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Abstract. In modern distributed systems, an adversary’s limitations when corrupting subsets of servers
may not necessarily be based on threshold constraints, but rather based on other technical or organizational
characteristics in the systems. For example, it can be based on the operating systems they run, the cost
of corrupting insiders in a sub-organization, et cetera. This means that the corruption patterns (and
thus protection guarantees) are not based on the adversary being limited by a threshold, but on the
adversary being limited by other constraints, in particular by what is known as a General Adversary
Structure (GAS). GAS settings may come up in situations like large enterprises, computing and networking
infrastructure of Internet Service Providers, data centers and cloud infrastructure, IT infrastructure of
government agencies, computerized military systems, and critical infrastructure. We consider efficient secure
multiparty computation (MPC) under such dynamically-changing GAS settings. During these changes,
one desires to protect against and during corruption profile change, which renders some (secret sharing-
based) encoding schemes underlying the MPC protocol more efficient than others when operating with the
(currently) considered GAS.
One of our contributions is a set of novel protocols to efficiently and securely convert back and forth between
different MPC schemes for GAS; this process is often called share conversion. Specifically, we consider two
MPC schemes, one based on additive secret sharing and the other based on Monotone Span Programs
(MSP). The ability to efficiently convert between the secret sharing representations of these MPC schemes
enables us to construct the first communication-efficient structure-adaptive proactive MPC protocol for
dynamic GAS settings. By structure-adaptive, we mean that the choice of the MPC protocol to execute
in future rounds after the GAS is changed (as specified by an administrative entity) is chosen to ensure
communication-efficiency (the typical bottleneck in MPC). Furthermore, since such secure collaborative
computing may be long-lived, we consider the mobile adversary setting, often called the proactive security
setting. As our second contribution, we construct communication-efficient MPC protocols that can adapt
to the proactive security setting. Proactive security assumes that at each (well defined) period of time
the adversary corrupts different parties and over time may visit the entire system and corrupt all parties,
provided that in each period it controls groups obeying the GAS constraints. In our protocol, the shares
can be refreshed, meaning that parties receive new shares reconstructing the same secret, and some parties
who lost their shares because of the reboot/resetting can recover their shares. As our third contribution, we
consider another aspect of global long-term computations, namely, that of the dynamic groups. It is worth
pointing out that such setting with dynamic groups and GAS was not dealt with in existing literature on
(proactive) MPC. In dynamic group settings, parties can be added and eliminated from the computation,
under different GAS restrictions. We extend our protocols to this additional dynamic group settings defined
by different GAS.

Keywords: secure multiparty computation, secret sharing, share conversion, dynamic general adversary
structures, monotone span programs, proactive security

1 Introduction

Secure Multiparty Computation (MPC) is a general primitive consisting of several protocols executed among a
set of parties, and has motivated the study of different adversary models and various new settings in cryptography
[24, 14, 34, 33, 17, 7, 16, 9, 26, 3]. For groups with more than two parties, i.e., the multiparty setting, secret sharing
(SS) is often an underlying primitive used in constructing MPC; SS also has other secure distributed systems
and protocols applications [12, 25, 23, 13, 2, 18, 20, 21].

In typical arithmetic MPC, the underlying SS [36, 10] used is of the threshold scheme type, i.e., a dealer
shares a secret s among n parties such that an adversary that corrupts no more than a threshold t of the parties
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(called corruption threshold) does not learn s, while any t+ 1 parties can efficiently recover it. MPC protocols
built on top of SS allow a set of distrusting parties P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly compute
(in a secure distributed manner) a function f(x1, x2, . . . , xn) while guaranteeing correctness of its evaluation
and privacy of inputs for honest parties. The study of secure computation was initiated by [39] for two parties
and [24] for three or more parties. Constructing efficient MPC protocols withstanding stronger adversaries has
been an important program in cryptography, and witnessed significant progress since its inception, e.g., [8, 14,
34, 28, 17, 16, 9, 33, 3, 4].

Enforcing a bound on adversary’s corruption limit renders the problem efficiently solvable, but such a bound
may be (and is often) criticized as arbitrary for protocols with long execution times, especially when considering
the so-called “reactive” functionalities that may continuously run a control loop. Such reactive functionalities
become increasingly important as MPC is adopted to resiliently implement privacy-sensitive control functions
in critical infrastructures such as power-grids or command-and-control in distributed network monitoring and
defense infrastructure. In those two cases one should expect resourceful adversaries to continuously attack
parties/servers involved in such an MPC, and given enough time, vulnerabilities in underlying software will
eventually be found.

An approach to deal with the ability of adversaries to eventually corrupt all parties is the proactive security
model [33]. This model introduces the notion of a mobile adversary motivated by the persistent corruption of
parties in an MPC protocol. A mobile adversary is one that can corrupt all parties in a distributed protocol
during the execution but with the following limitations: (i) only a constant fraction (in the threshold setting)
of parties can be corrupted during any round of the protocol; (ii) parties periodically get rebooted to a clean
initial state, guaranteeing small fraction of corrupted parties, assuming that the corruption rate is not more
than the reboot rate5. The [33] model also assumes that an adversary does not have the ability to predict or
reconstruct the randomness used by parties in any uncorrupted period of time, as demarcated by rebooting.

In most of the (standard and proactive) MPC literature, the adversary’s corruption capability is character-
ized by a threshold t. More generally, however, the adversary’s corruption capability could be specified by a
so-called general adversary structure (GAS), i.e., a set of potentially corruptible subsets of parties. Even more
generally, the corruption ability of the adversary can be specified by a set of corruption scenarios, one of which
the adversary can choose (secretly). For instance, each scenario can specify a set of parties that can be passively
corrupted and a subset of them that can even be actively corrupted. Furthermore, such scenarios may change
over time, thus effectively rendering the GAS describing them to itself be dynamic evolve over time. There
are currently no proactive MPC protocols that can efficiently handle such dynamic general specifications of
adversaries, especially when the group of parties performing the MPC is also dynamic.

Our main objective is to address a setting that is as close as possible to the complex dynamic reality of today’s
distributed systems. We accomplish this by answering the following question: Can we design a communication-
efficient proactively secure MPC (PMPC) protocol for dynamic groups with security against dynamic general
adversary structures?

Contributions: We answer the above question affirmatively. One of our main new contributions is a set of
protocols to efficiently convert back and forth between different MPC schemes for GAS; this process is often
called share conversion. Specifically, we consider an MPC scheme based on additive secret sharing and one
based on Monotone Span Program (MSP). The ability to efficiently and securely convert between these MPCs
enables us to construct the first communication-efficient structure-adaptive proactive MPC (PMPC) protocol
for dynamic GAS settings. We stress that all existing proactive secret sharing and PMPC protocols (details
in Appendix A.1 and Table 4 therein) can only handle (threshold) adversary structures that describe sets of
parties with cardinality less than a fraction of the total number of parties.

Given the large number of “moving parts” and complexity of PMPC protocols and the additional complexity
for specifying them for GAS, we start from a (standard, i..e, non-proactive) MPC protocol for static groups
with GAS and extend it to the proactive setting and dynamic GAS. Note that MPC protocols typically extend
secret sharing and perform computations on secret shared inputs, we thus focus the discussion in this paper on
MPC with the understanding that results also apply to secret sharing.

As part of the proactive protocols, we support recovering shares of parties that lost them. This implies that
we can also deal with dynamic sets of parties, where parties can be eliminated (not recovered in a refresh phase)

5 In our model rebooting to a clean initial state includes global information, e.g., circuits to be computed via MPC,
identities of parties in the computation, and access to secure point-to-point channels and a broadcast channel.
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and a party can be added (i.e., start with a recovery of its shares in a refresh phase). We also deal with settings
where the entire set of parties changes and the existing shared data has to be moved to a new set of parties
with a possibly new specification of the GAS they should protect against. This original set of parties then redis-
tributes the shared secrets to the latter new set (which may, or may not, have some overlap with the original set).

Paper Outline: We first motivate the need for secure computation for dynamic general adversary structures
and dynamic groups in section 2. Section 3 overviews the typical blueprint of PMPC, briefly discusses related
work (with more discussion in Appendix A.1), and discusses roadblocks and challenges facing constructing
communication-efficient structure-adaptive PMPC protocols for dynamic groups and dynamic GAS settings.
Section 4 contains necessary preliminaries and specifications of underlying network and communication models,
the adversary model, and some other basic building blocks required in the rest of the paper. Section 5 contains
the details of the new protocols developed in this paper (with security and correctness proofs in Appendix.

2 The Need for Secure Computation for Dynamic Groups with Changing
Specifications of the (General) Adversary Structures

Large networked systems, such as public clouds, global clouds, the infrastructure of companies, and so on, are
managed for their security and reliability by specialists who employ tools, measurements, and reporting systems
(including AI tools nowadays). These specialists maintain such large systems while facing changes and failures.
This methodology of managing large systems is known as DevOps which is a set of practices that combines
software development (Dev) and information-technology operations (Ops) that aims to shorten the systems
development life cycle and provide continuous delivery with high software quality and system reliability [30]. In
particular (starting with Google) the profession of such people, performing these tasks, is called Site Reliability
Engineering (SRE). Some of the responsibilities of SRE include: (1) Reduce organizational silos (separate sections
of engineers to create joint coherent responsibilities in large systems with various elements cooperating); (2)
Accept failure as normal (and react to failures such as security breaches, overloading of subsystems, etc. managing
system configuration with responsiveness and agility); (3) Implement gradual changes (long term maintenance
based on past issues and future needs as they come or envisioned); (4) Leverage tooling and automation (as
the large system need to be controlled remotely and effectively it cannot be done manually and control tools
are needed); and (5) Measure everything (constantly monitoring the needs and act according to the data, while
keeping statistics of systems performance).

A modern Information Security concept in managing large systems against threats is Moving Target Defense
(MTD), which is the method of controlling change across multiple system dimensions in order to increase
uncertainty and apparent complexity for attackers, reduce their window of opportunity and increase the costs
of their probing and attack efforts. MTD assumes that perfect security is unattainable and adds system changes
as increased challenges to the potential attacker).

One can view an SRE team getting information about and reacting to a system’s suspicious behavior (at
some parts of the network) and employing analysis which dictates configuration change. One can also view the
team as occasionally and proactively, for the sake of implementing MTD strategy, calling the network of servers
to rearrange itself in a different fashion than the current setting, in the (general) scenarios we consider, this
would correspond to changing the specification of the general adversary structure being protected against. When
the team manages the configuration, they employ a secure and authenticated control and command system over
servers, they can notify servers to reconfigure and organize their distributed data according to some protocol
and dictated parameters. In our treatment we assume that such a system is available in our underlying secure
computation system and we augment existing configuration tools with the ability to manage and dynamically
change the underlying ”secret sharing” settings among the network’s server.

3 Overview of Proactive MPC and Design Roadblocks

This section reviews the typical blueprint of Proactive MPC (PMPC) protocols. Due to space constrains, we
discuss related work in more detail in Appendix A.1. We conclude this section by a discussion of roadblocks
facing designing communication-efficient structure-adaptive PMPC protocols for GAS.
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3.1 Blueprint of Proactive Secret Sharing (PSS) and Proactive MPC (PMPC)

PMPC protocols [33, 3] are usually constructed on top of (linear) secret sharing schemes, and involve alternating
compute and refresh (and reboot/reset) phases. The refresh phases involve distributed rerandomization of the
secret shares, and deleting old ones to ensure that a mobile adversary does not obtain enough shares (from the
same phase) that can allow them to violate secrecy of the shared inputs and intermediate compute results. A
PMPC protocol usually consist of the following six sub-protocols:

1. Share: allows a dealer (typically one of the parties) to share a secret s among the n parties.
2. Reconstruct: allows parties to reconstruct a shared secret s using the shares they collectively hold.
3. Refresh: is executed between two consecutive phases, w and w+1, and generates new shares for phase w+1

that encode the same secret as shares in phase w, but are independent of shares of the previous phases.
4. Recover: allows parties that lost their shares (due to rebooting/resetting or other reasons) to obtain new

shares encoding the same secret s, with the help of other online parties.
5. Add: allows parties holding shares of two secrets s and t to obtain shares encoding the sum s+ t.
6. Multiply: allows parties holding shares of two secrets s and t to obtain shares encoding the product s · t.

The overall operation of a standard PMPC protocol is as follows: First each party uses the Share sub-protocol
to securely distribute its private inputs among the n parties (including itself). The function to be computed
on the inputs of parties is transformed into an arithmetic circuit that is public. The circuit to be computed is
composed of multiple layers (the depth of the circuit) each consisting of a set of Add and Multiply gates which
are computed via the corresponding sub-protocols one layer at a time. At the end of each circuit layer6 shares
of all nodes can be refreshed via the Refresh protocol and old shares are deleted; refreshing and deleting old
shares ensures that different shares collected by the adversary at different phases can not be used together to
reconstruct the secret shared inputs and intermediate and final results of the computation. In addition, during
refresh phases, some nodes are randomly reset/rebooted, these then use the Recover protocol to obtain new
shares encoding the same shared secrets corresponding to the current state of the PMPC computation, i.e.,
the output of the current circuit layer and any shard values that will be needed in future layers. When the
(secret shared) output of the final layer of the computation is produced, parties use the Reconstruct protocol
to compute the final output in the clear (or towards whichever nodes are supposed to obtain it).
To deal with dynamic groups, where parties can leave, or new parties can join the group, the following additional
sub-protocol Redistribute is required:

7. Redistribute: is executed between two consecutive protocol phases, w and w + 1, and allows parties in a
new group (in phase w + 1) to obtain new shares that encode the same secret as the shares in phase w.

In addition, we observe that the specifics of the secret sharing-based encoding underlying the PMPC protocol
largely dictates the communication-efficiency. This is an issue that is often overlooked and that does not appear
when one only considers the threshold adversary structure as opposed to GAS. For example, if one considers an
additive secret sharing scheme similar to the one used in the MPC protocol in [32], and if the adversary structure
one should protect against is the threshold one, then there is an exponential blowup in the share size compared
to a monotone span program (MSP) based scheme. Thus any protocols that requires transmitting such shares
encoded additively, e.g., multiplication, recovery, or redistribution of shares, is going to be inefficient compared
to an MSP-based one. A communication-efficient protocol should thus be structure-adaptive when considering
evolving GAS, this means that if the set of parties performing the MPC receive (from an administrator) a
request to adapt to a new GAS, for which it is known that another (secret sharing) encoding scheme is more
efficient, they need to convert. We stress that this is different than the Redistribute protocol, which re-shares a
shared secret, but with the same secret sharing scheme. We require a non-trivial additional protocol to perform
such conversion:

8. Convert: is executed between two consecutive protocol phases, w and w + 1, and allows parties in a new
group defined by a new GAS (in phase w+ 1) to obtain new shares under a different secret sharing scheme
but that encode the same secret as the shares in phase w (under the old secret sharing scheme and the old
GAS).

6 Or after several layers, or at the end of one execution of a circuit of reactive functionalities executing in a loop. In this
paper we do not specify when parties should refresh shares, we just develop the protocol to accomplish this.
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3.2 Roadblocks Facing PMPC for Dynamic General Adversary Structures and Dynamic
Groups

Starting with an appropriate SS scheme and an MPC protocol that can handle GAS, one has to address the
following to design a communication-efficient PMPC protocol for dynamic groups and dynamic GAS:

1. Design a convert protocol to be structure-adaptive: Given that we are considering settings with changing
GASs, and given that some (secret sharing) encoding schemes underlying MPC result in different commu-
nication complexity, we design new efficient protocols (secure against GASs) to convert between different
secret sharing schemes. We consider converting from an additive sharing to an MSP-based sharing, and the
opposite direction. Such conversion protocols may be of independent interest.

2. Design refresh and recover protocols to proactivize the underlying SS scheme: This enables the parties to
able to securely rerandomize the shares in a secure distributed manner. To enable rebooted/reset parties to
recover their shares, and not to loose shared inputs or intermediate results of the computation over time,
rebooted parties have to be able to recover shares with the help of the rest of the parties.

3. Design a redistribute protocol for dynamic groups settings: Dealing with dynamic groups, which means
parties can leave and/or newly join in the group of computation, the GAS as well as the number of parties
in the group might be changed. Therefore, one has to redistribute new shares to parties in the new group
which encoding the same secret as the shares in the previous group, but also needs to prevent leaving parties
from using their shares to obtain any information about the secret.

4. Efficient communication in all protocols: All the involved protocols should be efficient, e.g., ideally linear
dependence on the specification of adversary structures and the number of parties, or at least polynomial.
We note that in this work we do not attempt to minimize the descriptions of the adversary structures, i.e.,
the size of specifications of some structures may be exponential in the number of parties n.

4 Preliminaries
This section provides preliminaries required for the rest of the paper. Table 1 summarizes the notion used in
this paper. We then discuss the underlying communication model, security guarantees, and then introduce the
terminology and specifications of GAS. The section concludes by reviewing the information checking (IC) used
in MPC protocols [27, 29], on which we build our protocol as a building block.

Notation Explanation
P = {P1, ..., Pn} the set of all participating parties in a protocol

(Γ,Σ,∆) access/secrecy/adversary structures in a GAS
S a sharing specification

w,w + 1 a phase (number)
[s]w a sharing of s in phase w
Ij a set of indices of shares that Pj has
R a set of all parties who lost its share (need recovery)
F a finite field

M a matrix from a monotone span program (MSP) !M = (F,M, ρ, r)∗

a a target vector of a MSP
ρ an indexing function of a MSP
Mi a matrix of rows of M assigned to Pi according to ρ
MA a matrix of rows of M assigned to all Pi ∈ A according to ρ
〈 , 〉 the inner product

a
$←− F randomly chosen element a from the finite field F

Table 1. Notations used in this paper. GAS denotes general adversary structure.

4.1 Adversary Model, Communication Model, and Security Guarantees

In this work, we consider protocols with unconditional security for both passive and active adversaries.
In terms of the communication model, we consider a synchronous network of n parties connected by an
authenticated broadcast channel. The different security guarantees and communication models in the MPC
literature are discussed in Appendix A in more detail. We consider the adversarial capabilities in terms of the
general adversary structure (GAS), which is more general and flexible notion to reason about adversaries
(compared to only the threshold limitation on corruptions) and applicable to various case, e.g. when special
combination of parties is needed, when some parties are authorized, etc. the terminology and formalization of
GAS are summarized below.
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Let 2P denote the set of all the subsets of P. A subset of 2P is called qualified if parties in the subset can
reconstruct/access the secret, while a subset of 2P that parties in the set obtain no information about the secret
is called ignorant. Every subset of P is either qualified or ignorant. The secrecy condition is stronger: even if
any ignorant set of parties holds any kind of partial information about the shared value, they must not obtain
any additional information about the shared value.

Definition 4.1. (Access Structure and Secrecy Structure)
The access structure Γ is the set of all qualified subsets of P and the secrecy structure Σ is the set of all

ignorant subsets of P. Naturally, Γ includes all supersets of each element in it (so often called monotone access
structure), while Σ includes all subsets of each element in it. We call such a minimized set as basis structure,

and denote with !·. i.e., the basis access structure !Γ is the set of all minimal subsets in Γ , and the basis secrecy
structure !Σ is the set of all maximal subsets in Σ.

As a generalization of specifying the adversary’s capabilities by a corruption type (passive or active) and a
threshold t, an adversary can be described by a corruption type and an adversary structure ∆. The adversary
structure ∆ is a set of subsets of parties that can be potentially corrupted. The adversary can choose a set in ∆
and corrupt all the parties in the set. Note that the adversary structure in t-threshold SS is the set of all subsets
of P of at most t parties and GAS extends this to non-threshold models. In GAS, the types of adversaries can
be classified as below.

Definition 4.2. (Passive/Active Adversary in GAS)
In GAS, an adversary is specified by the secrecy structure Σ and the adversary structure ∆ ⊆ Σ. A passive

adversary can only perform passive corruptions on Σ, eavesdropping on all the inputs and outputs of corrupted
party in Σ. i.e., ∆ = Σ. On the other hand, an active adversary, which is also called (Σ,∆)-adversary,
can passively corrupt some parties in a set A and actively corrupt some parties in a set B, where A ∈ ∆ and
(A ∪B) ∈ Σ.

In real-world scenarios, it is natural to deal with dynamic groups, which means participating parties can
leave and/or newly join in the group of computation. Then, the GAS (Γ,Σ,∆) as well as the number of parties
|P| in the group might be changed. Therefore, to deal with dynamic groups, we need one more protocol, which
redistributes new shares to the new group which encodes the same secret as the ones in the previous group. It
also needs to prevent leaving parties from using their shares to obtain any information about the secret.

4.2 Information Checking (IC) and Dispute Control

In MPC protocols that we are considering, a technique, called information checking (IC), is used to prevent
active adversaries from announcing wrong values through corrupted parties. It is a three party protocol among a
sender Ps, a receiver Pr, and a verifier Pv. When Ps sends a message m to Pr, Ps also encloses an authentication
tag to Pr, while giving a verification tag to Pv. Whenever any disagreement about what Ps sent to Pr happens,
Pk acts as an objective third party and verifies the authenticity of m to Pr. The MPC protocols in this paper
use different variants of information checking but the common idea is to check if all the points that Pr and
Pv have lie on the polynomial of degree 1. Note that this can be expanded to the polynomial of degree l, the
number of secrets in a batch of sharing, as in [29]. The protocols for information checking are Authenticate

and Verify in each scheme, which is presented in Appendix B.1 and D.1.
MPC protocols in this paper also use the dispute control to deal with detected cheaters. That means, each

party Pi locally maintains a list Di of parties that Pi distrusts, and the list D of pairs of parties who are in
dispute with each other. These lists are empty when the MPC protocol begins, and whenever any dispute arises
between two parties Pi and Pj (for example, Pi insists that Pj is lying), the pair {Pi, Pj} is added to the dispute
list D. Since all disputes are broadcasted, each party Pi has the same list D, while maintaining its own list Di.
After Pj is added to Di, Pi behaves in all future invocations of the protocol for authentication and verification
with Pj as if it fails whether this is the case or not. Some MPC schemes also maintain a list C of parties that
everyone agrees are corrupted.

5 Proactive MPC Protocols for Dynamic GAS and Dynamic Groups

Our communication-efficient PMPC protocols build on two MPC protocols with different underlying (secret
sharing based) encoding schemes. One is an MPC protocol [27] based on additive secret sharing and the other [29]
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is based on a monotone span program (MSP) with multiplication. For convenience, we call the former as additive
MPC and the latter as MSP-based MPC. Both guarantees unconditional security against active Q2 adversaries,
which means no two sets in ∆ cover the entire party set; i.e., for ∀A,B ∈ ∆, P ∕⊆ A ∪B.

In Section 5.1 and Section 5.2, we show the additive PMPC and MSP-based PMPC schemes, respectively.
Due to the space limit, we formalize the based protocols of [27] and [29] in Appendix B and D, and focus on
our new protocols. For “proactivizing” a MPC scheme, we build two (or three, for dynamic groups) new main
protocols, called Refresh and Recover (and Redistribute, for dynamic groups). The resulting PMPC scheme
is composed of 6 protocols, Share, Reconstruct, Add, Multiply, Refresh, and Recover (or 7 protocols for
dynamic groups including Redistribute). We denote protocols with superscripts, A or M, for additive PMPC
and MSP-based PMPC, respectively. All the proofs for our protocols are presented in Appendix C and E. Note
that the complexity of additive PMPC protocols depends on | !Σ| and n, while the one of MSP-based PMPC

protocols depends on d and n, where n is the number of participating parties, | !Σ| is the size of the set of all
maximal subsets in the secrecy structure, and d is the number of rows of the MSP matrix.

In Section 5.3, we develop conversion protocols between these two PMPC schemes to provide users options to
adapt the utilized protocol according to the dynamic GAS. As we mentioned in Section 2, this is necessary and
important because one can become more communication-efficient than the other depending on the circumstances.
Considering the upper bound on d is about | !Σ|2.7 [29], the MSP-based MPC is more expensive than the additive
MPC, but d can be also low as n = |P| in some cases, which makes the MSP-based MPC more communication-
efficient. The proofs for these protocols are presented in Appendix F.

5.1 Additive PMPC

We build our additive PMPC protocol on top of Hirt and Tschudi’s unconditional MPC protocol [27] based on
additive secret sharing. Due to space limitations, we briefly review their protocol in this section with formal
specifications presented in Appendix B. Also, all proofs for our new protocols are provided in Appendix C.

Assuming n participating parties P = {P1, ..., Pn} per notation in Table 1, we denote the sharing of a value
s by [s] and the sharing specification by S = (S1, ..., Sk). Any sharing specification which is ∆-private, i.e.
for every Z ∈ ∆, ∃S ∈ S such that S ∪ Z = ∅, can be used to securely share a secret. We adopt one from
[32], which is S = (S1, ..., Sk), where Si = P \ Ti for !Σ = {T1, ..., Tk}, the set of all maximal subsets in Σ. In
[27], they use an IC scheme for dealing with active adversaries, which consists of AuthenticateA and VerifyA.
AuthenticateA(Ps, Pr, Pv,m) is for Ps to distribute the authentication tag of m to Pr and the verification tag of
m to Pv, and VerifyA(Ps, Pr, Pv,m

′, tags) is for Pj to request Pv to verify the value m′ with an authentication
tag and a verification tag. Each protocol is presented in Appendix B.1 in detail.

Definition 5.1. A value s is shared with respect to a sharing specification S = (S1, ..., Sk) by additive secret
sharing, if the following holds:

a) There exists shares s1, ..., sk such that s =
"k

i=1 si.
b) Each si is known to every party in Si, for all i.
c) ∀Ps, Pr ∈ Si, ∀Pv ∈ P, Pv can verify the value si using the IC, for each i.

A secret value s is shared among P through the protocol ShareA and any qualified subgroup B of P can
reconstruct the secret value through ReconstructA. In ShareA protocol, a dealing party randomly chooses k− 1
values in F, sets the k-th value as s −

"k−1
i=1 si, and sends each i-th value to every player in Si. Then multiple

AuthenticateA are invoked to generate the IC tags. In ReconstructA, parties in B verify the forwarded values
of each share from the others and reconstruct the secret value by locally adding all the verified share values.
The formal protocols are presented in Appendix B.2. Note that the sharing of s is linear and does not leak any
information about s without the whole set of sharing. Assuming the shares for the values s and t are already
shared among P, addition of s and t can be done naturally even without any interaction among n parties by
the linearity. However, multiplication is quite tricky and requires a lot of communications to securely form the
share of (s ∗ t) among n parties, as s · t =

"k
i=1

"k
j=1(si · ti). All the protocols for AddA and MultiplyA are

presented in the Appendix B.3.
To make this additive MPC scheme to be a PMPC that can also handle dynamic groups, we build three pro-

tocols, called RefreshA, RecoverA, and RedistributeA. Note that the protocol RedistributeA is only required
for the dynamic group setting. The protocol RefreshA periodically refreshes or rerandomizes the shares in a
distributed manner. This can be done naturally by every party’s sharing zero and locally adding all the received
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shares to the current holding share. The execution of this protocol does not reveal any additional information
about the secret as only the shares of zeros are communicated. The security proof for this protocol is provided
in Appendix C.1.

Protocol RefreshA(w, [s]) −→ [s]w+1

Input: a phase w and a sharing of s
Output: new sharing of s in phase w + 1, [s]w+1

1. Every party Pi in P invokes ShareA(w, 0,P). (in parallel)

2. Each party adds all shares received in Step 1 to shares of s, and set result as the new share of s in phase w + 1.

3. parties in P collectively output [s]w+1.

Theorem 5.1. (Correctness and Secrecy of RefreshA) When the protocol RefreshA terminates, all parties
receive new shares encoding the same secret as old shares they had before with error probability n4|S|/|F|, and they
cannot get any information about the secret by the execution of the protocol. It communicates |S|(7n4+n2) log |F|
bits and broadcasts |S|((3n4 + n) log |F|+ n3) bits.

For the protocol RecoverA, we construct the following two sub-protocols, ShareRandomA and RobustReshareA.
ShareRandomA generates a sharing of a random element r in F and parties in the same Si receive the i-th share
of r for each i, but the value of r is not revealed to anyone. It broadcasts at most O(|S|n log |F|) bits and no
communications is required.

Protocol ShareRandomA(w,P) −→ [r]w

Input: a phase w and a set of participating parties P
Output: a sharing [r] of a random number r, shared among P

1. For each Sq ∈ S = {S1, ..., Sk} :

2. Each party Pi ∈ Sq generates a random number rqi and broadcast it among all parties in Sq.

3. Each Pi ∈ Sq locally adds up all values received in Step 2, and set it as rq.

4. The parties in P collectively output [r], where r =
!k

q=1 rq.

The protocol RobustReshareA allows parties in PR ∈ Γ to receive a sharing of r (with the value of r) from
the parties in PS where everyone in PS knows the value of r. Distributing one sharing of r is non-trivial in the
active adversary model because we cannot trust one party who might be corrupted to share a sharing of r. Let
Honest := {P \A | A ∈ ∆}, where ∆ is the set of all maximal subsets in ∆, the adversary structure. Since the
adversary can corrupt one set of parties in ∆ in each phase, there exists at least one set of parties in Honest
that includes only honest parties in that phase. The main idea of the protocol RobustReshareA below is to find
such set by repeating to share and reconstruct for each party’s holding value for r. At the end of the protocol,
parties in PR can set a sharing of r and also know the value of the random number r.

Protocol RobustReshareA(w, r,PS ,PR) −→ [r]w

Input: a phase w, random number r, a set PS of parties sending r, and a set PR ∈ Γ of receiving parties
Output: a sharing of r in phase w, [r]w

1. Every party in PS executes ShareA(w, r,PR) according to the sharing specification SR on PR. Let [r]
(i) be the sharing

of r that Pki ∈ PS shares.

2. Parties in PR invoke ReconstructA([r](i),PR), for each i = 1, 2, ..., |PS |. Let r(i) be the output of each invocation.

3. Each party chooses a set H ∈ Honest such that ∃v, v = r(i) for all Pki ∈ H. If there are multiple such sets, choose
the minimal set including Pi with lower id, i.
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4. Output the sharing of r from the party Pi in H with the minimum id, i.
i.e. Output [r] ← [r](min), where min := minPi∈H{i}.

The security of RobustReshareA relies on the security of ShareA and ReconstructA, as the rest is executed
locally. For complexities, as both protocols ShareA and ReconstructA are invoked for each party in PS and
|Honest| = |∆| ≤ |Σ| = |S|, the total communication and broadcast complexities of RobustReshareA isO(|S|n3+
|PS ||S|n3 + |Honest|) = O(|PS ||S|n3). The total analysis of all additive PMPC protocols is shown in Table 2.

The protocol RecoverA allows rebooted/reset parties to obtain new shares for the same secret with the
assistance of other parties. Let R ⊂ P be a set of parties who need to recover their shares. Note that P \ R
must be still in Γ for the protocol RecoverA to output the new sharing because otherwise, it contradicts to
the definition of the access structure. It needs the condition Q1(Sq,Z), which is already a necessary condition
for the protocol ReconstructA. The main idea is as follows: a sharing of unknown random value r is generated
among entire parties in P by ShareRandomA and the parties in P \R who hold the shares of s reshare the value
r′ = r + s and a sharing of r′ to entire parties. Then, all parties including R can compute the new shares of s
by [r′]− [r]. The proof for Theorem 2 is presented in Appendix C.2.

Protocol RecoverA(w, [s], R) −→ [s]w+1 or ⊥

Input: a phase w, a sharing of s, and a set of rebooted parties R
Output: new sharing of s in phase w + 1, [s]w+1, or aborted

1. Parties in P invoke ShareRandomA(w,P) to generate a sharing [r] of r, where r is a random number in F.
2. Each party in P \R invokes AddA(w, [r], [s]) to share the sharing of r + s.

3. ReconstructA(w, [r + s],P \R) is invoked and every party in P \R gets r′ := r + s.

4. RobustReshareA(w, r′,P \R,P) is invoked, and each party in P gets [r′].

5. Each party computes [r′]− [r] by executing AddA(w, [r′],−[r]), where −[r] is the additive inverses of the shares in F.

Theorem 5.2. (Correctness and Secrecy of RecoverA) If S and Z satisfy Q1(S,Z), the protocol RecoverA

allows a set ∀R ∈ ∆ of rebooted parties to recover their shares encoding the same secret with error probability
O((n− |R|)|S|n3/|F|+(n− |R|)|S|n2/(|F|−2)), and does not reveal any additional information about the secret.
It communicates O((n− |R|)|S|n3 log |F|) bits and broadcasts O((n− |R|)|S|n3 log |F|) bits.

Phase w

(P,Γ,Σ,∆, S)

P = {P1, ..., Pn}
S = {S1, ..., Sk}

Phase (w + 1)

(P ′,Γ ′,Σ′,∆′, S′)

P ′ = {P1, ..., Pm}
S′ = {S′

1, ..., S
′
k′}

Fig. 1. Dynamic groups and GAS in two consecutive phases, w and w + 1

To handle dynamic groups and dynamic GASs, assume that the participating parties and structures are given
as in Figure 1. As mentioned in Section 2, these phase information is specified by a trusted third party, e.g. by
a Site Reliability Engineering (SRE) organization. The protocol RedistributeA allows the new participating
parties to obtain a sharing of the same secret as the previous phase according to the new structures. The idea
is to double-share the sharing of a secret from the previous participating group to the new group. The security
proof is presented in Appendix C.3.

Protocol RedistributeA(w, s) −→ [s]w+1

Input: phase w and a secret s
Output: shares of s in phase w + 1
Precondition: parties in P share [s]w for a secret s
Postcondition: parties in P ′ share [s]w+1 encoding the same secret s
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1. For each Si ∈ S:
2. Each party Py in Si forwards its holding value [si]y for si to every party in Si who is supposed to hold the

same share (over the secure channel).

3. VerifyA(PS , PR, PV , w, [si]y, AS,R,V (si)) is invoked for all PR, PV ∈ Si, ∀PS ∈ Si. If PV outputs [si]y in each
invocation, PV accepts it as value for si. Denote vi as the accepted value for si, for each i.

4. Each party Py ∈ Si runs Share
A(w + 1, vi,P ′) according to S′. i.e., The j-th share of vi, vij , is sent from Py

in Si to all parties in S′
j ∈ S′ and AuthenticateA is invoked for each share of vi.

5. For each S′
j ∈ S′:

6. Each party in S′
j holds {vij}ki=1. For each vij , all PR, PV ∈ S′

j invoke VerifyA(PS , PR, PV , w, vij , AS,R,V (vij))
for ∀PS ∈ S′

j and accept the output value as vij .

7. Each party in S′
j sums up all k values accpeted in step 6, and set it as new j-th share of s. i.e., s′j :=

!k
i=1 vij .

Theorem 5.3. (Correctness and Secrecy of RedistributeA) By executing the protocol RedistributeA, new
participating parties receive a sharing of the same secret as the old shares with error probability ((|S|+|S′|)n3/(|F|−
2)+n4|S|/|F|) and it does not reveal any additional information about the secret. It communicates O(|S|2n4 log |F|+
|S′|n3 log |F|) bits and broadcasts O(|S|2n4 log |F|) bits, where S and S′ denote the sets for sharing specification
in two consecutive phases.

Note that the function of RecoverA can be naturally substituted with RedistributeA with the same partic-
ipating groups and the same sharing specification, but using our RecoverA protocol is more efficient as it has
linear complexity in |S|, while RedistributeA has quadratic complexities in |S|. Table 2 shows the total analysis
of communication and broadcast complexities with error probability for each protocol in our additive PMPC
scheme.

Additive PMPC based on [27]
Protocol Comm. (bits) Broad. (bits) Error Pr.

IC
Authenticate [27] 7 log |F| 3 log |F| + 1 1/|F|
Verify [27] log |F| - 1/(|F|−2)

SS/MPC

Share [27] O(|S|n3 log |F|) O(|S|n3 log |F|) n3|S|/|F|
Reconstruct [27] O(|S|n3 log |F|) - n2|S|/(|F|−2)
Add [27] - - -
BasicMultiply [27] O(|S|n4 log |F|) O(|S|n4 log |F|) O(n4|S|/|F|)
RandomTriple [27] O(|S|n4 log |F|) O(|S|n4 log |F|) O(n4|S|/|F|)
Multiply [27] O(|S|n5 log |F|) O(|S|n5 log |F|) O(n5|S|/|F|)

Our
Additional
Protocols

Refresh O(|S|n4 log |F|) O(|S|n4 log |F|) n4|S|/|F|
ShareRandom |S|n log |F| |S|n log |F| -

RobustReshare O(|PS ||S|n3 log |F|) O(|PS ||S|n3 log |F|) O(|S|(|PS |n3/|F|+
|PS |n2/(|F|−2)))

Recover O((n−|R|)|S|n3 log |F|) O((n−|R|)|S|n3 log |F|) O((n−|R|)n3|S|/|F|
+(n−|R|)n2|S|/(|F|−2))

Redistribute
O(|S|2n4 log |F|+
|S′|n3 log |F|) O(|S|2n4 log |F|) ((|S|+|S′|)n3/(|F|−2)

+n4|S|/|F|)

Total
Additive PMPC for
Static groups

O(|S|n5 log |F|) O(|S|n5 log |F|)
Additive PMPC for
Dynamic groups

O(|S|2n4 log |F|) O(|S|2n4 log |F|)

Table 2. Total Analysis of Protocols in Additive PMPC based on [27]. Each column denotes communication complexity
(bits), broadcast complexity (bits), and error probability for the protocol failure (abbreviated Comm., Braod., and Error
Pr., respectively). For rows, IC denotes the information checking scheme, SS denotes the secret sharing scheme, and MPC
denotes the multi-party computation scheme. Assuming |PS | ≤ n and |S| = |S′|, the total complexities for static group
(without Redistribute) are less than the complexities for Multiply and remain linear in |S|, but for dynamic groups
(with Redistribute), communication and broadcast complexit ies are quadratic in |S|.

5.2 MSP-based PMPC

Lampkins and Ostrovsky [29] presented an unconditionally secure MPC protocol based on Monotone Span
Program (MSP) secret sharing against any Q2-adversary, which has linear communication complexity in the
size of multiplicative MSP. We build our MSP-based PMPC protocol on top of their MPC protocol, without
increasing the complexity in terms of the size of MSP, d.
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Definition 5.2. (F,M, ρ,a) is called a monotone span program (MSP), if F is a finite field, M is a
d × e matrix over F, ρ : {1, 2, ..., d} → {1, 2, ..., n} is a surjective indexing function for each row of M , and
a ∈ Fe\0 is a (fixed) target vector, where 0 = (0, ..., 0) ∈ Fe. (F,M, ρ,a, r) is called a multiplicative MSP,
if (F,M, ρ,a) is a MSP and r is a recombination vector, which means the vector r satisfies the property that
〈r,Mb ∗Mb′〉 = 〈a, b〉 · 〈a, b′〉, for all b, b′, where ∗ is the Hadamard product and · is the inner product.

The target vector a can be any vector in Fe\0; we use a = (1, 0, ..., 0)t ∈ Fe for convenience, as in [29]. Let
f : {0, 1}n → {0, 1} be a monotone function. A MSP (F,M, ρ,a) is said to compute f if for all nonempty set
A ⊂ {1, ..., n}, f(A) = 1 ⇔ a ∈ ImM t

A, i.e., ∃λA such that M t
AλA = a. Also, a MSP (F,M, ρ,a) computing f is

said to accept Γ if B ∈ Γ ⇔ f(B) = 1. Note that any given MSP computes a monotone Boolean function f ,
defined f(x1, ..., xn) = 1 ⇔ a ∈ ImM t

A where A = {1 ≤ i ≤ n|xi = 1}, and it is well known that any monotone
Boolean function can be computes by a MSP.

The secret sharing (SS) scheme based on the MSP accepting Γ [15, 29] also consists of Share and Reconstruct
protocols. The protocol BasicShareM generates a sharing of s by sending each assigned row of s = Mb by the
indexing function ρ, where M ∈ M(d×e) is the matrix of the MSP corresponding to ∆ and b := (s, r2, ..., re) ∈
Fe is a vector containing the secret value s and (e − 1) random values ri’s. For reconstruction, since the MSP
accepts Γ , B ∈ Γ ⇔ f(B) = 1 ⇔ a ∈ ImM t

B , which means there is some vector λB such that M t
BλB = a.

Therefore, parties can reconstruct the secret value with shares that parties in B hold by computing 〈λB , [s]B〉 =
〈λB ,MBb〉 = 〈M t

BλB ,b〉 = 〈a,b〉 = s, because a = (1, 0, ..., 0) and b = (s, r2, ..., re).
For dealing with active adversaries, they use a (different) IC scheme, which accepts the Shamir’s secret

sharing techniques [37], and the dispute control. We describe the IC scheme in Appendix D.1. For dispute
control, one more list C is also used, where C is a set of parties known by all parties to be corrupted. That
means, the list D maintains the parties in each dispute list Di, for all i, and some of them move to the list C when
all parties agree that they are corrupted. Note that their SS scheme for active adversaries allows parties to share
and reconstruct multiple secret values in one execution of the protocol, but we only consider the case with one
secret value per execution to fairly compare the complexities with additive PMPC protocols. So we call the share
and reconstruct protocols in [29] as ShareMultipleM and ReconstructMultipleM and our considering special
case protocols as ShareM and ReconstructM. On the other hand, the protocol LC-ReconstructM [29] allows
parties to reconstruct linear combinations of multiple secrets that have been shared using ShareM protocol and
to detect corrupted parties while reconstructing. As we adopt their protocol with small variants, we present the
formal descriptions in Appendix D.2. For computations, addition can be done with no communication thanks
to the linearity of the shares, while multiplication needs a little trick. As we just adopt the protocols from [29],
we present the protocols AddM and MultiplyM in Appendix D.3.

To make this MPC scheme to PMPC handling dynamic groups, we build three new main protocols called
RefreshM, RecoverM, and RedistributeM. Because of the space limit, we present all the proofs of our protocols
in Appendix E. Recall that the protocol RefreshM re-randomizes the shares that each party has regularly so
that the adversary cannot reconstruct the secret until he corrupts any set in the access structure in the period.
By the linearity of the shares, the main idea is same as before.

Protocol RefreshM(w, [s]) −→ [s]w+1

Input: a phase w and a sharing of s
Output: new sharing of s in phase w + 1, [s]w+1

1. Every party Pi in P invokes ShareM(w, 0, Pi). (in parallel)

2. Each party locally does component-wise addition with all the shares received in Step 1 and the shares of s, and set
it as the new share of s in phase w + 1.

3. parties in P collectively output [s]w+1.

Theorem 5.4. (Correctness and Secrecy of RefreshM) When the protocol RefreshM terminates, all parties
receive new shares encoding the same secret as old shares they had before, and they cannot get any information
about the secret by the execution of the protocol. It communicates O((n2d + n3κ) log |F| + n3κ log d) bits and
broadcasts O(n3 log d+ (n3 + nd) log |F|) bits.

For RecoverM and RedistributeM, we construct two sub-protocols, ShareRandomM and RobustReshareM. The
goals of the protocols are similar to the ones in Section 5.1, but due to the fact that each party holds the unique
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share of a secret, ShareRandomM can be generalized for multiple groups of parties, which enables to build the effi-
cient RedistributeM protocol. The protocol ShareRandomM allows participating parties to generate multiple shar-
ings of a random value r ∈ F for each group without reconstructing the value r. Note thatW = {w} for RecoverM,
while W = {w,w + 1} for RedistributeM. The protocol ShareRandomM outputs |W | sharings of the same r,
where r is the summation of all random elements from each party in each phase. For instance, when W = {w},
the output is one sharing of r, say [r] = {r1, ..., rn}, where LC-ReconstructM(w, [r]) reconstructs r =

"
Pi /∈C r

(i).
We denote ShareRandomM(w) in this case. On the other hand, when W = {w,w + 1}, it outputs two shar-
ings of r, [r]w := {rw1 , ..., rwn } and [r]w+1 := {rw+1

1 , ..., rw+1
m }, where both sharings reconstruct the same r. i.e.,

LC-ReconstructM(w, [r]w) = LC-ReconstructM(w+1, [r]w+1) = r, where r =
"

Pi /∈Cw r(w,i)+
"

Pj /∈Cw+1 r(w+1,j).

Protocol ShareRandomM(W ) −→ {[r]w}w∈W

Input: a list W of phases where parties in phase ∀w ∈ W participate in generating sharing(s) of a random value
Output: |W | sharing(s) of a random value r, for each Pw in w ∈ W

1. For each w ∈ W :

2. Every party Pi /∈ Cw chooses a random value r(w,i) and invokes ShareM(w′, r(w,i),Pw′
) |W | times in parallel

with respect to Sw, for each w′ ∈ W .

3. For each w ∈ W :

4. Each party Pi ∈ Pw locally computes rwi :=
!

w′∈W

!
Pj /∈Cw′ [r(w

′,j)]wi , where [r(w
′,j)]wi is Pi’s holding share

of r(w
′,j) received in Step 2 from Pj /∈ Cw′

.

5. |W | sharings of r, {[r]w}w∈W , are collectively output, where r :=
!

Pj /∈Cw,w∈W r(w,j) and [r]w := {rw1 , ..., rw|Pw|}.

Note that all summand vectors {[r(w′,j)]wi } have the same lengths for each party. For N :=
"

w∈W |Pw|, the
protocol communicates O(N |W |((nd + n2κ) log |F| + n2κ log d)) bits and broadcasts O(N |W |(n2 log d + (n2 +
d) log |F|)) bits.

Recall that Honest := {P \A | A ∈ ∆} is a set of potential honest parties sets.The protocol RobustReshareM

similarly works as the one in Section 5.1. Every party in PS ⊆ PwS in phase wS knows the value r and wants
to send a right sharing of r to the parties in PR ⊆ PwR in phase wR. As the adversary picks one subset of
parties in ∆ in each phase, there exists at least one set in Honest consisting of only honest parties in that phase.

Protocol RobustReshareM(r, wS ,PS , wR,PR) −→ [r]wR

Input: a random element r ∈ F, a phase wS , a set of parties PS in phase wS , a phase wR, and a set of parties
PR ∈ Γ in phase wR.

Output: a sharing of r in phase wR, [r]
wR

Precondition: All parties in PS know the value of r.
Postcondition: Each party in PR receives the share of new sharing of r.

1. Every party in PS executes ShareM(wR, r,PR) according to SR. Let [r]
(i) be the sharing of r that Pki ∈ PS shares.

2. For each i = 1, 2, ..., |PS |, ReconstructM(wR, [r]
(i),PR) is invoked. Let r

(i) be the result of each reconstruction.

3. There exists a value v such that v = r(i) for all Pki ∈ H, for some H ∈ Honest. Each party chooses such set
H ∈ Honest. If there exists multiple such sets, the minimal set including Pi with lower id, i, is chosen.

4. Parties in PR collectively outputs the sharing of r from the party Pi in H with the minimum id, i.
i.e. Output [r] ← [r](min), where min := minPi∈H{i}.

The security of RobustReshareM relies on the security of ShareM and ReconstructM and communicatesO(|PS |(|PR|2
κ log dR + (|PR|3 + |PR|2κ+ |PR|dR) log |F|)) and broadcasts O(|PS |(|PR|2 log dR + (|PR|2 + dR) log |F|)) bits.

Using these sub-protocols, RecoverM allows the rebooted/reset parties to recover their shares, by generating
new sharing of the same secret in P with the assistance of other parties. A sharing of a random element r is
generated using ShareRandomM, LC-ReconstructM allows every party to reconstruct a publicly known random
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value r′ := r + s, and RobustReshareM helps parties to set one same sharing of r′.

Protocol RecoverM(w, [s], R) −→ [s]w+1 or ⊥

Input: a phase w, a sharing of s, and a set of rebooted parties R
Output: new sharing of s in phase w + 1, [s]w+1, or aborted

1. Invoke ShareRandomM(w) and generate a sharing [r] := {r1, ..., rn} of a random r in F.
2. Each party Pi in P \R locally computes ri + si, the share of r′ := r + s.

3. LC-ReconstructM(w, [r′]) is invoked in P \R and every party in P \R gets r′.

4. RobustReshareM(r′, w,P \R,w,P) is invoked, and each party in P gets [r′]w := {r′1, ..., r′n}.
5. Each party locally computes r′i − ri and sets it as new share of s.

Theorem 5.5. (Correctness and Secrecy of RecoverM) The protocol RecoverM allows a set R of parties who
were rebooted to recover their shares encoding the same secret, for any R ∈ ∆, and does not reveal any additional
information about the secret except the shares each party had before the execution of the protocol. It communicates
O(n3κ log d+ (n4 + n3κ+ n2d) log |F|) bits and broadcasts O(n3 log d+ (n3 + nd) log |F|) bits.

Assuming the dynamic settings in Figure 1, recall that the protocol RedistributeM allows parties in the new
group P ′ to receive the shares encoding the same secret. The main idea is similar to the one in RecoverM, but
as parties might be different in two phases, it needs to be considered very carefully. To send a right sharing of s
from P to P ′ without revealing the secret value s to the parties, both parties in two phases generate a sharing
of random value r without reconstructing the value r using ShareRandomM. Then, parties holding the share of s
locally compute the share of r to the share of s and reconstruct s+ r using them. Now, all parties in P knows
the value s + r, but not s or r, so that they invoke RobustReshareM to send a right sharing of s + r to the
parties in P ′. As parties in P ′ are also holding the share of r, now each party can locally computes the share of s.

Protocol RedistributeM(w, [s]w) −→ [s]w+1

Input: a phase w and the sharing of s in phase w, [s]w = {sw1 , ..., swn }
Output: new sharing of s for phase w + 1, [s]w+1 = {sw+1

1 , ..., sw+1
m }

1. Parties in P and P ′ invoke ShareRandomM(W ), where W = {w,w + 1}, to generate two sharings of a random value
r, unknown to every party. That is, parties in P separately receive a sharing [r]w := {rw1 , ..., rwn }, while parties in P ′

receive a sharing [r]w+1 := {rw+1
1 , ..., rw+1

m }, and no one knows the value of r.

2. Each party Pi in P locally computes xi := rwi + swi , where swi is the share of s.

3. Parties in P invoke LC-ReconstructM(w, [x]) with [x] := {x1, ...,xn} and the result is denoted by x. Note that
x = s+ r, where r is random and unknown to everyone.

4. Parties invoke RobustReshareM(x,w,P, w+1,P ′) so that parties in P ′ receive a sharing of x, say [x] := {z1, ..., zm},
for zi := M ′

iX, where the vector X = (x, $, ..., $) ∈ Fe′ with random $’s.

5. Each party P ′
i in P ′ locally computes sw+1

i := zi − rw+1
i , for i = 1, ...,m.

6. Parties in P ′ collectively output {sw+1
1 , ..., sw+1

m } as a sharing of s in new phase.

Theorem 5.6. (Correctness and Secrecy of RedistributeM) When the protocol terminates, all parties in new
participating group have the shares of the same secret as the old shares, and the protocol does not reveal any
information about the secret. It communicates O(n2κ log d+nm2κ log d′+((n2+mn)d+(m2+mn)d′+(n3+m3)κ+
(m+n)mnκ+nm3) log |F|) bits and broadcasts O((n3+mn2) log d+nm2 log d′+(n3+(n+m)(mn+d)+nd′) log |F|)
bits, where |P| = n, |P ′| = m, size(M) = d, and size(M ′) = d’.

Table 3 shows the total analysis of MSP-based PMPC protocols based on the protocols in [29]. Even after
adding our new protocols, for both static groups and dynamic groups, the total communication/broadcast
complexities remain linear in the size of MSP, d, the number of rows of the corresponding matrix M .
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MSP-based PMPC based on [29]
Protocol Communication Comp. Broadcast Comp.

IC
Authenticate∗ O(κ(log d + log |F|)) O(log d + log |F|)
Verify∗ O(κ log d + (l + κ) log |F|) 1

SS /
MPC

BasicShare O(d log |F|) -
Share O((nd + n2κ) log |F| + n2κ log d) O(n2 log d + (n2 + d) log |F|)
Reconstruct O(n2κ log d + (n3 + n2κ) log |F|) O(d log |F|)
LC-Reconstruct∗ O(n2κ log d + (n3 + n2κ) log |F|) O(n(log2 L + 1)d log |F|)
Add - -
Gen-Rand O((n2d + n3κ) log |F| + n3κ log d) O(n3 log d + (n3 + nd) log |F|)
Gen-Mult-Triples O((n4 + n3κ + n2d) log |F| + n3κ log d) O(n3 log d + (n3 + n2d) log |F|)

Our
Additional
Protocols

Refresh O((n2d + n3κ) log |F| + n3κ log d) O(n3 log d + (n3 + nd) log |F|)

ShareRandom
O(N |W |((nd + n2κ) log |F|+

n2κ log d))
O(N |W |(n2 log d+
(n2 + d) log |F|))

RobustReshare

O(|PS |(|PR|2κ log dR+
(|PR|3 + |PR|2κ
+|PR|dR) log |F|))

O(|PS |(|PR|2 log dR+
(|PR|2 + dR) log |F|))

Recover O(n3κ log d + (n4 + n3κ + n2d) log |F|) O(n3 log d + (n3 + nd) log |F|)

Redistribute
O(n3κ log d + (n2d+
n4 + n3κ) log |F|)

O(n3 log d+
(n3 + nd) log |F|)

Total MSP-based PMPC O(n3κ log d + (n2d + n4 + n3κ) log |F|) O(n3 log d + (n3 + n2d) log |F|)

Table 3. Total analysis of protocols in MSP-based PMPC scheme based on [29]. Each column denotes communication
complexity (bits) and broadcast complexity (bits). For rows, IC denotes the information checking scheme, SS denotes
the secret sharing scheme, and MPC denotes the multi-party computation scheme. κ denotes the security parameter.
Only IC scheme and LC-Reconstruct are based on multiple secret values, and the others are based on one secret value.
In IC, l is the number of secret values and in LC-Reconstruct, L := maxj(lj), where lj is the number of secrets from Pj .
In ShareRandom, N =

!
w∈W |Pw| and W is a set of phases which parties participate in the protocol. In Redistribute,

it is assumed that |P| = |P ′| = n and size(MSP ) = d = d′. Note that all protocols still have linear complexities in the
size of MSP, d, even after adding out new protocol, for both static and dynamic groups.

5.3 Conversions between Additive and MSP-based MPC

Now, we present the way to convert the additive PMPC scheme into the MSP-based PMPC, and the way in the
opposite direction. Recall that the complexity of an additive PMPC scheme depends on the size of the sharing
specification |S| (we use the basic secrecy structure | !Σ|), while the one of a MSP-based PMPC scheme depends

on the number of rows of the MSP matrix, d. Since d can be varied from n to | !Σ|2.7 depending on the adversary
structures [29], there are some cases worth to convert the schemes even though the conversion itself needs
some resource. The better PMPC scheme can be chosen, only when participating groups or any structures are
changed. That is, when dynamic groups and structures of two consecutive phases are given, participating parties
can continue the current PMPC scheme by executing Redistribute protocol or they can convert the scheme
from one to the other by calling the protocols, called ConvertAdditiveIntoMSP and ConvertMSPIntoAdditive.
We present the security proofs in Appendix F.

Let dynamic groups and structures in consecutive phases are given as Sw := (P,Γ,Σ,∆, S) and Sw+1 :=
(P ′,Γ ′,Σ′,∆′, S′) and let the additive PMPC scheme has been using in phase w with sharing specification
S = {S1, S2, ..., Sk}. The protocol ConvertAdditiveIntoMSP converts current additive sharing of s into a MSP-
based sharing of s. By definition, if no qualified subset of parties in the access structure Γ remains in P, then
the secret value s cannot be reconstructed even though the protocol is executed. That is, there exists at least
one honest party in each Si ∈ S. For dealing with active adversaries, all parties in each Si needs to share
their holding share si to the parties in P ′ using the ShareM protocol. Then parties in P ′ hide their shares with
the shares of a random number and open (reconstruct) the hided values to decide one sharing of si from the
honest party in Si. By linearity of shares, each party in P ′ can locally compute the MSP-based share of s by
component-wise adding all its receiving shares. The formal protocol is as follows.

Protocol ConvertAdditiveIntoMSP([s]w, w,Sw, w + 1,Sw+1) −→ [s]w+1

Input: the structure S := (P,Γ,Σ,∆, S) in phase w and the sharing {s1, ..., s|S|} of s such that
!|S|

i=1 si = s

Output: the sharing of s for the structure S ′ := (P ′,Γ ′,Σ′,∆′, "M) in phase w, where M ∈ M(d× e) is

corresponding matrix of the MSP "M
1. For each i ∈ {1, ..., |S|} (in parallel):

2. Every party in Si invokes Share
M(si, w + 1,P ′). Denote |Si| sharings of si by [si]

(1), ..., [si]
(|Si|).

3. Parties in P ′ invoke ShareRandomM(w + 1) to generate a sharing of a random number, say r(i).
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4. Parties in P ′ locally compute [x
(j)
i ] := [si]

(j) + [r(i)], for j = 1, ..., |Si|.
5. Parties in P ′ execute LC-ReconstructM(w + 1, [x

(j)
i ]) (in parallel) |Si| times for each sharing and choose

a set H ∈ Honest := {P \A|A ∈ ∆} that x
(j)
i = v for all Pkj ∈ (Si ∩H). If there exists multiple such sets,

they choose the minimal set including Pid with lower id.

6. The sharing [s
(min)
i ] of si from Pmin ∈ H is chosen as a sharing of si, say [si].

7. At this point, parties in P ′ hold |S| sharings for each si and each party Pj ∈ P ′ holds |S| vectors of length dj , for
each sharing. Each party locally computes component-wise addition with these vectors and set it as its share of s.
i.e., Pj computes sj :=

!|S|
i=1[si]j ∈ Fdj , where each share is the vector of length dj .

8. Parties in P ′ collectively output a sharing of s, [s]w+1 := {s1, ..., sm}, where m = |P ′|.

Theorem 5.7. (Correctness and Secrecy of ConvertAdditiveIntoMSP) When the protocol terminates, all par-
ties in new participating group have the shares of the same secret as the old shares, and the protocol does not
reveal any information about the secret. It communicates O(k((m2 + mn)d + (m3 + m2n)κ + nm3) log |F| +
k(m3+m2n)κ log d) bits and broadcasts O(k(mnd+m3+m2n) log |F|+k(m3+m2n) log d) bits, where |P| = n,
|P ′| = m, |S| = k, and size(M) = d.

On the other hand, when participating parties currently use the MSP-based PMPC scheme and want to
convert it to the additive PMPC in the next phase, they can execute the protocol ConvertMSPIntoAdditive.
It converts a MSP-based sharing of s in phase w into an additive sharing of s in phase w + 1. Note that each
party Pi has different shares of s in MSP-based PMPC and Pi’s share of s is the vector of length di. For these
reasons, each party needs to invoke multiple ShareA protocols to share each component of the vector according
to the sharing specification S′ in phase w + 1. Each party in each Sj ∈ S′ collects all the shares received from
the same party Pi and form a vector of length di. Then, all the parties in Sj hold the same n vectors of different
lengths. When recomposing these n vectors according to the indexing function ρ of phase w, each party can
compute its share of s by inner product with the vector λ such that M tλ = a.

Protocol ConvertMSPIntoAdditive([s]w, w,Sw, w + 1,Sw+1) −→ [s]w+1

Input: the structure S := (P,Γ,Σ,∆, "M) in phase w and the sharing {si}ni=1 of s such that si = Mib for each

i, where M ∈ M(d× e) of the MSP "M computes f and accepts Γ and b = (s, r2, ..., re) for ri
$←− F

Output: a sharing of s for S ′ := (P ′,Γ ′,Σ′,∆′, S′) in phase w, where S′ := {S1, S2, ..., Sk} is the sharing
specification in phase w + 1

1. Each party Pi ∈ P invokes ShareA(w + 1, s
(i)
j ,P ′), for each s

(i)
j of si := (s

(i)
1 , ..., s

(i)
di
).

2. Every party in Sj ∈ S′ forms a vector of shares received in Step 1 from the same party Pi, as sij := ((s
(i)
1 )j , ..., (s

(i)
di
)j).

i.e., Parties in Sj hold n different vectors {s1j , ..., snj} from every party in P and each vector sij has length di.

3. Every parties in Sj forms the recomposition vector Qj with n vectors {s1j , ..., snj} with respect to the indexing

function ρ of "M . Note that the length of Qj is d for all j = 1, ..., k.

4. Each party in Sj sets sj := 〈λ,Qj〉, where λ is the vector such that M tλ = a, for each j = 1, ..., |S|.
5. Players in P ′ collectively output [s]w+1 := {s1, ..., sk}.

Theorem 5.8. (Correctness and Secrecy of ConvertMSPIntoAdditive) When the protocol terminates, all par-
ties in new participating group have the shares of the same secret as the old shares, and the protocol does not
reveal any information about the secret. It communicates O(dkn3 log |F|) bits and broadcasts O(dkn3 log |F|) bits,
where |P| = n, |P ′| = m, |S′| = k, and size(M) = d.

From the Theorem 5.7 and Theorem 5.8, we can derive the following corollary.

Corollary. A proactive MPC scheme based on additive secret sharing and a proactive MPC scheme based on
MSP-based secret sharing are convertible. That is, one can transform an additive sharing of a secret to a MSP-
based sharing of the same secret and also transform a MSP-based sharing of a secret to an additive sharing of
the same secret, without revealing any information about the secret among participating parties.
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Appendix A

A.1 Related Work in Proactive Secret Sharing and Proactive MPC

Proactive Secret Sharing (PSS): SS is typically utilized as a building block for MPC protocols. Table 4 summa-
rizes existing PSS schemes which all consider only the threshold adversary structures and are typically insecure
when majority of the parties are compromised. PSS schemes [33, 25, 38, 40] [35, 3, 4] typically store the secret as
the free term in a polynomial of degree t < n/2, thus once an adversary compromises t+1 parties (even if only
passively), it can reconstruct the polynomial and recover the secret. PSS schemes with optimal-communication
[3, 4] also use a similar technique but instead of storing the secret in the free term, they store a batch of b secrets
at different points in the polynomial; similar to the single secret case, even when secrets are stored as multiple
points on a polynomial, once the adversary compromises t + 1 parties, it can reconstruct the polynomial and
recover the stored secrets. Different techniques are required to construct PSS secure against GAS. Recently [19]
developed the first PSS scheme for a dishonest majority but also only for a threshold adversary structure, the
scheme cannot be generalized for other structures. Also, the work in [19] only describes a PSS scheme and does
not specify how to perform PMPC for the same thresholds. While it may be possible to extend that PSS scheme
to PMPC, it will remain limited to the threshold adversary structure.

Scheme
Threshold

Security
Network Dynamic Adversary Comm.

Passive (Active) Type Groups Structure Complexity

[38] t < n/2 (n/2) Crypt. Sync. Static Threshold exp(n)
[40] t < n/3 (n/3) Crypt. Async. Static Threshold exp(n)
[11] t < n/3 (n/3) Crypt. Async. Static Threshold O(n4)
[35] t < n/3 (n/3) Crypt. Async. Static Threshold O(n4)
[25] t < n/2 (n/2) Crypt. Sync. Static Threshold O(n2)
[3] t < n/3− ε (n/3− ε) Perfect Sync. Static Threshold O(1)∗

[3] t < n/2− ε (n/2− ε) Uncond. Sync. Static Threshold O(1)∗

[4] t < n/2− ε (n/2− ε) Uncond. Sync. Dynamic Threshold O(1)∗

[19] t < n− 1 (n/2− 1) Crypt. Sync. Static Threshold O(n4)
[31] (t < n/2) Crypt. Sync. Dynamic Threshold O(n3)

This work

Additive

N/A Uncond. Sync.

Static

General

O(|S| ∗ poly(n))
Additive Dynamic O(|S|2 ∗ poly(n))

MSP-based Static O(d ∗ poly(n))
MSP-based Dynamic O(d ∗ poly(n))

Table 4. Comparing existing proactive secret sharing (PSS) schemes; n is the number of parties, threshold t is for each
refresh phase. ‘Crypt.’, ‘Perfect’, and ‘Uncond.’ denote cryptographic, perfect, and unconditional security, respectively;
‘Sync.’ and ‘Async.’ denote the synchronous and asynchronous networks, respectively. Note that [19] also handles mixed
adversaries which are characterized by two thresholds, one for passive corruptions and one for active corruptions. (*)
Communication complexities in [3, 4] are amortized. |S| denotes the size of sharing specification and the maximal secrecy

structure #Σ can be used [32] as S. d is the size of a monotone span program, which is the number of rows of the matrix M .
Notation details are further clarified in Section 4 and detail communication complexity analysis for our work is provided
in Table 2 in Section 5.1 and Table 3 in Section 5.2.

Proactive Secure Multiparty Computation (PMPC): To the best of our knowledge, there are currently only a few
PMPC protocols, e.g., [33] requiring O(Cn3) communication, where C is the size of the circuit to be computed
via MPC, and [3] requiring O(Clog2(C)polylog(n) + Dpoly(n)log2(C)). Existing PMPC protocols are only
specified for threshold adversary structures and cannot be easily7 augmented to handle GAS; this is because
these protocols all rely on secret sharing via polynomials. In addition, all current PMPC can only tolerate
dishonest minorities, except one protocol [22], but even that one is only limited to the threshold adversary
structure. The reason is that the underlying SS stores secrets as points on polynomials so once the adversary
compromises enough parties (even if only passively), it can reconstruct the polynomial and recover the secret.
The only structure that can be described is one in terms of a fraction of the degree of the polynomial (typically
also a fraction of number of parties) and once the adversary compromises enough parties (even if only passively),
it can reconstruct the polynomial and recover the secret.

7 Or at least it is not obvious to us how to easily augment them to accommodate GAS.



Communication-Efficient PMPC for Dynamic GAS 19

A.2 Types of Security and Communication Models

MPC literature distinguishes between two types of security, perfect (or information-theoretic) security and cryp-
tographic security. Protocols with information-theoretic security can withstand an adversary with unrestricted
computing power. On the other hand, protocols with cryptographic security restrict an adversary’s computing
power and assume certain assumptions about the hardness of some computational problems, e.g., factoring large
integers or computing discrete logarithms. In this paper, we consider protocol with perfect security for general
adversary structures (GAS) consisting of passive adversaries, and cryptographic security for GAS consisting of
active adversaries or mixed (both passive and active) adversaries.

For communication models, the literature consider the following two models: synchronous and asynchronous.
In asynchronous communication models, there is no guarantees about data transmission between sender and
receiver. In contrast, synchronous communication models (which we consider in this paper) guarantee that any
pair of parties can communicate over a bilateral secure channel. That is, when a sender sends data to a receiver,
the receiver is guaranteed to get data in certain times. The synchronous communication models sometimes
include a broadcast channel (as we consider in this paper). The broadcast channel guarantees consistency of
received values, when a sender sends a value to several parties.

A.3 Adversary Models

An adversary’s capability can be described by a corruption type and an adversary structure. The adversary
structure ∆ is a set of subsets of parties that are potentially corruptible. The adversary can choose a set of par-
ties in ∆ and corrupt all the parties listed in the set. The corruption types are classified as passive corruptions,
active corruptions, and both.

Passive Adversary Models The adversary can eavesdrop all the view of corrupted parties, but cannot forge
the process that parties should follow. i.e., The corrupted parties should follow the protocol honestly. This type
of adversaries are also called honest-but-curious (HBC). In HBC models, the adversary structure ∆ is equal to
the secrecy structure Σ.

Active Adversary Models The adversary can take full control of the corrupted parties and can make them
behave arbitrarily from the protocol. i.e., The adversary can forge the messages of corrupted parties as well as
eavesdrop all of their views.

Threshold Adversary Models In the classic t-threshold SS and MPC, adversaries are assumed to be able to
either passively corrupt or actively corrupt up to t parties. The adversary structure in this t-threshold models
is the set of all subsets of P which size is at most t.

General Adversary Models General adversary structures (GAS) extend this threshold settings to non-
threshold models. The adversary can actively corrupt a subset of parties and passively corrupt another subset of
parties. Sometimes it is classified as in general adversary models and mixed general adversary models as follows:
The former has adversaries who can either passively corrupt or actively corrupt the parties, while the latter has
adversaries who can do both passive corruptions and active corruptions. We collectively describe both models as
general adversary models in this paper. The adversary is specified by the secrecy structure Σ and the adversary
structure ∆ ⊆ Σ. The (Σ,∆)-adversary denotes the adversary that can passively corrupt some parties in a set
A and actively corrupt some parties in a set B, where A ∈ ∆ and (A ∪B) ∈ Σ.

A.4 Phases and Stages of a Proactively Secure MPC Protocol

We adopt terminology in previous formalization of the proactive security model such as [1, 3].

Phases The rounds of a proactive protocol are grouped into phases φ1,φ2, . . . : a phase φ consists of a sequence
of consecutive rounds, and every round belongs to exactly one phase. There are two types of phases: refresh
phases and operation phases. The phases alternate between refresh and operation phases; the first and last phase
of the protocol are both operation phases. Each refresh phase is furthermore subdivided into a closing period
consisting of the first k rounds of the phase, followed by an opening period consisting of the final ℓ− k rounds
of the phase, where ℓ is the total number of rounds in the phase.
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In non-reactive MPC, the number of operation phases can be thought to correspond to the depth of the
circuit to be computed in the MPC. Intuitively, each operation phase serves to compute a layer of the circuit to
be computed, and each refresh phase serves to re-randomize the data held by parties such that combining the
data of corrupt parties across different phases will not be helpful to an adversary.

Stages A stage σ of the protocol consists of an opening period of a refresh phase, followed by the subsequent
operation phase, followed by the closing period of the subsequent refresh phase. In the case of the first and last
stages of a protocol, there is an exception to the alternating “refresh-operation-refresh” format: the first stage
starts with the first operation phase, and the last stage ends with the last operation phase. Thus, a stage spans
(but does not cover) three consecutive phases, and the number of stages in a protocol is equal to its number of
operation phases. (∵ For a protocol Π, if the number of phases in Π is #(φ) = m, then the number of operation
phases in Π is #(op) = ⌈m

2 ⌉ and the number of stages in Π is #(σ) = m−3
2 + 2 = m+1

2 . Since m = 2m′ + 1 for
some m′ ∈ N, #(op) = #(σ) = m′ + 1.)

Stage Changes The adversary A can trigger a new stage at any point during an operation phase, by sending a
special message newstage to all parties. Upon receiving the newstage message, the parties initiate a refresh phase.

Corruptions If a party Pi is corrupted by the adversary A during an operation phase of a stage σj , then A
learns the view of Pi starting from his state at the beginning of stage σj . If the corruption is made during a
refresh phase between consecutive stages σj and σj+1, then A learns Pi’s view starting from the beginning of
stage σj . Moreover, in the case of a corruption during a refresh phase, Pi is considered to be corrupt in both
stages σj and σj+1.

Finally, if Pi is corrupted during the closing period of a refresh phase in stage σj , A may decide to decorrupt
him. In this case, Pi is considered to be no longer corrupted in stage σj+1 (unless A corrupts him again before
the end of the next closing period). A decorrupted party Pi immediately rejoins the protocol as an honest party:
if Pi was passively corrupted, then it rejoins with the correct state according to the protocol up to this point;
or if Pi was actively corrupted, then it is restored to a clean default state (which may be a function of the cur-
rent round). Note that in restoring a party to the default state, its randomness tapes are overwritten with fresh
randomness: this is important since otherwise, any once-corrupted party would be deterministic to the adversary.

Erasing State In our model, parties erase their internal state (i.e., the content of their tapes) between phases.
The capability of erasing state is necessary in the proactive model: if an adversary could learn all previous states
of a party upon corruption, then achieving security would be impossible, since over the course of a protocol
execution a proactive adversary would be able learn the state of all parties in certain rounds.

Appendix B Protocols for the Additive MPC Scheme [27]

B.1 Information Checking (IC)

The information checking scheme consists of two protocols, called Authenticate and Verify. The protocol
Authenticate generates valid tags for participating parties with respect to the input value, and the protocol
Verify verifies the input value with respect to the input tags from participating parties. There are three
participating parties, a sender Ps, a receiver Pr, and a verifier Pv. The sender Ps sends a message s along with
the authentication tag tagauth to Pr, while sending the verification tag tagver to Pv. Also, we assume that any
pair of two parties (Ps, Pv) knows a fixed secret value, denoted by αs,v ∈ F \ {0, 1}.

Definition B.1. A vector (s, y, z,α) is 1-consistent if there exists a polynomial f of degree 1 over F such that
f(0) = s, f(1) = y, f(α) = z.

Definition B.2. A value s is called (Ps, Pr, Pv)-authenticated if Pr knows s and some authentication tag y
and Pv knows a verification tag z such that (s, y, z,αs,v) is 1-consistent. The vector (y, z,αs,v) is denoted by
As,r,v(s)

Protocol AuthenticateA(Pi, Pj , Pk, w, s) −→ (y, z) or ⊥
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Input: Pi and Pj holding s, Pk ∈ P, a phase w, and a value s
Output: a pair of authentication tag y and verification tag z, or aborted

1. Pi chooses random values (y, z) ∈ F2 such that (s, y, z,αi,k) is 1-consistent, and random values (s′, y′, z′) ∈ F3 such
that (s′, y′, z′,αi,k) is 1-consistent, and sends (s′, y, y′) to Pj and (z, z′) to Pk.

2. Pk broadcasts random value r ∈ F.
3. Pi broadcasts s

′′ := rs+ s′ and y′′ := ry + y′.

4. Pj checks if the forwarded values s′′, y′′ are correct by comparing s′′ =? rs + s′ and y′′ =? ry + y′ and broadcasts
OK/NOK. If NOK is broadcasted, then Pj adds Pi to the list Dj and the protocol is aborted, which outputs ⊥.

5. Pk checks if (s′′, y′′, rz+ z′,αi,k) is 1-consistent. If it is, then Pk sends OK to Pj . Otherwise, Pk sends (αi,k, z) to Pj

and adds Pi to the list Dk. When Pj receives (αi,k, z), Pj adjusts y such that (s, y, z,αi,k) is 1-consistent.

6. Pj outputs y as the authentication tag and Pk outputs z as the verification tag.

The protocol AuthenticateA allows Pi to securely (Pi, Pj , Pk)-authenticate the value s. If Pk is honest and s is
known to the honest parties {Pi, Pj}, then AuthenticateA(Pi, Pj , Pk, s) either securely (Pi, Pj , Pk)-authenticate
s or aborts with error probability at most 1/|F|.

Assume that Pk knows a candidate s′ or a (Pi, Pj , Pk)-authenticates value s and Pj wants to prove the
authenticity of s′. The protocol VerifyA allows parties to authenticate s′ with their tags. If Pk and Pj are
honest parties knowing s′ = s, Pk will output s in VerifyA, or output ⊥ otherwise, except with error probability
at most 1/(F− 2).

Protocol VerifyA(Pi, Pj , Pk, w, s
′, Ai,j,k(s)) −→ s or ⊥

Input: a candidate value s′ known to Pj and Pk for a (Pi, Pj , Pk)-authenticated value s, a phase w, and the
authentication for s, Ai,j,k(s) = (y, z,αi,k) where Pj has the authentication tag y, and Pk has the
verification tag z

Output: s or ⊥

1. Pj sends y to Pk.

2. Pk checks if (s′, y, z,αi,k) is 1-consistent and outputs s′ if it is. Otherwise, Pk adds Pj to the list Dk and outputs ⊥.

As the parties use local dispute control, even though the adversary has at most n2 attempts to cheat, the total
error probability of arbitrary many instances of each protocols is at most O(n2/|F|), which is independent of
secrecy structure. The security proofs are provided in [27].

B.2 Secret Sharing

For any adversary structure ∆, the following protocol allows a dealer PD to securely share a secret value s
among n parties in P with respect to the sharing specification S = (S1, ..., Sk).

[27] Protocol ShareA(w, s,P) −→ [s]w

Input: a phase w, a secret value s, and a set P of parties who receives the shares
Output: k shares of s in phase w

1. A dealing party PD chooses k − 1 random integers, s1, ..., sk−1
$←− F,

and set up the k-th share as sk := s−
!k−1

i=1 si.

2. For all i ∈ {1, ..., k}, do the following:

3. PD sends si to every party in Si.

4. ∀Pa, Pb ∈ Si and ∀Pc ∈ P invoke AuthenticateA(Pa, Pb, Pc, si). If any result was aborted, PD broadcasts si,
the parties in Si replace their share, and ∀Pa, Pb ∈ Si and ∀Pc ∈ P set the forwarded value si as the tags,
authentication tag and the verification tag.

5. The parties in P collectively output [s].
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For any qualified subset B in Γ , the protocol ReconstructA enables each parties in B to reconstruct (or access)

the secret as below. The value for sq forwarded from Pj to Pk is denoted by s
(j,k)
q . It is shown in [27] that the

following protocol securely reconstruct s to the parties in B, if Q2(S,∆) is met. i.e., For ∀Z1, Z2 ∈ ∆, ∀S ∈ S,
S ∕⊆ Z1 ∪ Z2.

[27] Protocol ReconstructA(w, [s], B) −→ s or ⊥

Input: a phase w, the sharing of s (collectively), and a set B of parties participating in reconstruction
Output: s or aborted

1. For all q ∈ {1, ..., k}, do the following:

2. Every party in Sq sends sq to each party in B.

3. For all Pj ∈ Sq and Pk ∈ B,

4. VerifyA(Pi, Pj , Pk, w, s
(j,k)
q , Ai,j,k(sq)) is invoked for ∀Pi ∈ Sq. If Pk outputs s

(j,k)
q in each invocation,

Pk accepts it as value for sq.

5. Each Pk ∈ B outputs ⊥ if he never accepted in Step 4.

6. Each party in B locally adds up the accepted shares, and output the sum.

B.3 Addition and Multiplication

Assuming the shares for the values s and t are already shared among P, addition of s and t can be done naturally
even without any interaction among n parties Because of the linearity, each party can locally add two shares
and set it as the new share for s + t. i.e., [s + t] = {(s + t)1, ..., (s + t)k} where (s + t)i; = si + ti. It can be
formally specified as follows:

[27] Protocol AddA(w, [s], [t]) −→ [s+ t]

Input: phase w, shares of s, and shares of t
Output: new shares of s+ t

Precondition: Two values s =
!k

i=1 si and t =
!k

i=1 ti are shared
Postcondition: s+ t is shared independently

1. Each party Ph locally adds each share of s to the share of t and keep the result as a share of s+t. i.e., (s+t)i; = si+ti
for each i ∈ {i ∈ {1, ..., k}|Ph ∈ Si}.

On the other hand, it is quite tricky and requires a lot of communications to securely form the share of (s ∗ t)
among n parties, as s · t =

"k
i=1

"k
j=1(si · ti). To securely form the share of (s∗ t) among n parties, where s and

t are pre-shared through ShareA protocol, participating parties need to perform the protocol MultiplyA. The
basic idea is adopted from [32]. Each party computes the local product (sp ∗ sq) for all sp and sq that the party
holds and shares it. In addition, a probabilistic check is performed in each loop to identify corrupted parties.
For privacy, the multiplication of random values is used instead of actual multiplying values. The protocol
MultiplyA is as follows:

[27] Protocol MultiplyA(w, [x], [y]) −→ [xy]

Input: a phase w, a sharing of x, and a sharing of y, collectively
Output: a sharing of xy

1. Set M = ∅ and invoke RandomTripleA(w,M).

2. If the protocol outputs M ′, then repeat Step 1 with M ′. Otherwise, use the output as random multiplication triple
([a], [b], [c]) such that c = ab.

3. Each party locally computes [dx] := [x]− [a] and [dy] := [y]− [b].
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4. parties invoke ReconstructA(w, [dx],P) and ReconstructA(w, [dy],P) to get dx and dy, and locally compute dxdy +
dx[b] + dy[a] + [c] and set it as the share of xy.

The protocol MultiplyA uses the protocol RandomTripleA as a subprotocol to obtain a random multiplication
triple ([a], [b], [c]) such that c = ab, and compute the sharing of xy by computing xy = ((x−a)+a)((y−b)+b) =
(dx + a)(dy + b) = dxdy + dxb+ dya+ ab = dxdy + dxb+ dya+ c. In the protocol RandomTripleA, IZ(i) denotes
the set of pairs of shares assigned to Pi, i.e., IZ(i) := {(p, q)|Pi = minP(P ∈ (Sp ∩ Sq) \ Z)}, for some Z ∈ ∆.

[27] Protocol RandomTripleA(w,M) −→ ([a], [b], [c]) or M ′

Input: a phase w, and a set of (identified) malicious parties M
Output: a random multiplication triple ([a], [b], [c]) or a set M ′ such that M ⊊ M ′

1. Parties generate random shared values [a], [b], [b′], [r] by summing up shared random values (one from each party)
for each value.

2. BasicMultiplyA([a], [b],M) is invoked to compute (([c1], ..., [cn]), [c]) and BasicMultiplyA([a], [b′],M) is invoked to
compute (([c′1], ..., [c

′
n]), [c

′]).

3. ReconstructA(w, [r],P) is invoked and each party gets the value r.

4. Each party locally computes [e] := r[b] + [b′].

5. ReconstructA(w, [e],P) is invoked and each party gets the value e.

6. Each party locally computes [d] := e[a]− r[c]− [c′].

7. ReconstructA(w, [d],P) is invoked and each party gets the value d.

8. If d = 0, each party collectively outputs ([a], [b], [c]). Otherwise, reconstruct the sharings [a], [b], [b′], [c1], ..., [cn], [c
′
1], ..., [c

′
n]

and output M ′ := M ∪ {Pi : rci + c′i ∕=
!

(p,q)∈I(i) r(apbq) + (apb
′
q)}.

The protocol RandomTripleA uses the subprotocol BasicMultiplyA, which inputs the sharings of two values,
[a] and [b], and a set of malicious parties M , and outputs the sharing of c = ab and the sharing of the shares
ci’s of c such that [c] =

"n
i=1[ci], if no more actively corrupted parties exist in P \M as below.

[27] Protocol BasicMultiplyA(w, [a], [b],M) −→ ([c1], ..., [cn]), [c]) or ⊥

Input: a phase w, the sharings of a and b, collectively, and a set of (identified) malicious parties M
Output: ([c1], ..., [cn]) and [c] =

!n
i=1[ci], if no party in P \M actively cheats

1. For all Sq such that Sq ∩M ∕= ∅,
2. Every party in Sq sends their holding values for aq and bq to each other.

3. For all Pj , Pk ∈ Sq, Verify
A(Pi, Pj , Pk, w, a

(j,k)
q , Ai,j,k(aq)) and VerifyA(Pi, Pj , Pk, w, b

(j,k)
q , Ai,j,k(bq)) are in-

voked
for ∀Pi ∈ Sq. If Pk outputs a

(j,k)
q (or b

(j,k)
q , respectively) in each invocation, Pk accepts it as value for aq (or bq).

If all output ⊥, the protocol is aborted.

4. a) Each party Pi ∈ P\M locally computes and shares ci =
!

(p,q)∈I(i) apbq, where I(i) := {p, q)|Pi = minP (P ∈ Sp ∩ Sq)}.
b) Each party Pi ∈ M sets the sharing of ci as (ci, 0, ..., 0) where ci =

!
(p,q)∈I(i) apbq, and ∀Pj , Pk set corresponding

tags as yj = [ci]j , zj = [ci]j , for j = 1, ..., k. i.e., The tags are (ci, ci) only for [ci]1 and the rest is (0, 0) for all [ci]j .

5. parties in P collectively output ([c1], ..., [cn]) and [c] =
!n

i=1[ci].
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Appendix C Our Protocols for the Additive PMPC and Their Proofs

C.1 The Protocol RefreshA

Protocol RefreshA(w, [s]) −→ [s]w+1

Input: a phase w and a sharing of s
Output: new sharing of s in phase w + 1, [s]w+1

1. Every party Pi in P invokes ShareA(w, 0,P). (in parallel)

2. Each party adds all shares received in Step 1 to shares of s, and set result as the new share of s in phase w + 1.

3. parties in P collectively output [s]w+1.

Theorem C.3. (Correctness and Secrecy of RefreshA) When the protocol RefreshA terminates, all parties
receive new shares encoding the same secret as old shares they had before with error probability n4|S|/|F|, and they
cannot get any information about the secret by the execution of the protocol. It communicates |S|(7n4+n2) log |F|
bits and broadcasts |S|((3n4 + n) log |F|+ n3) bits.

Proof. Because of the linearity of the authentication, each party can locally set up corresponding authentication
tag y and verification tag z. Let ri,q be the q-th share of zero from Pi. Then, for [s]wq := (sq, Ai,j,k(sq)), the
new q-th share of s in phase w + 1 is [s]w+1

q = (s′q, Ai,j,k(s
′
q)), where s′q = sq +

"n
i=1 ri,q and Ai,j,k(s

′
q) =

(ysq +
"n

i=1 yri,q , zsq +
"n

i=1 zri,q ,αi,k). Also, since every party shares the sharing of zero, new sharing of s also
reconstruct the same value s as follows:

h#

q=1

s′q =

h#

q=1

(sq +

n#

i=1

ri,q) =

h#

q=1

sq +

h#

q=1

n#

i=1

ri,q =

h#

q=1

sq +

n#

i=1

h#

q=1

ri,q = s+

n#

i=1

0 = s

In addition, each q-th share is verified with Ai,j,k(s
′
q) = (y′, z′,αi,k) because (s′q, y

′, z′,αi,k) is 1-consistent for
∀Pi, Pj ∈ Sq and ∀Pk ∈ B for ∀B ∈ Γ . i.e.,

(f + F )(0) = f(0) + F (0) = sq +

h#

q=1

ri,q = s′q,

(f + F )(1) = f(1) + F (1) = ysq +

n#

i=1

yri,q = y′,

and

(f + F )(αi,k) = f(αi,k) + F (αi,k) = zsq +

n#

i=1

zri,q = z′

As every party in P invokes ShareA, they communicate n ∗ Cost(ShareA) bits. ⊓⊔

C.2 The Protocol RecoverA

Protocol RecoverA(w, [s], R) −→ [s]w+1 or ⊥

Input: a phase w, a sharing of s, and a set of rebooted parties R
Output: new sharing of s in phase w + 1, [s]w+1, or aborted

1. Parties in P invoke ShareRandomA(w,P) to generate a sharing [r] of r, where r is a random number in F.
2. Each party in P \R invokes AddA(w, [r], [s]) to share the sharing of r + s.

3. ReconstructA(w, [r + s],P \R) is invoked and every party in P \R gets r′ := r + s.

4. RobustReshareA(w, r′,P \R,P) is invoked, and each party in P gets [r′].

5. Each party computes [r′]− [r] by executing AddA(w, [r′],−[r]), where −[r] is the additive inverses of the shares in F.
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Theorem C.4. (Correctness and Secrecy of RecoverA) If S and Z satisfy Q1(S,Z), the protocol RecoverA

allows a set ∀R ∈ ∆ of rebooted parties to recover their shares encoding the same secret with error probability
O((n− |R|)|S|n3/|F|+(n− |R|)|S|n2/(|F|−2)), and does not reveal any additional information about the secret.
It communicates O((n− |R|)|S|n3 log |F|) bits and broadcasts O((n− |R|)|S|n3 log |F|) bits.

Proof. Correctness: Since all parties in P holds both sharings of r and r′ and by linearity of additive sharing,
each party’s locally computing value is [r′]− [r] = [r+s]+[−r] = [(r+s)−r] = [s]. As ReconstructA terminates
with error probability n2|S|/(|F|−2) and RobustReshareA has error probabilityO(|PS ||S|n3/|F|+|PS ||S|n2/(|F|−
2)), the protocol RecoverA successfully ends with error probability O((n−|R|)|S|n3/|F|+(n−|R|)|S|n2/(|F|−2)).
Secrecy: As each party locally adds its holding share of r and the share of s without reconstructing r or s,
all they can see is each sharing of r′ and the reconstructed value r′. Since r is a random shared element in
F, r′ = r + s is also random in F and it does not reveal any information about s without reconstructing
r. Each party can sync the sharing of r′ by RobustReshareA. Communication: Recall that the protocol
ShareRandomA communicates |S|n values in F and also broadcasts |S|n values in F, the protocol RobustReshareA
communicates/broadcasts O(|PS ||S|n3) values in F, and the protocol ReconstructA communicates |S|(n3 + n2)
values in F without broadcasting. Therefore, the total communication complexity is |S|n2+ |S|(n3+n2)+O((n−
|R|)|S|n3) = O((n−|R|)|S|n3), and the total broadcast complexity is |S|n2+O((n−|R|)|S|n3) = O((n−|R|)|S|n3).

⊓⊔

C.3 The Protocol RedistributeA

Protocol RedistributeA(w, s) −→ [s]w+1

Input: phase w and a secret s
Output: shares of s in phase w + 1
Precondition: parties in P share [s]w for a secret s
Postcondition: parties in P ′ share [s]w+1 encoding the same secret s

1. For each Si ∈ S:
2. Each party Py in Si forwards its holding value [si]y for si to every party in Si who is supposed to hold the

same share (over the secure channel).

3. VerifyA(PS , PR, PV , w, [si]y, AS,R,V (si)) is invoked for all PR, PV ∈ Si, ∀PS ∈ Si. If PV outputs [si]y in each
invocation, PV accepts it as value for si. Denote vi as the accepted value for si, for each i.

4. Each party Py ∈ Si runs Share
A(w + 1, vi,P ′) according to S′. i.e., The j-th share of vi, vij , is sent from Py

in Si to all parties in S′
j ∈ S′ and AuthenticateA is invoked for each share of vi.

5. For each S′
j ∈ S′:

6. Each party in S′
j holds {vij}ki=1. For each vij , all PR, PV ∈ S′

j invoke VerifyA(PS , PR, PV , w, vij , AS,R,V (vij))
for ∀PS ∈ S′

j and accept the output value as vij .

7. Each party in S′
j sums up all k values accpeted in step 6, and set it as new j-th share of s. i.e., s′j :=

!k
i=1 vij .

Theorem C.5. (Correctness and Secrecy of RedistributeA) By executing the protocol RedistributeA, new
participating parties receive a sharing of the same secret as the old shares with error probability ((|S|+|S′|)n3/(|F|−
2)+n4|S|/|F|) and it does not reveal any additional information about the secret. It communicates O(|S|2n4 log |F|+
|S′|n3 log |F|) bits and broadcasts O(|S|2n4 log |F|) bits, where S and S′ denote the sets for sharing specification
in two consecutive phases.

Proof. Correctness: The new sharing reconstructs the same secret s, as

"k′

j=1 s
′
j =

"k′

j=1

"k
i=1 vij =

"k
i=1

"k′

j=1 vij =
"k

i=1 vi =
"k

i=1 si = s.

For error probability, as the error probability of VerifyA is 1/(|F|−2) and the one of ShareA is n3|S|/|F|, the pro-
tocol RedistributeA outputs new sharing of s with error probability |S|n3Err(VerifyA)+max|Si|Err(ShareA)+
|S′|n3Err(VerifyA) = (|S|+ |S′|)n3/(|F|− 2) + n4|S|/|F|. Secrecy: Each party forwards their share to the par-
ties who are supposed to have the same share, Step 1 does not reveal additional information about the share.
Step 3 to 6 reply on the secrecy of the protocols VerifyA and ShareA, and Step 7 is local computation, which
does not reveal any. Communication: In Step 1, each party in Si sends their share value to each other, so
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they communicate O(max|Si|2 log |F|) bits for each i = 1, ..., |S|. Thus, the total communication complexity is
O(|S|(n2 log |F|+n3Cost(VerifyA)+nCost(ShareA))+ |S′|(n3Cost(VerifyA))) = O(|S|2n4 log |F|+ |S′|n3 log |F|)
bits and the total broadcast is |S|nCost(ShareA) = O(|S|2n4 log |F|). ⊓⊔

Appendix D Protocols for the MSP-based MPC Scheme [29]

D.1 Information Checking

In [29], they use the variant of [6] for information checking. They use an extension field G over F such that the
field G has minimal size satisfying |G| ≥ d|F|, to allow the sender to produce tags for messages of length at
most d. Note that κ is a security parameter, PS is the sender, PR is the receiver, and PV is the verifier.

Protocol AuthenticateM(PS , PR, PV , w, s) −→ (y, z) or ⊥

Input: the sender PS and the receiver PR both knowing s, the verifier PV , a phase w, and a vector of secret values
s = (s(1), ..., s(l)) ∈ Fl s.t. l ≤ d

Output: a pair of tags (y, z), where y = {yi}κi=1 is a set of authentication tags and z = {zi}κi=1 is a set of verification
tags, or aborted (⊥)

1. PS picks 2κ random elements y1, ..., yκ, u1, ..., uκ ∈ G.

2. For each i = 1, ...,κ, PS determines vi such that the (l + 2) points, (0, yi), (1, s
(1)), ..., (l, s(l)), (ui, vi) lie on a

polynomial of degree l over G.

3. PS sends y1, ..., yκ to PR and z1, ..., zκ to PV , where zi = (ui, vi) for each i.

4. PV partitions the set {1, ...,κ} into two sets I and I of almost equal size (||I|− |I|| ≤ 1), and sends {zi}i∈I to PR.

5. PR checks if the (l + 2) points, (0, yi), (1, s
(1)), ..., (l, s(l)), (ui, vi) lie on a polynomial of degree l, for each zi. PR

broadcasts NOK, if any of these checks fails, or OK, otherwise.

6. Only if PR broadcasts NOK in Step 5, the followings are executed:

a) PR picks one zi that failed the check and broadcasts (i, zi).
b) PS and PV broadcast zi for i received in Step a).
c) Based on the values broadcasted in Step a) and b), a pair {Pi, Pj} of parties is added to the dispute list D, where

Pi, Pj are two parties over PS , PR, PV such that their broadcasted values are different. The protocol is aborted.

7. Output {yi}κi=1 as authentication tags and {zi}κi=1 as verification tags.

If the protocol AuthenticateM succeeds, PR receives the messages and authentication tags and PV receives
verification tags, which obtains no information about the messages. On the other hand, the following protocol
VerifyM allows PV to verify the authenticity of the messages PR requested as below. The security proofs are
shown in [6] and [29].

Protocol VerifyM(PS , PR, PV , w, s
′, (y, z)) −→ s′ or ⊥

Input: a phase w, a candidate vector s′ for s = (s(1), ..., s(l)) ∈ Fl, the authentication tag y that PR has,
and the verification tag z that PV has

Output: s or ⊥

1. PR sends s′ = (s′(1), ..., s′(l)) and authentication tags y = {yi}i∈I to PV .

2. PV broadcasts OK and outputs s′, if the points (0, yi), (1, s
(1)), ..., (l, s(l)), (ui, vi) form a polynomial of degree l, for

any i ∈ I. Otherwise, PV broadcasts NOK and the protocol is aborted.

As shown in [29], the communication complexity of AuthenticateM is O(κ log d), and the one of VerifyM is
O(l + κ log d), with negligible error probability less than κ/(d(2κ − 1)− 1).
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D.2 Secret Sharing

In [29], multiple secrets are generated from a dealer and one pair of authentication and verification tags is
generated for multiple secrets. To compare with additive SS, which a dealer share one secret value per one
execution of the protocol ShareM, we present naturally reduced version of ShareM protocol, where a dealer
shares one secret per execution of the protocol. The original protocols for SS are shown in this section. For
clarifying, we call the original SS scheme in [29] as ShareMultipleM and ReconstructMultipleM, and the
reduced version of SS scheme in this paper as ShareM and ReconstructM. We only present the protocols ShareM

and ReconstructM in this paper.
The protocol ShareM uses the protocol BasicShareM as a subprotocol to make it tolerable against active

adversaries. The protocol BasicShareM [15] is a basic secret sharing protocol using a MSP with matrix M of
size d× e described as above. After the execution of this protocol, each party not in dispute with dealing party
PD will get the shares of the secret value s, while the parties in dispute with PD will receive the all-zero vectors
as their shares, called Kudzu share [6].

[15, 29] Protocol BasicShareM(w, s) −→ [s]w

Input: a phase w and a secret value s ∈ F
Output: the sharing of s in phase w

1. A dealing party PD constructs a vector b := (s, r2, ..., re) ∈ Fe, where ri
$←− F such that all parties in DD will receive

the all-zero vectors as their shares.

2. PD computes s = Mb, where M is the MSP corresponding to ∆.

3. PD sends sj = Mjb to each Pj ∕∈ DD, where Mj denotes the matrix collecting all the rows assigned to Pj ,
i.e., all i’s such that ρ(i) = j.

For active adversaries, an information checking (IC) and dispute control are used. IC for the MSP-based MPC
consists of two protocols, AuthenticateM and VerifyM, described in Appendix D.1. For dispute control, one
more list C is also used, where C is a set of parties known by all parties to be corrupted. That means, the list
D maintains the parties in each dispute list Di, for all i and some of them move to the list C when all parties
agree their being corrupted. Our considering ShareM protocol is as follows.

[29] Protocol ShareM(w, s,P) −→ [s]w

Input: a phase w, a secret value s ∈ F, and a group P of parties receiving shares
Output: the sharing of s in phase w

1. A dealing party PD chooses n extra random values, u(1), ..., u(n), then invokes (n+ 1) BasicShareM (in parallel) for
each {u(i)}ni=1 and s.

2. For each pair PR, PV ∕∈ DD such that {PR, PV } ∕∈ D, AuthenticateM(PD, PR, PV ,vR) is invoked, where vR :=

(sR,u
(1)
R , ...,u

(n)
R ). Note that each sR and u

(i)
R is a vector of length dR so that the length of the vector vR is

dR ∗ (n+ 1).

3. For each PV ∕∈ DD, the followings are performed (in parallel):

4. PV chooses a random vector r ∈ F and broadcasts it.

5. Each party Pi ∕∈ DD sends his share of r ∗ si + u
(V )
i to PV . Recall that si := Mib, where b is a random

vector in Fe with first component s, and u
(V )
i is similarly defined.

6. If the shares received in Step 5 forms a consistent sharing, then PV broadcasts OK, or NOK otherwise.
i.e., PV accepts if the sharing is a vector in the span of the matrix MG , where G = P − C.

7. For the lowest PV who broadcast NOK in Step 6, the followings are executed:
a) PD broadcasts each share of r ∗ sk + u

(V )
k for k = 1, ..., n.

b-1) If this sharing is not in Span(MG), then each party adds PD to his list Di, i.e., PD is added to C, and the
protocol is aborted.

b-2) Otherwise, there is a share of some party Pi ∕∈ DD which is different from the one broadcasted by PD. PV

broadcasts (accuse, Pi, PD, vi, vD), where vi is the share sent by Pi and vD is the value of the share sent by
PD for i-th share.

c) If Pi disagrees with the value vi broadcasted by PV , then Pi broadcasts (dispute, Pi, PV ) so that the pair
{Pi, PV } is added to D, and the protocol is aborted.

d) If PD disagrees with the value vD broadcasted by PV , then PD broadcasts (dispute, PD, PV ), the pair {PD, PV }
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is added to D, and the protocol is aborted.
e) If neither Pi nor PD complained in previous steps, then {Pi, PD} is added to D and the protocol is aborted.

8. Otherwise, the parties in P collectively output [s] := {s1, ..., sn} with {[u(i)]}ni=1.

ReconstructM allows parties in ∀B ∈ Γ to reconstruct the secret which has been shared using ShareM.

[29] Protocol ReconstructM(w, [s]) −→ s or ⊥

Input: a phase w and a sharing of s (collectively), shared by PD

Output: s or aborted

1. Each party in G := P \ C holding a non-Kudzu share of [s] broadcasts its share.

2. If the shares broadcast in Step 1 and Kudzu shares form a consistent sharing, i.e. they are in Span(MG), then
the protocol terminates with the output of 〈λG , [s]G〉, where λG is a vector satisfying M t

GλG = a and [s]G is the
recomposition vector with respect to the indexing function ρ with all the shares of parties in G.

3. If the shares broadcast in Step 1 are inconsistent, i.e., not in Span(MG), then PD broadcasts the index i of each
party he accuses of sending an incorrect share.

4. If PD did not broadcast an index in Step 3, or if the remaining shares after removing the shares that PD accused
are still inconsistent, or if the set of parties in dispute with PD is no longer in ∆, then PD is added to C.

5. If PD ∕∈ C, do the following:
5.a) For each party Pi accused by PD in Step 3, parties invoke Verify(PD, Pi, Pk, w,vi, tags) for each party

Pk ∕∈ Di ∪Dj , where vi = (si,u
(1)
i , ...,u

(n)
i ) as defined in Step 2 of ShareM.

5.b) For any Pi who sent a share to Pk that was different than the share broadcast in Step 1, Pk broadcasts
(accuse, i) and {Pk, Pi} is added to the list D.

5.c) If Pk ∕∈ Di rejects in Step 5.a, then {Pk, Pj} is added to the list D. Otherwise, {PD, Pk} is added to D.
5.d) If the shares of parties not in C (after some parties are added to C) and the Kudzu shares form a consistent

sharing, then those shares are used to reconstruct s. Otherwise, PD is added to C and proceed to Step 6.

6. If PD ∈ C, do the following:
6.a) For all Pj holding non-Kudzu shares and for all Pk ∕∈ Dj , the parties invoke VerifyM(PD, Pj , Pk, w,vj , tags)

where vj = (sj ,u
(1)
j , ...,u

(n)
j ).

6.b) For any Pj who sent a share to Pk that is different than the share broadcast in Step 1, Pk broadcasts
(accuse, j) and {Pk, Pj} is added to the list D.

6.c) The shares of parties not in C are used to reconstruct s as in Step 2.

In Step 2, the correctness holds when B ∈ Γ ⇔ f(B) = 1, which means there is some vector λB such that
M t

BλB = a. Therefore, 〈λB , [s]B〉 = 〈λB ,MBb〉 = 〈M t
BλB ,b〉 = 〈a,b〉 = s, as a = (1, 0, ..., 0) and b =

(s, r2, ..., re). Through out the steps in Reconstruct, parties can detect all the potentially corrupted parties.
Note that whenever the remaining parties in G is no longer in Γ , parties cannot reconstruct the secret value.

For LC-ReconstructM, we add more explanations about the assumptions and how this protocol works in
detail in addition to the one in [29] as it is not trivial. Intuitively, each party first broadcasts its share of q and
reconstruct the value q if all broadcast shares are consistent. However, if they are inconsistent, they divide it to
small chunks and see if which parties sent the wrong values. Since the IC scheme does not satisfy the linearity,
parties holding tags of two shared secrets cannot locally compute the right tag for the linear computation of two
secret values. To be specific, authentication tags can be computed locally by adding two existing authentication
tags because an authentication tag is defined as the y-intercept of a function. However, verification tags cannot
be computed locally as the X coordinate value of each tag is randomly chosen so that the probability of having
same X coordinate values for two verification tags is very low. That is, even though one party knows two
verification tags (u, v) and (u′, v′) for function (of same degree) f and f ′, respectively, (u+ u′, v + v′) is not on
f+f ′ and he cannot locally compute (u, v+f ′(u)) or (u′, f(u′)+v′) without knowing f or f ′. For these reasons,
the protocol LC-Reconstruct uses “divide-and-conquer” method to find the parties who sent the wrong shares
when the shares of q are inconsistent.

Now, let us see the assumptions and settings of this protocol. Assume that each party Pj shared lj secrets,
s(j,1), s(j,2), ..., s(j,lj), and parties want to compute the total summation of multiple linear combinations of these
lj secrets for each Pj . i.e., parties in P want to reconstruct the value q, where q := q(1) + ... + q(n) and

q(j) :=
"lj

i=1 a
(j)
i s(j,i) for some a

(j)
i ∈ F, i = 1, ..., lj for each j = 1, ...,m. Note that m can be up to n. For

instance, if P1 shares l1 secret values, s(1,1), ..., s(1,l1), P2 shares l2 secret values, s(2,1), ..., s(2,l2), and P3 shares
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l3 secret values, s(3,1), ..., s(3,l3) (i.e., j = 3), then we are assuming that the parties in P = {P1, ..., Pn} want to

reconstruct q = q(1)+q(2)+q(3), where q(1) :=
"l1

i=1 a
(1)
i s(1,i), q(2) :=

"l2
i=1 a

(2)
i s(2,i), and q(3) :=

"l3
i=1 a

(3)
i s(3,i).

[29] Protocol LC-ReconstructM(w, [q]) −→ q or ⊥

Input: a phase w and locally computed sharing of q (collectively), [q] = {q1, ...,qn}, where q = q(1) + ...+ q(n)

and each q(j) is a linear combination of lj secrets shared by Pj , i.e., q
(j) :=

!lj
i=1 a

(j)
i s(j,i) for some a

(j)
i

∈ F and {s(j,i)}lji=1: secrets shared by Pj . Note that [s(j,i)] = {s(j,i)1 , ..., s
(j,i)
n } is a sharing of i-th secret

that Pj shared.
Output: q or aborted

1. Each Pi ∕∈ C broadcasts its share qi of [q].

2. a) If the sharing broadcast in Step 1 is consistent (i.e., in Span(MG)), then q is reconstructed by 〈λG , [q]G〉 and
the protocol terminates, where [q]G is the recomposition vector with all the shares qi’s for Pi ∈ G.

b) Otherwise, each Pi ∕∈ C broadcasts its share q
(j)
i of [q(j)], for each Pj .

3. a) If any party Pi broadcasted values such that qi ∕=
!n

j=1 q
(j)
i , then all such parties are added to C and

the protocol terminates.
b) Otherwise, for the lowest j such that the shares of [q(j)] broadcasted in Step 2.b are inconsistent, do one

of the followings depending on Pj ∕∈ C or not.

4. If Pj ∕∈ C, do the followings:
a) Pj broadcasts (accuse, i) for Pi he thinks to have sent an incorrect share.
b) Since [q(j)] is a linear combination of sharings generated by Pj , the parties internally know that

[q(j)] =
!lj

k=1 a
(j)
k [s(j,k)], where each [s(j,k)] was generated with Share and each a

(j)
k is non-zero. From

lj sharings a
(j)
1 [s(j,1)], a

(j)
2 [s(j,2)], ..., a

(j)
lj

[s(j,lj)], Pi accused in Step 4.a broadcasts his shares of
!⌊lj/2⌋

k=1 a
(j)
k [s(j,k)] and

!lj
k=⌊lj/2⌋+1 a

(j)
k [s(j,k)], i.e.,

!⌊lj/2⌋
k=1 a

(j)
k s

(j,k)
i and

!lj
k=⌊lj/2⌋+1 a

(j)
k s

(j,k)
i .

c) If Pi’s two broadcasted shares in Step 4.b do not match up with the previously sent share of their sum

(e.g. q
(j)
i for the first round), then Pi is added to C and the protocol terminates.

d) Pj broadcasts which of shares broadcasted in Step 4.b he disagrees with. If this is a single sharing a
(j)
k [s(j,k)],

then parties proceed Step 4.e. Otherwise, parties return to Step 4.b with the sharings Pj disagreed with.

i.e., If Pj disagrees with some sum a
(j)
k1

[s(j,k1)] + ...+ a
(j)
k2

[s(j,k2)], then parties repeat Step 4.b to Step 4.d with

a
(j)
k1

[s(j,k1)], ..., a
(j)
k2

[s(j,k2)] instead of a
(j)
1 [s(j,1)], ..., a

(j)
lj

[s(j,lj)].

e) At this point, Pi broadcasted its share a
(j)
k s

(j,k)
i of a

(j)
k [s(j,k)] for some k and Pj broadcasted that he

disagrees with this share. For each PV /∈ Dj ∪Di, parties invoke VerifyM(Pj , Pi, PV , w,vi, tags), where

vi = (s
(j,k)
i ,u

(1)
i , ...,u

(n)
i ) as in Step 2 in ShareM protocol.

f) If the shares sent from Pi to PV in VerifyM do not match with the share of a
(j)
k [s(j,k)], then PV broadcasts

(accuse, i), and {Pi, PV } is added to D.
g) {Pi, PV } is added to D for each PV /∈ Di who rejected in the invocation of VerifyM in Step 4.e, or {Pj , PV }

is added to D for each PV who accepted it.
h) At this point, all parties are in dispute with either Pi or Pj and by the Q2 property of ∆, one of Di or Dj is

no longer in ∆. If Di /∈ ∆, Pi is added to C, and if Dj /∈ ∆, Pj is added to C. Then the protocol terminates.

5. If Pj ∈ C, do the followings:
a) Since [q(j)] is a linear combination of sharings generated by Pj , the parties internally know that

[q(j)] =
!lj

k=1 a
(j)
k [s(j,k)], where each [s(j,k)] was generated with ShareM and each a

(j)
k is non-zero. From

lj sharings a
(j)
1 [s(j,1)], a

(j)
2 [s(j,2)], ..., a

(j)
lj

[s(j,lj)], each party Pi /∈ C broadcasts its shares of
!⌊lj/2⌋

k=1 a
(j)
k [s(j,k)]

and
!lj

k=⌊lj/2⌋+1 a
(j)
k [s(j,k)], i.e.,

!⌊lj/2⌋
k=1 a

(j)
k s

(j,k)
i and

!lj
k=⌊lj/2⌋+1 a

(j)
k s

(j,k)
i .

b) Any party Pi whose sum of two broadcasted shares in Step 5.a does not match up with the previously sent

share of their sum (e.g. q
(j)
i for the first round) is added to C and the protocol terminates.

c) At this point, one of two shares broadcasted in Step 5.a is inconsistent. If this is a single sharing a
(j)
k [s(j,k)],

then parties proceed Step 5.d. Otherwise, if this is some sum a
(j)
k1

[s(j,k1)] + ...+ a
(j)
k2

[s(j,k2)], , then parties

return to Step 5.a with a
(j)
k1

[s(j,k1)], ..., a
(j)
k2

[s(j,k2)] instead of a
(j)
1 [s(j,1)], ..., a

(j)
lj

[s(j,lj)].

d) Parties invoke ReconstructM(w, [s(j,k)]) for the single sharing a
(j)
k [s(j,k)] decided in Step 5.c, but skip Step 1,
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as they already broadcasted their shares. As a result of ReconstructM, a new party is added to C and the
protocol terminates.

Note that if m parties only shared one secret s(i,1) for each party Pi, then each q
(j)
i of [q(j)] is already a single

sharing, i.e., q = q(1) + ... + q(m) where q(j) = a(j)s(j,1). Therefore, they can directly jump to Step 4.e or Step
5.d according to whether Pj /∈ C or not.

D.3 Addition and Multiplication

By the linearity of the shares, addition can be done naturally without any communication or broadcast as below.

[29] Protocol AddM(w, [s], [t]) −→ [s+ t]

Input: phase w, shares of s, and shares of t
Output: new shares of s+ t

Precondition: Two values s and t are shared with ShareM

Postcondition: s+ t is shared independently

1. Each party Pi locally adds each share of s to the share of t and keep the result as a share of s + t. i.e., (s+t)i :=
si + ti ∈ Fdi , for each i = 1, ..., n.

The protocol Generate-RandomnessM generates l random elements, which are publicly known in P. This is used
in Generate-Multiplication-TriplesM protocol for error detection.

[29] Protocol Generate-RandomnessM(w, l) −→ r(1), ..., r(l)

Input: a phase w and the non-negative integer l
Output: publicly known l random elements in F

1. Every party Pi /∈ C chooses l random values r(1,i), ..., r(l,i).

2. Each Pi invokes ShareMultiple
M(w, r, Pi), where r := (r(1,i), ..., r(l,i)) to verifiably share these l random values.

3. parties in P call LC-ReconstructM(w, [r(j)]) l times in parallel, to reconstruct l random values, r(1), ..., r(l), where
r(j) :=

!
Pi /∈C r(j,i).

For multiplication gates, the protocol Generate-Multiplication-TriplesM generates random sharings of l
multiplication triples (a, b, c) such that c = ab, without revealing any values of a, b, or c to parties. These random
triple can be used in each multiplication gate, by computing [st] := [c]+[s](t−b)+[t](s−a)−(s−a)(t−b) as in [5].
To generate a sharing of a random triple (a(k), b(k), c(k)), a random element a(k) is generated and each Pi creates

a random triple a(k)b(i,k) = c(i,k). After verifying each triple’s correctness using a triple a(k)!b(i,k) = !c(i,k) also
created by each Pi, the final triple is defined as (a(k),

"n
i=1 b

(i,k),
"n

i=1 c
(i,k)) for each k = 1, ..., l. For simplicity,

we present the reduced version, which generates a sharing of only one multiplication triple, say (a, b, c).

[29] Protocol Generate-Multiplication-TriplesM(w) −→ [(a, b, c)]

Input: phase w
Output: a sharing of random triple (a, b, c) such that c = ab

1. Each Pi /∈ C invokes ShareM (2n+3) times (in parallel), for each a(i), b(i),#b(i), {r(i,j)}nj=1, and {#r(i,j)}nj=1, and ShareM

2n times for generating sharings of 1 (in parallel), denoted by {1(i,j)}nj=1 and {#1(i,j)}nj=1. The sharings of parties in
C are defined to be all-zero sharings.

2. Each party defines and locally computes [a] :=
!n

m=1[a
(m)], [r(i)] :=

!n
m=1[r

(i,m)], [1(i)] :=
!n

m=1[1
(m,i)]+w[1(i,i)],

and [#1(i)] :=
!n

m=1[
#1(m,i)] + #w[#1(i,i)], where each w and #w ∈ F is the unique element that makes [1(i)] and [#1(i)] a

sharing of 1.
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3. Each Pj /∈ C sends its share of [a][b(i)] + [r(i)][1(i)] and [a][#b(i)] + [#r(i)][#1(i)] to Pi /∈ C.
4. Each Pi /∈ C reconstructs D(i) := ab(i)+r(i) and #D(i) := a#b(i)+#r(i) with the shares received in Step 3, and broadcasts

D(i) and #D(i).

5. Each party locally computes [c(i)] := D(i) − [r(i)] and [#c(i)] := #D(i) − [#r(i)].
6. parties invoke Generate-RandomnessM(w, 1) to generate a random element s.

7. Each party /∈ Di broadcasts its share of [$b(i)] := [#b(i)] + s[b(i)], for i = 1, ..., n.

8. If the sharing of some [$b(i)] broadcast in Step 7 is inconsistent, Pi broadcasts (accuse, Pj) for such sharing sent by
Pj /∈ Di. {Pi, Pj} is added to D and the protocol terminates.

9. parties invoke LC-ReconstructM n times (in parallel) to reconstruct z(i) := [a]$b(i) − [#c(i)]− s[c(i)], for i = 1, ..., n.

10. If all reconstructed values in Step 9 are zero, then the protocol terminates successfully with the triple (a, b, c) with
[b] :=

!n
m=1[b

(m)] and [c] :=
!n

m=1[c
(m)]. Otherwise, if any z(i) is non-zero, then proceed into the Step 11 for the

lowest index i such that z(i) ∕= 0.

11. a) Each Pj broadcasts its share of [a(m)], [#r(m,i)], and [r(m,i)] for each Pm /∈ Dj .
b) If Pi sees that the shares of some Pj /∈ Di sent in Step 11.a are inconsistent with the share sent in Step 3 or 9,
then Pi broadcasts (accuse, Pj) and {Pi, Pj} is added to D and the protocol terminates.
c) Each Pm examines the shares (broadcast in Step 11.a) of all sharings that Pm generated. If Pm notices that some
Pj /∈ Dm broadcast an incorrect share, then Pm broadcasts (accuse, Pj) and {Pm, Pj} is added to D and the protocol
terminates.
d) If no one broadcasts, then Pi is added to C and the protocol terminates.

Appendix E Our Protocols for the MSP-based PMPC and Their Proofs

E.1 The Protocol RefreshM

Protocol RefreshM(w, [s]) −→ [s]w+1

Input: a phase w and a sharing of s
Output: new sharing of s in phase w + 1, [s]w+1

1. Every party Pi in P invokes ShareM(w, 0, Pi). (in parallel)

2. Each party locally does component-wise addition with all the shares received in Step 1 and the shares of s, and set
it as the new share of s in phase w + 1.

3. parties in P collectively output [s]w+1.

Theorem E.1. (Correctness and Secrecy of RefreshM) When the protocol RefreshM terminates, all parties
receive new shares encoding the same secret as old shares they had before, and they cannot get any information
about the secret by the execution of the protocol. It communicates O((n2d + n3κ) log |F| + n3κ log d) bits and
broadcasts O(n3 log d+ (n3 + nd) log |F|) bits.
Proof. Correctness: Recall that each party Pi has the vector si = Mib ∈ Fdi as the share of s, where

b = (s, r2, ..., re) for some random values rj ’s. After Step 1, every party Pi receives n vectors {0(j)
i }nj=1 as

shares of 0’s, where 0
(j)
i = Mib

(j) is the share of 0 from each party Pj , where b(j) = (0, $, ..., $) ∈ Fdi with
some random values (denoted by $). Since these n vectors have the same lengths di, each party Pi can locally

compute the vector addition s′i := si +
"n

j=1 0
(j)
i ∈ Fdi . As all the summands of s and n zeros are shared by

ShareM, for s′ = s + 0 + ... + 0, the invocation of LC-ReconstructM(w, [s′]) with [s′] := {s′1, ..., s′n} outputs s′,
which is equal to s. Secrecy: parties communicate only the shares of zeros but nothing about the secret s or
the shares of it, the protocol does not reveal any information about s. Communication: As every party shares
zero to each other, they communicates and broadcasts n ∗ Cost(ShareM) bits. ⊓⊔

E.2 The Protocol RecoverM

Protocol RecoverM(w, [s], R) −→ [s]w+1 or ⊥
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Input: a phase w, a sharing of s, and a set of rebooted parties R
Output: new sharing of s in phase w + 1, [s]w+1, or aborted

1. Invoke ShareRandomM(w) and generate a sharing [r] := {r1, ..., rn} of a random r in F.
2. Each party Pi in P \R locally computes ri + si, the share of r′ := r + s.

3. LC-ReconstructM(w, [r′]) is invoked in P \R and every party in P \R gets r′.

4. RobustReshareM(r′, w,P \R,w,P) is invoked, and each party in P gets [r′]w := {r′1, ..., r′n}.
5. Each party locally computes r′i − ri and sets it as new share of s.

Theorem E.2. (Correctness and Secrecy of RecoverM) The protocol RecoverM allows a set R of parties who
were rebooted to recover their shares encoding the same secret, for any R ∈ ∆, and does not reveal any additional
information about the secret except the shares each party had before the execution of the protocol. It communicates
O(n3κ log d+ (n4 + n3κ+ n2d) log |F|) bits and broadcasts O(n3 log d+ (n3 + nd) log |F|) bits.

Proof. Correctness: For each party, as the length of its share is same as the number of rows in M mapped to
that party, the party can locally compute component-wise addition/subtraction with its shares. By the linearity
of the shares, r′i−ri is the i-th share of r′−r = (r+s)−r = s for each Pi. Thus, all parties in P including parties
in R receive a new sharing of s, the same secret. Secrecy: In Step 3, every party receives the reconstruction
result of r′ = r + s, but as r is random in F and not reconstructed in P, each party has any information about
r. Thus, the value r′ does not reveal any information about s in Step 3. Step 1 and 4 are to share a sharing of
the random elements and Step 2 and 5 are local computations. Therefore, the execution of this protocol does
not reveal any information about the secret s. Communication: The protocol ShareRandomM is invoked by the
group of parties in phase w, where W = {w}. i.e. N = n and |W | = 1. In LC-ReconstructM, each parties only
have l = 1 secret values to share. In RobustReshareM, PS = P \R and PR = P in the same phase w. Thus, the
total number of communication bits is O(n3κ log d+ (n4 + n3κ+ n2d) log |F| and the total number of broadcast
bits is O(n3 log d+ (n3 + nd) log |F|). ⊓⊔

E.3 The Protocol RedistributeM

Protocol RedistributeM(w, [s]w) −→ [s]w+1

Input: a phase w and the sharing of s in phase w, [s]w = {sw1 , ..., swn }
Output: new sharing of s for phase w + 1, [s]w+1 = {sw+1

1 , ..., sw+1
m }

1. Parties in P and P ′ invoke ShareRandomM(W ), where W = {w,w + 1}, to generate two sharings of a random value
r, unknown to every party. That is, parties in P separately receive a sharing [r]w := {rw1 , ..., rwn }, while parties in P ′

receive a sharing [r]w+1 := {rw+1
1 , ..., rw+1

m }, and no one knows the value of r.

2. Each party Pi in P locally computes xi := rwi + swi , where swi is the share of s.

3. Parties in P invoke LC-ReconstructM(w, [x]) with [x] := {x1, ...,xn} and the result is denoted by x. Note that
x = s+ r, where r is random and unknown to everyone.

4. Parties invoke RobustReshareM(x,w,P, w+1,P ′) so that parties in P ′ receive a sharing of x, say [x] := {z1, ..., zm},
for zi := M ′

iX, where the vector X = (x, $, ..., $) ∈ Fe′ with random $’s.

5. Each party P ′
i in P ′ locally computes sw+1

i := zi − rw+1
i , for i = 1, ...,m.

6. Parties in P ′ collectively output {sw+1
1 , ..., sw+1

m } as a sharing of s in new phase.

Theorem E.3. (Correctness and Secrecy of RedistributeM) When the protocol terminates, all parties in new
participating group have the shares of the same secret as the old shares, and the protocol does not reveal any
information about the secret. It communicates O(n2κ log d+nm2κ log d′+((n2+mn)d+(m2+mn)d′+(n3+m3)κ+
(m+n)mnκ+nm3) log |F|) bits and broadcasts O((n3+mn2) log d+nm2 log d′+(n3+(n+m)(mn+d)+nd′) log |F|)
bits, where |P| = n, |P ′| = m, size(M) = d, and size(M ′) = d’.

Proof. Correctness: Since there exists λ such that (M ′
B)

tλ = a for ∀B ∈ Γ , 〈λ, s〉 = 〈λ,M ′
BS〉 = 〈λ,M ′

B(X−
R)〉 = 〈λ,M ′

BX〉 − 〈λ,M ′
BR〉 = 〈(M ′

B)
tλ,X〉 − 〈(M ′

B)
tλ,R〉 = x − r = (s + r) − r = s, where s is the

recomposition vector with shares of parties in ∀B ∈ Γ , S is the recomposition vector with shares of all parties
in P ′, X is the vector defined in Step 4, and R is the vector of length e′ having r of Step 1 for the first
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component and (e′ − 1) random values for the others. Thus, new sharing reconstructs the same secret s as the
input sharing. Secrecy: Communicating values are either random value or the share of random value, and the
shares of secret s are handled only by local computations. Also, since no one knows the value of r throughout
the protocol, reconstruction of x does not reveal any information about the secret value s. Communication:
Apply N = n + m and |W | = 2 for ShareRandomM, l = 1 for LC-ReconstructM, and |PS | = |P| = n and
|PR| = |P ′| = m for RobustReshareM, as the others are the local computations. Assuming m = n and d′ = d,
the total number of communication bits is O(n3κ log d+ (n2d+ n4 + n3κ) log |F|) and the total broadcast bits
are O(n3 log d+ (n3 + nd) log |F|). ⊓⊔

Appendix F Protocols and Proofs for Conversions

F.1 Conversion from Additive PMPC to MSP-based PMPC

Protocol ConvertAdditiveIntoMSP([s]w, w,Sw, w + 1,Sw+1) −→ [s]w+1

Input: the structure S := (P,Γ,Σ,∆, S) in phase w and the sharing {s1, ..., s|S|} of s such that
!|S|

i=1 si = s

Output: the sharing of s for the structure S ′ := (P ′,Γ ′,Σ′,∆′, "M) in phase w, where M ∈ M(d× e) is

corresponding matrix of the MSP "M
1. For each i ∈ {1, ..., |S|} (in parallel):

2. Every party in Si invokes Share
M(si, w + 1,P ′). Denote |Si| sharings of si by [si]

(1), ..., [si]
(|Si|).

3. Parties in P ′ invoke ShareRandomM(w + 1) to generate a sharing of a random number, say r(i).

4. Parties in P ′ locally compute [x
(j)
i ] := [si]

(j) + [r(i)], for j = 1, ..., |Si|.
5. Parties in P ′ execute LC-ReconstructM(w + 1, [x

(j)
i ]) (in parallel) |Si| times for each sharing and choose

a set H ∈ Honest := {P \A|A ∈ ∆} that x
(j)
i = v for all Pkj ∈ (Si ∩H). If there exists multiple such sets,

they choose the minimal set including Pid with lower id.

6. The sharing [s
(min)
i ] of si from Pmin ∈ H is chosen as a sharing of si, say [si].

7. At this point, parties in P ′ hold |S| sharings for each si and each party Pj ∈ P ′ holds |S| vectors of length dj , for
each sharing. Each party locally computes component-wise addition with these vectors and set it as its share of s.
i.e., Pj computes sj :=

!|S|
i=1[si]j ∈ Fdj , where each share is the vector of length dj .

8. Parties in P ′ collectively output a sharing of s, [s]w+1 := {s1, ..., sm}, where m = |P ′|.

Theorem F.1. (Correctness and Secrecy of ConvertAdditiveIntoMSP) When the protocol terminates, all par-
ties in new participating group have the shares of the same secret as the old shares, and the protocol does not
reveal any information about the secret. It communicates O(k((m2 + mn)d + (m3 + m2n)κ + nm3) log |F| +
k(m3+m2n)κ log d) bits and broadcasts O(k(mnd+m3+m2n) log |F|+k(m3+m2n) log d) bits, where |P| = n,
|P ′| = m, |S| = k, and size(M) = d.

Proof. Correctness: Since the adversary chooses one set in ∆ to corrupt, there exists at least one subset of
parties in Honest that includes only honest parties. Thus, parties in P ′ can figure out the right sharing of si from

|Si| reconstruction values {(x(j)
i }|Si|

j=1 for each i. In Step 7, each party Pj ∈ P ′ locally computes the summation

of |S| vectors, sj :=
"|S|

i=1[si]j ∈ Fdj , where [si]j = Mjb
(i) for b(i) := (si, $, ..., $)

t ∈ Fe. By definition, ∃λ ∈ FdB

such that M t
Bλ = a ∈ Fe, for ∀B ∈ Γ ′. When parties in ∀B ∈ Γ ′ reconstruct with their shares, the recomposition

vector with B shares is SB = MBb, where b =
"|S|

i=1 b
(i). Thus, 〈λ,SB〉 = 〈λ,MBb〉 = 〈M t

Bλ,b〉 =(the

first component of b) =
"|S|

i=1 si = s. Secrecy: Since each Si ∈ S can include one or more parties and
some of them might be corrupted, parties who receive the sharing of si need to choose the sharing of honest
party in Si. However, if parties in P ′ reconstruct si, then all parties can compute s by adding all si’s at the
end. Therefore, they generate a sharing of a random element r(i) for each si, and the random number will

never be reconstructed. In Step 4 of the loop, although each party sees the value of x
(j)
i , it does not reveal

anything about si because it is hided by the random number that no one knows. Communications: It costs
|S| ∗ {n ∗ Cost(ShareM) + Cost(ShareRandomM) + n ∗ Cost(LC-ReconstructM)}, as maxi|Si| = |P| = n when Si

include all parties in P. ⊓⊔
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F.2 Conversion from MSP-based PMPC to Additive PMPC

Protocol ConvertMSPIntoAdditive([s]w, w,Sw, w + 1,Sw+1) −→ [s]w+1

Input: the structure S := (P,Γ,Σ,∆, "M) in phase w and the sharing {si}ni=1 of s such that si = Mib for each

i, where M ∈ M(d× e) of the MSP "M computes f and accepts Γ and b = (s, r2, ..., re) for ri
$←− F

Output: a sharing of s for S ′ := (P ′,Γ ′,Σ′,∆′, S′) in phase w, where S′ := {S1, S2, ..., Sk} is the sharing
specification in phase w + 1

1. Each party Pi ∈ P invokes ShareA(w + 1, s
(i)
j ,P ′), for each s

(i)
j of si := (s

(i)
1 , ..., s

(i)
di
).

2. Every party in Sj ∈ S′ forms a vector of shares received in Step 1 from the same party Pi, as sij := ((s
(i)
1 )j , (s

(i)
2 )j , ..., (s

(i)
di
)j).

i.e., Parties in Sj hold n different vectors {s1j , ..., snj} from every party in P and each vector sij has length di.

3. Every parties in Sj forms the recomposition vector Qj with n vectors {s1j , ..., snj} with respect to the indexing

function ρ of "M . Note that the length of Qj is d for all j = 1, ..., k.

4. Each party in Sj sets sj := 〈λ,Qj〉, where λ is the vector such that M tλ = a, for each j = 1, ..., |S|.
5. Players in P ′ collectively output [s]w+1 := {s1, ..., sk}.

Theorem F.2. (Correctness and Secrecy of ConvertMSPIntoAdditive) When the protocol terminates, all par-
ties in new participating group have the shares of the same secret as the old shares, and the protocol does not
reveal any information about the secret. It communicates O(dkn3 log |F|) bits and broadcasts O(dkn3 log |F|) bits,
where |P| = n, |P ′| = m, |S′| = k, and size(M) = d.

Proof. Correctness: After Step 1, each party in Sj of phase w + 1 gets n vectors, {s1j , s2j , ..., snj}, where
sij := ((s

(i)
1 )j , (s

(i)
2 )j , ..., (s

(i)
di
)j) ∈ Fdi is the vector of j-th additive shares of the share that Pi ∈ P has. Since

each party in Sj received each vector sij from all n parties in P, it can rearrange n vectors with respect to the
indexing function ρ and form a vector of length d. Since parties in Sj have all j-th additive share of shares of
phase w, Qj is the vector of j-th shares of each component of s ∈ Fd, where s := Mb, b := (s, r2, ..., re) ∈ Fe

as in Section 5.2. i.e.,
"k

j=1 Qj = s. By the properties of the inner product (over R ⊃ F = GF (p)) that
〈u, v〉 = 〈v, u〉 and 〈au + bv, w〉 = a〈u,w〉 + b〈v, w〉, 〈λ,Q1 + ... +Qk〉 = 〈λ,Q1〉 + ... + 〈λ,Qk〉. Since 〈λ, s〉 =
〈λ,Mb〉 = 〈M tλ,b〉 = 〈a,b〉 = s, and 〈λ, s〉 = 〈λ,Q1 + ...+Qk〉 = 〈λ,Q1〉+ ...+ 〈λ,Qk〉, each 〈λ,Qj〉 can be
set as the j-th additive share of s. Secrecy: It relies on the secrecy of the protocol ShareA. As what each party
receives after the protocol is one additive share of s, it does not reveal any information about the secret until
ReconstructA is executed. Communications: As all other steps are local computations, complexities only rely
on the d ∗ Cost(ShareA). ⊓⊔


