
Efficient Constant-Round MPC with
Identifiable Abort and Public Verifiability

Carsten Baum1?, Emmanuela Orsini2??, Peter Scholl1? ? ?, and Eduardo Soria-Vazquez1†

1 Aarhus University, Denmark
2 imec-COSIC, KU Leuven, Belgium

Abstract. Recent years have seen a tremendous growth in the interest in secure multiparty computation (MPC)
and its applications. While much progress has been made concerning its efficiency, many current, state-of-the-art
protocols are vulnerable to Denial of Service attacks, where a cheating party may prevent the honest parties from
learning the output of the computation, whilst remaining anonymous. The security model of identifiable abort aims
to prevent these attacks, by allowing honest parties to agree upon the identity of a cheating party, who can then
be excluded in the future. Several existing MPC protocols offer security with identifiable abort against a dishonest
majority of corrupted parties. However, all of these protocols have a round complexity that scales linearly with the
depth of the circuit (and are therefore unsuitable for use in high latency networks) or use cryptographic primitives
or techniques that have a high computational overhead.
In this work, we present the first efficient MPC protocols with identifiable abort in the dishonest majority setting,
which run in a constant number of rounds and make only black-box use of cryptographic primitives. Our main
construction is built from highly efficient primitives in a careful way to achieve identifiability at a low cost. In
particular, we avoid the use of public-key operations outside of a setup phase, incurring a relatively low overhead
on top of the fastest currently known constant-round MPC protocols based on garbled circuits. Our construction
also avoids the use of adaptively secure primitives and heavy zero-knowledge machinery, which was inherent in
previous works. In addition, we show how to upgrade our protocol to achieve public verifiability using a public
bulletin board, allowing any external party to verify correctness of the computation or identify a cheating party.

? Supported by the European Research Council (ERC) under the European Unions’ Horizon 2020 research and innovation pro-
gramme under grant agreement No 669255 (MPCPRO) as well as the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. Part of this work was done
while the author was at Bar Ilan University.

?? Supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT.
? ? ? Supported in part by the Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC) and an Aarhus Uni-

versity Research Foundation (AUFF) starting grant.
† Supported by the Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM).



Table of Contents

Efficient Constant-Round MPC with Identifiable Abort and Public Verifiability . . . . . . . . . . . . . . . . . 1
Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Previous Work on Constant-Round MPC, Identifiable Abort and Public Verifiability . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Security Model and Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Preprocessing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Publicly Detectable MPC with (Non-Identifiable) Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Implementing the Preprocessing with Identifiable Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Achieving Public Verifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Public Active Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Public Verifiability in the Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Feasibility of Black-Box, Constant-Round MPC with Identifiable Abort . . . . . . . . . . . . . . . . . . . . . . 33
6.1 Information-theoretic signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 DI05 Garbling with Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Preprocessing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Online Phase Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Recap of BMR Garbled Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B Homomorphic Commitments, continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.1 Weak Homomorphism is Sufficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.2 Instantiating Commitments with Weak Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1 Introduction

Secure Multi-Party Computation (MPC) is a general term for techniques which allow a set of n parties to
compute a function f on their private inputs such that only the output of the function becomes known. Using
MPC as a tool to achieve security generally comes with an inherent slowdown over insecure solutions, so
using the right MPC protocol with suitable properties is crucial in order to foster adoption in practice. For
certain requirements, it is even known that MPC is impossible to achieve.

For example, while in the honest majority setting, where more than half of the parties are honest, MPC
for any function is possible, when there is a dishonest majority it is well-known that fairness for MPC is
impossible, in general [Cle86]. The fairness property means that if any corrupted party learns the output
then all the honest parties do as well, so a dishonest party cannot withhold the output from the other parties.
To work around this impossibility, most MPC protocols for dishonest majority settle for the weaker notion
of security with abort, which allows the adversary to abort the protocol, possibly after learning the output.

However, a major downside of this model is that it does not protect against denial-of-service attacks.
This motivates the stronger model of MPC with identifiable abort, or ID-MPC, where if the adversary aborts



then the honest parties will agree upon the identity of a cheating party. This allows the honest parties to
exclude cheaters and re-run the aborting protocol, and it can also be combined with a distributed ledger
(such as in [KMB15]) to achieve monetary fairness (see e.g. [BDD20] for an overview). The concept of
ID-MPC was first implicitly considered in the context of covert security, and more formally studied in later
works [CL14, IOZ14].

A related, desirable property of an MPC protocol is public verifiability [BDO14, SV15], which allows
any external party to verify the correctness of some claimed outputs of the protocol by, for instance, in-
specting public values posted to a bulletin board. This is important for settings where the computation is of
particular interest to the public, for example, it may be desirable for the results of a research study on pri-
vate medical data to be publicly verifiable. It is also relevant to the client-server setting, where many clients
outsource a computation to a set of non-colluding servers and wish to verify the result, without interacting
with the servers.

As well as security properties like the above, an important aspect when choosing an MPC protocol is
its efficiency. This can be measured in terms of number of rounds of communication, total communication
complexity (i.e. amount of data sent over the network), and computational overhead (compared with com-
puting the function in the clear). In this work, we consider the problem of efficiently constructing MPC in
the dishonest majority setting providing security with identifiable abort and public verifiability, in a constant
number of rounds of interaction.

1.1 Previous Work on Constant-Round MPC, Identifiable Abort and Public Verifiability

Constant-Round MPC. The main tool for building constant-round MPC is garbled circuits, which were
introduced by Yao [Yao86] for 2-party secure computation. Garbled circuits were generalized to the multi-
party setting by Beaver, Micali and Rogaway [BMR90], who constructed a constant-round MPC protocol
(called “BMR”) that can support a dishonest majority of participants. The BMR protocol makes heavy,
non-black-box use of a pseudorandom generator, so is inefficient in practice.

Subsequently, constant-round MPC making only black-box use of cryptographic primitives was pre-
sented by Damgård and Ishai [DI05], for the honest majority setting, and extended to the case of a dishonest
majority by Ishai et al. [IPS08]. Later, more efficient black-box solutions with active security for dishonest
majority were introduced by Lindell et al. [LPSY15, LSS16], who used somewhat homomorphic encryption
in a preprocessing phase of the protocols. Currently, the most efficient protocols are those by Wang et al.
[WRK17] and Hazay et al. [HSS17], which use oblivious transfer (OT) instead of homomorphic encryption,
and can be instantiated very efficiently using the TinyOT-protocol [NNOB12, FKOS15] based on fast OT
extension techniques [IKNP03, KOS15].

ID-MPC in the Dishonest Majority Setting. The seminal MPC protocol of Goldreich, Micali and Wigder-
son [GMW87] can be combined with any public-coin zero-knowledge proof system to obtain ID-MPC for
dishonest majority, and the same holds for the BMR protocol [BMR90] to achieve a constant round com-
plexity. However, the resulting protocols make extensive, non-black-box use of cryptographic primitives
and are not practical. Additionally, also [Pas04] implies a constant-round ID-MPC scheme that is not black-
box (and secure in the stand-alone setting as observed by [BOO10]. More recently, there has been interest
in concretely efficient ID-MPC. Ishai, Ostrovsky and Zikas [IOZ14] presented an ID-MPC protocol in the
preprocessing model, where a trusted dealer gives the parties some correlated randomness, with information-
theoretic security. They also gave a general compiler that allows removing the trusted dealer, leading to the
first ID-MPC protocol making only black-box use of cryptographic primitives, namely, an adaptively secure
oblivious transfer protocol and a broadcast channel. Concurrent to this work, Brandt et al. [BMMMQ20]

3



studied the feasibility of ID-MPC from lower-cardinality primitives as well as the relation of the conflict
graph to identifiable abort. Their work is orthogonal to ours, as we are interested in concrete and practical
constructions.

Baum et al. [BOS16] also construct ID-MPC in the preprocessing model, with better concrete effi-
ciency, by combining a variant of the BDOZ protocol [BDOZ11] with information-theoretic signatures, and
homomorphic encryption for the preprocessing. Other works [CFY17, SF16] have added identifiability to
the practical SPDZ protocol [DPSZ12], obtaining more efficient results in a similar setting. These works,
while concretely quite practical, all require a number of rounds of interaction that scales linearly with the
multiplicative depth of the circuit being evaluated.

MPC with Public Verifiability. The idea of secure computation with public verifiability was first introduced
in the two-party setting for covert security by Asharov and Orlandi [AO12]. Subsequent works [KM15,
HKK+19] later improved upon the efficiency of their construction, and in particular the size of the cheating
certificate, for which the work of Hong et al. [HKK+19] requires < 400 bytes for 128 bit security.

The notion of public verifiability for actively secure dishonest majority MPC (with potentially all par-
ties being corrupted) has been introduced independently by Baum et al. [BDO14] and Schoenmakers and
Veeningen [SV15]. Their work ensures privacy if at least one party is honest and correctness for any level
of corruption. In subsequent works, [BOS16, CFY17] independently showed how to combine public verifi-
ability and identifiable abort for general computations where either the correctness of the output is attested
or a cheater will be found by a third party. Both works rely on expensive tools in a preprocessing phase
(lattice-based encryption for large fields), have a circuit depth-dependent round complexity and have not
been implemented in practice. Another, more general approach for publicly verifiable MPC with identifi-
able abort was given in [KZZ16] where the authors presented a general compiler based on the approach of
[IOZ14].

1.2 Contributions

In this work, we present the first concretely efficient and constant-round MPC protocols that provide security
with identifiable abort and public verifiability in the dishonest majority setting. Note that all our protocols
are in the setting of static corruptions.

Our results for identifiable abort assume access to a broadcast channel, while for public verifiability we
need a public bulletin board, and in both cases we count round complexity by assuming that their consumes
a single round. In practice, if using an authenticated broadcast protocol [DS83, PW92] to implement this,
each broadcast requires Ω(n) rounds of point-to-point messages [GKKO07]. Alternatively, broadcast can
be realized using a bulletin board or blockchain, giving a constant number of rounds of interaction with this
functionality. Note that it seems difficult to avoid the use of broadcast, since MPC with identifiable abort
itself implies secure broadcast [CL14].

We first establish the feasibility of ID-MPC with constant round complexity, with black-box use of
cryptographic primitives.

Theorem 1.1 (informal) There exists an ID-MPC protocol for securely realizing any functionality in a
constant number of rounds, given black-box access to an adaptively secure oblivious transfer protocol and
a pseudorandom function.

Next, our main result is a more concretely efficient protocol, with greatly reduced communication com-
plexity and allowing optimizations like efficient OT extension and free-XOR gates.

4



Theorem 1.2 (informal) There exists an ID-MPC protocol for securely realizing any functionality in a
constant number of rounds, given black-box access to a statically secure oblivious transfer protocol and a
circular 2-correlation robust hash function.

Interestingly, and unlike the previous result, in this construction we manage to avoid the need for adap-
tively secure OT, allowing our protocol to use efficient OT extensions [IKNP03], which are impossible
with adaptive security in the standard model as showed by Lindell and Zarosim [LZ13]. This means that
Theorems 1.1 and 1.2 are incomparable from a feasibility perspective, since although constructions of adap-
tively secure OT are known from standard assumptions, it cannot be built from static OT in a black-box
manner [LZ09].

Finally, we show how to upgrade the above protocol to achieve public verifiability using a public bulletin
board.

Theorem 1.3 (informal) Assuming additionally a secure public bulletin board, there is a black-box ID-
MPC protocol with public verifiability, with a constant number of rounds of interaction with the bulletin
board.

We obtain our first feasibility result with a variant of the Damgård-Ishai protocol [DI05] for constant-
round honest majority MPC, tailored for the dishonest majority setting using information-theoretic signa-
tures [CR91]. We then obtain a protocol with identifiable abort by combining this with a transformation
from [IOZ14], which needs an adaptively secure OT protocol. While our construction achieves static secu-
rity, we want to remark that it is possible to construct an adaptively secure constant-round ID-MPC protocol
by applying the [IOZ14] transform to the [IPS08] protocol. This approach, on the other hand, will make
non-black box use of the underlying PRF by the [IOZ14] compiler whereas our construction is fully black-
box.

Our second protocol is much more attractive from a practical perspective, since it builds upon recent,
optimized MPC protocols that offer active security with (non-identifiable) abort using BMR-style garbled
circuits [HSS17, WRK17]. We also support the free-XOR technique [KS08], by assuming a suitable circular
2-correlation robust hash function [CKKZ12]. Our core idea is a lightweight method of adding identifiability
to the MPC protocol of Hazay, Scholl and Soria-Vazquez [HSS17], which creates a BMR garbled circuit
using OT and any non-constant round MPC protocol3. We obtain our efficient method in two steps: firstly,
we devise a cheater identification procedure for the online phase, based on opening a circuit-independent
number of additively homomorphic commitments. The cheater identification is highly efficient as this is
the only necessary interaction and because no heavy cryptographic tools such as zero-knowledge proofs are
necessary. Secondly, we show how to modify the preprocessing phase of [HSS17] to produce the necessary
committed values in an identifiable way. To achieve the latter, we improve techniques by Ishai, Ostrovsky
and Zikas [IOZ14] to avoid the use of adaptively secure OT. Our approach in doing so might be of indepen-
dent interest.

Concrete Efficiency. We now expand on the concrete efficiency of our protocols and compare them with
existing constant-round, non-identifiable protocols, as illustrated in Table 1. Note that the current most
practical, constant-round MPC protocols are all obtained by combining garbling circuits with the so-called
‘TinyOT’ protocol [NNOB12], which combines OT extension and additive secret sharing with information-
theoretic MACs over F2. The TinyOT part turns out to be the dominant, overall cost in the protocols, in

3 It is plausible that one could alternatively instantiate [LPSY15] with [BOS16] as preprocessing, though this appears to yield a
slower protocol as already the non-identifiable preprocessing of [LPSY15] has a larger overhead (4n+ 5 SPDZ multiplications
vs. 1 TinyOT-AND) plus the constructed circuit does not benefit from Free-XOR.

5



Protocol ID/PV Based on Assumptions Communication

[HSS17] 7 OT + [IPS08] OT, free-XOR O((n2κ+ poly(n))|C|)
[HSS17] 7 TinyOT OT, free-XOR O(n2B2κ|C|)
[WRK17] 7 Optimized TinyOT OT, free-XOR O(n2Bκ|C|)

Appendix 6 3 / 7 [DI05] + [IOZ14] adaptive OT, PRF bc(Ω(n4 · |C|))
Sections 3, 4, 5 3 / 3 TinyOT + hom. commit. OT, free-XOR O(n2Bκ|C|) + bc(n2κ|C|)

Table 1. Efficiency of constant-round MPC protocols with and without identifiable abort, for a circuit with |C| AND gates. ID/PV
means identifiability or public verifiability. Communication complexity measured in total number of bits transmitted across the
network; bc(n) is the cost of securely broadcasting O(n) bits. The ‘free-XOR’ assumption is a circular 2-correlation robust hash
function [CKKZ12]

terms of communication complexity. The parameterB in Table 1 is related to a statistical security parameter
used in cut-and-choose in TinyOT, and in practice is around 3–6. Using the most efficient multi-party variant
of TinyOT [WRK17] has a communication complexity of O(n2Bκ) bits per AND gate. The most efficient
constant-round protocols have roughly the same communication complexity as TinyOT.

Our efficient protocol from Sections 3–4 uses TinyOT in a similar way to previous works, with the dif-
ference that we also use homomorphic commitments to obtain identifiability. While most constructions of
publicly verifiable homomorphic commitments use public-key style assumptions like discrete log, we are
able to get away with a weaker form of homomorphic commitment that only allows a bounded number of
openings. This variant be based on any extractable commitment scheme [CDD+19], and the main com-
putational cost is PRG evaluations and encodings of an error-correcting code, which can be implemented
very efficiently, so we expect only a small computational overhead on top of the non-identifiable protocols.
Additionally, the introduced communication overhead from these commitments (per gate) is expected to be
a factor 2-3 over the communication that is necessary to perform the String-Oblivious Transfer required to
garble a gate as in [HSS17].

Regarding communication complexity, the main overhead in our protocol comes from creating and
broadcasting homomorphic commitments to the O(n · |C|) wire keys in a BMR garbled circuit. We mini-
mize this cost by using the efficient homomorphic commitments mentioned above, which have only a small
constant communication overhead. Using this scheme, the overhead of commitments is not much more than
the cost incurred from having each party broadcast its shares of the garbled circuit (4n2 · κ|C| bits) at the
end of our preprocessing phase. We remark that this broadcast step is not needed in non-identifiable proto-
cols [WRK17, HSS17], which can get away with reconstructing the garbled circuit towards a single party
who then sends the sum of all shares.

To compare with existing non-constant round protocols such as [BOS16, SF16], we remark that these
use lattice-based preprocessing. Such preprocessing is much more computationally expensive than our
lightweight techniques based on OT extension. In terms of broadcasts, the offline phase of [BOS16] has
O(n3|C|κ) broadcast complexity, which is worse than our protocol. [SF16] does not describe the offline
phase in detail, but it likely requires O(nκ|C|) broadcasts for threshold decryption of the homomorphic en-
cryption scheme. Regarding round complexity, even with the factor n overhead when implementing broad-
cast, our protocol likely performs significantly better for complex functionalities with high-depth circuits. In
general, [BOS16, SF16, CFY17] are for arithmetic circuits and likely applicable in different scenarios than
ours, making a direct comparison difficult.

6



1.3 Technical Overview

In this overview, we assume some familiarity with garbled circuits and their use in MPC. For a more thor-
ough introduction, see Appendix A.

Feasibility of constant-round ID-MPC. To first establish a feasibility result, we use a variant of the gar-
bling scheme from [DI05] combined with information-theoretic signatures [CR91, HSZI00, SS11], together
with a compiler for sampling functionalities with identifiable abort from [IOZ14]. Although this construction
is quite natural, we are not aware of it being described before.

In a little more detail, [DI05] is based on a garbling scheme where, similarly to BMR, when evaluating
the garbled circuit, for each wire we obtain a vector of keys (K1

w, . . . ,K
n
w), where the component Ki

w is
known to party Pi. The garbling uses a specialized encryption scheme, which encryptsKi

w by first producing
verifiable secret shares (VSS) (Ki

w[1], . . . ,K
i
w[n]) of Ki

w, and then encrypting each share Ki
w[j] under the

corresponding input wire key components of Pj , as:

EKu,Kv(K
i
w) :=

H(K1
u,K

1
v )⊕Ki

w[1]
...

H(Kn
u ,K

n
v )⊕Ki

w[n]


This is amenable to secure computation in a black-box way, as Pj can input the hash values H(Kj

u,K
j
v) to

the protocol, and as long as the majority of these hash values are correct, which is guaranteed by an honest
majority, the VSS allows correct reconstruction of Ki

w.
We adapt this to the dishonest majority setting by replacing VSS with additive secret-sharing and

information-theoretic signatures. Roughly, we consider a preprocessing functionality which samples ad-
ditive shares of each Ki

w and augments each share with a signature under a signing key that no-one gets,
while also allowing corrupt parties to choose their hash values for each gate. This suffices to obtain ID-MPC
in an online phase, since if any corrupt party uses an incorrect hash value then the corresponding signature
on their share will no longer verify.

To realize the preprocessing phase which outputs authenticated shares of the garbled circuit, we apply
the compiler from [IOZ14], which transforms a protocol for any sampling functionality that is secure with
abort, into one with identifiable abort. We remark that in the preprocessing functionality, the size of each
garbled gate is O(n3 · κ) bits, and the communication complexity of the protocol to generate this is at least
Ω(n4κ) due to overheads in [IOZ14], so this approach is not practical.

The complete description of these protocols can be found in Appendix 6.

Concretely efficient ID-MPC with BMR. As mentioned before, our protocol follows the same approach
of [HSS17] (‘HSS’) based upon BMR garbled circuits. In BMR garbling, the vector of output wire keys
(K1

w, . . . ,K
n
w) of a gate g is directly encrypted under the input wire keys, with

EKu,Kv(Kw) :=
n⊕
j=1

H(g,Kj
u,K

j
v)⊕ (K1

w, . . . ,K
n
w)

When using free-XOR with BMR, each pair keys on a wire is of the form (Kw,0,Kw,1 = Kw,0 ⊕ R) for
some fixed string R = (R1, . . . , Rn), with Ri known to Pi. When garbling an AND gate with input wires
u, v and output wire w, we need to produce the 4 rows

7



circg,a,b =
⊕n

j=1
H(g,Kj

u,a,K
j
v,b)⊕ (K1

w,0, . . . ,K
n
w,0)

⊕ (R1, . . . , Rn) · ((λu ⊕ a)(λv ⊕ b)⊕ λw),
(1)

for (a, b) ∈ {0, 1}2, where λu, λv, λw are the secret wire masks assigned to each wire.
In the HSS protocol, to generate additive shares of the above, each party Pi first samples all of their

key components and global string Ri, as well as secret shares of all the wire masks. Then, a generic MPC
protocol for binary circuits is used to compute shares of the wire mask products λu · λv, and shares of the
products between each wire mask and every global string Ri are computed using OT. This allows the parties
to obtain additive shares of the entire garbled circuit, since each hash value in (1) can be computed locally
by party Pj . If any party uses an incorrect hash value, it was shown in [HSS17] that this would result in
an abort in the online phase with overwhelming probability, since each party can check correctness when
decrypting a gate by checking for the presence of one of their own key components.

Identifiable online phase. Adding identifiable abort to BMR is more challenging than with [DI05], since if
any error is introduced to the hash values in (1), we have no direct way of knowing which party introduced
it. Note that if the parties were committed to the entirety of the shares of the garbled circuit (i.e. all of (1))
then this would be straightforward: they could simply broadcast their shares, then attempt to run the online
phase; if any party sends an incorrect share then the protocol aborts with overwhelming probability, and in
our case everyone could then open their commitments to prove they behaved honestly. Unfortunately, we do
not know how to efficiently create commitments to all of the shares, since in particular each share contains
a hash value H(g,Kj

u,a,K
j
v,b), and it seems challenging to reliably commit to these without resorting to

proving statements about hash function computations in zero-knowledge.
Instead, we observe that it is actually enough if each party is given commitments to partial shares of the

garbled gates, namely, shares of the whole of (1) except for the hash values. To see this, consider that some
party aborts at gate g in the computation. If g is the first (in topological order) such gate where the parties
detect an inconsistency, then it must hold that the preceding gates were correctly garbled. This means that the
wire keys from the previous gate can be used to compute the correct H(·) values by every party. Hence, we
can verify the garbling of g by opening the commitments to the partial shares, then reconstructing the shares
that should have been sent by ‘filling in’ the remaining parts of the garbled gate that were not committed to.
Finally, the resulting shares can be compared with the shares that were actually sent, allowing us to detect a
cheating party.

We therefore rely on a preprocessing functionality that adds XOR-homomorphic commitments to all the
wire keys and shares of the bit-string products. Since the commitments are homomorphic, this easily allows
computing commitments to the partial shares as required.

Identifiable preprocessing phase. Our first challenge with the preprocessing is to create the necessary com-
mitments to the bit-string products in a reliable way. We show that without identifiability, this can be done
without too much difficulty, using a consistency check based on a technique adapted from [HSS17].

Next, the main challenge is to make the whole preprocessing identifiable. One possible approach would
be to simply apply the same IOZ transformation we used for the protocol based on Damgård-Ishai, to convert
a protocol ΠPrep that realizes the preprocessing functionality FPrep with abort into a new protocol Π ID

Prep

that is identifiable. Unfortunately, this transformation has two main drawbacks: Firstly, the protocol ΠPrep

needs to compute not only the outputs of FPrep, but authenticated secret shares of these outputs, where
each share has an information-theoretic signature attached to it; since IT signatures have a multiplicative
Ω(n) storage overhead, this adds a significant cost burden to the protocol. Secondly, ΠPrep needs to be

8



secure against adaptive corruptions, which is in general much harder to achieve than static corruptions; in
particular, it rules out the use of efficient OT extensions unless we rely on the programmable random oracle
model [LZ13, BPRS17].

We work around these issues with careful modifications to the [IOZ14] transformation, which are tai-
lored specifically to our preprocessing phase. We first briefly recall the idea behind IOZ. To constructΠ ID

Prep,
first each party commits to its randomness in ΠPrep, and then if ΠPrep aborts, everyone simply opens their
randomness, which is safe as the preprocessing phase is independent of the parties’ inputs. The main chal-
lenge when proving security of this approach is that if the protocol aborts, the simulator needs to be able
to convincingly open the honest parties’ random tapes to the adversary, explaining the previously simulated
protocol messages. This leads to the above two issues, since (1) if the protocol aborts after a corrupt party
has seen its outputs, the simulator may not be able to produce honest parties’ outputs that match, and (2)
the simulator may not be able to come up with convincing honest parties’ random tapes, since the previous
honest parties’ messages were simulated independently of the actual outputs from F ID

Prep In IOZ, (1) is re-
solved by producing an authenticated secret-sharing of the outputs, and (2) is resolved by requiring ΠPrep

to be adaptively secure.
In our work, we address (1) by ensuring that an abort is only possible in ΠPrep before the ideal func-

tionality FPrep has delivered outputs to the honest parties. This means there is no danger of inconsistencies
between the simulated honest parties’ outputs and those seen by the distinguisher. Our method of resolving
(2) is more complex. First, consider a simulation strategy where when running ΠPrep within Π ID

Prep, the sim-
ulator simply performs an honest run of ΠPrep on random inputs. If ΠPrep later aborts, there is no problem
opening the random tapes of honest parties’, since the simulator knows these. The problem now is that the
simulator can no longer extract any corrupt parties’ inputs which may have to be sent to FPrep, or ensure
the corrupt parties get the corrupt output sent by FPrep. To work around this, we combine ΠPrep with a
homomorphic commitment scheme, and require that every party commits to all values used in ΠPrep; we
ensure consistency of these commitments with the values inΠPrep with a simple test where we open random
linear combinations of the commitments, and modify the (reactive) protocol ΠPrep to open the same com-
binations. If the homomorphic commitment scheme is UC secure with identifiable abort, then the simulator
can use this to extract and open the values in ΠPrep, allow us to prove security of the whole protocol. A suit-
able commitment scheme can be efficiently constructed, building upon any (non-homomorphic) extractable
commitment and a PRG [CDD+19].

We apply the above blueprint to the preprocessing phase of HSS, which performs multiplications be-
tween random bits, as well as between bits and random, fixed strings, to produce additive shares of the
garbled circuit. With our transformation, the parties actually end up producing homomorphic commitments
to shares of some (but not all) parts of the garbled circuit; namely, they are committed to the wire keys and
the shares of the bit-string products from (1).

Achieving public verifiability. Public verifiability with identifiable abort requires not only that a party from
the protocol can identify a cheater, but anyone can do so (or verify correctness of the result) by simply in-
specting some messages posted to a public bulletin board. Adding this to our efficient construction requires
modifying both the preprocessing and online phases of the protocol. First, we modify our preprocessing
method so that the underlying protocol that is secure with abort satisfies a property called public detectabil-
ity, which requires that an external verifier, who is given the random tapes of all parties in the protocol
and all broadcast messages, can detect whether any cheating occurred and identify a corrupted party if so.
This is similar to the concept of P-verifiability used in IOZ [IOZ14], but removes the requirement that the
verifier is also given the view of one honest party. We then show that any suitable, secure protocol can be

9



FTinyMPCFOT

F ID
Prep (§3.2)

FHCom

Commitment
scheme C

F ID
Rand

F ID
MPC (§4)

ΠOT ΠD-TinyMPC (§3.1)

Fig. 1. Illustration of our efficient protocol with identifiable abort.

transformed to be publicly detectable, with a simple transformation that is similar to the P-verifiable trans-
formation from [IOZ14]. Using the publicly detectable protocol in our identifiable preprocessing phase, and
replacing the broadcast channel with a bulletin board, we obtain a publicly verifiable preprocessing protocol
with identifiable abort.

To add public verifiability to the online phase, we need to ensure that an external evaluator can detect any
cheating in the garbled circuit, given only the public transcript. It turns out that in case of abort, almost all
of the computation done by an honest party when detecting a cheater relies only on public information; the
only exception is the 0/1 wire values that are obtained when evaluating the garbled circuit, which each party
computes by looking at its private keys. To allow an external verifier to compute these values, we modify
the preprocessing with a variant of the point-and-permute technique, which encodes these values as the last
bit in the corresponding key on that wire. Now if the protocol aborts, and the entire transcript of broadcast
messages has been posted to the public bulletin board, the verifier has all the information that is needed to
detect any inconsistency and identify a cheating party.

Notice that our public cheater identification is protocol-specific and does not require heavy NIZK ma-
chinery. This differentiates it from [KZZ16] who gave a general compiler that achieves publicly verifiable
ID-MPC, but where the generated “cheating certificate” is a NIZK that has to re-compute the next-message
function of the compiled protocol. That means that compiling a BMR-style protocol using their approach
might require giving a zero-knowledge proof of correct garbling of the whole circuit, whereas our certificate
just requires a few commitments to be opened.

Paper Outline. In Figure 1 we show the relationship between our protocols and functionalities in our main
construction with identifiable abort. Section 3.1 contains our publicly detectable transformation, used for
both identifiable abort and public verifiability, and instantiation from the OT-based preprocessing phase of
[HSS17]. Section 3.2 describes our identifiable preprocessing protocol, which uses the publicly detectable
ΠD-TinyMPC in a non-black-box way (but with black-box use of its next-message function), and combines
this with homomorphic commitments. In Section 4, we present the main MPC protocol with identifiable
abort, which usesF ID

Prep to create and then evaluate a BMR garbled circuit, with identifiable abort. In Section
5, we describe how to modify the previous protocol to additionally obtain public verifiability, using a bulletin
board instead of a broadcast channel.

10



2 Preliminaries

Let κ (resp. s) denote the computational (resp. statistical) security parameter. We let P = {P1, . . . , Pn} be
the set of parties involved in any particular protocol/functionality, and V be a verifier which might check P’s
computation at a later point. Among those parties, we denote by I ⊂ P the set of corrupted parties and by
I = P \ I the honest parties. Let Cf be a circuit computing the function f : Fnin2 → Fnout2 with nin inputs
and nout outputs. To ease the reading, we drop the dependence on f , when it is clear from the context. We
will define the disjunct sets input1, . . . , inputn ⊂ [n] as the inputs which each party in P provides to the
circuit C, so Pi provides the inputs in inputi. The circuit C has the set of AND gates G, for which we
denote the extended set Gext := G×F2

2. For τ ∈ Gext, we usually denote τ = (g, a, b) where g is the AND
gate in question and a, b ∈ F2 are used to point to a specific entry in g’s (garbled) truth table.

2.1 Security Model and Primitives

We will prove security of our protocols in the universal composability (UC) framework [Can01]. We con-
sider a static, active adversary corrupting up to n − 1 parties. To achieve our goals, we will make use of
multiple primitives, whose ideal functionalities we now introduce.

Functionality FMPC

The functionality runs with parties P = {P1, . . . , Pn} and an adversary A who corrupts a subset I ⊂ P of parties. The
computed circuit is defined over F2.

Init: On input (Init, C) by all parties in P , where C is a circuit with nin inputs and nout outputs, store C locally. Every
further such message is ignored.

Input: For each h ∈ input, with h ∈ inputi:
i ∈ I: On input (Input, i, ρh) by A and (Input, i, ·) by all honest parties, and if C was stored, store ρh locally.

i ∈ I: On input (Input, i, ρh) by party Pi and (Input, i, ·) by all other honest parties and A, and if C was stored, store ρh
locally.

Computation: On input (Compute) by all honest parties and A, and if the functionality obtained input ρi for each Pi, then
compute Y = C(ρ1, . . . , ρnin) and store Y ∈ Fnout

2 locally. Every further such message is ignored.

Output: On input (Output) by each honest party and the adversary, send (Output, Y ) toA and wait. If the adversary replies
with (Deliver), then send (PublicOutput, Y ) to parties in I.

Fig. 2. The FMPC functionality.

Identifiable Abort Version of Functionalities. In order to be able to rigorously discuss our protocols, we
now formalize what it is to enhance their ideal functionalities F to support identifiable abort, which we
denote by F ID and describe in Figure 3. As showed in [IOZ14], the UC composition theorem extends to
security with identifiable abort in a straightforward way.

AnF ID functionality is exactly asF , but additionally allows the adversary to send a message (Abort,J )
at any point of time, where J denotes a non-empty set of dishonest parties. Upon receiving this message,
the functionality ceases all computation and outputs the set J to all honest parties. The main points of
identifiable abort are that (i) The adversary cannot abort without revealing the identity of at least one corrupt
party; and (ii) All honest parties interacting with F ID agree on the revealed corrupted parties.

11



Functionality F ID

Let F be a functionality which runs with parties P = {P1, . . . , Pn} and an adversary A who corrupts a subset I ⊂ P of
parties. F ID is exactly as F , with the following extra command:

Abort: At any time, A can send a special command (Abort,J ) where J ⊆ I,J 6= ∅. The functionality then stores J ,
sends (Abort,J ) to parties in P \ I and terminates the execution of any current command.

Fig. 3. Extending a functionality F to its identifiable abort version F ID.

Coin Tossing. Coin tossing is used by a set of parties to fairly sample a number of coins according to a fixed
distribution. In this work we will use an identifiable version of it, F ID

Rand, meaning that either all computing
parties learn the sampled coins or, otherwise, the honest parties agree on a subset of dishonest parties who
cheated in the sampling process. The non-identifiable version of the functionality is described in Figure 4.

Functionality FRand

FRand interacts with a verifier V , a set of parties P = {P1, . . . , Pn} and an adversary A controlling I ⊂ P .

Toss: Upon receiving (Toss,m) from all parties in P , where m ∈ N uniformly sample m random elements X ← Fm2 and
send (Tossed,m,X) to A. If A answers with (Deliver), send (PublicOutput,m,X) to all parties in P .

Fig. 4. Functionality FRand for coin tossing with identifiable abort.

Functionality FBroadcast

The functionality runs with parties P = {P1, . . . , Pn} and an adversary A who corrupts a subset I ⊂ P of them.

Broadcast: Upon receiving (Broadcast, id,M) from a party Pi ∈ P , send (Broadcast, id, i,M) to A and wait. If the
adversary replies with (Deliver), then send (PublicOutput, id, i,M) to parties in I.

Fig. 5. Functionality for secure broadcast.

Secure Broadcast. Our work will crucially rely on the use of secure (or, authenticated) broadcastFBroadcast,
which is a standard functionality given in Figure 5. In order to achieve protocols with identifiable abort, we
need to enhance the description of this functionality to F ID

Broadcast as previously described. This is not a
problem, as all standard protocols for FBroadcast such as [DS83, PW92] are already identifiable. Under the
assumption of a Public Key Infrastructure, implementing FBroadcast requires Ω(n) rounds of communica-
tion and signatures [GKKO07]. If the parties have access to an authenticated bulletin board, FBroadcast can
be achieved with a single call to the board.

12



Functionality FHCom

FHCom is parameterized by κ ∈ N. FHCom interacts with a sender PS ∈ P , where the remaining parties P \ {PS} act as
receivers.Amay corrupt any subset I ( P and at any point it may send a message (Abort,J ) with ∅ 6= J ⊆ I, upon which
the functionality sends (Abort,J ) to P and halts.

Commit: Upon receiving (Commit, cid,M) from PS , where M ∈ Fκ2 , save (cid,M) locally and send
(Commit-Recorded, cid) to P and A. Every further message with this cid to Commit is ignored.

Add: Upon receiving (Add, cid1, cid2, cid3) by PS , where (cid1,M1), (cid2,M2) are stored but not cid3, add
(cid3,M1 +M2) to the list and send (Add-Recorded, cid1, cid2, cid3) to P and A.

Open: Upon receiving the first (Open, cid) by PS where (cid,M) was previously stored, ignore all future messages to
Commit. Send (Open, cid,M) to all parties in P and A.

Fig. 6. Functionality FHCom for homomorphic multiparty commitment with delayed verifiability.

Homomorphic Commitments. In this work, we use homomorphic commitments. These allow a sender
to commit to a message M at a certain time, such as to later open M to a set of receivers. The properties
required from commitment schemes are that (i) M remains hidden to the receivers until the opening (hid-
ing); and (ii) the sender can only open M and no other value to the receivers, once committed (binding).
We further require that the commitment scheme is homomorphic, meaning that the sender can open any
linear combination of commitments that it made without revealing anything but the combined output. The
functionality FHCom is described in Figure 6.

To efficiently implementFHCom we would like to use the homomorphic commitment scheme of Cascudo
et al. [CDD+19], but it turns out that this is not possible directly. The problem is that FHCom (which we use
throughout this work) allows to perform multiple rounds of Add and Open, whereas [CDD+19] permits
to perform only one call to the interface Open. In Appendix B, we provide a slightly weaker functionality
FWHComm having multiple rounds of Open but not Add. We show in the Appendix that this is sufficient
for our application and also how this weaker functionality can then be implemented using the protocol
in [CDD+19].

3 Preprocessing Phase

Here we describe our preprocessing phase with identifiable abort. At a high level, we proceed in two steps:
first, we describe a protocol with the weaker property of public detectability, and then we bootstrap it to a
preprocessing protocol with identifiable abort using homomorphic commitments.

3.1 Publicly Detectable MPC with (Non-Identifiable) Abort

We start this section by recalling the notion of the (deterministic) next message function, nmfiΠ , of a party Pi
in an n-party protocol Π that is executed in a limited number of rounds, say ρ. Given the VIEW of Pi at the
beginning of round h, where h ≤ ρ, i.e. the set VIEWi

h = (i,X,Xi,Rndi, (Mi,1, . . . ,Mi,h)), where i identi-
fies party Pi,X is the common public input,Xi and Rndi are Pi’s private input and randomness respectively,
and (Mi,1, . . . ,Mi,h) are the messages received by Pi in the first h rounds, then nmfiΠ(VIEWi

h) =M i
h+1 are

the messages that Pi has to send in round h+1. In particular, nmfiΠ(VIEWi
ρ) = Yi, where Yi is Pi’s output,

and VIEWi = VIEWi
ρ. In other words, the messages sent by each party Pi at each round are deterministically

specified as a function of Pi’s inputs and random coins, and messages received by Pi in previous rounds.

13



We can now introduce the notion of public detectability. It is similar to that of P-verifiability given in
[IOZ14]. However, whereas the notion of P-verifiability in that work was conceived with identifiable abort
in mind, public detectability will allow us to implement functionalities not only achieving identifiable abort,
but also public verifiability if required (see Section 5).

Definition 3.1 (Public detectability) Let Π be a protocol in the CRS model and D a deterministic poly-
time algorithm, called the detector, which takes as inputs the CRS, the inputs and random tape of all parties
in P involved in the execution of Π , and any message sent over an authenticated broadcast channel during
the execution of Π . We say that the protocol Π is publicly detectable if the detector D outputs a non-empty
subset J ⊂ P corresponding to (some of) the parties that did not honestly execute Π , if any such subset J
exists.

Notice there is a gap between the public detectability and identifiable abort properties: the latter requires
that, upon abort, the adversary does not learn anything about the honest parties’ inputs, beyond of what is
deducible from the functionalities’ output; on the other hand, running the detector requires access to all the
input and random tape ofP . However, we will show, in Section 3.2, that public detectability is almost enough
to define our preprocessing with identifiable abort, which we will later on extend to a public verifiable one
in Section 5. At a high level, the main idea is that, since the goal of the preprocessing phase is to produce
random correlated values that will be used in a very efficient online evaluation, during such a phase parties
have not yet provided their private inputs, so, if the protocol aborts, it is enough for every party to run the
detector on their own. The privacy of the overall MPC protocol is not affected then, due to the absence of
the (actual) private inputs.

We now show how to turn any protocol Π that UC-realises an ideal functionality F in the CRS model
with static security, into a protocol ΠV realising the same functionality with public detectability. Given the
protocol Π , and a binding and hiding commitment scheme C = (Commit, Reveal), we apply the following
changes to Π .

– Before any step ofΠ is executed, each party securely broadcasts a commitment to their input and random
tape using the commitment scheme.4

– In case of any broadcast communication, execute the protocol Π using instead an authenticated broad-
cast functionality FBroadcast (Figure 5).

– Each pairwise communication between a sender PS and a receiver PR, such that {PS , PR} ⊆ P , is
implemented by first securely broadcasting a commitment c(MS) to the message MS that has to be
sent, followed by a private opening of it towards the receiving party. If PR does not receive the correct
opening from PS , then the receiver securely broadcasts a message asking for the opening of c(MS).
The sender has to reply with that information, using also secure broadcast.5 If the broadcasted reply is a
correct opening, parties in P retake the computation, otherwise they abort.

It is easy to prove that the protocol Π , modified as above, is publicly detectable.

Lemma 3.2 LetΠ be a protocol that realises an ideal functionality F with static security in the CRS model
with broadcast and pairwise communication, and C a standalone-secure commitment scheme. The protocol
ΠV described above is publicly detectable and realises the functionality F in the {CRS,FBroadcast}-hybrid
model.

4 This part of the transformation is not actually needed in order to achieve public detectability, but it will simplify the way we use
transformed protocols later on in order to achieve identifiable abort and public verifiability.

5 This does not break security, because such a situation can only occur if PS or PR are corrupted, in which case A would obtain
MS anyway.

14



Proof. Correctness simply follows by correctness of the underlying protocol Π . We first argue UC security
and finally we show that ΠV is publicly detectable by providing an explicit detector D.
We describe a simulator S for any static real world adversaryA corrupting a subset of parties I ( P of size
up to n− 1 as follows:

– S emulates the CRS towards A. It randomly samples each honest party’s Pi random tape {Rndi}i/∈I ,
and receives corrupt inputs {Rndi}i∈I from A. It sends the corresponding commitments to A.

– For each secure broadcast, S emulates the broadcast message towards A.
– In case of pairwise communication, we have three cases: 1) PS is corrupt (and PR is not), S receives
c(MS) and the opening message fromA. If the opening information is not correct, S asksA to broadcast
the correct one. IfA fails to do so, it aborts. 2) If only PR is corrupt, S uses a simulator for Π , to obtain
MS . Then it sends c(MS) and the opening information to A, and waits to receive a reply message from
A. 3) The case where PR and PS are both honest or corrupt is trivial.

Indistinguishability between a real and a simulated execution is easy to argue. Essentially, if a distinguisher
Z is able to distinguish, this can be used to break either the UC security of Π or the commitment scheme C.

To prove public detectability we recall that the protocol ΠV is publicly detectable if there is an algo-
rithm D that detects at least one malicious party that deviated from the protocol, if such a party exists. The
algorithm D is defined to work as follows.

– Given the CRS together with the inputs and random tape of all parties in P , it emulates an execution
of the protocol round by round, by uniquely computing the output of the deterministic next-message-
function nmf.

– Since all the messages are securely broadcast (either in the clear or committed), upon opening the com-
mitments, it compares each emulated message with the values sent in the protocol. When these do not
match, the sender is identified as malicious and added to the set J . ut

Publicly Detectable Preprocessing. In our preprocessing phase, we use the functionality FTinyMPC (Fig-
ure 7), which is a standard functionality for secret sharing-based MPC for binary circuits augmented with the
command MultBitString that allows multiplying a bit by a fixed string known to one party. This function-
ality is exactly what is needed to securely preprocess a BMR garbled circuit [HSS17] with abort, where the
fixed strings play the roles of the global Ri strings in the garbled circuit; this can be efficiently implemented
using a TinyOT-like protocol, for example [NNOB12, FKOS15, HSS17], in the FOT-hybrid model.

We can apply the transformation above to obtain a publicly detectable protocol ΠD-TinyMPC, if we have
a protocol ΠTinyMPC that implements the functionality FTinyMPC in the CRS model. Such a protocol can
be efficiently obtained by implementing the OT functionality with OT extension [KOS15, ALSZ15], with
base OTs realized in the CRS model [PVW08]. Thus, we obtain the following corollary.

Corollary 3.3 Let C be a commitment scheme and ΠTinyMPC a protocol that UC-realises the functionality
FTinyMPC in the CRS model. The protocol ΠD-TinyMPC (described in Figure 8) is publicly detectable and it
securely realises the functionality FTinyMPC in the {FBroadcast, CRS}-hybrid model.

3.2 Implementing the Preprocessing with Identifiable Abort

We now combine the detectable protocol ΠD-TinyMPC with homomorphic commitments, FHCom, to obtain
a preprocessing protocol with identifiable abort. Our preprocessing functionality F ID

Prep is described in Fig-
ure 9.

15



Functionality FTinyMPC

The functionality runs with parties P1, . . . , Pn and an adversary A. It has a list of corrupt parties I which it obtains from A.
Angle brackets 〈x〉 denote a secret x ∈ F2 stored by the functionality, together with a public identifier. The inputs to every
command below are public inputs that must be provided by all parties (where in this case, the notation 〈x〉 refers only to the
identifier of the secret value x).

Init: On input (Init) from all parties, if (Init) was received before then do nothing. For each i ∈ [n], if i ∈ I then receive
Ri ∈ Fκ2 from A, otherwise sample a random Ri ← Fκ2 . Send Ri to party Pi and store the strings Ri.

Input: On input (Input, Pi, 〈x〉) from all parties and (Input, Pi, 〈x〉, x) from Pi, where x ∈ F2, store x.

Add: On input (Add, 〈z〉, 〈x〉, 〈y〉) from all parties, where the two bits x and y were previously stored, store z = x+ y

Mult: On input (Multiply,F2, 〈x̄〉, 〈x1〉, 〈x2〉) from all parties, where x1, x2 were stored previously, store x̄ = x1 · x2.

MultBitString: On input (MultBitString, 〈x〉, Pi) from all parties, where x was stored previously:
1. A inputs W j ∈ Fκ2 for each Pj ∈ I.

2. Sample W j ← Fκ2 for j ∈ I subject to the constraint that x ·Ri =
∑
j∈[n]W

j .

3. Send W j to party Pj .

Open: On input (PublicOutput, 〈x1〉, . . . , 〈xm〉) from all parties, where xi, i ∈ [m], have been stored previously:
1. Send (Deliver, x1, . . . , xm) to A.

2. If A sends Abort, forward Abort to all parties and halt. Otherwise send (Output, x1, . . . , xm) to all parties.

Fig. 7. Functionality FTinyMPC for Bit-MPC.

It essentially performs the same computations as FTinyMPC, except the output shares of the bit-string
multiplication are now committed with homomorphic commitments, modelled in the functionality by allow-
ing them to be added together and opened. Another key difference is that the outputs are only delivered at
the very end of the protocol. After the initial outputs are sent to the parties, the only further allowed com-
mand is to open values from the homomorphic commitment scheme. This is because in the security proof
for our preprocessing protocol, the simulator can always equivocate FHCom, whereas it cannot equivate the
simulation of ΠD-TinyMPC when it is still possible for an abort to occur (which would require opening the
honest parties’ random tapes to the adversary).

We denote by 〈x〉 a secret value in F2 that is stored by the functionality together with a public identifier,
and, similarly, by [Y ]i a value Y ∈ Fκ2 that is known to party Pi and stored by F ID

Prep together with a public
identifier. Notice that x (resp. Y ) is unknown to the parties (resp. to P \ Pi), and when the parties call a
command on public inputs 〈x〉 (resp. [Y ]i), this only refers to the identifier of x (resp. Y ) and not to the
actual value.
The functionality maintains n + 1 lists PubOutputs, {PrivOutputsi}i∈[n] and consists of two different
phases. The computation phase contains the command Init for the global values Ri, commands Sample,
Add and Mult for both bits and strings, and two Outputs commands. The first one for values in F2 that,
on input 〈x〉, appends the secret value x to PubOutputs, and a second one that allows to open values stored
in PubOutputs and enter the Final Output Phase. Once this phase is initialised, Phase I commands are no
longer allowed, and it is only possible to call Public Output on strings.

The protocolΠ ID
Prep, implementingF ID

Prep and described in Figure 10, uses the publicly detectable version
of ΠTinyMPC (from Corollary 3.3) for all the F2-arithmetic, i.e. to perform secure additions and multiplica-
tions on bits, as well as to obtain secret-shares of the product of secret bits with the strings Ri. The protocol
uses two copies of the homomorphic commitment functionality (which we name FHCom and FBit

HCom). The

16



Protocol ΠD-TinyMPC

Let ΠTinyMPC the protocol implementing FTinyMPC and such that each call to FOT is replaced by a call to the protocol ΠOT

implementing FOT.
COMMON INPUT: Parties have access to the CRS, a public input x and ideal functionality FBroadcast, and to a commitment
scheme C = (Commit, Reveal)
PRIVATE INPUT: Each party has input xi and a random tape Rndi.

I. Init: On input (Init), each party Pi commits to their random tapes using C. For each call to ΠOT, Pi, ∀i ∈ [n], uses a
specific part of their committed randomness that is not used used elsewhere in the protocol.

II. D-TinyMPC:
1. Each Pi sets the initial view as VIEWi

0 = (i,X,Xi,Rndi,M
i
0), where M i

0 consists of all the received committed values,
and then runs ΠTinyMPC.

2. For each round of broadcast communication, run the broadcast as usual.

3. For each pairwise round of communication h, between a sender PS and a receiver PR, with {PS , PR} ⊆ P , parties do
the following:
(a) PS computes MS

h = nmfiΠTinyMPC
(VIEWS

h−1) and broadcasts c(MS
h ).

(b) PS privately opens the commitment c(MS
h ) towards PR.

(c) If PR broadcasts (Fail), PS opens c(MS
h ) towards every party in P .

(d) All parties update their views, in particular PR sets VIEWR
h ←

(
VIEWR

h−1 ‖MS
h

)
.

4. In the last round of communication, ρ, each party Pi ∈ P computes nmfiΠTinyMPC
(VIEWi

ρ) = Y i, where Y i is Pi’s
output in ΠTinyMPC.

Fig. 8. Protocol ΠD-TinyMPC, that is a publicly detectable extension of ΠTinyMPC.

first copy is used to create commitments to values in Fκ2 , such as the fixed strings Ri as well as the additive
shares of all the bit-string products of secret bits with Ri. We furthermore employ a consistency check to
verify that the committed bit-string shares are correct, which is shown in Figure 11. The functionalityFBit

HCom

is used to additionally commit to the bits which are used in ΠD-TinyMPC, and we use a second consistency
check to verify that these two sets of bits stored in ΠD-TinyMPC and FBit

HCom are the same; this can be found
in Figure 12. We also use this functionality to open bit values during the output phase. We remark that the
necessity of using FBit

HCom for both of this is an artefact of the proof and we leave it as an interesting open
problem to removeFBit

HCom (together with the consistency checkΠCheckBit) while retaining a provably-secure
protocol.

In the case of abort, we will reveal all random tapes and committed messages of ΠD-TinyMPC and test
which party has sent inconsistent messages and when. Interestingly, we can do that without requiring adap-
tive primitives (in comparison to previous works): The simulation of ΠD-TinyMPC in the security proof is
only ever checked using the public detectability if no output of F ID

Prep has been revealed yet. Therefore we
do not have to ever equivocate the random tape during the simulation of ΠD-TinyMPC - revealing the tape
used by the simulator is enough. This is exactly where previous work [IOZ14] required adaptivity of the
underlying primitives, which we in our case can then avoid. To prove consistency of the committed shares
of bit-string products, we use the following lemma. Its statement and proof are very similar to [HSS17,
Lemma 3.1] and we only provide it here for completeness.

17



Functionality F ID
Prep

The functionality runs with parties P = {P1, . . . , Pn} and an ideal adversary A. It has a list of corrupted parties I which it
obtains from A.
NOTATION: Angle brackets 〈x〉 denote a secret x ∈ F2 stored by the functionality, together with a public identifier.
Similarly, square brackets [Y ]i denote a secret Y ∈ Fκ2 that is stored and known to party Pi. The functionality maintains lists
PubOutputs,PrivOutputs1, . . . ,PrivOutputsn, which are initially empty.

PHASE I: COMPUTATION

Init: On input (Init) from all parties, if Init was used before then do nothing. For each i ∈ [n], if i ∈ I then receiveRi ∈ Fκ2
from A, otherwise sample a random Ri ← Fκ2 . Store the values ([R1]1, . . . , [R

n]n) and place each Ri in PrivOutputsi.

Sample: In the following commands, if i ∈ I then the functionality receives x ∈ F2 or X ∈ Fκ2 from A, otherwise it
samples a random x (resp. X), and then stores the result together with the party identifier Pi (if present). If a party identifier
was present, then the functionality adds x to the list PrivOutputsi.

1. 〈x〉 ← Sample(F2, T ) with T ∈ P ∪ {⊥}.

2. [X]i ← Sample(Fκ2 , Pi)

AddBit: The following command is used to add bits:
– 〈z〉 ← Add(〈x〉, 〈y〉): add the two bits x and y that were previously stored.

AddString: The following command is used to add strings:
– [Z]i ← Add([X]i, [Y ]i): add the two stringsX and Y that were previously stored and assigned to Pi. The result is stored

and assigned to Pi.

Mult: The parties can do two types of multiplication:
– 〈z〉 ← Multiply(〈x〉, 〈y〉): multiply the stored bits x, y and store the result in z.

– ([W 1]1, . . . , [W
n]n)← MultBitString(〈x〉, [Ri]i): multiply the bit x with the string Ri from Init:

1. A inputs W j ∈ Fκ2 for each Pj ∈ I.

2. Sample W j ← Fκ2 for j ∈ I subject to the constraint that x ·Ri =
∑
j∈[n]W

j .

3. For each j ∈ [n], store [W j ]j and append W j to PrivOutputsj .

Output (Bit): On input (PublicOutput, 〈x〉) from all parties, append x to PubOutputs.

Delayed Outputs: On input (DelayedOutputs) from all parties:
– Send the list PubOutputs to A and wait for a response.

– On receiving Deliver fromA, send (PublicOutput,PubOutputs) to all parties, and then for each i, send PrivOutputsi
to Pi.

– Move to Phase II of the functionality.

PHASE II: FINAL OUTPUT

When this phase begins, Phase I commands can no longer be used

Output (String): On input (PublicOutput, [W ]i) from all parties, where [W ]i was previously stored for W ∈ Fκ2 , send
(PublicOutput,W ) to all parties.

Abort: A can at any point send the message (Abort,J ) where J ⊂ I is a non-empty set, upon which F ID
Prep sends

(Abort,J ) to all honest parties and halts.

Fig. 9. Preprocessing Functionality F ID
Prep.

Lemma 3.4 If the protocol ΠBitStringMult does not abort, then the committed values Rj ,W i
τ,j produced by

ΠBitStringMult satisfy
n∑
i=1

W i
τ,j = xτ ·Rj ,

18



The Preprocessing Protocol Π ID
Prep

The protocol runs with parties P1, . . . , Pn. It runs two instances of the homomorphic commitment scheme which we denote
as FHCom and FBit

HCom.
NOTATION: We use 〈x〉 to denote that x ∈ F2 is stored by ΠD-TinyMPC, [x]Biti to denote that x ∈ F2 is stored in FBit

HCom

where Pi is the sender, and [X]i to denote that X ∈ Fκ2 is stored in FHCom where Pi is the sender. The parties maintain a list
PubOutputs which is initially empty.
PHASE I: COMPUTATION

Init: The parties call ΠD-TinyMPC with input (Init) and each obtain a string Ri ∈ Fκ2 . Then they each commit to Ri using
FHCom.

Sample: Party Pi samples x← F2 or X ← Fκ2 . The parties do one of:
– x ∈ F2: use the (Input) command of ΠD-TinyMPC to obtain 〈x〉. Pi then commits to x by calling FBit

HCom on input
(Commit, id, x), obtaining [x]Biti .

– X ∈ Fκ2 : Pi commits to X by calling FHCom, to obtain [X]i.

AddBit: To add two bits 〈x〉 and 〈y〉, parties use the Add command of ΠD-TinyMPC. If commitments {[x]Biti , [y]Biti }i are
also stored in FBit

HCom, use the Add command of FBit
HCom.

AddString: To add the committed strings [X]i and [Y ]i, the parties use FHCom.

Mult:
– To multiply two bits 〈x〉 and 〈y〉, the parties use the Multiply command of ΠD-TinyMPC.

– To multiply the bit 〈x〉 with the strings R1, . . . , Rn, the parties run the subprotocol ΠBitStringMult.

Public Output (bit): On input (PublicOutput, [x]Bit1 , . . . , [x]Bitn ) from all parties, append {[x]Biti }i to the list
PubOutputs.

Delayed Outputs: On input (DelayedOutputs) from all parties:
– Run Check of the subprotocol ΠCheckBit on input all of the bits committed to during Sample, to check their consistency.

– Use the (Open) command of FBit
HCom to output all the xi values, for every tuple {[x]Biti }ni=1 ∈ PubOutputs, and compute

the public value x = x1 ⊕ · · · ⊕ xn.

– Each party Pi outputs the list of public openings, together with all private values that Pi stored during Sample or the
bit-string Mult step.

PHASE II: FINAL OUTPUT

Public Output (String): To output the committed string [X]j , Pj uses the Open command of FHCom. If Pj fails to open any
commitment, the parties output (Abort, Pj).

Abort: If the ΠD-TinyMPC protocol aborts:
1. Every party opens its commitments to its random tape of ΠD-TinyMPC.
2. Run the detector D of ΠD-TinyMPC. If D outputs that J ⊂ [n] cheated then output (Abort,J ).

Fig. 10. The preprocessing protocol Π ID
Prep.

where Rj was computed in the Init phase and 〈x1〉, . . . , 〈xm〉 were input to ΠBitStringMult, except with
probability max(ε, 2−s).

Proof. Let j be an index where there exists at least one corrupt party Pi, who committed to incorrect values

W̃ i
j =W i

j + Γ i, W
i
j = Ŵ i

j + Γ̂ i, R̃i = Ri +∆i

instead of W i
j , Ŵ

i
j , R

i. Clearly, as long as it holds that the values

19



Subprotocol Πm
BitStringMult

The subprotocol uses the functionalities FHCom, FRand, and the protocol ΠD-TinyMPC.
We let s denote a statistical security parameter.
INPUTS: Bits 〈x1〉, . . . , 〈xm〉, and strings [R1]1, . . . , [R

n]n, where party Pi has Ri.
OUTPUT: Shares of the bit-string products Wτ,j = xτ · Rj , for τ ∈ [m], j ∈ [n], and commitments to every party’s share of
Wτ,j under FHCom.

I: Init: The parties sample s additional random bits.
1. Each Pi calls Input on ΠD-TinyMPC with s random bits (x̂i1, . . . , x̂

i
s). Compute the shared bits 〈x̂τ 〉 =

∑
i∈[n]〈x̂

i
τ 〉 using

ΠD-TinyMPC.

2. Write X = (x1, . . . , xm) and X̂ = (x̂1, . . . , x̂s) and define 〈X〉, 〈X̂〉 accordingly.

II: Multiply: For each j ∈ [n], the parties do as follows:
1. Call ΠD-TinyMPC on input (MultBitString) to obtain random shares W i

τ,j of Wτ,j = xτ · Rj , and shares Ŵ i
τ,j of

x̂τ ·Rj .

2. Write W i
j ∈ (Fκ2 )m as Pi’s shares of X ·Rj , and Ŵ i

j ∈ (Fκ2 )s for the shares of X̂ ·Rj .

III: Commit: Each party Pi commits to W i
j and Ŵ i

j using FHCom, for each j ∈ [n].

IV: Check: The parties check correctness of the commitments as follows:
1. The parties call FRand to sample a seed for a uniformly random, ε-almost 1-universal linear hash function, H ∈ Fs×m2 .

2. All parties compute the vector:

〈Cx〉 = H · 〈X〉 + 〈X̂〉 ∈ Fs2
and open Cx using Open of ΠD-TinyMPC. If ΠD-TinyMPC aborts, the parties run the Abort phase of Π ID

Prep.

3. For each i ∈ [n], the parties use FHCom to obtain commitments to the vectors in (Fκ2 )s:

[Cij ]i = H · [W i
j ]i + [Ŵ i

j ]i for j 6= i, and [Cii ]i = H · [W i
i ]i + [Ŵ i

i ]i + Cx · [Ri]i.

Each Pi then opens its commitments to Cij , for j ∈ [n].

4. All parties check that, for each j ∈ [n],
∑n
i=1 C

i
j = 0. If any check fails, the parties go to the Abort phase below.

5. The parties output the shares W i
τ,j , and commitments [W i

τ,j ]i.

Abort: If Step 4 of Check fails, the parties do as follows:
1. If FRand outputs (Abort,J ) then all parties output this. If not, continue.

2. Every party opens its commitments to its random tape of ΠD-TinyMPC.

3. Using the opened random tapes, transcript and CRS ofΠD-TinyMPC, compute each party’s sharesW i
j and Ŵ i

j , which were
obtained after the Multiply step.

4. Let J ⊂ [n] be the set of indices i ∈ [n] for which Cij 6= H ·W i
j + Ŵ i

j .

5. Output (Abort,J ).

Fig. 11. Subprotocol Πm
BitStringMult to check consistency of committed bit-string multiplications.

{∆i}i∈I , Γ :=
∑
i∈I

Γ i, Γ̂ :=
∑
i∈I

Γ̂ i

are all zero, then the equation in the lemma is satisfied.
We consider two cases where the aforementioned values are non-zero. First suppose that j ∈ I . Recall

that in the honest case, the check passes if
∑

iC
i
j = 0, where Cij is computed as in step 3. When parties

Pi ∈ I may have cheated, this becomes:

20



Subprotocol ΠCheckBit

The subprotocol uses the functionalities FBit
HCom, FRand, and the protocol ΠD-TinyMPC.

NOTATION: We use 〈x〉 to denote that x ∈ F2 is stored by ΠD-TinyMPC, and [x]Bitc to denote x ∈ F2 that is stored in FBit
HCom.

We let s denote a statistical security parameter.
INPUTS: Bits 〈x1〉, . . . , 〈xm〉 stored using ΠD-TinyMPC, and FBit

HCom commitments [xi1]Bitc , · · · , [xim]Bitc , for i ∈ [n], where Pi
committed to the values xij .
OUTPUT: The protocol succeeds if xj =

∑
i x

i
j , for j ∈ [m].

Check:
1. Each party Pi samples s random bits x̂1, . . . , x̂s ← F2.

2. Pi inputs x̂ij into ΠD-TinyMPC, and commits to x̂ij with FBit
HCom, for j ∈ [m].

3. Using FRand, the parties sample a random ε-almost 1-universal hash function H ∈ Fs×m2 .

4. Writing [Xi]Bitc = ([xi1]Bitc , . . . , [xim]Bitc ), [X̂i]Bitc = ([x̂i1]Bitc , . . . , [x̂is]
Bit
c ), and similarly for 〈X〉, 〈X̂〉, compute

[Ci1]Bitc = H · [Xi]Bitc + [X̂i]Bitc , 〈C2〉 = H · 〈X〉+ 〈X̂〉

5. The parties open Ci1 and C2 using FBit
HCom and ΠD-TinyMPC, respectively, and check that

∑
i C

i
1 = C2. If the check fails,

the parties go to Abort.

Abort:
1. All parties open their 〈xj〉-shares as xij using ΠD-TinyMPC, and each Pi opens its [xij ]

Bit
c values as yij using FBit

HCom.

2. Let J ⊂ [n] be the set of indices i for which there exists a j ∈ [m] such that xij 6= yij .

3. Output (Abort,J ).

Fig. 12. Subprotocol ΠCheckBit to check consistency of committed bits.

∑
i∈[n]

(H ·W i
j + Ŵ i

j ) +
∑
i∈I

(H · Γ i + Γ̂ i) + Cx ·Rj + Cx ·∆j = 0

⇔ H ·X ·Rj + X̂ ·Rj +H ·
∑
i∈I

Γ i +
∑
i∈I

Γ̂ i + Cx ·Rj = Cx ·∆j

⇔ H · Γ + Γ̂ = (H ·X + X̂) ·∆j

Now, if ∆j 6= 0, then notice that since X̂ is uniform in Fs2 and independent of all other values, this will
only be satisfied with probability 2−s. On the other hand, if ∆j = 0 then we require H · Γ = Γ̂ , and this
holds with probability ≤ ε, by the ε-almost 1-universal property of H, unless Γ = Γ̂ = 0.

Finally, consider the case j /∈ I . This is easily seen to be equivalent to the above case with ∆j = 0, so
if the check passes, we have Γ = Γ̂ = 0 except with probability at most ε.

We use the lemma below to verify that bits committed in both FBit
HCom and ΠD-TinyMPC are consistent. We

omit the proof, which is essentially a simplified version of the proof of Lemma 3.4.

Lemma 3.5 If the protocol ΠCheckBit does not abort, then the inputs 〈x1〉, . . . , 〈xm〉, [xi1]Bitc , . . . , [xim]
Bit
c

satisfy
n∑
i=1

xij = xj ,

except with probability max(ε, 2−s).

21



These allow us to prove security of our construction.

Theorem 3.6 Assuming a secure broadcast channel, protocolΠ ID
Prep implements F ID

Prep in the {CRS,FHCom,

FBit
HCom, FRand}-hybrid model with security against a static, active adversary corrupting at most n − 1

parties.

The proof follows a simulation-based argument, along the lines described in Section 1.3. We will construct
a PPT simulator S which runs the uncorrupted honest parties in Π ID

Prep while the adversary A will control
the dishonest parties.

Proof. We describe the simulator S below. We first describe how to simulate the protocol in the case where
ΠD-TinyMPC does not abort, and then turn to simulating the Abort phase of Figure 10.

Recall that ΠD-TinyMPC (Figure 8) is constructed by running the protocol ΠTinyMPC (with FOT replaced
by an OT protocol in the CRS model), where for every message mi,j sent from party Pi to party Pj , Pi
publicly commits to Mi,j , then sends Mi,j to Pj and also opens the commitment towards Pj . In our simu-
lation, S runs an honest execution of the protocol ΠD-TinyMPC, using random inputs for the dummy honest
parties, and sends to A the messages produced. For the commitments, S simply emulates the behaviour of
the FHCom,FBit

HCom functionalities towards A.
Using Corollary 3.3, we know that the protocol ΠD-TinyMPC securely implements FTinyMPC, meaning

that there exists a PPT simulator Ŝ for it. In addition to FHCom and FRand we will let S also simulate
a FTinyMPC-functionality and run Ŝ with the dishonest adversarially-controlled parties replacing the actual
messages of the protocolΠD-TinyMPC with simulated messages. These parties then, instead of choosing their
inputs via sampling as in Π ID

Prep and ΠD-TinyMPC, obtain them from FTinyMPC which S fully controls. Since
FHCom is equivocable this does not impact security, as we can open the input tapes of the simulated honest
parties to the values that FTinyMPC generated for them during Abort.

During the Init phase, S receives the Ri values sent byA to FHCom and sends these to F ID
Prep. Similarly,

during Sample, any input x received fromA as an input to FBit
HCom as well as any input X thatA inputs into

FHCom is forwarded to F ID
Prep. For the ΠBitStringMult subprotocol, S continues to run the dummy execution

ofΠD-TinyMPC, and if the check passes, forwards to F ID
Prep the strings whichA provided to FHCom. Note that

from Lemma 3.4, with overwhelming probability these strings are correct shares of the bit-string products
produced in ΠD-TinyMPC. If the check fails, S honestly opens its commitments to the dummy honest parties’
random tapes, then identifies a setJ of corrupt parties using the adversary’s openings, and sends (Abort,J )
to F ID

Prep. When the Private Output begins, S simulates ΠCheckBit as the honest parties would. If neither
of the consistency checks abort, then S continues Private Output by sending (Output) to F ID

Prep, which
delivers the relevant output values.

When the Public Output phase is run, S calls F ID
Prep with the relevant identifiers. For each Pi ∈ I,

S waits for A to open xi. For the honest Pi ∈ I, S receives xi from F ID
Prep, and then opens the relevant

commitment towards A equivocating in the simulations of FBit
HCom,FHCom.

Simulating the Abort phase. If ΠD-TinyMPC aborts, S honestly opens its commitments to the honest parties’
random tapes of ΠD-TinyMPC, and receives the adversary’s openings. S then runs the detector D to identify
a corrupted set of parties J , and sends (Abort,J ) to F ID

Prep.

Indistinguishability. We now argue that no environment can distinguish between the real and simulated
executions. Firstly, we show that as long as neither of the failure events in Lemma 3.4 or Lemma 3.5 occur
(and this happens with negligible probability) then all of the outputs of the parties are identically distributed

22



in both executions. Notice that the conditions under which both S and Π ID
Prep enter Abort are identical. If

the protocol does not abort then the outputs generated either by F ID
Prep or Π ID

Prep have the same distribution,
which can be seen by comparing the ideal functionalities F ID

Prep and FTinyMPC. In case of abort, a set of
cheaters identified by the honest parties in Π ID

Prep is computed identically to that S sends to F ID
Prep in the

simulation, and satisfies the criteria for identifiable abort.

It remains to argue that the protocol transcript observed by the adversary does not help the environment
to distinguish. The only difference between the two executions is the fact that S runs ΠD-TinyMPC on behalf
of the honest parties using random inputs, whereas in the real protocol, the honest parties run ΠD-TinyMPC

using their own inputs, which are also used to derive their outputs seen by the environment. In case either
S or Π ID

Prep enter Abort, we observe that the views are identically distributed, since the honest parties
do not produce any output, and the simulator’s random tape and inputs for ΠD-TinyMPC (opened during
Abort) are sampled the same way as in the real protocol. When the protocol does not abort, notice that in
both executions all the outputs of ΠD-TinyMPC that are seen by A are uniformly random, since the Open
command of ΠD-TinyMPC is only ever used to open random values in the consistency checks of Figures 11–
12. This means that the two views are indistinguishable, due to the fact that ΠD-TinyMPC securely realises
the FTinyMPC functionality (Corollary 3.3), and must have indistinguishable transcripts under two sets of
inputs with the same output distribution.

ut

3.3 Efficiency Analysis

The main overhead of our preprocessing protocol, compared with the non-identifiable protocol which we
build upon [HSS17], is due to the use of secure broadcast in the compilation with Lemma 3.2, and the use of
homomorphic commitments for every wire in the garbled circuit. We now discuss these costs in more detail,
and describe an optimization to reduce the use of broadcast.

We first observe that we can run an optimistic version of Π ID
Prep, without the additional broadcasts in

Lemma 3.2. If this optimistic offline protocol ends successfully (i.e. no abort occurs during Phase I), then the
online phase will not require the identifiability property of Π ID

Prep. In case of an error in the optimistic Π ID
Prep

instance, we then re-run the preprocessing with new randomness for each party and using the identifiable
version with broadcast. Observe that this may not identify a cheater in case the second protocol succeeds,
but this does not contradict the definition of identifiable abort as the adversary now just forces the honest
parties to use more resources. At the same time, the fact that the real inputs at this point were not used for
any computation and due to the use of new randomness by each party, privacy is preserved.

Regarding the homomorphic commitments, note that the dominating cost is during the bit-string multi-
plication (ΠD-TinyMPC), where each of the n parties must commit to n ·m strings of length κ, where m is
approximately the number of AND gates. Computationally, this overhead is very cheap. For instance, based
on the implementation from [RT17] (which is similar to the non-interactive scheme we use) as a rough esti-
mate for computation, then for n = 5 parties and the AES circuit with 6800 AND gates, we estimate the cost
of generating commitments in a WAN setting is around 0.3 seconds. Compared with [WRK17], this is only
around a 10% overhead. Therefore, the main cost introduced in this stage is likely having to securely broad-
cast these commitments. Since for large circuits this involves the broadcast of very long strings, broadcast
“extension” techniques such as [GP16] may be useful to reduce the complexity.

23



The MPC Protocol - Π ID
MPC (Initialization)

COMMON INPUTS: A hash function H : G× F2κ
2 → Fnκ2 and a circuit Cf representing the function f . Let the input wires of

a gate be labeled u and v, and the output wire be w. Let Λu and Λv be the public values on the input wires. The protocol uses
an instance of F ID

Prep.
PRIVATE INPUTS: ρ = (ρ1, . . . , ρnin), where {ρh}h∈inputi is party Pi’s input.
If a set of parties J does not send messages during the protocol, then each party outputs (Abort,J ) and stops. If F ID

Prep at any
point outputs (Abort,J ) then each party outputs (Abort,J ) and stops.

Init:
1. Each party Pi sends (Init) to F ID

Prep, which in turn outputs [R1]1, . . . , [R
n]n.

2. Passing topologically through all the wires w ∈W of the circuit:
– If w ∈ inputh:

(a) Each Pi sends Sample(F2, Ph) to F ID
Prep which outputs 〈λw〉.

(b) For each j ∈ [n] each Pi sends Sample(Fκ2 , Pj) to F ID
Prep which outputs [Kj

w,0]j .

(c) For each j ∈ [n] each Pi sends Add([Kj
w,0]j , [R

j ]j) to F ID
Prep which outputs [Kj

w,1]j .

– If w is the output of an AND gate with input wires u, v:
(a) Each Pi sends Sample(F2,⊥) to F ID

Prep which outputs 〈λw〉.

(b) Each Pi sends Multiply(〈λu〉, 〈λv〉) to F ID
Prep which outputs 〈λuv〉.

(c) For each j ∈ [n] each Pi sends Sample(Fκ2 , Pj) to F ID
Prep which outputs [Kj

w,0]j .

(d) For each j ∈ [n] each Pi sends Add([Kj
w,0]j , [R

j ]j) to F ID
Prep which outputs [Kj

w,1]j .

– If w is the output of a XOR gate, and u and v its input wires:
(a) Each Pi sends Add(〈λu〉, 〈λv〉) to F ID

Prep which outputs 〈λw〉.

(b) Each Pi for each j ∈ [n] sends Add([Kj
u,0]j , [K

j
v,0]j) to F ID

Prep which outputs [Kj
w,0]j and Add([Kj

w,0]j , [R
j ]j)

to F ID
Prep which outputs [Kj

w,1]j respectively.

3. For each τ ∈ Gext the parties use Add of F ID
Prep to compute 〈dτ 〉 = (〈λu〉⊕a) · (〈λv〉⊕b)⊕〈λw〉 from 〈λw〉, 〈λuv〉, 〈λu〉

and 〈λv〉. Then for each j ∈ [n] each party Pi sends MultBitString(〈dτ 〉, [Rj ]j) to F ID
Prep so that the parties obtain

[W 1
τ,j ]1, . . . , [W

n
τ,j ]n respectively.

4. The parties first send (PublicOutput, 〈λw〉) to F ID
Prep for each output wire w ∈ out of Cf . Afterwards, the parties send

(DelayedOutputs) to F ID
Prep so that each party Pi obtains {λw}w∈out and {λw}w∈inputi as well as Ri, Ki

w,0 and W i
τ,j as

defined above.

Fig. 13. The MPC protocol - Π ID
MPC (Initialization).

4 Online Phase

The online phase of our computation is modeled after [HSS17]. For completeness, in Section A we outline
the main idea of constant-round MPC, so here we focus on the details necessary in order to achieve iden-
tifiable abort. HSS uses a BMR-approach to achieve constant-round MPC, where the parties can identify
locally if their output was correct or not. In order to identify a cheater, we will perform a reconstruction of
a faulty gate in case of an error in that gate. This reconstruction, as it turns out, does not reveal any infor-
mation beyond the regular protocol transcript. To be able to perform such a reconstruction we will use the
new properties of our enhanced preprocessing functionality F ID

Prep, namely that it also provides a verifica-
tion mechanism for keys. This reconstruction consists of opening commitments to the input keys to the gate
which all parties used for evaluation as well as the supposed output key using F ID

Prep.

24



The MPC Protocol - Π ID
MPC (Computation)

Input:
1. For all input wires in ∈ inputi with input from Pi the party computes Λin = ρin ⊕ λin. Then, Pi broadcasts Λin to all

parties.

2. Upon receiving Λin for all inputs of Cf each party Pi broadcasts Ki
in,Λin

for all in ∈ input. Denote all these input keys
as K

j
in,Λin

for j ∈ [n].

Garble:
1. For all τ ∈ Gext with τ = (g, a, b) each Pi defines

share
i
τ ← H(g,Ki

u,a,K
i
v,b)⊕ (W i

τ,1, . . . ,W
i
τ,n)⊕ (0, . . . , 0,Ki

w,0, . . . , 0).

2. Each Pi broadcasts shareiτ to all parties, who set circτ =
⊕

j∈[n] share
j
τ .

Circuit Evaluation: Passing through the circuit topologically, the parties can now locally compute the following operations
for each gate g with input wires u, v, public values Λu, Λv and keys K

j
u,Λu

,K
j
v,Λv

:

1. If g is a XOR gate, set the public value on the output wire to be Λw = Λu ⊕ Λv . In addition, for every j ∈ [n], each party
computes K

j
w,Λw

= K
j
u,Λu

⊕Kj
v,Λv

.

2. If g is an AND gate , then each party computes:

(K
1
w,Λw

, . . . ,K
n
w,Λw

) = circg,Λu,Λv ⊕
(⊕

j∈[n]
H(g,K

j
u,Λu

,K
j
v,Λv

)

)
3. If K

i
w,Λw

6∈ {Ki
w,0,K

i
w,1}, then Pi broadcasts (Conflict, g, Λu, Λv) and enters Abort. Otherwise, it sets Λw = c if

K
i
w,Λw

= Ki
w,c.

4. The output key of g is defined to be (K
1
w,Λw

, . . . ,K
n
w,Λw

) and the public value Λw.

Output: Everyone obtained a public value Λout for every circuit-output wire out. Each party can obtain the actual output
Y = (y1, . . . , ynout) as yout = Λout ⊕ λout, where λw was obtained during Init.

Fig. 14. The MPC protocol - Π ID
MPC (Computation).

There are multiple cases in which aborts can happen during the online phase, which entails different
ways of how the cheater must be identified. These cases are as follows:

1. A set of parties can stop to communicate. As our protocol (apart from F ID
Prep) only uses broadcast com-

munication, such behaviour identifies cheaters directly.
2. The adversary can manipulate a gate in such a way that an honest party sees an error. This is the

most straightforward error from garbling and can directly be detected by reconstructing the gate. In the
protocol, we detect this in Steps 5, 6 of Abort. There, we open the keys which correspond to the output
of the gate in F ID

Prep that we would expect to see, based on Init. We can then compare the opening with

the actual outputs which were derived based on share
j
τ (the garbling information) from each party,

which directly shows whenever A garbled a circuit wrongly towards any party.
3. The adversary may send complaints, even though a gate was garbled correctly. In this case we recon-

struct the gate normally and, as no error occurs, we identify complaining parties as cheaters. This is the
end of Step 6 of Abort.

4. The adversary may send complaints about incorrect gates that are outside the “active path”. Here we
will show that the honest parties agree on the active path, i.e. on the rows of each garbled table which
they decrypt during evaluation or - equivalently - the public values Λw. Thus, honest parties can identify
complaints outside the active path as cheating, which is done in Step 2 of Abort.

25



The MPC Protocol - Π ID
MPC (Abort)

Abort: Receive messages of the type (Conflict, g, Λu, Λv) from the parties where g is an AND-gate. Ignore all double or
other messages. Then each party does the following checks:

1. Let {Kj
in,Λin

}in∈input be the keys that each party obtained from Pj for all inputs during Input. Choose the smallest g in
the circuit among all the Conflict-messages.

2. Assume that honest parties evaluated the gate g using the public values Λu, Λv . If a non-empty set of parties J sent
(Conflict, g, Λ′u, Λ

′
v) with (Λ′u, Λ

′
v) 6= (Λu, Λv), then output (Abort,J ).

3. Let {Kj
u,Λu

,K
j
v,Λv
}j∈[n] be the input keys of g that each party computed during Circuit Evaluation. For each j ∈ [n]

recompute (K
j
w,1, . . . ,K

j
w,n)← H(g,K

j
u,Λu

,K
j
v,Λv

). Let Ĵ be the set of parties that sent (Conflict, g, Λu, Λv).

4. For τ = (g, Λu, Λv) all parties send Add([Kj
w,0]j , [W

j
τ,j ]j) for j ∈ [n] to F ID

Prep to obtain [Dj
w]j .

5. The parties use Output (String) of F ID
Prep to open the following values:

(a) Send (PublicOutput, [Kj
in,Λin

]j) for all j ∈ [n], in ∈ input to obtain Kj
in,Λin

;

(b) Send (PublicOutput, [Kj
u,Λu

]j), (PublicOutput, [Kj
v,Λv

]j) for all j ∈ [n] to obtain Kj
u,Λu

,Kj
v,Λv

respectively;

(c) Send (PublicOutput, [Dj
w]j) if j = ` and (PublicOutput, [W j

τ,`]j) otherwise for all j, ` ∈ [n] to obtainDj
w,W

j
τ,`

respectively.

6. Each party tests
– For all j ∈ [n], in ∈ input that Kj

in,Λin

?
= K

j
in,Λin

;

– For all j ∈ [n] that Kj
u,Λu

?
= K

j
u,Λu

and Kj
v,Λv

?
= K

j
v,Λv

.

– Furthermore, for all j, ` ∈ [n]

if j = ` that Dj
w

?
= K

j
w,j ⊕ sharejτ [j];

if j 6= ` that W j
τ,`

?
= K

j
w,` ⊕ sharejτ [`].

LetJ be the set of parties which generated values where one of the above tests does not work out. Then output (Abort,J ).
If all tests hold then output (Abort, Ĵ ).

Fig. 15. The MPC protocol - Π ID
MPC (Abort).

5. The adversary can garble a gate incorrectly for a dishonest party and let that party not report this. In this
case, the protocol will only abort at the next AND gate g′ into which the output of the wrongly garbled
gate g is fed. In such a case we will see a difference between the keys that the honest parties obtained
as input of g and the keys that are opened by the dishonest party that did not send a Conflict-message.
We do this by opening the committed input keys [Kj

u,Λu
]j , [K

j
v,Λv

]j in Step 5 via F ID
Prep and comparing

these to the keys which are the inputs of the “faulty” gate g as evaluated by every party during the circuit
evaluation. This is done in Step 6 of Abort.

Throughout the protocol, which is outlined in Figure 13, Figure 14 and Figure 15 we let Ki
w,0 be the

0-key of Pi for the wire w, Ri be the global difference used by this party and define Ki
w,1 = Ki

w,0 ⊕ Ri.
Overlined keys K are those obtained in the evaluation of the circuit.

Theorem 4.1 Let H be a circular 2-correlation robust hash function. Assuming a secure broadcast channel,
protocol Π ID

MPC implements the functionality F ID
MPC in the F ID

Prep-hybrid model with security against a static,
active adversary corrupting at most n− 1 parties.

Proof. The simulator S is constructed as follows:

26



Init: If F ID
Prep outputs (Abort,J ) to S then send (Abort,J ) to F ID

MPC and terminate.

1. Initialize F ID
Prep and let I be its set of corrupted parties.

2. Run steps 1 and 2 of Init. Receive the values that A provides for each i ∈ I to F ID
Prep: (i) the global

differenceRi; (ii) wire keys {Ki
in,0}in∈input and masks {λin}in∈inputi corresponding to its input wires;

(iii) the wire key Ki
w,0 for each wire w that is output of an AND gate.

3. Run step 3 of Init. Obtain bit-string product shares W i
τ,j for i ∈ I, j ∈ [n], τ ∈ Gext.

4. Finish by running step 4 of Init, thus learning {Ki
w,0}w∈W , {W i

τ,j}τ∈Gext,j∈[n], Ri and {λin}in∈inputi
for each i ∈ I as well as the public λw each output wire w of Cf . Then send (Init, Cf ) to F ID

MPC.

Input: If a set of parties J ⊆ I does not send values during Input then send (Abort,J ) to F ID
MPC and

terminate.
1. For each honest party Pj and in ∈ inputj , choose a random bit Λin and send it to A. For each i ∈ I

wait for the input bits Λin, in ∈ inputi from A.

2. For each in ∈ input sample a random key Kj
in,Λin

for each i ∈ I and send them to A. Wait for the
keys {Ki

in,Λin
}i∈I from A.

3. For each i ∈ I, in ∈ inputi compute ρin = λin+Λin and send (Input, i, ρin) to F ID
MPC. Furthermore,

send (Input, j, ·) for each j ∈ I to F ID
MPC.

4. Next, send (Compute) and (Output) to F ID
MPC and obtain the outputs yw for each output wire w.

Garble: Observe that the input wires {Ki
in,Λin

}i∈[n] for each input wire in ∈ input are fixed at this time.
1. For each wire w that is an output of an AND gate, except for the ANDs in the last layer of the circuit,

sample a public value Λw ∈ {0, 1}

2. For each output wire w, define the public value Λw = yw ⊕ λw
3. For the set of output wires õut from the last layer of AND gates, pick a set of values {xw}w∈õut which

satisfy the circuit outputs. Then define Λw = xw ⊕ λw for these wires.

4. Sample a random key Kj
w,Λw

for each j ∈ I for every active row of an AND gate with output wire w.

5. For each XOR gate, compute the keys Kj
w,Λw

= Kj
u,Λu
⊕Kj

v,Λv
for j ∈ I.

6. For each AND gate g with wires (u, v, w) and j ∈ I sample the 3 inactive rows share
j
g,1−Λu,1−Λv ,

share
j
g,Λu,1−Λv , sharejg,1−Λu,Λv at random. Then set

sharejτ ← H(g,Kj
u,Λu

,Kj
v,Λv

)⊕ (W j
τ,1, . . . ,W

j
τ,n)⊕ (0, . . . , 0,Kj

w,0, . . . , 0).

7. Broadcast {sharejτ}j∈I for each simulated honest party Pj .

Circuit Evaluation/Output: If a set of parties J ⊆ I does not send values during the protocol part of
Garble then send (Abort,J ) to F ID

MPC and terminate.
1. Upon receiving shareiτ from A compute circτ ←

⊕
i∈[n] share

i
τ for τ ∈ Gext.

2. Evaluate the circuit as follows: First for i ∈ [n], in ∈ input let Ki
in,Λin

:= Ki
in,Λin

be those keys that
were either provided by A or sent by S to A. Then pass through the circuit topologically and do the
following for each gate g with input wires u, v and public values Λu, Λv on the active path:

27



(a) If g is a XOR gate, set the public value on the output wire to be Λw ← Λu ⊕ Λv. In addition, for
every i ∈ [n], each party computes Ki

w,Λw ← K
i
u,Λu ⊕K

i
v,Λv .

(b) If g is an AND gate , then each party computes:

(K
1
w,Λw , . . . ,K

n
w,Λw)← circg,Λu,Λv ⊕

(⊕
i∈[n]

H(g,K
i
u,Λu ,K

i
v,Λv)

)
(c) Let J ⊆ I be the maximal set such that for all j ∈ J : K

j
w,Λw 6= Kj

w,Λw
. If J 6= ∅ then send

(Conflict, g, Λu, Λv) to A in the name of each party in J and enter Abort.

3. If Abort was not entered then send (Deliver) to F ID
MPC and terminate.

Abort: If a set of parties J ⊆ I does not send values during the protocol part of Abort then send
(Abort,J ) to Output in F ID

MPC and terminate. If the parties controlled by A send (Conflict, g, Λu, Λv)
or if only S to A then do the following:
1. Consider all Conflict-messages, both obtained from A and sent by S . Throughout the rest of Abort

fix the gate g with the smallest value.

2. Let J ⊆ I be the set of parties which sent (Conflict, g, Λ′u, Λ
′
v) where Λ′u, Λ

′
v are not equal to those

Λu, Λv which are on the active part of the gate g. If J 6= ∅ then send (Abort,J ) toF ID
MPC and terminate.

3. Let τ = (g, Λu, Λv) and Ki
u,Λu ,K

i
v,Λv be the keys of i ∈ I that were used in evaluating the gate g using

circ. Furthermore, for j ∈ [n] let Ki
w,0,W

i
τ,j , R

i be the values that A sent to F ID
Prep.

4. For each j ∈ I let F ID
Prep open [Kj

u,Λu
]j to the value Kj

u,Λu
that it got assigned during Garble. Do the

same for [Kj
v,Λv

]j as well as [Kj
in,Λin

]j for in ∈ input. For all i ∈ [n], j ∈ I do the following:

if i = j open [Dj
w]j = Add([W j

τ,j ], [K
j
w,0]j) as sharejτ [j]⊕ H(g,Kj

u,Λu
,Kj

v,Λv
)[j];

if i 6= j open [W j
τ,i]j as sharejτ [i]⊕ H(g,Kj

u,Λu
,Kj

v,Λv
)[i].

5. Let A open {[Ki
in,Λin

]i}in∈input, [Ki
u,Λu

]i, [K
i
v,Λv

]i, [D
i
w]i, {[W i

τ,j ]i}j∈[n]\{i} for i ∈ I via F ID
Prep as

{Ki
in,Λin

}in∈input,Ki
u,Λu

,Ki
v,Λv

, Di
w, {W i

τ,j}j∈[n]\{i} respectively.

6. Let J ⊆ I be the set of parties such that Ki
in,Λin

6= K
i
in,Λin

(for in ∈ input), Ki
u,Λu

6= K
i
u,Λu or

Ki
v,Λv
6= K

i
v,Λv for i ∈ J . If J 6= ∅ then send (Abort,J ) to F ID

MPC.

7. If all opened values coincide with those sent byA to S then let J ⊆ I be the maximal set of parties such
that ∀i ∈ J : shareiτ 6= H(g,Ki

u,Λu
,Ki

v,Λv
) ⊕ (W i

τ,1, . . . ,W
i
τ,i−1, D

i
w,W

i
τ,i+1, . . . ,W

i
τ,n). If J 6= ∅

send (Abort,J ) to F ID
MPC. Else let J ′ be the set of parties that sent (Conflict, g, Λu, Λv) and send

(Abort,J ′) to F ID
MPC.

In the simulation, we generate a circuit that contains no information outside of the active path that is
used. For this to work, the inputs must be extracted from the adversary and the circuit is only generated once
the output is known from the functionality. In this, there is no difference to how [HSS17] works as we do
this almost the same way. Concerning identifiability of cheating we see that in S, the honest parties always
consistently agree on who cheated and they always identify only dishonest parties:

1. If they identify cheating based on F ID
Prep then this is correct due to the identifiable abort-property of

F ID
Prep. All further communication is broadcast, so dishonest parties that stop communicating will be

identified by all honest parties.

28



2. The only way how A can reconstruct its garbling share share during Abort is by opening the values
from F ID

Prep, which are correct by definition. To make any party abort during the evaluation or flip a wire
bit,Amust either provide incorrect input keys or an incorrectly constructed garbling, both of which will
always be identified correctly during Abort.

3. If a gate was garbled correctly butA nevertheless triggers Abort, then this is identified correctly in Step
7 of S . While in the simulation the honest parties may activate Abort in more cases than in the protocol,
in each such case a check throughout Abort must fail and no honest party can ever be framed this way.

4. S sends an Abort-message the moment that the honest parties starts to disagree on the active path. As
such, honest parties either ignore Abort-messages that include elements outside of the active path or are
safely able to identify such parties as cheaters.

5. In the case where A does not notify about incorrect evaluation of a gate g this will lead to an abort in
any gate g′ to which g’s output is an input. As we open the input wires of g′ and all parties necessarily
agree on the wire values of g′ this means that F ID

Prep will open an input key for a party controlled by A
which differs from the key all parties obtained during the evaluation. This is detected in Step 6 of the
simulation.

The simulated honest parties follow the same strategy as in Abort of Π ID
MPC to identify cheaters, but activate

Abort differently in the simulation: S starts the abort whenever the computation deviates from the active
path. This means that Abort runs even if an adversary successfully flips the wire bit that an honest party sees
(thus breaking correctness) - which is stronger than in the real protocol. Therefore (and similar to [HSS17])
we consider an event Flip which we define as A changing a key Ki

w,Λw that an honest party obtains when
evaluating an AND-gate g to Ki

w,Λw
+Ri.

When considering S, we observe thatRi is not used throughout the simulation. The garbling as generated
by the simulator either uses a 0 or 1-key, but never are both of these used in the simulation. Therefore, as in
Lemma 5.1 of [HSS17] we can claim that Flip occurs in S only when the value Ri of an honest party is
guessed correctly, which happens with probability at most n · 2−κ.

Let us construct a hybrid HYBF based on S where we replace Step 2c of Circuit Evaluation/Output
and only send Conflict in the same case as Step 3 of Circuit Evaluation of Π ID

MPC. By construction, S
and HYBF behave differently if and only if the event Flip occurs and in both simulations it happens with
the same probability. Clearly, HYBF in such a case does not identify this type of cheating by flipping a wire
bit if its done successfully, but this event happens with probability at most n · 2−κ as argued before.

Next, we define HYB1 as the hybrid distribution that is the same as HYBF but where we set the keys
Kj
w,Λw

, j ∈ I on the active path to be the openings of [Kj
w,Λw

]j of F ID
Prep as in the real protocol. This also

means that we do not have to equivocate the output of F ID
Prep during Step 4 of Abort. Since the keys are still

uniformly random this is perfectly indistinguishable from HYBF.
Observe that the only difference between the distributions HYB1 and A ◦Π ID

MPC lies in how the values
{sharejτ}j∈I are generated. In A ◦ Π ID

MPC we generate these for the dishonest parties according to the
outputs of F ID

Prep whereas HYB1 only has correctly garbled entries on the active path. To achieve this,
HYB1 obtains the output from F ID

MPC and then sets the values on the path accordingly. HYB1 actually
uses the values it obtained from F ID

Prep in this step and it is not hard to see that by the random choice of these
values in F ID

Prep and since, as argued above, no Rj-differing values are ever used, the values generated in

share
j
τ are uniformly random, subject to the constraint that their XOR can be evaluated to the right output

of the function.
To invoke Lemma 5.2 and Lemma 5.3 of [HSS17] to argue indistinguishability between HYB1 and

A ◦ Π ID
MPC, we first note that there is a subtle difference in how the share

j
τ are generated which does not

29



make any difference in the argument: in the original protocol, the parties add their shares of the bit-string
product dτ · Ri to a PRG value before broadcasting the sum. This PRG value in [HSS17] ensures that
the circuit shares look uniformly random, except that their XOR is the right sharing of the circuit. This is
necessary because the bit-string products in their work are not uniformly random. In our case, we instead
have values W j

τ,i which are already uniformly random by generation in the preprocessing phase (except that
they XOR to the right value). Therefore, their argument can again be applied to show indistinguishability of
HYB1,A ◦Π ID

MPC. From this, Theorem 4.1 follows. ut

Optimistic online phase. We can define an optimistic version of Π ID
MPC, for which we analyse its best and

worst case complexity. In this variant the use of broadcast is replaced with that of point-to-point channels,
with the exception of the broadcast of the Λin values. We require this broadcast in order to extract the
inputs of the malicious parties and the unique active path for the evaluation of the garbled circuit. As MPC
with identifiable abort implies secure broadcast [CL14], it seems natural that we cannot avoid broadcast in
our protocol, even optimistically. Furthermore, broadcasting Λin is also necessary in the original [HSS17]
construction.

The main advantage of avoiding the use of broadcast in an instance of Π ID
MPC is in the reconstruction of

the garbled circuit (Step 2 of Garble). In our optimistic version we can put the circuit together by having
each party send shareiτ to a single party Pi, which will then send the reconstructed circuit to everyone else,
as in [HSS17]. Note that replacing the broadcast here and in Step 2 of Input, only allows an adversary to
introduce additive errors to the circuit, which can be easily derived by computing the difference between an
evaluation of the garbled circuit with the correct key and an incorrect one.

When the honest parties encounter an error that would trigger the execution of Abort, they instead repeat
the execution of Π ID

MPC from Step 2 of Input, this time using broadcast as indicated in the protocol boxes.
Any party refusing to engage in the re-run can be trivially identified as corrupted by all honest parties.
Hence, the best-case complexity is of O(κn|C|) + bc(I), where I is the number of input wires, and the
worst-case complexity is O(κn|C|) + bc(Iκ+ n2κ|C|).

Finally, we observe that this additional optimistic evaluation of a garbled circuit with additive errors
enables an extra attempt for the adversary to guess the value Ri of each honest party. As Ri ∈ {0, 1}κ, this
has no impact on the protocol security.

5 Achieving Public Verifiability

We conclude by presenting how the previously introduced protocols and functionalities can be transformed
into publicly verifiable counterparts. To model public verifiability formally, we assume (similar to [BDO14])
the existence of a third party V who will not be part of P . As a matter of fact, V does not need to be online
or even exist while all the other protocol steps are running.

The notion of public verifiability which we achieve in this work differs from [BDO14, SF16, CFY17] in
multiple respects: while it still allows V to establish the correctness of the output value, our model requires
that at least one honest party is present during the MPC protocol. This is in contrast to the aforementioned
works which could guarantee correctness even if all parties are corrupted. Similar to [CFY17] (albeit differ-
ent from the other works) V will be able to identify cheaters during the verification phase (if they existed).
Note that our model lends itself to be applicable in e.g. the client-server setting in order to prevent corrupted
servers from announcing false outcomes, or when MPC is integrated with distributed ledgers.

More formally, let F ID be the identifiable abort version of any functionality F , as presented in Section
2.1. We denote as FPV an extension of F ID which further supports public verifiability, as described in
Figure 16. In a nutshell, publicly verifiable functionalities incorporate an additional party, the verifier V , who

30



can query the functionality at any point. When doing so, FPV replies with all public outputs of F produced
so far and, if there was an abort, the same set of corrupted parties J that F ID would have produced towards
the honest parties.

Functionality FPV

FPV is exactly as F ID, with two changes. First, FPV runs with an additional party, the verifier V . Second, it has the following
extra command:

Verify: On input (Verify) from V:
– If the functionality has received (Abort,J ) from A in the execution of any other command, return (Abort,J ) to
V .

– If the functionality has sent any message starting by PublicOutput, it forwards that same message to V .

Fig. 16. Extending an identifiable-abort functionality F ID to its publicly verifiable version FPV.

Whereas turning functionalities into publicly verifiable ones is pretty straightforward, one has to be more
careful about their corresponding protocols. At the core, we achieve our goal by using FPV

Broadcast, a publicly
verifiable version of secure broadcast. Such variant can be implemented by using an authenticated bulletin
board FBulletinBoard, as described in Figure 17: Broadcasting is equivalent to writing, and V can verify any
‘sent’ message by reading the board.

Functionality FBulletinBoard

Register: Upon receiving (Init,P) by all parties in a set P = {P1, . . . , Pn}, store P locally.

Write: Upon receiving (Write, id,P,m) from a party Pi ∈ P , where id is not assigned yet, store the message m as
(id,P, i,m).

Read: Upon receiving (Read, id) from any V , the functionality checks whether id was assigned already. If so, then it returns
(id,P, i,m) to V . Otherwise, it returns (id,⊥,⊥,⊥).

Fig. 17. Functionality FBulletinBoard representing a bulletin board.

If considered on its own, adapting Π ID
Prep to implement FPV

Prep could be attained mostly by just switching
F ID
Broadcast to its publicly verifiable version. As all messages would go through FPV

Broadcast (either in the clear,
or inside commitments), an external verifier could easily find FPV

Prep’s outputs there if no abort happened.
Also, if there was an abort, V would find in the same place all the necessary information to run the deter-
ministic detector algorithm D (cf. Definition 3.1) and conclude the same set of corrupted parties J as the
honest parties do.

On the other hand, implementing FPV
MPC based on FPV

Prep requires substantially more work: the way
the Abort procedure of Π ID

MPC identifies cheating relies on knowing the active path in the garbled circuit
corresponding to the Λin values which were broadcast in the Input phase. Unfortunately, determining the
active path in Π ID

MPC requires private randomness from any party in P (namely, Step 3 in Figure 14), which
at that point cannot be revealed to V for running D because the parties have already provided their private

31



inputs to Π ID
MPC. Having all parties announce their active path does not solve the problem, as it is unclear

to V which such path could be trusted. We now explain how to modify both Π ID
Prep and Π ID

MPC in order to
achieve public verifiability.

5.1 Public Active Paths

To make the active path recognisable for V , we use the well-known technique of fixing the last bit of a key
to be its external wire value Λw, i.e., we require that each Ki

w,0 has as last bit 0 and each Ki
w,1 has as last

bit 16. The latter can be achieved by requiring that the last bit of Ri is 1. We formalize this in the ideal
functionality FPV

Prep by requiring that vectors generated by Sample and Init have their last bit set to 0 and 1,
respectively. For the sake of formality, we denote the resulting modified functionality as FPV

P̃rep
.

In order to UC-implement FPV

P̃rep
, we first modify Π ID

Prep so that all messages are sent via FPV
Broadcast.

Notice that FHCom and FRand can be easily implemented with public verifiability by having their respective
protocols send all communication through FPV

Broadcast. Furthermore, we require that each party sets the last
bit of their vectors according to the previous description. As dishonest parties might not follow this, we add
a (cheap) random linear check using FPV

HCom to ensure correct behaviour, which is described below:

1. Each Pi ∈ P randomly samples s auxiliary masking vectors Ai1, . . . , A
i
s ∈ Fκ2 , subject to the constraint

that the last bit of each of them is zero. Pi commits to them using FPV
HCom as [Ai1]i, . . . , [A

i
s]i.

2. Denote by [Xi
1]i, . . . , [X

i
r]i, r = |G| + nin, Pi’s (value-zero) keys corresponding to the circuit-input

wires and the output wires of AND gates, obtained using Sample. Let [Ri]i be the value obtained during
Init. Parties in P call FPV

Rand to generate, for every i ∈ [n], s · (r + 1) random bits bi1, . . . , b
i
s(r+1).

3. For j ∈ [s], Pi uses FPV
HCom to compute and open the random linear combination [Zij ]i = [Aij ]i+ bij+s·r ·

[Ri]i +
∑r

k=1 b
i
(j−1)·r+k · [X

i
k]i towards all parties, who check that the last bit of each opened Zij is

bir·s+j . If that is not the case for any i or j, they enter the Abort procedure.

As the last bit of every Aij , X
i
k should be zero and the last bit of Ri should be one and all those values

are committed to before the b values are sampled, any corrupted Pi providing wrong values can only pass
the j-th check with probability at most 1/2, for every j ∈ [s]. On the other hand, and for an honest Pi, the
Aij masks prevent any leakage on Xi

k, R
i beyond their lasts bits. From this, and Theorem 3.6 it then follows:

Lemma 5.1 The transformation to Π ID
Prep outlined above implements FPV

P̃rep
in the

{FPV
Broadcast,FPV

HCom,FPV
Rand}-hybrid model with security against a static, active adversary corrupting at most

n− 1 parties.

5.2 Public Verifiability in the Online Phase

We now explain how to modify the online phase of Π ID
MPC in order to implement FPV

MPC. As mentioned
before, we require that all communication will be done via FPV

Broadcast. While the Init, Garble, Output
and Abort phase of our publicly verifiable protocol will be identical to Π ID

MPC, we need to introduce some
differences in Input and Circuit Evaluation. We proceed to outline those differences:

6 Technically, in this case we should increase the key length by one bit in order to compensate the loss of entropy, but we omit this
in order to simplify our presentation.

32



Input: Add a third step, where parties in P additionally check if the last bit of Ki
in,Λin

is identical to Λin

for every i ∈ [n]. Otherwise, they broadcast (Abort,J ), where J contains every Pi who sent the wrong
key.

Circuit Evaluation: In Step 3 of this subprotocol, parties in P additionally check if the last bit of every
K
i
w,Λw is identical for every i ∈ [n]. If that is not the case, they broadcast (Conflict, g, Λu, Λv) and

enter Abort.

Trivially, the Abort procedure still works for parties in P the same way it did in Π ID
MPC without the

above modifications. For a verifier V looking at the transcript of this procedure afterwards, things also work
out: Due to the fact that wire keys now indicate the corresponding Λ value on the wire, up to the smallest
g in the circuit among all Conflict messages, V can be sure of having obtained the correct Λu, Λv values.
Hence, on Step 2, he can perform the same check honest parties in P did to conclude whether or not the
(Conflict, g, Λ′u, Λ

′
v) was correct, or if a malicious party trying to cheat. V cannot perform Step 4, but

he can obtain the resulting value on Step 5, because it is a PublicOutput of FPV

P̃rep
(cf. Figure 16). The

same is true for the other values revealed in that step, and thus V can perform the whole Abort procedure
non-interactively. From this, and Theorem 4.1, we can conclude:

Lemma 5.2 The transformation to Π ID
MPC outlined above implements FPV

MPC in the
{FPV

Broadcast,FPV

P̃rep
}-hybrid model with security against a static, active adversary corrupting at most n − 1

parties.

6 Feasibility of Black-Box, Constant-Round MPC with Identifiable Abort

We now show how to construct MPC with identifiable abort in a constant number of rounds, using only
black-box access to an (adaptively secure) oblivious transfer protocol, a commitment scheme and a pseu-
dorandom function. We do this by combining the Damgård-Ishai protocol [DI05] for constant-round MPC
(hereafter, DI05) with techniques from Ishai et al. [IOZ14] for identifiable abort. We stress that this is solely
a feasibility result and does not have good concrete efficiency.

6.1 Information-theoretic signatures

We use information-theoretic signatures [CR91, HSZI00, SS11], which are an unconditionally secure ana-
logue of digital signatures, where verification is not public, but requires a private verification key that is
distinct to each verifier. The following definition, adapted from [BOS16], considers a single (honest) signer
and a set of verifiers, some of whom may be corrupted.

Definition 6.1 (Information-Theoretic Signature) An information-theoretic signature scheme for the set
of verifiersP = {P1, . . . , Pn} and message spaceM =M(κ), consists of a tuple of algorithms (Gen, Sig,Ver)
that satisfy the following properties:

(sk,vk)← Gen(1κ, w) takes as input the security parameter κ and an upper bound w ∈ N on the
number of signatures that may be created, and outputs the signing key sk and vector of the parties’
(private) verification keys, vk = (vk1, . . . , vkn).
σ ← Sig(m, sk) is a deterministic algorithm that takes as input a message m ∈ M and signing key sk,

and outputs a signature σ.
0/1← Ver(m,σ, vkj) takes as input a message m, a signature σ and Pj’s verification key vkj , and

checks that σ is a valid signature on m.

33



To define security, an adversary who corrupts a subset of the verifiers is given access to a signing or-
acle and must either break unforgeability, by producing a signature on a new message, or consistency, by
producing a signature that is valid according to one verification key but invalid according to another.

Definition 6.2 (w-security) An IT signature scheme (Gen,Sig,Ver) with message spaceM is w-secure if
it satisfies the following properties:

Correctness: For every pair (sk,vk) output by Gen, for any m ∈M, and for all j ∈ [n],

Ver(m,Sig(m, sk), vkj) = 1.

Unforgeability: Let I ( [n] be an index set of corrupted verifiers, and define the following game between
a challenger C and an adversary A:
1. C computes (sk,vk)← Gen(1κ, w) and sends {vki}i∈I to the adversary.
2. A may query C adaptively up to a maximum of w times for signatures. Let m1, . . . ,mw′ be the list

of messages queried to C.
3. A outputs a target message m∗ and a signature σ∗.
4. A wins if m∗ /∈ {m1, . . . ,mw′} and there exists j ∈ [n] \ I for which

Ver(m∗, σ∗, vkj) = 1.

A scheme is unforgeable if for any subset of corrupted verifiers I ( [n] and for any adversary A,

Pr[A wins] ≤ negl(κ).

Consistency: The security game for consistency is identical to the unforgeability game, except for the
final step (the winning condition), which becomes:
4. A wins if there exist i, j ∈ [n] \ I such that

Ver(m∗, σ∗, vki) = 1 and Ver(m∗, σ∗, vkj) = 0.

A scheme satisfies consistency if for any set I ( [n] and for any A playing the above modified game,

Pr[A wins] ≤ negl(κ).

Constructing IT signatures. Hanaoka et al. [HSZI00] constructed an efficient IT signature scheme over
a large finite field F of size λω(1), based on multivariate polynomials. Baum et al. [BOS16] presented a
simplified version of the scheme of Hanaoka et al., which is also linearly homomorphic. In both schemes,
signatures are of size n field elements and verification keys are of size O(n · w) field elements, where w is
the upper bound on the number of signatures and n is the number of verifiers.

6.2 DI05 Garbling with Identifiability

The DI05 protocol [DI05] uses a variant of Yao’s garbled circuits, with a specialized form of encryption
scheme to allow secure computation of a garbled circuit in a black-box manner.

In the garbling scheme, each wire of the circuit is assigned two wire labels, which are length-n vectors
of κ-bit keys where party Pi holds the i-the component of each key, as in BMR. Given a gate g, a pair of
left/right input wire labels A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ {0, 1}nκ and an output wire label
(C1, . . . , Cn), we can use the following encryption scheme to garble the gate g:

34



EA,B(C
i) :=

H(A1, B1, g)⊕ Ci[1]
...

H(An, Bn, g)⊕ Ci[n]


where Ci[1], . . . , Ci[n] form a verifiable secret sharing of the key component Ci. The hash function H can
be modelled as a two-key pseudorandom function, which is pseudorandom as long as one of the keys is
unknown.

A complete garbled gate consists of 4 rows (for each combination of input wire labels), where each row
contains n encryptions of the form EA,B(C

1), . . . , EA,B(C
n). This allows for creating garbled gates inside

secure computation in a black-box way, since Pi can input the keysAi, Bi and hash values H(Ai, Bi, g) into
the MPC protocol, avoiding non-black-box use of H. In [DI05], there is an honest majority of participants,
so if Pi inputs an incorrect hash value then this will be detected in the verifiable reconstruction of Ci.

To adapt this garbling scheme for dishonest majority with identifiable abort, we replace VSS with au-
thenticated additive secret-sharing, where the shares are each authenticated with information-theoretic (IT)
signatures. IT signatures, used also in IOZ [IOZ14], can be consistently verified by all parties, so that any
party who inputs an incorrect hash value to the garbling procedure can be detected and identified.

Authenticated secret-sharing with IT signatures. Concretely, let (Gen, Sig,Ver) be an IT signature scheme
with message space {0, 1}κ, and sk be a signing key output by Gen. To sample an authenticated secret-
sharing of X ∈ {0, 1}κ, we do as follows:

– Pick shares X1, . . . , Xn ∈ {0, 1}κ at random such that
n⊕
i=1

Xi = X,

– Compute the signatures σi = Sig(Xi, sk) for i = 1, . . . , n.
– Output the n components of the authenticated sharing, defined as

JXK := ((X1, σ1), . . . , (Xn, σn))

To open the sharing JXK, each Pi broadcasts (Xi, σi) and checks that Ver(Xj , σj , vki) = 1 for all j 6= i.
If any check fails then identify Pj as a cheater, otherwise output X =

⊕
iXi.

6.3 Preprocessing Protocol

We present the functionality FDI-Prep for the preprocessing phase of our protocol in Figure 18. It generates
the garbled circuit using IT signatures as sketched above, and then computes and outputs authenticated
additive secret-shares of the garbled circuit and wire keys, and outputs the relevant input/output wire masks
to the parties. Note that the garbled circuit is not output in the clear, since this leads to an adaptivity issue in
the online phase of the protocol [BHR12].

To realize this functionality with identifiable abort, we apply the transformation from [IOZ14] for gen-
eral sampling functionalities. The idea of the IOZ transformation is to run a secure protocol with (non-
identifiable) abort, where each party first commits to all its randomness, and then in case of abort, open the
commitments to identify a party who did not follow the protocol. Since the process of generating the garbled
circuit can be done ahead of time, no inputs will be revealed if an abort occurs. To prove security of this
approach, the underlying protocol must be adaptively secure, and the transformation must additionally use a
layer of authenticated secret sharing on top of the desired functionality outputs, before revealing the outputs.

35



Functionality FDI-Prep

The functionality uses an information-theoretic signature scheme (Gen, Sig,Ver) with message space {0, 1}κ and signature
space {0, 1}κn, and a hash function H : G× {0, 1}κn × {0, 1}κn → {0, 1}(κ+κn)·n.

Setup signing keys: Generate sk, (vk1, . . . , vkn)← Gen(1κ, 8n3 · |G|).

Sample wire masks and keys: For each wire w of the circuit, sample a wire mask λw ← {0, 1}, and wire labels
K1
w,b, . . . ,K

n
w,b ← {0, 1}κ, for b ∈ {0, 1}. For each i ∈ I, receive Ki

w,0,K
i
w,1 from A instead of sampling the labels

at random.

Garble gates: For each NAND gate g with input wire labels (K1
u,b, . . . ,K

n
u,b), (K

1
v,b, . . . ,K

n
v,b) and output wire labels

(K1
w,b, . . . ,K

n
w,b), for b ∈ {0, 1}, and corresponding wire masks λu, λv, λw:

1. For each j ∈ [n] and b ∈ {0, 1}, sample random shares Kj
w,b[1], . . . ,Kj

w,b[n] such that

n⊕
i=1

Kj
w,b[i] = Kj

w,b

2. For each i, j ∈ [n] and b ∈ {0, 1}, compute the IT signature σjb,i = Sig(sk,Kj
w,b[i])

3. Compute the permutation bits

χ00 = ¬(λu ∧ λv)⊕ λw, χ01 = ¬(λu ∧ λv)⊕ λw,

χ10 = ¬(λu ∧ λv)⊕ λw, χ11 = ¬(λu ∧ λv)⊕ λw

4. Compute each of the 4 ciphertexts of the garbled gate as:

Cgab =

H(K1
u,a,K

1
v,b, g)⊕

(
K1
w,χab

[1], σ1
χab,1, . . . ,K

n
w,χab

[1], σnχab,1

)
...

H(Kn
u,a,K

n
v,b, g)⊕

(
K1
w,χab

[n], σ1
χab,n, . . . ,K

n
w,χab

[n], σnχab,n

)


for (a, b) ∈ (0, 1)2.

5. For corrupt parties, i ∈ I, A can replace the hash values H(·) in row i of Cgab with an arbitrary string. This is modelled
by allowing A to send an error matrix Egab ∈ {0, 1}

n×(κ+κn)·n, which must be zero in any row j ∈ I, and computing

C̃gab = Cgab + Egab, for (a, b) ∈ (0, 1)2

Output:
1. Sample the following random, IT sig.-authenticated sharings with the algorithm from Appendix 6.1:

– JKi
w,0K, JKi

w,1K, for each input wire w, for i ∈ [n].

– JC̃gabK, for (a, b) ∈ (0, 1)2, for each gate g and (a, b) ∈ (0, 1)2.

2. Output to party Pi: the verification key vki, Pi’s shares and signatures in the above authenticated sharings, the masks λw
for any wire w that is an input wire of Pi or output wire of the circuit, and all the wire keys Ki

w,0,K
i
w,1 for w ∈W .

Fig. 18. Preprocessing functionality for DI05

Realizing FDI-Prep with abort. We first show how to obtain a suitable protocol with (non-identifiable) abort
in a constant number of rounds. Let ΠIPS be the adaptively secure MPC protocol from [IPS08] in the OT-
hybrid model, for realizing the functionality that takes as input from each party a set of wire keys and
hash function evaluations for the garbled circuit, and computes outputs as in FDI-Prep. Define ΠDI to be
the protocol which runs ΠIPS on random inputs. It is easy to see that ΠDI securely realizes FDI-Prep, since
any incorrect hash evaluations sent to ΠIPS can be translated by the simulator into an additive error on the
garbled circuit, which is sent to FDI-Prep. The round complexity is linear in the depth of the circuit computed

36



inΠIPS, which in turn depends on the complexity of the signature scheme algorithms Gen and Sig. Plugging
in for instance, the IT signature scheme from [BOS16], these algorithms have only multiplicative depth one,
giving a constant round complexity overall.

Realizing FDI-Prep with identifiable abort. The following lemma comes from combining [IOZ14, Theo-
rem 12] with the constant-round protocol ΠDI that securely realizes FDI-Prep with abort in the OT-hybrid
model. In the transformation of IOZ, calls to the OT functionality are replaced by calls to a P-verifiable OT
protocol [IOZ14], which can be instantiated with black-box access to any adaptively secure OT. Note that
the transformation also uses a UC commitment functionality, but as remarked in [IOZ14], it suffices to use
standalone extractable commitments.

Lemma 6.3 There exists a protocol that securely realizes the functionality FDI-Prep with identifiable abort
in a constant number of rounds, given black-box access to an adaptively secure oblivious transfer protocol
and an extractable commitment scheme.

Remark 6.3.1. Strictly, the functionality FDI-Prep does not fall into the class of sampling functionalities
considered in [IOZ14]. This is because we allow corrupt parties to influence the randomness used in the
computation by choosing their own wire labels and (possibly incorrect) hash function evaluations. This
small change does not affect security of the transformation, since there are still no inputs provided by the
honest parties. In particular, in the security proof, when simulating the compiled protocol with identifiable
abort, we can simply run the simulator for the non-identifiable protocol, and forward its influence messages
that would be sent to FDI-Prep to the identifiable version of the functionality; furthermore, since this does
not trigger the functionality to send any outputs to the honest parties, the remainder of the simulation can
still be done as in [IOZ14, Theorem 12] in case of abort.

6.4 Online Phase Protocol

The online protocol is fully described in Figure 19.

Theorem 6.4 The protocol ΠDI-MPC securely realizes the functionality FMPC with identifiable abort in the
FDI-Prep-hybrid model, if H is a secure two-key pseudorandom function.

Proof (Sketch). The simulator for the protocol follows in the same way as previous proofs of MPC from
garbled circuits [BMR90, LPSY15]: we construct a simulated garbled circuit where in each garbled gate,
3 of the rows are chosen uniformly at random, whilst one is a correct garbling that lies on some randomly
chosen active path of the circuit. This is indistinguishable from the real garbled circuit, by a reduction to
the security of the PRF. In our case, we must also argue that whenever an additive error is introduced to
the garbled circuit, the information-theoretic signatures will cause the honest parties to abort and identify a
corrupt party.

We first note that, by consistency of the signature scheme, if any honest party aborts then all parties
will abort and identify the same set of corrupted parties. Secondly, suppose the adversary introduces a non-
zero error into some key share Kj

w,Λw
[i] in row i of the decrypted garbled gate. Since all the key shares

were sampled uniformly at random by FDI-Prep, and are unknown to A when the errors are chosen, the new
(corrupted) share K̃j

w,Λw
[i] will not be equal to any other key share in the garbled circuit, with overwhelming

probability. Hence, forging a valid signature on K̃j
w,Λw

[i] implies creating a forgery on a new message in
the signature scheme. This implies that any error will be detected with overwhelming probability, by the
unforgeability property of the scheme.

37



Protocol ΠDI-MPC

Preprocessing: Call FDI-Prep so that all parties obtain authenticated shares of the garbled gates JC̃gabK and input wire keys
JKi

w,0K, JKi
w,1K. Each party Pi additionally learns λw, for any w that is an input wire from Pi or a circuit output wire, and

the keys Ki
w,0,K

i
w,1 for every wire w.

Inputs: For each input wirew from Pi, with input x ∈ {0, 1}, Pi broadcasts Λw = λw⊕x. All parties then open JKj
w,Λw

K,
for j ∈ [n].

Garbled Circuit Reconstruction: The parties open the shares of the garbled gates JC̃gabK, for all g ∈ G and (a, b) ∈ (0, 1)2.
If any openings from Pj fail, for some set j ∈ J , output (Abort,J ).

Evaluation: Proceeding topologically through the circuit, for each gate g with input wires u, v, output wire w, and public
values Λu, Λv on the input wires:

– Each party Pi computes
(
K1
w,Λw

[1], σ1
Λw,1, . . . ,K

n
w,Λw

[1], σnΛw,1

)
...(

K1
w,Λw

[n], σ1
Λw,n, . . . ,K

n
w,Λw

[n], σnΛw,n

)
 =

H(K1
u,Λu

,K1
v,Λv

, g)
...

H(Kn
u,Λu

,Kn
v,Λv

, g)

⊕ C̃gΛuΛv

and verifies all of the signatures using vki. If there exists a non-empty J ⊂ [n] such that Ver(Kj′

w,Λw
[j], σj

′

Λw,j
, vki), for

some j′ and all j ∈ J , then output (Abort,J ).
Otherwise, reconstruct Kj

w,Λw
=
⊕n

k=1K
j
w,Λw

[k] and set Λw = c if Ki
w,Λw

= Ki
w,c.

Output: For every circuit output wire w, the parties compute and output the resulting value yw = Λw ⊕ λw.

Fig. 19. Online phase protocol for DI05 with identifiable abort

Combining Lemma 6.3 and Theorem 6.4, we obtain the following feasibility result.

Corollary 6.5 There exists a protocol that securely realizes any functionality with static security and iden-
tifiable abort in a constant number of rounds, given black-box access to an adaptively secure oblivious
transfer protocol, an extractable commitment scheme and a pseudorandom function.

References

ALSZ15. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer extensions
with security for malicious adversaries. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 673–701. Springer, Heidelberg, April 2015.

AO12. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public verifiability. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 681–698. Springer, Heidelberg, December
2012.

BDD20. Carsten Baum, Bernardo David, and Rafael Dowsley. Insured mpc: Efficient secure computation with finan-
cial penalties. Financial Cryptography and Data Security (FC) 2020, 2020. Full version available at https:
//eprint.iacr.org/2018/942.

BDO14. Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly auditable secure multi-party computation. In Michel
Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages 175–196. Springer, Heidelberg,
September 2014.

BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and multiparty
computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–188. Springer,
Heidelberg, May 2011.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applications to one-time
programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 134–153. Springer, Heidelberg, December 2012.

38

https://eprint.iacr.org/2018/942
https://eprint.iacr.org/2018/942


BLO16. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty computation for the
internet. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 578–590. ACM Press, October 2016.

BMMMQ20. Nicholas-Philip Brandt, Sven Maier, Tobias Müller, and Jörn Müller-Quade. Constructing secure multi-party com-
putation with identifiable abort. Cryptology ePrint Archive, Report 2020/153, 2020. https://eprint.iacr.
org/2020/153.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended abstract).
In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

BOO10. Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss with dishonest majority. In Tal Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 538–557. Springer, Heidelberg, August 2010.

BOS16. Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure multiparty computation with identifiable abort.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 461–490. Springer,
Heidelberg, October / November 2016.

BPRS17. Megha Byali, Arpita Patra, Divya Ravi, and Pratik Sarkar. Fast and universally-composable oblivious transfer and
commitment scheme with adaptive security. Cryptology ePrint Archive, Report 2017/1165, 2017. https://
eprint.iacr.org/2017/1165.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages
136–145. IEEE Computer Society Press, October 2001.

CDD+19. Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, Rafael Dowsley, and Irene Giacomelli. Efficient
UC commitment extension with homomorphism for free (and applications). In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages 606–635. Springer, Heidelberg, December 2019.

CFY17. Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. Catching MPC cheaters: Identification and open-
ability. In Junji Shikata, editor, ICITS 17, volume 10681 of LNCS, pages 110–134. Springer, Heidelberg, Novem-
ber / December 2017.

CKKZ12. Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the “free-XOR”
technique. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 39–53. Springer, Heidelberg, March
2012.

CL14. Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure multiparty computation. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 466–485. Springer,
Heidelberg, December 2014.

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract). In 18th
ACM STOC, pages 364–369. ACM Press, May 1986.

CR91. David Chaum and Sandra Roijakkers. Unconditionally secure digital signatures. In Alfred J. Menezes and Scott A.
Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages 206–214. Springer, Heidelberg, August 1991.

DI05. Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom generator.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 378–394. Springer, Heidelberg, August 2005.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat homo-
morphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 643–662. Springer, Heidelberg, August 2012.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM J. Comput.,
12(4):656–666, 1983.

FKOS15. Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified approach to MPC with
preprocessing using OT. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of
LNCS, pages 711–735. Springer, Heidelberg, November / December 2015.

GKKO07. Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity of authenticated broadcast
with a dishonest majority. In 48th FOCS, pages 658–668. IEEE Computer Society Press, October 2007.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

GP16. Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication and round complexity. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC ’16, page 371–380, New
York, NY, USA, 2016. Association for Computing Machinery.

HKK+19. Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu, and Xiao Wang. Covert security with public verifia-
bility: Faster, leaner, and simpler. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume
11478 of LNCS, pages 97–121. Springer, Heidelberg, May 2019.

HSS17. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining BMR and
oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of
LNCS, pages 598–628. Springer, Heidelberg, December 2017.

39

https://eprint.iacr.org/2020/153
https://eprint.iacr.org/2020/153
https://eprint.iacr.org/2017/1165
https://eprint.iacr.org/2017/1165


HSZI00. Goichiro Hanaoka, Junji Shikata, Yuliang Zheng, and Hideki Imai. Unconditionally secure digital signature schemes
admitting transferability. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 130–142.
Springer, Heidelberg, December 2000.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer, Heidelberg, August 2003.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identifiable abort. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386. Springer,
Heidelberg, August 2014.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently. In David
Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer, Heidelberg, August 2008.

KM15. Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the covert model (almost) for free. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 210–235. Springer,
Heidelberg, November / December 2015.

KMB15. Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play decentralized poker. In Indrajit Ray,
Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages 195–206. ACM Press, October 2015.

KOS15. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724–
741. Springer, Heidelberg, August 2015.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July 2008.

KZZ16. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation using a global
transaction ledger. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 705–734. Springer, Heidelberg, May 2016.

LPSY15. Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party computation
combining BMR and SPDZ. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 319–338. Springer, Heidelberg, August 2015.

LSS16. Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-round multi-party computation
from BMR and SHE. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages
554–581. Springer, Heidelberg, October / November 2016.

LZ09. Yehuda Lindell and Hila Zarosim. Adaptive zero-knowledge proofs and adaptively secure oblivious transfer. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 183–201. Springer, Heidelberg, March 2009.

LZ13. Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious transfer. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 519–538. Springer, Heidelberg, March 2013.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to
practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 681–700. Springer, Heidelberg, August 2012.

Pas04. Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In László Babai, editor,
36th ACM STOC, pages 232–241. ACM Press, June 2004.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer.
In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

PW92. Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for any number of faulty processors. In
STACS 92, pages 339–350, 1992.

RT17. Peter Rindal and Roberto Trifiletti. SplitCommit: Implementing and analyzing homomorphic UC commitments.
Cryptology ePrint Archive, Report 2017/407, 2017. http://eprint.iacr.org/2017/407.

SF16. Gabriele Spini and Serge Fehr. Cheater detection in SPDZ multiparty computation. In Anderson C. A. Nascimento
and Paulo Barreto, editors, ICITS 16, volume 10015 of LNCS, pages 151–176. Springer, Heidelberg, August 2016.

SS11. Colleen Swanson and Douglas R. Stinson. Unconditionally secure signature schemes revisited. In Serge Fehr, editor,
ICITS 11, volume 6673 of LNCS, pages 100–116. Springer, Heidelberg, May 2011.

SV15. Berry Schoenmakers and Meilof Veeningen. Universally verifiable multiparty computation from threshold homo-
morphic cryptosystems. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis,
editors, ACNS 15, volume 9092 of LNCS, pages 3–22. Springer, Heidelberg, June 2015.

WRK17. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 39–56. ACM Press,
October / November 2017.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–167.
IEEE Computer Society Press, October 1986.

40

http://eprint.iacr.org/2017/407


A Recap of BMR Garbled Circuits

We now give a short recap of efficient techniques in constant-round MPC using garbled circuits, based on
the BMR protocol [BMR90] and subsequent works [BLO16, HSS17].

Garbled Circuits. As mentioned above, the protocol will evaluate a circuit C defined over the field F2

on secret inputs. Each gate g of C is either an AND- or a XOR-gate and has two input wires u, v and one
output wire w, which may be input to multiple subsequent gates. Each input wire of a gate is either one of
the nin input wires of C or an output wire of another gate. Evaluating C in plain is done by assigning the
inputs ρ1, . . . , ρnin ∈ F2 to the nin input wires, and recursively applying the gate function for each gate that
has inputs assigned to its input wires. After finishing this procedure for all gates of C, the values that are
assigned to the nout previously fixed output wires y1, . . . , ynout are considered as the output of C.

In multiparty garbled circuit-based protocols, each of the n parties first chooses a global difference
Ri ∈ Fκ2 . Then, the garbling for the AND-gates works as follows: for each AND-gate g ∈ G, let u, v be the
input wires and w the output wire, λu, λv, λw ∈ F2 the secret wire masks, and Ki

u,a,K
i
v,b,K

i
w,0 ∈ Fκ2 the

keys known to the party Pi, for each i ∈ [n] and {a, b} ∈ F2
2. The garbling of an AND-gate g is defined as

the 4 values
circg,a,b =

⊕n

j=1
H(g,Kj

u,a,K
j
v,b)⊕ (K1

w,0, . . . ,K
n
w,0)

⊕ (R1, . . . , Rn) · ((λu ⊕ a)(λv ⊕ b)⊕ λw),
(2)

where (a, b) ∈ F2
2 and H is a suitable hash function. For the XOR-gates, no such values circτ are necessary

as one simply sets Ki
w,0 ← Ki

u,0 ⊕Ki
v,0, Ki

w,1 ← Ki
w,0 ⊕Ri and λw = λu ⊕ λv. The keys, wire masks as

well as the values circ are together considered as the garbled circuit.

Evaluating Garbled Circuits. We now describe how to use the data circ together with permutation bits
for the input and output wires to perform a secure computation.

For each input ρin ∈ input, the input keys K1
in,Λin

, . . . ,Kn
in,Λin

are broadcast by the respective parties
as follows. First, party Pi, that holds the input ρin, computes the encrypted wire value Λin based on its
actual input ρin and the permutation bit λin as Λin = λin ⊕ ρin. Here, λin is fixed for each input ρin and
known to Pi in advance as it was provided as part of the garbled circuit to it. Party Pi then broadcasts Λin

to all parties, whereupon each Pj , j 6= i, reacts by broadcasting its key Kj
in,Λin

. Once the input keys and
public input bits for each input of the circuit have been provided, these can be used to evaluate the garbled
circuit: for each gate g with input wires u, v and respective encrypted wire values Λu, Λv as well as known
keys {Ki

u,Λu
,Ki

v,Λv
}i∈[n], each party locally computes the encrypted wire value Λw and keys {Ki

w,Λw
}i∈[n]

for the output wire w as follows:

– If g is an XOR gate then set Λw ← Λu ⊕ Λv and Ki
w,Λw

← Ki
u,Λu
⊕Ki

v,Λv
for all i ∈ [n].

– If g is an AND gate then for all i ∈ [n] compute

Ki
w,Λw ← circτ

⊕
j∈[n]

H(g,Kj
u,Λu

,Kj
v,Λv

).

Then set Λw = 0 if Ki
w,Λ = Ki

w,0, and Λw = 1 otherwise.

Ultimately, each party obtains the output keys {Ki
w1,Λw1

, . . . ,Ki
wnout ,Λwnout

}i∈[n]. These keys represent
an encryption Λw1 , . . . , Λwnout of the actual outputs y1, . . . , ynout which are recovered by setting yi ←
λwi ⊕ Λwnout . The values λwi are known to all parties as they are part of the garbled circuit.

41



B Homomorphic Commitments, continued

As already mentioned in Section 2.1 we now introduce the functionality FWHComm for commitments with
weak homomorphism. The functionality can be found in Figure 20. The only difference between FHCom

Functionality FWHComm

FWHComm is parameterized by κ ∈ N. FWHComm interacts with a sender PS ∈ P , where the remaining parties P \ {PS} act as
receivers.A may corrupt any subset I ( P and any point may send a message (Abort,J ) with ∅ 6= J ⊆ I, upon which the
functionality sends (Abort,J ) to P and halts.

Commit:
PS ∈ I: Upon receiving (Commit, cid) by PS sample M ← Fκ2 , store (cid,M) internally, send (Commit, cid,M) to PS

and (Commit-Recorded, cid) to P and A. Every further message with this cid to Commit is ignored.

PS ∈ I: Upon receiving (Commit, cid,M) from PS where M ∈ Fκ2 save (cid,M) locally and send
(Commit-Recorded, cid) to P and A. Every further message with this cid to Commit is ignored.

Add: Upon receiving (Add, cid1, cid2, cid3) by PS where (cid1,M1), (cid2,M2) are stored but not cid3 add
(cid3,M1 +M2) to the list and send (Add-Recorded, cid1, cid2, cid3) to P and A.

Open: Upon receiving the first (Open, cid) by PS where (cid,M) was previously stored, ignore all future messages to
Commit and Add. Send (Open, cid,M) to P and A.

Fig. 20. Functionality FWHComm for weak homomorphic multiparty commitment with delayed verifiability.

and FWHComm lies in the Open command: in FHCom we allow the parties to compute and open linear
combinations of existing commitments, even after the first Open has been done. It only is not permitted
to commit to new values via Commit. In FWHComm only existing cids can be revealed and no new ones
generated, not even with Add after the first Open.

B.1 Weak Homomorphism is Sufficient

In our ID-MPC scheme we use the linearity7 of FHCom twice: in Π ID
Prep as well as Π ID

MPC.
In Π ID

Prep a random linear combination of commitments is computed to show consistency between the
committed data and the computed shares. Afterwards, this linear combination is opened. In Π ID

MPC this
opening is only done in the Abort phase of the protocol, where we open linear combinations of committed
keys and committed shares of the bit-string products or the committed keys and the global difference.

Unfortunately, it is not clear during Π ID
Prep which linear combinations will have to be opened during

Π ID
MPC. Luckily, this is not necessary to know: once the random linear combination in Π ID

Prep is sampled,
we know that the number of possible openings done during Π ID

MPC is linear in the number of the preceding
calls to Commit, meaning that we know already in advance at this stage which linear combinations could
possibly be opened. We furthermore know that this number of possible openings is only a constant times
larger than the commitments which were already generated through FHCom so we can make the appropriate
calls to Add to compute all of these linear combinations in advance. As this replaces calls to Add in Π ID

MPC

7 Here, we discuss only the use of FHCom to open commitments to strings. We introduced the additional functionality FBit
HCom as

part of the consistency check of Π ID
Prep, but this functionality does not suffer from the same issues as only one opening is done

with it in the protocol ΠCheckBit.

42



entirely, we are left with a use of FHCom where Add is never called after the first call to Open and we can
thus safely replace FHCom with FWHComm.

B.2 Instantiating Commitments with Weak Homomorphism

We now explain how the commitment scheme of [CDD+19] works on a high level and then show how it
generalizes to FWHComm.

In [CDD+19], the authors construct a homomorphic UC-secure commitment scheme from any UC-
secure commitment scheme (not necessarily homomorphic) where the number of “base” commitments only
depends on the security parameter. Their scheme additionally uses a PRG F and a linear [n, k, d]-code C
of codeword length n and message length k and works, on a high level, as follows: The sender initially
chooses PRG seeds {seed0,i, seed1,i}i∈[n], generates commitments c(seed0,i), c(seed1,i) using the “base”
commitment scheme and broadcasts these commitments to the receivers. To commit to the jth message
Mj ∈ Fk2 the sender computes
Tj0 = (F (seed0,1, j), . . . , F (seed0,n, j)) and Tj1 = (F (seed1,1, j), . . . , F (seed1,n, j)), sets D = Tj0 +Tj1 +
C(M) and broadcasts D. To add commitments Da, Db the receivers locally sets Da+b ← Da +Db while
the sender sets Ta+b0 ← Ta0 + Tb0 and Ta+b1 ← Ta1 + Tb1. In order to open a commitment D to the receivers
the parties engage in the following protocol:

1. The sender sends the values T0,T1 to the receivers, who in turn check that T0 +T1 +D is a codeword.
2. Next, the receivers sample a bitstring B ∈ Fn2 uniformly at random.
3. The sender opens c(seedB[`],`) for ` ∈ [n] towards the receivers, who check that Ti[`] is consistent with

the evaluations F (seedi,`, ·).

In the above explanation we skipped some details such as how to check that all values Da belong to
valid commitments, but the overall idea is identical. The hiding property stems from the fact that until the
opening only random messages are provided by the sender. The unopened messages remain hidden even
after opening of some message as only one of the two seeds for each index is ever revealed. In addition, the
scheme is binding as a sender would have to change to another codeword in the first step of the opening
procedure, but this other codeword will require adjustments to the values Ti sent to the receivers which
are checked at random positions. Clearly, the commitment scheme allows to open multiple commitments
simultaneously.

Why only one opening is possible. It is crucial to the binding property of the commitment scheme that the
string B is only chosen after the T0,Ti as otherwise a corrupt sender could always tamper with the value
T1−B[`][`] to open to arbitrary values. But the process can also not be repeated, as opening more PRF seeds
would leak information about the unopened values.

Multiple openings using c(·). What can be done is that the sender, instead of opening values directly by
sending T0,T1 for the different committed values, uses the auxiliary commitment scheme c(·) to commit to
the openings T0,T1 in advance. Then, even after the seedB[`],` are revealed it is still possible to meaning-
fully open commitments. This has the drawback that the sender has to generate a much larger number of
auxiliary commitments than before (linear in the number of linear combinations to be potentially opened vs.
independent of the number of openings in the original scheme) and these commitments must be sent to the
receivers. In practice, though, we can use efficient hash-based commitments (in the random oracle model)
to implement the auxiliary commitments, and all the potential openings can be compressed into one single
commitment using a Merkle tree.

43


	Efficient Constant-Round MPC with  Identifiable Abort and Public Verifiability
	Introduction
	Previous Work on Constant-Round MPC, Identifiable Abort and Public Verifiability
	Contributions
	Technical Overview 

	Preliminaries
	Security Model and Primitives

	Preprocessing Phase
	Publicly Detectable MPC with (Non-Identifiable) Abort
	Implementing the Preprocessing with Identifiable Abort
	Efficiency Analysis

	Online Phase
	Achieving Public Verifiability
	Public Active Paths
	Public Verifiability in the Online Phase

	Feasibility of Black-Box, Constant-Round MPC with Identifiable Abort
	Information-theoretic signatures
	DI05 Garbling with Identifiability
	Preprocessing Protocol
	Online Phase Protocol

	Recap of BMR Garbled Circuits
	Homomorphic Commitments, continued
	Weak Homomorphism is Sufficient
	Instantiating Commitments with Weak Homomorphism



