
Provable Security Analysis of FIDO2

Shan Chen1, Manuel Barbosa2, Alexandra Boldyreva1, and Bogdan Warinschi3

1Georgia Institute of Technology
shanchen@gatech.edu sasha@gatech.edu

2University of Porto
mbb@fc.up.pt

3University of Bristol & Dfinity
bogdan.warinschi@gmail.com

Abstract

We carry out the first provable security analysis of the new FIDO2 protocols, the promising
FIDO Alliance’s proposal for a standard for passwordless user authentication. Our analysis covers
the core components of FIDO2: the new Client-to-Authenticator Protocol (CTAP2) and the Web
Authentication (WebAuthn) specification.

Our analysis is modular. For CTAP2 and WebAuthn, in turn, we propose appropriate security
models that aim to capture their intended security goals and use the models to analyze security.
We identify a series of shortcomings and propose stronger protocols designed to withstand stronger
yet realistic adversaries. Next, we prove the security guarantees FIDO2 provides based on the
security of its components.

We expect that our models and provable security results will help clarify the security guarantees
of the FIDO2 protocols. In addition, our proposed constructions should pave the way towards
the design and deployment of more secure passwordless user authentication protocols.

1 Introduction

Motivation. Passwords are pervasive yet insecure. According to some studies, the average consumer
of McAfee has 23 online accounts that require a password [17], and the average employee using LastPass
has to manage 191 passwords [7]. Not only are the passwords difficult to keep track of, but it is well-
known that achieving strong security while relying on passwords is quite difficult (if not impossible).
According to the Verizon Data Breach Investigations Report, 81% of hacking-related breaches relied on
either stolen and/or weak passwords [31]. And what some users may consider an acceptable password,
may not withstand the sophisticated and powerful modern password cracking tools. Moreover, even
strong passwords may fall prey to phishing attacks and identity fraud. According to Symantec, in
2017, phishing emails were the most widely used means of infection, employed by 71% of the groups
that staged cyber attacks [28].

An ambitious project which tackles the above problem is spearheaded by the Fast Identity Online
(FIDO) Alliance. A truly international effort, the alliance has working groups in the US, China,
Europe, Japan, Korea and India and has brought together many companies and types of vendors,
including Amazon, Google, Microsoft, RSA, Intel, Yubico, Visa, Samsung, major banks, etc.

The goal is to enable user-friendly passwordless authentication secure against phishing and identity
fraud. The core idea is to rely on security devices (controlled via biometrics and/or PINs) which can
then be used to register and later seamlessly authenticate to online services. The various standards de-
fined by FIDO formalize several protocols, most notably Universal Authentication Framework (UAF),

1

the Universal Second Factor (U2F) protocols and the new FIDO2 protocols: Client-to-Authenticator
Protocol v2.0 (CTAP21) and W3C’s Web Authentication (WebAuthn).

FIDO2 is moving towards wide deployment and standardization with great success. Major web
browsers including Google Chrome and Mozilla Firefox have implemented WebAuthn. In 2018, Client-
to-Authenticator Protocol (CTAP)2 was recognized as international standards by the International
Telecommunication Union’s Telecommunication Standardization Sector (ITU-T). In 2019, WebAuthn
became an official web standard. Also, Android and Windows Hello earned FIDO2 Certification.

Although the above deployment is backed-up by highly detailed description of the security goals
and a variety of possible attacks and countermeasures, these are informal [19]. To understand the
exact security guarantees and fix any potential vulnerabilities before wide deployment of the FIDO
protocols, it is critical and urgent to provide their formal security analyses.

Related Work. Some initial work in this direction already exists. Hu and Zhang [22] analyzed
the security of FIDO UAF 1.0 and identified several vulnerabilities in different attack scenarios.
Later, Panos et al. [29] analyzed FIDO UAF 1.1 and explored some potential attack vectors and
vulnerabilities. However, both works were informal. FIDO U2F and WebAuthn were analyzed using
the applied pi-calculus and ProVerif tool [20,24,30]. Regarding an older version of FIDO U2F, Pereira
et al. [30] presented a server-in-the-middle attack and Jacomme and Kremer [24] further analyzed it
with a structured and fine-grained threat model for malware. Guirat and Halpin [20] confirmed the
authentication security provided by WebAuthn while pointed out that the claimed privacy properties
(i.e., account unlinkability) failed to hold due to the same attestation key used among different servers.

Note however that none of the existing work employs the provable security approach for the FIDO2
protocols in the course of deployment. In particular, there is no analysis of CTAP2, and the results
for WebAuthn [24] are quite insufficient. As noted by the authors themselves, their model “makes
a number of simplifications and so much work is needed to formally model the complete protocol as
given in the W3C specification”. Moreover, their analysis uses the symbolic model (often called the
Dolev-Yao model [18]), which captures weaker adversarial capabilities than those in computational
models (e.g., the Bellare-Rogaway model [11]) employed by the provable security approach.

The works on two-factor authentication (e.g., [16, 26]) are related, but in such protocols the user
has to use the password and the second-factor device during each authentication/login. With FIDO2,
there is no password use during the user registration or authentication phases. Passwords (PINs)
only occur in the initialization phase which “registers” the security device to a browser rather than
a server. Some two-factor protocols can also generate a binding cookie after the first login to avoid
using the two-factor device or even the password for future logins. However, this requires trusting the
browser, i.e., a malicious browser can log in as the user without having the two-factor device (or the
password). FIDO2 prevents an attacker with a stolen device from authenticating to a server from a
new browser.

Our security analysis is not directly applicable to federated authentication protocols such as Ker-
beros, OAuth, or OpenID. FIDO2 allows the user to keep a single hardware token that it can use to
authenticate to multiple servers without having to use a federated identity. The only trust anchor is an
attestation key for the token. There are no full security models defined for federated authentication,
but they should be quite different. It is interesting to see how FIDO2 and federated authentication
can be used securely together; we leave it for future work. Our model could be adapted to analyze
some second-factor authentication protocols like Google 2-step [2].

Our Focus. Our work provides the first provable security analysis of the latest FIDO2 protocols to
help clarify the formal trust model and its impact on the security guarantees and potential vulnera-
bilities. The analysis covers the actions of human users authorizing the use of credentials via gestures
and shows that, depending on the capabilities of security devices, such gestures enhance the security
of FIDO2 protocols in different ways. We concentrate on the FIDO2 authentication properties and
leave the study of its less central anonymity goals for future work.

1The older version is called CTAP1/U2F.
2CTAP refers to both versions: CTAP1/UAF and CTAP2.

2

User

Authenticator Client Server

0.reg or auth (sent via Client)3.gesture

1.c2.c

4.R 5.R

Figure 1: FIDO2 flow (simplified): blue = CTAP2 authenticated message.

FIDO2 Overview. FIDO2 consists of two core components (see Figure 1 for the simplified flow).
WebAuthn is a web API that can be built into browsers to enable web applications to integrate user
authentication. At its heart, WebAuthn is a passwordless “challenge-response” scheme between a
server and an authenticator device, which is a user-owned security device (e.g., a security token or a
smartphone). Such a device-assisted “challenge-response” scheme works as follows (details in Section
8). First, in the registration phase, the server sends a random challenge to the security device through
a client (e.g., a browser or an operating system installed on the user’s laptop). In this phase, the
device signs the challenge using its long-term embedded key, along with a new public key credential to
use in future interactions; the credential is included in the response to the server. In the subsequent
interactions, which correspond to user authentication, the challenge sent by the server is signed using
the secret key corresponding to the credential. In both cases, the signature is verified by the server.

The other FIDO2 component, CTAP2, specifies the communication between an authenticator
device and a client (such as a browser) that has a user PIN as input. CTAP2 specifies how to
configure an authenticator with a user’s PIN. Roughly speaking, its security goal is to “bind” a
trusted client to the set-up authenticator by requiring the user to provide the correct PIN, such that
the authenticator accepts only messages sent from a “bound” client. We remark that CTAP2 relies
on the (unauthenticated) Diffie-Hellman key exchange. The details can be found in Section 5.

Our Contributions. We perform the first thorough cryptographic analysis of the authentication
properties guaranteed by FIDO2 protocols using the provable security approach: first defining the
protocol syntax, then designing an appropriate security model that specifies the adversarial capabili-
ties and formal security goals, and finally proving security by reduction to the security of the building
blocks or identifying attacks captured by the model. To better understand and improve each compo-
nent protocol, our analysis is conducted in a modular way. That is, we analyze CTAP2 and WebAuthn
separately and then derive the overall security of a typical use of the FIDO2 protocols.

Provable security of CTAP2. We start our analysis with the more complex CTAP2 protocol. We
define the class of PIN-based Access Control for Authenticators (PACA) protocols to formalize the
general syntax of CTAP2. Although CTAP2 by its name may suggest a two-party protocol, our PACA
model involves the user as an additional party and therefore captures human interactions with the
client and authenticator (e.g., the user typing its PIN into the client or rebooting the authenticator).
A PACA protocol runs in three phases as follows. First, in the authenticator setup phase, the user
“embeds” its PIN into the authenticator via the client and as a result the authenticator stores a
PIN-related long-term state that we call a transformed PIN. Then, in the binding phase, the client
(with the same input PIN) is “bound” to the authenticator. At the end of this phase, each party ends
up with a (perhaps different) binding state. Finally, in the authenticated channel phase, the client
is able to send any authenticated message (computed using its binding state) to the authenticator,
which verifies it using its own binding state. Note that the final established authenticated channel is
unidirectional, i.e., it only guarantees authenticated access from the client to the authenticator but
not the other way.

The end-goal of CTAP2 is to grant a client exclusive access to the user’s authenticator device,
by establishing an authenticated channel from the client to the authenticator. Our model captures
the security of the authenticated channels between clients and authenticators. The particular imple-
mentation of CTAP2 operates as follows. In the binding phase, the authenticator privately sends its
associated secret called pinToken (generated upon power-up) to the trusted client and the pinToken is

3

then stored on the client as the binding state. Later in the authenticated channel phase that binding
state is used by the bound client to authenticate messages sent to the authenticator. We note that by
the CTAP2 design, each authenticator is associated with a single pinToken per power-up, so multiple
clients establish multiple authenticated channels with the same authenticator using the same pinTo-
ken. This limits the security of CTAP2 authenticated channels: for a particular channel from a client
to an authenticator be secure (i.e., no attacker can forge messages sent over that channel), none of
the clients bound to the same authenticator during the same power-up can be compromised.

Motivated by the above discussion, we distinguish between Unforgeability (UF) and Strong Un-
forgeability (SUF) for PACA protocols. The former corresponds to the weak level of security discussed
above. The latter, captures strong fine-grained security where the attacker can compromise any clients
except those involved in the channels for which we define security. As we explain later (Section 4),
SUF also covers certain forward secrecy guarantees for authentication. For both notions, we consider
a powerful attacker that can manipulate the communication between parties, compromise clients (that
are not bound to the target authenticator) to reveal the binding states, and corrupt users (that did
not set up the target authenticator) to learn their secret PINs.

Even with the stronger trust assumption (made in UF) on the bound clients, we are unable to
prove that CTAP2 realizes the expected security model: we describe an attack that exploits the fact
that CTAP2 uses unauthenticated Diffie-Hellman. Since it is important to understand the limits
of the protocol, we consider a further refinement of the security models which makes stronger trust
assumptions on the binding phase of the protocol. Specifically, in the trusted binding setting the
attacker cannot launch active attacks against the client during the binding phase, but it may try
to do so against the authenticator, i.e., it cannot launch man-in-the-middle (MITM) attacks but it
may try to impersonate the client to the authenticator. We write UF-t and SUF-t for the security
levels which consider trusted binding and the distinct security goals outlined above. In summary
we propose four notions: by definition SUF is the strongest security notion and UF-t is the weakest
one. Interestingly, UF and SUF-t are incomparable as established by our separation result discussed
in Section 6. Based on our security model, we prove that CTAP2*, a simplified version of CTAP2
that removes a redundant protocol message, achieves the weakest UF-t security. We also show that
CTAP2 is not secure regarding the three stronger notions.

Improving CTAP2 security. CTAP2 cannot achieve UF security because in the binding phase
it uses unauthenticated Diffie-Hellman key exchange which is vulnerable to MITM attacks. This
observation suggests a change to the protocol which leads to stronger security. Specifically, we propose
the sPACA protocol (for strong PACA), which replaces the use of unauthenticated Diffie-Hellman in
the binding phase with a Password-Authenticated Key Exchange (PAKE) protocol. Recall that PAKE
takes as input a common password and outputs the same random session key for both parties. The
key observation is that the client and the authenticator share a value (derived from the user PIN)
which can be viewed as a password. By running PAKE with this password as input, the client and the
authenticator obtain a strong key which can be used as the binding state to build the authenticated
channel. Since each execution of the PAKE (with different clients) results in a fresh independent key,
we can prove that sPACA is a SUF-secure PACA protocol. Furthermore, we argue that sPACA comes
with only little overhead over CTAP2 and requires only minimal changes, so should be considered for
adoption.

Provable security of WebAuthn. Next, we define the class of Passwordless Authentication (PlA)
protocols which aim to capture the syntax and security of the WebAuthn protocol. Our PlA model
considers an authenticator and a server (often referred to as a relying party) and consists of two phases.
The server is assumed to know the attestation public key that uniquely identifies the authenticator.
In the registration phase the authenticator and the server communicate with the intention to establish
some joint state corresponding to this registration session: this joint state fixes a credential, which
is bound to the authenticator’s attestation public key vk, a username idU , and a server name idS .
The server gets the guarantee that the joint state is stored in a specific authenticator, which is
assumed to be tamper-proof. The joint state can then be used in the authentication phase. Here, the

4

authenticator and the server engage in a message exchange where the goal of the server is to verify
that it is interacting with the same authenticator that registered the credential bound to (vk, idU , idS).

Technically, we formalize the intuition outlined above using the concept of partnered sessions. Two
sessions (one on the authenticator side and one on the server side) are partnered if it is clear that they
communicate with one another. We borrow one formalization of this intuition from the key-exchange
literature, and demand that protocol sessions locally derive session identifiers which should somehow
capture the intended partner. For challenge-response protocols (as the ones we analyze in this paper),
the session identifier can be defined simply, as the challenge signed by the authenticator device.

Roughly speaking, a PlA protocol is secure if, whenever a registration session completes on the
server side, there is a unique partnered registration session which completed successfully on the authen-
ticator side. For authentication sessions we further impose that the associated registration sessions (as
defined independently on both sides) are also uniquely partnered. This guarantees that registration
contexts are isolated from one another; moreover, if a server session completes an authentication ses-
sion with an authenticator, then the authenticator must have completed a registration session with the
server earlier, and must have sent the reply which the server accepted in the authentication session.
We use the model thus developed to prove the security of WebAuthn under the assumption that the
underlying hash function is collision-resistant and the signature scheme is unforgeable. Full details
can be found in Section 8.

Composed security of CTAP2* and WebAuthn. Finally, towards the analysis of full FIDO2 (by
full FIDO2 we mean the envisioned usage of the two protocols), we study the composition of PACA
and PlA protocols (cf. Section 9). The composed protocol, which we simply call PACA+PlA, is
defined naturally for an authenticator, user, client, and server. The composition, and the intuition that
underlies its security, is as follows. Using PACA, the user (via a client) sets a PIN for the authenticator.
This means that only clients that obtain the PIN from the user can “bind” to the authenticator and
issue commands that it will accept. In other words, PACA establishes the authenticated channel from
the bound client to the authenticator. Then, the challenge-response protocols of PlA run between
the server and the authenticator, via a PACA-bound client. The server-side guarantees of PlA are
preserved, but now the authenticator can control client access to its credentials using PACA; this
composition result is intuitive and easy to prove given our modular formalization.

Interestingly, we formalize and prove an even stronger property that shows that PACA+PlA gives
end-to-end mutual authentication guarantees between the server and the authenticator when clients
and servers are connected by a server-to-client authenticated channel. The mutual authentication
guarantees extend the PlA guarantees: authenticator, client, and server must all be using the same
registration context (vk, idU , idS) for authentication to succeed. We note that Transport Layer Security
(TLS) provides a server-to-client authenticated channel, and hence this guarantee applies to the typical
usage of FIDO2 over TLS. Our results apply to CTAP2*+WebAuthn (under a UF-t adversarial model)
and sPACA+WebAuthn (under a SUF adversarial model).

We conclude with an analysis of the role of user gestures in FIDO2. We first show that SUF
security offered by sPACA allows the user, equipped with an authenticator that can display a simple
session identifier, to detect and prevent attacks from malware that may compromise the states of
PACA clients previously bound to the authenticator. (This is not possible for the current version of
CTAP2.) We also show how simple gestures can allow a human user to keep track of which usernames
and server names are being used in PlA sessions.

We hope our analyses will help clarify the security guarantees of the FIDO2 protocols and expect
our proposed constructions to facilitate the design and deployment of more secure passwordless user
authentication protocols.

2 Preliminaries

Notations. Let {0, 1}∗ denote the set of all finite-length binary strings (including the empty string
ε) and {0, 1}n denote the set of n-bit binary strings; for a binary string s, let |s| denote its length in

5

User

Authenticator Client Server

1

3 4

2

Figure 2: Communication channels

bits. We use [n] for the set of integers {1, 2, . . . , n} and use the wildcard · to indicate any valid input

of a function or algorithm. For a finite set R, let |R| denote its size and r
$← R denote sampling r

uniformly at random from R. We use y ← x for assigning a value to a variable; in particular, if f is
a deterministic function, we use y ← f(x) to denote y taking the output of f on input x. If F is a

probabilistic algorithm we use y
$← F (x) for running F on x using fresh random coins and assigning

the output to y.
In Appendix A, we recall the definitions of pseudorandom functions, message authentication

codes, signature schemes, collision-resistant hash function families, the computational Diffie-Hellman
(CDH) problem and strong CDH problem, as well as the corresponding advantage measures

Advprf
F ,Adveuf-cma

MAC ,Adveuf-cma
Sig ,Advcoll

H ,Advcdh
G,g,Advscdh

G,g . In Appendix B, we recall the syntax for
PAKE and its security including explicit authentication.

3 Execution model

The protocols we consider involve four disjoint sets of parties. Formally, the set of parties P is
partitioned into four disjoint sets of users U , authenticators (or tokens) T , clients C, and servers
S. Each party has a well-defined and non-ambiguous identifier, which one can think of as being
represented as an integer; we typically use P , U , T , C, S for identifiers bound to a party in a security
experiment and id for the case where an identifier is provided as an input in the protocol syntax. For
simplicity, we do not consider certificates or certificate checks but assume any public key associated
with a party is supported by a public key infrastructure (PKI) and hence certified and bound to the
party’s identity. This issue arises explicitly only for attestation public keys bound to authenticators
in Section 7.

The possible communication channels are represented as double-headed arrows in Figure 2. In
CTAP2+WebAuthn, the client is a browser and the user-client channel is the browser window, which
keeps no long-term state. The authenticator is a hardware token or mobile phone that is connected
to the browser via an untrusted link that includes the operating system, some authenticator-specific
middleware, and a physical communication channel that connects the authenticator to the machine
hosting the browser. The authenticator exposes a simple interface to the user that allows it to
perform a “gesture”, confirming some action; ideally the authenticator should also be able to display
information to the user (this is natural when using a mobile phone as an authenticator but not
so common in USB tokens or smartcards). Following the intuitive definitions of human-compatible
communications by Boldyreva et al. [13], we require that messages sent to the user be human-readable
and those sent by the user be human-writable.3 The user PIN needs to be human-memorizable.

We assume authenticators have a good source of random bits and keep volatile and static (or long-
term) storage. Volatile storage is erased every time the device goes through a power-down/power-up
cycle, which we call a reboot. Static storage is assumed to be initialized using a procedure carried out
under special set-up trust assumptions; in the case of this paper we will consider the set-up procedures
to configure a PIN, i.e., “embedding” the user PIN in the authenticator, and generating an attestation
key pair for the authenticator.

3We regard understandable information from Internet browsing as human-readable and typing in a PIN or rebooting
an authenticator as human-writable.

6

Trust model. For each of the protocols we analyze in the paper we specify a trust model, which
justifies the modeling of the security experiments. Here we state the trust assumptions that are
always assumed throughout the paper. Human communications (1 2) are authenticated and private.
This in practice captures the direct human-machine interaction between the human user and the
authenticator device or the client terminal, which involves physical senses and contact that we assume
cannot be eavesdropped or interrupted by an attacker. Client-authenticator communications (3) are
not protected, i.e., neither authenticated nor private. The authenticator is assumed to be tamper-
proof, so the model will not consider corruption of its internal state.

Modeling users and their gestures. We do not include in our protocol syntaxes and security
models explicit state keeping and message passing for human users, i.e., there are no session oracles
for users in the security experiments. We shortly explain why this is the case. The role of the user
in these protocols is to a) first check that the client is operating on correct inputs, e.g., by looking at
the browser window and checking the correct server name is being used; b) possibly (if the token has
the capability to display information) check that the token is operating on inputs consistent to those
of the client; and c) finally confirm to the token that this is the case. Indeed, the user itself plays the
role of an out-of-band secure channel via which the consistency of information exchanged between the
client and the authenticator can be validated.

We model this with a public gesture predicate G that captures the semantics of the user’s decision.
Intuitively, the user decision d ∈ {0, 1} is given by d = G(x, y), where x and y respectively represent
the information conveyed to the user by the client in step a) and by the token in step b) above. Note
that x may not be input by the user. Tokens with different user interface capabilities give rise to
different classes of gesture predicates. For example, if a user can observe a server domain name id on
the token display before pressing a button, then we can define the gesture of checking that the token
displayed an identifier id that matches the one displayed by the client id∗ as G(id∗, id) := (id∗ ?= id).

User actions are hardwired into the security experiments as direct inputs to either a client or a
token, which is justified by our assumption that users interact with these entities via fully secure
channels. We stress that here G is a modeling tool, which captures the sequence of interactions a),
b), c) above. Moreover, providing a gesture means physical possession of the token, so an attacker
controlling only some part of the client machine (e.g., malware) is not able to provide a gesture.
Moreover, requiring a gesture from the user implies that the user can detect when some action is
requested from the token.

4 PIN-Based Access Control for Authenticators

In this section, in order to study FIDO2’s CTAP2, we define the syntax and security model for PIN-
based Access Control for Authenticators (PACA) protocols. The goal of the protocol is to ensure that,
after setup and possibly an arbitrary number of authenticator reboots, the user can use the client to
issue PIN-authenticated commands to the token, which the token can use for access control, e.g., to
unlock built-in functionalities that answer client commands.

4.1 Protocol Syntax

A PACA protocol is an interactive protocol involving a human user, an authenticator (or token for
short) and a client. The state of authenticator T , denoted by stT , is partitioned into the following
components: i) static storage stT .ss; ii) power-up or reset state stT .rs; and iii) one or more binding
states stT .bsi (together denoted by stT .bs). A client C may also have multiple binding states, which
we denote by bsC,j .

A PACA protocol consists of the following algorithms and subprotocols, all of which can be exe-
cuted a number of times, except if stated otherwise:

Setup This subprotocol is executed at most once for each authenticator. No prior state is assumed
for any of the participants. The user inputs a PIN through the client. At the end of execution, the

7

authenticator initializes its static storage st.ss according to the protocol and resets all other parts
of the state. Static storage is read-only for all other algorithms and subprotocols. The client (and
through it the user) gets an indication of whether the protocol completed successfully.

Reboot This algorithm represents a power-down/power-up cycle and it is executed by the authen-

ticator. We will use st
$← reboot(st.ss) to denote the execution of this algorithm; intuitively it will

erase all volatile storage.

Bind This subprotocol is executed by the three parties to establish a secure session over which
commands can be issued. The user inputs its PIN through the client, whereas the token inputs its
static storage and power-up state. At the end of this phase, in the case of success, both the token
and the client get a new binding state; the token may update its power-up state (e.g., a counter).4 If
the subprotocol fails, no binding states are set, but the token power-up state may still be updated.
We assume the client always initiates this subprotocol once it gets the PIN from the user.

Authenticate This algorithm allows a client to generate authenticated commands for the au-
thenticator. The client inputs a command M and a binding state bsj . We will use (M, t)

$←
authenticate(M, bsj) to denote the generation of an authenticated command.

Verify This algorithm allows a token to verify authenticated commands sent by a client with respect
to a binding state and a user decision. The token gets a public predicate G that captures the user’s
decision semantics; G(x, y) models a decision based on information x, y respectively conveyed by
the client and the token, with y depending on M and st.bsi that the token may display to the user
directly.5 The token inputs an authenticated command (M, t), a binding state st.bsi, and a user
decision d = G(x, y). We denote verify((M, t), st.bsi, d) as the deterministic computation performed
by the token to obtain an accept or reject indication.

Correctness. Correctness is defined for an arbitrary public predicate G. We consider any token T ,
and any sequence of commands of the following form: i) a successful setup using PIN fixing stT .ss via
some client; ii) any sequence of subprotocols excluding setup via arbitrary clients; iii) a binding with
PIN creating client-side binding state bsC,j at a client C and token-side binding state stT .bsi; iv) any
sequence of subprotocols executed via C, excluding setup and reboot; v) authentication of commandM

by C as (M, t)
$← authenticate(M, bsC,j); and vi) verification by the token as verify((M, t), stT .bsi, d).

Correctness requires that verification is successful iff G(x, y) = 1 (i.e., d = 1) holds. A correct PACA
will further impose that stT .ss is unchanged and that stT .bs = ⊥ after a reboot.

4.2 Security Model

Trust model. Before defining our security model, we first state the assumed security properties for
the communication channels shown in Figure 2. The only restriction is that the Setup subprotocol
is assumed to be carried out over a communication channel where the adversary can only eavesdrop
communications between the client and authenticator; this is a necessary condition, as there is no
pre-established authentication parameters between the parties.

Session oracles. To capture multiple sequential and parallel Bind executions, each party P ∈ T ∪ C
is associated with a set of session oracles π1

P , π
2
P , . . ., where πiP models the i-th protocol instance of

P . For clients, session oracles are totally independent from one another and they are assumed to be
available throughout the experiment execution. For tokens, the static storage and power-up states are
maintained by the security experiment; session oracles capture binding states. Binding states at the

4When such an update is possible, and to avoid concurrency issues, it is natural to assume that the token excludes
concurrent Bind executions.

5For example, G may encode a partnering code or a session identifier that allows the user to confirm the command
came from a specific browser window; it can also be the trivial predicate that always returns true, meaning that the
user cannot actually check any details of the command by physically interacting with the token.

8

token become invalid after rebooting if they were not empty at the time of the reboot, which means
that the adversary is thereafter blocked access to such oracles. However, we keep these oracles in the
game in order to capture strong authentication guarantees across reboots.

Security experiment. The security experiment is run between a challenger and an adversary A. In
the beginning of the experiment, the challenger resets states of all tokens, i.e., it sets stT ← ⊥ for all
T ∈ T . It then samples independent random PINs for all tokens, i.e., pinT

$← PIN for all T ∈ T ;
note that only one PIN is needed per token, since we assume a single setup. The adversary A interacts
with the challenger via the following queries:

• Setup(πiT , π
j
C). The challenger runs the Setup subprotocol between πiT and πjC using pinT . It returns

the trace of communications between πiT and πjC to A. stT .ss is set for the rest of the experiment.
Oracles created for setup must never have been used before and are always declared invalid after setup
completion.6

• Reboot(T). The challenger executes the Reboot algorithm for token T , marking all previously used

instances πiT as invalid and setting stT
$← reboot(stT .ss).

• Execute(πiT , π
j
C). The challenger runs the Bind subprotocol between πiT and πjC using pinT . It

returns to A the trace of communications between πiT and πjC . This query allows the adversary to
access honest protocol executions in which it cannot take active action to guess the user’s PIN. The
resulting binding states on both sides are kept as stT .bsi and πjC .bs respectively.

• Connect(T, πjC). The challenger instructs πjC to initiate the Bind subprotocol with T using pinT . It

returns the first message sent by πjC to A. Note that no client-side oracles can be created if Connect
queries are disallowed, since we assume the client is the initiator of the Bind subprotocol. This query
allows launching an active attack against a client-side oracle.
• Send(πiP ,m). The challenger delivers m to πiP and returns its response (if any) to A. If πiP completes
the Bind subprotocol, then the binding state is kept as stT .bsi for a token oracle and as πiC .bs for a
client oracle. This query allows the adversary to launch an active attack against a token-side oracle
or completing an active attack against a client-side oracle.
• Authenticate(πiC ,M). The challenger takes πiC .bs and uses it to authenticate command M and return
the result to A.
• Verify(πiT , (M, t)). The challenger takes stT .bsi and uses it to verify (M, t) based on the user decision
sent to πiT . The result is returned to A.
• Compromise(πiC). This query returns πiC .bs. After this query, we say πiC was compromised.
• Corrupt(T). This query returns pinT . After this query, we say T was corrupted. All queries are
ignored if they refer to any oracle πiP that has been marked invalid.

Partners. We say an authenticator oracle πiT and a client oracle πjC are each other’s partner if they
have both completed their binding phases and their views are consistent. We take these views as a
session identifier sid that must be defined for each protocol and must be the same for both parties,
usually as a function of the communications trace. We also say πjC is T ’s partner (and hence T may
have more than one partners). Note that, as mentioned before, if an authenticator is rebooted then its
power-up state is refreshed and all of its binding states (if any) are invalidated. Partnering is defined
over all, even invalid binding states. Intuitively we will require that access control is associated with
a unique valid partner, i.e., the client knows that an issued command will not be accepted if the
authenticator was rebooted before command delivery.

Security goals. We define four levels of security for PACA. All advantage notions define PAKE-like
security where the adversary’s probability of success should be negligibly larger than the trivial attack
of guessing the PIN using an online attack launched with Connect and Send queries. In our theorems
we fix the number of queries to Connect as an adversarial parameter while (unlike for PAKE) we do

6Corrupting πjC would imply revealing the PIN, so we do not allow this. However, these oracles can still influence
the partnering relation and hence PACA security implies that session identifiers for setup sessions must not create
ambiguity with those of binding sessions. This restriction implies that whatever client sessions are used for setup, no
state about them remains when the token is subsequently used.

9

not do this for Send. Instead, we require PACA protocols to include token-side blocking counter to
limit the total number of failed PIN guessing attempts (across reboots).

Unforgeability (UF). We define Advuf
Π (A) as the probability that there exists an authenticator oracle

πiT that accepts an authenticated command (M, t) for gesture G and at least one of the following
conditions does not hold:

1. Gesture G approves M , i.e., G(x, y) = 1;

2. (M, t) was output by one of T ’s partners πjC ;

3. πiT and πjC have unique valid partners.

The adversary must be able to trigger this event without: i) compromising any of T ’s partners created
after the last reboot and before πiT accepted (M, t); or ii) corrupting pinT that was set up in the token
before πiT accepted (M, t).

The above captures the attacks in which the attacker successfully makes an authenticator accept
a forged authenticated command, without corrupting the user who set up the authenticator or com-
promising any of the authenticator’s partners. A PACA protocol satisfying the above security notion
prevents an attacker from sending commands to the authenticator even if it stole the authenticator,
unless the attacker corrupts the user PIN that was used to set up the authenticator or compromises
any of the authenticator’s partners. Note that the authenticated channels considered in this notion
have only weak security, i.e., compromising one channel implies compromising all channels (to the
same authenticator and since the last reboot). The requirement that the involved session oracles have
unique valid partners guarantees a binding between an accepted commands and a unique binding
session in the entire lifetime of the authenticator and this unique session was created since the last
reboot.

Unforgeability with trusted binding (UF-t). We define its advantage measure Advuf-t
Π (A) the same

as Advuf
Π (A) except that the adversary is not allowed to make Connect queries. Note that unlike

in the trusted setup, here in the binding subprotocol the adversary is still allowed to interact with
the authenticator or the client (via Send queries) but it cannot create any pending/interrupted client
sessions that allow it to launch a man-in-the middle attack. It can still, however, perform an online
dictionary attack on the authenticator. This restriction captures the minimum requirement for proving
the FIDO2’s CTAP2 protocol using our model, and this is the only reason we define it. Clearly, UF
security implies UF-t security.

Strong unforgeability (SUF). We define Advsuf
Π (A) as the UF advantage with a single difference. The

adversary is allowed to win the game even if it has compromised any of T ’s partners, provided that it
has not compromised πjC , the client bind instance that has a unique partner in πiT . Furthermore, the
adversary is now allowed to corrupt the PIN for the token before the command is accepted, provided
the binding subprotocol was already complete.

The above captures similar attacks considered in UF but in the strong sense, where the adversary
is further allowed to compromise some of the target authenticator’s partners (except the partner in
the target authenticated channel) and corrupt the user even before the forged command was accepted
(but after the authenticator set its binding state). The latter relaxation guarantees forward secrecy for
authentication, which is not as strong as forward secrecy for confidentiality because breaking forward
secrecy for authentication does not affect already authenticated commands but only affects future
commands sent through an already established authenticated channel. Nevertheless, forward secrecy
is still preferable. Besides, unlike UF, authenticated channels considered in this notion have strong
security, i.e., compromising one channel does not affect other channels. Obviously, SUF security
implies UF security.

Strong unforgeability with trusted setup (SUF-t). For completeness we can also define the advantage
measure for SUF with trusted binding (SUF-t) Advsuf-t

Π (A), where the limitation we add to the
adversary’s behaviour is the same: it is not allowed to make Connect queries. Again, it is easy to see
that SUF security implies SUF-t security.

10

SUF UF

SUF-t UF-t

\

Figure 3: Relations between PACA security notions.

Relations between security notions. As discussed above, Figure 3 shows the implication relations
among our four defined notions. UF and SUF-t do not imply each other and we will give examples of
separations in Sections 5 and 6.

Improving PACA (S)UF-t security with test of user presence. Under the trusted binding
assumption, we can make a simple modification to PACA protocols to eliminate online password
guessing attacks altogether. Trusted binding excludes active attacks against the client and, in partic-
ular, man-in-the-middle attacks. Nevertheless, there is still possibility of an online dictionary attack
against the authenticator. To avoid this, one only needs to test the user presence (e.g., requiring a
gesture) at the beginning of the binding phase. We argue that such test-of-user-presence overhead is
quite small for CTAP2-like protocols because the user has to type his PIN into the client anyway. The
security gain is considerable, because now no malicious binding attempts can happen, which opens
the way for a neat negligible security bound.

5 The Client to Authenticator Protocol v2.0

We now define the FIDO Alliance’s Client to Authenticator Protocol v2.0 (CTAP2) [1] using PACA
syntax and present its security analysis.

Protocol Description. CTAP2 consists of several subprotocols (requested with the corresponding
sub-commands). For our analysis we focus on its core subprotocols (see Figure 4): getKeyAgreement,
setPIN, getPINToken, and usePINToken, 7 (cf. Figure 1 in [1]). where in the beginning the client
inputs the user PIN pinU . In the figure we describe the protocols close to how CTAP2 specs do and
later explain how they match PACA syntax.

The PIN space PIN consists of 64-byte8 strings. ECKG denotes the key generation function of
elliptic-curve Diffie-Hellman (ECDH) that samples an elliptic-curve public and secret key pair (aG, a),
where G is an elliptic-curve point generating a cyclic group G of prime order Q and a is a random
number in {1, . . . , Q − 1}. Note that CTAP2 uses the P-256 elliptic-curve parameter set [23] for
128-bit security. H denotes the SHA-256 hash function (with output truncated to the first 128 bits).
CBC0 = (K,E,D) denotes the (deterministic) AES256-CBC encryption scheme with IV = 0 and
HMAC : K×{0, 1}∗ → {0, 1}bl denotes the HMAC-SHA256 message authentication code (with output
truncated to the first block size bl = 128 bits).

Let us see how CTAP2 fits into PACA syntax:

• The Setup subprotocol consists of getKeyAgreement followed by setPIN. The static storage space is
occupied with a transformed PIN, which is the hash result of the user PIN. A parameter nmax is
also kept to manage the number of allowed unsuccessful executions of the Bind subprotocol.

• The Reboot algorithm reboot is defined as follows (where pt denotes the random pinToken); the
power-up state includes ECDH public and secret parameters, pt, and a counter inc.9

7Our analysis ignores getRetries and changePIN. getRetries is used by the client platform to retrieve the retries counter
ctr stored in the token. If ctr is close to 0 (which means the token is easy to get locked), the client may warn the user
to be careful while entering the PIN. This information is public in our model. changePIN does involve some security
properties, but it is equivalent to running getPINToken+ setPIN. We ignore this aspect to reduce the complexity of our
analysis and presentation since it does not detract from the main take-aways.

8PINs memorized by users are of length 4∼63 bytes in UTF-8 representation, padded with trailing 0 bytes.
9Note that it completely ignores static storage, i.e., it is PIN-independent.

11

Authenticator T (stT .rs = (aG, a, pt, inc)) Client C (pinU)

(1) getKeyAgreement:
cmd = 2←−−−−−−−
aG−−−−−−−→ (bG, b)

$← ECKG()
K ← H(abG.x)

(2) setPIN:
cp ← E(K, pinU)

τp ← HMAC(K, cp)

K ← H(abG.x)

cmd = 3
bG, cp, τp
←−−−−−−−

if τp = HMAC(K, cp) and

pin← D(K, cp) ∈ PIN :
stT .ss← H(pinU)
ctr ← nmax

10
ok−−−−−−−→

otherwise: error−−−−−−−→

(3) getPINToken:
cph ← E(K,H(pinU))

if ctr = 0:

cmd = 5
bG, cph←−−−−−−−

blocks pin11and halts error−−−−−−−→ bsC,j unset
K ← H(abG.x)
ctr ← ctr − 1
if stT .ss = D(K, cph):

cpt ← E(K, pt)
ctr ← nmax, inc← 0 cpt−−−−−−−→ bsC,j ← D(K, cpt)

otherwise:

(aG, a)
$← ECKG()

inc← inc+ 1
if inc = nth

12:
requires reboot error−−−−−−−→ bsC,j unset

(4) usePINToken (client sending M to the authenticator):
τ ← HMAC(bsC,j ,M)

τ ?= HMAC(pt,M)
(M, τ)
←−−−−−−−

accept/reject
−−−−−−−→

Figure 4: The CTAP2 protocol (and CTAP2* that excludes the boxed contents).

reboot(st.ss):

(aG, a)
$← ECKG(), pt

$← {0, 1}bl, inc← 0

return (st.ss, st.rs← (aG, a, pt, inc), st.bs← ⊥)

• The Bind subprotocol consists of getKeyAgreement followed by getPINToken. The binding states
are simply pt.

• The authenticate and verify algorithms are given by the client-side and authenticator-side computa-
tions in usePINToken. Note that, although the token-side computations do not explicitly refer to a
gesture G, it is implicit that the authenticator may display information about M and pt to the user
and ask for confirmation before approving the command. This would allow the user to cross-check
with the browser window to confirm a legitimately issued command.

12

We omit a proof that CTAP2 is a correct PACA protocol, but this is straightforward to check
from the figure. Furthermore, in our security analysis we assume that there exists some class of
gestures that tokens can efficiently compute and that any authenticated command validated by the
authenticator is only accepted if a gesture is given to approve it. The semantics of gestures is relevant
for the client-side guarantees we discuss in Section 9. The session identifier is defined as the full
communications trace in the binding phase. (Note that such a trace can never match a trace in the
authenticator setup phase.)

Security Results. First, we notice that the MAC authentication (boxed in Figure 4) in setPIN
is useless, i.e., it does not provide any authentication protection for a MITM attacker. Such an
attacker can pick its own ECDH key share to compute the shared key K that is used to generate
valid ciphertexts and authentication tags. However, using the same key K for both encryption and
authentication is considered bad practice and the resulting security guarantee is elusive for the CBC
construction.13 Therefore, in our security analysis, we remove those redundant and problematic MAC
operations and focus on the resulting simplified protocol (denoted by CTAP2*) which is more efficient
and at least as secure as the original CTAP2.

Insecurity of CTAP2. It is not hard to see that CTAP2 is neither UF secure nor SUF-t secure
(and hence SUF insecure). If the binding phase is not trusted, an attacker can impersonate the
authenticator to get the PIN hash (i.e., transformed PIN) from the client which takes the user PIN
as input. Then, the attacker is able to get pt from the authenticator. On the other hand, if any of
the authenticator’s partners is compromised, the attacker is able to get pt shared between them.

UF-t security of CTAP2*. Note that in practical scenarios, if an authenticator is stolen by the
attacker, nmax limits the maximum number of consecutive wrong PIN guesses before the authenticator
blocks further interactions. On the other hand, if the target authenticator is not stolen (i.e., possessed
by a user), then authenticator reboots imply user detectability. Therefore, nth (< nmax) limits the
maximum number of undetectable consecutive wrong PIN guesses after each honest binding execution.
The following theorem (proved in Appendix C) confirms UF-t security of CTAP2*, when modeling
the hash function H as a random oracle H.

Theorem 1 Let DPIN be an arbitrary distribution over the PIN dictionary PIN with min-entropy
hD .14 For any efficient adversary A making at most qS queries to Setup, qE queries to Execute, qR
queries to Reboot, qA queries to Authenticate and qH queries to H in the random oracle model, there
exist efficient adversaries B, C,D such that:

Advuf-t
CTAP2*(A) ≤ nqS/2hD + (qS + qE) ·Advscdh

G,g (B) + 2(qS + qE) ·Advprf
AES-256(C)

+ qSqR ·Adveuf-cma
HMAC (D) + ((n+ 12)qS + (qA + qH)2) · 2−bl + qE

2/Q,

where n = nth if user undetectability is required for A or n = nmax otherwise.

To see that the above guarantee applies to the CTAP2* instantiation it remains to note that
AES-256 is believed to be a PRF and HMAC-SHA256 has been proved to be a PRF (and hence
EUF-CMA) [8] assuming SHA256’s compression function is a PRF.

SUF-t does not imply UF. Note also that CTAP2* becomes SUF-t secure (but still not UF secure)
if an independent pinToken is used for each binding session. This shows that SUF-t security does not
imply UF security.

Avoiding authenticator reboots caused by consecutive PIN mismatches. As mentioned
above, the nth threshold is used for user detectability. To involve user interaction, CTAP2 requires the

10By default nmax = 8.
11Once the authenticator blocks the pin, it needs to be reset to the factory default state (i.e., erasing all previous

state) before further operations.
12By default nth = 3.
13Our recommendation is that these should be dropped or replaced with non-authenticated checksums.
14A user-memorizable PIN has low entropy, so hD < log |PIN| = 512.

13

Authenticator T (stT .rs = (aG, a, inc)) Client C (pinU)

(1) Authenticator Setup:

(bG, b)
$← ECKG()bG←−−−−−−−

aG−−−−−−−→ K ← H(abG.x)
K ← H(abG.x) cp ← E(K, pinU)
if pin← D(K, cp) ∈ PIN :

cp←−−−−−−−
stT .ss← H(pinU)
ctr ← nmax ok−−−−−−−→

otherwise: error−−−−−−−→

(2) Binding:
if ctr = 0:

blocks pin and halts PAKE(H(pinU))
↼−−−−−−−−−−−−−−−−−−−−−−⇁if PAKE outputs a session if PAKE outputs a session

key skT ∈ {0, 1}bl: key skC ∈ {0, 1}bl:
stT .bsi ← skT bsC,j ← skC
ctr ← nmax, inc← 0

otherwise:
ctr ← ctr − 1
inc← inc+ 1
if inc = nth:

requires user interaction15

(3) Authenticated Channel (client sending M to the authenticator):
τ ← MAC(bsC,j ,M)

τ ?= MAC(stT .bsi,M)
(M, τ)
←−−−−−−−

accept/reject
−−−−−−−→

Figure 5: The sPACA protocol

authenticator to reboot each time nth consecutive PIN mismatches occur. Such reboots do not enhance
security because the stored transformed PIN is not updated, but they could cause usability issue
because each reboot invalidates all existing client-authenticator bindings. Therefore, we recommend
it instead require a simple test of user presence (e.g., pressing a button) as well as resetting the inc
counter to 0, when nth consecutive PIN mismatches are detected.

6 Fully Secure PACA Protocol

In this section, we propose a (minimally) modified version of CTAP2 and prove its SUF security. We
call it sPACA for secure PACA.

sPACA consists of three subprotocols (as shown in Figure 5) that respectively correspond to the
three PACA phases. It employs the same cryptographic primitives as CTAP2, as well as a PAKE
protocol. Intuitively, the PAKE replaces the binding subprotocol and uses a hash of the PIN as the
password. This means that CTAP2’s ECDH protocol is only used for PIN setup. Its authenticator
power-up state generation function reboot just sets counter inc to 0.

SUF security of sPACA. The following theorem shows the SUF security of sPACA. The session
identifier for binding sessions is simply that defined by the underlying PAKE. The proof is in Ap-
pendix D:

15The user interaction could be pressing a button (which resets inc = 0).

14

Theorem 2 Let PAKE be a 3-pass protocol where the client is the initiator and let DPIN be an
arbitrary distribution over the PIN dictionary PIN . For any efficient adversary A making at most
qS queries to Setup, qC queries to Connect, qE queries to Execute, and qH queries to H in the random
oracle model, there exist efficient adversaries B, C,D, E such that:

Advsuf
sPACA(A) ≤ qSAdvcdh

G,g(B) + 2qSAdvprf
AES-256(C) + AdvPAKE(D, 2(nqS + qC),DPIN)

+ (qC + qE) ·Adveuf-cma
MAC (E) + (12qS + 2qH

2) · 2−bl,

where n = nth if user undetectability is required for A or n = nmax otherwise.

Note that it is crucial for PAKE to guarantee explicit authentication, otherwise, the authenticator
might not be able to detect wrong PIN guesses and decrease its ctr counter used to prevent exhaustive
PIN guesses.16 Also note that the PAKE advantage bound may itself include calls to an independent
random oracle. Such a PAKE can be instantiated with variants of CPACE [21] or SPAKE2 [3,
6] that include explicit authentication. Both protocols were recently considered by the IETF for
standardization and CPACE was selected in the end.17 They both meet the required security property,
as they have been proved secure in the UC setting which implies the game-based security notion we
use [4, 21].

UF does not imply SUF-t. Note that one can easily transform sPACA into a protocol that is
still UF secure, but not SUF-t secure: let the authenticator generate a global pinToken used for
authentication as with CTAP2 and send it (encrypted with the session key output by PAKE) to its
partner in the end of the binding phase. This shows that UF security does not imply SUF-t security.

Performance comparison of CTAP2 and sPACA. We purposely design our sPACA protocol
following CTAP2 such that the required modification is minimized. To achieve stronger security,
sPACA introduces slightly more overhead for binding (in terms of group exponentiations, hashes,
AES computations, and communication complexity), as summarized in Table 1. There sPACA is
instantiated with CPACE, which requires one and a half round trips or three flows (while CTAP2 only
runs one round trip) when explicit authentication is required; the last client-to-token message provides
client authentication. However, if the binding is performed when the client already has a command to
issue, then this last PAKE message can be piggy-backed with the authenticated command, leading to
essentially no overhead.18 For the proposed instantiations, the token-side computational cost is that
of plain Diffie-Hellman if tamper-proof storage can be assumed; this is because both protocols allow
precomputing a password-dependent component that removes the online overhead.19 In short, the
only additional computational cost for the authenticator over CTAP2 is computing and verifying the
PAKE key confirmation messages (which leads to 3 more hashes), but CPACE does not involve AES
computations. (Note that the most expensive computation cost is group exponentiation, for which
both protocols have two.) We also emphasize that the cryptographic primitives in sPACA could be
instantiated with more efficient (but still secure) ones compared to those in CTAP2. For instance, one
can use a simple one-time pad (with appropriate key expansion) instead of CBC0 in the authenticator
setup phase to achieve the same SUF security.

A practical implication of SUF security. We note that SUF security offered by sPACA has a
practical meaning: commands can be traced back to a unique binding session identifier, as corrupting
one client session does not allow forging commands for another session. This means that an authen-
ticator that allows a user to confirm a session identifier for a command can allow a human user to

16One does not actually need explicit token-to-client authentication in the proof, as the client does not have long-
term secret to protect. This would potentially allow removing the server-side authentication component from the PAKE
instantiation for further efficiency. We do not propose to do this and choose to rely on the standard mutual explicit
authentication property to enable direct instantiation of a standardized protocol.

17https://mailarchive.ietf.org/arch/msg/cfrg/j88r8N819bw88xCOyntuw_Ych-I
18This piggy backing has the extra advantage of associating the end of the binding state with a user gesture by

default, which helps detect online password guessing attacks against the token as stated in Section 4.
19Usually this precomputation cannot be done because corrupting the state of a party would allow an offline dictionary

attack.

15

https://mailarchive.ietf.org/arch/msg/cfrg/j88r8N819bw88xCOyntuw_Ych-I

Table 1: Performance comparison of CTAP2 and sPACA for binding
Protocol Flow Authenticator Client Comm.

exp H E exp H E (bl)

CTAP2 2 2 1 2 2 1 2 6

sPACA 3 2 4 0 2 4 0 6

detect rogue commands issued by an adversary (e.g., malware) that corrupted one of the clients (e.g.,
browser window) bound to the token.

7 Passwordless Authentication

In this section, we define the syntax and security model for Passwordless Authentication (PlA) pro-
tocols. This is in order to analyze the security of FIDO2’s WebAuthn protocol.

7.1 Protocol Syntax

A PlA protocol is an interactive protocol among three parties: an authenticator (representing a
user), a client, and a server. The authenticator is associated with an attestation public key that is
pre-registered to the server. The protocol defines two types of interactions: registration and authen-
tication. In registration the server requests the authenticator to register some initial authentication
parameters. If this succeeds, the server can later recognize the same authenticator using a challenge-
response protocol. The syntax of the protocol also permits binding the authentication parameters to
a user-server name pair.

The possible communication channels are represented as double-headed arrows in Figure 2. The
model overlaps with that for PACA protocols in that we consider client-to-authenticator communica-
tions, but we do not include the user, and consider servers as a new type of protocol entity. Servers
are accessible to clients via a communication channel that models Internet communications.

Syntax. The set of parties P consists of three disjoint sets of parties: authenticators T , clients C,
and servers S, i.e., |P| = |T |+ |C|+ |S|. Each party has a well-defined and non-ambiguous identifier,
which one can think of as being represented as an integer. The state of authenticator T , denoted by
stT , is partitioned into the following (static) components: i) attestation key pair (stT .ak, stT .vk); ii)
one or more registration contexts stT .rcti. A server S may also have multiple registration contexts
stS .rcsi.

A PlA protocol consists of the following subprotocols:

Key Generation This algorithm, denoted by Kg, is executed at most once for each authenticator;
it generates an attestation key pair (ak, vk).

Register This subprotocol is executed between an authenticator, a client, and a server. The server
inputs a server name idS , a username idU , and a set of attestation public keys; the client inputs a
server name îdS and a username îdU ; and the authenticator inputs its static storage. At the end of
the protocol, if this is successful, the token and the server obtain new registration contexts, which
may be different. Note that the token may successfully complete the protocol, and the server may
fail to, in the same run.

Authenticate This subprotocol is executed between an authenticator, a client, and a server. The
server inputs the registration context for the intended username; the client inputs a server name
īdS and a username īdU ; and the authenticator inputs its registration contexts. At the end of the
protocol, the server accepts or rejects. The registration contexts of token and server may be updated
after authentication (e.g., for sequence number updates).

16

For both Register and Authenticate, we focus on 2-pass challenge-response protocols with the following
structure:
• Server-side computation is split into four procedures: rchallenge and rcheck for registration, achallenge
and acheck for authentication. The challenge algorithms are probabilistic, which take the server’s input
to the registration or authentication protocol and return a challenge. The check algorithms get the
same inputs, the challenge, and a response, then output accept or reject. The registration check
additionally returns a registration context rcs, encoding user and server identities.
• Client-side computation is modeled as two deterministic functions rcommand and acommand that
capture possible checks and translations performed by the client before sending the challenges to
the authenticator. These algorithms output commands denoted by M , which they generate from a
challenge and the server and user identities.
• Authenticator-side computation is modeled as two probabilistic algorithms rresponse and aresponse
that, on input a command M and the token’s input to the corresponding subprotocol, then output a
response. In the case of registration, this algorithm also outputs a registration context rct, encoding
a server identity and optionally a user identity.

Correctness. Formally, correctness imposes that for any user names idU , îdU , īdU and server name
idS , îdS , īdS the following probability is 1:

Pr



b = ((idS , idU) ?= (îdS , îdU)

∧ (idS , idU) ?= (īdS , īdU))
∧ rcs.idS = idS
∧ rct.idS = idS
∧ rcs.idU = idU
∧ rct.idU ∈ {⊥, idU}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ak, vk)
$← Kg(1λ)

c
$← rchallenge(idS , idU , vk)

M
$← rcommand(îdS , îdU , c)

(r, rct)
$← rresponse(M,ak,G)

rcs← rcheck(idS , idU , vk, c, r)

c′
$← achallenge(rcs)

M ′ $← acommand(īdS , īdU , c
′)

r′
$← aresponse(M ′, rct, G′)

b← acheck(rcs, c′, r′)


Token-side (rct) and server-side (rcs) registration contexts should store the identity of the server

involved in the challenge response, as well as the user identity that the server used as input. We
denote these as rct.idU , rct.idS , rcs.idU , and rcs.idS .

Intuitively, correctness imposes that the server always accepts an authentication that is consistent
with a prior registration, and the registration on the token side produces the correct server name and
optionally the correct user name. (Here we do not mean that the user can necessarily confirm that the
correct names have been agreed, but rather that the internal state of the token encodes the correct
names.)

7.2 Security Model

Trust model. Before defining security we clarify that there are no security assumptions on the
communication channels shown in Figure 2. Again, the authenticator is assumed to be tamper-proof,
so the model will not consider corruption of its internal state. We assume the key generation stage,
where the attestation key pair is created and installed in the authenticator, is either carried out within
the token itself, or it is performed in a trusted context that leaks nothing about the attestation secret
key. Finally, we require authenticators and servers to keep a unique registration context for each
(idU , idS) pair.

We now formally define security of PlA protocols.

Session oracles. Similar to PACA protocols, each party P ∈ T ∪ S is associated with a set of
session oracles πi,jP , where we need to manage two types of sessions corresponding to registration
and authentication. We omit session oracles for clients, since all they do can be performed by the
adversary. For servers and authenticators, session oracles are structured as follows: πi,0S refers to

a pending or completed registration session, whereas πi,jS for j ≥ 1 refers to the j-th pending or

17

completed authentication session associated with πi,0S after this registration completed. For tokens,
the static storage (attestation material) is maintained by the security experiment. The security
experiment also manages the attestation public keys of different authenticators and provides them to
the server session oracles as needed.

Security experiment. The security experiment is run between a challenger and an adversary A.
In the beginning of the experiment, the challenger runs (akT , vkT)

$← Kg() for all T ∈ T to generate
their attestation key pairs. The adversary A is given all attestation public keys and is allowed to
interact with session oracles via the following queries:

• Start(πi,jS , idS , idU , T). The challenger instructs πi,jS to execute rchallenge (if j = 0) or achallenge

(if j > 0) to start the registration (for the given token) or authentication (for the πi,0S registration
context) for the indicated server and user names and generate a challenge c, which is given to the
adversary. We set πi,jS .c as the returned challenge.

• Challenge(πi,jT ,M). The challenger delivers command M to πi,jT , which proceeds to process the
command using rresponse (if j = 0) or aresponse (if j > 0) and return the result R to the adversary.
We define πi,jT .M as the input M and πi,jT .R as the output R. We define πi,0T .rct as the resulting
registration context, which may be updated every time it is used for subsequent authentications.
• Complete(πi,jS , R). This query delivers an authenticator response to a server oracle, which proceeds
to process the response using rcheck (if j = 0) or acheck (if j > 0) and return the result to the
adversary. We define πi,jS .R as the input R to the check. We define πi,0S .rcs as the resulting registration
context, which may be updated every time it is used for subsequent authentications.

We assume without loss of generality that each query is only called once for each instance and
allow the adversary to get the full state of the server via Start and Complete queries.

Partners. A server registration session πi,0S and an authenticator registration session πk,0T are part-

nered if they agree on a session identifier. A server authentication session πi,jS , for j > 0, and a token

authentication session πk,lT for k > 0 are partnered if: i) they agree on a session identifier; and ii) πi,0S
and πk,0T are partnered.

The session identifier must be defined by the protocol. We note that a crucial aspect of this
definition is that the authentication session partnership only holds if the token and the server are also
partnered for the associated registration sessions: a credential registered in a server cannot be used
to authenticate under another registration context or server.

Advantage measure. We define the passwordless authentication advantage Advpla
Π (A) as the prob-

ability that a server session accepts and it is not uniquely partnered with a token session: there must
exist a unique token session which has derived the same session identifier, and no other server session
has derived the same session identifier.

8 The W3C Web Authentication Protocol

In this section, we present the W3C’s Web Authentication (WebAuthn) protocol [14] of FIDO2 fol-
lowing our PlA protocol syntax and analyze its seurity.20

Protocol Description. WebAuthn supports two types of operations: Registeration and
Authentication (cf. Figure 1 and Figure 2 in [14]), respectively corresponding to the Register and
Authenticate algorithms of a PlA protocol. The username space consists of human-palatable strings
for user accounts. The server ID space consists of effective domains (e.g., hostnames) of server URLs.
The key generation algorithm Kg is defined as part of a signature scheme Sig = (Kg,Sign,Ver). (Note
that WebAuthn supports the RSASSA-PKCS1-v1 5 and RSASSA-PSS signature schemes [27].) Let
H denote the SHA-256 hash function and hc denote the challenge hash H(ch). The core cryptographic
operations are presented in Figure 6. WebAuthn is clearly a PlA protocol syntactically. It does not

20We do not include the WebAuthn explicit reference to user interaction/gestures at this point, as this is handled by
the PACA protocol.

18

Authenticator T Client C Server S
(ak, vk) (idS , idU) (idS , idU , vk)

(1) Register:
rchallenge :

ch
$← {0, 1}bl

rcommand : cc← (idS , ch)

(id, ch)← cc
cc←−

id ?= idS
rresponse : Mr ← (id, hc)Mr←−(pk, sk)

$← Kg()

n← 0, cid
$← {0, 1}bl

ad← (H(id), n, cid, pk) rcheck :

σ ← Sign(ak, ad‖hc)
Rr = (ad, σ)
−−−−−−−−−−−→ (h, n, cid, pk)← ad

rct← (id, cid, sk, n) h ?= H(idS), n ?= 0

Ver(vk, ad‖hc, σ) ?= 1
rcs← (idU , cid, pk, n)

(2) Authenticate:
achallenge :

ch
$← {0, 1}bl

acommand : cr ← (idS , ch, cid)

(id, ch, cid)← cr
cr←−

id ?= idS
aresponse : Ma ← (id, hc, cid)Ma←−n← n+ 1
ad← (H(id), n) acheck :

σ
$← Sign(sk, ad‖hc)

Ra = (ad, σ)
−−−−−−−−−−−→ (h, n′)← ad

h ?= H(idS)
b← Ver(pk, ad‖hc, σ)

if n′ ≤ n: b← 0
if b = 1: n← n′

accept iff b = 1

Figure 6: The WebAuthn protocol

give any information about user names to the token, which means that there is no binding between
user name and registration except that which is carried out by the server. Adding this binding could
be easily done by letting the token sign the username as well.

Security Results. The following theorem assesses PlA security of WebAuthn, which is proved in
Appendix E using (ad, hc) as the session identifier.

Theorem 3 For any efficient adversary A that makes at most qS queries to Start and qC queries to
Challenge, there exist efficient adversaries B, C such that:

Advpla
WebAuthn(A) ≤ Advcoll

H (B) + qC ·Adveuf-cma
Sig (C) + (qS

2 + qC
2) · 2−bl.

The security guarantees for the WebAuthn instantiations follow from the results proving RSASSA-
PKCS1-v1 5 and RSASSA-PSS to be EUF-CMA in the random oracle model under the RSA assump-
tion [12,25] and the assumption that SHA-256 is collision-resistant.

19

User

Authenticator
b← verify((Mr, t), bs, d)
If b = 1:
Rr ← rresponse(Mr, ak)

Client
Mr ← rcommand(idS , idU , c)

(Mr, t)
$← authenticate(Mr, bs)

Server

c
$← rchallenge(S, U, vk)

b← rcheck(idS , idU , vk, c, Rr)

Se
tu

p(
pi
n U

)

Reboot

Bind(pinU)

4.
y(
M
r
, b
s)

5.
d

=
G

(x
, y

)

3.(Mr, t)

1.c

(sent via Client)

6.R
r

2.x(id
S , id

U , sid)

Figure 7: Full PACA+PlA registration flow: black = PACA, blue = PlA, red = authenticated (e.g.,
TLS), dashed = PACA algorithms/subprotocols.

9 The Composed Security of PACA and PlA

In this section we discuss the composed security of PACA and PlA and the implications of this
composition for CTAP2*+WebAuthn. The composed protocol, which we refer simply as PACA+PlA
is defined in the natural way, and it includes all the parties that appear in Figure 2. We give a
typical flow for registration in Figure 7, where we assume PACA authenticator setup and client-to-
authenticator binding have been correctly executed. The server role is purely that of a PlA server.
The client receives the server challenge via an authenticated channel (i.e., it knows the true server
identity S when it gets a challenge from the server). It then authenticates the challenge using the
PACA protocol and sends it to the authenticator. The authenticator first checks the PACA command
(possibly using a user gesture) and, if successful, it produces a PlA response that is conveyed to the
server. The flow for authentication looks exactly the same, apart from the fact that the appropriate
PlA algorithms are used instead. The requirement on the token is that it supports the combined
functionalities of the PACA protocol and the PlA protocol and that it is able to verify the correct
authentication of two types of commands, (Mr, t) and (Ma, t), that correspond to PlA registration and
authentication. These commands are used to control access to the PlA registration and authentication
functionalities. In Appendix F we formally give a syntax for such composed protocols.

The crucial aspect of our security results is that we convey the two-sided authentication guarantees
offered by PACA+PlA, and not only the server side guarantees. Indeed, the server-side guarantees
given by the composed protocol are exactly those offered by PlA, as the server is simply a PlA server:
if a token was used to register a key, then the server can recognize the same token in authentication.
But how does the client and user know which server they are registering at? What guarantee does
a user have that registered credentials cannot be used in a different server? What does a user know
about how browser security affects the effectiveness of access control to the token? We answer these
questions next.

Security model. We give a very short description of the security model here (the details are in
Appendix F). We define a security property called User Authentication for the composed protocol.
We analyze the PACA+PlA composition in a trust model is identical to the PACA model but we
require a server-to-client explicit authentication guarantee. This captures a basic guarantee given
by TLS, whereby the client knows the true identity of the server that generates the challenge and
is ensured the integrity of the received challenge; it allows formalizing explicit server authentication

20

guarantees given to the authenticator and user by the composed protocol. We allow the attacker
to create arbitrary bindings between clients and tokens, and to deliver arbitrary commands to these
created token sessions. We model server-client interaction via a unified oracle: the adversary can
request challenges from server S, via client C aimed at a specific client-token PACA binding. We
allow the attacker to pick arbitrary usernames for both the client and server inputs, but hardwire the
server’s true identity, which is justified by our assumption of an authenticated channel between server
and client. The token oracles are modeled in the obvious way: if a PACA command is accepted, then
it is interpreted as in the PlA security game and the response given to the attacker. Compromise of
binding states and corruption of user pins is modeled as in the PACA security experiment.

Security guarantees. The security goal we define for the composed protocol requires that server
session acceptance uniquely identifies honest token and client sessions and the messages exchanged
between them, for all the passes in the challenge response protocol. We show that such security for the
composed protocol follows from security of the base protocols, namely server-to-client (TLS), client-
to-token (PACA), and token-to-server (PlA) authentication, and from correctness of PlA executions.
A corollary is that PlA correctness applies to both registration and authentication and guarantees
that server, client and token agree on the server and (optionally) the user name (the latter depends
on whether the PlA protocol gives this guarantee).

We now give a short intuition on how we prove this result assuming the underlying PACA and PlA
components are secure. Suppose a server authentication session πi,jS accepts, and that the registration

session πi,0S used as inputs the attestation public key of token T and user and server names (idU , idS):

• PlA security guarantees the existence of unique partner sessions in T ; partnering covers the authen-
tication session and the associated registration session.

• Token sessions are, by construction, created on acceptance of PACA commands. Therefore, a PACA
token session must have accepted commands to create the above PlA partner sessions.

• PACA security binds a PACA command accepted by the token to a unique PACA client session.

• PlA security guarantees unique server-side session oracles bound to the token (i.e., they produced
a challenge consistent with its view); this implies that the unique client sessions identified above
must have produced the PACA commands on input challenges produced by πi,jS and πi,0S .

This argument guarantees that unique client and token sessions are bound to the execution of the
registration and authentication flows, as we claimed above. If this doesn’t hold, then either the PlA
protocol can be broken or the PACA protocol can be broken (reduction to the PACA protocol security
can be done for the same corruption model).

The details are in Appendix F.

Security in the SUF model. The above result implies that the sPACA protocol from Section 6
composes with WebAuthn to give this security guarantee in the strongest corruption model we con-
sidered. Intuitively, no active attacks against the Bind subprotocol can help the attacker beyond the
probability of guessing the user PIN (if the attacker does not possess the token to provide a gesture).
The corruption of browser windows that have previously been bound to the token may be detected
with the help of the user.

Implications for CTAP2*+WebAuthn. The above result also implies that CTAP2*+WebAuthn
securely compose to give the guarantees above under a weak corruption model UF-t: the protocol is
broken if the adversary can corrupt any browser window that interacted with the token since the last
power-up, or if the adversary can launch an active attack against an honest browser window via the
CTAP2 API (i.e., the user thinks it is embedding the PIN but it is actually giving it to the adversary).
If the trust model assumed for the client platform excludes such attacks, then CTAP2*+WebAuthn
gives the same server-side security guarantees we have detailed above.

User gestures can upgrade security. User authentication gives strong guarantees to the server
and client. However, it is not so clear what guarantees it gives to the human user. Clearly there is a

21

guarantee that an attacker that does not control the token cannot force an authentication, as it will
be unable to provide a gesture. Furthermore, an attacker that steals the token must still guess the
PIN in a small number of tries to succeed in impersonating the user.

One very important aspect of user awareness is dealing with malware attacks that may corrupt
browser windows that have been bound to the token. Here, assuming SUF security has been estab-
lished, the user can be used to prevent the adversary from abusing the binding, provided that the
token supports gestures that permit identifying the browser-token session identifier that is issuing
each command. In the weaker UF model there is no way to prevent this kind of abuse, as corrupting
one binding session allows the adversary to impersonate another binding session.

Gestures can also be used to give explicit guarantees to the user that the user and server names
used in a PlA session are the intended ones. For example, there could be ambiguity with multiple
(honest) client windows issuing concurrent commands from multiple servers. Suppose gestures Gr and
Ga permit confirming which client session is issuing the registration and authentication commands.21

In this case we get a strong guarantee that the token registered a credential or authenticated in the
server with identifier id?S under username id?U , where (id?U , id

?
S) were explicitly confirmed by the user on

the client interface, provided that that binding session (i.e., browser session) issued only one command
to the token. Alternatively, Gr and Ga can be defined to directly confirm specific (id?U , id

?
S) values

that can be displayed by the authenticator itself and we get the same guarantee.
If the gesture cannot confirm consistency between client and token, then the user will not be able

to distinguish which client session (browser window) is issuing the PlA command and know for sure
which (idU , idS) the command it is approving refers to. However, our composition result does show
that trivial gestures are sufficient if the user only establishes one binding session with the token per
power-up, as then there is no ambiguity as to which channel identifier is used and only a single client
is providing user and server names as input.

10 Conclusion

We performed the first provable security analysis of the new FIDO2 protocols for a standard for
passwordless user authentication. We studied security of FIDO2’s core components: CTAP2 and
WebAuthn, and the overall FIDO2 protocol as their composition. We identified some shortcomings
and proposed stronger protocols. We hope that our results will help clarify the security guarantees
of the new FIDO2 protocols and help the design and deployment of more secure passwordless user
authentication protocols.

References

[1] “FIDO Alliance. Client to authenticator protocol (CTAP) – proposed standard,” January 2019,
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.
0-ps-20190130.html.

[2] “Google 2-step verification,” 2020, https://www.google.com/landing/2step/.

[3] M. Abdalla and M. Barbosa, “Perfect forward security of SPAKE2,” Cryptology ePrint Archive,
Report 2019/1194, 2019, https://eprint.iacr.org/2019/1194.

[4] M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu, “Universally composable
relaxed password authenticated key exchange,” Cryptology ePrint Archive, Report 2020/320,
2020, https://eprint.iacr.org/2020/320.

21Confirming a client session means that the browser and token somehow display a session identifier that the user
can crosscheck and confirm.

22

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://www.google.com/landing/2step/
https://eprint.iacr.org/2019/1194
https://eprint.iacr.org/2020/320

[5] M. Abdalla, M. Bellare, and P. Rogaway, “The oracle Diffie-Hellman assumptions and an analysis
of DHIES,” in Cryptographers Track at the RSA Conference. Springer, 2001, pp. 143–158.

[6] M. Abdalla and D. Pointcheval, “Simple password-based encrypted key exchange protocols,”
in Topics in Cryptology - CT-RSA 2005, ser. Lecture Notes in Computer Science,
A. Menezes, Ed., vol. 3376. Springer, 2005, pp. 191–208. [Online]. Available: https:
//doi.org/10.1007/978-3-540-30574-3 14

[7] L. b. Amber Gott, “LastPass reveals 8 truths about passwords
in the new Password Exposé,” https://blog.lastpass.com/2017/11/
lastpass-reveals-8-truths-about-passwords-in-the-new-password-expose.html/, November 2017.

[8] M. Bellare, “New proofs for nmac and hmac: Security without collision-resistance,” in CRYPTO
2006. Springer, 2006, pp. 602–619.

[9] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment of symmetric
encryption,” in Foundations of Computer Science. IEEE, 1997, pp. 394–403.

[10] M. Bellare, T. Kohno, and C. Namprempre, “Breaking and provably repairing the SSH authen-
ticated encryption scheme: A case study of the encode-then-encrypt-and-mac paradigm,” ACM
Transactions on Information and System Security (TISSEC), vol. 7, no. 2, pp. 206–241, 2004.

[11] M. Bellare and P. Rogaway, “Entity authentication and key distribution,” in CRYPTO 1993.
Springer, 1993, pp. 232–249.

[12] ——, “The exact security of digital signatures-how to sign with RSA and Rabin,” in Advances in
Cryptology — EUROCRYPT ’96, U. Maurer, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 399–416.

[13] A. Boldyreva, S. Chen, P.-A. Dupont, and D. Pointcheval, “Human computing for handling
strong corruptions in authenticated key exchange,” in Computer Security Foundations Symposium
(CSF). IEEE, 2017, pp. 159–175.

[14] W. W. W. Consortium et al., “Web authentication: An API for accessing public key credentials
level 1 – W3C recommendation,” March 2019, https://www.w3.org/TR/webauthn.

[15] R. Cramer and V. Shoup, “Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack,” SIAM Journal on Computing, vol. 33, no. 1, pp.
167–226, 2003.

[16] A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz, “Strengthening user authentication
through opportunistic cryptographic identity assertions,” in ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 404–414.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382240

[17] G. Davis, “The past, present, and future of password security,” https://www.mcafee.com/blogs/
consumer/consumer-threat-notices/security-world-password-day/, May 2018.

[18] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Transactions on informa-
tion theory, vol. 29, no. 2, pp. 198–208, 1983.

[19] FIDO, “Specifications overview,” https://fidoalliance.org/specifications/, accessed: 2020-05-21.

[20] I. B. Guirat and H. Halpin, “Formal verification of the W3C web authentication protocol,” in 5th
Annual Symposium and Bootcamp on Hot Topics in the Science of Security. ACM, 2018, p. 6.

23

https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://blog.lastpass.com/2017/11/lastpass-reveals-8-truths-about-passwords-in-the-new-password-expose.html/
https://blog.lastpass.com/2017/11/lastpass-reveals-8-truths-about-passwords-in-the-new-password-expose.html/
https://www.w3.org/TR/webauthn
http://doi.acm.org/10.1145/2382196.2382240
https://www.mcafee.com/blogs/consumer/consumer-threat-notices/security-world-password-day/
https://www.mcafee.com/blogs/consumer/consumer-threat-notices/security-world-password-day/
https://fidoalliance.org/specifications/

[21] B. Haase and B. Labrique, “AuCPace: Efficient verifier-based PAKE protocol tailored for the
IIoT,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2019, no. 2, pp. 1–48, 2019. [Online].
Available: https://doi.org/10.13154/tches.v2019.i2.1-48

[22] K. Hu and Z. Zhang, “Security analysis of an attractive online authentication standard: FIDO
UAF protocol,” China Communications, vol. 13, no. 12, pp. 189–198, 2016.

[23] K. Igoe, D. McGrew, and M. Salter, “Fundamental elliptic-curve Cryptography Algorithms,”
RFC 6090, Feb. 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6090.txt

[24] C. Jacomme and S. Kremer, “An extensive formal analysis of multi-factor authentication proto-
cols,” in Computer Security Foundations Symposium (CSF). IEEE, 2018, pp. 1–15.

[25] T. Jager, S. A. Kakvi, and A. May, “On the security of the PKCS#1 v1.5 signature scheme,”
in ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, D. Lie,
M. Mannan, M. Backes, and X. Wang, Eds. ACM, 2018, pp. 1195–1208. [Online]. Available:
https://doi.org/10.1145/3243734.3243798

[26] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena, “Two-factor authentication with
end-to-end password security,” in Public-Key Cryptography - PKC 2018, 2018, pp. 431–461.
[Online]. Available: https://doi.org/10.1007/978-3-319-76581-5 15

[27] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS #1: RSA Cryptography Specifications
Version 2.2,” RFC 8017, Nov. 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc8017.txt

[28] B. Nahorney, “Email threats 2017,” Symantec. Internet Security Threat Report, 2017.

[29] C. Panos, S. Malliaros, C. Ntantogian, A. Panou, and C. Xenakis, “A security evaluation of
FIDO’s UAF protocol in mobile and embedded devices,” in International Tyrrhenian Workshop
on Digital Communication. Springer, 2017, pp. 127–142.

[30] O. Pereira, F. Rochet, and C. Wiedling, “Formal analysis of the FIDO 1. x protocol,” in Inter-
national Symposium on Foundations and Practice of Security. Springer, 2017, pp. 68–82.

[31] Verizon, “2017 data breach investigations report,” https://enterprise.verizon.com/resources/
reports/2017 dbir.pdf, 2017.

A Preliminary Definitions

A.1 Pseudorandom Function

For a function family F : {0, 1}λ × {0, 1}n → {0, 1}m, consider the following security experiment

associated with an adversary A. In the beginning, sample a bit b
$← {0, 1}. If b = 0, A is given oracle

access, i.e., can make queries, to Fk(·) = F (k, ·) where k
$← {0, 1}λ. If b = 1, A is given oracle access

to f(·) that maps elements from {0, 1}n to {0, 1}m uniformly at random. In the end, A outputs a bit

b′ as a guess of b. The advantage of A is defined as Advprf
F (A) = |Pr[b′ = 1|b = 0]−Pr[b′ = 1|b = 1]|,

which measures A’s ability to distinguish Fk (with random k) from a random function f .
F is a pseudorandom function (PRF) if: 1) for any k ∈ {0, 1}λ and any x ∈ {0, 1}n, there exists an

efficient algorithm to compute F (k, x); and 2) for any efficient adversary A, Advprf
F (A) is sufficiently

small (e.g., roughly 2−λ).

24

https://doi.org/10.13154/tches.v2019.i2.1-48
https://rfc-editor.org/rfc/rfc6090.txt
https://doi.org/10.1145/3243734.3243798
https://doi.org/10.1007/978-3-319-76581-5_15
https://rfc-editor.org/rfc/rfc8017.txt
https://enterprise.verizon.com/resources/reports/2017_dbir.pdf
https://enterprise.verizon.com/resources/reports/2017_dbir.pdf

A.2 Message Authentication Code

For a (deterministic) message authentication code (MAC) MAC : K × {0, 1}∗ → {0, 1}n, consider the
following security experiment associated with an adversary A. In the beginning, sample a random key
k

$← K. Then, A is given access to the MAC oracle MAC(k, ·). In the end, A outputs a message-tag
pair (m, τ). Its advantage measure Adveuf-cma

MAC (A) is defined as the probability that MAC(m) = τ and
m was not queried to the MAC(k, ·) oracle.

MAC is existentially unforgeable under chosen message attack (EUF-CMA) if for any efficient
adversary A, Adveuf-cma

MAC (A) is sufficiently small (e.g., roughly 2− log |K|).

A.3 Collision-Resistant Hash Function Family

Consider a function family H = {hk : Dk → Rk}k generated by some algorithm G(1λ), where ∀k $←
G(1λ), |Dk| > |Rk| and computing hk on any input is efficient given k. In the security experiment, an

adversary A takes as input 1λ and a random k
$← G(1λ), then outputs two messages (x1, x2) ∈ Dk.

Its advantage measure Advcoll
H (A) is defined as the probability that x1 6= x2 and hk(x1) = hk(x2).

H is collision-resistant if for any efficient adversaryA, Advcoll
H (A) is sufficiently small (e.g., roughly

2−λ). Note that in practice H is typically a single hash function instead of a function family.

A.4 Signature Scheme

A signature scheme Sig consists of three efficient algorithms (Kg,Sign,Ver):

• Kg(1λ): takes as input the security parameter 1λ and outputs a pair of keys: a public verification
key pk and a private signing key sk.

• Sign: takes as input a signing key sk and a message m, then outputs a signature σ.

• Ver: takes as input a verification key pk, a message m, and a signature σ, then outputs a bit b
indicating if the signature is valid.

The correctness requires that for any (pk, sk)
$← Kg(1λ) and any m, Ver(pk,m, Sign(sk,m)) = 1.

For security, consider the following security experiment associated with an adversary A. In the
beginning, run (pk, sk)

$← Kg(1λ). Then, A is given pk and access to the oracle Sign(sk, ·). In the
end, A outputs a message-signature pair (m,σ). Its advantage measure Adveuf-cma

Sig (A) is defined as
the probability that Ver(pk,m, σ) = 1 and m was not queried to the Sign(sk, ·) oracle.

Sig is existentially unforgeable under chosen message attack (EUF-CMA) if for any efficient adver-
sary A, Adveuf-cma

Sig (A) is sufficiently small (e.g., roughly 2−λ).

A.5 The (Strong) Computational Diffie-Hellman Assumption

Consider a cyclic group G = 〈g〉 of prime order q associated with the security parameter λ. The com-
putational Diffie-Hellman (CDH) assumption states that it is computationally infeasible to compute

gab given G, g, ga, gb for random a, b
$← Zq. That is, let Advcdh

G,g(A) denote the probability that an

adversary A outputs gab, then we have Advcdh
G,g(A) is sufficiently small (e.g., roughly 2−λ) for any

efficient adversary A.
For the strong CDH (SCDH) assumption [5], an adversary A is additionally granted oracle access

to Oa(·, ·), which takes any group elements Y, Z ∈ G as input and checks if Y a = Z. Let Advscdh
G,g (A)

denote the probability that A outputs gab. The SCDH assumption states that for any efficient adver-
sary A, Advscdh

G,g (A) is sufficiently small (e.g., roughly 2−λ).

25

B Password-Authenticated Key Exchange

A Password-Authenticated Key Exchange (PAKE) protocol is an interactive protocol between two
parties (sometimes referred to as a client/server or initiator/responder, but in CTAP2 we have clien-
t/token). PAKE protocols allow them to establish a high-entropy session key over an insecure channel
using only a shared low-entropy, human-memorizable password for mutual authentication.

Since shared password has low entropy, an adversary has non-negligible chance of successfully
impersonating one of the parties by guessing their shared password. Such an impersonation attack is
called an online dictionary attack because the adversary cannot mount this attack by itself (referred to
as offline dictionary attack) but needs to interact with an “online” party to verify its guess. Note that
an offline attack, if possible, is disastrous to a PAKE protocol due to the low entropy of the password.
Informally, a secure PAKE protocol guarantees that for any efficient adversary an exhaustive online
dictionary attack is the best strategy to break the protocol.

We consider the game-based security model for PAKE protocols (non-augmented) with perfect
forward secrecy (PFS) and explicit mutual authentication, as described for example in [3, 4], but
without explicit separation of passive session executions (i.e., the attacker can adaptively decide
whether it is going to be passive or active in a given session). This game-based security model is
implied by UC security [4].

PAKE PFS security experiment. An efficient adversary A is challenged to distinguish established
session keys from truly random ones with an advantage that is better than password guessing. The
challenger emulates an execution environment in which tokens T ∈ T and clients C ∈ C communicate
securely using PAKE. The sets of tokens and clients are disjoint, the client initiates the protocol, and
each pair of client-token shares a pre-agreed password.

The challenger first generates any global public parameters (CRS) that the protocol may rely on
and samples passwords for all pairs of parties from a distribution D (over some password dictionary).
Passwords need not be uniformly distributed, but it is assumed that they are sampled independently
for each pair of parties. The important parameter of D is its min-entropy hD , which intuitively charac-
terises the most likely password.22 The challenger manages a set of instances πiP , each corresponding
to the state of session instance j at party P ∈ C ∪ T , according to the protocol definition. The
adversary is then executed with the CRS as input; it may interact with the following set of oracles,
to which it may place multiple adaptive queries:

Send: Given a party identity P , an instance i and a message m, this oracle processes m according to
the state of instance πiP (or creates this state if the instance was not yet initialized) and returns
any outgoing messages to the attacker.

Corrupt: Given a pair of party identities (C, T), this oracle returns the corresponding pre-shared
password.

Reveal: Given a party identity P and an instance i, this oracle checks πjP and, if this session
instance has completed as defined by the protocol, the output of the session (usually either a
secret key or an abort symbol) is returned to the attacker.

Test: Given a party identity P and an instance i, this oracle checks πjP and, if this session instance
has completed as defined by the protocol and this session instance is fresh, the adversary is
challenged on guessing bit b: if b = 0 then the derived key is given to the attacker; otherwise a
new random key is returned.

Eventually the adversary terminates and outputs a guess bit b′. The definition of advantage excludes
trivial attacks via the notion of session freshness used in the Test oracle.

22We use this definition to emphasize that one does not need to assume that the distribution of pin’s is uniform;
we could just as well assume a small dictionary and uniform sampling, or a more fine-grained definition of advantage
considering the sum of the probabilities of the qs most likely pins.

26

Two session instances are partnered if their views match with respect to the identity of the peer,
exchanged messages and derived secret keys—the first two are usually interpreted as a session identifier.
A session is fresh if: a) the instance completed; b) the instance was not queried to Test or Reveal
before; c) at least one of the following four conditions holds: i) the adversary behaved passively when
completing that session; ii) there exists more than one partner instance; iii) no partner instance exists
and the associated password was not corrupted prior to completion; and iv) a unique fresh partner
instance exists (implies not revealed).

A PAKE protocol offers PFS if, for any efficient attacker A interacting with the above experiment,
we have that

|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| ≤ qs/2hD + εpfs ,

where εpfs is a negligible term and qs is the number of Send queries in which the attacker delivered a
modified message (i.e., actively attacked the session).

A PAKE protocol provides explicit authentication if the following conditions hold, except with
probability qs/2

hD + εea:

• if a client C accepts a session with token T , then T has a pending unique session (which is the
unique partner of the client session) where it has derived the same key and session identifier;

• if a token T accepts a session with client C, then C has already accepted a unique session (which
is the unique partner of the token session) with the same key and session identifier.

Otherwise, client and server output an explicit abort symbol. Note that this implies that any active
attack launched by the adversary leads to a session abort with overwhelming probability, unless the
attacker was able to guess the password.

We define AdvPAKE(A, qs,D) = 2qs/2
hD + εpfs + εea.

C Proof of Theorem 1

IND-1$PA for deterministic encryption. We first introduce the indistinguishability under one-
time chosen and then random plaintext attack (IND-1$PA) security of a deterministic encryption
scheme DE = (K,E,D). This notion is used in our proofs and may be of independent interest when
only random messages are encrypted.

Definition 1 (IND-1$PA) We define a security experiment associated with an adversary A. The

experiment samples a random key k
$← K and a random bit b

$← {0, 1}. Then, A is granted access to
the following encryption oracles:

• OLR(m0,m1): returns E(k,mb), where the input m0,m1 are of the same bit length. This oracle
is queried only once (if ever) and has to be the first query.

• O$(l): samples a random message m
$← {0, 1}l and returns (m,E(k,m)).

• O$LR(l): samples independent random messages m0
$← {0, 1}l, m1

$← {0, 1}l and returns
(m0,m1,E(k,mb)).

In the end, A outputs a bit b′ as its guess of b. Its advantage measure Advind-1$pa
DE (A) is defined as

|2 Pr(b = b′)− 1|.

Comparison to other IND-CPA security notions. Note that our IND-1$PA security is implied by the
deterministic version of IND-CPA – indistinguishability under distinct chosen-plaintext attack (IND-
DCPA) security [10] (where OLR can be queried multiple times as long as messages in each world never
repeat), because oracles O$ and O$LR can be simulated using the OLR oracle. However, IND-1$PA
does not imply IND-DCPA. In particular, CBC0 is IND-1$PA secure (see Lemma 1 below), but it

27

is obviously not IND-CPA secure for long messages (e.g., of length more than one block size). On
the other hand, IND-1$PA clearly implies one-time IND-CPA for which no other queries are allowed
after the single OLR query. Such one-time IND-CPA security was defined as security against passive
attacks by Cramer and Shoup [15]. Note that the other direction is not true, e.g., the one-time pad
is one-time IND-CPA secure but not IND-1$PA secure.

IND-1$PA security of CBC0. Now, we prove that CBC0 is IND-1$PA secure (and hence also
one-time IND-CPA secure) by modeling its underlying AES-256 cipher E as a PRF.

Lemma 1 For any efficient adversary A, there exist an efficient adversary B such that:

Advind-1$pa
CBC0

(A) ≤ 2Advprf
E (B) + 2

(µ
bl

2

)
2−bl,

where µ is the total bit length of ciphertexts in response to all encryption oracle queries.

Proof: First, we replace the PRF E in both the left and right worlds with a purely random function
f : {0, 1}λ → {0, 1}λ. Note that it is straightforward to simulate either world of the IND-1$PA
experiment of CBC0 with oracles Ek (for random k) or f . Therefore, there exists an efficient adversary
B against the PRF security of E such that the game differences caused by replacing E with f are
bounded by 2Advprf

E (B).

Let C̃BC0 denote the CBC0 encryption scheme of which the underlying PRF is replaced with
a purely random function. We are left to show that the left and right worlds of the IND-1$PA

experiment of C̃BC0 are computationally indistinguishable. It is sufficient to bound the probability of
input collisions for f because the two worlds are perfectly indistinguishable if no collisions occur. Let
p denote such collision probability. Since there are µ/bl blocks in each world, by a union bound, we
have p ≤ µ/bl(µ/bl− 1)2−bl. We also refer to [9] (Lemma 18) for a more detailed security analysis of
the randomized CBC scheme that also applies to our case. �

Proof of Theorem 1. We complete the final proof as follows.

Proof: We recall that, because the adversary is not allowed to make Connect queries, it is unable
to create client-side session oracles that can be actively attacked.

Consider a sequence of games (i.e., experiments) and let Pri, i ≥ 0 denote the winning probability
of A in Game i.

Game 0: This is the real experiment for A, so Pr0 = Advuf-t
CTAP2*(A).

Game 1: The challenger proceeds as before except it replaces all shared keys K = H(abG.x) es-

tablished in Setup queries and Execute queries with independent random values K̃
$← {0, 1}λ. By

a hybrid argument, there exists an efficient adversary B against the SCDH security of G such that
|Pr0−Pr1 | ≤ (qS + qE) ·Advscdh

G,g (B).

To simulate a hybrid game, we embed the challenge group elements ãG, b̃G into the corresponding
authenticator and client oracles and answer random oracle H queries via lazy sampling. Note that
when receiving an arbitrary bG from A to the authenticator oracle via a Send query, we check if
ãbG.x has already been queried to the random oracle H using the verification oracle Oã(·, ·). This
is sufficient to answer H queries consistently and set the resulting shared keys accordingly. Before
setting K = H(ãb̃G.x) to K̃, we also need to check if ãb̃G has already been queried: if so we can win
the SCDH game, otherwise we simulate A’s view perfectly.

Game 2: The challenger proceeds as before except it replaces all transmitted ciphertexts cp =

E(K̃, 0, pinU), cph = E(K̃, 0,H(pinU)), cpt = E(K̃, 0, pt) in Setup and Execute queries with c̃p ←
E(K̃, 0, p̃inU), c̃ph ← E(K̃, 0,H(p̃inU)), c̃pt ← E(K̃, 0, p̃t), where p̃inU

$← PIN , p̃t $← {0, 1}λ are

independent random values. By a hybrid argument, there exists an efficient adversary C̃ against the
IND-1$PA security of CBC0 such that |Pr1−Pr2 | ≤ (qS + qE) ·Advind-1$pa

CBC0
(C̃).

28

To simulate a pair of consecutive hybrid games Gk, Gk+1 (e.g., replacing the transmitted ci-

phertexts in Setup/Execute), we sample an independent random PIN p̃inU
$← PIN and query the

IND-1$PA encryption oracles of CBC0 as follows. First, query c∗ ← OLR(pinU , p̃inU) if the con-

sidered Setup/Execute query involves the authenticator setup phase. Then, if pinU 6= p̃inU , query

(m0,m1, cb)
$← O$LR(); otherwise (if pinU = p̃inU), query (m, c)

$← O$() and let m0 = m1 = m and

cb = c. Finally, query (m′0,m
′
1, c
′
b)

$← O$LR(). Now, we set cp ← c∗, cph ← cb, cpt ← c′b, pt ← m′0. It
is not hard to see that, in the left world, the above ciphertexts and pt are equal to the original ones
in game Gk while, in the right world, they are equal to the replaced ciphertexts that encrypt random
values in game Gk+1. Note that we simulate the random oracle H via lazy sampling as before except

that we fix H(pinU)← m0 and H(p̃inU)← m1 (or H(pinU)← m if pinU = p̃inU) in the beginning.
Now, recall that encrypting a user PIN in the setup session yields a 4-block ciphertext and en-

crypting its hash in the binding session yields a 1-block ciphertext. According to Lemma 1, we have
|Pr1−Pr2 | ≤ 2(qS + qE) ·Advprf

E (C) + 2qS
(

4
2

)
/2bl.

Game 3: The challenger proceeds as before, except it aborts if some authenticator oracle received a
malicious cph from A (via a Send query to a token-side oracle) and the decrypted message matches
its transformed PIN. Note that after Game 2, the authenticators’ transformed PINs and the clients’
input PINs are independent from A’s view. Since each Setup query allows A to create a token on
which it is able to make at most nmax guesses (or nth guesses without requiring authenticator reboots)
about the corresponding authenticator’s transformed PIN and each guess succeeds with probability
at most 1/2hD + 1/2bl (where the second term accounts for a possible collision on the output of H),
by a union bound we have |Pr2−Pr3 | ≤ nqS(1/2hD + 1/2bl) = nqS/2

hD + nqS/2
bl.

Game 4: The challenger proceeds as before except that it aborts if ever a token session accepts
a command that was not issued by one of the token partners. This event can be reduced to the
EUF-CMA security of the MAC scheme MAC by an efficient adversary D. Adversary D first guesses
the accepting authenticator T and its reboot cycle with probability at least 1/(qSqR) (because each
authenticator reboot generates an independent random pt), then simulates the game with the MAC
oracle of MAC. This simulation is perfect except when collisions occur in the random oracle queries
(used to get the message digest that is actually authenticated with the MAC), which happens with
probability at most (qA + qH)2/2bl. Therefore, |Pr3−Pr4 | ≤ qSqR ·Adveuf-cma

MAC (D) + (qA + qH)2/2bl.

Final analysis. In the final game it remains to establish that partnership relations are unique and
refer to valid partner session oracles at the time a command is accepted/issued. Note that no binding
is complete in this game except via Execute queries, and hence accepted commands come from client
session oracles. Uniqueness therefore follows from a birthday bound on the order of the elliptic-curve
group of the form qE

2/q. The validity condition is now trivial, as we know that token sessions only
accept commands if they are valid, i.e. powered up, and we know it has a unique partner that was
not involved in setup, and hence never goes invalid. �

D Proof of Theorem 2

Proof: Consider a sequence of games and let Pri, i ≥ 0 denote the winning probability of A in
Game i.

Game 0: This is the real experiment for A, so Pr0 = Advsuf
sPACA(A).

Game 1: The challenger proceeds as before except it replaces all shared keys K = H(abG.x) es-

tablished in Setup queries with independent random values K̃
$← {0, 1}λ. Since ECDH is executed

only in the trusted authenticator setup phase, our proof no longer requires the SCDH assumption.
Similar to the corresponding proof in Appendix C, there exists an efficient adversary B against the
CDH security of G such that |Pr0−Pr1 | ≤ qSAdvcdh

G,g(B).

Game 2: The challenger proceeds as before except it replaces all transmitted ciphertexts cp =

E(K̃, 0, pinU) in Setup queries with c̃p ← E(K̃, 0, p̃inU) for some fixed pin p̃inU . By a hybrid argu-

29

ment, there exists an efficient adversary C̃ against the one-time IND-CPA security of CBC0 such that
|Pr1−Pr2 | ≤ qSAdvot-ind-cpa

CBC0
(C̃).

To simulate a pair of consecutive hybrid games Gk, Gk+1 (e.g., replacing cp with c̃p in

Setup(πiT , π
j
C)), we replace the fixed PIN p̃inU , query cb ← OLR(pinU , p̃inU), and set cp ← cb. Recall

that IND-1$PA security implies one-time IND-CPA security. Similar to the proof in Appendix C,
from Lemma 1 we have |Pr1−Pr2 | ≤ 2qS ·Advprf

E (C) + 12qS/2
bl.

A PAKE attacker. We now describe a PAKE attacker D(A) that we will use to bridge the fol-
lowing two hops. The adversary is parameterized with a bit c that instructs it to attack the explicit
authentication property (which we use hop to game 3) or the key secrecy property (which we use to
hop to game 4). Here we model the password derivation hash as a random oracle. D uses the PFS
Send oracle to simulate the PACA Execute, Connect and Send sessions, mapping compromise queries
to Reveal queries and pin corruption queries password corruption queries (given a password D can
use its simulation of the random oracle to keep consistency with PINs up to a statistical birthday
bound that depends on the number of random oracle queries qH to account for hash collisions). For
the sessions whose PACA binding states are fresh when they are used in the PACA simulated exper-
iment, D proceeds differently depending on bit c: if c = >, D uses the Test oracle in the PFS game;
otherwise it uses the Reveal oracle. D aborts if ever explicit authentication is broken in the PAKE
game (as this means it already won). When A terminates, if c = >, D returns 1 if A won the PACA
game and 0 otherwise. Otherwise it just returns a random bit.

We now analyze the maximum number of Send queries placed by this adversary. For this, we
assume it does not abort. To compute this bound we assume that the PAKE protocol is three-pass,
with the client as the initiator, i.e., Connect triggers the first pass, each client oracle accepts at most
one Send query, and each token oracle accepts at most two Send queries. This applies to all our
suggested instantiations.

Since each token allows A to make at most nmax failed binding attempts (or nth guesses without
requiring authenticator reboots) about the password (i.e., H(pinU)) by interacting with an authen-
ticator, we know that D will make at most 2nqS queries to its Send oracle in order to deal with
token-side Send queries. Furthermore, A has to make a Connect query before interacting with a client,
which means that D makes at most 2nqC queries to deal with client-side Send queries by A. In total
D makes at most 2(nqS + qC) Send queries where it actively attacks the session,

Game 3: The challenger proceeds as before, except it aborts any time the explicit authentication
guarantee is violated on either the client side or the token side. We bound the adversary’s change of
advantage in this hop by running attacker D above in its authentication adversary (c =⊥) mode. It
is clear that the two games are identical until bad and that D wins the PAKE explicit authentication
game if ever this event occurs, which means we have: |Pr2−Pr3 | ≤ 2(nqS + qC)/2hD + εea + qH

2/2bl.

Game 4: The challenger proceeds as before except it replaces PAKE secret keys associated with
PACA binding sessions for which the password was not corrupted prior to completion with completely
random keys. We bound the adversary’s change of advantage in this hop by running attacker D above
in its key secrecy adversary (c = >) mode. Adversary D perfectly interpolates between the two games,
which means we have have that |Pr3−Pr4 | ≤ 2(nqS + qC)/2hD + εpfs + qH

2/2bl.

Game 5: The challenger proceeds as before except that it aborts if ever a token session accepts a
command that was not issued by its unique partner. This bad event can be reduced to the EUF-
CMA security of the MAC scheme MAC by an efficient adversary D. E first guesses the accepting
authenticator oracle πiT with probability at least 1/(qE + qC), then simulates the game with the MAC
oracle of MAC. Recall that PAKE guarantees client authentication, i.e., πiT receives a random key (in
an uncompromised session) only if there is a partner client oracle that received the same key. This
ensures that D can simulate the MAC operations of πiT and its partner perfectly. Therefore, we have

|Pr4−Pr5 | ≤ (qC + qE) ·Adveuf-cma
MAC (E).

Final analysis. In the final game we know partnerships are unique. The validity condition is now
trivial, as we know that token sessions only accept commands if they are valid and PAKE sessions are

30

all valid on the client side. �
Token-side (rct) and server-side (rcs) registration contexts should store the identity of the server

involved in the challenge response, as well as the user identity that the server used as input. We
denote these as rct.idU , rct.idS , rcs.idU , and rcs.idS .

Intuitively, correctness imposes that the server always accepts an authentication that is consistent
with a prior registration, and the registration on the token side produces the correct server name and
optionally the correct user name. (Here we do not mean that the user can necessarily confirm that the
correct names have been agreed, but rather that the internal state of the token encodes the correct
names.)

E Proof of Theorem 3

Proof: Consider a sequence of games and let Pri, i ≥ 0 denote the winning probability of A in
Game i.

Game 0: This is the real experiment for A, so Pr0 = Advpla
WebAuthn(A).

Game 1: The challenger proceeds as before, except it aborts if a hash collision occurs. By defi-
nition, there exists an efficient adversary B against the collision-resistance security of H such that
|Pr0−Pr1 | ≤ Advcoll

H (B).

Game 2: The challenger proceeds as before except it aborts if there exists a server that generates
two identical challenges in authentication sessions. We have |Pr1−Pr2 | ≤ +qS

2/2bl. Note that at
this point we excluded any possibility of two session identifiers colliding on the server side.

Game 3: The challenger proceeds as before except it aborts if a server-side oracle does not have a
unique token-side partner. The associated bad event can be reduced by by an efficient adversary C
against the EUF-CMA security of the signature scheme Sig as follows.
C first guesses the offending session πi,jS with probability at least 1/qS, then simulates the game by

answering all queries related to that credential with the signing oracle and public key of Sig. There
are two cases, πi,jS has two partners or no partner.

Let us consider first the case where j = 0. Having two partners means that two token-side
registration sessions signed the same message; this can happen with probability at most qC

2/2bl due
to the random cid. On the other hand, if there is no partner, then C has forged a valid signature and
wins the EUF-CMA game.

Let us now consider the case where j > 0. Here we know the server accepted because it successfully
verified a signature on a public-key pk that was established in registration session j = 0. Because the
signature counter n is incremented for every new session, πi,jS cannot have two partners that signed

the same message, except if the same credential pk used by πi,jS was generated in two registration
sessions. If this happens, C can trivially forge a signature to a new message as it knows the signing
key. Otherwise, since the response issued by tokens includes the counter n, it is impossible to have two
partners. On the other hand, if πi,jS has no partner (note that we already established that πi,0S must
have a unique partner) but still accepts, then C has forged a valid signature and wins the EUF-CMA
game. Therefore, we have |Pr2−Pr3 | ≤ qC ·Adveuf-cma

Sig (C) + qC
2/2bl.

Final analysis. At this point the attacker has probability 0 of succeeding, since unique partnering
is guaranteed and we have ruled out collisions on the session identifier on the server side. �

F Formal Composition Result for PACA+PlA

In this section we discuss the combined security of PACA and PlA as a black box, and then analyze
the implications for the CTAP2*+WebAuthn and sPACA+WebAuthn instantiations. The composed
protocol, which we refer simply as PACA+PlA is defined in the natural way, and it includes all the
parties that appear in Figure 2. The syntax for the protocol is identical to that of PlA, with the

31

single difference that commands (i.e., transformed challenges) sent by clients to the token must be
authenticated using the PACA protocol. This leads to the following syntax.

F.1 Protocol Syntax

The state of authenticator T , denoted stT is partitioned into the following components: i) static PACA
storage stT .ss; ii) static PlA attestation key pair (stT .ak, stT .vk); iiI) static PlA registration contexts,
which we denote by stT .rcti (together denoted by stT .rct); vi) volatile power-up or reset state stT .rs;
v) one or more volatile binding states stT .bsi. A client C may have multiple binding states, which we
denote by bsC,j . A server S may have multiple registration contexts, which we denote by rcsS,k.

A PACA+PlA protocol consists of a the following algorithms and subprotocols, all of which can
be executed a number of times, except if stated otherwise:

Key Generation This algorithm is executed at most once for each authenticator; it generates an
attestation key pair (ak, vk) using key generation algorithm Kg.

Setup This subprotocol is executed at most once for each authenticator. No prior state is assumed
for any of the participants. The user inputs a PIN through the client. At the end of execution, the
authenticator initializes its static storage state st.ss according to the protocol and resets all other
parts of the state. Static storage is read-only for all other algorithms and subprotocols. The client
(and through it the user) gets an indication of whether the protocol completed successfully.

Reboot This algorithm represents a power-down/power-up cycle and it is executed by the authenti-

cator. We will use st
$← reboot(st.ss, (st.ak, st.vk), st.rct) to denote the execution of this algorithm;

intuitively it will erase all volatile storage.

Bind This subprotocol is executed by the user, client and authenticator parties to establish a secure
session over which commands can be issued. The user inputs its PIN through the client, whereas
the token inputs its static storage and power-up states. At the end of this phase, in the case
of success both the authenticator and the client get a new binding state; the authenticator may
update its power-up state (e.g., a counter).23 If the protocol fails, no binding states are set, but
the authenticator power-up state may still be updated. We assume the client always initiates this
protocol once it gets the PIN from the user.

Register This subprotocol is executed between the four parties. The server inputs a server name
idS , a username idU , and a set of attestation public keys; the client inputs a server name îdS , a
username îdU , and a binding state bsC,j ; and the authenticator inputs a binding state stT .bsi and its
attestation key pair. The user inputs a gesture Gr. At the end of the protocol, if this is successful,
the token and the server obtain new registration contexts, which may be different. Note that the
token may successfully complete the protocol, and the server may fail to, in the same run.

Authenticate This subprotocol is executed between the four parties. The server inputs the registra-
tion context rcsS,k for the intended username; the client inputs a server name īdS , a username īdU ,
and a binding state bsC,j ; and the authenticator inputs a binding state stT .bsi and its registration
contexts. The user inputs a gesture Ga. At the end of the protocol, the server outputs accept or
reject.

Correctness is defined as PlA correctness, extended with a notion of correct setup of the PACA
binding states. Intuitively, PlA correctness should hold for any sequence of executions that guarantees
that the commands sent to the token for registration and authentication are issued under conditions
covered by PACA correctness. We omit a formal definition.

23When such an update is possible, and to avoid concurrency issues, it is natural to assume that the token excludes
concurrent executions of the binding protocol.

32

A restricted class of protocols. We restrict our attention to protocols that combine a PlA and
a PACA protocol in a specific black-box way, which we describe next. This captures our target
applications CTAP2*+WebAuthn and it allows us to have a more intuitive security definition. It is
clear from the syntax above that PACA+PlA inherits without change the Key Generation algorithm
from PlA and the Setup, Reboot, and Bind subprotocols from PACA. The interaction between the
PACA and PlA algorithms is visible only in the Register and Authenticate subprotocols, which like
for PlA we restrict to the following two-pass protocol that uses PACA and PlA:

• Server-side computation is split into four procedures: rchallenge and rcheck for registration,
achallenge and acheck for authentication. The challenge algorithms are probabilistic, take the
server’s input to either the Register or Authenticate subprotocol and output a challenge. The
check algorithms get the same inputs, the challenge, and a response, and output accept or reject.
The registration check additionally outputs a registration context rcs, encoding server and user
identities. This is identical to PlA.

• Client-side computation extends PlA by authenticating the outgoing commands with PACA authen-
tication. More precisely, the client first convert the challenge into a PlA command using rcommand
or acommand, encoding the results as Mr and Ma, respectively. Finally it uses PACA to obtain an
authenticated command that can be sent to the token.

• Authenticator-side computation does the obvious thing: on input an authenticated command of
the form (Mr, t) or (Ma, t) it first verifies the authenticity of the command. If successful, then uses
the appropriate PlA algorithm rresponse or aresponse that, on input a command M to generate a
response. In the case of registration, this algorithm also outputs a registration context rct, encoding
a server identity and optionally a user identity.

F.2 Security Model

We now discuss the security model in which we will analyze this protocol. The trust model is identical
to the PACA model but we add a server-to-client explicit authentication guarantee that does not
exist in the PlA setting. This captures a basic guarantee given by TLS, whereby the client knows the
true identity of the server that generates the challenge and is ensured the integrity of the received
challenge; it allows capturing the explicit server authentication guarantees given to the authenticator
and user by the composed protocol.

Session oracles. We keep track of three types of token sessions: volatile PACA binding sessions πiT ,

static PlA registration sessions πi,0T and volatile PlA authentication sessions πi,jT for j > 0. We also

keep track of client PACA binding oracles πjC and their corresponding binding states πjC .bs. Finally,
server oracles are structured as in PlA security.

Security experiment. The challenger performs the combined parameter generation of both the
PACA and PlA games to fix PINs and attestation key pairs for all tokens. Queries accepted by the
challenger include all those defined in the PACA experiment, except for Authenticate and Verify, which
are replaced by the following queries:

• Start(πi,jS , πkC , idU , id
′
U , T). The challenger instructs πi,jS to execute a rchallenge (if j = 0) or achallenge

(if j > 0) to start the registration (for the given token) or authentication (for the πi,0S registration
context) for the involved server’s true identity idS and the indicated user name idU and generate a
challenge c, which is given to the adversary. We set πi,jS .c as the returned challenge. The challenger
also takes πkC .bs and uses it to authenticate command M , which is generated by rcommand(idS , id

′
U , c)

(if j = 0) or acommand(idS , id
′
U , c) (if j > 0), and return the result to A. Note that this query captures

an authenticated communication between the server oracle and the client oracle: the client oracle is
assumed to know the server’s true identity idS and its received challenge c is not tampered.
• Challenge(πiT , π

j,k
T , (M, t)). The challenger first takes stT .bsi and uses it to verify (M, t) based on

the user decision sent to πiT . If verification is successful, the challenger processes the command using

33

rresponse (if k = 0) or aresponse (if k > 0) and returns the result R to the adversary using πj,kT . We

define πj,kT .R as the output R and πj,0T .rct as the resulting registration context.

• Complete(πi,jS , R). This query delivers an authenticator response to a server oracle, which proceeds to
process the response using rcheck (if j = 0) or acheck (if j > 0) and return the result to the adversary.
We define πi,jS .R as the input R to the check and πi,0T .rcs as the resulting registration context.

We do not introduce new notions of partnership. We refer partnership relations between PACA
binding session oracles (client and token) as PACA-partnered. We recall that this is defined as having
consistent views in the communications during binging. We refer to partnership relations between
PlA authentication session oracles (server and token) as PlA-partnered. We recall that this means
that the server oracles received the responses sent by the token oracles, and that there is a consistent
view of the challenges fixed by the session identifier.

Advantage measure. An adversary A against a PACA+PlA protocol Π has the following advantage
measure called User Authentication (UA). We define Advua

Π (A) as the probability that the following
does not hold. Take any Complete authentication query accepted by server oracle πi,jS . Then, there
exist challenges cr and ca, authenticated commands (Mr, tr) and (Ma, ta), username U , gestures Gr
and Ga, and oracles πk,lT , πmT , πnT , πxC , and πyC′ , such that:

1. πi,jS and πk,lT are each other’s unique PlA partners.

2. πk,0T was created as a consequence of πmT accepting command (Mr, tr) under gesture Gr.

3. πk,lT was created as a consequence of πnT accepting command (Ma, ta) under gesture Ga.

4. πmT and πnT are unique PACA partners of πxC and πyC′ , respectively.

5. cr was produced by πi,0S ; cr was used by πxC as input to generate (Mr, tr) at a time when πmT
was valid.

6. ca was produced by πi,jS ; ca was used by πyC′ as input to generate (Ma, ta) at a time when πnT
was valid.

7. idS was the server-side input to πi,0S and the client-side input to πxC and πyC′ ; The registration

contexts of πi,0S and πk,0T both encode idS .

8. The registration context of πi,0S encodes some username idU , which was the server-side username

input; If the registration context of πk,0T encodes username id′U 6=⊥, then id′U = idU and idU was
the client-side input to πxC and πyC′ .

Note that here idU is fixed by the server and that the server session that accepts authentication fixes
unique token-side and client-side sessions involved in both registration and authentication challenge-
response protocols. Note also that the server is assured that the same token used in registration
is used for authentication due to the PlA unique partnering property. Finally, there is a notion of
freshness in the sense that token sessions were valid when they interacted with the clients, i.e., they
were created since the last time the token was powered up.

These advantage measures hold with respect to weak channels if the adversary must succeed with
the compromise and corruption capabilities of SUF (or SUF-t)24 PACA attackers. They hold with
respect to strong channels if the adversary must succeed with the compromise and corruption capa-
bilities of UF (or UF-t) PACA attackers. Note that the first guarantee is strictly stronger, as the
adversary is given more power.

Theorem 4 Take a PACA protocol Π that is suf-secure and a PlA protocol Σ that is pla-secure. Then
the advantage of any attacker A against the composed protocol Π+Σ with respect to weak channels is
bounded by Advua

Π+Σ(A) ≤ Advsuf
Π (B) + Advpla

Σ (C) where B and C are attackers against the PACA
and PlA protocols, respectively.

24Note that the compromise and corruption capabilities of SUF and SUF-t are the same, likewise for UF and UF-t.

34

Proof: [Sketch] Let us now look at the UA requirements, in order:

• [1] We prove the PlA unique partnering property by a direct reduction to the PlA game: we can
construct an adversary C that simulates all the PACA-related side of the experiment and uses the
Start, Challenge and Complete oracles in the PlA game to simulate the corresponding queries in the
composed security experiment. Note that, since no restriction is placed on the adversarial queries
in the PlA experiment, if the uniqueness condition of PlA partners is violated in the simulation,
then this implies that the same property is violated in the PlA game.

• [2,3,4] First note that the unique partnering property proved above guarantees that a registration
command and an authentication command must have been accepted by the token holding the PlA
partner to create the PlA sessions, as otherwise the token would not have produced the correspond-
ing responses. This shows that commands (Mr, tr) and (Ma, ta) must exist. Furthermore, PACA
security guarantees that command acceptance implies the existence of unique (valid) client-to-token
partnering and accepting user gestures. We can therefore construct an adversary B that that breaks
PACA security whenever such client sessions or gestures do not exist.

• [5,6] These points state claims that the client oracles πxC and πyC′ must in fact have received the

single challenges produced by πi,0S and πi,jS , respectively, in order to generate (Mr, tr) and (Ma, ta).
This property follows from PlA security, as otherwise it would contradict unique partnering. This
is therefore handled by C as a special case.

• [7,8] The properties proved above guarantee that the commands accepted by the token were correctly
created according to the PlA protocol: we have server-to-client and client-to-token authenticity).
Furthermore, the PlA partnership guarantees response equality, and hence we can appeal to PlA
correctness and the conditions on the inputs: the server would not have accepted unless there is an
exact match on inputs, which then implies the conditions on registration context outputs.

�

This theorem does not directly apply to the CTAP2*+WebAuthn combination because CTAP2*
does not meet SUF security. However, it is easy to see that a weakening of the theorem holds, where
one restricts the adversary’s abilities in the same way as in the PACA UF-t definition (i.e., with
respect to strong channels and without active attacks against a PACA client).

35

	Introduction
	Preliminaries
	Execution model
	PIN-Based Access Control for Authenticators
	Protocol Syntax
	Security Model

	The Client to Authenticator Protocol v2.0
	Fully Secure PACA Protocol
	Passwordless Authentication
	Protocol Syntax
	Security Model

	The W3C Web Authentication Protocol
	The Composed Security of PACA and PlA
	Conclusion
	Preliminary Definitions
	Pseudorandom Function
	Message Authentication Code
	Collision-Resistant Hash Function Family
	Signature Scheme
	The (Strong) Computational Diffie-Hellman Assumption

	Password-Authenticated Key Exchange
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Formal Composition Result for PACA+PlA
	Protocol Syntax
	Security Model

