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ABSTRACT
Loyalty programs in the form of punch cards that can be redeemed

for benefits have long been a ubiquitous element of the consumer

landscape. However, their increasingly popular digital equivalents,

while providing more convenience and better bookkeeping, pose

a considerable risk to consumer privacy. This paper introduces a

privacy-preserving punch card protocol that allows firms to digitize

their loyalty programs without forcing customers to submit to

corporate surveillance. We also present a number of extensions that

allow our scheme to provide other privacy-preserving customer

loyalty features.

Compared to the best prior work, we achieve a 14× reduction in

the computation and a 25× reduction in communication required

to perform a “hole punch,” a 62× reduction in the communication

required to redeem a punch card, and a 394× reduction in the com-

putation time required to redeem a card. Much of our performance

improvement can be attributed to removing the reliance on pairings

present in prior work, which has only addressed this problem in the

context of more general loyalty systems. By tailoring our scheme

to punch cards and related loyalty systems, we demonstrate that

we can reduce communication and computation costs by orders of

magnitude.

1 INTRODUCTION
Punch cards that can be redeemed for rewards after a number of

purchases are a widely-used incentive for customer loyalty. Al-

though these time-tested loyalty schemes remain popular, they

are increasingly being replaced with digital equivalents that reside

in mobile apps instead of physical wallets. The benefits of going

digital for business owners include stronger defenses against coun-

terfeit cards, a more convenient customer experience, and better

bookkeeping around the popularity and efficacy of their loyalty

program [11, 27].

Unfortunately, digital loyalty programs also introduce a myriad

new opportunities for customers’ privacy to be violated [11, 32],

e.g., by linking customer behavior across transactions. This kind

of tracking can be conducted by the business itself, a third-party

loyalty service, or a malicious actor who gains access in a data

breach. Thus any firm who wants to protect customer privacy

should attempt to ensure that its digital loyalty program does not

collect unnecessary data. But is it possible to digitize the traditional

punch card without damaging customer privacy?

One approach to this problem is via standard anonymous cre-

dential techniques [13, 14, 16]. Ecash systems [2, 12] or even the

uCentive system [34], which is specifically designed for loyalty

programs, can be used to give a customer an unlinkable token for

each purchase. However, storage and computation costs to hold

and redeem a token in these systems must be linear in the number

of “hole punches” a customer acquires.

A recent line of work, beginning with the Black Box Accumula-

tion (BBA) of Jager and Rupp [29], removes this linear dependence

on the number of hole punches. Although individual hole punches

are unlinkable in the original BBA scheme, the processes of issuing

and redeeming a punch card are not. This shortcoming is rectified

in the later BBA+ and Updatabale Anonymous Credential Systems

(UACS) works by Hartung et al. [28] and Blomer et al. [5], as well

as the recent improvements of Bobolz et al. [6], all of which ad-

ditionally extend the idea of black box accumulation to support a

broader set of functionalities.

This work introduces new protocols specifically designed to

support privacy-preserving digital punch cards. By focusing specif-

ically on the requirements of punch cards and similar points-based

loyalty programs, we are able to make both qualitative and quan-

titative improvements over prior work. Unlike the works listed

above, our main protocol does not rely on pairings, enabling sig-

nificant performance improvements. Moreover, by stepping away

from previous abstractions used for punch cards, we can handle

punch card issuance non-interactively, meaning that a customer

can generate a new, unpunched card without any interaction with

the server. As an ancillary benefit, this removes a potential denial

of service opportunity in prior systems, where a customer could

register many punch cards without actually needing to earn any

punches.

In terms of performance, our scheme reduces the client side com-

putation required to generate a new punch card by 280× compared

to prior work (in addition to not requiring interaction with the

server), reduces the total client and server computation times to

perform a card punch by 14×, and reduces the time to redeem a

card by 394×. Communication costs to punch and redeem a card

are also reduced by 25× and 62×, respectively.
Our core protocol is quite simple. To generate a punch card, a

client picks a random secret and hashes it to a point in an elliptic

curve group using a hash function modeled as a random oracle [3,

21]. To receive a hole punch, the client masks this group element

and sends it to the server, who sends it back raised to a server-

side secret value, along with a proof that this was done honestly.

Finally, after several punches, the client redeems the card by sending

the unmasked version along with the initial random secret to the

server. The server checks that the group element submitted matches

the hash of the random secret raised to the appropriate exponent.

It also checks that the punch card being redeemed has not been

redeemed before. Since the server is not involved in card issuance

and only ever sees separately masked versions of the card, it cannot

link a redeemed card to any past transaction. We prove, in the

Algebraic Group Model (AGM) [23], that a malicious customer

cannot successfully claim more rewards that it is entitled to.

We also present a number of extensions to our main scheme that

allow us to handle variations on the typical punch card. For example,

we can handle special promotions where users get multiple punches,

programs where purchases receive a fixed number of points instead

of a single punch, and even private ticketing systems. Our most

involved extension allows customers to merge the points on two



punch cards without revealing anything to the server about the

individual punch cards being merged. This extension uses pairings,

but it still maintains the other advantages of our protocol and

outperforms prior work, albeit by a smaller margin.

Our schemes are implemented in Rust with an Android wrap-

per for testing on mobile devices, and all our code and raw perfor-

mance data are open source at https://github.com/SabaEskandarian/

PunchCard.

2 DESIGN GOALS
This section describes our goals for a punch card scheme. We give

security definitions and contrast the goals of our work with those

of closely related works.

2.1 Functionality Goals
A punch card scheme consists of three components. First, a client

running on a customer’s phone should be able to create a new

punch card. Next, the client and a server running a loyalty program

can interact in order for the server to give the client a “hole punch.”

Finally, a client can submit a completed punch card to the server

for verification, and the server will accept valid punch cards that

have not already been redeemed. The server keeps a database DB
of previously redeemed cards to make sure a client doesn’t redeem

the same card multiple times. After verifying a card, the server can

give the client some out-of-band reward. In general, each of these

steps can be a multi-round interactive protocol between the two

parties. However, since all our protocols involve exactly one round,

we present the syntax of a punch card scheme below as consisting

of individual algoriths instead of interactive protocols.

A punch card scheme defined with respect to a security parameter

_ is defined as follows.

• ServerSetup(1_) → sk, pk,DB: On input a security param-

eter _, the initial server setup produces server public and

secret keys, as well as an empty database to record previously

redeemed punch cards.

• Issue(1_) → psk, 𝑝: On input a security parameter _, the

Issue algorithm generates new punch card 𝑝 and a punch

card secret psk.
• ServerPunch(sk, pk, 𝑝) → 𝑝 ′, 𝜋 : On input the server keys

and a punch card, ServerPunch outputs an updated punch

card 𝑝 ′ and a proof 𝜋 that the punch card 𝑝 was updated

correctly.

• ClientPunch(pk, psk, 𝑝, 𝑝 ′, 𝜋) → psk′, 𝑝 ′′or⊥: Given the

public key, a punch card secret psk, the accompanying punch

card 𝑝 , a server-updated punch card value 𝑝 ′, and a proof 𝜋 ,

ClientPunch outputs an updated secret psk′ and card 𝑝 ′′ if
the proof 𝜋 is accepted and ⊥ otherwise.

• ClientRedeem(psk, 𝑝) → psk′, 𝑝 ′: Given a punch card se-

cret psk and the corresponding punch card 𝑝 , ClientRedeem
outputs an updated secret psk′ and card 𝑝 ′ that are ready to

be sent to the server for redemption.

• ServerVerify(sk, pk,DB, psk, 𝑝, 𝑛) → 1/0,DB′: on input the

server keys, redeemed card database, a punch card, the ac-

companying secret, and an integer 𝑛 ∈ Z determining the

required number of punches for redemption, ServerVerify

outputs a bit determing whether or not the punch card is

accepted and an updated database DB′.

Correctness for a punch card scheme is defined in a straight-

forward way. An honestly generated punch card that has received

𝑛 punches should be accepted by an honest server. This should

hold true even after many punch cards have been generated and

redeemed.

Definition 2.1 (Correctness). We say that a punch card scheme is

correct if for

sk, pk,DB0 ← ServerSetup(1_)

and any𝑛 ∈ Z, the following set of operations, repeated sequentially
𝑁 = poly(_) times, results in 𝑏 𝑗 = 1 for all 𝑗 ∈ [𝑁 ] with all but

negligible probability in _.

(psk
0
, 𝑝0) ← Issue(1_)

for 𝑖 ∈ [𝑛] :
𝑝 ′𝑖 , 𝜋𝑖 ← ServerPunch(sk, pk, 𝑝𝑖 )
psk𝑖+1, 𝑝𝑖+1 ← ClientPunch(pk, psk𝑖 , 𝑝𝑖 , 𝑝 ′𝑖 , 𝜋𝑖 )

psk, 𝑝 ← ClientRedeem(psk𝑛, 𝑝𝑛)
𝑏 𝑗 ,DB𝑗+1 ← ServerVerify(sk, pk,DB𝑗 , psk, 𝑝, 𝑛)

The functionality we desire from our punch cards is at a high

level similar to that offered by black box accumulation (BBA) [29].

Although we offer a similar functionality, we will do so with

stronger security guarantees and significantly improved perfor-

mance. On the other hand, BBA+ [28], UACS [5], and Bobolz et al. [6]

offer additional features that might be useful in other kinds of loy-

alty programs, such as reducing balances and partially spending

accrued rewards. These features enable other applications, but, as

described in Section 1, they render the solutions less effective for

the original punch card problem. Bobolz et al. introduce the pos-

sibility of recovering from a partially completed spend that gets

interrupted mid-protocol, e.g., due to a communication or hardware

fault. Our scheme avoids the potential for this problem entirely

because redemption only requires a single message from the client

to the server.

Oneway in which our setting differs fundamentally that of BBA+,

UACS, and Bobolz et al. is the way in which we prevent a punch

card from being redeemed more than once. In our setting, the server

has access to a database of all previously redeemed cards when

deciding whether or not to accept a new punch card submitted

for verification. BBA+, UACS, and Bobolz et al. consider an offline
double spending scenario where the server may not have access

to such a database but must be able to identify clients who have

double spent punch cards after the fact. We do not pursue this goal

for three reasons, listed in order of increasing importance below.

(1) Not necessary: point-of-sale terminals often require an inter-

net connection to work, so synchronizing spent punch cards

between different locations of a firm with multiple branches

can happen online with less performance cost than an offline

verification approach.

(2) Prohibitively expensive: the performance cost of checking

whether a punch card was double spent in prior work is
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REALPRIV(_,A):
1. 𝑇 ← {}
2. 𝑐 ← 0

3. (sk, pk) ← A1 (_)
4. 𝑏 ← AOissue,Opunch,Oredeem

2
(_)

5. Output 𝑏

The experiment REALPRIV(_,A) makes use of the following ora-

cles, which have access to shared state 𝑇 keeping track of issued

punch cards and the public key pk, subject to the restriction that

Oredeem is only called once on each input id.
Oissue (_):

1. psk, 𝑝 ← Issue(1_)
2. 𝑇 [𝑐] ← (psk, 𝑝)
3. 𝑐 ← 𝑐 + 1
4. Output 𝑐, 𝑝

Opunch (id, 𝑝 ′, 𝜋):
1. if id ∉ 𝑇 , output ⊥
2. (psk, 𝑝) ← 𝑇 [id]
3. (psk′, 𝑝 ′′) ← ClientPunch(pk, psk, 𝑝, 𝑝 ′, 𝜋)
4. if (psk′, 𝑝 ′′) ≠ ⊥, then 𝑇 [id] ← (psk′, 𝑝 ′′)
5. Output 𝑝 ′′

Oredeem (id):
1. if id ∉ 𝑇 , output ⊥
2. (psk, 𝑝) ← 𝑇 [id]
3. psk′, 𝑝 ′ ← ClientRedeem(psk, 𝑝)
4. Output psk′, 𝑝 ′

Figure 1: Real privacy experiment

prohibitive, requiring at least one exponentiation for each

previously redeemed punch card. This would be about 8 or-

ders of magnitude slower than the hash table lookup required

in our setting (as measured on our evaluation setup).

(3) Requires real-world identity: identifying the human user

who double spent a punch card in a way that the person can

be penalized requires some notion of real-world identity tied

to the punch card client. This means that any loyalty system

providing such a feature would require a user’s real-world

identity in order to operate. This violates our original goal of

making a punch card loyalty program digital with no damage

to user privacy.

2.2 Security Goals
At a high level, a punch card scheme must provide two kinds of

security guarantees. First, it must protect client privacy such that

the server learns nothing from messages sent by the client. Second,

it must be sound in that no client can redeem more rewards than

it has honestly accrued through valid hole punches authorized by

the server.

We define privacy using a simulation-based definition. This

means that in order for privacy to be satisfied, there must exist

a simulator algorithm that can generate the view of the punch card

server without access to client-side secrets. Informally, if the server

can’t distinguish between the output of the simulator and a real

client, then it surely can’t learn anything from interacting with a

IDEALPRIV(_,A,S):
1. 𝑇 ← {}
2. 𝑐 ← 0

3. (sk, pk) ← A1 (_)
4. 𝑏 ← AOissue,Opunch,Oredeem

2
(_)

5. Output 𝑏

The experiment IDEALPRIV(_,A,S) makes use of the following

oracles, which have access to shared state𝑇 keeping track of issued

punch cards, the public key pk, and S = (S1,S2,S3), subject to the
restriction that Oredeem is only called once on each input id.

Oissue (_):
1. 𝑝 ← S1 (1_)
2. 𝑇 [𝑐] ← (0, 𝑝)
3. 𝑐 ← 𝑐 + 1
4. Output 𝑐, 𝑝

Opunch (id, 𝑝 ′, 𝜋):
1. if id ∉ 𝑇 , output ⊥
2. (𝑐id, 𝑝) ← 𝑇 [id]
3. 𝑝 ′′ ← S2 (pk, 𝑝, 𝑝 ′, 𝜋)
4. if 𝑝 ′′ ≠ ⊥, then 𝑇 [id] ← (𝑐id + 1, 𝑝 ′′)
5. Output 𝑝 ′′

Oredeem (id):
1. if id ∉ 𝑇 , output ⊥
2. (𝑐id, 𝑝) ← 𝑇 [id]
3. psk′, 𝑝 ′ ← S3 (sk, 𝑐id)
4. Output psk′, 𝑝 ′

Figure 2: Ideal privacy experiment

real client because it could have received the same information by

running the simulator on its own.

Our privacy definition defines real and ideal privacy experiments,

both of which begin with the challenger initializing an empty table

𝑇 mapping unique integer identifiers to punch cards and a counter

𝑐 ← 0 that is incremented each time a new punch card is issued. The

adversary is allowed to pick server secret and public keys (sk, pk),
and then it is allowed to interact with oracles Oissue, Opunch, and
Oredeem which play the role of the client in the punch card scheme.

In the real privacy experiment, these oracles act as wrappers around

the Issue,ClientPunch, andClientRedeem functions, simply calling

the functions on the requested punch card (identified by an id
number chosen at issuance) and performing bookkeeping when

punch cards are issued, updated, or redeemed. The ideal privacy

experiment replaces each of these functions with calls to simulator

algorithms S1, S2, and S3 which have no access to punch card

secrets. At the end of each experiment, the adversary outputs a

distinguishing bit 𝑏.

Definition 2.2 (Privacy). Let Π be a punch card scheme. Then

for a security parameter _, and for every adversary A made up

of algorithms A1 and A2, there exists a simulator S made up of

algorithms S1, S2, and S3 such that the outputs of the experiments

REALPRIV(_,A) (Figure 1) and IDEALPRIV(_,A,S) (Figure 2) are
computationally indistinguisable.

In particular, we say that a punch card scheme Π has privacy if

there exists a negligible function negl(·) such that for any efficient
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SOUND(_,A):
1. sk, pk,DB← ServerSetup(1_)
2. 𝑐punch ← 0

3. 𝑐redeem ← 0

3. AOpunch,Oredeem (_, pk)
4. if 𝑐redeem > 𝑐punch, output 1. Otherwise, output 0.

The experiment SOUND(_,A) makes use of the following oracles,

which all have access to the shared state 𝑐punch, 𝑐redeem, sk, pk,DB.
Opunch (𝑝):

1. 𝑝 ′, 𝜋 ← ServerPunch(sk, pk, 𝑝)
2. 𝑐punch ← 𝑐punch + 1
3. Output (𝑝 ′, 𝜋)
Oredeem (psk, 𝑝, 𝑛):

1. 𝑏,DB′ ← ServerVerify(sk, pk,DB, psk, 𝑝, 𝑛)
2. if 𝑏 = 1:

3. 𝑐redeem ← 𝑐redeem + 𝑛
4. DB← DB′

5. Output 𝑏

Figure 3: Soundness experiment

adversary A, we have���Pr[REALPRIV(_,A) = 1

]
− Pr

[
IDEALPRIV(_,A,S) = 1

] ��� < negl(_).

Our soundness definition resembles that of BBA [29], which

requires that a malicious client can only redeem as many punches

as it has accrued. Aside from modifying the syntax of the definition

to match our own, we have also modified it to allow the adversary

to interleave hole punches and redemptions instead of requiring

that all redemptions occur at the end of the protocol.

Definition 2.3 (Soundness). Let Π be a punch card scheme. Then

for a security parameter _ and adversary A, we define the sound-

ness experiment SOUND(_,A) in Figure 3. We say that a punch

card scheme Π satisfies soundness if there exists a negligible func-
tion negl(·) such that for any efficient adversary A, we have

Pr[SOUND(_,A) = 1] < negl(_).

As in BBA, this definition does not capture whether or not a

client can transfer value from one punch card to another or merge

separate, partially filled punch cards to redeem a single, larger

card. In fact, it is not entirely clear if this kind of card merging

is a malicious behavior to be avoided or a beneficial feature to be

desired. This kind of merging appears to be difficult to do in our

main construction, but we show how to extend our scheme to allow

a limited degree of merging in Section 4.

3 PRIVACY-PRESERVING PUNCH CARDS
This section describes our main punch card scheme. In addition to

its quantitative improvements over prior work, which we measure

in Section 5, our scheme has a number of other desirable properties:

• Whereas all prior works make use of pairings, either be-

cause they rely on Groth-Sahai proofs [26] or Pointcheval-

Saunders signatures [36], our punch card scheme does not

require pairings.

• We require no communication at all to issue a new punch

card – a client can do this on its own without server involve-

ment. This removes a potential denial of service opportunity

present in prior work, where a client could initiate a number

of punch cards without making any purchases, thereby mak-

ing the server incur unnecessary storage and computation

at no cost to the malicious client.

• Our redemption process involves a client sending a single

message to the server, so there is no potential for the process

to be interrupted mid-protocol and no need for a recovery

process of the form proposed by Bobolz et al. [6].

3.1 Main Construction

A basic scheme. We will begin with a bare-bones version of our

scheme that provides neither privacy nor soundness. From this

starting point, we will gradually build up to our actual scheme.

Throughout, we will work in a group 𝐺 of prime order 𝑞.

To set up the initial scheme, the server chooses a secret sk ∈ Z𝑞 ,
and a client chooses a group element 𝑝0 ←R 𝐺 to represent the

punch card. To receive a hole punch, the client sends 𝑝𝑖 to the

server, who returns 𝑝𝑖+1 ← 𝑝sk
𝑖
. To redeem a card after 𝑛 punches,

the client submits 𝑝0 and 𝑝𝑛 to the server, who accepts if 𝑝𝑛 = 𝑝sk
𝑛

0

and 𝑝0 has not been previously used in a redeemed card.

Adding privacy. The scheme above clearly provides no privacy

because the server can link the different times it sees a punch card.

We can make punches made on the same card unlinkable by only

sending the server masked versions of the punch card, in a way

reminiscent of standard oblivious PRF constructions [22, 35]. The

punch card is always masked with a fresh value𝑚 ←R Z𝑞 before

being sent to the server, so the server only sees 𝑝 ′ ← 𝑝𝑚 , not 𝑝

itself. The mask𝑚 is removed (via exponentiation by 1/𝑚) before

the next mask is applied. This means that the server sees a different

random group element each time it punches a card. Moreover, an

honest server only sees a random group element 𝑝 ∈ 𝐺 and 𝑝sk
𝑛

at

redemption time.

Unfortunately, this does not actually suffice to provide privacy

against an actively malicious server. Consider a malicious server

who always follows the scheme above, but during one hole punch

(for a client it later wishes to re-identify) it uses a different secret

sk′ ←R Z𝑞 so that sk ≠ sk′ except with negligible probability. Then

when an unsuspecting client attempts to redeem its punch card,

instead of submitting 𝑝, 𝑝sk
𝑛

, it really submits 𝑝, 𝑝sk
𝑛−1sk′

, allowing

the server to identify it.

We can handle the attack above by having the server give a zero

knowledge proof of knowledge that it has honestly punched a card.

To facilitate this, we require the server setup to also output a public

key pk ← 𝑔sk, for some publicly known generator 𝑔 ∈ 𝐺 . Then
the server can prove at punching time that it is returning a punch

card 𝑝 ′ such that 𝑝 ′ = 𝑝sk, i.e., that 𝑝, pk, 𝑝 ′ form a DDH tuple [20].

This can be proven efficiently with a generic Chaum-Pedersen

proof [17] made non-interactive in the random oracle model [3, 21].
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The server generates the proof 𝜋 and sends it to the client along

with the punched card 𝑝𝑖+1. The client rejects the updated card if

the proof does not verify. We denote proofs using the notation of

Camenisch and Stadler [15], where𝑍𝐾𝑃𝐾{(sk), pk = 𝑔sk, 𝑝 ′ = 𝑝sk}
represents the Chaum-Pedersen proof, and require the standard

zero knowledge and existential soundness properties [7].

Adding soundness. The two modifications above ensure that the

scheme provides privacy, but it still fails to provide soundness, as

a malicious client can redeem more points than it has received

punches. Consider a client who at first honestly follows the proto-

col and redeems a punch card by submitting 𝑝0, 𝑝𝑛 . Next, it submits

a masked 𝑝𝑛 for another punch and gets back 𝑝𝑛+1. Finally, it sub-
mits 𝑝1, 𝑝𝑛+1 as another valid punch card. According to the scheme

described thus far, the server would accept this punch card redemp-

tion, meaning that the malicious client can redeem 2𝑛 punches even

though it only received 𝑛 + 1 punches.
The attack above works because the client can choose any group

element it wants as 𝑝0. We modify our scheme to provide soundness

by forcing clients to generate 𝑝0 as the output of a hash function

modeled as a random oracle 𝐻 : {0, 1}_ → 𝐺 . In particular, instead

of choosing a random 𝑝0, the client chooses a random 𝑢 ← {0, 1}_
and sets 𝑝0 ← 𝐻 (𝑢). When redeeming a punch card, instead of

sending 𝑝0, 𝑝𝑛 , the client sends 𝑢, 𝑝𝑛 , and the server checks that

𝑝𝑛 = 𝐻 (𝑢)sk𝑛 . Since the hash function is modeled as a random

function, a malicious client cannot find the preimage of a group

element under 𝐻 , eliminating the attack.

With this defense, our scheme now provides both privacy and

soundness. We formalize our construction as follows.

Construction 1 (Punch Card Scheme). Let 𝐺 be a group of prime
order𝑞 with generator𝑔 ∈ 𝐺 , a let𝐻 be a hash function𝐻 : {0, 1}∗ →
𝐺 , modeled as a random oracle.

We construct our punch card scheme as follows:
• ServerSetup(1_) → sk, pk,DB: Select random sk←R Z𝑞 and
set pk← 𝑔sk ∈ 𝐺 . Initialize DB as an empty hash table, and
return sk, pk, and DB.
• Issue(1_) → psk, 𝑝 : First, select a random secret 𝑢 ←R {0, 1}_
and a random masking value𝑚 ←R Z𝑞 . Then compute 𝑝 ←
𝐻 (𝑢)𝑚 ∈ 𝐺 . Let psk← (𝑢,𝑚). Return psk, 𝑝 .
• ServerPunch(sk, pk, 𝑝) → 𝑝 ′, 𝜋 : Compute 𝑝 ′ ← 𝑝sk as well
as the proof of knowledge 𝜋 ← 𝑍𝐾𝑃𝐾{(sk), pk = 𝑔sk, 𝑝 ′ =
𝑝sk}. Output 𝑝 ′, 𝜋 .
• ClientPunch(pk, psk, 𝑝, 𝑝 ′, 𝜋) → psk′, 𝑝 ′′ or ⊥: First, verify
the proof 𝜋 . If verification fails, output ⊥. Otherwise, begin
by interpreting psk as (𝑢,𝑚). Then sample a new random
masking value𝑚′ ←R Z𝑞 and compute 𝑝 ′′ ← (𝑝 ′)𝑚′/𝑚 . Set
psk′ ← (𝑢,𝑚′), and output psk′, 𝑝 ′′.
• ClientRedeem(psk, 𝑝) → psk′, 𝑝 ′: Begin by interpreting psk
as (𝑢,𝑚) with 𝑢 ∈ {0, 1}_ and𝑚 ∈ 𝑍𝑞 . Then compute 𝑝 ′ ←
𝑝1/𝑚 ∈ 𝐺 . Return 𝑢 (as psk′) and 𝑝 ′.
• ServerVerify(sk, pk,DB, psk, 𝑝, 𝑛) → 1/0,DB′: Check
whether 𝑝 = 𝐻 (psk)sk𝑛 and whether psk ∈ DB. If the first
check returns true and the second returns false, insert psk into
DB and return 1,DB. Otherwise, return 0,DB.

Observe that the asymptotic complexity of almost every op-

eration in our punch card scheme depends only on the security

parameter _, with two exceptions. The first excpetion is that opera-

tions on DB have amortized time complexity𝑂 (_), but in the worst

case a read/write to DB could depend on the number of previously

redeemed punch cards. The other exception is the exponentiation

sk𝑛 performed in ServerVerify, where 𝑂 (log𝑛) group operations

are required. However, since the same 𝑛 is often used for every

punch card in practice, the server could precompute sk𝑛 to remove

the logarithmic dependence on 𝑛.

3.2 Security
We now discuss the security of our constructions. We begin by

proving the privacy of our punch card scheme.

Theorem 3.1. Assuming the existential soundness of the Chaum-
Pedersen proof system, our punch card scheme has privacy (Defini-
tion 2.2) in the random oracle model.

Proof. We begin by describing the simulator S = (S1,S2,S3).
• S1 (1_) → 𝑝: This simulator samples and outputs a random

group element 𝑝 ←R 𝐺 .
• S2 (pk, 𝑝, 𝑝 ′, 𝜋) → 𝑝 ′′/⊥: This simulator verifies the proof 𝜋

that 𝑝, pk, 𝑝 ′ form a DDH tuple and outputs ⊥ if verification

fails. Otherwise, it samples and outputs a random group

element 𝑝 ′′ ←R 𝐺 .
• S3 (sk, 𝑐id) → psk′, 𝑝 ′: This simulator samples a random

string psk′ ←R {0, 1}_ and computes 𝑝 ′ ← 𝐻 (psk′)sk𝑐id . It
outputs psk′, 𝑝 ′.

Next, we show through a short series of hybrids that

REALPRIV(_,A) ≈𝑐 IDEALPRIV(_,A,S) for our punch card

scheme.

H0: This hybrid is the real privacy experiment REALPRIV(_,A).
H1: In this hybrid, we add an abort condition to the execution of

the experiment. The experiment aborts and outputs 0 if S2
outputs 𝑝 ′′ ≠ ⊥ (i.e., it accepts the proof 𝜋 ) but it is not the

case that pk = 𝑔sk ∧ 𝑝 ′ = 𝑝sk.
This hybrid is indistinguishable from 𝐻0 by the soundness

of the Chaum-Pedersen proof system. In particular, an ad-

versary A who can distinguish between 𝐻0 and 𝐻1 can

be used by an algorithm B to break the soundness of the

proof system as follows. B plays the role of the adversary

in the soundness game for the Chaum-Pedersen proof, and

plays the role of the challenger toA in either𝐻0 or 𝐻1 with

probability 1/2 each. Whenever A causes experiment 𝐻1 to

abort due to the check introduced in this hybrid, B submits

the proof 𝜋 and the statement pk = 𝑔sk ∧ 𝑝 ′ = 𝑝sk to the

soundness challenger. Otherwise, B outputs ⊥.
The algorithm B described above breaks the soundness of

the Chaum-Pedersen proof with the same advantage that A
distinguishes between 𝐻0 and 𝐻1. To see why, observe that

the only difference in the view of A between 𝐻0 and 𝐻1

occurs when 𝐻1 aborts. Thus A must cause the experiment

to abort with probability at least equal to its distinguishing

advantage between 𝐻0 and 𝐻1. But whenever 𝐻1 aborts, B
has a statement and proof that violate the soundness of the

Chaum-Pedersen proof, so it wins the soundness game with

the same advantage.
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H2: In this hybrid, the challenger switches to record-keeping in

the table𝑇 in the way IDEALPRIV does and replaces calls to

Issue, ClientPunch, and ClientRedeem with calls to S1, S2,
and S3, respectively.
This hybrid is indistinguishable from 𝐻1 because the dis-

tribution of the adversary A’s view is identical in the two

hybrids. We will establish this by considering the oracles

Oissue, Opunch, and Oredeem one at a time.

– Oissue () → 𝑐, 𝑝 : In 𝐻1, the value 𝑝 returned by this oracle

is determined by𝑚 ←R Z𝑞, 𝑢 ←R {0, 1}_, 𝑝 ← 𝐻 (𝑢)𝑚 ∈ 𝐺 ,
which, since𝐻 is modeled as a random oracle, corresponds

to a uniformly random element of𝐺 . In 𝐻2, the value 𝑝 is

directly chosen as a uniformly random element 𝑝 ←R 𝐺 . In
both hybrids, 𝑐 is simply the next value of a counter that is

incremented with each query. Thus the distribution of the

output of the oracle is identical across the two hybrids.

– Opunch (id, 𝑝 ′, 𝜋) → 𝑝 ′′/⊥: In both 𝐻1 and 𝐻2, the oracle

verifies 𝜋 and outputs ⊥ if verification fails (and the game

aborts if verification succeeds for a false statement). Thus

we only need to consider cases where the proof verifies,

i.e., when pk = 𝑔sk ∧ 𝑝 ′ = 𝑝sk. In this case, 𝐻1 selects

a random 𝑚′ ←R Z𝑞 and outputs 𝑝 ′′ ← (𝑝 ′)𝑚′/𝑚 ∈ 𝐺 ,
which is distributed uniformly at random in 𝐺 . In 𝐻2, the

value of 𝑝 ′′ is directly chosen as a uniformly random value

𝑝 ′′ ←R 𝐺 . Thus the distribution of the output of the oracle

is identical across the two hybrids.

– Oredeem (id) → psk′, 𝑝 ′: In 𝐻1, this oracle returns the

secret𝑢 used to generate the punch card stored at𝑇 [id] as
well as the value of that punch card 𝑝 after removing the

last mask𝑚 to get 𝑝 ′ ← 𝑝1/𝑚 . The value of𝑢 is distributed

uniformly at random in {0, 1}_ . The value of 𝑝 ′ is equal
to 𝐻 (𝑢) raised to the server secret sk as many times as

there was a successful call to Opunch (id, ·, ·) – that is, a

call whose output was not ⊥. This is the case because in
each such call, the punch card value stored in 𝑇 is raised

to sk and its mask is replaced with a new one. The final

unmasking operation 𝑝 ′ ← 𝑝1/𝑚 results in a punch card

value 𝑝 ′ = 𝐻 (𝑢)sk𝑛 , where 𝑛 is the number of successful

calls to Opunch (id, ·, ·).
In𝐻2,𝑢 clearly has the same distribution as in𝐻1 because

in S3 it is sampled directly as 𝑢 ←R {0, 1}_ . The value 𝑝 ′
also has the same distribution as in 𝐻1 because the table

𝑇 gradually keeps count of the number 𝑐id of successful

calls to Opunch (id, ·, ·), so S3 can compute 𝑝 ′ ←R 𝐻 (𝑢)sk𝑐id
directly.

H3: This hybrid is identical to 𝐻2 except the abort condition

introduced in 𝐻1 is removed. As was the case in 𝐻1, this

hybrid is indistinguishable from the preceding hybrid by

the soundness of the Chaum-Pedersen proof system. It also

corresponds to the ideal privacy game IDEALPRIV(_,A,S),
completing the proof.

□

Having proven privacy, we now turn to soundness. We prove the

soundness of our scheme in the algebraic group model (AGM) [23],

where for every group element the adversary produces, it must also

give a representation of that group element in terms of elements it

has already seen. This is a strictly weaker model (in the sense that

it puts fewer restrictions on the adversary) than the widely-used

generic group model [38], in which some of the prior works on

privacy-preserving loyalty programs have been proven secure [5, 6].

Our proof relies on the 𝑞-discrete log assumption, which assumes

the computational hardness of winning the following game.

Definition 3.2 (𝑞-discrete log game). The 𝑞-discrete log game for

a group 𝐺 of prime order 𝑝 is played between a challenger C and

an adversary A. The challenger C samples 𝑥 ←R Z𝑝 and sends

𝑔𝑥 , 𝑔𝑥
2

, ..., 𝑔𝑥
𝑞
toA. The adversaryA responds with a value 𝑧 ∈ Z𝑝 ,

and the challenger outputs 1 iff 𝑧 = 𝑥 .

Depending on the concrete group in which the assumption is

made, the𝑞-discrete log game could be vulnerable to Brown-Gallant-

Cheon attacks [10, 18], which reduce the security of the assumption

by a factor of

√
𝑞. Fortunately this attack only negligibly affects the

security of the scheme, as 𝑞 is at most a polynomial in the security

parameter _.

We now state and prove our soundness theorem.

Theorem 3.3. Assuming the zero-knowledge property of the
Chaum-Pedersen proof system and the 𝑞-discrete log assumption in𝐺 ,
our punch card scheme has soundness (Definition 2.3) in the algebraic
group model with random oracles.

Proof. Since𝑞 already refers to the order of the group𝐺 , we will

refer to the 𝑁 -discrete log assumption throughout this proof. The

high-level idea of the proof is to program random oracle queries

with re-randomizations of powers of 𝑔𝑥 given by the 𝑁 -discrete log

challenger. Then, whenever a punch card is given by the adversary,

the algebraic adversary must also give a representation of the punch

card 𝑝 in terms of group elements it has seen before. As such, the

challenger can pick out the 𝑔𝑥
𝑖
component and replace it with 𝑔𝑥

𝑖+1

in its response. Then a punch card that is accepted before receiving

𝑛 punches must include a second representation of 𝑔𝑥
𝑛
, allowing

us to solve for 𝑥 .

We now formalize the proof idea sketched above. Our proof

proceeds through a series of hybrids.

H0: This hybrid is the soundness experiment SOUND(_,A).
H1: In this hybrid, we replace the proof 𝜋 output by Opunch with

a simulated proof.

The the zero-knowledge property of the Chaum-Pedersen

proof guarantees that the proof can be simulated. Since hy-

brids 𝐻0 and 𝐻1 are identical save for the real proof in 𝐻0

and the simulated proof in 𝐻1, the output of an adversary

A who distinguishes between 𝐻0 and 𝐻1 can also be used

to distinguish between a real and simulated proof with the

same advantage.

H2: In this hybrid, we add an abort condition to the execution of

the experiment. The experiment aborts and outputs 0 if the

Oredeem (psk, 𝑝, 𝑛) oracle ever outputs 𝑏 = 1when it receives

a value of psk that the adversary has not previously queried

from the random oracle 𝐻 .

This hybrid is indistinguishable from 𝐻1 because the prob-

ability of an adversary successfully triggering this abort
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condition is negligible in _ and there are no other dif-

ferences between 𝐻1 and 𝐻2. In order for the Oredeem
oracle to output 𝑏 = 1, it must be the case that

ServerVerify(sk, pk,DB, psk, 𝑝, 𝑛) outputs 1, which means

that 𝑝 = 𝐻 (psk)sk𝑛 . But since 𝐻 is modeled as a random

function and 𝐻 (psk) has not been queried before, its output

is chosen uniformly at random in 𝐺 , that is, 𝐻 (psk) ←R 𝐺 .

But then 𝐻 (psk)sk𝑛 is also distributed uniformly at random

in 𝐺 , and the probability Pr[𝑝 = 𝐻 (psk)sk𝑛 ] ≤ negl(_).
H3: In this hybrid, we modify how the challenger computes the

output of ServerPunch(sk, pk, 𝑝) and of the random oracle

𝐻 . Recall that sinceA is an algebraic adversary, every group

element it sends is accompanied by a representation in terms

of the previous group elements it has seen: the generator 𝑔,

returned punch cards 𝑝 ′
1
, ..., 𝑝 ′

𝑄
for the𝑄 queries it has made

to the Opunch oracle, and random oracle outputs 𝐻1, ..., 𝐻𝑄′

for the 𝑄 ′ random oracle queries it has made.

Let 𝑔𝑖 = 𝑔
sk𝑖

for 𝑖 ∈ Z. Whenever the adversary A makes a

call to the oracle 𝐻 on a previously unqueried point 𝑢, the

challenger samples 𝑟 ←R Z𝑞 and sets 𝐻 (𝑢) ← 𝑔𝑟
1
. Since 𝑟 is

distributed uniformly at random in Z𝑞 , so is 𝐻 (𝑢).
Next, whenever A makes a call to the oracle Opunch (𝑝),
instead of setting 𝑝 ′ ← 𝑝sk, the challenger looks at the

algebraic representation of 𝑝 submitted by A and replaces

each occurence of 𝑔𝑖 with 𝑔𝑖+1, including replacing 𝑔 with

𝑔1. Since the only elementsA has seen are 𝑔, random oracle

outputs, and the previous results of Opunch, the challenger
can keep track of which elements contain which𝑔𝑖 as it sends

them to A. The outputs of Opunch (𝑝) in 𝐻3 are identical to

the outputs in𝐻2, because the process described here results

in the same group element 𝑝 ′ that would be represented

by 𝑝sk.

Since all the changes in 𝐻3 result in identically distributed

outputs as in 𝐻2, the two hybrids are indistinguishable.

From 𝐻3, we can prove that any algebraic adversary A who

wins the soundness game can be used by an algorithm B, described
below, to break the 𝑁 -discrete log assumption in 𝐺 . Algorithm B
plays the role of the adversary in the 𝑁 -discrete log game while

simultaneously playing the role of the challenger in 𝐻3. Algorithm

B simulates 𝐻3 exactly to A, except that it uses the 𝑁 -discrete

log challenge messages 𝑔𝑥 , 𝑔𝑥
2

, ..., 𝑔𝑥
𝑁
as the values of 𝑔𝑖 . That is,

𝑔𝑖 = 𝑔𝑥
𝑖
. Moreover, it sets pk ← 𝑔1 in the setup phase. Observe

that the 𝑔𝑖 are distributed identically as in 𝐻3, so this is a perfect

simulation of 𝐻3 with 𝑥 playing the role of sk. The value of 𝑁

required in the assumption depends on the maximum number of

sequential punches A requests on the same group element.

Now, if A wins the soundness game, it means that 𝑐redeem >

𝑐punch. This, in turn, implies that there was some successful punch

card redemption ServerVerify where the accepted value of 𝑝 had

not been previously punched 𝑛 times, i.e., the representation of 𝑝

does not contain 𝑔𝑛+1. But since successful verification requires

that 𝑝 = 𝐻 (psk)xn = (𝑔𝑟
1
)xn = 𝑔𝑟

𝑛+1, and the algebraic adversary

A must give a representation of 𝑝 , we now have two different

representations of 𝑔𝑛+1 = 𝑔𝑥
𝑛+1

, which together yield a degree-𝑛 +1
equation in 𝑥 . This equation can be solved for 𝑥 using standard

techniques [39], allowing B to recover 𝑥 and win the 𝑁 -discrete

log game. □

4 MERGING PUNCH CARDS
Having described our main construction, we now consider another

feature sometimes enjoyed by physical punch cards that we may

want to reproduce digitally: merging partially-filled cards. Just as

in real life, it is possible to “merge” two punch cards by redeeming

them separately and taking into account the sum of the number of

punches across the two cards. However, this process reveals the

number of punches held by each card at redemption time, informa-

tion that the customer may want to hide. We can hide the value of

the two cards being merged by resorting to pairings.

Definition 4.1 (Pairings [7]). Let𝐺0,𝐺1,𝐺𝑇 be three cyclic groups

of prime order 𝑞 where 𝑔0 ∈ 𝐺0 and 𝑔1 ∈ 𝐺1 are generators. A

pairing is an efficiently computable function 𝑒 : 𝐺0 × 𝐺1 → 𝐺𝑇
satisfying the following properties:

• Bilinear: for all 𝑢,𝑢 ′ ∈ 𝐺0 and 𝑣, 𝑣
′ ∈ 𝐺1 we have

𝑒 (𝑢 · 𝑢 ′, 𝑣) = 𝑒 (𝑢, 𝑣) · 𝑒 (𝑢 ′, 𝑣)
and

𝑒 (𝑢, 𝑣 · 𝑣 ′) = 𝑒 (𝑢, 𝑣) · 𝑒 (𝑢, 𝑣 ′)
• Non-degenerate: 𝑔𝑇 ← 𝑒 (𝑔0, 𝑔1) is a generator of 𝐺𝑇 .

When 𝐺0 = 𝐺1, we say that the pairing is a symmetric pairing.
We refer to 𝐺0 and 𝐺1 as the pairing groups and refer to 𝐺𝑇 as the

target group.

Using a symmetric pairing, we can quite simplymerge two punch

cards without revealing the number of punches on each. Before

redeeming punch cards 𝑝0 and 𝑝1 which have 𝑖 and 𝑗 punches,

respectively, with 𝑖 + 𝑗 = 𝑛, the client computes 𝑝 ← 𝑒 (𝑝0, 𝑝1).
To redeem a merged card, the client sends the server the merged

punch card 𝑝 along with 𝑢0 and 𝑢1, the secrets for the two punch

cards merged into 𝑝 . The server checks that 𝑒 (𝐻 (𝑢0)sk
𝑛

, 𝐻 (𝑢1)).
The bilinear property of the pairing ensures that 𝑒

(
𝑝0, 𝑝1

)
=

𝑒
(
𝐻 (𝑢0)sk

𝑖

, 𝐻 (𝑢1)sk
𝑗 )

= 𝑒
(
𝐻 (𝑢0)sk

𝑛

, 𝐻 (𝑢1)
)
. We can even hide

whether or not a redeemed punch card is merged by generating a

fresh punch card before redemption and merging a complete card

with it.

The performance of symmetric pairings is far worse than that of

asymmetric pairings, so we would like to have a scheme that works

for asymmetric pairings as well. Unfortunately, directly converting

the idea above to asymmetric pairings meets with some difficulties.

Since each punch card must belong to either𝐺0 or𝐺1, we can only

merge pairs of cards where 𝑝0 ∈ 𝐺0 and 𝑝1 ∈ 𝐺1. But this is a

decision that must be made when a card is first issued, restricting

punch cards to being merged with cards that belong to the other

pairing group.

We resolve this problem by splitting each punch card into two

components, one in each pairing group. Each component behaves

as a punch card in the original scheme. Generating a punch card

is similar to the original scheme, but the secret 𝑢 ←R {0, 1}_ is

hashed by two different functions 𝐻0 : {0, 1}_ → 𝐺0 and 𝐻1 :

{0, 1}_ → 𝐺1. Each hole punch repeats the punch protocol of the

original scheme twice, once in 𝐺0 and once in 𝐺1. Redeeming a

card requires merging the 𝐺0 and 𝐺1 components of the two cards
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with each other as above, and since the client has a version of each

punch card in both groups, it can merge them as before.

We formalize this sketch of a solution below. We replace the

ClientRedeem algorithm from our punch card syntax with a new

ClientMergeRedeem algorithm that merges two punch cards before

redeeming them.

Construction 2 (Mergable Punch Card Scheme). Let 𝐺0,𝐺1,𝐺𝑇
be groups of prime order 𝑞 with generators 𝑔0 ∈ 𝐺0, 𝑔1 ∈ 𝐺1, and
let 𝐻0, 𝐻1 be hash functions 𝐻0 : {0, 1}∗ → 𝐺0, 𝐻1 : {0, 1}∗ → 𝐺1,
modeled as random oracles. We construct our punch card scheme as
follows:
• ServerSetup(1_) → sk, pk,DB: Select random sk←R Z𝑞 and
set pk

0
← 𝑔sk

0
∈ 𝐺0, pk1 ← 𝑔sk

1
∈ 𝐺1. Initialize DB as an

empty hash table, and return sk, pk = (pk
0
, pk

1
), and DB.

• Issue(1_) → psk, 𝑝 : First, select a random secret 𝑢 ←R {0, 1}_
and random masking values 𝑚0 ←R Z𝑞,𝑚1 ←R Z𝑞 . Then
compute 𝑝0 ← 𝐻0 (𝑢)𝑚0 ∈ 𝐺0, 𝑝1 ← 𝐻1 (𝑢)𝑚1 ∈ 𝐺1. Let
psk← (𝑢,𝑚0,𝑚1). Return psk, 𝑝 = (𝑝0, 𝑝1).
• ServerPunch(sk, pk, 𝑝) → 𝑝 ′, 𝜋 : First, interpret pk as
(pk

0
, pk

1
) and 𝑝 as (𝑝0, 𝑝1). Compute 𝑝 ′

0
← 𝑝sk

0
, 𝑝 ′

1
← 𝑝sk

1

as well as the proofs of knowledge 𝜋0 ← 𝑍𝐾𝑃𝐾{(sk), pk
0
=

𝑔sk
0
, 𝑝 ′

0
= 𝑝sk

0
} and 𝜋1 ← 𝑍𝐾𝑃𝐾{(sk), pk

1
= 𝑔sk

1
, 𝑝 ′

1
= 𝑝sk

1
}.

Output 𝑝 ′ = (𝑝 ′
0
, 𝑝 ′

1
), 𝜋 = (𝜋0, 𝜋1).

• ClientPunch(pk, psk, 𝑝, 𝑝 ′, 𝜋) → psk′, 𝑝 ′′or⊥: First, inter-
pret psk as (𝑢,𝑚0,𝑚1), 𝑝 as (𝑝0, 𝑝1), 𝑝 ′ as (𝑝 ′

0
, 𝑝 ′

1
), and 𝜋

as (𝜋0, 𝜋1) . Next, verify the proofs 𝜋0 and 𝜋1. If either verifica-
tion fails, output ⊥. Then sample new random masking values
𝑚′

0
←R Z𝑞,𝑚′

1
←R Z𝑞 and compute 𝑝 ′′

0
← (𝑝 ′

0
)𝑚′0/𝑚0 , 𝑝 ′′

1
←

(𝑝 ′𝑚
′
1
/𝑚1

1
). Finally, output psk′ = (𝑢,𝑚′

0
,𝑚′

1
), 𝑝 ′′ = (𝑝 ′′

0
, 𝑝 ′′

1
).

• ClientMergeRedeem(psk, 𝑝, psk′, 𝑝 ′) → psk′′, 𝑝 ′′: Begin
by interpreting psk as (𝑢,𝑚0,𝑚1), psk′ as (𝑢 ′,𝑚′

0
,𝑚′

1
),

𝑝 as (𝑝0, 𝑝1), and 𝑝 ′ as (𝑝 ′
0
, 𝑝 ′

1
). Then compute 𝑝 ′′ ←

𝑒 (𝑝1/𝑚0

0
, (𝑝 ′

1
)1/𝑚′1 ) ∈ 𝐺𝑇 . Return psk′′ = (𝑢,𝑢 ′) and 𝑝 ′′.

• ServerVerify(sk, pk,DB, psk, 𝑝, 𝑛) → 1/0,DB′: Begin by in-
terpreting psk as (𝑢,𝑢 ′). Then perform the following checks:

(1) 𝑝 = 𝑒 (𝐻0 (𝑢)sk
𝑛

, 𝐻1 (𝑢 ′))
(2) 𝑢 ∈ DB
(3) 𝑢 ′ ∈ DB
If the first check returns true and the other checks return false,
insert 𝑢 and 𝑢 ′ into DB and return 1,DB. Otherwise, return
0,DB.

Although not included in our formal construction, our scheme

could be extended to allow more punches to occur on a merged

card so long as the client indicates that it is a merged card being

punched and the punch/proof occur over elements in𝐺𝑇 . Note that

this scheme only allows for two punch cards to merged. Our general

strategy for merging punch cards could be extended to more than

two cards using multilinear maps [8, 19, 24], but a construction

that allows merging of more than two cards while only relying on

efficient standard primitives would require new techniques. This is

an interesting problem for future work to address.

We now state and prove our security theorems for the mer-

gable punch card scheme. The only change required in the se-

curity games to account for the change from ClientRedeem to

ClientMergeRedeem is that the redeem oracle in the privacy game

takes in two ids instead of just one and passes both corresponding

punch cards to ClientMergeRedeem.

Theorem 4.2. Assuming the existential soundness of the Chaum-
Pedersen proof system, our mergable punch card scheme has privacy
in the random oracle model.

Proof (sketch). We begin by describing the simulator S =

(S1,S2,S3).
• S1 (1_) → 𝑝: This simulator samples and outputs two ran-

dom group elements 𝑝0 ←R 𝐺0 and 𝑝1 ←R 𝐺1.

• S2 (pk, 𝑝, 𝑝 ′, 𝜋) → 𝑝 ′′/⊥: This simulator interprets 𝜋 =

(𝜋0, 𝜋1) and verifies both proofs, outputting ⊥ if either veri-

fication fails. Otherwise, it samples and outputs two random

group elements 𝑝 ′′
0
←R 𝐺0 and 𝑝

′′
1
←R 𝐺1.

• S3 (sk, 𝑐id, 𝑐id′) → psk′, 𝑝 ′: This simulator samples two

random strings 𝑢 ←R {0, 1}_, 𝑢 ′ ←R {0, 1}_ and computes

𝑝 ′ ← 𝑒 (𝐻0 (𝑢)sk
𝑐id
, 𝐻1 (𝑢 ′)sk

𝑐id′ ). It outputs psk ← (𝑢,𝑢 ′)
and 𝑝 ′.

Next, we show through a short series of hybrids that

REALPRIV(_,A) ≈𝑐 IDEALPRIV(_,A,S) for our mergable punch

card scheme. The rest of proof of this theorem is very similar to

that of Theorem 3.1. The main difference is that the soundness of

the Chaum-Pedersen proof system needs to be invoked separately

in each of 𝐺0 and 𝐺1. Thus we only sketch the steps of the hybrid

argument below.

H0: This hybrid is the real privacy experiment REALPRIV(_,A).
H1: In this hybrid, we add an abort condition to the execution of

the experiment. The experiment aborts and outputs 0 if S2
outputs 𝑝 ′′ ≠ ⊥ (i.e., it accepts the proofs 𝜋0 and 𝜋1) but it

is not the case that pk
0
= 𝑔sk

0
∧ 𝑝 ′

0
= 𝑝sk

0
.

H2: In this hybrid, we add an abort condition to the execution of

the experiment. The experiment aborts and outputs 0 if S2
outputs 𝑝 ′′ ≠ ⊥ (i.e., it accepts the proofs 𝜋0 and 𝜋1) but it

is not the case that pk
1
= 𝑔sk

1
∧ 𝑝 ′

1
= 𝑝sk

1
.

H3: In this hybrid, the challenger switches to record-keeping in

the table𝑇 in the way IDEALPRIV does and replaces calls to

Issue, ClientPunch, and ClientMergeRedeem with calls to

S1, S2, and S3, respectively.
H4: This hybrid is identical to 𝐻3 except the abort condition

introduced in 𝐻2 is removed.

H5: This hybrid is identical to 𝐻4 except the abort condition

introduced in 𝐻1 is removed. It also corresponds to the ideal

privacy game IDEALPRIV(_,A,S), completing the proof.

□

Next, we prove the soudness of our scheme. Since our new

scheme uses pairings, we use an asymmetric 𝑞-discrete log assump-

tion, which assumes the computational hardness of winning the

following game.

Definition 4.3 (asymmetric 𝑞-discrete log game). The 𝑞-discrete
log game for groups 𝐺0,𝐺1 of prime order 𝑝 is played between a

challenger C and an adversary A. The challenger C samples 𝑥 ←R

Z𝑝 and sends 𝑔𝑥
0
, 𝑔𝑥

2

0
, ..., 𝑔𝑥

𝑞

0
, 𝑔𝑥

1
, 𝑔𝑥

2

1
, ..., 𝑔𝑥

𝑞

1
toA. The adversaryA

responds with a value 𝑧 ∈ Z𝑝 , and the challenger outputs 1 iff 𝑧 = 𝑥 .
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Theorem 4.4. Assuming the zero-knowledge property of the
Chaum-Pedersen proof system and the asymmetric 𝑞-discrete log
assumption in𝐺0 and𝐺1, our mergable punch card scheme has sound-
ness (Definition 2.3) in the algebraic group model with random oracles.

Proof (sketch). Since𝑞 already refers to the order of the groups

𝐺0,𝐺1,𝐺𝑇 , we will refer to the asymmetric 𝑁 -discrete log assump-

tion throughout this proof. The majority of proof of this theorem

is very similar to that of Theorem 3.3. The main difference in the

hybrids is that several hybrids need to be repeated to account for

each punch card being made up of two group elements instead of

one. Thus we only sketch the steps of the hybrid argument below

and focus on the last step of the argument.

H0: This hybrid is the soundness experiment SOUND(_,A).
H1: In this hybrid, we replace the proof 𝜋0 output by Opunch

with a simulated proof.

H2: In this hybrid, we replace the proof 𝜋1 output by Opunch
with a simulated proof.

H3: In this hybrid, we add an abort condition to the execution of

the experiment. The experiment aborts and outputs 0 if the

Oredeem (psk, 𝑝, 𝑛) oracle ever outputs 𝑏 = 1when it receives

a value of 𝑢 or 𝑢 ′ that the adversary has not previously

queried from both random oracles 𝐻0 and 𝐻1.

H4: In this hybrid, we modify how the challenger computes the

output of ServerPunch(sk, pk, 𝑝) and of the random oracle

𝐻 . Let 𝑔0,𝑖 = 𝑔
sk𝑖
0

and 𝑔1,𝑖 = 𝑔
sk𝑖
1

for 𝑖 ∈ Z. Recall that since
A is an algebraic adversary, every group element it sends is

accompanied by a representation in terms of the previous

group elements it has seen. Just as we did in the proof of

Theorem 3.3, instead of punching cards by raising 𝑝sk
0

and

𝑝sk
1
, we examine the algebraic representation of 𝑝0, 𝑝1 sub-

mitted by the adversary and replace each instance of 𝑔0,𝑖
or 𝑔1,𝑖 with 𝑔0,𝑖+1 or 𝑔1,𝑖+1, respectively. Also, whenever the
adversary A makes a call to the oracles 𝐻 𝑗 (for 𝑗 ∈ 0, 1)

on a previously unqueried point 𝑢, the challenger samples

𝑟 ←R Z𝑞 and sets 𝐻 𝑗 (𝑢) ← 𝑔𝑟
𝑗,1
.

From 𝐻4, we can prove that any algebraic adversary A who

wins the soundness game can be used by an algorithm B, described
below, to break the 𝑁 -discrete log assumption in either 𝐺0 or𝐺1.

Algorithm B plays the role of the adversary in the asymmetric

𝑁 -discrete log game while simultaneously playing the role of the

challenger in 𝐻4. Algorithm B simulates 𝐻4 exactly to A, except

that it uses the asymmetric 𝑁 -discrete log challenge messages

𝑔𝑥
0
, 𝑔𝑥

2

0
, ..., 𝑔𝑥

𝑁

0
, 𝑔𝑥

1
, 𝑔𝑥

2

1
, ..., 𝑔𝑥

𝑁

1
as the values of 𝑔0,𝑖 and 𝑔1,𝑖 . That

is, 𝑔0,𝑖 = 𝑔
𝑥𝑖

0
and 𝑔1,𝑖 = 𝑔

𝑥𝑖

1
. Moreover, it sets pk ← (𝑔0,1, 𝑔1,1) in

the setup phase. Observe that all 𝑔0,𝑖 and 𝑔1,𝑖 are distributed identi-

cally as in 𝐻4, so this is a perfect simulation of 𝐻4 with 𝑥 playing

the role of sk. The value of 𝑁 required in the assumption depends

on the maximum number of sequential punches A requests on the

same group element.

Now, if A wins the soundness game, it means that 𝑐redeem >

𝑐punch. This, in turn, implies that there was some successful punch

card redemption ServerVerifywhere the accepted value of 𝑝 had not
been previously punched 𝑛 times between the two merged cards.

Let 𝑎 and 𝑏 the number of times each of the two merged cards had

been punched before redemption, so we have 𝑎 + 𝑏 < 𝑛.

The successful verification requires that

𝑝 = 𝑒 (𝐻1 (𝑢)𝑥
𝑛

, 𝐻2 (𝑢 ′)) = 𝑒 (𝑔𝑟𝑥
𝑛

0,1 , 𝑔
𝑟 ′
1,1) = 𝑒 (𝑔

𝑟𝑥𝑎
′

0,1 , 𝑔𝑟
′𝑥𝑏
′

1,1 )

for any 𝑎′, 𝑏 ′ where 𝑎′ + 𝑏 ′ = 𝑛, and the algebraic adversary must

give a representation of 𝑝 (it can include a pairing in this represen-

tation). It must be true that one of 𝑎′ or 𝑏 ′ is greater than 𝑎 or 𝑏,
respectively, because 𝑎 + 𝑏 < 𝑛. Thus the representation of 𝑝 must

not include either 𝑔𝑟
0,𝑎′+1 or 𝑔

𝑟 ′

1,𝑏′+1 because one of those values will
not have been given to A. This means we now have two different

representations of one of these elements, which together yield a

degree 𝑎′ + 1 or 𝑏 ′ + 1 equation in 𝑥 . This equation can be solved

for 𝑥 using standard techniques [39], allowing B to recover 𝑥 and

win the asymmetric 𝑁 -discrete log game. □

5 IMPLEMENTATION AND EVALUATION
We implemented our main punch card scheme from Section 3 as

well as the mergable punch card scheme from Section 4. Our imple-

mentation is written in Rust with a Java wrapper to run the Rust

code on Android devices. The implementation of the main punch

card scheme relies on the curve25519-dalek [33] crate which im-

plements curve25519 [4], and the mergable punch card scheme uses

the pairing-plus [25] crate, which provides an implementation of

BLS12-381 curves [9]. Our implementation and raw evaluation data

are available at https://github.com/SabaEskandarian/PunchCard.

We carried out our evaluation with the client running on a

Google Pixel (first generation) phone and the server running on

a laptop with an Intel i5-8265U processor @ 1.60GHz. All data re-

ported on our scheme comes from an average of at least 100 trials.

ServerVerifywas run with 𝑛 = 10 punches on each redeemed punch

card and an empty database DB of used cards. We repeated the test

of the main scheme with a database of 1,000,000 used cards and saw

no significant difference between that and the test with an empty

database, leading us to conclude that the hash table lookup does

not dominate the cost of the ServerVerify algorithm.

Figure 1 shows the running time of each of the algorithms in

our main punch card construction as well as the amount of in-

protocol data sent by the party running the algorithm in a punch

card system. The data sent in ServerSetup refers to the size of the

public key which must be communicated to clients. Observe that

we do not require the client to communicate any data in order for a

new punch card to be issued. The most costly operation, punching a

card, requires less than 5ms between the client and server combined,

and all other operations require less than 1ms. Commmunication

is under 200 Bytes for all operations.

Figure 2 shows the same information for the mergable punch

card scheme. The mergable scheme runs considerably more slowly

than the main scheme. This is the result of 1) more work being

required in the mergable scheme, 2) group operations being more

costly in pairing groups, and 3) the heavily optimized library used

for curve25519 (curve25519-dalek) in the implementation of the

main scheme. Group elements in pairing groups are also larger than

in curve25519. In curve25519, the size of a group element 𝑔 ∈ 𝐺 is

32 Bytes, but in the BLS12-381 curves, 𝑔0 ∈ 𝐺0 requires 48 Bytes,

𝑔1 ∈ 𝐺1 requires 96 Bytes, and 𝑔𝑇 ∈ 𝐺𝑇 requires 576 Bytes.

Comparison to prior work. We compare our punch card scheme

to the loyalty systems BBA+ [28], UACS [5], and Bobolz et al. [6].
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ServerSetup Issue ServerPunch ClientPunch ClientRedeem ServerVerify
Computation Time (ms) 0.019 0.304 0.134 4.314 0.890 0.064

Data Sent (Bytes) 32 0 128 32 64 0

Table 1: Computation and communication costs for our main punch card scheme.

ServerSetup Issue ServerPunch ClientPunch ClientMergeRedeem ServerVerify
Computation Time (ms) 1.09 34.97 4.33 137.79 36.43 4.00

Data Sent (Bytes) 144 0 496 144 640 0

Table 2: Computation and communication costs for our mergable punch card scheme using pairings.

Issuing a Card Punching a Card Redeeming a Card

BBA+ scheme 115.27 385.61 375.73

UACS scheme 86 127 454

Bobolz et al. scheme 130 64 1254

Our main scheme 0.304 (282.99× faster) 4.448 (14.4× faster) 0.954 (393.8× faster)

Our mergable scheme 34.97 (2.5× faster) 142.12 40.43 (9.3× faster)

Table 3: Computation time (inmilliseconds) for our schemes and prior work. Speedups shown in parentheses
refer to improvement over best prior work.

Issuing a Card Punching a Card Redeeming a Card

BBA+ scheme 992 4048 3984

Our main scheme 0 160 (25.3× reduction) 64 (62.3× reduction)

Our mergable scheme 0 640 (6.3× reduction) 640 (6.2× reduction)

Table 4: Communication (in Bytes) in our schemes and BBA+ [28], the only prior work to record commu-
nication costs. Our schemes incur no communication to issue a new card and achieve order of magnitude
improvements for other operations. The pairing-based scheme requires more communication because pair-
ing group elements are larger and punching a card requires twice as many elements communicated.

We do not compare to the original BBA work [29] because its per-

formance is strictly worse than the works to which we do compare.

We use the performance numbers reported by each prior work. Per-

formance numbers for UACS and Bobolz et al., were also recorded

with a Google Pixel phone but used a computer with a stronger

i7 processor. BBA+ only reports the client-side cost of each of its

protocols and uses a OnePlus 3 phone. In order to better capture

the total cost of using each approach, we combine client and server

costs to give the overall computation cost of each scheme. However,

the distribution of cost between the client and server is similar for

all works, with the mobile device incurring most of the computation

cost.

Figure 3 compares the performance numbers of our schemes

against those of prior work. Our main scheme issues a card 282.99×
faster than the best prior work (UACS), punches a card 14.4× faster

than the best prior work (Bobolz et al.), and redeems a card 393.8×
faster than the best prior work (BBA+). Although each prior work

we compared to was the fastest in one of these three procedures,

our scheme strictly dominates all of them by at least an order of

magnitude. The performance improvement comes from removing

the reliance on pairings and significantly reducing the number and

complexity of zero knowledge proofs required in each operation.

Our mergable punch card scheme outperforms prior work in

almost every category, and by a margin of 9.3× in card redemption.

The Bobolz et al. scheme punches a card about twice as fast as our

scheme, but they achieve this by removing zero knowledge proofs

from the punch protocol and pushing them to redemption, which

takes over a second (our redemption is 31× faster). An important

difference to point out between our implementation and prior work

is that while our implementation was done with BLS12-381 curves,

which provide 128 bits of security, prior works all used BN curves [1,

30] that only provide 100 bits of security [31, 37].

Figure 4 compares the communication costs of our schemes with

BBA+, the only prior work to report the communication costs in-

curred by their implementation. Unlike all prior work, our scheme

requires no communication to issue a new card, and card punching

and redemption require 25.3× and 62.3× less communication, re-

spectively, than BBA+. For the mergable scheme, the improvements

are reduced to about 6×, but even this scheme requires significantly

less communication.

6 EXTENSIONS
We now briefly discuss extensions to our main punch card scheme

that can allow it to be used in a wider variety of applications.

Multi-punches. Some loyalty programs sometimes offer extra

punches on their punch cards as a special promotion. Others don’t

use a punch card at all, opting instead for a system where differ-

ent transactions earn varying numbers of points. Our punch card

scheme can easily be extended to handle these situations by having

the server raise 𝑝 to sk𝑡 , where 𝑡 is the number of points being

awarded for a given transaction.
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Unfortunately, this kind of multi-punch raises a new security

question. Most punch card schemes offer a fixed value 𝑛 at which

point a card can be redeemed for some benefit, or perhaps a few

values at which different kinds of rewards are unlocked. But the

possibility of gaining more than one punch with a given transaction

introduces the potential for a client to “overshoot” the required

number of points. This does not pose an issue for functionality,

because the client can just redeem a card with 𝑛′ > 𝑛 punches and

perhaps even get a new card with the remaining balance. However,

this might introduce a privacy issue because the redemption reveals

the total number of punches on a card, which is no longer always the

exact same value for all clients. One way to eliminate this problem

is to have the server send all possible values 𝑝sk, 𝑝sk
2

, ..., 𝑝sk
𝑡

when

punching a card. This works well for settings where 𝑡 is small, e.g.,

a double-punch promotion. We leave the problem of an efficient

solution for large 𝑡 for future work.

Managing used card database size. Our punch card scheme re-

quires keeping a database DB of used punch card secrets 𝑢, stored

in a hash table in our implementation. While this does not pose

a performance problem because of the amortized constant time

lookup in the hash table, the storage cost increases over time. Al-

though at 128 bits per secret, it would take a long time for storage

costs to become prohibitive, a high-volume punch card program

may wish for a plan to eventually remove old punch cards from the

database without allowing double spending.

One way to help reduce the long-term storage requirement is

by adding extra information into the secret 𝑢. Since 𝑢 is ultimately

passed through a hash function modeled as a random oracle, adding

structured information before the random bits makes no difference

in the security of the scheme (unless the structured information

itself leaks something). Clients can be required to add an expiration

date to the beginning of 𝑢. Then the card redemption would check

whether the card being used is expired or not. To encourage clients

to pick reasonable expiration dates, cards with expiration dates too

far in the future could be rejected as well. Expiration dates used

in 𝑢 could be standardized, e.g., to the first day of a given year, to

prevent the date itself from leaking too much information about an

individual customer’s shopping habits.

Private ticketing. Our punch card scheme can also be viewed as a

scheme for private ticketing, or, more generally, as a one-time use

anonymous credential. To issue a ticket, the client generates a new

punch card, and the server punches it. A ticket can reflect additional

information (e.g., if a train ticket is first class or coach, which transit

zones a ticket is valid for, etc.) by the number of punches added to

the ticket. To record multiple pieces of information on the same

ticket, the random oracle 𝐻 can be used to generate multiple group

elements from 𝑢, each of which can hold a different number of

punches. Since the punches cannot be linked to their redemption, a

client can later present the ticket without linking it to the issuance

process.

7 CONCLUSION
We have presented a new scheme for punch card loyalty programs

that significantly outperforms all prior work both quantitatively

and qualitatively. Our scheme does not require any server interac-

tion for a client to receive a punch card, does not require pairings,

and outperforms prior work in card issuance, punching, and re-

demption by 283×, 14.4×, and 394× respectively, strictly dominating

the performance of all prior solutions to this problem. We have also

shown several extensions to our main scheme, including a modified

protocol that allows merging punch cards (using pairings) that still

outperforms prior work. Our implementation is open source and

available at https://github.com/SabaEskandarian/PunchCard.
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