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Abstract. In a zero-knowledge (ZK) proof of partial knowledge, introduced by Cramer, Damg̊ard
and Schoenmakers (CRYPTO 1994), a prover claiming knowledge of witnesses for some k-subset of n
given public statements can convince the verifier without revealing which k-subset. The accompanying
dedicated solution based on secret sharing achieves linear communication complexity for general k, n
and for many natural classes of statements. Especially the case k = 1 and n = 2 (“one-out-of-two”)
has seen myriad applications during the last decades, e.g., in electronic voting, ring signatures, and
confidential transaction systems in general.
In this paper we focus on the discrete logarithm (DL) setting; the prover’s claim pertains to knowledge
of discrete logarithms of k-out-of-n given elements from a group supporting DL-based cryptography.
Groth and Kohlweiss (EUROCRYPT 2015) have shown how to solve the special case k = 1 and general
n with logarithmic communication instead of linear. However, their method, which is original, takes
explicit advantage of k = 1 and does not generalize to k > 1 without losing all advantage over prior
work.
Our contributions are as follows. We show a solution with logarithmic communication for general k, n
instead of just k = 1 and general n from prior work. Applying the Fiat-Shamir transform renders a
non-interactive logarithmic-size zero-knowledge proof. Our approach deploys a novel twist on a basic
primitive from Compressed Σ-Protocol Theory (CRYPTO 2020) that we then utilize to compress a
carefully chosen adaptation of the CRYPTO 1994 approach down to logarithmic size. Interestingly,
even for k = 1 and general n our approach improves prior work as it reduces communication up to
almost a factor 1/2.
We also generalize this to proofs of partial knowledge about compact commitments of long vectors.
Optionally, the prover may at the same time demonstrate his secret to satisfy some arbitrary given
constraint. Finally, we also generalize from threshold to arbitrary access structures.

Keywords: Proofs of Partial Knowledge, One-out-of-Many, Compressed Σ-Protocol Theory, Zero-
Knowledge, Secure Algorithmics, Ring-Signatures.

1 Introduction

Recently, compressed Σ-protocol theory [AC20b] was introduced as a strengthening of Σ-protocol theory. It
inherits the flexibility and versatility of Σ-protocols while compressing their communication complexity from
linear to logarithmic. The main pivot of this theory is a standard Σ-protocol for opening linear forms on
Pedersen vector commitments, i.e., a Σ-protocol for proving that a committed vector x satisfies L(x) = y for
a public linear form L and a public scalar y. By an appropriate adaptation of the techniques from [BCC+16,
BBB+18] this pivotal Σ-protocol is compressed to achieve communication complexity that is logarithmic in
the dimension of x. Additionally a linearization approach to handle non-linearities is described. As one of
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the applications of this theory it was shown how to obtain circuit zero-knowledge protocols with logarithmic
communication complexity for arbitrary arithmetic circuits.

In this work, we consider another application, namely proofs of partial knowledge [CDS94]. These allow a
prover to convince a verifier, in zero-knowledge, to know k-out-of-n secrets, in particular without revealing
which secrets the prover knows. Typically, these secrets are solutions to public instances of intractable
problems, such as the discrete logarithm problem.

In [CDS94], proofs of partial knowledge were introduced and a generic solution, that fits seamlessly with
Σ-protocol theory, was given. Their work requires two main ingredients. First, a Σ-protocol Π for proving
knowledge of one secret. Protocol Π is assumed to be perfectly complete, special sound, special honest verifier
zero-knowledge (SHVZK) and public-coin. Second, the protocol requires a linear n-party threshold secret
sharing scheme with (n−k)-privacy, i.e., an (n−k+1, n)-threshold secret sharing scheme (see, e.g., [CDN15]).
For simplicity we only consider Shamir’s secret sharing scheme [Sha79] in the remainder of this section.

We now describe the approach of [CDS94] for proving knowledge of k-out-of-n secrets. More precisely, we
consider a public set of n problem instances and a secret subset S ⊂ {1, . . . , n} with |S| = k such that the
prover knows the solutions (secrets) for all problem instances i ∈ S. The prover and verifier run n parallel
instantiations of Σ-protocol Π, while the secret sharing scheme allows the prover to use simulated transcripts
for at most (n− k)-out-of-n problem instances. More precisely, the protocol goes as follows.

1. First, the prover simulates n− k accepting transcripts (ai, ci, ri) for i /∈ S. Note that a simulator exists
since Σ-protocol Π is assumed to be SHVZK. Second, the prover computes first messages ai of honest
executions of Σ-protocol Π for problem instances i ∈ S. The prover sends (a1, . . . , an) to the verifier.

2. The verifier sends a challenge c, sampled uniformly at random, to the prover.
3. First, the prover computes ci for i ∈ S such that (c1, . . . , cn) is an (n− k+ 1, n)-secret sharing of c. Note

that ci for i /∈ S were already fixed in Step 1. Second, the prover computes, given first messages ai and
challenges ci, the accepting responses ri for i ∈ S. The prover sends (c1, . . . , cn) and (r1, . . . , rn) to the
verifier.

4. The verifier checks that (ai, ci, ri) is an accepting transcript for all 1 ≤ i ≤ n, and that (c1, . . . , cn) is an
(n− k + 1, n)-secret sharing of c.

The k-out-of-n proof of partial knowledge is a Σ-protocol with communication complexity that is linear
in the number of statements n. Completeness follows since for any challenge c the elements (ci)i/∈S can be
(uniquely) completed to an (n− k + 1, n)-secret sharing (c1, . . . , cn) of c.

Special soundness follows by the special soundness of Π and since any two (n− k + 1, n)-secret sharings
(c1, . . . , cn) and (c′1, . . . , c

′
n) of c 6= c′ differ in at least k coefficients. SHVZK follows since Π is public coin,

i.e., the verifier’s messages are all sampled uniformly at random. Hence, the simulated challenges (ci)i/∈S are
distributed uniformly and the distribution of (c1, . . . , cn) is independent from the set S.

A straightforward generalization shows that this approach applies to the scenario where Π is any public
coin SHVZK proof of knowledge (PoK), possibly with more than 3 moves. Moreover, for simplicity we have
restricted ourselves to a threshold access structure containing all subsets of {1, . . . , n} with cardinality at
least k. This approach generalizes to arbitrary access structures. For details we refer to [CDS94].

Finally we note that, it is possible to formulate a proof of partial knowledge as a circuit satisfiability
problem and solve it with known circuit ZK techniques. However, as this requires the commitment scheme
to be implemented as an arithmetic circuit, this will lead to a more cumbersome approach and at the very
least a considerable overhead. Therefore it is interesting to consider direct approaches that avoid these circuit
formulations. In contrast, the related problem of proving knowledge of n commitment openings of which k
are equal to 0 can easily be solved with known circuit ZK techniques. However, these techniques do not apply
here since the prover does not necessarily know all the commitment openings.

1.1 Contributions

In this work, we consider a novel twist on a basic protocol from Compressed Σ-protocol Theory [AC20b].
Namely, we observe that the compressed Σ-protocol for opening linear forms can be adapted to open arbitrary
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homomorphisms, i.e., proving that a committed vector x ∈ Znq satisfies f(x) = y for a group homomorphism
f : Znq → G and an element y ∈ G. The loss of efficiency is at most a constant factor and the adapted
protocol still achieves a logarithmic communication complexity. This generalized functionality has not been
considered before. However, in the present context of proofs of partial knowledge, it turns out to be rather
useful.

As a warm-up, we argue that this allows a prover to prove, in zero-knowledge, that it knows of n-out-of-n
discrete logarithms, i.e., to prove knowledge of xi such that gxi = Pi for all 1 ≤ i ≤ n, with logarithmic
communication complexity. Namely, by having the prover commit to the vector x = (x1, . . . , xn) of exponents
and open the homomorphisms φi(x) = gxi for 1 ≤ i ≤ n. These homomorphisms evaluate to Pi if and only
if the committed coefficients are equal to the DLs of the Pi’s. The amortization technique to open multiple
linear forms for essentially the price of one [AC20b] directly applies to opening multiple homomorphisms,
thereby we achieve a logarithmic communication. We emphasize that this is merely a warm-up. Standard
amortization techniques namely solve the n-out-of-n case with a constant communication complexity.

Continuing our warm-up, let us now consider the scenario where the prover wants to show, in zero-
knowledge, that it knows k-out-of-n DLs, i.e., the prover claims to know a subset S ⊂ {1, . . . , n} of cardinality
k and exponents xi ∈ Zq such that gxi = Pi for all i ∈ S. We reduce this k-out-of-n case to the n-out-of-n case
by having the prover “eliminate” the exponents that it does not know. To this end the prover uses a vector
(s1, . . . , sn) such that si = 0 for all i /∈ S and commits to the vector (s,y) = (s1, . . . , sn, s1x1, . . . , snxn) ∈
Z2n
q , where yi = sixi is understood to be equal to 0 for i /∈ S. Then the prover shows that it can open the

homomorphisms ψi(s,y) = g−yiP sii to 1 for all 1 ≤ i ≤ n. From this it follows that the prover knows the DL
of P sii for all i. Moreover, the prover has demonstrated knowledge of the DLs of the Pi’s for which si 6= 0.
What remains is for the prover to show that the vector s contains at most n− k zeros. This can be proven
by a direct applications of the circuit ZK techniques from compressed Σ-protocol theory.

However, we follow a slightly different and more efficient approach by applying a carefully chosen adap-
tation of the proofs of partial knowledge from [CDS94]. Namely, instead of letting (s1, . . . , sn) be any vector
with at most n− k zeros we let it be a Shamir secret sharing, with n− k privacy, of 1 of the prover’s choice.
Note that, in this case, the prover can choose si = 0 for any set of at most n − k indices. Such a secret
sharing is uniquely defined by a polynomial p(X) = 1 +

∑n−k
i=1 aiX

i of degree at most n − k. Instead of
committing to the vector (s,y) the prover commits to (a1, . . . , an−k,y) ∈ Z2n−k

q and defines the shares si as
the appropriate affine combinations of the coefficients committed to. Correctness of the vector (s1, . . . , sn)
now automatically follows and amortization over the n homomorphisms applies as before, thereby again
achieving a logarithmic communication complexity.

Altogether, we construct the first direct5 proof of k-out-of-n partial knowledge with logarithmic communi-
cation. Additionally, our protocol improves the communication costs of previous proofs of partial knowledge
that exist for the special case of k = 1 [GK15, BCC+15, Dia20, JM20]. Furthermore, we would like to
emphasize the simplicity of our construction.

Our protocol requires the prover to send exactly 4 dlog2(2n− k + 1)e − 5 group elements and 4 field
elements to the verifier. In contrast, the 1-out-of-n proof of [GK15] requires the prover to send 4 dlog2(n)e
group elements and 3 dlog2(n)e + 1 field elements. Hence, besides generalizing their results, we reduce the
communication costs from roughly 7 log2(n) elements to roughly 4 log2(n) elements. Moreover, the protocol
is interactive and can be made non-interactive by applying the Fiat-Shamir transformation [FS86].

Additionally, we show that our protocols generalize to proofs of partial knowledge about “multi-generator
discrete logarithms” and corresponding Pedersen vector commitments with a logarithmic communication
complexity. Moreover, we show that our proofs of partial knowledge are compatible with circuit ZK protocols
of [AC20b], allowing the prover to demonstrate that his secret information satisfies some arbitrary given
constraint. Finally, we generalize the results from threshold access structures to arbitrary access structures.

5 Informally, we say that the approach is indirect if it formulates a proof of partial knowledge as a circuit satisfiability
problem, thereby implementing the modular exponentiation function as an arithmetic circuit.
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1.2 Related Work

The introduction of k-out-of-n proofs of partial knowledge was accompanied by a generic construction re-
sulting in a communication complexity that is linear in n [CDS94]. Their protocol is interactive and relies
solely on the existence of a public coin honest-verifier zero-knowledge PoK for proving knowledge of a single
secret, i.e., a 1-out-of-1 proof of (partial) knowledge.

The proofs of partial knowledge were shown to be applicable to the construction of group signature
schemes [Cam97]. Group signature schemes [CvH91] allow a member of a group to sign a message without
revealing which member it is. A designated trusted third party, acting as a group manager, is capable of
revoking the anonymity of the signer.

In contrast, ring signature schemes [RST01] do not contain such a revocation mechanism. In a ring
signature scheme a group member can select any ad-hoc subset of group members and anonymously sign a
message on behalf of this subset. Because of this ad-hoc nature a ring signature must contain a list of the
subset’s members and, therefore, its size grows linearly in the size of the ring. However, in many practical
scenario’s the costs of specifying a ring can be amortized over many instances. The proofs of partial knowledge
of [CDS94], or more specifically their 1-out-of-n proofs, together with the Fiat-Shamir [FS86] heuristic allow
for a straightforward construction of ring-signature schemes. The schemes of [RST01] follow a more efficient
approach, which relies on the use of trapdoor one-way functions.

A problem related to proofs of partial knowledge is the set-membership problem, where a prover claims
that it can open a commitment P to an element x in a public set S. In [BG13], a zero-knowledge protocol
for proving set-membership, with logarithmic communication complexity, was introduced. Their approach
is based on the discrete logarithm assumption and uses an efficient zero-knowledge protocol for polynomial
evaluation.

Groth and Kohlweiss [GK15] consider a prover who claims to be able to open at least 1-out-of-n public
commitments to zero. Their solution is a Σ-protocol that works for any additively homomorphic commitment
scheme over Zq and it achieves a logarithmic communication complexity. To describe their approach, let
1 ≤ ` ≤ n be the index of the prover’s secret. The prover commits to each bit of ` and runs dlog2(n)e
standard Σ-protocols, in parallel and on a common challenge, proving that all these commitments can indeed
be opened to a binary value. In addition, the prover shows that the responses of these parallel Σ-protocols
satisfy some multiplicative relation, which completes the protocol. This logarithmic 1-out-of-n protocol gives
rise to an efficient ring signature scheme. However, it does not have a straightforward generalization to
k-out-of-n proofs of partial knowledge.

By considering m-ary decompositions, instead of binary, the communication efficiency can be further
improved [BCC+15]. Recently, a generalization from 1-out-of-n proofs to “many-out-of-many” proofs was
given [Dia20]. This generalization considers a prover that claims to know the opening of all commitments
in one of the orbits of a public permutation of n public commitments. However, the protocol only works for
permutations with orbits of equal size. Since the permutation is public and of this specific form, this protocol
does not constitute a general k-out-of-n proof of partial knowledge.

Further efficiency improvements to the 1-out-of-n proofs were introduced in [JM20]. Their protocol applies
a hierarchical approach containing two layers of 1-out-of-n proofs reducing the prover’s computational efforts.
Finally, a non-trivial adaptation of the techniques from [GK15, BCC+15] has resulted in a 1-out-of-n proof
of partial knowledge based on lattice assumptions [ESS+19].

An application of proofs of partial knowledge, and in particular ring signature schemes, is a confidential
decentralized payment system such as Zerocoin [MGGR13]. Zerocoin was proposed as an extension of Bitcoin
to provide stronger privacy guarantees. A Zerocoin transaction requires a ZKPoK that the transferred coin
is an element of a public set of unspent coins. The application of the protocol of [GK15] was proposed as an
improvement of the original Zerocoin protocol. Other decentralized payment systems that rely on 1-out-of-n
proofs to provide confidentiality are, e.g., Lelantus [Jiv19] and Zether [BAZB20]. In [Dia20], it is shown
how their generalization to many-out-of-many proofs improves the communication complexity of the Zether
payment system. They show that many practical scenarios require more general proofs of partial knowledge
than only 1-out-of-n proofs.

4



Alternatively, proofs of partial knowledge can be constructed via circuit ZK protocols. A standard ap-
proach is to incorporate the group elements Pi into a Merkle tree [Mer80], and ask the prover to prove knowl-
edge of k exponents xi such that the group elements gxi are the leafs of k valid, but secret, Merkle paths. In
this case, the arithmetic circuit implements, for all 1 ≤ i ≤ k, a composition of the exponentiation gxi and
log2(n) hash function evaluations and is therefore of size |C| = O (k log(n)). The application of circuit ZK
protocols with logarithmic communication complexity therefore results in proofs of partial knowledge with
communication complexityO (log(k) + log(log(n))). Replacing Merkle trees with RSA-accumulators [BdM93]
allows for a further reduction in the asymptotic communication complexity [STY00]. However, these ap-
proaches do require the arithmetic circuit to implement the exponentiations gxi . In suitable groups G, still
supporting DL-based cryptography, the exponentiation gxi can be computed by the evaluation of an arith-
metic circuit with approximately 1000 multiplication gates [HBHW20]. This indirect approach thus leads to
sizable arithmetic circuits. In this work, we focus on a direct approach that omits the need for arithmetic
circuit formulations of exponentiations and hash functions.

1.3 Organization of the Paper

The remainder of paper is organized as follows. In Section 2, we recall the notation and some of the results
from compressed Σ-protocol theory [AC20b]. In Section 3, we describe our twist on the pivotal Σ-protocol
from [AC20b]. In Section 4, we combine this generalization with an adaptation of the techniques from [CDS94]
to construct our proof of partial knowledge. Finally, in Section 5, we discuss a number of extensions and
generalizations of our proofs of partial knowledge.

2 Preliminaries

2.1 Interactive Proofs

We briefly introduce the concept of an interactive proof6 and some of the basic (security) properties. An
interactive proof Π for relation R is a protocol between prover P and a verifier V. It takes as public input
the statement x and as prover’s private input the witness w, which is written as Input(x;w). As the output
of the protocol the verifier either accepts or rejects the prover’s claim of knowing a witness w. Π is called
(perfectly) complete if on any input (x;w) ∈ R the verifier always accepts. Evaluating Π on input (x;w) is
also written as Π(x;w).

An interactive proof with µ communication rounds is also called a µ-move protocol. Note that the final
message is always sent from the prover to the verifier. The messages communicated in one protocol evaluation
are also referred to as a conversation or a transcript. If all the messages from the verifier to the prover consist
of random coins chosen by the verifier, one speaks of a public-coin protocol. All our protocols will be public-
coin and thereby suitable for the Fiat-Shamir transformation [FS86], which turns public-coin interactive
proofs into non-interactive protocols.

An interactive proof Π for relation R is said to have witness extended emulation [Lin03] if there exists
algorithm χ (witness extended emulator) that runs in expected polynomial time and does the following. The
algorithm χ, on input x and given rewindable oracle access to a (possibly dishonest) prover P∗, outputs
a transcript and a witness w such that: (1) the emulated transcript is statistically indistinguishable from
conversations between P∗ and an honest verifier V, and (2) the probability that the emulated transcript is
accepting and the witness w is not a valid witness for x is negligible. An interactive protocol that has witness
extended emulation is said to be a proof of knowledge (PoK).

We also consider the computational version of a PoK, where witness extended emulation is required to
hold only for computationally bounded dishonest provers under a computational hardness assumption. In
those cases, the relation R typically depends on a (possibly implicit) security parameter, as well as on some
additional public parameters that are assumed to be chosen according to a specific probability distribution,

6 In contrast to the original definition [GMR85], we do not require an interactive proof to be complete and sound
by definition; instead, we consider those (and other) properties as desirable security properties.
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and the success probability of the prover is then understood to be on average over the choice of these public
parameters. These computational variants of proofs of knowledge are also called arguments of knowledge.

Protocol Π is called honest verifier zero-knowledge (HVZK) if there exists an efficient simulator that,
on input a statement x that admits a witness w, outputs an accepting transcript, such that the simulated
transcripts follow exactly the same distribution as transcripts between an honest prover and an honest
verifier.

A 3-move public-coin interactive proof is called a Σ-protocol. The 3 messages are then typically denoted
(a, c, z) where c is called the challenge. For a HVZK Σ-protocol the simulator often proceeds by first selecting
a random challenge c and then preparing the messages a and z; in this case, we speak of special honest verifier
zero-knowledge (SHVZK).

A Σ-protocol is called k-special sound if there exists an efficient algorithm that, on input any statement
x and k accepting transcripts (a, c1, z1), . . . , (a, ck, zk) with common first message a and pairwise distinct
challenges ci, outputs a witness w for x.

More generally, we consider (2µ+ 1)-move public-coin protocols, in which all the verifier’s messages are
uniformly random challenges. These protocols are called (k1, . . . , kµ)-special sound if there exists an efficient
algorithm that, on input any statement x and a (k1, k2, . . . , kµ)-tree of accepting transcripts, outputs a
witness w for x. A (k1, k2, . . . , kµ)-tree of accepting transcripts is a set of

∏µ
i=1 ki accepting transcripts that

are arranged in the following tree structure. The nodes in this tree correspond to the prover’s messages and
the edges correspond to the verifier’s challenges. Every node at depth i has precisely ki children corresponding
to ki pairwise distinct challenges. Every transcript corresponds to exactly one path from the root node to a
leaf node.

We note that in some public-coin protocols the verifier sends µ challenges in less than 2µ+ 1 rounds, i.e.,
some of the verifier’s messages contain more than one challenge. For these protocols, we also consider the
(k1, . . . , kµ)-special soundness property. In this case, a (k1, k2, . . . , kµ)-tree of accepting transcripts contains
nodes that do not correspond to a message sent from the prover to the verifier.

Let us assume that the challenges are sampled uniformly at random from challenge sets with a cardinality
that is exponential in the security parameter. In this work all challenge sets are equal to Zq ∼= Z/(qZ) for
some prime q that is understood to be exponential in the security parameter. Hence, for the protocols in this
work this assumption is satisfied. Then witness extended emulation is known to follow from (k1, k2, . . . , kµ)-
special soundness [BCC+16]. In this work, we will show that all protocols are (k1, k2, . . . , kµ)-special sound
for some µ and some list of ki’s, from which witness extended emulation therefore follows.

2.2 Multi-Exponentiation and The Pedersen Vector Commitment Scheme

We consider statements over the ring Zq ∼= Z/(qZ) with q prime. We let G be an Abelian group of prime
order q for which we write its group operation multiplicatively. We write vectors in Znq or Gn in boldface,
i.e., x = (x1, . . . , xn) ∈ Znq and g := (g1, . . . , gn) ∈ Gn, and we write gx for the multi-exponentiation

gx :=

n∏
i=1

gxi
i ∈ G .

Furthermore, for vectors x,y ∈ Znq , g,h ∈ Gn and scalar c ∈ Zq, we have the following component-wise
operations:

g ∗ h := (g1h1, g2h2, . . . , gnhn) ∈ Gn, gc := (gc1, g
c
2, . . . , g

c
n) ∈ Gn and x ∗ y := (x1y1, x2y2, . . . , xnyn) ∈ Znq .

Additionally, assuming n is even, we write gL := (g1, . . . , gn/2),gR := (gn/2+1, . . . , gn) ∈ Gn/2 and xL :=

(x1, . . . , xn/2),xR := (xn/2+1, . . . , xn) ∈ Zn/2q , for the left and right halves of these vectors.
We let GT be another Abelian group and denote the set of all group homomorphisms f : Znq → GT by

Hom(Znq ,GT ). Typically GT = G or GT = Zq, in the latter case Hom(Znq ,GT ) = Hom(Znq ,Zq) is the set of
linear forms on Znq . For any homomorphism f : Znq → GT it holds that its image im(f) ⊂ GT is a Zq-module.
For this reason, and without loss of generality, we assume that GT is a Zq-module.
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Moreover, we define the left and right part of f as follows:

fL : Zn/2q → GT , x 7→ f(x, 0),

fR : Zn/2q → GT , x 7→ f(0,x),
(1)

where, e.g., (x, 0) ∈ Znq is the vector x appended with n/2 zeros.
In this work we also consider the Pedersen vector commitment scheme. This commitment scheme allows

a prover to (compactly) commit to an n-dimensional vector x ∈ Znq in a single group element P ∈ G. We
recall that a Pedersen vector commitment P is simply a multi-exponentiation, i.e.,

P = hγgx,

for public parameters h ∈ G and g ∈ Gn and for a (private) γ ∈ Zq sampled uniformly at random by the
prover.

The Pedersen vector commitment scheme is perfectly hiding and computationally binding under the
discrete logarithm assumption. More precisely, the commitment scheme is binding under the assumption
that a prover does not know a non-zero vector (γ, x1, . . . , xn) ∈ Zn+1

q such that

hγ
n∏
i=1

gxi
i = 1.

Such a non-zero vector (γ, x1, . . . , xn) is also called a non-trivial discrete log relation for group elements
h, g1, . . . , gn. From here on forward, we assume that these group elements have been sampled uniformly at
random in a setup phase and that the prover does not know a non-trivial discrete logarithm (DL) rela-
tion. These group elements form the set of public parameters for all our protocols. We say a protocol is
computationally (k1, . . . , kµ)-special sound, under the discrete logarithm assumption, if (k1, . . . , kµ)-special
soundness holds under the assumption that a prover does not know a non-trivial DL relation between the
public parameters.

3 Proving Group Homomorphisms on Multi-Exponentiations

In this section, we construct an interactive proof protocol for proving that a secret multi-exponent x ∈ Znq for
a public multi-exponentiation P = gx ∈ G is mapped to a given public value y under an arbitrary but given
group homomorphism f : Znq → GT . Our new protocol has a communication complexity that is logarithmic
in the dimension n. By considering one of the coordinates of x to be “the randomness”, and considering an
f that ignores this coordinate, we immediately get a protocol that applies to Pedersen vector commitments
and proves that the committed vector satisfied the relation defined by the considered group homomorphism
and the target value P .

Our approach for constructing said protocol is as follows. We start with the canonical Σ-protocol for
the considered problem of proving f(x) = y (Section 3.1), and we then adapt the compression mechanism
of [AC20b] such that it is applicable to our setting. Indeed, our setting is a generalization of [AC20b], which
applies to the special case where f is a linear form L : Znq → Zq. This then results in a compressed Σ-protocol
that features the claimed logarithmic complexity (Section 3.3).

Later in the section, we also discuss a couple of (standard) amortization techniques applied to our protocol,
for instance for proving fi(x) = yi for several group homomorphisms fi at (essentially) the cost of proving
one.

3.1 The Standard Σ-protocol for Opening Homomorphisms

We consider the problem of proving that the multi-exponent x of a multi-exponentiation P = gx is mapped
to a certain value y under a given homomorphism f ∈ Hom(Zq,GT ), i.e., that f(x) = y, without revealing x.
More concretely, we want to construct PoK protocols for the relation

R =
{ (
P ∈ G, f ∈ Hom(Znq ,GT ), y ∈ GT ; x ∈ Znq

)
: P = gx, y = f(x)

}
. (2)
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Protocol 1, denoted by Π0, is the canonical Σ-protocol for this relation R, following the generic construc-
tion design for q-one-way group homomorphisms7 [Cra96, CD98]. The properties of Π0, known to hold for
this generic construction, are summarized in Theorem 1. Note that the only difference between this protocol
and Protocol 2 of [AC20b] is that here we consider multi-exponentiations and general group homomorphisms
instead of Pedersen commitments and linear forms.

Theorem 1 (Homomorphism Evaluation). Π0 is a Σ-protocol for relation R. It is perfectly complete,
special honest-verifier zero-knowledge and unconditionally special sound. Moreover, the communication costs
are:

– P → V: 1 element of G, 1 element of GT and n elements of Zq.
– V → P: 1 element of Zq.

Protocol 1 Σ-protocol Π0 for relation R
Opening a homomorphism on a Pedersen vector commitment.

Public Parameters : g ∈ Gn,
Input(P, f, y;x)

P = gx ∈ G
y = f(x) ∈ GT

Prover Verifier

r←R Znq
A = gr

t = f(r)
A,t−−−−−−→

c←R Zq
c←−−−−−−

z = cx + r
z−−−−−−→

gz ?
= AP c

f(z)
?
= cy + t

3.2 Compression mechanism

The Σ-protocol Π0 for opening homomorphisms has a linear communication complexity. We now deploy
the techniques from [BCC+16, BBB+18, AC20b] to compress the communication complexity from linear to
logarithmic. A first observation is that the verifiers final check verifies that

(AP c, f, cy + t; z) ∈ R ,

i.e., that the prover’s final message z is a witness with respect to the same relation R for the statement
(AP c, f, cy + t); which is computed by the verifier. This is no coincidence; this holds generically for this
standard construction of Σ-protocols for q-one-way group homomorphisms. The final message of Π0 can
therefore be understood as a trivial PoK for relation R, and replacing this trivial PoK by a more efficient one
will reduce the communication complexity with affecting security (significantly). In particular, the alternative
PoK does not have to be zero-knowledge since the trivial one obviously is not.

7 Here, applied to the q-one-way group homomorphisms Znq → G×GT , x 7→ (gx, f(x)).
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Our compression mechanism is thus an interactive proof Π1 for relation R that is not zero-knowledge
anymore but has improved efficiency. The compression mechanism is very similar to the one used in [AC20b].
The difference is that we consider the more general case of opening arbitrary group homomorphisms, rather
than restricting ourselves to linear forms. This generalization requires a minor adaptation. The first step in
the compression of [AC20b] is namely to incorporate the linear form evaluation into the multi-exponentiation
as an additional exponent on a new generator k ∈ G. This reduction step does not apply to the general case
of opening arbitrary group homomorphisms, and is therefore omitted in our protocols. For this reason we
directly apply (a minor adaptation of) the main compression mechanism of [AC20b]; ultimately this will
increase the communication costs of the compressed Σ-protocol by roughly a factor two when compared to
opening linear forms. However, in contrast to the compressed Σ-protocol for opening linear forms [AC20b],
our protocol is unconditionally sound rather than computationally.

The compression mechanism, i.e., our protocol Π1 for relation R that has improved efficiency but is not
zero-knowledge, is described in Protocol 2 below. Here, n is assumed to be even, which is without loss of
generality (if not the witness can be appended with a zero). Also, recall that xL := (x1, . . . , xn/2) equals the
left half of vector x ∈ Znq and that fR(xL) := f(0, . . . , 0,xL), etc.

Before discussing the security of Π1 as a proof of knowledge in Theorem 2, we emphasize the following two
important properties of Π1. The size of the response has halved compared to the original protocol Π0, and
thereby the communication costs are reduced by roughly a factor two, and second, verifying the correctness
of the response is again by means of checking whether it is a witness for the same relation R, but now for

the group homomorphism f ′ := cfL + fR ∈ Hom
(
Zn/2q ,GT

)
.

Protocol 2 Compression Mechanism Π1 for relation R1.

Public Parameters : g
Input(P, f, y;x)

P = gx ∈ G
y = f(x) ∈ GT

Prover Verifier

A = gxL
R , a = fR(xL)

B = gxR
L , b = fL(xR)

A,B,a,b−−−−−−−−−−−−−−→
c←R Zq

c←−−−−−−−−−−−−−−
g′ := gcL ∗ gR ∈ Gn/2

Q := AP cBc
2

f ′ := cfL + fR
z = xL + cxR

z−−−−−−−−−−−−−−→ (g′)
z ?

= Q

f ′(z)
?
= a+ cy + c2b

Theorem 2 (Compression Mechanism). Let n ∈ Z>0 be even. Then Π1 is a 3-move protocol for relation
R. It is perfectly complete and unconditionally 3-special sound. Moreover, the communication costs are:

– P → V: 2 elements of G, 2 elements of GT and n/2 elements of Zq.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special Soundness: We show that the protocol is 3-special sound, i.e., there exists an efficient algorithm

that on input three accepting transcripts computes a witness for relation R.
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Let (A,B, a, b, c1, z1), (A,B, a, b, c2, z2) and (A,B, a, b, c3, z3) be three accepting transcripts for distinct
challenges c1, c2, c3 ∈ Zq. Let a1, a2, a3 ∈ Zq be such that 1 1 1

c1 c2 c3
c21 c

2
2 c

2
3

a1

a2

a3

 =

0
1
0

 .

Note that since the challenges are distinct, this Vandermonde matrix is invertible and a solution to this
equation exists. We define z̄ =

∑3
i=1 ai(cizi, zi) for which it is easily verified that

gz̄ = P and f(z̄) = y.

Hence, z̄ is a witness for relation R, which completes the proof.

3.3 Compressed Σ-protocol

Finally, we compose Σ-protocol Π0 and its compression mechanism Π1 to obtain a compressed Σ-protocol
for opening homomorphisms on multi-exponentiations gx such as Pedersen vector commitments. We follow
the notation of [AC20b] and write Πb �Πa for the composition of two composable interactive proof Πa and
Πb. Protocols Πa and Πb are composable if protocol Πb is a PoK for the prover’s final message of protocol
Πa. Recall that this composition means that the final message of protocol Πa is replaced by an execution of
protocol Πb.

We assume that n is a power of two, if it is not the witness can be appended with zeros such that its
dimension is a power of 2. For n ≥ 2 it is optimal to omit the compression mechanism, for this reason it
is assumed that n > 2. To minimize the communication complexity we recursively apply the compression
protocol Π1 until the dimension of the witness is reduced to four, i.e., µ = dlog2(n)e − 2 times. For this
composition we write

Πc = Π1 � · · · �Π1︸ ︷︷ ︸
µ times

�Π0. (3)

Theorem 3 captures the security and efficiency properties of Protocol Πc.

Theorem 3 (Compressed Σ-Protocol for Opening Homomorphisms). Let n > 2, then Πc is a
(2µ + 3)-move protocol for relation R, where µ = dlog2(n)e − 2. It is perfectly complete, special honest-
verifier zero-knowledge and unconditionally (2, k1, . . . , kµ)-special sound, where ki = 3 for all 1 ≤ i ≤ µ.
Moreover, the communication costs are:

– P → V: 2 dlog2(n)e − 3 elements of G, 2 dlog2(n)e − 3 elements of GT and 4 elements of Zq.
– V → P: dlog2(n)e − 1 elements of Zq.

Proof. Completeness follows in a straightforward manner.

Special Honest Verifier Zero-Knowledge follows since Π0 is SHVZK. A simulator for Πc runs
the simulator for Π0, and replaces the final messages of the simulated transcripts by honest executions of
Π1 � · · · �Π1.

Special Soundness: Since the protocol is the composition of protocols that are 2- or 3-special sound,
it is easily seen that Πc is (2, 3, . . . , 3)-special sound, i.e., there exists an efficient algorithm that on input a
(2, 3, . . . , 3)-tree (depth µ+ 1) of 2 · 3µ accepting transcripts computes a witness for relation R.

Remark 1. We explicitly emphasize once more that the above and below results on opening homomorphisms
f(x) on multi-exponentiations gx immediately carry over to opening homomorphisms f(x) on Pedersen
vector commitments gxhγ , simply by renaming the involved variables in the obvious way.
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3.4 Amortization Techniques

This section describes two standard amortization techniques. First, we consider the scenario where a prover
wishes to open one homomorphism f on many multi-exponentiations P1, . . . , Ps, i.e., we consider the relation

RAmorExp =
{

(P1, . . . , Ps, f, y1, . . . , ys; x1, . . . ,xs) : P1 = gx1 , y1 = f(x1), . . . , P1 = gx1 , ys = f(xs)
}
. (4)

The standard (amortized) Σ-protocol for relation RAmorExp is similar to Σ-protocol Π0 for relation R:
it has the same first two moves, but then the prover’s final response is z = r +

∑s
i=1 c

ixi and the verifier
checks that gz = AP c1 · · ·P c

s

s and f(z) = t + cy + · · · + csys. The communication costs of the amortized
Σ-protocol are exactly equal to the communication costs of protocol Π0 and the compression mechanism
applies as before. We denote the compressed amortized Σ-protocol for relation RAmorExp by ΠAmorExp. Its
main properties are summarized in Theorem 4.

Theorem 4 (Amortization over Many Multi-Exponentiations). Let n > 2, then ΠAmorExp is a
(2µ + 3)-move protocol for relation RAmorExp, where µ = dlog2(n)e − 2. It is perfectly complete, special
honest-verifier zero-knowledge and unconditionally (s + 1, k1, . . . , kµ)-special sound, where ki = 3 for all
1 ≤ i ≤ µ. Moreover, the communication costs are:

– P → V: 2 dlog2(n)e − 3 elements of G, 2 dlog2(n)e − 3 elements of GT and 4 elements of Zq.
– V → P: dlog2(n)e − 1 elements of Zq.

Second, we consider the amortization scenario where a prover wishes to open many homomorphisms
f1, . . . , fs on one multi-exponentiation P , i.e., we consider a compressed Σ-protocol for the following relation

RAmorHom =
{

(P, f1, . . . , fs, y1, . . . , ys; x) : P = gx, y1 = f1(x), . . . ys = fs(x)
}
. (5)

This scenario is reduced to the original scenario of opening one homomorphism on one commitment
by means of a standard polynomial amortization trick. In the first move of the protocol, the verifier sends
a random challenge ρ ∈ Zq to the prover, and then Πc is executed on the instance given by P = gx,
fρ = f1 + ρf2 + · · ·+ ρs−1fs and yρ = y1 + ρy2 + · · ·+ ρs−1ys.

The core idea behind this construction is the observation that if x satisfies fρ(x) = yρ for s distinct choices
of ρ then fi(x) = yi for all i ∈ {1, . . . , s}. A caveat is that when trying to extract such an x by rewinding
s− 1 times and choosing different ρ’s, one might potentially extract different choices of x’s. However, since
gx = P must still hold, this would lead to a non-trivial DL relation among the gi’s, and thus cannot happen
when the prover is computationally bounded.

The properties of this protocol for relation RAmorHom, denoted by ΠAmorHom, are summarized in Theo-
rem 5. Note that the communication from prover to verifier is identical to that of protocol Πc. However, the
polynomial amortization trick degrades the soundness from unconditional to computational because of the
above reason.

Theorem 5 (Amortization over Many Homomorphisms). Let n > 2, then ΠAmorHom is a (2µ+ 4)-
move protocol for relation RAmorHom, where µ = dlog2(n)e−2. It is perfectly complete, special honest-verifier
zero-knowledge and computationally (s, 2, k1, . . . , kµ)-special sound, under the discrete logarithm assumption
in G, where ki = 3 for all 1 ≤ i ≤ µ. Moreover, the communication costs are:

– P → V: 2 dlog2(n)e − 3 elements of G, 2 dlog2(n)e − 3 elements of GT and 4 elements of Zq.
– V → P: dlog2(n)e elements of Zq.

In the above claim on the computational special soundness we take it as understood g1, . . . , gn are chosen
uniformly at random in G.
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Proof. Completeness and SHVZK follow directly from the corresponding properties of Protocol Πc.
Special Soundness: From the proof of Theorem 3 we know that for every ρ there exists an efficient

algorithm that, from any (2, 3, . . . , 3)-tree (depth µ + 1) of accepting transcripts, extracts a witness z such
that gz = P and fρ(z) = y1 + ρy2 + · · ·+ ρs−1ys.

We show that there also exists an efficient algorithm that, from s exponents z1, . . . , zs ∈ Znq such that

gzi = P and fρi(zi) = y1 + ρiy2 + · · ·+ ρs−1
i ys for all i and for pairwise distinct challenges ρi ∈ Zq, extracts

either a non-trivial DL-relation for the public parameters g or a witness for relation RAmorHom. Combin-
ing these two results shows that Protocol ΠAmorHom is (s, 2, 3, . . . , 3)-special sound from which knowledge
soundness follows from [AC20b].

First suppose that there exist 1 ≤ i, j ≤ s such that zi 6= zj . Then gzi = P = gzj gives a non-trivial
DL-relation, which completes the proof for this case.

Now suppose that zi = z for all i. Let (ai,j)1≤i,j≤s be the inverse of the Vandermonde matrix generated
by the challenges ρ1, . . . , ρs, i.e.,  1 · · · 1

...
. . .

...
ρs1 · · · ρss


a1,1 · · · a1,s

...
. . .

...
as,1 · · · as,s

 = Is.

Note that this Vandermonde matrix is invertible because the challenges are pairwise distinct. Then for all
1 ≤ i ≤ s it holds that

fi(z) = a1,ifρ1(z) + · · ·+ as,ifρs(z) = yi.

Hence z is a witness for relation RAmorHom which completes the proof.

4 Proving Partial Knowledge

Here, we show our new efficient proofs for partial knowledge, i.e., for proving knowledge of k-out-of-n discrete
logarithms (Section 4.1), and for proving knowledge of k-out-of-n commitment openings (Section 4.2). As we
will see, these new proofs of partial knowledge follow quite easily by exploiting the core idea of the general
construction in [CDS94] and combining it with the techniques and results from the section above. This further
demonstrates the strength of combining the compression technique introduced by [BCC+16, BBB+18] with
general Σ-protocol theory.

4.1 Partial Knowledge of DL’s

In this section we construct a simple SHVZK proof of knowledge for proving knowledge of k-out-of-n discrete
logarithms. Our protocol inherits the logarithmic communication from the compressed Σ-protocol(s) from
the previous section. More precisely, we give a SHVZK protocol for the following relation

RPartial =
{ (
g, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n};S ⊂ {1, . . . , n},x ∈ Znq

)
:

|S| = k, Pi = gxi for all i ∈ S
}
.

(6)

Note that, for notational convenience, the witness x is defined as a vector in Znq while only the k coefficients
(xi)i∈S are relevant in this relation.

The protocol goes as follows. First, the prover computes the unique polynomial

p(X) = 1 +

n−k∑
j=1

ajX
j ∈ Zq[X]

of degree at most n− k such that p(0) = 1 and p(i) = 0 for all i /∈ S.
Second, the prover computes

ti := p(i)xi

12



for i ∈ {1, . . . , n} (recall that p(i) vanishes for those i for which the prover does not know xi), and sends a
Pedersen commitment P ∈ G to the vector

y = (a1, . . . , an−k, t1, . . . , tn) ∈ Z2n−k
q

to the verifier. Here, the commitment P is computed as P = gyhγ with respect to public parameters
g = (g1, . . . , g2n−k) ∈ G2n−k and h ∈ G for which no non-trivial DL-relations are known to the prover, i.e.,
so that the commitment is indeed binding.

Finally, the prover proves to the verifier that the committed vector y satisfies

gti = P
p(i)
i (7)

for all i ∈ {1, . . . , n}, where the exponent p(i) on the right-hand-side term is understood as the evaluation

of the affine function (w1, . . . , wn−k) 7→ 1 +
∑n−k
j=1 wji

j applied to a1, . . . , an−k. Thus, rewriting (7) as

gtiP
−

∑
j aji

j

i = Pi (8)

we obtain an expression where the left hand side is a group homomorphism f applied to the committed
committed vector y, and thus the prover can prove one instance of (7) by means of the compressed protocol
from Theorem 3; respectively, for improved efficiency, it can invoke the amortized protocol ΠAmorHom from
Theorem 5 for proving that (7) holds for all i ∈ {1, . . . , n}.

The resulting protocol, denoted ΠPartial, is summarized below in Protocol 3. We note that, in line with
the amortized protocol it uses as a subroutine, it is computationally special sound, based on the assumption
that the prover does not know any non-trivial DL-relations among the public parameters. Formally, we have
the following security and efficiency properties.

Protocol 3 SHVZK Proof of Partial Knowledge ΠPartial for Relation RPartial

Proving knowledge of k-out-of-n discrete logarithms.

Public Parameters : g ∈ G2n−k, h ∈ G

Input (g, P1, . . . , Pn, k;S,x)

S ⊂ {1, . . . , n}, |S| = k
gxi = Pi for i ∈ S

Prover Verifier

p(X) = 1 +
∑n−k
i=1 aiX

i s.t.
p(i) = 0 ∀i /∈ S

y = (a1, . . . , an−k,

p(1)x1, . . . , p(n)xn)
γ ←R Zq, P = gyhγ

P−−−−−−−−−−−−−−−−−−→

Run ΠAmorHom to prove that y satisfies

gyi+n−kP
−

∑
j yji

j

i = Pi ∀ i ∈ {1, . . . , n}

Theorem 6 (k-out-of-n SHVZK Proof of Partial Knowledge). Let n > 1, then ΠPartial is a (2µ+5)-
move protocol for relation RPartial, where µ = dlog2(2n− k + 1)e−2. It is perfectly complete, special honest-
verifier zero-knowledge and computationally (n, 2, k1, . . . , kµ)-special sound, under the discrete logarithm as-
sumption in G, where ki = 3 for all 1 ≤ i ≤ µ. Moreover, the communication costs are:
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– P → V: 4 dlog2(2n− k + 1)e − 5 elements of G and 4 elements of Zq.
– V → P: dlog2(2n− k + 1)e elements of Zq.

Proof. Completeness follows in a straightforward manner.
Special Honest Verifier Zero-Knowledge follows immediately from the fact that P is uniformly

random and from the corresponding zero-knowledge property of ΠAmorHom.
Special Soundness: The computational special soundness of ΠAmorHom guarantees existence of

an extractor that extracts, from any computationally-bounded successful prover, an opening y =
(a1, . . . , an−k, t1, . . . , tn) of the commitment P for which (8) holds for all i ∈ {1, . . . , n}, and thus, con-

sidering the corresponding polynomial p(X) = 1 +
∑n−k
j=1 ajX

j , for which (7) holds for all i ∈ {1, . . . , n}.
Given the bounded degree of p and the non-zero constant coefficient, p(i) = 0 for at most n − k choices of
i ∈ {1, . . . , n}. Thus, setting S := {i : p(i) 6=0}, we have |S| ≥ k, and for any i ∈ S we can set xi := ti/p(i)
and (7) then implies that gxi = Pi.

4.2 Partial Knowledge of Commitment Openings

In the previous section we constructed a protocol for proving knowledge of k-out-of-n discrete logarithms
or, equivalently, a protocol for showing that a prover can open k-out-of-n Pedersen commitments to 0. This
protocol can easily be adapted to accommodate, for example, the following variation of this zero-knowledge
scenario.

In this variation we let P1, . . . , Pn be Pedersen commitments, for which the prover claims to know k-out-
of-n openings, not necessarily to 0. More precisely, the prover claims to know a witness for the following
relation:

RPartialCom =
{(
g, h, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n};S ⊂ {1, . . . , n}, x1, . . . , xn ∈ Zq,
γ1, . . . , γn ∈ Zq

)
: |S| = k, Pi = gxihγi for all i ∈ S

}
.8

(9)

A proof of knowledge for relation RPartialCom is obtained by applying the following adaptations. After
defining the the polynomial p(X) as before, the prover computes

ti := p(i)xi ∈ Zq and si := p(i)γi ∈ Zq,

for i ∈ {1, . . . , n} and sends a Pedersen commitment P ∈ G to the vector

y = (a1, . . . , an−k, t1, . . . , tn, s1, . . . , sn) ∈ Z3n−k
q ,

to the verifier. Finally, by invoking Protocol ΠAmorHom, the prover shows that

gtihsiP
−

∑
j aji

j

i = Pi

for all i ∈ {1, . . . , n}. Formally, we have the following security and efficiency properties.

Theorem 7 (k-out-of-n SHVZK Proof of Partial Knowledge for Commitment Openings).
ΠPartialCom is a (2µ + 5)-move protocol for relation RPartialCom, where µ = dlog2 (3n− k + 1)e − 2. It is
perfectly complete, special honest-verifier zero-knowledge and computationally (n, 2, k1, . . . , kµ)-special sound,
under the discrete logarithm assumption in G, where ki = 3 for all 1 ≤ i ≤ µ. Moreover, the communication
costs are:

– P → V: 4 dlog2 (3n− k + 1)e − 5 elements of G and 4 elements of Zq.
– V → P: dlog2 (3n− k + 1)e elements of Zq.

8 The element h ∈ G, used in the commitments Pi, is not necessarily the same element as the element h ∈ G used
in the Pedersen vector commitment P of Protocol ΠPartial.
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Remark 2. We emphasize that ΠPartialCom is only special sound under the assumption that the prover does
not know a non-trivial DL relation between the public parameters g ∈ G3n−k and h ∈ G for the Pedersen
commitment P to the vector y, i.e., it is crucial that the commitment P is binding. In contrast, the special
soundness of ΠPartialCom does not depend on a computational assumption regarding the public parameters
g, h ∈ G for the Pedersen commitments Pi, i.e., the commitments Pi are not required to be binding for
Protocol ΠPartialCom to be special sound.

5 Extensions and Generalizations

Our techniques from Section 4 for proofs of partial knowledge can be extended and generalized in various
directions. We discuss some examples here.

5.1 Multi-Exponentiations and Vector Commitments

A straightforward generalization of Protocol ΠPartial shows that, instead of the DL problem for standard
exponentiations, we can also consider multi-exponentiations. More concretely, this generalization gives a
protocol for the following relation

R′ =
{(

h ∈ Gm, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n};S ⊂ {1, . . . , n},x1, . . . ,xn ∈ Zmq
)

:

|S| = k, Pi = hxi for all i ∈ S
}
.

(10)

The only adaptation of protocol ΠPartial that is required is the replacement of the scalars xi ∈ Zq by vectors
xi ∈ Zmq . The communication complexity of the resulting protocol grows logarithmically in the dimension m
of the multi-exponentiations. In a completely analogous manner, protocol ΠPartialCom from Section 4.2 can
be generalized to proving partial knowledge of Pedersen vector commitment openings.

5.2 Plug and Play with Circuit Zero-Knowledge

In many practical scenarios, one wishes to prove not only partial knowledge of commitment openings, but
also that the committed values satisfy some additional constraints. Typically these constraints are defined
by an arithmetic circuit C : Znq → Zq and the committed values x1, . . . , xn ∈ Zq are claimed to satisfy
C(x1, . . . , xn) = 0. More concretely, we consider a prover that claims to know a witness for the following
relation

RPartialCirc =
{(
g, h, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n};S ⊂ {1, . . . , n}, x1, . . . , xn ∈ Zq,
γ1, . . . , γn ∈ Zq

)
: |S| = k, Pi = gxihγi for all i ∈ S,C(x1, . . . , xn) = 0

}
.

(11)

Note that in this relation the prover is only committed to k-out-of-n scalars xi, i.e., it can choose n − k
scalars freely.

To handle this extension of the partial knowledge scenario we deploy the circuit ZK techniques from [AC20b].
For these techniques to be applicable all we need to show is that we can open homomorphisms and linear
forms on the same Pedersen vector commitment. In [AC20b] it is namely shown how circuit ZK protocols, for
arbitrary arithmetic circuits, are derived from the functionality of opening linear forms on Pedersen vector
commitments.

However, for any homomorphism f : Znq → GT and any linear form L : Znq → Zq it is easily seen that the
following map is again a homomorphism

(f, L) : Znq → GT × Zq x 7→ (f(x), L(x)).

So the functionality of Protocol Πc, opening homomorphism, trivially extends to the functionality of opening
homomorphism and linear forms on the same vector commitment.

Applying this approach directly results in a protocol for relation RPartialCirc where the communication
costs, from prover to verifier, are roughly 6 log2(n) elements. These communication costs can be reduced to
roughly 4 log2(n) elements by incorporating the linear form evaluation into the Pedersen vector commitment
as in [AC20b].
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Remark 3. Various other (natural) circuit ZK scenarios exist. For example, when the circuit C : Zkq → Zq
only takes the scalars xi for i ∈ S as input. Many of these scenarios are easily dealt with by plug and play
(modular design) with the techniques from [AC20b].

5.3 General Access Structures

Thus far, we have restricted ourselves to provers that claim to know the solutions of some (secret) subset
S, of cardinality at least k, of n (public) DL problems Pi = gxi , i.e., the secret subset S is an element of a
threshold access structure

Γk,n = {A ⊂ {1, . . . , n} : |A| ≥ k} ⊂ 2{1,...,n}.

Here, we describe how the protocols from Section 4 can easily be generalized to arbitrary monotone access
structures Γ ⊂ 2{1,...,n}, i.e., to provers that claim to know the solutions of some subset of S ∈ Γ of n DL
problems. Recall that Γ is called a monotone access structure if for all A ∈ Γ and for all B ⊃ A it holds
that B ∈ Γ . The proofs of partial knowledge of [CDS94] already considered arbitrary access structures and
we adapt their techniques by combining it with our compression framework.

Our proofs of k-out-of-n partial knowledge implicitly deploy a linear secret sharing scheme (LSSS) for
access structure Γ ∗k,n = Γn−k,n. Here, Γ ∗ denotes the dual of access structure, generally given by

Γ ∗ = {A ⊂ {1, . . . , n} : Ac /∈ Γ}.

More concretely the protocols of Section 4 use Shamir’s secret sharing scheme and the polynomial p(X) =

1 +
∑n−k
j=1 ajX

j defines a secret sharing of the field element 1.
To construct a proof of partial knowledge for monotone access structure Γ we simply replace p(i) by the

i-th share (which may consist of several field elements, depending on the expansion factor) of a linear secret
sharing of 1, with the randomness chosen so that the “right” shares (i.e, those corresponding to the xi’s that
the prover does not know) vanish.

Note that an honest prover knows (xi)i∈S for some S ∈ Γ . Hence, Sc /∈ Γ ∗ and for this reason the
appropriate secret sharing of 1 exists, showing completeness of the generalized proof of partial knowledge.

Special soundness follows from the following observation. Let A ⊂ {1, . . . , n} be the subset for which all
the corresponding shares vanish. Then, by linearity of the secret sharing scheme and since the secret sharing
reconstructs to 1, it follows that A /∈ Γ ∗. Hence, Ac ∈ Γ and special soundness follows as before.

The communication complexity of the resulting protocol depends logarithmically on the size of the LSSS
for Γ ∗, which is given by the monotone-span-program complexity of Γ ∗ [SJM91] and which coincides with
the monotone-span-program complexity of Γ [Gál95].
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