
c© IACR 2020. A preliminary version of this paper appears in CRYPTO 2020. This is the full version.

Lattice-Based Blind Signatures, Revisited

Eduard Hauck1 , Eike Kiltz1 , Julian Loss2 , and Ngoc Khanh Nguyen3

1 Ruhr-Universität Bochum, Bochum, Germany
{eduard.hauck,eike.kiltz}@rub.de

2 University of Maryland, College Park, USA
julian.loss@gmail.com

3 ETH Zurich; IBM Research, Zurich, Switzerland
NKN@zurich.ibm.com

Abstract. We observe that all previously known lattice-based blind signature schemes contain subtle flaws in
their security proofs (e.g., Rückert, ASIACRYPT ’08) or can be attacked (e.g., BLAZE by Alkadri et al., FC ’20).
Motivated by this, we revisit the problem of constructing blind signatures from standard lattice assumptions.
We propose a new three-round lattice-based blind signature scheme whose security can be proved, in the random
oracle model, from the standard SIS assumption. Our starting point is a modified version of the (insecure)
BLAZE scheme, which itself is based Lyubashevsky’s three-round identification scheme combined with a
new aborting technique to reduce the correctness error. Our proof builds upon and extends the recent modular
framework for blind signatures of Hauck, Kiltz, and Loss (EUROCRYPT ’19). It also introduces several
new techniques to overcome the additional challenges posed by the correctness error which is inherent to all
lattice-based constructions.
While our construction is mostly of theoretical interest, we believe it to be an important stepping stone for future
works in this area.

Keywords: Blind Signatures, Forking Lemma, Lattices

1 Introduction

BLIND SIGNATURES. Blind signatures, first proposed by Chaum [19], are a fundamental cryptographic primitive
with many applications such as eVoting [54], eCash [19], anonymous credentials [20,46,15,17,16,9,7], and, as of
late, privacy preserving protocols in the context of blockchain protocols [61]. Informally, a blind signature scheme
is an interactive protocol between a signer S (holding a secret key sk) and a user U (holding a public key pk and a
message m) with the goal that U obtains a signature σ on m. The protocol should satisfy correctness (i.e., σ can be
verified using the public key pk of S and m), unforgeability (i.e., only S can issue signatures), and blindness (i.e., S
is not able to link σ to a particular execution of the protocol in which it was created). Blind signatures are among
the most well-studied cryptographic primitives and it is well known how to construct blind signatures from general
complexity assumptions [34,24,23]. However, achieving efficient constructions from standard assumptions is known
to be a notoriously difficult task with only a handful of constructions being known. To make matters worse, even
among these works, some have been pointed out to contain flawed security proofs [2,56]. Effectively, this leaves only
the original works due to Pointcheval and Stern [51,50,52,53] based on Schnorr [57] and Okomoto-Schnorr [44]
signatures.

BLIND SIGNATURES FROM LATTICES. In this work, we revisit the problem of constructing blind signatures from
standard lattice assumptions. This question was first addressed by Rückert [56], who gave a candidate construction
based on Lyubashevsky’s identification scheme [38] from the SIS assumption. Unfortunately, as we will explain
in Section 1.2, his security proof contains a subtle flaw. While the recent work of Hauck, Kiltz, and Loss [33]
introduces a general framework to obtain blind signatures from (collision resistant) linear hash functions, their
framework does not cover the setting of lattice assumptions. Informally, the reason for this is that in the context
of lattice-based constructions, most known cryptographic primitives exhibit some form of noticeable correctness
error. Indeed, this is also true for Lyubashevsky’s identification scheme/linear hash function implicitly used in [56].
This makes it impossible to apply the analysis of [33] directly, since it crucially relies on the fact that if both S and

https://orcid.org/0000-0001-8691-6754
https://orcid.org/0000-0003-1178-048X
https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0001-8240-6167

U behave honestly, U always obtains a valid signature. Since [56] was published, more lattice-based constructions
of blind signatures have been proposed. As we will discuss in detail below, all of these schemes either inherit the
proof errors from [56] or introduce new ones. The main goal of our work is to give the first direct lattice-based
blind signature scheme with a correct security proof.

1.1 Our Contributions

We construct a blind signature scheme from any linear hash functions [6,33] with noticeable correctness error. We
use the aborting technique introduced by Alkadri, El Bansarkhani, and Buchmann [5] to reduce the correctness
error of the blind signature scheme. Instantiating our construction with Lyubashevsky’s linear hash function [38]
we obtain a lattice-based blind signature scheme from the SIS assumption.

While our work offers the first correct proof for a lattice-based blind signature scheme, it comes with several
severe drawbacks. First, we can only prove blindness in the weaker honest signer model [34] as compared to the
malicious signer model [24]. We leave the construction of a scheme in the malicious signer setting as an open
problem. Second, our construction comes with an exponential security loss in the reduction from the underlying
hardness assumption (here, the SIS assumption). This is inherited from the proof technique of Pointcheval and Stern
in the discrete logarithm setting [53]. This strongly restricts the number of signatures that can be issued per public
key to a poly-logarithmic amount. Indeed, a sub-exponential attack due to Schnorr and Wagner [58,60] resulting
from the ROS4 problem shows that for the Schnorr and Okamoto-Schnorr blind signature schemes, these parameters
are optimal. Extending [58,33], we are also able to relate the security of our blind signature to a Generalized
ROS problem whose hardness is independent of the SIS problem. However, the sub-exponential attack of Schnorr
and Wagner cannot be directly translated to the Generalized ROS problem due to the algebraic structure of our
lattice-based instantiation (see Section 7). Therefore, an interesting open question is whether our “lattice” variant of
the Generalized ROS problem can be solved in sub-exponential time. Nevertheless, we believe that our scheme
makes an important first step toward future endeavors in this area by giving the first comprehensive and modular
security proof for a blind signature scheme from lattice assumptions. While our scheme might not be practical by
itself (our example instantiation has signatures sizes of roughly a couple of mega bytes),5 it seems reasonable to
apply similar ideas as in [49] to extend the number of allowed sessions per public key to a polynomial amount at
not much overhead (but at the restriction of issuing signatures in a sequential fashion).

1.2 Problems with Existing Schemes

In the following we will first explain in detail the problems in the proof of Rückert’s lattice-based blind signature
scheme and then sketch how these errors propagate to subsequent schemes. We also list some other lattice-based
constructions which have been found to be incorrect.

RÜCKERT’S BLIND SIGNATURE SCHEME. The key idea in the proof of Rückert’s lattice-based blind signature
scheme [56] is to rewind the forger (with partially different random oracles) so as to obtain two distinct values
χ and χ′ satisfying F(χ) = F(χ′), i.e., a collision in the underlying linear hash function. (In the lattice setting,
a collision in the hash function directly implies a non-trivial solution χ− χ′ to the SIS problem.) To argue that
χ 6= χ′, [56] attempts to apply the general forking lemma of Bellare and Neven [10] to the forger and argues that
witness indistinguishability alone is sufficient to ensure χ 6= χ′. Here, [56] relies on Lemma 8 from Pointcheval and
Stern’s proof [53], who followed a similar approach. However, Lemma 8 does not state that χ and χ′ are distinct;
only that (by witness indistinguishability of their scheme) there exist two distinct secret keys sk, sk ′, which can
lead to identical transcripts. This is insufficient to ensure χ 6= χ′ in the subsequent rewinding step. In fact, the
Generalized ROS attack mentioned above works independently of the concrete secret key that is being used. Using
this attack, it is always possible to force an outcome of χ = χ′ if the number of signatures per public key becomes
larger than polylogarithmic in the security parameter. The crucial argument toward proving χ 6= χ′ only follows
from Lemma 9 and the subsequent parts of Pointcheval and Stern’s proof and is completely missing from Rückert’s
proof. It relies on a very subtle probabilistic method argument that only works in a (small) range of parameters
for which the ROS problem remains information theoretically hard. Moreover, both Lemma 8 and 9 of [53] apply
exclusively to the Okamoto-Schnorr scheme and cannot be transferred to other schemes directly. Adapting these
lemmas to a setting with correctness error is one of the key novelties in our proof.

4 ROS stands for Random inhomogenities in an Overdetermined, Solvable system of linear equations.
5 It is not even clear how much better our scheme performs compared to generic constructions using non-interactive zero-

knowledge proofs [24].

2

BLAZE AND BLAZE+. BLAZE by Alkadri, El Bansarkhani, and Buchmann [4] improves Rückert’s construction
in the following two aspects. Firstly, BLAZE applies Gaussian rejection sampling [39] instead of uniform [38].
Secondly, it introduces the concept of signed permutations which allows to get rid of rejection sampling on the
unblinded challenge values. While BLAZE introduces several interesting new concepts for constructing lattice-based
blind signatures, its security analysis reuses the (incorrect) security arguments of Rückert at a crucial point in the
reduction, and hence inherits its problems. Concretely, in the one-more unforgeability proof of [4, Theorem 3] it
is missing the argument that the candidate solution for the inhomogeneous RSIS problem computed in Case 2 is
non-trivial. Even worse and independent of the aforementioned problems with the proof, BLAZE is not one-more
unforgeable as we will sketch now. Consider a user U interacting with the signer S in the one-more unforgeability
experiment. At the end of the protocol execution, an honest U performs rejection sampling on some values (ẑ1, ẑ2)
contained in the signature. (Rejection sampling on U’s side is used to ensure blindness.) If rejection sampling rejects,
U sends the random coins used for rejection sampling as a proof to S which, upon successful verification, triggers a
restart of the protocol. However, even in case rejection sampling rejects, the signature can still be valid and which
case a dishonest U can trigger a restart of the protocol while still learning a valid signature. Since by the restart of
the protocol U learns another valid signature, this observation can be turned into a simple one-more unforgeability
attack. The aforementioned attack on BLAZE actually disappears in the recently proposed BLAZE+ protocol [5]
because U performs multiple rejection samplings in parallel and the probability that all of them reject becomes
negligible. BLAZE+ introduces a new technique of reducing correctness error by performing multiple rejection
samplings in parallel in order to reduce the communication complexity. Unfortunately, the security analysis also
reuses the (incorrect) security arguments of Rückert and hence inherits its problems.

FURTHER SCHEMES. Three recent works [14,37,47] propose new lattice-based blind signatures, but they also
rely on the same analysis as Rückert to argue that a collision can be found with non-negligible probability when
rewinding (see above). Unfortunately, this implies that all of these schemes do not have a valid security proof.
There has been a line of research on lattice-based blind signatures using preimage sampleable trapdoor functions
[21,63,62,30,29]. As shown by [4], all these schemes are insecure. Concretely, they give attacks which either
recover the secret key or solve the underlying lattice problem in at most two executions of the signing protocol.

1.3 Related Work

Three round blind signatures are not achievable in the standard model [26]. We circumvent their result by using
(programmable) random oracles and therefore believe that our proof strategies cannot be easily extended to the
standard model. Blind signatures are impossible to construct from one-way permutations [35], even in the random
oracle model. We circumvent their result by relying on the stronger assumption of collision resistance. A large
class of Schnorr-type blind signature schemes cannot be proved secure if the underlying identification scheme has a
unique witness [8]. We circumvent their result by requiring our underlying hard problem to have multiple witnesses
corresponding to each public key.

As already mentioned, round optimal blind signatures can be constructed from general complexity assumptions
beyond one-way permutations [34,24,32,23]. The impossibility results of [26] are circumvented by either relying
on a CRS [24] or using complexity leveraging [32,23]. We refer to [23] for a detailed discussion on the topic of
constructing blind signatures from general assumptions.

Several works [51,53,2,13,45,8,31,32,27] show how to construct efficient blind signatures schemes from
concrete assumptions in the setting of prime-order groups, in some cases relying on bilinear maps.

1.4 Organization

After establishing some preliminaries in Section 2, in Section 3 we will introduce the notion of linear hash functions
LHF with noticeable correctness error. In Section 4 we will define syntax and security of canonical (three-round)
blind signature schemes. Figure 5 constructs a blind signature scheme BSη[LHF,H,G] from any linear hash function
LHF and two standard hash functions H and G. This section also contains our main theorems about one-more
unforgeability (Theorem 1) and blindness (Theorem 2). As a first step in the proof of Theorem 1, in Section 5
we will reduce the one-more unforgeability of BSη,ν,µ[LHF,H,G] to one-more man-in-the-middle security of the
underlying canonical identification scheme IDη′ [LHF] in the random oracle model. Appendix A contains the main
technical part of this work, the proof of the one-more man-in-the-middle security of IDη′ [LHF]. In Section 6 we
will provide an example instantiation of our framework based on the standard SIS assumption. Finally, Section 7
generalizes the ROS attack to our setting and proves that any attack on it also implies an attack on the one-more
unforgeability of BSη,ν,µ[LHF,H,G].

3

2 Preliminaries and Notation

SETS AND VECTORS. For n ∈ N, [n] denotes the set {1, . . . , n}. We use bold-faced, lower case letters h to denote
a vector of elements and denote the length of h as |h|. For j ≥ 1, we write hj to denote the j-th element of h and
we write h[j] to refer to the first j entries of h, i.e., the elements h1, ...,hj . We use boldface, upper case letters A
to denote matrices. We denote the i-th row of A as Ai and the j-th entry of Ai as Ai,j . We let ∆(X,Y) indicate
the statistical distance between two distributions X,Y .

SAMPLING FROM SETS. We write h $← S to denote that the variable h is uniformly sampled from the finite set S .
For 1 ≤ j ≤ Q and g ∈ Sj−1, we write h′ $← SQ|g to denote that the vector h′ is uniformly sampled from SQ,
conditioned on h′

[j−1] = g. This sampling process can be implemented by copying vector g into the first j − 1
entries of h′ and next sampling the remaining Q− j + 1 entries of h, (i.e., h′j , . . . ,h

′
Q

$← SQ−j+1).

ALGORITHMS. We use uppercase, serif-free letters A,B to denote algorithms. Unless otherwise stated, algorithms
are probabilistic and we write (y1, . . .) $← A(x1, . . .) to denote that A returns (y1, . . .) when run on input (x1, . . .).
We write AB to denote that A has oracle access to B during its execution. To make the randomness ω of an algorithm
A on input x explicit, we write A(x;ω). Note that in this notation, A is deterministic. For a randomised algorithm
A, we use the notation y ∈ A(x) to denote that y is a possible output of A on input x.

SECURITY GAMES. We use standard code-based security games [12]. A game G is a probability experiment in
which an adversary A interacts with an implicit challenger that answers oracle queries issued by A. G has one main
procedure and an arbitrary amount of additional oracle procedures which describe how these oracle queries are
answered. To distinguish game-related oracle procedures from algorithmic procedures more clearly, we denote the
former using monospaced font, e.g., Oracle. We denote the (binary) output b of game G between a challenger
and an adversary A as GA ⇒ b. A is said to win G if GA ⇒ 1. Unless otherwise stated, the randomness in the
probability term Pr[GA ⇒ 1] is over all the random coins in game G.

ALGEBRA. We let ⊕ denote the bitwise XOR operation. A module is specified by two sets S andM, where S
is a ring with multiplicative identity element 1S and 〈M,+, 0〉 is an additive Abelian group and a mapping · :
S ×M→M, s.t. for all r, s ∈ S and x, y ∈M we have (i) r · (x+y) = r ·x+ r ·y; (ii) (r+ s) ·x = r ·x+ s ·x;
(iii) (rs) · x = r · (s · x); and (iv) 1S · x = x.

SECURITY NOTIONS. We formalize all security notions relative to some fixed parameters par . This streamlines the
exposition considerably. In doing so, we consider a non-uniform notion of security, as the RSIS problem is not
hard for fixed par , but only for par drawn (uniformly) at random in the security experiment. This is comparable to
considerations as in [55]. However, we remark that using the splitting lemma our theorems can easily be made to
work in a setting where par is indeed chosen at random along with the remaining (random) parts.

3 Linear Hash Functions

In this section we define linear hash function families with correctness error which are a generalization of linear
(hash) function families with perfect correctness [6,33].

SYNTAX. A linear hash function family LHF is a tuple of algorithms (PGen,F). On input the security parameter,
the randomized algorithm PGen returns some parameters par , which implicitly define the sets

S = S(par), D = D(par), andR = R(par),

where S is a set of scalars such that D andR are modules over S. The parameters par also define 9 filter sets

Sxxx ⊆ S (xxx ∈ {β, c, c′}) and Dyyy ⊆ D (yyy ∈ {sk, r, s, s′, α}).

Throughout the paper, we will assume that par is fixed and implicitly given to all algorithms. For linear hash
function families with perfect correctness [33], the filter sets are trivial, i.e., Sxxx = S and Dyyy = D.
Algorithm F(par , ·) implements a mapping from D toR. To simplify our presentation, we will omit par from F’s
input from now on. F(·) is required to be a module homomorphism, meaning that for any x, y ∈ D and s ∈ S:

F(s · x+ y) = s · F(x) + F(y) . (1)

We now define the technical conditions of torsion-freeness, regularity, enclosedness, and smoothness of LHF that
will be useful for proving correctness and security of blind signatures constructed from LHF.

4

TORSION-FREENESS AND REGULARITY. We say that LHF has a torsion-free element from the kernel if for all
par generated with PGen, there exist z∗ ∈ D \ {0} such that (i) F(z∗) = 0; and (ii) for all c1, c2 ∈ Sc satisfying
(c1 − c2) · z∗ = 0 we have c1 − c2 = 0. Note that the existence of such an element implies that F is a many-to-one
mapping.

We call LHF (ε,Q′)-regular, if for all par generated with PGen, there exist sets D′sk ,D′r and a torsion-free element
from the kernel z∗ s.t.

|D′sk|
|Dsk|

·
(
|D′r|
|Dr|

)Q′
≥ 1− ε/4,

and where
D′sk := {sk ∈ Dsk : sk + z∗ ∈ Dsk}

and
D′r := {r ∈ Dr : ∀c ∈ Sc, r + cz∗ ∈ Dr}.

Similar to the work of Hauck et al. [33], our proof of one-more unforgeability uses torsion-freeness and regularity
to argue that a transcript of the scheme with a secret key sk can be preserved when switching to a different (valid)
secret key sk ′ := sk + z∗, with high probability.

ENCLOSEDNESS ERROR. We say that LHF has enclosedness errors (δ1, δ2, δ3) if for all par ∈ PGen(1κ),
c′ ∈ Sc′ , c ∈ Sc, s ∈ Ds, sk ∈ Dsk ,

Pr
β

$←Sβ
[β + c′ 6∈ Sc] < δ1, Pr

r
$←Dr

[c · sk + r 6∈ Ds] < δ2, and Pr
α

$←Dα
[α+ s 6∈ Ds′] < δ3.

The enclosedness error of LHF is directly linked to the correctness error of our schemes. Intuitively, the smaller
this error, the easier it is to get a scheme which almost always works correctly.

SMOOTHNESS. We say that LHF is smooth if the following conditions hold for all par ∈ PGen(1κ):

(S1) For all s ∈ Ds and s′ ∈ Ds′ , we have ‖s′ − s‖∞ ∈ Dα
(S2) For all s1, s2 ∈ Ds and random variables α∗ $← {α ∈ Dα | α+ s1 ∈ Ds′}, α̂ $← {α ∈ Dα | α+ s2 ∈ Ds′}

we have that α̂+ s2 and α∗ + s1 are identically distributed.
(S3) For all s1, s2 ∈ Ds and random variables α∗ $← {α ∈ Dα | α+ s1 6∈ Ds′}, α̂ $← {α ∈ Dα | α+ s2 6∈ Ds′}

we have that α̂+ s2 and α∗ + s1 are identically distributed.
(S4) For all c′ ∈ Sc′ and c ∈ Sc, we have ‖c− c′‖∞ ∈ Sβ .
(S5) For all c′1, c

′
2 ∈ Sc′ and random variables β∗ $← {β ∈ Sβ | β + c′1 ∈ Sc}, β̂ $← {β ∈ Sβ | β + c′2 ∈ Sc} we

have that β̂ + c′2 and β∗ + c′1 are identically distributed.
(S6) For all c′1, c

′
2 ∈ Sc′ and random variables β∗ $← {β ∈ Sβ | β + c′1 6∈ Sc}, β̂ $← {β ∈ Sβ | β + c′2 6∈ Sc} we

have that β̂ + c′2 and β∗ + c′1 are identically distributed.

Smoothness of LHF will be a crucial tool for proving blindness of our schemes. Intuitively, smoothness allows to
‘match’ any message/signature pair (mi, σi) that was generated via the ith run of the scheme to the transcript Tj of
any run j ∈ {1, ..., i, ...}.
COLLISION RESISTANCE. We say that LHF is (ε, t)-CR relative to par ∈ PGen(1κ) if for all adversaries running
in time at most t,

Pr
(x1,x2) $←A(par)

[(F(x1) = F(x2)) ∧ (x1 6= x2) ∧ (x1, x2 ∈ D′)] ≤ ε

where
D′ := {s′ − c′ · sk : s′ ∈ Ds′ , c′ ∈ Sc′ , sk ∈ Dsk} ⊆ D. (2)

4 Canonical Blind Signature Schemes

In this section, we recall syntax and security of a special type of blind signature scheme, called canonical three-move
blind signature scheme [33]. In Section 4.1, we first recall the syntax of such schemes and give the proper security
definitions. Next, in Section 4.3, we give a generic construction that gives a canonical three-move blind signature
scheme BS[LHF] from any linear hash function family LHF.

5

4.1 Definitions

Definition 1 (Canonical Three-Move Blind Signature Scheme). A canonical three-move blind signature scheme
BS is a tuple of algorithms BS = (PGen,KG,S,U,BSVer).

– The randomised parameter generation algorithm PGen returns system parameters par .
– The randomised key generation algorithm KG takes as input system parameters par and outputs a public

key/secret key pair (pk, sk). We assume that pk defines a challenge set C := C(pk) and that pk is known to all
parties.

– The signer algorithm S is split into two algorithms, i.e., S := (S1,S2), where:
• The randomised algorithm S1 takes as input the secret key sk and returns a commitment R and the signer’s

state stS .
• The deterministic algorithm S2 takes as input the signer’s state stS , a secret key sk, a commitment R, and

a challenge c ∈ C. It returns the response s.
– The user algorithm U is split into two algorithms, i.e., U := (U1,U2), where:
• The randomised algorithm U1 takes as input the public key pk, a commitment R, and a message m. It

returns the user’s state stU and a challenge c ∈ C.
• The deterministic algorithm U2 takes as input the public key pk, a commitment R, a challenge c ∈ C, a

response s, a message m, and the user’s state stU . It returns a signature σ where, possibly, σ = ⊥.
– The deterministic verification algorithm BSVer takes as input the public key pk, a signature σ, and a message
m. It outputs 1 (accept) or 0 (reject). We make the convention that BSVer always outputs 0 on input a signature
σ = ⊥.

We note that modeling S2 and U2 as deterministic algorithms is w.l.o.g. since randomness can be transmitted
through the states.

Consider an interaction (R, c, s, σ)← 〈S(sk),U(pk,m)〉 between signer S and user U, as defined in Figure 1.
We say that BS = (PGen,KG,S,U,BSVer) has correctness error δ, if for all messages m ∈ {0, 1}∗, par ∈
PGen(1κ), (pk, sk) ∈ KG(par),

Pr
(a,σ) $←〈S(sk),U(pk,m)〉

[
BSVer(pk,m, σ) 6= 1

]
≤ δ .

Signer S(sk) User U(pk,m)
(R, stS) $← S1(sk) R−→

c←− (c, stU) $← U1(pk, R,m)
s← S2(sk, R, c, stS) s−→ σ ← U2(pk, R, c, s,m, stU)

Output σ

Fig. 1. Interaction (R, c, s, σ)← 〈S(sk),U(pk,m)〉 between signer S and user U.

SECURITY NOTIONS. Security of a Canonical Three-Move Blind Signature Scheme BS is captured by two security
notions: blindness and one-more unforgeability.

Game BlindBS,par :
01 b $← {0, 1}
02 b1 ← b; b2 ← 1− b
03 (sk, pk) $← KG(par)
04 b′ $← AInit,U1,U2(pk, sk)
05 Return b = b′

Oracle Init(m̃0, m̃1) : //Once
06 m0 ← m̃0,m1 ← m̃1
07 sess1 ← sess2 ← init

Oracle U1(sid, R) :
08 If sid 6∈ {1, 2} ∨ sesssid 6= init :
09 Return ⊥
10 sesssid ← open
11 Rsid ← R
12 (csid , stsid) $← U1(pk,Rsid ,mbsid)
13 Return (sid, csid)

Oracle U2(sid, s) :
14 If sesssid 6= open : Return ⊥
15 sesssid ← closed
16 ssid ← s
17 σbsid

$← U2(pk,Rsid , csid , ssid , stsid)
18 If sess1 = sess2 = closed :
19 If σ0 = ⊥ ∨ σ1 = ⊥ :
20 Return (⊥,⊥)
21 Return (σ0,σ1)
22 Return (sid, closed)

Fig. 2. Games defining BlindBS,par for a canonical three-move blind signature scheme BS, with the convention that adversary
A makes exactly one query to Init at the beginning of its execution.

6

Intuitively, blindness ensures that a signer S that issues signatures on two messages (m0,m1) of its own choice
to a user U, can not tell in what order it issues them. In particular, S is given both resulting signatures σ0,σ1,
and gets to keep the transcripts of both interactions with U. We remark that we consider for this work the weaker
notion of blindness in the honest signer model [34] as compared to the malicious signer model [24]. The difference
between these two models is that in the honest signer model, the adversary obtains the keys from the experiment,
whereas in the malicious signer model, the adversary gets to choose its own keys. Also, our notion does not capture
security of blind signatures under aborts, where S or U may stop the interactive signing protocol prematurely
[18,59]. The work of [25] proposes generic transformation to achieve such a stronger notion. We formalize the
notion of blindness (for a canonical three-move blind signature scheme BS and for parameters par ∈ PGen) via
game BlindBS,par depicted in Figure 2. In BlindBS,par , the game takes the role of the user and A takes the role
of the signer. First, the game selects a random bit b which determines the order of adversarially chosen messages
in both transcripts. It then runs A on a freshly generated key pair (pk, sk). A is given access to the three oracles
Init, U1 and U2. By convention, A first has to query oracle Init. Subsequently, A may open at most two sessions.
For each of these two sessions, A obtains corresponding transcripts T1 = (R1, c1, s1) and T2 = (R2, c2, s2). The
game uses mb andm1−b to generate the transcripts T1 and T2, respectively. If A honestly completes both sessions
with the game, it obtains signatures σb and σ1−b on messagesmb andm1−b. Note that A obtains σb and σ1−b by
calling U2 twice. More precisely, the first call to U2 closes the first session and the second call closes the second
session. Once both sessions are closed, the game checks if A acted honestly in both of them and if so, returns the
signatures (σb,σ1−b). If instead A has behaved dishonestly and, as a result, σb = ⊥ or σ1−b = ⊥ at the time of
closing the second session, U2 returs (⊥,⊥). At the end of the experiment, A has to guess the bit b. We define the
advantage of adversary A in BlindBS,par as AdvBlind

BS,par(A) :=
∣∣∣Pr[BlindA

BS,par ⇒ 1]− 1
2

∣∣∣.
Definition 2 (Perfect Blindness). Let BS be a canonical three-move blind signature scheme. We say that BS is
perfectly blind relative to par ∈ PGen(1κ) if for all adversaries A, AdvBlind

BS,par(A) = 0.

OMUF OF BLIND SIGNATURE SCHEMES. Intuitively, one-more unforgeability ensures that a user U can not
produce even a single signature more than it should be able to learn from its interactions with the signer S. Our
notion does not cover the stronger notion of honest-user unforgeability but a generic transformation from [59] can
be applied to achieve it. We formalize the notion of one-more unforgeability (for a canonical three-move blind
signature scheme BS and for all parameter par ∈ PGen) via game OMUFBS,par as depicted in Figure 3. In
OMUFBS,par , an adversary A in the role of U is run on input the public key of the signer S and subsequently
interacts with oracles that imitate the behaviour of S. A call to S1 returns a new session identifier sid and sets
flag sesssid to open. A call to S2(sid, ·) with the same sid sets the flag sesssid to closed. The closed sessions
result in (at most) QS2 transcripts (Rk, ck, sk), where the challenges ck are chosen by A. (The remaining (at
most) QS1 abandoned sessions are of the form (Rk,⊥,⊥) and hence do not contain a complete transcript.) A
wins the experiment, if it is able to produce `(A) ≥ QS2(A) + 1 signatures (on distinct messages) after having
closed QS2(A) ≤ QS2 signer sessions (from which it should be able to compute QS2(A) signatures). We define the
advantage of adversary A in OMUFBS,par as AdvOMUF

BS,par (A) := Pr[OMUFA
BS,par ⇒ 1] and denote its running

time as TimeOMUF
BS,par (A).

We remark that the definition of OMUF security is only meaningful for blind signature schemes with negligible
correctness error: If the scheme has noticeable correctness error, then even an honest adversary would not be able
to produce even ` valid signatures after having interacted with ` signing sessions. Thus an adversary may learn
less than ` signatures, but still has to come up with `+ 1 signatures. This results in a significant weakening of the
definition.

Definition 3 (One-More Unforgeability). Let BS be a canonical three-move blind signature scheme. We say that
BS is (ε, t,QS1 , QS2)-OMUF relative to par ∈ PGen if for all adversaries A satisfying

TimeOMUF
BS,par (A) ≤ t, QS1(A) ≤ QS1 , QS2(A) ≤ QS2 , (3)

we have AdvOMUF
BS,par (A) ≤ ε.

4.2 Hash Trees

In this section we define hash trees to build trees of commitments similarly as in [5]. The main advantage of this
technique is that it significantly reduces the probability of abort in the signing protocol by performing a rejection
sampling [38] multiple times and representing each trial as a leaf of the hash tree.

7

Game OMUFBS,par :
01 (sk, pk) $← KG(par)
02 sid ← 0 //initialize signer session id
03 ((m1,σ1), ..., (m`(A),σ`(A)))← AS1,S2(pk)
04 If ∃i 6= j : mi = mj : Return 0 //all messages have to be distinct
05 If ∃i ∈ [`(A)] : BSVer(pk,mi,σi) = 0: Return 0 //All signatures have to be valid
06 QS1(A)← #{k | sessk = open} //#abandoned signer sessions
07 QS2(A)← #{k | sessk = closed} //#closed signer sessions
08 If `(A) ≥ QS2(A) + 1: Return 1
09 Return 0

Oracle S1 :
10 sid ← sid + 1
11 sesssid ← open
12 (stsid ,Rsid) $← S1(sk)
13 Return (sid,Rsid)

Oracle S2(sid, c) :
14 If sesssid 6= open : Return ⊥
15 sesssid = closed
16 ssid ← S2(sk, stsid ,Rsid , c)
17 Return ssid

Fig. 3. Game OMUFBS,par with adversary A.

Let G : {0, 1}∗ 7→ {0, 1}2λ be a hash function. A hash tree HT[G] associated to G is the tuple of three
deterministic algorithms (HashTree,BuildAuth,RootCalc) from Figure 4. Algorithm HashTree takes as input a list
of commitments v and returns a sequence of nodes tree spanning the tree and the root root of the tree; Algorithm
BuildAuth takes as input a list of indices as well as a tree and outputs an authentication path auth; Algorithm
RootCalc takes as input a node and an authentication path auth and returns the root root of a hash tree.

Note that for all nodes (v1, . . . ,v`) and for all indices m ∈ [`], we have RootCalc(vm, auth) = root, where
(root, tree)← HashTree(v1, . . . ,v`) and auth← BuildAuth(m, tree).

Algorithm HashTree(v)
01 `← |v| ; v0, . . . , v`−1 ← v
02 h← dlog(`)e
03 For j ∈ {0, . . . , `− 1} :
04 t0,j ← G(vj)
05 For i ∈ {1, . . . , h} :
06 For j ∈ {0, . . . , 2h−i − 1} :
07 ti,j ← G(ti−1,2j , ti−1,2j+1)
08 root← th,0
09 tree← (t1,0, . . . , th,2h−1−1)
10 Return (root, tree)

Algorithm BuildAuth(m, tree)
11 (t1,0, . . . , th,2h−i−1)← tree
12 For i ∈ {0, . . . , h− 1} :
13 s←

⌊
m/2i

⌋
14 b← s mod 2
15 If b = 0
16 ai ← ts+1
17 Else
18 ai ← ts−1
19 auth← (m,a0, . . . ,ah−1)
20 Return auth

Algorithm RootCalc(v, auth)
21 (m,a0, . . . ,ah−1)← auth
22 b0 ← G(v)
23 For i ∈ {1, . . . , h} :
24 s←

⌊
m/2i−1⌋

25 b← s mod 2
26 If b = 0
27 bi ← G(bi−1,ai−1)
28 Else
29 bi ← G(ai−1, bi−1)
30 Return root := bh

Fig. 4. Description of the algorithms for HT[G] = (HashTree,BuildAuth,RootCalc) associated to G.

4.3 Blind Signature Schemes from Linear Hash Function Families

Let LHF be a linear hash function family and H : {0, 1}∗ → C, G : {0, 1}∗ → {0, 1}2λ be hash functions where
C = Sc′ . Let η, ν, µ ∈ N be repetition parameters. In the following we define mappings which convert a tuple of
integers to an unique larger integer and vice versa. We define 2Intη,ν,µ : [η]× [ν]× [µ]→ [ηνµ] as the mapping
(i, j, k) 7→ i+ η · (j − 1) + ην · (k − 1), such that 2Intη,ν,µ(1, 1, 1) = 1 and 2Intη,ν,µ(η, ν, µ) = ηνµ.

Figure 5 shows how to construct a canonical three-move blind signature scheme BSη,ν,µ[LHF,G,H], where the
hashtree algorithms HT[G] = (HashTree,BuildAuth,RootCalc) are defined in Figure 4.

We begin by proving correctness of BSη,ν,µ[LHF,G,H].
Lemma 1 (Correctness). Let LHF be a linear hash function family, let G : {0, 1}∗ → {0, 1}2λ and H : {0, 1}∗ →
C be hash functions and HT[G] be a hash tree and BS := BSη,ν,µ[LHF,G,H]. If LHF has enclosedness errors
(δ1, δ2, δ3) then BS has correctness error δµ1 + δη2 + δν3 .

Proof. Consider an execution of BS defined in Figure 5. From the definition of enclosedness errors (δ1, δ2, δ3)
it follows directly that the probability that during the execution lines 13, 31 and 43 abort are δη2 , δµ1 and δν3 ,
respectively.

8

Algorithm KG(par) :
01 sk $← Dsk ; pk ← F(sk)
02 Return (sk, pk)

Algorithm S1(sk) :
03 For i ∈ [η] : ri $← Dr;Ri ← F(ri)
04 stS ← (r1, . . . , rη);R← (R1, . . . ,Rη)
05 Return (stS,R)

Algorithm S2(sk,R, c, stS) :
06 (r1, . . . , rη)← stS
07 If c 6∈ Sc :
08 Return ⊥
09 For i ∈ [η] :
10 si ← c · sk + ri
11 If si ∈ Ds :
12 Return s← si
13 Return ⊥

Algorithm BSVer(pk, σ,m) :
14 (c′, s′, auth)← σ
15 R′ ← F(s′)− c′ · pk
16 root← RootCalc(R′, auth)
17 If (c′ = H(root,m)) ∧ (s′ ∈ Ds′) :
18 Return 1
19 Return 0

Algorithm U1(pk,R,m) :
20 (R1, . . . ,Rη)← R
21 α1, . . . ,αν

$← Dα;β1, . . . ,βµ
$← Sβ

22 γ $← Zη
23 For (i, j, k) ∈ [η]× [µ]× [ν] :
24 R′i⊕γ,j,k ← Ri + F(αk) + βj · pk
25 (root, tree)← HashTree(R′1,1,1, . . . ,R′η,µ,ν)
26 c′ $← H(root,m)
27 For j ∈ [µ] :
28 cj ← c′ + βj
29 If cj ∈ Sc :
30 Return (c← cj , stU ← (α1, . . . ,αν , c

′, j, γ, tree))
31 Return ⊥

Algorithm U2(pk,R, c, s,m, stU) :
32 (R1, . . . ,Rη)← R
33 (α1, . . . ,αν , c

′, j, γ, tree)← stU
34 If s 6∈ Ds :
35 Return ⊥
36 Find i ∈ [η]: F(s) = c · pk +Ri
37 Return ⊥ if i does not exist
38 For k ∈ [ν] :
39 s′k ← s+ αk
40 If s′k ∈ Ds′ :
41 auth← BuildAuth(2Intη,ν,µ(i⊕ γ, j, k), tree)
42 Return σ ← (c′, s′, auth)
43 Return ⊥

Fig. 5. Construction of the canonical three-move blind signature scheme BS := BSη,ν,µ[LHF,G,H] from a linear hash function
family LHF = (PGen,F), where BS := (PGen,KG,S = (S1, S2),U = (U1,U2),BSVer) and challenge set C := Sc′ .

We continue with a statement about OMUF security of BSη,ν,µ[LHF,G,H]. Its proof will be given in Section 5.

Theorem 1 (OMUF). Let LHF = (PGen,F) be a (ε, ηνµQS1)-regular linear hash function family with a torsion-
free element from the kernel, let G : {0, 1}∗ → {0, 1}2λ and H : {0, 1}∗ → C be random oracles. If LHF is
(ε′, t′)-CR relative to par ∈ PGen(1κ), then BSη,ν,µ[LHF,G,H] is (ε, t,QS1 , QS2 , QG, QH)-OMUF relative to
par in the random oracle model, where

t′ = 2t, ε′ = O

((
ε2 − Q2

G +QG
2λ − (QVQP1)QP2+1

|C|

)2 1
Q2

VQ
3
P2

)
,

QG and QH are the number of queries to random oracles G and H.

Theorem 2 (Blindness). Let LHF = (PGen,F) be a smooth linear hash function family and let G : {0, 1}∗ →
{0, 1}2λ and H : {0, 1}∗ → C be random oracles. Then BSη,ν,µ[LHF,G,H] is perfectly blind relative to all
par ∈ PGen(1κ).

Let BS := BSη,ν,µ[LHF,G,H]. Intuitively the goal of an adversary in the BlindBS,par experiment is as follows.
The adversary interacts twice with the experiment and thus creates two transcripts. At the end of the interaction the
adversary learns two message/signature pairs and tries to unblind which message/signature pair was created in which
session. Intuitively to prevent the adversary from doing so, any combination of a transcript and a message/signature
pair can be explained by some randomness (of the user) which (i) could have been used to create both the transcript
and the message/signature pair and (ii) is indistinguishable from uniformly drawn randomness.

Proof. Fix two messagesm0,m1 and let A be an adversary in the BlindBS,par experiment (cf. Figure 2).
Given the output of an interaction (R1, . . . ,Rη, c, s,m, σ) $← 〈S(sk),U(pk)〉 we define a transcript T :=

(R1, . . . ,Rη, c, s). Consider A’s view in an execution of BlindBS,par , which consists of the two transcripts (T1,T2)

9

and the two signatures (σ0,σ1), where signature σb corresponds to transcript T1, signature σ1−b corresponds to
transcript T2, and b is the secret choice bit. Note that it is w.l.o.g. that σ0,σ1 6= ⊥. Now, the theorem is implied by
the following two claims.

(B1) For each of the four combinations (Tsid ,σi), where (sid, i) ∈ {1, 2} × {0, 1}, there exists randomness
rndU sid,i := (αsid,i,1 . . . ,αsid,i,ν ,βsid,i,1, . . . ,βsid,i,µ,γsid,i) of the user algorithm which results in the
tuple (Tsid ,σi).

(B2) The real randomness (rndU 1,b, rndU 2,1−b) used in BlindBS,par is identically distributed to the “fake”
randomness (rndU 1,1−b, rndU 2,b) .

To prove condition (B1) we argue as follows. Let 2Int−1 : [ηνµ]→ [η]×[ν]×[µ] be the inverse of 2Intη,ν,µ, defined
in Section 4.3. Let (c′i, s′i, authi) ← σi. Let (ii, ji,ki) ← 2Int−1(ni), where (ni,ai,1, . . . ,ai,h) ← authi.
Define αsid,i,ki := s′ki − ssid , βsid,i,ji := csid − c′ji and for all ` ∈ [ν] \ {ki}, αsid,i,`

$← {α ∈ Dα |
α + ssid 6∈ Ds′} for all ` ∈ [µ] \ {ji}, βsid,i,`

$← {β ∈ Sβ | β + csid 6∈ Sc}. Set isid ∈ [η] to be the
smallest value s.t. F(ssid) = csid · pk + Rsid,isid . Define γsid,i ← isid ⊕ ii. By smoothness conditions (S1)
and (S4) it follows that αsid,i,ki ∈ Dα and βsid,i,ji ∈ Sβ . Clearly, for all ` ∈ [ν] \ {ki}, αsid,i,` ∈ Dα for all
` ∈ [µ] \ {ji}, βsid,i,` ∈ Sβ . Clearly, γsid,i ∈ [η]. LetR′sid,i,ii,ji,ki = Rsid,ii + βsid,i,jj · pk + F(αsid,i,ki). Let
rootsid,i ← RootCalc(R′sid,i,ii,ji,ki , authi). To show that c′i = H(rootsid,i,mi) we continue as follows. Since
Tsid is a valid transcript, we have F(ssid) = Rsid,ii + csid · pk. Therefore,

Rsid,ii + βsid,i,ji · pk + F(αsid,i,ki) = Rsid,ii + (csid − c′i) · pk + F(s′i − ssid)
= Rsid,ii + csid · pk − F(ssid) + F(s′i)− c′i · pk
= F(s′i)− c′i · pk .

Since σi is a valid signature we have c′i = H(RootCalc(F(s′i)− c′i · pk, authi),mi) = H(rootsid,i,mi).
To show condition (B2) we continue as follows. By smoothness condition (S2) if follows that α1,b,kb and

α2,1−b,k1−b have the same distribution as α1,1−b,k1−b and α2,b,kb . By smoothness condition (S5) it follows that
β1,b,jb and β2,1−b,j1−b have the same distribution as β1,1−b,j1−b and β2,b,jb . By smoothness condition (S3) for
all ` ∈ [ν] \ {kb,k1−b}, α1,b,` and α1,1−b,` have the same distribution as α2,b,` and α2,1−b,`. By smoothness
condition (S6) for all ` ∈ [µ] \ {jb, j1−b}, β1,b,` and β1,1−b,` have the same distribution as β2,b,` and β2,1−b,`.
Clearly, all four γ1,0, γ1,1, γ2,0 and γ2,1 have the same distribution.

5 Proof of One-More Unforgeability

In this section, we will make a first step to the proof of Theorem 1, the one-more unforgeability of BSη,ν,µ[LHF,H,G]
defined in Figure 5. To this end we first define canonical identification schemes and prove in Theorem 3 that
one-more unforgeability of BSη,ν,µ[LHF,H,G] is implied by one-more man-in-the-middle security of the under-
lying identification scheme IDη′ [LHF]. Next, in Theorem 4 we will state that collision-resistance of LHF implies
one-more man-in-the-middle security of the canonical identification scheme IDη′ [LHF].

5.1 Canonical Identification Schemes

We recall syntax of canonical (three-move) identification schemes [1].

Definition 4 (Canonical Three-Move Identification Scheme). A canonical three-move identification scheme is
a tuple of algorithms ID = (PGen,KG,P = (P1,P2), IDVer).

– The randomised parameter generation algorithm PGen returns system parameters par .
– The randomised key generation algorithm KG takes as input system parameters par and returns a public/secret

key pair (pk, sk). We assume that pk implicitly defines a challenge space C := C(pk) and that pk is distributed
(and hence known) to all parties.

– The prover algorithm P is split into two algorithms, i.e., P := (P1,P2), where:
• The randomised algorithm P1 takes as input a secret key sk and returns a commitment R and a state st.
• The deterministic algorithm P2 takes as input a secret key sk, a commitment R, a challenge c, and a state

st. It returns a response s.
– The deterministic verification algorithm IDVer takes as input a public key pk, a commitment R, a challenge c,

and a response s. It returns 1 (accept) or 0 (reject).

10

Prover : sk Verifier : pk
(R, stP) $← P1(sk) R−→

c←− c $← C
s← P2(sk, R, c, stP) s−→ b← IDVer(pk, R, c, s)

Output b

Fig. 6. Interaction (R, c, s) ← 〈P(sk), IDVer(pk)〉 of a canonical three-move identification scheme ID =
(PGen,KG,P1,P2, IDVer).

Figure 6 shows the interaction between algorithms P1,P2, and IDVer. Since we will use ID only for the purpose of
simplifying our main security statement, we refrain from giving the standard correctness definition.

We now recall One-More Man-in-the-Middle security for canonical identification schemes [33]. The One-
More Man-in-the-Middle (OMMIM) security experiment for an identification scheme ID and an adversary
A is defined in Figure 7. Adversary A simultaneously plays against a prover (modeled through oracles P1 and
P2) and a verifier (modeled through oracles V1 and V2). Session identifiers pSid and vSid are used to model an
interaction with the prover and the verifier, respectively. A call to P1 returns a new prover session identifier pSid
and sets flag pSesspSid to open. A call to P2(pSid, ·) with the same pSid sets the flag pSesspSid to closed.
Similarly, a call to V1 returns a new verifier session identifier vSid and sets flag vSessvSid to open. A call to
V2(vSid, ·) with the same vSid sets the flag vSessvSid to closed. A closed verifier session vSid is successful if
the oracle V2(vSid, ·) returns 1. Lines 04-07 define several internal random variables for later reference. Variable
QP2(A) counts the number of closed prover sessions and QP1(A) counts the number of abandoned sessions (i.e.,
sessions that were opened but never closed). Most importantly, variable `(A) counts the number of successful
verifier sessions and variable QP2(A) counts the number of closed sessions with the prover. Adversary A wins
the OMMIMID,par game, if `(A) ≥ QP2(A) + 1, i.e., if A convinces the verifier in at least one more successful
verifier sessions than there exist closed sessions with the prover. A’s advantage in OMMIMID,par is defined as
AdvOMMIM

ID,par (A) := Pr[OMMIMA
ID,par ⇒ 1] and we denote its running time as TimeOMMIM

ID,par (A).

Definition 5 (One-more man-in-the-middle security). We say that ID is (ε, t,QV, QP1 , QP2)-OMMIM rela-
tive to par ∈ PGen(1κ) if for all adversaries A satisfying TimeOMMIM

ID,par (A) ≤ t, QV(A) ≤ QV, QP2(A) ≤ QP2 ,
and QP1(A) ≤ QP1 , we have AdvOMMIM

ID,par (A) ≤ ε.

Game OMMIMA
ID,par :

01 (sk, pk)← KG(par)
02 pSid ← 0, vSid ← 0
03 AP1,P2,V1,V2(pk)
04 QCh(A)← vSid //#total sessions with verifier
05 QP1(A)← #{1 ≤ k ≤ pSid | pSessk = open} //#abandoned prover sessions
06 QP2(A)← #{1 ≤ k ≤ pSid | pSessk = closed} //#closed prover sessions
07 `(A)← #{1 ≤ k ≤ vSid | vSessk = closed ∧ b′k = 1} //#successful verifier sessions
08 If `(A) ≥ QP2(A) + 1: Return 1 //A’s winning condition
09 Return 0

Oracle P1 :
10 pSid ← pSid + 1
11 pSesspSid ← open
12 (RpSid , stpSid) $← P1(sk)
13 Return (pSid,RpSid)

Oracle P2(pSid, c) :
14 If pSesspSid 6= open : Return ⊥
15 pSesspSid ← closed
16 s← P2(sk,RpSid , c, stpSid)
17 Return s

Oracle V1(R′) :
18 vSid ← vSid + 1
19 vSessvSid ← open
20 R′vSid ← R′; c′vSid

$← C
21 Return (vSid, c′vSid)

Oracle V2(vSid, s′) :
22 If vSessvSid 6= open : Return ⊥
23 vSessvSid ← closed
24 b′vSid ← IDVer(pk,R′vSid , c

′
vSid , s

′)
25 Return b′vSid

Fig. 7. The One-More Man-in-the-Middle security game OMMIMA
ID,par

11

We remark that security against impersonation under active and passive attacks [1] is a weaker notion than
OMMIM security, whereas man-in-the-middle security [11] is stronger.

5.2 Identification Schemes from Linear Hash Function Families

Let LHF be a linear hash function family and η′ be a repetition parameter. Consider the canonical three-move
blind signature scheme BSη,ν,µ[LHF,H,G] = (PGen,KG,S = (S1,S2),U = (U1,U2),BSVer) from Figure 5. BS
directly implies a canonical identification scheme IDη′ [LHF] = (PGen,KG,P, IDVer) with challenge set C := Sc′ ,
where prover P plays the role of the signer S, i.e., P = (P1,P2) := (S1,S2) and algorithm IDVer is defined as
follows.

Algorithm IDVer(pk,R1, . . . ,Rη′ , c, s) :
01 For i ∈ [η′] :
02 If (Ri = F(s)− c · pk) ∧ (s ∈ Ds) :
03 Return 1
04 Return 0

The identification scheme IDη′ [LHF] can be seen as the projection of BSη,ν,µ[LHF,H,G] to the signer, i.e., all
user algorithms (involving the techniques to achieve blindness) are removed. This makes it conceptually much
simpler.

We will now show that OMUF security of BSη,ν,µ[LHF,G,H] is implied (in the ROM) by OMMIM security of
IDη′ [LHF], where η′ = ηνµ.

Theorem 3. Let LHF be a linear hash function family, let G : {0, 1}∗ → {0, 1}2λ and H : {0, 1}∗ → C be random
oracles and let ID := IDη′ [LHF],BS := BSη,ν,µ[LHF,G,H]. If ID is (ε′, t′, QV, QP1 , QP2)-OMMIM relative to
par ∈ PGen(1κ) then BS is (ε, t,QS1 , QS2 , QG, QH)-OMUF relative to par in the random oracle model, where

t′ ≈ t, ε′ = ε− Q2
G

22λ −
QG
22λ , η′ = ηνµ, QV = QH, QP1 = QS1 , QP2 = QS2 ,

QG and QH are the number of queries to random oracles G and H;

Proof. Let A be an adversary that runs in the OMUFBS,par experiment and breaks (ε, t,QS1 , QS2 , QG, QH)-one-
more-unforgeability of BS in the random oracle model. Consider a modified OMUF′BS,par experiment in which
random oracle G is replaced by the random oracle G depicted in Figure 8 which excludes collisions (i.e., the
existence of queries e 6= e′ with G(e) = G(e′)) and chains (i.e., the hash query G(G(e)) was made before the
query G(e)). Note that the statistical difference between games OMUFBS,par and OMUF′BS,par is bounded by
Q2

G
22λ + QG

22λ and the number of queries to the oracles remains the same.
In Figure 8 we construct an adversary B that runs in the OMMIMID,par experiment and perfectly simulates

A’s oracles S1, S2, G, H via its own oracles P1, P2, and Ch, respectively. Note that B calls P2 at most QP2 =
QS2 many times over the course of its simulation and moreover, QP2(B) = QS2(A). We show that B breaks
(ε′, t′, QV, QP1 , QP2)-OMMIM security of ID. Suppose that A is successful, i.e., it outputs `(A) ≥ QS2(A) + 1 =
QP2(B) + 1 valid signatures on distinct messages and the number of closed sessions with the signer is at most
QS2(A) = QP2(B).

Recursive algorithm PreimageLeafsh∗ behaves as follows. Given some root root (level h of some tree) the
algorithm finds by the collision freeness of G the left and right pre-image nodes of the tree emerging from that root.
This is repeated recursively until all pre-images of all leaves are returned or the maximal depth h∗ = dlog(ηνµ)e
has been reached. Note that by the collision freeness of G, every node in any tree which is the output of algorithm
HashTree has a unique pre-image. By the chain freeness, no adversary is able to span a tree which contains cycles.
Therefore, the algorithm terminates. We assume w.l.o.g. that algorithm PreimageLeafsh∗(root, 0) always returns
exactly η′ = ηνµ leaves, otherwise it is padded with arbitrary leaves.

Consider a signature σi = (c′i, s′i, authi) on message mi output by A. It remains to show that a valid
signature leads to a valid transcript in the OMMIM experiment, i.e,. bi = 1 in Line 09. By the validity of
the signature, c′i = H(RootCalc(F(s′i) − c′i · pk, authi),mi) = H(RootCalc(R′i, authi),mi) = H(rooti,mi),
where rooti := RootCalc(R′i, authi). By correctness of algorithm PreimageLeafsh∗ , we have H(rooti,mi) =
Ch(PreimageLeafsh∗(rooti, 0)) = Ch(R′1,1,1, . . . ,R′η,ν,µ). Since all messages in m are distinct, each c′i =
H(rooti,mi) is distinct and thus every signature corresponds to a distinct session with oracle Ch.

12

Therefore, B can make a successful query to oracle V2(vSid, s′i) in line 09 resulting in bi = 1 for every valid
signature. Since overall, B makes `(B) = QP2(B) + 1 successful queries to V2, B wins OMMIMID,par whenever

A wins OMUF′BS,par . This proves ε′ ≥ ε− Q2
G

22λ − QG
22λ . Moreover, the number of abandoned sessions (denoted as

QS1(A)) in the OMUFBS,par experiment equals the number of abandoned sessions (denoted as QP1(B)) in the
OMMIMID,par experiment and the number QV(B) of calls to oracle Ch is bounded by QH (for the simulation of
H) plus additional QP2(A) + 1 calls in Line 07 (the latter calls are necessary in case A guesses the output of Ch on
some points). Finally, the running times of A and B are roughly the same, i.e. t ≈ t′.

Adversary B P1,P2,V1,V2(pk):
01 h∗ ← dlog(η′)e
02 ((m1,σ1), ..., (m`,σ`))← A S1,S2,G,H(pk)
03 For i ∈ [`] do:
04 (c′i, s′i, authi)← σi
05 R′i ← F(s′i)− c′i · pk
06 rooti ← RootCalc(R′i, authi)
07 H(rooti,mi)
08 vSid ← vSessrooti,mi
09 bi ← V2(vSid, s′i)
10

Algorithm S1 :
11 (pSid,R) $← P1
12 (R1, . . . ,Rη′)← R
13 Return (pSid,R1, . . . ,Rη)

Algorithm S2(sid, c) :
14 pSid ← sid
15 spSid ← P2(pSid, c)
16 Return spSid

Algorithm PreimageLeafsh∗(root, h)
17 If (∃(l, r) : G(l, r) = root :) ∧ (h ≤ h∗)
18 Return (PreimageLeafsh∗(l, h+ 1),

PreimageLeafsh∗(r, h+ 1))
19 Else
20 Return root

Algorithm G(e) :
21 IfGe 6= ⊥ : ReturnGe

22 Ge
$← {0, 1}2λ

23 If ∃e′ 6= e s.t.Ge = Ge′ : //no collisions
24 Abort
25 IfGGe 6= ⊥ : //chain free
26 Abort
27 ReturnGe

Algorithm H(root,m) :
28 ifHroot,m 6= ⊥ : ReturnHroot,m
29 (R′1, . . . ,R′η′)← PreimageLeafsh∗(root, 0)
30 (vSid, c′) $← Ch(R′1, . . . ,R′η′)
31 vSessroot,m ← vSid
32 Hroot,m ← c′

33 ReturnHroot,m

Fig. 8. Construction of adversary B in the OMMIMID,par experiment from adversary A in the OMUF′BS,par experiment.

We will now state that IDη′ [LHF] is OMMIM secure.

Theorem 4. Let LHF be a (ε, η′QP1)-regular linear hash function family with a torsion-free element from the
kernel. If LHF is (ε′, t′)-CR relative to par ∈ PGen(1κ) then IDη′ [LHF] is (ε, t,QV, QP1 , QP2)-OMMIM
relative to par , where

t′ = 2t, ε′ = O

((
ε2 − (QVQP1)QP2+1

|C|

)2 1
Q2

VQ
3
P2

)
.

Proof. The technical proof of this theorem will be given in Appendix A.

6 Instantiation from Lattices

We now give a lattice-based example of a LHF with noticeable correctness error which is derived from Lyuba-
shevsky’s identification scheme [38] and has also been implicitly used in [56].

NOTATION. LetR andRq denote the rings Z[X]/〈Xn+1〉 and Zq[X]/〈Xn+1〉, for integer n = 2r, where r ∈ Z+

and q is an odd integer. Polynomials inRq have degree at most n−1 and coefficients in range [−(q−1)/2, (q−1)/2].

13

For such coefficients we abuse the notation mod to denote with x′ = x mod q, the unique element x′ s.t. for any
integer k: x′ = x+ kq and x′ ∈ [−(q − 1)/2, (q − 1)/2]. Bold lower-case letters denote elements in Rq and bold
lower-case letters with a hat denote vectors of vectors with coefficients in ring Rq . To measure the size of elements
x = x0 + x1X

1 + · · ·+ xn−1X
n−1 in ring Rq we define norm p∞ as ‖x‖∞ := max

i
|xi mod q|. In rings R and

Rq , ‖xi‖∞ represents |xi| and |xi mod q|, respectively. Similarly, for x̂ = (x0, . . . ,xk−1), we define norm p∞ as
‖x̂‖∞ := max

i
‖xi‖∞. Further we define the p1 norm as ‖x‖1 :=

∑
i |xi| and p2 norm as ‖x‖2 := (

∑
i |xi|

2)1/2.

It is not hard to see that for any two polynomials e, f ∈ Rq ,

‖e · f‖∞ ≤ ‖e‖∞ ‖f‖1 ≤ n ‖e‖∞ ‖f‖∞ . (4)

We now recall the R-SISq,n,m,d problem over Rq [48,40].

Definition 6 (R-SISq,n,m,d). We say that R-SISq,n,m,d is (ε, t)-hard if for all adversaries A running in time at
most t, the probability that A(â) (where â $← Rmq) outputs a non-zero ẑ ∈ Rmq s.t.

∑m
i=1 ai ·zi = 0 and ‖ẑ‖∞ ≤ d,

is bounded by ε.
Similarly, R-SISq,n,m,d is (ε, t)-hard relative to â ∈ Rmq if for all adversaries A running in time at most t, the

probability that A outputs a non-zero ẑ ∈ Rmq s.t.
∑m
i=1 ai · zi = 0 and ‖ẑ‖∞ ≤ d, is bounded by ε.

Let us first estimate the concrete hardness of solving the R-SISq,n,m,d problem for uniformly random â which
is equivalent to finding a short vector in the related lattice

Λ⊥q (â) = {ẑ ∈ Rmq :
m∑
i=1

ai · zi = 0}.

Gama and Nguyen [28] classified algorithms for finding short vectors in random lattices in terms of the root Hermite
factor δ. Such algorithms compute a vector of length δn times the shortest vector of the lattice. Whereas δ = 1.01
can be achieved, it is conjectured that a factor of δ = 1.007 may not be achievable [22].

We use the following estimation from [38, Eqn. 3] to estimate the length of the shortest vector (in p∞ norm)
which can be efficiently found in lattice Λ⊥q (â) as

svδ(n, q) := min{q, 22
√
n log(q) log(δ)(n log(q)/ log(δ))−1/4}.

We make the following conjecture about R-SISq,n,m,d with δ = 1.005.

Conjecture 1. If d < sv1.005(n, q) then no efficient algorithm can solve R-SISq,n,m,d.

We note that security of our blind signature scheme depends on the hardness of R-SISq,n,m,d relative to fixed â.
However, as discussed in Section 2, our theorems can be easily re-written to work in a setting where â $← Rmq is
chosen uniformly at random.

LINEAR HASH FUNCTION. We select the parameters according to Figure 9. Firstly, variables q, n specify the ring
Rq := Zq[X]/〈Xn + 1〉, where n is a power of two. Define the sets

S := Rq,D := Rmq , andR := Rq,

For the hardness of collision resistance, we select d such that d < 1
2 sv1.005(n, q) and also D′ ⊆ Bq(d) 6 where

Bq(w) is defined as
Bq(w) := {s ∈ Rq : ‖s‖∞ ≤ w}.

For ê, f̂ ∈ D and g ∈ S we define addition ê + f̂ := (e1 + f1, . . . , em + fm), multiplication ê · f̂ :=
(e1f1, . . . , emfm), and scalar multiplication g · ê = (ge1, . . . ,gem). This makesR and D modules over S.

Algorithm PGen(1κ) returns a random element par = â $← Rm. Algorithm F : D 7→ R is defined for any
ẑ ∈ D as,

F(ẑ) :=
m∑
i=1

ai · zi mod q .

Clearly, F is a module homomorphism since for every ŷ, ẑ ∈ D, c ∈ R: F(ŷ + ẑ) = â(ŷ + ẑ) = âŷ + âẑ =
F(ŷ) + F(ẑ) and F(ŷc) = â(y1c, . . . ,ymc) = a1y1c + · · ·+ amymc = F(ŷ)c.

14

Parameter Definition Instantiation

n integer that is power of 2 1024
m dimension of a secret key vector 200
q prime 23550

ι # of irreducible factors of Xn + 1 modulo q 64
δ p∞ of a torsion-free element from the kernel 219

dsk p∞ of a secret key 2169

dc′ p∞ of an output of a random oracle 285

u integer 4
v integer 4
w integer 4
µ number of βj 60
η number ofRi 60
ν number of α̂k 60
dβ udc′n 297

dc dβ − dc′ 297

dr ≥ vmn2dskdc 2295

ds dr − ndskdc 2295

dα wdsnm 2315

ds′ dα − ds 2315

d d < 1
2 sv1.005(n, q) 2316

sig size 7.73 MB

Fig. 9. Definition of parameters for the lattice-based LHF.

For xxx ∈ {β, c, c′} and yyy ∈ {sk, r, s, s′, α}, the filter sets are defined as

Sxxx := Bq(dxxx) ⊆ S, Dyyy := Bmq (dyyy) ⊆ D.

To estimate the membership of sums and products of ê, f̂ ∈ D to specific subsets of D we use the lemma
proven by Rückert [56].

Lemma 2. Let k, da, db and γ be integers, s.t. db ≥ γknda. Then, for all â ∈ Bkq (da),

Pr
b̂ $←Bkq (db)

[∥∥∥â + b̂
∥∥∥
∞
≤ db − da

]
> e−1/γ − o(1) .

ENCLOSEDNESS ERRORS AND SMOOTHNESS. First, we focus on calculating the enclosedness errors of LHF
based on parameters chosen in Figure 9. Later on, we also show that LHF is smooth.

Lemma 3. If dβ , dr, dα, dc, ds, ds′ are defined as in Figure 9 and LHF is defined as above, then LHF has enclosed-
ness errors equal to: (

1− e−1/u + o(1), 1− e−1/v + o(1), 1− e−1/w + o(1)
)
.

Proof. The statement follows straightforwardly from Lemma 2 and the way we picked dβ , dr, dα, dc, ds, ds′ . ut

In Figure 9 we select u = v = w. Thus, we need choose appropriate µ, η, ν to make sure that correctness error of
our blind signature is negligible. Indeed, we simply pick µ = η = ν such that

(1− e−1/u + o(1))µ < 2−130.

Then by Lemma 1, BS[LHF] has correctness error at most 3 · 2−130 < 2−128.

Lemma 4. If ds and dc are defined as in Figure 9, then LHF is smooth.

6 We recall that the set D′ is defined in Equation 2.

15

Proof. In the following we prove smoothness conditions (S1) and (S2). Condition (S3) can be proven analogously
to (S2). Conditions (S4), (S5) and (S6) can be proven analogously to (S1), (S2) and (S3), respectively.

Since dα = ds + ds′ , for all ŝ ∈ Ds and ŝ′ ∈ Ds′ , ‖ŝ′ − ŝ‖∞ ≤ ds′ + ds = dα and therefore ŝ′ − ŝ ∈ Dα.
This proves smoothness condition (S1).

To prove (S2), we fix ŝ1, ŝ2 ∈ Ds and define sets Dα1 := {α̂ ∈ Dα | α̂+ ŝ1 ∈ Ds′} and Dα2 := {α̂ ∈ Dα |
α̂+ ŝ2 ∈ Ds′}. Note that for all ŝ1, ŝ2 ∈ Ds and ŝ′ ∈ Ds′ there exist α̂1 ∈ Dα1 and α̂2 ∈ Dα2 s.t. α̂1 + ŝ1 = ŝ′

and α̂2 + ŝ2 = ŝ′. So, |Dα1 | = |Dα2 | = |Ds′ |.
In the following, fix ŝ1, ŝ2 ∈ Ds and define the random variables α̂′ $← Dα2 and α̂∗ $← Dα1 . To prove

smoothness condition (S2), it remains to show that

∆(α̂′, α̂∗ + ŝ1 − ŝ2) = 0, (5)

We have

∆(α̂′, α̂) =1
2
∑

¯̂α 6∈Dα2

∣∣∣∣∣ Pr
α̂′

$←Dα2

[α̂′ = ¯̂α]− Pr
α̂∗

$←Dα1

[α̂∗ + ŝ1 = ¯̂α+ ŝ2]

∣∣∣∣∣
=1

2
∑

¯̂α∈Dα2

∣∣∣∣∣ Pr
α̂′

$←Dα2

[α̂′ = ¯̂α]− Pr
α̂∗

$←Dα1

[α̂∗ + ŝ1 = ¯̂α+ ŝ2]

∣∣∣∣∣ . (6)

To show that (6) amounts to zero, we argue as follows. If ¯̂α 6∈ Ds′ then clearly

Pr
α̂′

$←Dα2

[α̂′ = ¯̂α] = 0 = Pr
α̂∗

$←Dα1

[α̂∗ + ŝ1 = ¯̂α+ ŝ2].

Now, suppose ¯̂α ∈ Ds′ . Since α̂′ ∈ Dα2 and random variable α̂′ takes values in Dα2 , the probability that
random variable α̂′ takes value ¯̂α is 1

|Dα2 |
= 1
|Ds′ |

. So, Pr
α̂′∈Dα2

[α̂′ = ¯̂α] = 1
|Ds′ |

. Since ¯̂α ∈ Dα2 , ¯̂α+ ŝ2 ∈ Ds′ .

Also α̂∗ ∈ Dα1 implies α̂∗ + ŝ1 ∈ Ds′ . So the probability that random variable α̂∗ fulfills α̂∗ + ŝ1 = ¯̂α+ ŝ2 is
1
|Dα1 |

= 1
|Ds′ |

. Therefore, Pr
α̂∗∈Dα1

[α̂∗ + ŝ1 = ¯̂α+ ŝ2] = 1
|Ds′ |

. This completes the proof.

TORSION FREE ELEMENTS FROM THE KERNEL. We first observe that we only need to find a non-zero ẑ∗ such that
F(ẑ∗) = 0. Indeed, if dc is small enough then by selecting appropriate prime q we can apply the main result of
Lyubashevsky and Seiler [41].

Lemma 5 ([41] Corollary 1.2). Let n ≥ ι > 1 be powers of 2 and q ≡ 2ι+1 (mod 4ι) be a prime. Then Xn+1
factors into ι irreducible polynomials Xn/ι − rj modulo q and any y ∈ Rq \ {0} that satisfies

‖y‖∞ <
1√
ι
· q1/ι or ‖y‖2 < q1/ι

is invertible in Rq .

Hence, pick dc < 1
2
√
ι
· q1/ι. Then, for c1, c2 ∈ Sc, (c1 − c2)ẑ∗ = 0 =⇒ c1 = c2 since otherwise c1 − c2 is

invertible and thus ẑ∗ = 0. Therefore, ẑ∗ is a torsion-free element from the kernel.
Many papers investigate non-existence of a short vector in random module lattices e.g. [36,43]. However, here

we are interested in the existence. Concretely, we want to make sure there exists a ẑ∗ from the kernel with infinity
norm at most δ < q/2. Consider the set of vectors Bδ ⊂ Rmq of polynomials with coefficients between 0 and
δ. Clearly, for ŷ1, ŷ2 ∈ Bδ: ‖ŷ1 − ŷ2‖∞ ≤ δ < q/2. If we select δ such that |Bδ| = (δ + 1)nm > qn then
by the pigeonhole principle, there exist two distinct ŷ1, ŷ2 ∈ Bδ such that F(ŷ1) = F(ŷ2). Hence, we can set
ẑ∗ = ŷ1 − ŷ2.

COLLISION RESISTANCE. To estimate the hardness of finding collisions in LHF we state the following simple
lemma.

Lemma 6. If R-SISq,n,m,2d is (ε, t)-hard relative to â ∈ Rmq then LHF is (ε, t)-CR relative to par ∈ PGen,
where par contains all the values defined in Fig. 9 along with â.

16

Proof. Adversary A returns distinct values x̂1, x̂2 ∈ D′ after being called on parameters par . Since F(x̂1) = F(x̂2)
and since F is a module homomorphism, F(x̂2 − x̂1) = F(x̂2) − F(x̂1) = 0. Further, ‖x̂2 − x̂1‖∞ ≤ 2d. So
x̂2 − x̂1 is a solution to the R-SISq,n,m,2d problem relative to â.

As we described in Section A, adversary A manages to extract χ̂1, χ̂2 so that F(χ̂1 − χ̂2) = 0. The norm of χ̂1
(and similarly for χ̂2) can be simply bounded by:

‖χ̂1‖∞ ≤ ds′ + ndc′dsk < 2ds′ .

Thus, we set d = 2ds′ . With parameters defined in Figure 9, d ≈ 2233 and 1
2 sv1.005(n, q) ≈ 2235. Therefore, we

get ‖χ̂1 − χ̂2‖∞ < 2d < sv1.005(n, q).

ONE-MORE UNFORGEABILITY. In order for the probability in Lemma 13 to be negligible, we need to set large
enough output space Sc′ of the random oracle. For concreteness, we define QV = QP1 = 2128 and QP2 = 7 since
we only allow seven signing queries due to a potential lattice variant of the ROS attack (see Section 7). For the
parameters defined in Figure 9, the probability in Lemma 13 is around 2−128.

REGULARITY. We now prove that by selecting sizes dsk and dr as in Figure 9, our LHF is (ε,Q′)-regular where
ε = 2−128 and Q′ = QP2µην.

Lemma 7. Denote ε = 2−128 and Q′ = 7µην. Then, for our selection of dsk , dr, the LHF is (ε,Q′)-regular, i.e.

|D′sk |
|Dsk |

·
(
|D′r|
|Dr|

)Q′
≥ 1− 2−130 = 1− ε/4, (7)

where
D′sk := {ŝk ∈ Dsk : ŝk + ẑ∗ ∈ Dsk}

and
D′r := {r̂ ∈ Dr : ∀c ∈ Sc, r̂ + cẑ∗ ∈ Dr}.

Proof. Indeed, we first picked dr so that (
|D′r|
|Dr|

)Q′
≥ 1− 2−131.

Simultaneously, we chose dsk which satisfies: |D′sk |/|Dsk | ≥ 1− 2−131. Also, we check that dr ≥ vmn2dskdc for
the enclosedness property. Then, Equation (7) follows by the Bernoulli inequality.

SIZES. We pick prime q ≈ 23550 so that q ≡ 2ι+ 1 (mod 4ι) where ι = 64 and Xn + 1 splits into ι irreducible
polynomials modulo q. Hence, we can apply Lemma 5. Unfortunately, such a large prime modulus affects the signing
time significantly. The signature consists of three parts: ŝ′, c′ and auth. The size for ŝ′ and c′ are respectively
nm log 2ds′ and n log 2dc′ . Also, auth contains the index of the leaf (which can be represented with at most
log(µην) bits) and log(µην) outputs of the hash function G. If we assume that G : {0, 1}∗ → {0, 1}128 then auth
has at most log(µην) + 128 · log(µην) bits. For parameters selected in Figure 9, our signature has size around 7.73
MB. We observe that the main reason of obtaining such large signatures is the size for dr and dsk , which should
satisfy the regularity property.

7 Generalized ROS Problem

The standard ROS (Random inhomogenities in an Overdetermined, Solvable system of linear equations) problem
was first introduced by Schnorr [58] in the context of blind signatures. If one can solve the ROS problem then one is
also able to break the security of the Schnorr as well as the Okamoto-Schnorr and Okamoto-Gouillou-Quisquarter
blind signature schemes. Later works by Wagner and Minder and Sinclair [60,42] proposed algorithms which solve
the ROS problem in sub-exponential time. In this section, we discuss main challenges when translating the ROS
problem to general linear hash function families with correctness error. To the best of our knowledge, none of
previous works on lattice-based blind signatures (e.g. [56,4,5]) consider this issue.

17

Game `-GROSLHF,par :
01
(
c ∈ S`+1

c ,A ∈
(
X `+1
` × S`+1

c′

))
$← AH(·)(par)

02 If (c`+1 = −1) ∧ (Ac = 0) ∧ (∀i, j ∈ [`+ 1] : H(Ai,1, . . . ,Ai,`) = Ai,`+1) ∧ (Ai 6= Aj) : Return 1
03 Return 0

Fig. 10. Game `-GROSLHF,par with adversary A. H : {0, 1}∗ → Sc′ is a random oracle.

We start by describing the Generalized ROS (GROS) problem for linear hash function families with correctness
error. For a linear hash function family LHF, par ∈ PGen and a positive integer `, let X` be the set

X` := {(x1, ..., x`) ∈ S` | ∀s ∈ D`s : x · s ∈ Ds′}. (8)

The game `-GROSLHF,par is defined via Figure 10. The advantage of adversary A in `-GROSLHF,par is defined
as Adv`-GROS

LHF,par (A) := Pr[`-GROSA
LHF,par ⇒ 1] and its running time is denoted as Time`-GROS

LHF,par (A).

Definition 7 (`-GROS Hardness). Let ` ∈ N, ` > 0 and let LHF be a linear function family and let par ∈
PGen(1κ). `-GROS is said to be (ε, t,QH)-hard in the random oracle model relative to par and LHF if for all adver-
saries A satisfying Time`-GROS

LHF,par (A) ≤ t and making at most QH queries to H, we have that Adv`-GROS
LHF,par (A) ≤ ε.

The following theorem shows that an attack on `-GROSLHF,par propagates to an attack against OMUFBS[LHF,G,H],par .

Theorem 5. Let LHF be a linear hash function family with enclosedness error (δ1, δ2, δ3), G : {0, 1}∗ → {0, 1}2λ
and H : {0, 1}∗ → Sc′ be random oracles and let BS := BSη,ν,µ[LHF,G,H]. If BS is (ε, t, 0, `, QG, QH)-OMUF
relative to par in the random oracle model then `-GROS is (ε/(1− δ2)`, t, QH)-hard relative to LHF and par in
the random oracle model.

Proof (Sketch). The proof is similar to one for perfect correctness [58,33]. For readability, we assume that
µ = ν = 1 since there is no need to blind challenges/signatures in this scenario (it can, however, be easily
generalized to arbitrary µ, ν). We now define an adversary B in OMUFBS,par that internally runs an adversary A
against `-GROSLHF,par with random oracle H′.

– It simultaneously opens ` sessions with S1, receiving commitmentsR1, ...,R`. Let us denoteRi = (Ri,1, . . . ,Ri,η)
for i ∈ [`].

– Next, it executes AH′(par). When A makes a fresh query a to H′, B computes R′a,j :=
∑`
i=1 ai ·Ri,j for

all j ∈ [η]. It then computes (roota, treea)← HashTree(R′a,1, ...,R′a,η) and c′ ← H(roota,ma), for a fresh
message ma, and then returns H′(a) := c′ as the answer. Clearly, c′ is independent from commitmentsRi.

– When A terminates and returns (A, c), B sends the value ci as the challenge value for the ith session with S2,
where i ∈ [`], and receives an answer si. IfRi,1 6= F(si)− ci · pk then B aborts. Note that the probability that
B does not abort at all is at least (1− δ2)` by definition of the enclosedness error.

– Next, for all j ∈ [` + 1], B computes s′j :=
∑`
i=1Aj,i · si and retrieves the values rootAj , treeAj ,mAj

used to compute Aj and computes c′j ← H(rootAj ,mAj), authj ← BuildAuth((0, 1, 1), tree). It sets σj :=
(c′j , s′j , authj).

– Finally, B returns `+ 1 message/signature pairs (σ1,mA1), ..., (σ`+1,mA`+1).

Correctness of the signatures follows because

F
(
s′j
)

= F
(∑̀
i=1

Aj,isi

)

=
∑̀
i=1

Aj,i(ci · pk +Ri,1) = R′Aj ,1 + pk
∑̀
i=1

Aj,ici = R′Aj ,1 + pk · c′Aj
.

Further, by (8) we have s′i ∈ Ds′ for all i ∈ [`]. Correctness of the authentication path can easily be verified. ut

18

One observes that the attack only makes sense for small values of ` due to the security loss of (1 − δ2)`.
The reason is that we always force S2 to accept the first rejection sampling, otherwise B aborts. On interesting
point about our attack is that it can be easily be modified to other lattice-based signatures (e.g. [56]) since the
signer in such schemes usually outputs only one commitment per session instead of η. The ROS problem in
the standard setting is a special case where Sc′ = Sc = S are finite fields of size q and X` = S` [58]. In this
setting Schnorr proves that the `-GROS problem is solvable with probability at most

(
QH
`+1
)
/|Sc′ | < Q`+1

H /q.

Wagner later proposed an algorithm A in the (` := 22
√

log q − 1, Q)-GROSA
LHF experiment with running time

O(22
√

log q) [60]. The two main reasons that Wagner’s algorithm [60] cannot be translated to the `-GROS problem
even with the lattice instantiation from Section 6 are the following. First, let us recall that in Section 6 we select
S := Rq = Zq[X]/〈Xn + 1〉 to be a cyclotomic ring and Sc′ to be a set of short polynomials in Rq . Therefore, we
have Sc′ (Sc (S and Sc,Sc′ are not finite fields (or even rings). Secondly, compared to the work of Hauck et
al. [33], the values s′ in a signature have to lie in the set Ds′ . This imposes a further restriction on the values in the
matrix A and the vector c returned by the GROS adversary. We believe that the studying this variant of of the
GROS problem further is an interesting problem for future work.

Acknowledgments

We would like to thank Vadim Lyubashevsky for pointing out the flaw in BLAZE and Dominique Schröder for
helping us with previous work on blind signatures. We are furthermore very grateful for the anonymous comments
by the CRYPTO 2020 reviewers. Eduard Hauck was supported by DFG SPP 1736 Big Data. Eike Kiltz was
supported by the BMBF iBlockchain project, the EU H2020 PROMETHEUS project 780701, DFG SPP 1736
Big Data, and the DFG Cluster of Excellence 2092 CASA. Ngoc Khanh Nguyen was supported by the SNSF
ERC Transfer Grant CRETP2-166734 FELICITY. Julian Loss was supported by the financial assistance award
70NANB19H126 from U.S. Department of Commerce, National Institute of Standards and Technology.

References

1. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures via the Fiat-Shamir transform:
Minimizing assumptions for security and forward-security. In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 418–433. Springer, Heidelberg, Apr. / May 2002. 10, 12

2. M. Abe. A secure three-move blind signature scheme for polynomially many signatures. In B. Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 136–151. Springer, Heidelberg, May 2001. 1, 3

3. M. Abe and T. Okamoto. Provably secure partially blind signatures. In M. Bellare, editor, CRYPTO 2000, volume 1880 of
LNCS, pages 271–286. Springer, Heidelberg, Aug. 2000. 22

4. N. A. Alkadri, R. E. Bansarkhani, and J. Buchmann. BLAZE: practical lattice-based blind signatures for privacy-preserving
applications. Financial Cryptography and Data Security - 24rd International Conference, FC 2020, 2020. 3, 17

5. N. A. Alkadri, R. E. Bansarkhani, and J. Buchmann. On lattice-based interactive protocols with aborts. Cryptology ePrint
Archive, Report 2020/007, 2020. https://eprint.iacr.org/2020/007. 2, 3, 7, 17

6. M. Backendal, M. Bellare, J. Sorrell, and J. Sun. The fiat-shamir zoo: Relating the security of different signature variants.
In N. Gruschka, editor, Secure IT Systems - 23rd Nordic Conference, NordSec 2018, Oslo, Norway, November 28-30, 2018,
Proceedings, volume 11252 of Lecture Notes in Computer Science, pages 154–170. Springer, 2018. 2, 4

7. F. Baldimtsi and A. Lysyanskaya. Anonymous credentials light. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM
CCS 2013, pages 1087–1098. ACM Press, Nov. 2013. 1

8. F. Baldimtsi and A. Lysyanskaya. On the security of one-witness blind signature schemes. In K. Sako and P. Sarkar, editors,
ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 82–99. Springer, Heidelberg, Dec. 2013. 3

9. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable proofs and
delegatable anonymous credentials. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer,
Heidelberg, Aug. 2009. 1

10. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In A. Juels, R. N.
Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, Oct. / Nov. 2006. 2, 22

11. M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of security against impersonation under active
and concurrent attacks. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 162–177. Springer, Heidelberg,
Aug. 2002. 12

12. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint
Archive, Report 2004/331, 2004. http://eprint.iacr.org/2004/331. 4

13. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature
scheme. In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, Jan. 2003. 3

19

https://eprint.iacr.org/2020/007
http://eprint.iacr.org/2004/331

14. S. Bouaziz-Ermann, S. Canard, G. Eberhart, G. Kaim, A. Roux-Langlois, and J. Traoré. Lattice-based (partially) blind
signature without restart. Cryptology ePrint Archive, Report 2020/260, 2020. https://eprint.iacr.org/2020/
260. 3

15. S. Brands. Untraceable off-line cash in wallets with observers (extended abstract). In D. R. Stinson, editor, CRYPTO’93,
volume 773 of LNCS, pages 302–318. Springer, Heidelberg, Aug. 1994. 1

16. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In R. Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 302–321. Springer, Heidelberg, May 2005. 1

17. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials with optional anonymity
revocation. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May
2001. 1

18. J. Camenisch, G. Neven, and a. shelat. Simulatable adaptive oblivious transfer. In M. Naor, editor, EUROCRYPT 2007,
volume 4515 of LNCS, pages 573–590. Springer, Heidelberg, May 2007. 7

19. D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L. Rivest, and A. T. Sherman, editors, CRYPTO’82,
pages 199–203. Plenum Press, New York, USA, 1982. 1

20. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser, editor, CRYPTO’88, volume 403 of LNCS,
pages 319–327. Springer, Heidelberg, Aug. 1990. 1

21. L. Chen, Y. Cui, X. Tang, D. Hu, and X. Wan. Hierarchical id-based blind signature from lattices. In Y. Wang, Y. Cheung,
P. Guo, and Y. Wei, editors, Seventh International Conference on Computational Intelligence and Security, CIS 2011, Sanya,
Hainan, China, December 3-4, 2011, pages 803–807. IEEE Computer Society, 2011. 3

22. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 1–20. Springer, Heidelberg, Dec. 2011. 14

23. N. Döttling, N. Fleischhacker, J. Krupp, and D. Schröder. Two-message, oblivious evaluation of cryptographic functionalities.
In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 619–648. Springer, Heidelberg,
Aug. 2016. 1, 3

24. M. Fischlin. Round-optimal composable blind signatures in the common reference string model. In C. Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, Heidelberg, Aug. 2006. 1, 2, 3, 7

25. M. Fischlin and D. Schröder. Security of blind signatures under aborts. In S. Jarecki and G. Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 297–316. Springer, Heidelberg, Mar. 2009. 7

26. M. Fischlin and D. Schröder. On the impossibility of three-move blind signature schemes. In H. Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 197–215. Springer, Heidelberg, May / June 2010. 3

27. G. Fuchsbauer, C. Hanser, and D. Slamanig. Practical round-optimal blind signatures in the standard model. In R. Gennaro
and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 233–253. Springer, Heidelberg, Aug.
2015. 3

28. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 31–51. Springer, Heidelberg, Apr. 2008. 14

29. W. Gao, Y. Hu, B. Wang, and J. Xie. Identity-based blind signature from lattices in standard model. In K. Chen, D. Lin,
and M. Yung, editors, Information Security and Cryptology - 12th International Conference, Inscrypt 2016, Beijing, China,
November 4-6, 2016, Revised Selected Papers, volume 10143 of Lecture Notes in Computer Science, pages 205–218.
Springer, 2016. 3

30. W. Gao, Y. Hu, B. Wang, J. Xie, and M. Liu. Identity-based blind signature from lattices. Wuhan University Journal of
Natural Sciences, 22(4):355–360, 2017. 3

31. S. Garg and D. Gupta. Efficient round optimal blind signatures. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 477–495. Springer, Heidelberg, May 2014. 3

32. S. Garg, V. Rao, A. Sahai, D. Schröder, and D. Unruh. Round optimal blind signatures. In P. Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 630–648. Springer, Heidelberg, Aug. 2011. 3

33. E. Hauck, E. Kiltz, and J. Loss. A modular treatment of blind signatures from identification schemes. In Y. Ishai and
V. Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 345–375. Springer, Heidelberg, May 2019.
1, 2, 4, 5, 11, 18, 19, 22, 23, 25, 28

34. A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures (extended abstract). In B. S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 150–164. Springer, Heidelberg, Aug. 1997. 1, 2, 3, 7

35. J. Katz, D. Schröder, and A. Yerukhimovich. Impossibility of blind signatures from one-way permutations. In Y. Ishai,
editor, TCC 2011, volume 6597 of LNCS, pages 615–629. Springer, Heidelberg, Mar. 2011. 3

36. A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr., 75(3):565–599,
2015. 16

37. H. Q. Le, W. Susilo, T. X. Khuc, M. K. Bui, and D. H. Duong. A blind signature from module latices. In 2019 IEEE
Conference on Dependable and Secure Computing (DSC), pages 1–8. IEEE, 2019. 3

38. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In M. Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, Dec. 2009. 1, 2, 3, 7, 13, 14

39. V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 738–755. Springer, Heidelberg, Apr. 2012. 3

20

https://eprint.iacr.org/2020/260
https://eprint.iacr.org/2020/260

40. V. Lyubashevsky and D. Micciancio. Generalized compact Knapsacks are collision resistant. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 144–155. Springer, Heidelberg, July
2006. 14

41. V. Lyubashevsky and G. Seiler. Short, invertible elements in partially splitting cyclotomic rings and applications to
lattice-based zero-knowledge proofs. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 204–224. Springer, Heidelberg, Apr. / May 2018. 16

42. L. Minder and A. Sinclair. The extended k-tree algorithm. In C. Mathieu, editor, 20th SODA, pages 586–595. ACM-SIAM,
Jan. 2009. 17

43. N. K. Nguyen. On the non-existence of short vectors in random module lattices. In S. D. Galbraith and S. Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part II, volume 11922 of Lecture Notes in
Computer Science, pages 121–150. Springer, 2019. 16

44. T. Okamoto. Provably secure and practical identification schemes and corresponding signature schemes. In E. F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer, Heidelberg, Aug. 1993. 1

45. T. Okamoto. Efficient blind and partially blind signatures without random oracles. In S. Halevi and T. Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 80–99. Springer, Heidelberg, Mar. 2006. 3

46. T. Okamoto and K. Ohta. Universal electronic cash. In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
324–337. Springer, Heidelberg, Aug. 1992. 1

47. D. Papachristoudis, D. Hristu-Varsakelis, F. Baldimtsi, and G. Stephanides. Leakage-resilient lattice-based partially blind
signatures. Cryptology ePrint Archive, Report 2019/1452, 2019. https://eprint.iacr.org/2019/1452. 3

48. C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In S. Halevi
and T. Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 145–166. Springer, Heidelberg, Mar. 2006. 14

49. D. Pointcheval. Strengthened security for blind signatures. In K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS,
pages 391–405. Springer, Heidelberg, May / June 1998. 2

50. D. Pointcheval and J. Stern. Provably secure blind signature schemes. In K. Kim and T. Matsumoto, editors, ASIACRYPT’96,
volume 1163 of LNCS, pages 252–265. Springer, Heidelberg, Nov. 1996. 1

51. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. M. Maurer, editor, EUROCRYPT’96, volume
1070 of LNCS, pages 387–398. Springer, Heidelberg, May 1996. 1, 3

52. D. Pointcheval and J. Stern. New blind signatures equivalent to factorization (extended abstract). In R. Graveman, P. A.
Janson, C. Neuman, and L. Gong, editors, ACM CCS 97, pages 92–99. ACM Press, Apr. 1997. 1

53. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology,
13(3):361–396, June 2000. 1, 2, 3, 22, 23

54. F. Rodriuguez-Henriquez, D. Ortiz-Arroyo, and C. Garcia-Zamora. Yet another improvement over the mu-varadharajan
e-voting protocol. Comput. Stand. Interfaces, 29(4):471–480, 2007. 1

55. P. Rogaway. Formalizing human ignorance. In P. Q. Nguyen, editor, Progress in Cryptology - VIETCRYPT 06, volume
4341 of LNCS, pages 211–228. Springer, Heidelberg, Sept. 2006. 4

56. M. Rückert. Lattice-based blind signatures. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 413–430.
Springer, Heidelberg, Dec. 2010. 1, 2, 13, 15, 17, 19

57. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, Jan. 1991. 1
58. C.-P. Schnorr. Security of blind discrete log signatures against interactive attacks. In S. Qing, T. Okamoto, and J. Zhou,

editors, ICICS 01, volume 2229 of LNCS, pages 1–12. Springer, Heidelberg, Nov. 2001. 2, 17, 18, 19
59. D. Schröder and D. Unruh. Security of blind signatures revisited. Journal of Cryptology, 30(2):470–494, Apr. 2017. 7
60. D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 288–303.

Springer, Heidelberg, Aug. 2002. 2, 17, 19
61. X. Yi, K.-Y. Lam, and D. Gollmann. A new blind ECDSA scheme for bitcoin transaction anonymity. Cryptology ePrint

Archive, Report 2018/660, 2018. https://eprint.iacr.org/2018/660. 1
62. L. Zhang and Y. Ma. A lattice-based identity-based proxy blind signature scheme in the standard model. Mathematical

Problems in Engineering, 2014, 2014. 3
63. H. Zhu, Y. Tan, X. Zhang, L. Zhu, C. Zhang, and J. Zheng. A round-optimal lattice-based blind signature scheme for cloud

services. Future Generation Comp. Syst., 73:106–114, 2017. 3

21

https://eprint.iacr.org/2019/1452
https://eprint.iacr.org/2018/660

A Proof of Theorem 4

In this section, we present the proof of Theorem 4. We begin by introducing two crucial lemmas for the proof and
then give a proof intuition.

A.1 Prerequisites

THE SUBSET FORKING LEMMA. We recall the Subset Forking Lemma, which was introduced in [33] as a
generalization of the General Forking Lemma of Bellare and Neven [10].

Lemma 8 (Subset Forking Lemma). Fix any integer Q ≥ 1 and a set H of size ≥ 2 as well as a set of side
outputs Σ, instances I, and a randomness space Ω. Let C be an algorithm that on input (I,h) ∈ I × HQ and
randomness ω ∈ Ω returns a tuple (j, σ), where 0 ≤ j ≤ Q and σ ∈ Σ. We partition its input space I ×Ω ×HQ
into setsW1, . . . ,WQ where for fixed 1 ≤ j ≤ Q,Wj is the set of all (I, ω,h) that result in (j, σ)← C(h, I;ω)
for some arbitrary side output σ.

For any 1 ≤ j ≤ Q and B ⊆ Wj define

acc(B) := Pr
(I,ω,h) $←I×Ω×HQ

[(I, ω,h) ∈ B]

frk(B, j) := Pr
(I,ω,h) $←I×Ω×HQ,h′ $←HQ|h[j−1]

[(
hj 6= h′j

)
∧

((I, ω,h) ∈ B) ∧ ((I, ω,h′) ∈ B)

]
.

Then

frk(B, j) ≥ acc(B) ·
(

acc(B)
4 − 1

|H|

)
.

GENERALIZED SPLITTING LEMMA. We begin by proving a simple generalization of the well known splitting
lemma [53]. This lemma is also sometimes referred to as the ‘heavy row’ lemma in the literature (e.g. [3]).

Lemma 9 (Generalized Splitting Lemma). Let n ∈ N and X1, ...,Xn be sets of finite size. Let B ⊂ X1 × · · · ×
Xn := X be such that

Pr
x

$←X
[x ∈ B] := ε.

For any S ⊂ [n], α ≤ ε and i1 < · · · < i|S̄| and X ′S := Xi1 × · · · × Xi|S̄| , define

BS,α :=
{

(x1, ..., xn) ∈ X | Pr
x′

$←X ′S
[xS,x′ ∈ B] ≥ ε− α

}
,

where

xS,x′ :=
{

xi, if i ∈ S,
x′i, otherwise

.

Then the following statements hold:

(i) Pr
x

$←X
[x ∈ BS,α] ≥ α

(ii) ∀x ∈ BS,α : Pr
x′

$←X ′S
[xS,x′ ∈ B] ≥ ε− α

(iii) Pr
x

$←X
[x ∈ BS,α | x ∈ B] ≥ α/ε

Proof. We argue along the lines of [53]. Item (ii) follows directly from the definition of BS,α. To see that Item (i)
holds, suppose, toward a contradiction, that Pr

x
$←X

[x ∈ BS,α] < α. By law of total probability, we have

ε = Pr
x

$←X
[x ∈ B]

= Pr
x

$←X
[x ∈ BS,α] · Pr

x
$←X

[x ∈ B | x ∈ BS,α] + Pr
x

$←X
[x ∈ B̄S,α] · Pr

x
$←X

[x ∈ B | x ∈ B̄S,α]

< α · 1 + 1 · (ε− α) = ε,

22

a contradiction. To see Item (iii), we consider

Pr
x

$←X
[x ∈ BS,α | x ∈ B]

= 1− Pr
x

$←X
[x ∈ B̄S,α | x ∈ B]

= 1− Pr[x ∈ B | x ∈ B̄S,α] · Pr[x ∈ B̄S,α]
Pr[x ∈ B]

≥ 1− Pr[x ∈ B | x ∈ B̄S,α] · 1
Pr[x ∈ B] = 1− ε− α

ε
= α/ε.

A.2 Proof Intuition and Differences to [33]

The proof of Theorem 4 follows the same arguments as the proof in [33], and so we focus here on highlighting
the differences to their proof. At the heart of the proof in both [53] and [33] lies the observation that the same
transcript of the protocol execution between the adversary and the simulator could have resulted from distinct
secret keys sk1 and sk2, both of which map to the same public key pk under F. The proof then leverages a subtle
argument by the probabilistic method to ensure that the adversary cannot force certain variables in the view of
the simulator that depend on the actual choice of sk1 or sk2 to always take the same value, with overwhelming
probability, when the adversary is run with two distinct sets of challenges h and h’. In their proof, this corresponds
to the variable χ̂ which depends on both the secret key as well as the vector h of challenge values. To analyze these
probabilities, the proofs of [53] and [33] follow the usual paradigm of derandomizing the adversary, by viewing it
as a deterministic algorithm that takes as input a tuple consisting of an instance in the form of a secret key sk, a
selection of randomness required in the experiment, and a fixed set of challenges, h. On top of this, their proofs
then exploit the fact that a public key pk has multiple preimages under F. This is used in the proof by defining a
mapping Φ that maps any tuple from the adversary’s underlying input space to another input tuple, which will result
in the same view for the adversary. Subsequently, the proofs of [53] and [33] then argue over particular properties
of Φ, one of which is that it defines a bijective mapping on the set of such input tuples that lead the adversary to a
successful run. The difficulty that occurs in our context is that (because of imperfect correctness), while we can
still define the mapping Φ in the same way as [33], it is possible that Φ maps valid tuples to invalid ones, which
would not occur in an honest execution of the simulation. This unravels the subtle argument in [53,33]. Thus, an
additional difficulty of our proof is to show that, for a not too small fraction of such tuples, their image under Φ
still results in a valid tuple that could occur as the result of an actual execution of the experiment. Here, we can
once again rely on the generalized splitting lemma, introduced in the previous section which we can use to force a
certain fraction of ‘good tuples’ to exist (within the set of all tuples).

A.3 The Reduction Algorithm

Let M be an adversary against (ε, t,QV, QP1 , QP2)-OMMIM of ID[LHF] relative to par . We show how to
construct an adversary B against (ε′, t′)-CR of LHF relative to par . The first part of our proof follows very closely
along the lines of [33]. Without loss of generality, we will assume that QP1(M) = QP1 , QP2(M) = QP2 , QV(M) =
QV, `(M) = QP2 + 1, as well as QP1 ≥ QP2 . For 1 ≤ i ≤ QP2 + 1, the idea is to define wrapper algorithms
Ai which ‘sandbox’ M in such a way that Ai is deterministic and self-contained, i.e., has a simple input-output
behaviour (as opposed to M, who can ask signing and challenge queries). Ai (for some i) is then later invoked by
adversary B to break collision resistance of LHF. More concretely, Ai obtains as input an instance I = sk, runs
M on random tape ω and uses vector h ∈ CQV to answer M’s QV queries to Ch. Throughout the proof, we will
denote with |C| ≥ 22κ the size of the challenge space C = C(par) = Sc′ . The description of algorithm Ai is given
in Figure 11. Note that Ai is deterministic for fixed randomness ω.

ANALYSIS OF Ai. To analyze Ai, we now introduce the same notation as [33]. Variables Ĵ i, χ̂i, ŝ′, and ĥi are
defined on Lines 35 through 38 of Figure 11 and are introduced to simplify the referencing of values associated
with successful calls to oracle V2(vSid, ·). The variable

χ̂i = ŝ′i − ĥi · sk

results from the i-th successful call to the verification oracle V2(vSid, ·), whereas the index Ĵ i indicates which
session identity vSid corresponds to this call.

23

As Ai is deterministic, an execution of Ai is fixed via the tuples I = sk, h, and Ai’s randomness ω. We define
the setW of successful inputs of Ai as the set of all tuples (I, ω,h) which lead to a successful run of Ai, i.e.,

W := {(I, ω,h) | Ĵ i 6= 0; (Ĵ i, χ̂i)← Ai(I,h;ω)}

Note thatW is independent of i and, by construction of Ai,

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ W] = AdvOMMIM
ID[LHF] (M) = ε.

In this way, Ĵ i, χ̂i, ŝ′, and ĥi can be seen as random variables whose randomness is taken from the uniform
distribution on (I ×Ω × CQV). Since their outcome is uniquely determined given (I, ω,h) ∈ W , we write(

Ĵ i(I, ω,h), χ̂i(I, ω,h)
)
← Ai(I,h;ω).

We consider the following probability for fixed (I, ω,h), j, c and i:

Adversary Ai(I = sk,h;ω):
01 Parse (ωM, r1,1, . . . , rQP1 ,η

)← ω
02 Ri,j ← F(ri,j)
03 pk ← F(sk)
04 ctr ← 0; pSid ← 0; vSid ← 0
05 MP1,P2,Ch,V2(pk)
06 `(M)← #{k | vSessk = closed ∧ b′k = 1}
07 QP2(M)← #{k | pSessk = closed}
08 QP1(M)← #{k | pSessk = open}
09 QV(M)← vSid
10 If (`(M) ≥ QP2(M) + 1): Return (Ĵ i, χ̂i)
11 Return (Ĵ i, χ̂i)← (0, 0)
Procedure P1
12 pSid ← pSid + 1
13 pSesspSid ← open
14 cpSid ← ⊥
15 Return (pSid,RpSid,1, . . . ,RpSid,η)
Procedure P2(pSid, c)
16 If pSesspSid 6= open : Return ⊥
17 pSesspSid ← closed
18 If c 6∈ Sc : Return ⊥
19 cpSid ← c
20 For i ∈ [η] :
21 si ← c · sk + rpSid,i
22 If si ∈ Ds
23 Return spSid
24 Return ⊥

Procedure V1(R′)
25 vSid ← vSid + 1
26 R′vSid ← R′

27 vSesspSid ← open
28 Return (vSid,hvSid)
Procedure V2(vSid, s′)
29 If vSessvSid 6= open : Return ⊥
30 S′vSid ← F(s′)
31 vSessvSid ← closed
32 b′vSid ← 0
33 If IDVer(pk,R′vSid ,hvSid , s

′) = 1:
34 ctr ← ctr + 1
35 ŝ′ctr ← s′

36 ĥctr ← hvSid
37 χ̂ctr ← ŝ′ctr − ĥctr · sk
38 Ĵctr ← vSid
39 b′vSid ← 1
40 Return b′vSid

Fig. 11. Wrapping adversaries Ai for 1 ≤ i ≤ QP2 + 1

Pr
h′ $←CQV |h[j−1]

[Ĵ i(I, ω,h′) = j ∧ χ̂i(I, ω,h′) = c], (9)

where the conditional probability h′ $← CQV |h[j−1] was introduced in Section 2. We now define

ci,j(I, ω,h) := arg max
c

Pr
h′ $←CQV |h[j−1]

[Ĵ i(I, ω,h′) = j ∧ χ̂i(I, ω,h′) = c]

as the lexicographically first value c s.t. the probability in (9) is maximized when (I, ω,h), j, i are fixed. To simplify
notations, we also introduce Ci(I, ω,h) = ci,Ĵi(I,ω,h)(I, ω,h).

24

Adversary B:
00 i∗ $← [QP2 + 1]
01 h $← CQV

02 ω $← Ω
03 sk $← Dsk
04 (Ĵ i∗ , χ̂i∗)← Ai∗(I = sk,h;ω) //First execution of Ai∗
05 If Ĵ i∗ = 0: Return ⊥
06 h′ $← CQV |h[Ĵi∗−1] //Conditionally resample h′

07 (Ĵ ′i∗ , χ̂′i∗)← Ai∗(I = sk,h′;ω) //Second execution of Ai∗
08 If (Ĵ ′i∗ = Ĵ i∗) ∧ (χ̂i∗ 6= χ̂′i∗) : Return (χ̂i∗ , χ̂′i∗)
09 Return ⊥

Fig. 12. Adversary B against collision resistance of LHF relative to fixed par .

For fixed i, j, we can now define Bi,j ⊂ W as

Bi,j := {(I, ω,h) ∈ W | Ĵ i(I, ω,h) = j ∧ χ̂i(I, ω,h) 6= Ci(I, ω,h)}.

and

βi,j = Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Bi,j]

δi,j = Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
χ̂i(I, ω,h′) 6= χ̂i(I, ω,h)
∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
.

We reuse Lemma 7.1 from [33], which follows in exactly the same way as in their proof. We restate their proof for
completeness in Section A.4.

Lemma 10. For all i, j: δi,j ≥ βi,j
(
βi,j

8 −
1

2|C|

)
.

Lemma 11. There exist i ∈ [QP2 + 1], j ∈ [QV] such that βi,j >

(
ε2

8 −
Q
QP2+1
V ·(QP2+QP1

QP1
)

|C|

)
· 1

2QV(QP2+1) .

The proof of this lemma is postponed to Section A.5.

ADVERSARY B AGAINST COLLISION RESISTANCE OF LHF. We next describe the adversary B depicted in
Figure 12, against the collision resistance of LHF. B first samples randomness ω $← Ω, a secret key sk $← Dsk , a
vector h $← CQV , and an index i∗ $← [QP2 + 1] and runs Ai∗ on input (I = sk,h;ω). To run Ai∗ a second time,
it then samples a second random vector h′ as h′ $← CQV |h[Ĵi∗−1] and runs Ai∗ again, this time with the same
randomness ω and the same instance I , but with h′ instead of h. Note that by definition of Ai∗ ,

F(χ̂i∗) =F(ŝ′i∗ − ĥi∗ · sk)
=S′Ĵi∗ − hĴi∗ · pk = R′Ĵi∗

,

whenever B does not abort. Note that Ai∗ sees identical answers for the first Ĵ i∗ − 1 queries to Ch, and so it behaves
identically in both runs up to the point where it receives the answer to the Ĵ i∗-th query to Ch. In particular, Ai∗
poses the same Ĵ i∗ -th query to Ch which means that F(χ̂′i∗) = R′Ĵi∗

and therefore also F(χ̂i∗) = F(χ̂′i∗). We now

25

consider

ε′ = AdvCR
LHF(B) = Pr

(χ̂i∗ ,χ̂′i∗) $←B
[χ̂i∗ 6= χ̂′i∗ ∧ F(χ̂i∗) = F(χ̂′i∗)]

=
QV∑
j=1

Pr[χ̂i∗ 6= χ̂′i∗ ∧ F(χ̂i∗) = F(χ̂′i∗) ∧ Ĵ i∗ = Ĵ ′i∗ = j]

=
QV∑
j=1

Pr[χ̂i∗ 6= χ̂′i∗ ∧ Ĵ i∗ = Ĵ ′i∗ = j] =
QV∑
j=1

δi∗,j

≥ 1
QP2 + 1 · max

i∈[QP2+1]

QV∑
j=1

δi,j

≥ max
i,j

βi,j
2(QP2 + 1)

(
βi,j
4 − 1

|C|

)
,

where for the first inequality we used that
∑
δi∗,j = maxi

∑
δi,j with probability at least 1/(QP2 + 1) and in the

last step we applied Lemma 10. By Lemma 11 we obtain the final bound

ε′ ≥
ε2

8 −
Q
QP2+1
V ·(QP2+QP1

QP1
)

|C|

32Q2
V(QP2 + 1)3 ·

ε2

8 −
Q
QP2+1
V ·

(QP2+QP1
QP1

)
|C|

− 16Q2
V(QP2 + 1)2

|C|

= O

((
ε2 − (QVQP1)QP2+1

|C|

)2 1
Q2

VQ
3
P2

)
= O

((
ε2 − (QVQP1)QP2+1

|C|

)2 1
Q2

VQ
3
P2

)
,

where the second-to-last equality holds for QP1 ≥ QP2 .

A.4 Proof of Lemma 10

Proof. We show in the following that for all (I, ω,h) $← (I ×Ω × CQV), d ∈ D :

αi,j(I, ω,h, d) := Pr
h′ $←CQV |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ µi,j(I, ω,h)/2, (10)

where

µi,j(I, ω,h) := Pr
h′ $←CQV |h[j−1]

[(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j].

For a true/false statement s, we define the boolean variable B(s) as 1 if s is true and 0 otherwise. Now notice that
(10) implies the theorem statement since

δi,j = Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
χ̂i(I, ω,h′) 6= χ̂i(I, ω,h)
∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
=
∑
d

Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
χ̂i(I, ω,h′) 6= d ∧ χ̂i(I, ω,h) = d

∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
=
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · αi,j(I, ω,h, d)]

≥ 1
2
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · µi,j(I, ω,h)].

26

In the last step, we have applied linearity and monotonicity of the expectation as well as (10).

1
2
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · µi,j(I, ω,h)]

= 1
2 ·
∑
d

Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j
∧(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j

]
= 1

2 · Pr
(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[
Ĵ i(I, ω,h) = j
∧(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j

]
(11)

≥ 1
2 · Pr

(I,ω,h) $←(I×Ω×CQV),h′ $←CQV |h[j−1]

[(I, ω,h) ∈ Bi,j ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j] (12)

= 1
2 · frk(Bi,j , j) (13)

≥ βi,j
(
βi,j/8−

1
2|C|

)
. (14)

Fom (11) to (12), we have used the fact that (I, ω,h′) ∈ Bi,j implies Ĵ i(I, ω,h′) = j. The step from (13) to (14)
follows from Lemma 8. We prove (10) by analyzing two cases. For all I, ω,h, d, we define

γi,j(I, ω,h, d) := Pr
h′ $←CQV |h[j−1]

[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j].

Case 1: γi,j(I, ω,h, d) ≥ µi,j(I, ω,h)/2. Note that in this case we can assume d 6= ci,j(I, ω,h). This is because
if d = ci,j(I, ω,h), then

γi,j(I, ω,h, d) ≤ Pr[χ̂i(I, ω,h′) = ci,j(I, ω,h) ∧ (I, ω,h′) ∈ Bi,j]
= Pr[χ̂i(I, ω,h′) = ci,j(I, ω,h′) ∧ (I, ω,h′) ∈ Bi,j]
= Pr[χ̂i(I, ω,h′) = Ci(I, ω,h′) ∧ (I, ω,h′) ∈ Bi,j] = 0.

For the first equality, we used the fact that ci,j(I, ω,h) = ci,j(I, ω,h′) for any h and h′ which have the same j− 1
first entries. For the second equality, we have again used the fact that (I, ω,h′) ∈ Bi,j implies Ĵ i(I, ω,h′) = j.
This trivializes the claim and so we assume in the following that d 6= ci,j(I, ω,h). We now continue with

αi,j(I, ω,h, d) = Pr
h′ $←CQV |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) = ci,j(I, ω,h) ∧ Ĵ i(I, ω,h′) = j]
≥ Pr[χ̂i(I, ω,h′) = d ∧ Ĵ i(I, ω,h′) = j].

Using again that (I, ω,h′) ∈ Bi,j implies Ĵ i(I, ω,h′) = j, we obtain

Pr[χ̂i(I, ω,h′) = d ∧ Ĵ i(I, ω,h′) = j] ≥ Pr[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j]
≥ γi,j(I, ω,h, d) ≥ µi,j(I, ω,h)/2.

Case 2: γi,j(I, ω,h, d) < µi,j(I, ω,h)/2. Now,

αi,j(I, ω,h, d) = Pr
h′ $←CQV |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) 6= d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]
= Pr[(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]
− Pr[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]

= µi,j(I, ω,h)− γi,j(I, ω,h, d) > µi,j(I, ω,h)/2.

This proves (10) and hence the lemma.

27

A.5 Proof of Lemma 11

Consider again the algorithm Ai in Figure 11 and its internal variables. On input (I = sk, ω = (ωM, r),h), Ai
invokes M on pk = F(sk) and randomness ωM and answers its queries using the values in r,h. Similarly as before,
this allows us to fix an execution of M (within Ai) via a tuple of the form (I, ω,h) = (I, (ωM, r),h) . Let c(I, ω,h)
denote the vector of challenge values as defined in Line 19 of Figure 11.

Recall that we have assumed that F : D −→ R and the existence of a torsion-free element z∗ ∈ D \ {0} from
the kernel such that (i) F(z∗) = 0; and (ii) ∀s, s′ ∈ Sc : (s− s′) · z∗ = 0 =⇒ s = s′.

Lemma 12. Consider the mapping

Φ :W −→ (I ×Ω × CQV)(
sk, (ωM, r1,1, . . . , rQP2 ,η

),h
)
7→(

sk + z∗, (ωM, r1,1 − z∗ · c(I, ω,h), . . . , rQP1 ,η
− z∗ · c(I, ω,h)),h

)
,

where we make the convention that for v ∈ D ∪ C ∪ R, v · ⊥ := 0. Let Winj ⊂ W be the set of (I, ω,h) s.t.
Φ(I, ω,h) ∈ Φ(W) ∩W. Then the restriction Φinj :Winj −→ Φ(W) ∩W of Φ toWinj is injective.

For the proof we require the following claim.

Claim. Let (I, ω,h) ∈ W . If Φ(I, ω,h) ∈ W , then the tuples (I, ω,h) and Φ(I, ω,h) fix the same execution of
M.

Proof. We show that M sees identical values in both executions corresponding to (I, ω,h) and Φ(I, ω,h). To this
end we consider all values in the view of M.

– Initial input to M. Since Φ does not alter the values in ωM, we only need to verify that M obtains the same
public key in both executions. This is ensured via F(sk + z∗) = F(sk) + F(z∗) = F(sk) = pk.

– Outputs of oracle P1. Oracle P1 consecutively returns the values from R = F(r), as defined in Line 02 of
Figure 11. They remain the same in both executions since F(r) = R = R− 0 · c(I, ω,h) = F(r)− F(z∗) ·
c(I, ω,h) = F(r − z∗ · c(I, ω,h)).

– Outputs of oracle V2. Oracle V2 consecutively returns the values from b′. They remain the same in both
executions since they depend onR, h, and the randomness ωM.

– Outputs of oracle P2. Oracle P2 consecutively returns the values from s = c · sk + r, as defined in Line 21
of Figure 11 (or ⊥, in case s 6∈ Ds). Note that the first value c1 in both executions is the same (as it only
depends on values that we have already argued to remain the same in both executions), i.e., c1 = c1(I, ω,h) =
c1(Φ(I, ω,h)). Thus, s1(I, ω,h) = r1 + sk · c1(I, ω,h) = r1 − z∗ · c1(I, ω,h) + z∗ · c1(I, ω,h) + sk ·
c1(I, ω,h) = (r1 − z∗ · c1(Φ(I, ω,h))) + (sk + z∗) · c1(Φ(I, ω,h)) = s1(Φ(I, ω,h)), where in the second
to last step, we have used the distributive law over the module formed by C and D. (Here, we overload the
notation of c1, r1 to denote the values corresponding to the first session in which these values are not ⊥). By a
simple inductive argument, it now follows that s(I, ω,h) = s(Φ(I, ω,h)).

Thus, (I, ω,h) and Φ(I, ω,h) fix the same executions of M.

Proof (Proof of Lemma 12). SupposeΦinj is not injective. Thus, for distinct tuples (I, (ωM, r),h) 6= (I ′, (ω′M, r′),h′)
inWinj , we have Φinj (I, (ωM, r),h) = Φinj(I ′, (ω′M, r′),h′). This implies ωM = ω′M and h = h′. Similarly,
sk + z∗ = sk ′ + z∗, which implies that sk = sk ′. Lastly, r− z∗ · c (I, (ωM, r),h) = r′ − z∗ · c(I ′, (ω′M, r′),h′).
Since Φinj (I, (ωM, r),h) = Φinj(I ′, (ω′M, r′),h′), by Claim A.5, (I, (ωM, r),h) and (I ′, (ω′M, r′),h′) fix the
same execution and therefore also c (I, (ωM, r),h) = c(I ′, (ω′M, r′),h′). This implies r = r′, leading to the
contradiction (I, (ωM, r),h) = (I ′, (ω′M, r′),h′).

We now introduce the following notation. Let B =
⋃
i,j

Bi,j and let G =W \B. That is, for all (I, ω,h) ∈ G, we

have ∀k ∈ [QP2 + 1] : χ̂k(I, ω,h) = Ck(I, ω,h). The following lemma from [33] can be proven in an almost
verbatim manner for our setting, so we do not reprove it here.

Lemma 13. For any (ω, I) = ((ωM, r), I) ∈ Ω × I,

Pr
h

$←CQV
[(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G] ≤

Q
QP2+1
V ·

(QP2+QP1
QP1

)
(
|C|
|Sc|

)QP2 · |C|
.

28

Proof. Toward a contradiction, assume that for some Ω × I

Pr
h

$←CQV

[
(I, (ωM, r),h) ∈ G
∧Φ (I, (ωM, r),h) ∈ G

]
>
Q
QP2+1
V ·

(QP2+QP1
QP1

)
(
|C|
|Sc|

)QP2 · |C|
. (15)

Thus, there exist a set {u1, . . . ,uQP2+1} of QP2 + 1 distinct indices from [QV], such that

Pr
h

$←CQV

[
(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G
∧∀i : Ĵ i (I, (ωM, r),h) = ui

]
>

(QP2+QP1
QP1

)
(
|C|
|Sc|

)QP2 · |C|
.

Next, consider a vector d ∈ {Sc ∪ {⊥}}QP2+QP1 of the following format. In any position i corresponding to
one the QP1 abandoned sessions, di = ⊥. The remaining QP2 positions are in the range Sc. Since there are(QP2+QP1

QP1

)
· |Sc|QP2 such vectors, there must exist one vector d that satisfies

Pr
h

$←CQV

[
(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G
∧∀i : Ĵ i (I, (ωM, r),h) = ui ∧ c (I, (ωM, r),h) = d

]
>

1(
|C|
|Sc|

)QP2 · |C| |Sc|QP2

= 1
|C|QS2++1 .

Finally, there exists a set {x1, . . . ,xQV−QP2−1} ofQV−QP2−1 distinct indices from [QV]\{u1, . . . ,uQP2+1}
and a vector (h̃1, . . . , h̃QV−QP2−1) ∈ CQV−QP2−1, such that:

Pr
h

$←CQV

[
(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G ∧ ∀i : Ĵ i(I, (ωM, r),h′) = ui
∧c (I, (ωM, r),h) = d ∀m : hxm = h̃xm

]
(16)

>
1

|C|QP2+1 |C|QV−QP2−1 = 1
|C|QV

.

Hence, there exist at least two vectors k,k′ ∈ CQQV such that the condition inside the probability term 16 is true.
Denote these vectors as k 6= k′. Now there exists an index i ∈ V s.t. ki 6= k′i. W.l.o.g., let i be the smallest such
index. This implies that ∀j < i : kj = k′j and ki 6= k′i. Moreover, we know that i ∈ {u1, . . . ,uQS2+1}. Let
i = uj , j ∈ [QP2 + 1]. The equality k|i = k′|i implies that

Cj(I, (ωM, r),k) = cj,Ĵj(I,(ωM,r),k)

= cj,i(I, (ωM, r),k) = cj,i(I, (ωM, r),k′)
= cj,Ĵj(I,(ωM,r),k′) = Cj(I, (ωM, r),k′). (17)

From Lemma A.5 we know that Ĵj(I, (ωM, r),k) = Ĵj(Φ(I, (ωM, r),k)) = i and that sj(I, (ωM, r),k) =
sj(Φ(I, (ωM, r),k)). We also know that (I, (ωM, r),k) ∈ G and Φ(I, (ωM, r),k) ∈ G. This implies that
χj(I, (ωM, r),k) = Cj(I, (ωM, r),k) = sj(I, (ωM, r),k)−sk·ki andχj(Φ(I, (ωM, r),k)) = Cj(Φ(I, (ωM, r),k)) =
sj(Φ(I, (ωM, r),k))− (sk + z∗) · ki. So we infer

Cj(I, (ωM, r),k) = sj(I, (ωM, r),k)− sk · ki
= sj(Φ(I, (ωM, r),k))− sk · ki
= sj(Φ(I, (ωM, r),k))− sk · ki + z∗ · ki − z∗ · ki
= sj(Φ(I, (ωM, r),k))− (sk + z∗) · ki + z∗ · ki
= Cj(Φ(I, (ωM, r),k)) + z∗ · ki
= Cj(Φ((I, (ωM, r),k))) + z∗ · ki.

Analogously, we infer

Cj(I, (ωM, r),k′) = sj(I, (ωM, r),k′)− sk · k′i
= Cj(Φ(I, (ωM, r),k′)) + z∗ · k′i.

29

Combining these equations, we obtain:

Cj(Φ(I, (ωM, r),k)) + z∗ · ki
= Cj(I, (ωM, r),k) = Cj(I, (ωM, r),k′)
= Cj(Φ(I, (ωM, r),k′)) + z∗ · k′i.

Since we have fixed c(I, (ωM, r),k) = c(I, (ωM, r),k′) = d, we also know that

Cj(Φ(I, (ωM, r),k))
= Cj(ωA, r − z∗c(I, (ωM, r),k), (sk + z∗, par),k)
= Cj(ωA, r − z∗d, I,k)
= Cj(ωA, r − z∗d, I,k′)
= Cj(ωA, r − z∗c(I, (ωM, r),k′), g, (sk + z∗, par),k′)
= Cj(Φ(I, (ωM, r),k′)),

where we have again used that Ĵj(I, (ωM, r),k) = Ĵj(Φ(I, (ωM, r),k)) = i and k|i = k′|i together imply that
Cj(I, (ωM, r−z∗d),k) = Cj(I, (ωM, r−z∗d),k′). By combining equations, it now follows that z∗ ·ki = z∗ ·k′i
or, equivalently, z∗ · (ki − k′i) = 0. Thus, torsion-freeness of z∗ implies that ki = k′i which contradicts the
assumption that ki 6= k′i. This completes the proof.

The following lemma lower bounds the probability ofWinj . Let Dsk and Dr denote the sets of secret keys and
r’s, respectively; then E = Dsk×D

QP1η
r . Let Einj ⊂ E s.t. for all c ∈ Sc, (sk, r) ∈ Einj =⇒ (sk+z∗, r−c·z∗) ∈

E . Accordingly, ∀(sk, r) ∈ E \ Einj : (sk + z∗, r − c · z∗) 6∈ E . Since Φ maps sk to sk + z∗ and maps r to
r − c(I, ω,h) · z∗, (sk, r) ∈ Einj ∧ (sk, (ωM, r),h) ∈ W implies that (sk, (ωM, r),h) ∈ Winj .

Lemma 14. Pr
(sk,(ωM,r),h) $←(I×Ω×CQV)

[(sk, (ωM, r),h) ∈ Winj] ≥ ε2/8.

Proof. In Lemma 9, we set X1 := Dsk and X3 := DQP1η
r and accordingly, S := {1, 3}. Then by Lemma 9, there

exists a set BS,ε/2 s.t.

Pr
(sk,(ωM,r),h) $←(I×Ω×CQV)

[(sk, (ωM, r),h) ∈ BS,ε/2] ≥ ε/2

and s.t. for all (sk, (ωM, r),h) ∈ BS,ε/2,

Pr
(sk′,r′) $←E

[(
sk ′, (ωM, r

′),h
)
∈ W

]
≥ ε/2.

The latter inequality can be rewritten as

Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ W ∧ (sk ′, r′) ∈ E \ Einj] (18)

+ Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ W ∧ (sk ′, r′) ∈ Einj]

= Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ W] ≥ ε/2. (19)

By assumption, we have (ε,QP1η
′)-regularity of F, and so at most an ε/4- fraction of (sk, r′) ∈ E satisfy

(sk, r′) ∈ E \ Einj . Hence, it follows that, for all (I, ω,h) = (sk, (ωM, r),h) ∈ BS,ε/2,

Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ W ∧ (sk ′, r′) ∈ E \ Einj]

≤ Pr
(sk′,r′) $←E

[(sk ′, r′) ∈ E \ Einj] ≤ ε/4.

30

By inequality 19, we obtain that for all (I, ω,h) = (sk, (ωM, r),h) ∈ BS,ε/2,

Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ Winj] + ε/4

≥ Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ W ∧ (sk ′, r′) ∈ Einj] + ε/4

≥ Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ W ∧ (sk ′, r′) ∈ Einj]

+ Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ W ∧ (sk ′, r′) ∈ E \ Einj]

= Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ W] ≥ ε/2,

which implies that for all (I, ω,h) = (sk, (ωM, r),h) ∈ BS,ε/2,

Pr
(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ Winj] ≥ ε/4.

Putting things together, we see that

Pr
(sk,(ωM,r),h) $←(I×Ω×CQV)

[(sk, (ωM, r),h) ∈ Winj]

= Pr
(sk,(ωM,r),h) $←(I×Ω×CQV),(sk′,r′) $←E

[
(
sk ′, (ωM, r

′),h
)
∈ Winj]

=
∑

(Î,ω̂,̂h)∈(I×Ω×CQV)

Pr
[(

sk ′, (ωM, r
′),h

)
∈ Winj ∧

(sk, (ωM, r),h) = (Î , ω̂, ĥ)

]

≥
∑

(Î,ω̂,̂h)∈BS,ε/2

Pr
[(

sk ′, (ωM, r
′),h

)
∈ Winj ∧

(sk, (ωM, r),h) = (Î , ω̂, ĥ)

]

=
∑

(Î,ω̂,̂h)∈BS,ε/2

Pr
(sk′,r′) $←E

[(
sk ′, (ω̂M, r

′), ĥ
)
∈ Winj

]
· Pr

(I,ω,h) $←(I×Ω×CQV)
[(I, ω,h) = (Î , ω̂, ĥ)]

≥ ε/4 ·
∑

(Î,ω̂,̂h)∈BS,ε/2

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) = (Î , ω̂, ĥ)]

= ε/4 · Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ BS,ε/2] ≥ ε/4 · ε/2 = ε2/8.

We show in Lemma 7 that it is possible to construct sets E and Einj which satisfy the assumption in Lemma 14.

Lemma 15. Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ B] ≥ 1
2

(
ε2/8−

Q
QP2+1
V ·(QP2+QP1

QP1
)

|C|

)
.

Proof. In the following, let Ginj = Winj ∩ G and Binj = Winj ∩ B. Since for all (I, ω,h) ∈ Winj , we have
Φ(I, ω,h) = Φinj(I, ω,h) ∈ W = G ∪ B, we can partition Ginj into subsets Gginj and Gbinj , such that all elements
in Gginj are mapped into G via Φinj and all elements in Gbinj are mapped into B via Φinj . It follows that

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Ginj]

= Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Gginj] + Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Gbinj] (20)

By Lemma ??, we have:

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Gginj] ≤
Q
QP2+1
V ·

(QP2+QP1
QP1

)
|C|

. (21)

31

Because Φinj is injective:

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Gbinj] ≤ Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ B]. (22)

It follows from 20,21, and 22 that

Pr[(I, ω,h) ∈ Ginj] ≤
Q
QP2+1
V ·

(QP2+QP1
QP1

)
|C|

+ Pr[(I, ω,h) ∈ B].

From this, we can lower bound Pr[(I, ω,h) ∈ B] as

Pr[(I, ω,h) ∈ B] ≥ Pr[(I, ω,h) ∈ Binj] = Pr[(I, ω,h) ∈ Winj]− Pr[(I, ω,h) ∈ Ginj]

≥ Pr[(I, ω,h) ∈ Winj]− Pr[(I, ω,h) ∈ B]−
Q
QP2+1
V ·

(QP2+QP1
QP1

)
|C|

.

Since by the previous Lemma, Pr[(I, ω,h) ∈ Winj] = ε2/8, we finally obtain

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ B] ≥ 1
2

ε2/8−
Q
QP2+1
V ·

(QP2+QP1
QP1

)
|C|

 .

We are now ready to prove Lemma 11, i.e., we show that there exist i ∈ [QP2 + 1], j ∈ [QV] such that

βi,j >

(
ε2

8 −
Q
QP2+1
V ·(QP2+QP1

QP1
)

|C|

)
· 1

2QV(QP2+1) . Toward a contradiction, suppose instead that for all i ∈ [QP2 +

1], j ∈ [QV], we have that

Pr
(I,ω,h) $←(I×Ω×CQV)

[(I, ω,h) ∈ Bi,j] <

ε2

8 −
Q
QP2+1
V ·

(QP2+QP1
QP1

)
|C|

 · 1
2QV(QP2 + 1) .

By Lemma 15,

1
2

ε2

8 −
Q
QP2+1
V ·

(QP2+QP1
QP1

)
|C|

 ≤ Pr[(I, ω,h) ∈ B] = Pr[(I, ω,h) ∈
⋃
i,j

Bi,j]

≤
∑
i,j

Pr[(I, ω,h) ∈ Bi,j] <
1
2

ε2

8 −
Q
QP2+1
V ·

(QP2+QP1
QP1

)
|C|

 .

This is a contradiction.

32

	Lattice-Based Blind Signatures, Revisited

