Ai =

∣∣Pr [ExpsTLP0
Ai(λ) = 1

]
− Pr

[
ExpsTLP1

Ai(λ) = 1
]∣∣

=
∣∣∣Pr [ExpsTLP0

Ai(λ) = 1 ∧ Query
]
+ Pr

[
ExpsTLP0

Ai(λ) = 1 ∧ Query
]

− Pr
[
ExpsTLP1

Ai(λ) = 1 ∧ Query
]
− Pr

[
ExpsTLP1

Ai(λ) = 1 ∧ Query
] ∣∣∣

=
∣∣∣Pr [ExpsTLP0

Ai(λ) = 1 ∧ Query
]
− Pr

[
ExpsTLP1

Ai(λ) = 1 ∧ Query
] ∣∣∣

≤Pr[Query].

The second equation follows from the fact that if Query does not happen then the value
yi is uniformly distributed in both experiments. Therefore the event ExpsTLP0

Ai(λ) =

1 ∧ Query occurs if and only if ExpsTLP1
Ai(λ) = 1 ∧ Query, so that we get

Pr
[
ExpsTLP0

Ai(λ) = 1 ∧ Query
]
= Pr

[
ExpsTLP1

Ai(λ) = 1 ∧ Query
]
.

The last inequality follows from the fact that both Pr
[
ExpsTLP0

Ai(λ) = 1 ∧ Query
]

and Pr
[
ExpsTLP1

Ai(λ) = 1 ∧ Query
]

are numbers between 0 and Pr[Query].
Hence, in order to complete the proof, we show that Pr[Query] is negligible, pro-

vided that the gap sequential squaring (GSS) assumption holds. To this end, we define
the following adversary B on the GSS problem:

1. B receives (N,T, x) as input. It sets Ti := T and Zj := (N,Tj , Tj−1, x)j∈[n] and
for all j ∈ [n] randomly samples values yj from the image of F .

2. B runsAi on input ((Zj , yj)j∈[n]). It initializes an empty list Q. WhenAi makes a
query (T ′, s′) to F , answer it as follows:

– If there is an entry in Q of the form ((T ′, s′), y) for some y, return y.
– Else if T ′ = Tj for some j ∈ [n] and DSSvf(T ′, s′) = 1, store ((T ′, s′), yj) in
Q. If i = j then output s′ as a solution to the GSS problem. Otherwise, return
yj to Ai.

– Otherwise, sample a uniform value y from the image of F , store ((T ′, s′), y)
in Q and return y to Ai.

Notice that B consistently simulates the random oracle for Ai. Moreover, when
Query occurs, then B outputs a correct solution to the GSS problem. Hence,

Pr[Query] ≤ AdvGSS
B .

Additionally, B fulfils the depth constraint:

depth(Bλ) = polyRO(λ) + depth(Ai,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

On the other hand T (·) ≥ T̃sTLP(·) ≥ T̃GSS(·) as required.
This concludes the proof. ut

18

3.3 Hardness of the Gap Sequential Squaring Assumption

In this section we show that the gap sequential squaring problem is at least as hard as
factoringN in the Strong Algebraic Group Model (SAGM). The SAGM was introduced
by Katz et al. [20] as a variant of the Algebraic Group Model (AGM) [16] and makes
it possible to consider time-sensitive assumptions, such as (Gap) Sequential Squaring.
In the SAGM the running time of an algebraic algorithm is defined by the number of
its group operations with respect to some cyclic group G. In our case G is the group
QRN of quadratic residues modulo N , for some N output by GenMod. Therefore, we
use multiplication to denote the group operation. In the strong AGM, all algorithms are
treated as strongly algebraic.

Definition 11 (Strongly algebraic algorithm [20]). An algorithm A over G is called
strongly algebraic, if in each (algebraic) step A does arbitrary local computation and
then outputs3 one or more tuples of the following form:

1. (y, y1, y2) ∈ G3, where y = y1y2 and y1, y2 were either previously received by A
or output by A in previous steps;

2. (y, y1) ∈ G2, where y = y−11 and y1 was either provided as input to A or was
output by A in some previous step.

The running time of A is the number of algebraic steps it takes.

Parallel computation is captured in the SAGM by allowing an algorithm to output
multiple group elements at once (in one step, which counts as one query), but it is re-
quired that all of them can be represented by a sequence of previously output group
elements. There are two ways how the running time of an adversary is measured: the
number of group operations and the standard running time in some underlying compu-
tational model. Hence the running time is defined as a pair (t1, t2), which is understood
in the following sense: running in time t2 and executing t1 group operations. For a more
detailed description of SAGM and its relation to AGM and the Generic Group Model
(GGM) [33] we refer to the original paper by Katz et al. [20].

Definition 12 (The Factoring Assumption). The Factoring Assumption holds relative
to GenMod if for every polynomial-size adversary A there exists a negligible function
negl(·) such that for all λ ∈ N it holds

AdvFactor
A = Pr

N = p′q′ :

(p, q,N)← GenMod(1λ)

p′, q′ ← A(N),

such that p′, q′ ∈ N; p′, q′ > 1

 ≤ negl(λ).

In order to prove the hardness of the Gap Sequential Squaring Problem, we use the
following well-known fact, which states that we can factor N if a multiple of ϕ(N) is
known. The following lemma extends Lemma 1 of [20] from a success probability of
1/2 to a success probability negligibly close to 1, which will be required for our proof.

3 Here it is required that A outputs group elements at intermediate steps of its computation.
The final output of A can be distinguished by requiring A to output a special indicator when
generating its final output.

19

Lemma 1. Let (p, q,N) ← GenMod(1λ) and let m = αϕ(N) for some positive in-
teger α ∈ Z+. There exists a PPT algorithm Factor(N,m) which, on input (N,m),
outputs p′, q′ ∈ N, p′, q′ > 1 such that N = p′q′ with probability at least 1− 2−λ.

Proof. Lemma 1 of [20] guarantees an existence of efficient Factor(N,m) algorithm
which has success probability at least 1/2. By running this algorithm λ-times with
independent randomness, we obtain claimed success probability. ut

Now we are ready to show that the Gap Sequential Squaring Problem is hard relative
to GenMod for any T and for adversaries which perform at most T−1 group operations.

Theorem 5. If the factoring assumption holds relative to GenMod, then the gap se-
quential squaring assumption with gap ε holds relative to GenMod in the SAGM for
any 0 < ε < 1.

Proof. We show that for any positive integer T the gap sequential squaring assumption
holds against adversaries which perform at most T − 1 algebraic steps. Notice that
this means that the gap ε = logT (T − 1). Since limT→∞ logT (T − 1) = 1, ε can be
defined arbitrary close to 1 by choosing T̃ appropriately. Let A be a strongly algebraic
adversary which executes at most T − 1 algebraic steps and asks at most ` queries to
DSSvf oracle. Let x ∈ QRN be the group element which is given to A as part of its
challenge. Following [20], we recursively define for any y ∈ QRN output by A the
discrete logarithm of y with respect to A and x, DLA(x, y) ∈ Z+ as follows:

1. DLA(x, x) = 1,
2. IfA outputs (y, y1, y2) in a certain step, then DLA(x, y) = DLA(x, y1)+DLA(x, y2).
3. If A outputs (y, y1) in an algebraic step, then DLA(x, y) = −DLA(x, y1).

Now we can make the following observation. Assume that x is a generator of QRN . If
A outputs a solution s′ of a puzzle (N,T ′, x) in one of its queries to the DSSvf oracle or
as solution to the puzzle challenge, and at the same time it holds that DLA(x, s′) 6= 2T

′
,

then |QRN | divides 2T
′−DLA(x, s′). This is because 1 = s′(s′)−1 = x2

T ′

(xDLA(x,s
′))−1

= x2
T ′−DLA(x,s

′) mod N . Because DLA(x, s′) 6= 2T
′

this implies that 2T
′−DLA(x, s′)

is a multiple of the order of the group QRN . Recall that |QRN | = ϕ(N)/4. Hence
4(2T

′ − DLA(x, s
′)) is multiple of ϕ(N). By Lemma 1 we are able to factor N with

probability at least 1− 2−λ.
With this in mind, we are ready to construct an adversary B breaking the Factoring

Assumption:

1. B receives N as input. It samples randomly x
$← QRN and runs A on input

(N,T, x).
2. Whenever A asks a query (T ′, s′) to DSSvf, B recursively computes DLA(x, s

′)
and proceeds in the following way:
(a) If 2T

′
= DLA(x, s

′) then it returns 1 to A.
(b) Otherwise, it sets m := 4(2T

′ − DLA(x, s
′)) and executes the factoring al-

gorithm from Lemma 1. If the factoring algorithm is successful, it outputs the
corresponding factors as a solution to the factoring problem. Else it outputs 0
to A.

20

3. WhenA returns a solution s,B computes DLA(x, s), setsm := 4(2T
′−DLA(x, s′)),

calls the factoring algorithm from Lemma 1 and returns whatever this algorithm re-
turns.

Let us analyse the success probability of B. Let FACTOR be the event that B suc-
cessfully outputs the factorization of N and GSS be the event thatA outputs the correct
solution of the Gap Sequential Squaring Problem. Let GNR denote the event that the
sampled x in Step 1 is a generator. Because x is sampled uniformly at random and QRN
has ϕ(|QRN |) = (p′ − 1)(q′ − 1) generators, this event happens with overwhelming
probability. Concretely, Pr[GNR] = 1− 1

p′ −
1
q′ +

1
p′q′ .

In Step 2(b) we have that 2T
′ 6= DLA(x, s

′), and hence if s′ was a solution of the
given puzzle, then we should be able to factor N with probability at least 1 − 2−λ by
Lemma 1. Notice that B answers the DSSvf-query incorrectly only if s′ is a solution of
the puzzle and the factoring algorithm was unsuccessful. Let FAILi denotes the event
that B answered the i-th DSSvf query incorrectly and let FAIL denote the event that
it answered any of the l queries incorrectly. Then Pr[FAILi|GNR] ≤ 1

2λ
. Hence, the

probability of FAIL can be upper bounded by a union bound:

Pr[FAIL|GNR] = Pr[

l∨
i=1

FAILi|GNR] ≤
l

2λ
.

We obtain that B answers all DSSvf-queries correctly with probability

Pr[FAIL|GNR] = 1− Pr[FAIL|GNR] ≥ 1− l

2λ
.

If the event FAIL does not occur, then B perfectly simulates the Gap Sequential Squar-
ing experiment. Perfect simulation guarantees that in Step 3, A outputs a correct solu-
tion with probability AdvGSS

A . Therefore Pr[GSS|FAIL] = AdvGSS
A . However, we are

interested in Pr[GSS|GNR ∧ FAIL], which can be bounded as follows:

AdvGSS
A = Pr[GSS|FAIL]

= Pr[GSS|GNR ∧ FAIL] Pr[GNR] + Pr[GSS|GNR ∧ FAIL] Pr[GNR]

≤ Pr[GSS|GNR ∧ FAIL] Pr[GNR] + Pr[GNR].

Hence,

Pr[GSS|GNR ∧ FAIL] Pr[GNR] ≥ AdvGSS
A − Pr[GNR] = AdvGSS

A −
1

p′
− 1

q′
+

1

p′q′
.

Now, becauseA can perform at most T−1 group operations and the only group element
given as input is x, it must hold DLA(x, s) < 2T−1 (this is formally proven in [20,
Lemma 2]). Therefore 2T 6= DLA(x, s), which implies that ϕ(N)|4(2T − DLA(x, s)).
Therefore, by using Lemma 1 we are able to factor N with probability at least 1− 2−λ.

21

Hence, Pr[FACTOR|GNR ∧ FAIL ∧ GSS] ≥ 1− 2−λ. We conclude that

AdvFactor
B = Pr[FACTOR]

= Pr[FACTOR|GNR] Pr[GNR] + Pr[FACTOR|GNR] Pr[GNR]
≥ Pr[FACTOR|GNR] Pr[GNR]
≥ Pr[FACTOR|GNR ∧ FAIL] Pr[FAIL|GNR] Pr[GNR]
≥ Pr[FACTOR|GNR ∧ FAIL ∧ GSS] Pr[GSS|GNR ∧ FAIL] Pr[FAIL|GNR] Pr[GNR]

≥ (1− 1

2λ
)(1− l

2λ
)(AdvGSS

A −
1

p′
− 1

q′
+

1

p′q′
),

which completes the proof. ut

Extension to the Strong Sequential Squaring Assumption. Malavolta et al. [26] and
Katz et al. [20] also consider the so-called Strong Sequential Squaring Assumption,
which involves a two-stage adversaryA = (A0,A1). AdversaryA0 receives a modulus
N as input at the beginning of the game. It may perform an unbounded amount of
computations and produces a state st. Then A1 is a bounded algorithm, which receives
as input st and the sequential squaring instance x. Katz et al. [20] show that the Strong
Sequential Squaring assumption holds in the SAGM, assuming that factoringN is hard.

One could similarly define a Strong Gap Sequential Squaring assumption, with a
two-stage adversary A = (A0,A1) where A0 is unbounded, but independent of the se-
quential squaring challenge, whileA1 is bounded as in [20] and additionally has access
to a DSSvf oracle as defined in Definition 10. We remark that our proof of hardness of
the GSS problem can also be adopted to this setting with a partially unbounded adver-
sary. We do not require this in our work, but it might be useful for future applications.

4 (Sequential) Timed-Release Encryption

In this section we give generic constructions of (sequential) timed-release encryption
(TRE) schemes based on (sequential) TLPs. There exist several definitions for TRE and
we base ours on that of Unruh [36]. However, we introduce two additional algorithms
Setup and Solve which leads to better modularity and applicability of TRE, as we will
illustrate in Appendix D.

Definition 13. A sequential timed-release encryption scheme with message space M
is tuple of algorithms TRE = (Setup,Enc, Solve,Dec) with the following syntax.

– (ppe,i, ppd,i)i∈[n] ← Setup(1λ, (Ti)i∈[n]) is a probabilistic algorithm which takes
as input a security parameter 1λ and a set of time hardness parameters (Ti)i∈[n]
with Ti < Ti+1 for all i ∈ [n− 1], and outputs set of public encryption parameters
and public decryption parameters PP := (ppe,i, ppd,i)i∈[n]. We require that Setup
runs in time poly((log Ti)i∈[n], λ).

– si ← Solve(ppd,i, si−1) is a deterministic algorithm which takes as input public
decryption parameters ppd,i and a solution from a previous iteration si−1, where
s0 := ⊥, and outputs a solution si. We require that Solve runs in time at most
(Ti − Ti−1) · poly(λ).

22

– c ← Enc(ppe,i,m) is a probabilistic algorithm that takes as input public encryp-
tion parameters ppe,i and message m ∈M, and outputs a ciphertext c.

– m/⊥ ← Dec(Ti, si, c) is a deterministic algorithm which takes as input a hardness
parameter Ti, a solution si and a ciphertext c, and outputs m ∈M or ⊥.

We say a sequential timed-release encryption scheme is correct if for all λ, n ∈ N,
for all sets of hardness parameters (Tj)j∈[n] such that ∀j ∈ [n − 1] : Tj < Tj+1, for
all i ∈ [n] and for all messages m ∈M it holds:

Pr

[
m = m′ :

PP← Setup(1λ, (Tj)j∈[n]), si ← Solve(ppd,i, si−1)

m′ ← Dec(Ti, si,Enc(ppe,i,mi))

]
= 1.

Note that the above definition also defines “non-sequential” TRE, by setting n = 1.
In that case the value Ti is not needed as an input for Dec algorithm, however, for
sequential TRE, this value is necessary. For ease of the notation, it is unified.

Definition 14. A sequential timed-release encryption scheme is secure with gap 0 <
ε < 1 if for all polynomials n in λ there exists a polynomial T̃ (·) such that for all sets of
polynomials (Tj)j∈[n] fulfilling that ∀j ∈ [n] : Tj(·) ≥ T̃ (·), for all i ∈ [n] and every
polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N there exists a negligible function
negl(·) such that for all λ ∈ N it holds

AdvTRE
A =

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

PP← Setup(1λ, (Tj)j∈[n])

(i,m0,m1, st)← A1,λ(PP)

b
$← {0, 1}; c← Enc(ppe,i,mb)

b′ ← A2,λ(c, st)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

We require that |m0| = |m1| and an adversary Aλ = (A1,λ,A2,λ) where A1,λ outputs
i in the second step of the above security experiment consists of two circuits with total
depth at most T εi (λ) (i. e., the total depth is the sum of the depth of A1,λ and A2,,λ).

4.1 Basic TRE Construction

Building blocks. Our construction combines a time-lock puzzle (TLP) with a CPA
secure public-key encryption (PKE) scheme.

Definition 15. A public key encryption scheme PKE = (Gen,Enc,Dec) with message
spaceM is triple of efficient algorithms.

– (pk, sk) ← Gen(1λ) is a probabilistic algorithm which on input 1λ outputs a pub-
lic/secret key pair.

– c← Enc(pk,m) is a probabilistic algorithm that takes as input a public key pk and
a message m and outputs a ciphertext c.

– m ← Dec(sk, c) is a deterministic algorithm which on input a secret key sk and a
ciphertext c outputs m ∈M∪ {⊥}.

23

We say PKE is correct if for all λ ∈ N and all m ∈M holds:

Pr[Dec(sk,Enc(pk,m)) = m : (pk, sk)← Gen(1λ)] = 1

Definition 16. A PKE scheme is CPA secure if for all non-uniform PPT adversaries
A = {Aλ}λ∈N there is a negligible function negl such that

AdvPKE
A =

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk, sk)← Gen(1λ)

(m0,m1)← Aλ(pk)

b
$← {0, 1}; c← Enc(pk,mb)

b′ ← Aλ(c)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where we require that |m0| = |m1|.

We require standard CPA security of the PKE scheme, since this is sufficient to construct
a TRE scheme achieving Definition 14. A stronger CCA-style security notion for TRE
would be achievable by replacing the below definition with CCA security. However, we
consider this as not very useful for TRE, since it is unclear where in an application a
“CCA-oracle” could plausibly exist in an application before the release time is reached,
since the decryption key is hidden until this point in time. After the release time the
ciphertext will be decryptable, anyway, so we have no security expectations. However,
some applications may require non-malleability of ciphertexts, which could be achieved
via a CCA-secure public-key encryption scheme, for instance.

Construction. Let TLP = (TLP.Gen, TLP.Solve) be a TLP with solution space S and
let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a PKE scheme. Figure 3 describes our
construction of a TRE scheme. As we have already mentioned, the hardness parameter
T is not necessary as input for Dec, hence we leave it out in the construction. Observe
that correctness is directly implied by correctness of the PKE scheme and the TLP.

Setup(1λ, T) Solve(ppd)

(Z, s)← TLP.Gen(T) s← TLP.Solve(ppd)
(pk, sk)← PKE.Gen(1λ; s) return s
return ppe := pk, ppd := Z

Enc(ppe,m) Dec(s, c)

return c← PKE.Enc(ppe,m) (pk, sk)← PKE.Gen(1λ; s)
return m← PKE.Dec(sk, c)

Fig. 3. Construction of TRE

Theorem 6. If TLP = (TLP.Gen, TLP.Solve) is secure time-lock puzzle with gap ε in
the sense of Definition 2 and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is a CPA secure

24

encryption scheme according to Definition 16, then TRE = (Setup,Solve,Enc,Dec)
defined in Figure 3 is a secure timed-release encryption scheme with gap ε < ε in the
sense of Definition 14.

Proof. To prove security we define two games G0 and G1 and show that these are com-
putationally indistinguishable.

Game 0. Game G0 corresponds to original security experiment, where we use the Setup
directly from our construction.

Game 1. In game G1 we replace Setup with the alternative setup algorithm Setup′

in which we sample s′ independently at random from S and use it as randomness for
PKE.Gen, i.e., run (pk, sk)← PKE.Gen(1λ; s′).

Let T̃TLP(λ) be the polynomial whose existence is guaranteed by the security of TLP.
Let polyPKE(λ) be the fixed polynomial which bounds the time required to run PKE.Gen
and PKE.Enc. Set T := (polyPKE(λ))

1/ε. Set T̃TRE := max(T̃TLP, T).

Lemma 2. From any polynomial-size adversary A = {Aλ}λ∈N, where the depth of
Aλ is bounded from above by T ε(λ) for some T (·) ≥ T̃TRE(·) we can construct a
polynomial-size adversary B = {Bλ}λ∈N, where the depth of Bλ is bounded by T ε(λ)
with

AdvTLP
B ≥ |Pr[G0 = 1]− Pr[G1 = 1]|

To prove this claim we construct an adversary Bλ as follows.

1. Bλ receives (Z, s) and begins to simulate the security experiment from Defini-
tion 14 by generating (pk, sk)← PKE.Gen(1λ, s).

2. Then it runs A1,λ which yields (m0,m1, st)
$← A1,λ(pk, Z).

3. Bλ picks b $← {0, 1} and computes c← PKE.Enc(pk,mb).
4. Finally, it runs b′ ← A2,λ(c, st) and returns the truth value of b′ = b.

Note that if s is the solution of the puzzle Z, then B simulates G0 perfectly. If s is
random, then B simulates G1 perfectly. Moreover, B meets the depth constraint:

depth(Bλ) = polyPKE(λ) + depth(Aλ) = T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃TRE(·) ≥ T̃TLP(·).
Thus, we can conclude that |Pr[G0 = 1]− Pr[G1 = 1]| = AdvTLP

B as required.
Now we can show that we can construct an adversary B′ against the PKE scheme.

Lemma 3. From any polynomial-size adversary A = {Aλ}λ∈N we can construct a
polynomial-size adversary B′ = {B′λ}λ∈N such that

AdvPKE
B′ =

∣∣∣∣Pr[G1 = 1]− 1

2

∣∣∣∣ .
The proof of this claim is straightforward. Notice that in G1 we use fresh random-

ness which is independent of the puzzle Z. We construct B′λ as follows:

25

1. B′λ has pk as input and starts to simulate G1 by running (Z, s)← TLP.Gen(T).
2. Then it runs adversary (m0,m1, st)← A1,λ(pk, Z).
3. It outputs (m0,m1) to its experiment and receives c.
4. Finally it returns b← A2,λ(c, st).

Adversary B′ simulates G1 perfectly. Since A has polynomially-bounded size, this
proves the claim. By combining Lemma 1 and Lemma 2 we obtain following:

AdvTLP
B +AdvPKE

B′ = |Pr[G0 = 1]− Pr[G1 = 1]|+
∣∣∣∣Pr[G1 = 1]− 1

2

∣∣∣∣ ≥ AdvTRE
A ,

which concludes the proof. ut

4.2 Sequential TRE

In the sequel let sTLP = (sTLP.Gen, sTLP.Solve) be a sequential TLP in the sense
of Definition 8 and let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a PKE scheme. Let
F : N×S → Y be a function that maps the hardness parameter space N and the solution
space S of sTLP to the randomness space of algorithm PKE.Gen. Our constructions of a
sequential TRE scheme TRE = (Setup,Enc,Solve,Dec) is given in Figure 4. Note that
correctness of the scheme is directly implied by correctness of the PKE scheme and the
sequential TLP.

Setup(1λ, (Ti)i∈[n]) Solve(ppd,i, si−1)

(Zi, si)i∈[n] ← sTLP.Gen((Ti)i∈[n]) si ← sTLP.Solve(ppd,i, si−1)

((pki, ski)← PKE.Gen(1λ;F(Ti, si)))i∈[n] return si
return (ppe,i := pki, ppd,i := Zi)i∈[n]

Enc(ppe,i,m) Dec(Ti, si, c)

return c← PKE.Enc(ppe,i,m) (pki, ski)← PKE.Gen(1λ;F(Ti, si))
return m← PKE.Dec(ski, c)

Fig. 4. Construction of sequential TRE

Theorem 7. If sTLP = (sTLP.Gen, sTLP.Solve) is a secure sequential time-lock puzzle
with gap ε w.r.t. function F and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is a CPA secure
encryption scheme, then TRE = (Setup,Enc,Solve,Dec) defined in Figure 4 is a secure
sequential timed-release encryption with gap ε < ε.

Proof. To prove security we define a sequence of games.

Game 0. Game G0 is the original security experiment with scheme TRE.

26

Game 1. This game is identical to G0, except that at the beginning of game G1 we
guess an index i∗ $← [n] uniformly at random. When A1 outputs (i,m0,m1, st), then
we check whether i = i∗. If i 6= i∗, then we sample and output a random bit b $← {0, 1}
and abort. Otherwise, we continue as in G0.

Lemma 4. We have that AdvG0

A = n ·AdvG1

A .

This lemma is proven using a standard argument.

Game 2. In Game G2 we replace Setup with the alternative setup algorithm Setup′,
which takes as input i∗. For all j ∈ [n]\{i∗} we produce keys pkj using F(Tj , sj). The
remaining key pki∗ is generated using fresh randomness sampled uniformly from the
image of the function F.

Let T̃sTLP(λ) be the polynomial whose existence is guaranteed by the security of
sTLP. Let polyPKE(λ) be the fixed polynomial which bounds the time required to run
PKE.Gen n-times and to run PKE.Enc once. Set T := (polyPKE(λ))

1/ε. Set T̃TRE :=
max(T̃sTLP, T).

Lemma 5. For any n which is polynomial in λ, for any set of polynomials (Tj(·))j∈[n]
fulfilling that ∀j ∈ [n] holds Tj(·) ≥ T̃TRE(·), for any i ∈ [n], from any polynomial-
size adversary A = {(A1,λ,A2,λ)}λ∈N, where the depth of (A1,λ,A2,λ) is bounded
from above by T εi (λ), we can construct a polynomial-size adversary Bi∗ = {Bi∗,λ}λ∈N
whose depth is bounded from above by T εi (λ) such that

AdvsTLP
Bi∗ ≥ |Pr[G1 = 1]− Pr[G2 = 1]| .

To prove this claim we construct an adversary Bi∗,λ as follows.

1. Bi∗,λ receives (Zj , yj)j∈[n] and simulates the game by running ((pkj , skj) ←
PKE.Gen(1λ; yj))j∈[n].

2. Then it runs adversary (i,m0,m1, st)
$← A1,λ((pkj , Zj)j∈[n], st).

3. If i 6= i∗, then it returns a random bit b′ $← {0, 1}.
4. Otherwise it picks b $← {0, 1} and compute c← PKE.Enc(pki,mb).
5. It runs b′ ← A2,λ(c, st) and returns the truth value of b′ = b.

If yj = F(Tj , sj) for all j ∈ [n], then Bi∗ simulates Game G1 perfectly. If the yi∗ is
random, then it simulates Game G2 perfectly. Therefore we obtain

Pr[G1 = 1] = Pr
[
ExpsTLP0

Bi∗ (1
λ) = 1

]
and Pr[G2 = 1] = Pr

[
ExpsTLP1

Bi∗ (1
λ) = 1

]
and thus

AdvsTLP
Bi∗ ≥

∣∣Pr [ExpsTLP0
Bi∗ (1

λ) = 1
]
− Pr

[
ExpsTLP1

Bi∗ (1
λ) = 1

]∣∣
= |Pr[G1 = 1]− Pr[G2 = 1]|

Moreover, Bi∗ fulfils the depth constraint:

depth(Bi∗,λ) = polyPKE(λ) + depth(Aλ)) = T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also Ti(·) ≥ T̃TRE(·) ≥ T̃sTLP(·) as required.

27

Lemma 6. For any n which is polynomial in λ, for any set of polynomials (Tj(·))j∈[n]
fulfilling that ∀j ∈ [n] holds Tj(·) ≥ T̃TRE(·), for any i ∈ [n], from any polynomial-
size adversary A = {(A1,λ,A2,λ)λ∈N we can construct a polynomial-size adversary
B′ = {B′λ}λ∈N such that ∣∣∣∣AdvPKE

B′ = Pr[G2 = 1]− 1

2

∣∣∣∣ .
The proof is essentially identical to the corresponding step from proof of Theorem 6,

adopted to the sequential setting. We construct B′λ as follows:

1. B′λ receives as input pk as input and starts to simulate G2 by sampling i∗ $← [n]
uniformly at random and running (Zj , sj)j∈[n] ← sTLP.Gen((Tj)j∈[n]).

2. For all j ∈ [n] \ {i∗} it sets pkj := PKE.Gen(1λ;F(Tj , sj)). The i∗-th public key
is defined as pki∗ := pk.

3. B′λ runs adversary (i,m0,m1, st)← A1,λ((pkj , Zj)j∈[n], st).
4. If i 6= i∗ it samples and outputs b′ $← {0, 1}.
5. Else it sends (m0,m1) to its experiment and receives c.
6. Finally, it returns b← A2,λ(c, st).

Note that adversary B′ simulates G2 perfectly, which yields Lemma 6.
Finally, combining Lemmas 4-6 we obtain

n
(
AdvsTLP

Bi∗ +AdvPKE
B′
)
= n

(
|Pr[G1 = 1]− Pr[G2 = 1]|+

∣∣∣∣Pr[G2 = 1]− 1

2

∣∣∣∣)
≥ n ·AdvG1

A = n

∣∣∣∣Pr[G1 = 1]− 1

2

∣∣∣∣ = AdvTRE
A ,

which concludes the proof. ut

4.3 Integrating Timed-Release Features into Functional Encryption

In this section, we connect sequential timed-release features with functional encryption
(FE) [8,29]. We recap the FE definition, its correctness, and security notion in Appendix
C where we also discuss one concrete FE variant, namely identity-based encryption
(IBE) [6].

Timed-Release Functional Encryption. We introduce the notion of a (sequential)
timed-release functional encryption (TRFE) scheme. The basic idea is that in such a
scheme, similarly to an FE scheme, there is a public key pk used for encryption of
any message x and a master secret key msk which is associated to a class of functions
F : X → Y . In contrast to an FE scheme, however, in a TRFE scheme, msk can be
used to generate decryption keys for a function f ∈ F which is associated to a time
hardness parameter Ti (and, hence, to its solution si). Decryption takes the associated
decryption key dki, the solution si, a function f ∈ F , and a ciphertext to message x
and outputs f(x). Security-wise, an adversary is allowed to query any secret function
key for any public encryption parameter associated to Ti as long as its solution si is not
retrievable.

28

Definition 17. A (sequential) TRFE scheme TRFE for a class of functions F : X → Y
consists of the PPT algorithms (Setup,KeyGen,Enc,Solve,Dec):

– (pk,msk,PP := (ppe,j , ppd,j)j∈[n])← Setup(1λ,F , (Tj)j∈[n]), on input security
parameter 1λ, class of functions F , and time-hardness parameters (Tj)j∈[n] with
T1 < . . . < Tn, for n ∈ N, outputs public key pk, main secret key msk, and public
encryption and decryption parameters (ppe,j , ppd,j)j∈[n]. We require that Setup
runs in time at most poly((log Tj)j∈[n], λ).

– dki ← KeyGen(msk, (ppe,j)j∈[n], f, i), on input main secret key msk, public en-
cryption parameters (ppe,j)j∈[n], function f ∈ F , and index i ∈ [n], outputs de-
cryption key dki.

– c ← Enc(pk, x), on input public key pk and message x ∈ X , outputs ciphertext c
for x.

– si ← Solve(ppd,i, si−1) is a deterministic algorithm which on input public decryp-
tion parameters ppd,i and solution from a previous iteration si−1, where s0 = ⊥,
outputs solution si. We require that Solve runs in time at most (Ti−Ti−1) ·poly(λ),
where Ti and Ti−1 are the associated hardness parameters for si and si−1, respec-
tively.

– f(x′) ← Dec(dki, Ti, si, c) is a deterministic algorithm which on input decryp-
tion key dki, time-hardness parameter Ti, solution si, function f , and ciphertext c,
outputs f(x′) ∈ Y ∪ {⊥}.
We say a (sequential) TRFE scheme TRFE is correct if for all λ, n ∈ N, for any

class of functions F : X → Y , for all sets of time-hardness parameters (Tj)j∈[n] such
that T1 < . . . < Tn, for all f ∈ F , i ∈ [n], x ∈ X , it holds:

Pr

Dec(dki, Ti, si, c) = f(x) :

(pk,msk,PP)← Setup(1λ,F , (Tj)j∈[n])
dki ← KeyGen(msk, (ppe,j)j∈[n], f, i)

si ← Solve(ppd,i, si−1), s0 = ⊥
c← Enc(pk, x)

 = 1.

Definition 18. A (sequential) TRFE scheme TRFE is CPA secure with gap 0 < ε < 1
if for all polynomials n in λ there exists a polynomial T̃ (·) such that for all sets of
polynomials (Tj)j∈[n] fulfilling that ∀j ∈ [n] : Tj(·) ≥ T̃ (·), for all i ∈ [n] and every
polynomial-size adversary A = {Aλ = (A1,λ,A2,λ,A3,λ)}λ∈N, for all λ ∈ N, we
have

AdvTRFE
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′:

(pk,msk,PP)← Gen(1λ,F , (Tj)j∈[n])
(i∗, st)← A1,λ(pk,PP)

(x0, x1, st)← A
KeyGen(msk,(ppe,j)j∈[n],·,·)
2,λ (st)

b← {0, 1}, c∗ ← Enc(pk, xb)

b′ ← AKeyGen(msk,(ppe,j)j∈[n],·,·)
3,λ (st, c∗)

− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ),

for negligible function negl, where we require that |x0| = |x1| and (A2,A3) only query
KeyGen with functions f ∈ F and indexes i ∈ [i∗ − 1] such that f(x0) = f(x1). We
require that Aλ consist of three circuits with total depth at most T εi∗(λ) (i.e., the total
depth is the sum of the depth of A1,λ, A2,λ, and A3,λ).

29

Gen(1λ,F , (Tj)j∈[n]) Enc(pk, x)

(pk,msk)← FE.Gen(1λ,F) return c← FE.Enc(pk, x)
(ppe,j , ppd,j)j∈[n] ← TRE.Setup(1λ, (Tj)j∈[n])
return (pk,msk, (ppe,j , ppd,j)j∈[n])

KeyGen(msk, (ppe,j)j∈[n], f, i) Dec(dki, Ti, si, c)

skf ← FE.KeyGen(msk, f) ci := dki
ci ← TRE.Enc(ppe,i, skf) skf := TRE.Dec(Ti, si, ci)
return dki := ci return f(x) := FE.Dec(skf , c)

Solve(ppd,i, si−1)

return si := TRE.Solve(ppd,i, si−1)

Fig. 5. Construction of TRFE.

Construction of TRFE. Let TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) be a
(sequential) TRE scheme and FE = (FE.Gen, FE.KeyGen, FE.Enc, FE.Dec) be an FE
scheme. We construct a TRFE scheme TRFE = (Setup,KeyGen,Enc,Solve,Dec) as
given in Figure 5. Let the message space of TRE be the functional-secret-key space of
FE which is the output of FE.KeyGen. Furthermore, we need that all functional secret
keys for function f ∈ F and any main secret key of FE are of equal length.

Theorem 8. If TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) is a secure TRE scheme
with gap ε in the sense of Definition 14 and FE = (FE.Gen, FE.KeyGen, FE.Enc, FE.Dec)
is a CPA-secure FE scheme in the sense of Definition 24, then TRFE = (Setup,KeyGen,
Enc,Solve,Dec) defined in Figure 5 is a CPA-secure TRFE scheme with gap ε ≤ ε in
the sense of Definition 18. Concretely, for any successful polynomial-size adversary
A = {(A1,λ,A2,λ,A3,λ)}λ∈N on the CPA-security of TRFE with success probability
εATRFE

, we construct a successful polynomial-size adversary B on the security of TRE
with probability εTRE/q ≥ εATRFE

, with q =
∑n
i=1 qi, for number of KeyGen-queries qi

for index i ∈ [n], or on the CPA-security of FE with probability εFE ≥ εATRFE
.

Proof. We proceed in games G0, G1, G2 where we show that all those games are com-
putationally indistinguishable. G0 reflects the CPA security experiment as given in Def-
inition 18. In Game G1, all KeyGen-queries for index i with i∗ ≤ i ≤ n are answered
running TRFE.KeyGen(m̃sk, ·, ·, i), for fresh (·, m̃sk, ·) ← FE.Gen(1λ,F). In Game
G2, the challenge ciphertext is independent of the bit b.

Let polyFE(λ) be the fixed polynomial which bounds the time required to run FE.Gen,
FE.KeyGen, and FE.Enc. Set T := polyFE(λ))

1/ε.

Lemma 7. Let qi be the number of KeyGen-queries for index i with i∗ ≤ i ≤ n. For
any successful polynomial-size adversary A = {(A1,λ,A2,λ,A3,λ)}λ∈N on the CPA-
security of TRFE with success probability εA and bounded depth at most T εi∗(λ), we
construct a successful polynomial-size adversary B on the security of TRE with success
probability εB/(q · n) ≥ εA.

30

Proof. This Lemma can be shown by a hybrid argument where we go over all indexes
i with i∗ ≤ i ≤ n and then go over all qi queries for such an index in a step-by-step
fashion. Since the proof is always the same depending on the index and the actual query
number for that index, we show the proof for the j-th query (with j ∈ [qi]) for index
i ∈ [n] and argue that this holds for all indexes i. For index i and query j, we construct
an efficient hybrid between Game 0.i.j − 1 and Game 0.i.j with distinguisher B on the
TRE security as follows:

1. B receives (ppe,j , ppd,j)j∈[n] for time hardness parameters (Tj)j∈[n] as input and
runs (pk,msk) ← FE.Gen(1λ,F) and (·, m̃sk, ·) ← FE.Gen(1λ,F). Then, A1 is
started on (pk, (ppe,j , ppd,j)j) andA1 outputs i∗. If i∗ /∈ [n], B outputs b← {0, 1}.

2. A2 is started by B. For secret key queries ofA2 (and later also ofA3) on function f
and index i′ < i∗ or i′ > i, B returns KeyGen(msk, f, i′); for all queries for index
i′ with i∗ ≤ i′ < i, compute s̃kf ← FE.KeyGen(m̃sk, f, i′); for index i′ and j′-th
query with i′ = i and j′ < j, compute s̃kf ← FE.KeyGen(m̃sk, f, i); for index i′

and j′-th query with i′ = i and j′ = j compute sk0 ← FE.KeyGen(msk, f, i′) and
sk1 ← FE.KeyGen(m̃sk, f, i′), and send (i, skf , s̃kf) to B’s TRE challenger where
the returning ciphertext c∗ ← TRE.Enc(ppe,i, skb∗), for unknown b∗ ← {0, 1}, is
forwarded as secret key to A; finally, for the j′-th query on index i′ with i′ = i and
j′ > j, compute skf ← FE.KeyGen(msk, f, i′).

3. At some point, A2 outputs (x0, x1) where B returns c∗ ← Enc(pk, xb) to A3, for
uniform b← {0, 1}.

4. Eventually, A3 outputs a guess b′. If b′ = b, B returns 1 else returns 0 to B’s TRE
challenger.

See that if A2 and A3 query KeyGen for indexes i < i∗ with f(x0) = f(x1) and
b∗ = 0, then B simulates Game 0.i.j − 1, otherwise, if A2 and A3 query KeyGen for
indexes i < i∗ with f(x0) = f(x1) and b∗ = 1, B simulates Game 0.i.j.

Note that we arrived at a game where all TRE-encryptions for key queries for index
i ≥ i∗ contain msk-independent secret keys.

Lemma 8. For any successful polynomial-size A = {(A1,λ,A2,λ,A3,λ)}λ∈N on the
CPA-security of TRFE with success probability εA and bounded depth at most T εi∗(λ),
we construct a successful polynomial-size adversary B on the security of FE with suc-
cess probability εB ≥ εA.

Proof. We first construct B as follows:

1. B receives pk as input and computes (·, m̃sk, ·)← FE.Gen(1λ,F).A1 is started on
(pk, (ppe,j , ppd,j)j), for (ppe,i, ppd,i)i ← TRE.Setup(1λ, (Ti)i), and outputs i∗.

2. For any query by A2 or A3 on f for index i with i < i∗ to KeyGen, B for-
wards f to B’s KeyGen-oracle, encrypts the result skf under ppe,i computing ci ←
TRE.Enc(ppe,i, skf) and returns ci. For indexes i with i∗ ≤ i ≤ n, B computes
s̃kf ← FE.KeyGen(m̃sk, f, i), ci ← TRE.Enc(ppe,i, s̃kf), and returns ci.

3. B runs A2 to receive (x0, x1), forwards (x0, x1) to B’s challenger, receives c∗ and
starts A3 with c∗.

31

4. Finally, B receives b′ which is forwarded to its challenger.

B simulates the experiment perfectly. See that if A is a successful adversary with prob-
ability εA, then B is a successful adversary in the CPA-security experiment with prob-
ability εB ≥ εA.

We arrived at a game where the adversary A receives a challenge ciphertext that is
independent of b which shows the Theorem. ut

Application to locked-key IBE. With TRFE, we are able to lock secret keys of an
IBE scheme with a sequential timed-release feature. When the central authority in an
IBE scheme generates the identity-based secret keys, it can attach hardness parameters
to it such that those keys only become usable sequentially. This, for example, enables
an IBE central authority to produce all secret keys in the beginning and afterwards go
off-line.

Acknowledgements. This work was supported by the German Federal Ministry of
Education and Research (BMBF) project REZEIVER, the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme,
grant agreement n◦802823, the EU’s Horizon 2020 ECSEL Joint Undertaking under
grant agreement n◦783119 (SECREDAS) and by the Austrian Science Fund (FWF) and
netidee SCIENCE under grant agreement P31621-N38 (PROFET).

References

1. Abadi, A., Kiayias, A.: Multi-instance publicly verifiable time-lock puzzle and its applica-
tions. Financial Cryptography and Data Security

2. Applebaum, B.: Garbled circuits as randomized encodings of functions: a primer. In: Tutori-
als on the Foundations of Cryptography

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials
and their applications. Comput. Complex.

4. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable codes
against bounded polynomial time tampering. Cryptology ePrint Archive, Report 2018/1015,
https://eprint.iacr.org/2018/1015

5. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-
lock puzzles from randomized encodings. In: ITCS 2016: 7th Conference on Innovations in
Theoretical Computer Science

6. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Advances in
Cryptology – CRYPTO 2001

7. Boneh, D., Naor, M.: Timed commitments. In: Advances in Cryptology – CRYPTO 2000
8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In:

TCC 2011: 8th Theory of Cryptography Conference
9. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1

fully-homomorphic encryption and time-lock puzzles. In: TCC 2019: 17th Theory of Cryp-
tography Conference, Part II

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption with-
out bootstrapping. In: ITCS 2012: 3rd Innovations in Theoretical Computer Science

32

https://eprint.iacr.org/2018/1015

11. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably secure timed-release public key
encryption. ACM Trans. Inf. Syst. Secur.

12. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and timed-
release encryption. In: Advances in Cryptology – EUROCRYPT’99

13. Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Symposium on Founda-
tions of Computer Science

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In: Advances in Cryptology – CRYPTO’84

15. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Non-malleable time-lock puzzles and
applications. Cryptology ePrint Archive, Report 2020/779, https://eprint.iacr.
org/2020/779

16. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Ad-
vances in Cryptology – CRYPTO 2018, Part II

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st Annual ACM Sym-
posium on Theory of Computing

18. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled
circuits and succinct functional encryption. In: 45th Annual ACM Symposium on Theory of
Computing

19. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications
to round-efficient secure computation. In: 41st Annual Symposium on Foundations of Com-
puter Science

20. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commitments. In:
TCC 2020: 18th Theory of Cryptography Conference, Part III

21. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines
with unbounded memory. In: 47th Annual ACM Symposium on Theory of Computing

22. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-malleable com-
mitments from time-lock puzzles. In: 58th Annual Symposium on Foundations of Computer
Science

23. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption. Designs,
Codes and Cryptography

24. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In: 44th Annual ACM Symposium on
Theory of Computing

25. Mahmoody, M., Moran, T., Vadhan, S.P.: Time-lock puzzles in the random oracle model. In:
Advances in Cryptology – CRYPTO 2011

26. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications. In:
Advances in Cryptology – CRYPTO 2019, Part I

27. May, T.C.: Timed-release crypto. Tech. rep.
28. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the security of

cryptographic schemes. In: PKC 2001: 4th International Workshop on Theory and Practice
in Public Key Cryptography

29. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556, https://eprint.iacr.org/2010/556

30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Ad-
vances in Cryptology – EUROCRYPT’99

31. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech.
rep.

32. Shamir, A.: How to share a secret. Commun. ACM
33. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Advances in Cryp-

tology – EUROCRYPT’97

33

https://eprint.iacr.org/2020/779
https://eprint.iacr.org/2020/779
https://eprint.iacr.org/2010/556

34. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, https://eprint.iacr.org/2004/332

35. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder, D.: Ver-
ifiable timed signatures made practical. In: to appear at ACM CCS 2020, https://
verifiable-timed-signatures.github.io/web/assets/paper.pdf

36. Unruh, D.: Revocable quantum timed-release encryption. In: Advances in Cryptology – EU-
ROCRYPT 2014

34

https://eprint.iacr.org/2004/332
https://verifiable-timed-signatures.github.io/web/assets/paper.pdf
https://verifiable-timed-signatures.github.io/web/assets/paper.pdf

Appendix

A TLPs from Randomized Encodings

Subsequently, we discuss instantiations of TLPs based on different variants of random-
ized encodings [19,3] and in particular the approach of constructing TLPs from them
by Bitansky et al. [5].

We first recall TLPs from randomized encodings (REs) in [5] and show how to cast
them into our TLP framework to obtain secure TLPs according to Definition 1. Subse-
quently, we focus on constructions of TLPs from standard assumptions and in partic-
ular one-way functions (yielding so called weak TLPs) as well as the sub-exponential
Learning with Errors (LWE) problem (yielding so called TLPs with pre-processing).
Although we omit it here, we note that we could also realize TLPs with the efficiency
as in Definition 1 when relying on succinct REs which can be constructed assuming
one-way functions and indistinguishability obfuscation (cf. [21]).

First, we recall a TLP TLP′ = (Gen′,Solve′) as defined in [5], where the difference
to Definition 1 is that the puzzle generation is defined as Z ← Gen′(T, s), i.e., the
generation of the puzzle already takes it solution s. Observe, however, that any such
TLP can easily be modified to meet our definition in that Gen(T) simply internally
samples s $← S and then runs Gen′(T, s) and Solve′ = Solve. We note that this can
essentially be viewed as the trivial construction of obtaining a KEM from a public key
encryption (PKE) scheme. Consequently, the security of our TLP when based on the
one from [5] (where the adversary outputs two solutions (s0, s1) and obtains a puzzle
for one of them) can be argued analogously to how arguing security for the KEM from
PKE construction.

Randomized encodings. Now, we recall the notion of (reusable) randomized encod-
ings.

Definition 19 (Randomized Encoding [5]). A randomized encoding scheme consists
of two algorithms RE = (Encode,Decode) satisfying the following requirements:

– M̂(x) ← Encode(M,x, T) is a probabilistic algorithm that takes as input a ma-
chine M , input x and time bound T . The algorithm outputs a randomized encoding
M̂(x). It can be computed by a uniform circuit of depth polylog(T)·poly(|M |, |x|, λ)
and total size T · poly(|M |, λ).

– y ← Decode(M̂(x)) is a deterministic algorithm that takes as input a random-
ized encoding M̂(x) and computes an output y ∈ {0, 1}λ. It can be computed in
(sequential) time T · poly(|M |, |x|, λ).

For correctness and security we refer to [5]. Using the fact that garbled circuits yield
randomized encodings (cf. e.g., for discussion [2]), we have the following:

Corollary 2. Assuming one-way functions, there exists a randomized encoding scheme.

Definition 20 (Reusable Randomized Encoding [5]). A reusable randomized encod-
ing scheme consists of algorithms RE = (Preproc,Encode,Decode) satisfying the fol-
lowing requirements:

– (Û ,K)← Preproc(m,n, T) is a probabilistic algorithm that takes as input bounds
m, n, T on machine size, input size, and time. It outputs an encoded state Û and
a short secret key K ∈ {0, 1}λ. It can be computed by a uniform circuit of depth
polylog(T) · poly(m,n, λ) and total size T · poly(m,λ).

– M̂(x) ← Encode(M,x,K) is a probabilistic algorithm that takes as input a ma-
chine M , input x, secret key K ∈ {0, 1}λ and outputs a randomized encoding
M̂(x). It can be computed in sequential time polylog(T) · poly(m,n, λ).

– y ← Decode(Û , M̂(x)) is a deterministic algorithm that takes as input an encoded
state Û and a randomized encoding M̂(x) and computes an output y ∈ {0, 1}λ. It
can be computed in (sequential) time T · poly(m,n, λ).

For correctness and security we refer to [5].

Theorem 9 ([18]). Assuming sub-exponential hardness of the LWE problem, there ex-
ists a reusable randomized encoding scheme.

TLPs from Randomized Encodings. Finally, we discuss the construction of wTLPs
and ppTLPs from randomized encodings. For wTLPs, let RE be a randomized encoding
scheme. For s ∈ {0, 1}λ and T ≤ 2λ, let MT

s be a machine that, on any input x ∈
{0, 1}λ outputs the string s after T steps. Furthermore, MT

s is described by 3λ bits
(which is possible for large enough λ). Then the (w)TLP is constructed as follows:

– Gen(T, s) : sample M̂T
s (0

λ)← RE.Encode(MT
s , 0

λ, T) and output Z = M̂T
s (0

λ).
– Solve(Z) : return RE.Decode(Z).

Theorem 10 (Thm 3.10 [5]). Let ε < 1. Assume that, for every polynomial bounded
function T (·), there exists a non-parallelizing language L ∈ Dtime(T (·)) with gap ε.
Then, for any ε′ < ε, the above construction is a weak time-lock puzzle with gap ε′.

For ppTLPs, the construction is as follows:

– Preproc(T) : sample (Û ,K ′) ← RE.Preproc(3λ, λ, T) and return (P = Û ,K =
K ′).

– Gen(T, s) : sample M̂T
s (0

λ)← RE.Encode(MT
s , 0

λ,K) and output Z = M̂T
s (0

λ).
– Solve(P,Z) : return RE.Decode(P,Z).

For the construction we have the following:

Theorem 11 (Thm 4.8 [5]). Let ε < 1. Assume that, for every polynomial bounded
function T (·), there exists a non-parallelizing language L ∈ Dtime(T (·)) with gap ε.
Then, for any ε′ < ε, the above construction is a time-lock puzzle with pre-processing
with gap ε′.

Remark 3. As mentioned in [26], for certain applications (e.g., e-voting or sealed bid
auctions) it might be perfectly acceptable to an expensive setup ahead of time to run the
parameters such that the time required to solve puzzles start from the moment the setup
is finished.

36

B Omitted Definitions

Other Variants of TLPs. We briefly discuss weaker forms of TLPs as introduced
by Bitansky et al. [5]. First, weak TLPs (wTLPs) that do not require that Gen can be
computed in time poly(log T, λ), but either in fast parallel time (Gen can be computed
by a uniform circuit of size poly(T, λ) and depth poly(log T, λ)) or there can be an
(expensive) setup independent of the solution s and Gen then runs in (sequential) time
poly(log T, λ).

Definition 21 (Weak Time-Lock Puzzles [5]). A weak time-lock puzzle (wTLP) wTLP =
(Gen,Solve) is satisfying the syntax and completeness requirements as per Definition 1,
but with the following efficiency requirements: Gen can be computed by a uniform cir-
cuit of size poly(T, λ) and depth poly(log T, λ) and Solve can be computed in time
T · poly(λ).

Definition 22 (Time-Lock Puzzles with Pre-processing [5]). A time-lock puzzle with
pre-processing (ppTLP) is a tuple of algorithms ppTLP = (Preproc,Gen,Solve):

– (P,K) ← Preproc(T) is a probabilistic algorithm that takes as input a difficulty
parameter T and outputs a state P and a short K ∈ {0, 1}λ. It can be computed
by a uniform circuit of total size T · poly(λ) and depth poly(log T, λ).

– (Z, s) ← Gen(s,K) is a probabilistic algorithm that takes as input a solution s ∈
{0, 1}λ and secret keyK and outputs a puzzle Z. It can be computed in (sequential)
time poly(log T, λ).

– s ← Solve(P,Z) is a deterministic algorithm that takes as input a state P and
puzzle Z and outputs a solution s. It can be computed in time T · poly(λ).

A time-lock puzzle with pre-processing is correct if for all λ, for all polynomials T in λ
and solution s ∈ {0, 1}λ it holds:

Pr [s = s′ : (P,K)← Preproc(T), Z ← Gen(s,K), s′ ← Solve(P,Z)] = 1.

Remark 4. We note that it is straightforward to adapt our definition of TLPs to ones
with pre-processing. As this will not have an impact of any of our constructions that
use TLPs, we will not make this explicit henceforth.

C Functional Encryption

Definition 23. A functional encryption scheme FE for a class of functions F : X → Y
consists of four PPT algorithms (Gen,KeyGen,Enc,Dec):

– (pk,msk)← Gen(1λ,F), on input security parameter 1λ and class of functions F ,
outputs public key pk and master secret key msk.

– skf ← KeyGen(msk, f), on input msk and function f ∈ F , outputs secret key skf
for f .

– c← Enc(pk, x), on input pk and message x ∈ X , outputs ciphertext c for x.
– f(x)← Dec(skf , c) is a deterministic algorithm which on input skf and c, outputs
f(x) ∈ Y ∪ {⊥}.

37

We say an FE scheme FE is correct if for all λ ∈ N, for any F : X → Y , for any f ∈ F ,
for any x ∈ X , it holds:

Pr

Dec(skf , c) = f(x) :

(pk,msk)← Gen(1λ,F)
skf ← KeyGen(msk, f)

c← Enc(pk, x)

 = 1

Definition 24. An FE scheme FE is CPA secure if for all non-uniform PPT adversaries
A = {Aλ}λ∈N, we have

AdvFE
A =

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk,msk)← Gen(1λ,F)

(x0, x1, st)← AKeyGen(msk,·)
λ (pk)

b← {0, 1}, c← Enc(pk, xb)

b′ ← AKeyGen(msk,·)
λ (st, c)

− 1

2

∣∣∣∣∣∣∣∣∣∣
= negl(λ),

for negligible function negl, where we require that |x0| = |x1| and A only queries
KeyGen with functions f such that f(x0) = f(x1).

Example: identity-based encryption. We recall that in identity-based encryption (IBE)
[6], messages can be encrypted with respect to any strings as “public keys” (called iden-
tities) and decryption requires a secret key for the corresponding identity. Now, an IBE
scheme can be obtained from an FE scheme as in Definition 23 by setting the message
space X := ID×M representing pairs of identities and messages (id,m) and F being
an equality testing functionality. A secret key skfid∗ for identity id∗ is generated with
respect to fid∗ defined as:

fid∗((id,m)) =

{
m if id = id∗,

⊥ otherwise.

D Applications: Simpler and More Efficient Instantiations

Subsequently, we discuss the applications in [26] when we use our (homomorphic) TRE
approach in contrast to HTLPs of MT19. All the following application have in common
that they require decrypting a set of encrypted messages at some required time. Our
approach to TRE allows to decrypt arbitrary number of messages at the specified time
by solving one puzzle. In [26] this is achieved by homomorphic evaluation of puzzles
and then solving one or more resulting puzzles. The drawback of this solution is that
one needs to wait until all puzzles of interest have been collected, then execute homo-
morphic evaluation and only after that the resulting puzzles can be solved. Our scheme
allows to start to solve the puzzle immediately after Setup is run. In all of this applica-
tions we are able to use our TRE approach without any homomorphic property.

E-voting. We focus on designing an e-voting protocol in absence of trusted party, where
voters are able to cast their preference without any bias. Similarly to [26], we do not

38

consider privacy nor authenticity of the votes. The crucial property of our TRE is that
setup can be reused for producing an arbitrary number of ciphertexts and for that reason
it is enough to run Solve only once. The output s of Solve allows to obtain the secret key
which is then used to decrypt all ciphertexts that have been produced using correspond-
ing ppe. Therefore, if we encrypt all votes using the same ppe, we are able to decrypt
all ciphertexts at the same time. Then it is easy to obtain final result by combining
decrypted plaintexts.

Notice that the security of the TRE scheme guarantees that all votes remain hidden
during the whole voting phase. In the e-voting protocol proposed in [26], we have to
wait until the voting phase is finished and then we can combine puzzles from voting
phase to m resulting puzzles (one per candidate where votes are encoded as 0 and 1
respectively). Then, these m puzzles can be solved, which requires at least time T and
solving m puzzles in parallel. Hence, it requires time T after the voting phase is over to
be able to announce the results. This is in contrast to what we can do with our TRE, in
which we can encrypt the respective encoding of the candidate, e.g., i ∈ [m] directly,
and can start to solve a single puzzle immediately after Setup is run and hence the
results are available at the beginning of the counting phase.

Multi-Party Coin Flipping. In multi-party coin flipping we assume n parties which
want to flip a coin in the following way: 1) The value of the coin is unbiased even if
n− 1 parties collude and 2) all parties agree on the same value for the coin.

The approach proposed in [26] relies on HTLPs and their protocol consist of three
phases: Setup, Coin Flipping and Announcement of the result. Similarly to the e-voting
protocol, one is only able to start solving the puzzle in the last phase and hence obtains
the results after time T . We are able to avoid this problem, by using our TRE approach,
where we can start to solve the puzzle already after the Setup phase.

Sealed Bid Auctions. Here we consider an auction with n bidders. The protocol con-
sist of two phases - the bidding phase and the opening phase. Bids should be kept secret
during the bidding phase and later revealed in opening phase. Time-lock puzzles are
used in this scenario to mitigate the issue that some bidders can go offline after the
bidding phase. If we use only standard time-lock puzzles, then the number of puzzles
which has to be solved in the opening phase is equal to number of bidders who went
offline. In [26] this problem was resolved by using HLTPs. Again, this solution has the
same issues as the ones discussed above and can be avoided using our TRE approach.

Multi-Party Contract Signing. In multi-party contract signing we assume n parties
which want to jointly sign a contract. The parties are mutually distrusting and the con-
tract is valid only if it is signed by all parties. The protocol in [26] consists of four
phases - Setup, Key Generation, Signing and Aggregation, and combines aggregate sig-
natures from RSA with multiplicatively homomorphic time-lock puzzles with a setup
that allows producing puzzles for multiple hardness parameters. We remark that this
type of time-lock puzzles are in some sense equivalent to our sequential timed-release
encryption.4 The protocol runs in `-rounds and in the i-th round every party should
create a puzzle with hardness T`−i+1 which contains a signature of the required mes-

4 Though they only discuss them informally in [26] and as mentioned in Section 1 it seems that
it is not possible to prove it secure as it is proposed.

39

sage. Hence, the hardness of the puzzles decrease in every round. If some parties have
not broadcasted their puzzles in any round, the parties will homomorphically evaluate
puzzles from the previous round and solve the resulting puzzle.

Consider a scenario, where in the i-th round some party does not broadcast its puz-
zle. Then if we do not take into account time for homomorphic evaluation, we need
time T`−i+1 to solve the resulting puzzle after this event happened. On the other hand,
if we use sequential TRE, we are able to obtain result in time T`−i+1 after the setup
was executed. Moreover, we can combine sequential TRE with an arbitrary aggregate
signature scheme, because we do not need to perform any homomorphic evaluation.

40

	Versatile and Sustainable Timed-Release Encryption and Sequential Time-Lock Puzzles

