
Leakage-Resilient Key Exchange and Two-Seed Extractors

Xin Li∗ Fermi Ma† Willy Quach‡ Daniel Wichs§

Abstract

Can Alice and Bob agree on a uniformly random secret key without having any truly secret random-
ness to begin with? Here we consider a setting where Eve can get partial leakage on the internal state of
both Alice and Bob individually before the protocol starts. They then run a protocol using their states
without any additional randomness and need to agree on a shared key that looks uniform to Eve, even
after observing the leakage and the protocol transcript. We focus on non-interactive (one round) key
exchange (NIKE), where Alice and Bob send one message each without waiting for one another.

We first consider this problem in the symmetric-key setting, where the states of Alice and Bob
include a shared secret as well as individual uniform randomness. However, since Eve gets leakage on
these states, Alice and Bob need to perform privacy amplification to derive a fresh secret key from them.
Prior solutions require Alice and Bob to sample fresh uniform randomness during the protocol, while in
our setting all of their randomness was already part of their individual states a priori and was therefore
subject to leakage. We show an information-theoretic solution to this problem using a novel primitive
that we call a two-seed extractor, which we in turn construct by drawing a connection to communication-
complexity lower-bounds in the number-on-forehead (NOF) model.

We then turn to studying this problem in the public-key setting, where the states of Alice and Bob
consist of independent uniform randomness. Unfortunately, we give a black-box separation showing
that leakage-resilient NIKE in this setting cannot be proven secure via a black-box reduction under any
game-based assumption when the leakage is super-logarithmic. This includes virtually all assumptions
used in cryptography, and even very strong assumptions such as indistinguishability obfuscation (iO).
Nevertheless, we also provide positive results that get around the above separation:

• We show that every key exchange protocol (e.g., Diffie-Hellman) is secure when the leakage amount
is logarithmic, or potentially even greater if we assume sub-exponential security without leakage.

• We notice that the black-box separation does not extend to schemes in the common reference string
(CRS) model, or to schemes with preprocessing, where Alice and Bob can individually pre-process
their random coins to derive their secret state prior to leakage. We give a solution in the CRS
model with preprocessing using bilinear maps. We also give solutions in just the CRS model alone
(without preprocessing) or just with preprocessing (without a CRS), using iO and lossy functions.

∗Johns Hopkins University. Email: lixints@cs.jhu.edu
†Princeton University & NTT Research. Email: fermima@alum.mit.edu
‡Northeastern University. Email: quach.w@husky.neu.edu
§Northeastern University & NTT Research. Email: wichs@ccs.neu.edu

1

Contents

1 Introduction 3

2 Technical Overview 5
2.1 Symmetric-Key NIKE . 5
2.2 A Black-Box Separation . 6
2.3 Circumventing the Black-Box Separation . 7

3 Preliminaries 10
3.1 Background on Bilinear Maps . 10
3.2 Indistinguishability Obfuscation . 11
3.3 Puncturable PRFs . 12
3.4 Lossy Functions . 12

4 Leakage-Resilient NIKE in the Symmetric-Key Setting 13
4.1 Definitions . 13
4.2 Two-Seed Extractors . 13
4.3 Construction . 14

5 Definitions for Leakage-Resilient NIKE in the Public-Key Setting 17

6 A Black-Box Separation 19
6.1 Single-Stage Assumptions . 19
6.2 Separating Leakage-Resilient NIKE from Single-Stage Assumptions 19
6.3 Circumventing the Impossibility Result . 21

7 NIKE with Bounded Leakage 22
7.1 Leakage Resilience of Square-Friendly Primitives . 22
7.2 Proof of Theorem 7.1 . 23

8 Constructions from Bilinear Maps 25
8.1 Construction in Composite-Order Groups . 25
8.2 NIKE from Prime-Order Bilinear Groups . 28

9 Leakage-Resilient NIKE from iO 29

2

1 Introduction

Leakage-resilient cryptography [ISW03, MR04, DP08, AGV09, ADW09, NS09, ADN+10, GR12, . . .] studies
the security of cryptosystems when the adversary can get some partial information about the secret keys
of honest users. However, in almost all cases, the schemes rely on some leak-free randomness to guaran-
tee security. For example, leakage-resilient encryption [AGV09, NS09] only guarantees security when the
adversary gets leakage on the secret key, but requires the encryption randomness to be leak-free. In fact,
leakage-resilience is closely related to cryptography with imperfect randomness (conditioned on the leakage,
the randomness is no longer uniform) where it was shown that many cryptographic tasks are impossible with
imperfect randomness [DOPS04].

In this work, we study the question of leakage-resilient key exchange, where Alice and Bob wish to agree
on a nearly uniform secret key by communicating over a public channel whose contents are being observed
by an adversary Eve. Before the protocol starts, Eve can additionally get partial leakage on the internal
states of each of Alice and Bob individually. In particular, Eve can choose two functions fA, fB with `-bit
output, where ` is some leakage bound, and learn the output of these functions when applied on the states of
Alice and Bob respectively. We assume that the state of each user includes all of the randomness that will
be available to them during the protocol and they cannot sample any fresh randomness after the leakage
occurs. Throughout this work, we focus on non-interactive key-exchange (NIKE) protocols (e.g., in the style
of Diffie-Hellman key exchange) where Alice and Bob each non-adaptively send one message as a function
of their state.

Symmetric-Key Setting. We first study leakage-resilient NIKE in the symmetric-key setting, where Alice
and Bob share a uniformly random secret sk. Each of them has some additional independent randomness
rA, rB and their states are stateA = (sk, rA) and stateB = (sk, rB) respectively. The adversary Eve can get
` bits of leakage on each of stateA and stateB , and therefore the secret key sk is no longer fully secure from
her point of view. Alice and Bob wish to run a protocol to derive a fresh key k that looks (nearly) uniformly
random to Eve. We study this problem in the information-theoretic setting.

The above problem is similar to that of privacy amplification [BB84, BBR88, Mau93, BBCM95], where
Alice and Bob have a weakly random shared secret and want to agree on a (nearly) uniform key. The
crucial difference is that privacy amplification allows Alice and Bob to sample fresh randomness, whereas
our problem does not. In particular, the privacy amplification problem can be easily solved using a (strong)
seeded randomness extractor Ext: Alice chooses a fresh random seed rA that she sends to Bob, and then
both Alice and Bob set their key to be k = Ext(sk; rA). However, this solution does not work in our setting
if we think of rA as a part of Alice’s state, since the adversary can then get leakage on k via leakage on
stateA = (sk, rA).

Instead, we introduce a new primitive called a (strong) two-seed extractor where two seeds rA, rB are used
to extract randomness k = Ext(sk; rA, rB). We require that the extracted randomness looks uniform even to
an adversary that gets partial leakage on each of the tuples (sk, rA) and (sk, rb) together with the seeds rA, rB .
Such extractors do not seem to follow easily from standard (strong) seeded extractors or even two-source
extractors. Instead, we construct two-seed extractors by drawing a new connection to communication-
complexity lower bounds in the number-on-forehead model [BNS92]. Using two-seed extractors, we can
easily solve our problem by having Alice and Bob exchange the messages rA, rB respectively and having
them agree on the new key k = Ext(sk; rA, rB).

As our final result in this setting, we show that if Alice and Bob have a shared secret of length n, we
get a scheme where the randomness rA, rB is of length O(n), we tolerate a leakage bound of ` = Ω(n), the
exchanged key k is of length Ω(n), and the statistical distance from uniform is ε = 2−Ω(n). It remains an
interesting open problem to optimize the constants in the scheme.

Public-Key Setting: A Negative Result. We next turn to studying leakage-resilient NIKE in the
public-key setting, where the states of Alice and Bob consist of independent uniform randomness stateA = rA
and stateB = rB with no shared key.

3

We begin by giving a black-box separation showing that such schemes cannot be proven secure via
a black-box reduction under any “(single-stage) game-based assumption,” when the leakage bound ` is
super-logarithmic in the security parameter. Game-based assumptions are ones that can be expressed via
a game between a (potentially inefficient) challenger and a stateful adversary, where any polynomial-time
adversary should have at most a negligible advantage. In particular, this includes essentially all assumptions
used in cryptography such as DDH and LWE, and even very strong assumptions such as the existence of
indistinguishability obfuscation (iO). Our results rule out black-box reductions that treat the adversary as
well as the leakage-functions as a black box, which is the case for all known positive results in leakage-resilient
cryptography we are aware of. Our separation closely follows the framework of [Wic13], which gave similar
separations for other leakage-resilient primitives (e.g., leakage-resilient injective one-way functions).

Pinpointing the above barrier allows us to look for ways to overcome it. We identify three avenues toward
getting around the negative result, and follow them to get positive results.

Public-Key Setting: Small Leakage. The first and most obvious avenue is to consider small leakage,
where ` is only logarithmic in the security parameter. Interestingly, some types of cryptosystems (e.g.,
one-way functions, signatures, public-key encryption, weak pseudorandom functions) are known to be auto-
matically secure with small leakage while others (pseudorandom generators/functions, semantically secure
symmetric-key encryption) are known not to be [Pie09, DY13]. Where does leakage-resilient NIKE fit in?
The work of [DY13] gave a partial characterization of primitives that are automatically secure, but it does
not appear to capture NIKE directly. Instead, we adapt the techniques of [DY13] for our purposes and show
that any NIKE protocol is automatically secure when the leakage ` is logarithmic. The result also extends
to allowing larger leakage ` by assuming stronger (sub-exponential) security of the underlying NIKE.(Willy:
please check above)

As an example, this shows that the Diffie-Hellman key agreement is secure with small leakage: even if
an adversary gets small leakage on rA and rB individually and then sees grA , grB , the exchanged key grArB

is indistinguishable from uniform.

Public-Key Setting: CRS or Preprocessing. The other two avenues for overcoming the negative
result require us to add some flexibility to our setting to make the black-box separation fail. We can consider
schemes in the common reference string (CRS) model, where the honest parties as well as the adversary get
access to a CRS generated from some specified distribution. Note that, in this setting, the leakage functions
can depend on the CRS. Alternately, we can consider schemes with preprocessing, where Alice and Bob can
individually preprocess their random coins to derive their secret states prior to leakage. In particular, instead
of having the two states rA, rB consist of uniformly random coins, we allow rA ← Gen(ρA), rB ← Gen(ρB) to
be sampled from some specified distribution using uniformly random coins ρA, ρB . We assume the adversary
only gets leakage on the secret states rA, rB but not on the underlying random coins ρA, ρB used to sample
them.

We construct a leakage-resilient NIKE using bilinear maps, which simultaneously requires a CRS and
preprocessing. It can flexibly tolerate any polynomial leakage bound ` with states of size |rA|, |rB | = O(`).
We prove security under either the subgroup decision assumption in composite-order bilinear groups or the
decision-linear (DLIN) assumption in prime order groups. Interestingly, we rely on two-seed extractors,
which solved the problem in the symmetric setting, as a crucial tool to aid our construction in the public-key
setting.

We also give an alternate construction of leakage-resilient NIKE using indistinguishability obfuscation
(iO) and lossy functions, which can be initialized with either just a CRS (without preprocessing) or just
preprocessing (without a CRS). It can flexibly tolerate any polynomial leakage ` with states of size (2+o(1))`.

Other Related Work. Prior works have proposed constructions of leakage-resilient NIKE, albeit under
a leak-free hardware assumption, which, in particular, gives both parties access to some (limited) leak-free
randomness during the protocol execution [CAR17a, CAR17b]. These results do not address the central goal

4

of our work, which is for two parties to non-interactively agree on a shared key without relying on any fresh
randomness after the leakage occurs.

2 Technical Overview

2.1 Symmetric-Key NIKE

We first consider the problem of leakage-resilient NIKE in the symmetric-key setting, where Alice and Bob
start with a secret sk, and want to agree on a fresh uniform key k. We assume they each have internal
randomness rA and rB , respectively. Here we want security to hold even given the protocol transcript
together with leakages on the states of both Alice and Bob, stateA = (sk, rA) and stateB = (sk, rB), prior to
the protocol execution. We study this problem in the information-theoretic setting.

We remark that the particular case when the messages sent by Alice and Bob consist of their entire
randomness rA and rB corresponds to a natural notion of randomness extractors that we name (strong)
two-seed extractors. Namely, a (strong) two-seed extractor Ext(x; rA, rB) uses two seeds rA, rB to extract
randomness from a high-entropy source x in a setting where the distinguisher gets leakages on (x, rA)
and (x, rB), as well as the entire seeds rA and rB . Given such an extractor, Alice and Bob, sharing a
secret key x = sk can send their individual randomness rA and rB respectively to each other and compute
k = Ext(x; rA, rB) as the exchanged key. Leakage resilience of this symmetric-key NIKE exactly follows from
the security of the two-seed extractor described above.

We initially suspected that there should be simple solutions to the two-seed extractor problem via stan-
dard (strong) seeded extractors and/or two-source extractors. For example, we thought of applying a 2-source
extractor on (rA, rB) to derive a seed s = 2SourceExt(rA, rB) and then plugging it into a strong seeded ex-
tractor to extract k = SeededExt(x; s). Our intuition was that the leakage would not be able to predict s and
therefore could not leak any information on x that depends on s. However, we were unable to prove security
of this candidate (or other simple variants). The problem is that, although the leakage cannot predict s, it
can cause x to be correlated with s once rA, rB are made public. We leave it as an open problem to explore
the possibility of this construction or some variant and either show it secure via a more complex argument
or find counter-examples.

Instead, we construct two-seed extractors by leveraging a connection with communication complexity
lower bounds in the number-on-forehead (NOF) model [BNS92]. Such lower bounds were also recently used
in the context of leakage-resilient secret sharing in [KMS19]. At a high level, the NOF communication
complexity of a boolean function f : (x1, · · · , xN)→ {0, 1} is the minimal transcript size required to predict
f with noticeable probability, over protocols where every party can exactly see all the others parties’ inputs
(but not their own; imagine it is on their forehead), and where parties speak one at a time. A NOF lower
bound says that no such communication protocol of transcript length ` is sufficient to predict the output of
f on uniformly random inputs.

To see the connection with two-seed extractors, consider the case where N = 3 and think of x1 = x, x2 =
rA, x3 = rB . Then an NOF lower bound implies that small leakage on each of the tuples (x, rA), (x, rB), (rA, rB)

does not allow one to predict Ext(x; rA, rB)
def
= f(x1, x2, x2). However, in the setting of (strong) two-seed

extractors, the adversary does not just get leakage on (rA, rB) but rather gets the entire values rA, rB in
full. We show that security is preserved in the latter setting. At a high level, if a distinguisher succeeds in
the latter setting given rA, rB in full, then we could also run that distinguisher as the leakage on (rA, rB) to
distinguish in the former setting. This is not entirely accurate, since the distinguisher in the latter setting
also expects to get the challenge value z which is either z = Ext(x; rA, rB) or z uniform, while leakage on
(rA, rB) in the former setting cannot depend on z. However, we can remedy this by guessing z ahead of time
and taking a statistical security loss proportional to the length of the extracted output.

Combining the above with explicit constructions of efficiently computable boolean functions f with high
NOF communication complexity [BNS92, Chu90], we get two-seed extractors with |x| = |rA| = |rB | = n
that tolerate ` = Ω(n) leakage and have security 2−Ω(n), but only extract 1 bit of output. We show a simple
generic method to get output length m = Ω(n) by choosing m independent seeds rA = (r1

A, . . . , r
m
A), rB =

5

(r1
B , . . . , r

m
B) and outputting Ext(x; riA, r

i
B)mi=1. However, this leads to seed length Ω(n2). We also give an

alternate construction using the techniques of [DEOR04] that relies on the linearity of the underlying 1-bit
extractor and allows us to extract Ω(n) bits while preserving the seed length.

2.2 A Black-Box Separation

In the public-key setting, we show that it is impossible to construct leakage-resilient NIKE with perfect
correctness, and prove security via a black-box reduction from any single-stage game assumption (also
called cryptographic games in [HH09, Wic13]). An assumption is a single-stage game assumption if it can be
written in the format of an interactive game between a (potentially inefficient) challenger and a single stateful
adversary, where the challenger decides whether or not the adversary succeeded at the end of the game. The
assumption states that no polynomial time adversary can succeed with better than negligible probability.
(This is a more general class than falsifiable assumptions [Nao03, GW11], where the challenger is also required
to be efficient.) Such single-stage game assumptions capture essentially all standard assumptions used in
cryptography, such as the hardness of DDH, Factoring or LWE, as well as less standard assumptions such
as the security of indistinguishability obfuscation iO.

However, the security definition for leakage-resilient NIKE (and most other leakage-resilient primitives)
is not a single-stage game. This is because the adversary consists three separate components — the two
leakage functions and the distinguisher — that cannot fully communicate together or keep arbitrary state
between invocations. In particular, the distinguisher does not get to see the inputs given to the leakage
functions as this would make its task trivial. It was already observed in [Wic13] that this potentially allows
us to separate some cases of leakage-resilient security from all single-stage game assumptions. However,
it was only shown to hold for a few very select cases. For example, a black-box separation was given for
leakage-resilient one-way permutations with sufficiently large leakage, but not for one-way functions; the
latter can be easily constructed from any standard one-way function. Where does leakage-resilient NIKE fit
in?

In this work, we use the framework of [Wic13] to separate leakage-resilient NIKE from all single-stage
game assumptions. In fact, our separation even rules out “unpredictable NIKE” where the adversary has
to predict the entire exchanged key, rather than just distinguish it from uniform. The proof follows the
“simulatable attacker paradigm”. We construct an inefficient attacker A that breaks the security of the
primitive using brute force. However, by constructing A carefully, we show that there also exists an efficient
simulator S such that no (even inefficient) distinguisher can distinguish between black-box access to A versus
S. The attacker A = (A.fA,A.fB ,A.Pred) is a multi-stage attacker consisting of three separate entities
which do not communicate or keep state between invocations: the two leakage functions A.fA,A.fB and the
predictor A.Pred who predicts the exchanged key given the leakage and the protocol transcript. However,
the simulator S = (S.fA,S.fB ,S.Pred) is a single fully stateful entity and can remember any inputs given to
S.fA,S.fB and use them to answer calls to S.Pred. Therefore, S is not a valid attacker on leakage-resilient
NIKE. Nevertheless, if we had a black-box reduction from any single-stage assumption, then the reduction
would have to break the assumption given black-box oracle access to A. However, since the reduction and
the assumption challenger together cannot distinguish between black-box access to A versus S, the reduction
would also break the assumption given the latter. But this means that the reduction together with S give a
fully efficient attack against the assumption and therefore the assumption must be insecure to begin with!

The high level idea of how to construct A and S is simple. The leakage function A.fA gets as input
Alice’s randomness rA, computes the protocol message pA that Alice will send as a function of rA, and
outputs a random `-bit hash σA = H(pA) as the leakage. The leakage function A.fB works analogously.
The predictor A.Pred(pA, pB , σA, σB) gets the protocol messages pA, pB and the leakages σA, σB : it checks
if σA = H(pA) and σB = H(pB) and if this does not hold it outputs ⊥; otherwise, it performs a brute-force
search on pA, pB to recover the exchanged key k and outputs it. We think of H as a completely random
function, which is part of the description of the inefficient attacker A. The simulator S simulates the leakage
queries to S.fA,S.fB by keeping a table of the inputs rA and rB that were queried so far and simulating
H by choosing its outputs randomly on the fly for each new corresponding pA or pB . It simulates the
predictor S.Pred(pA, pB , σA, σB) by checking its table to see if it contains some values rA, rB that yield

6

protocol messages pA, pB and on which the leakage functions outputted σA, σB respectively; if so, it uses
these values to efficiently recover the exchanged key k and else it outputs ⊥. If the key exchange has perfect
correctness, then the only way to to distinguish between oracle access to A versus S is to “guess” some
valid value σA = H(pA) or σB = H(pB) without querying the leakage functions, and the probability of this
happening is 2−`. Therefore, if ` is super-logarithmic, then A and S are indistinguishable with polynomially
many queries except with negligible probability.

2.3 Circumventing the Black-Box Separation

Unfortunately, we are not aware of any useful non-black-box techniques in the context of leakage-resilient
cryptography. Therefore, to circumvent the black-box separation, we consider two options. First, we consider
the case of small leakage, where ` is logarithmic in the security parameter. Second, we consider extensions
of the basic NIKE setting that are not covered by the negative result.

2.3.1 The Small Leakage Setting

Our black-box impossibility result holds whenever the size of the leakage is super-logarithmic in the security
parameter. It also only applies to poly/negligible single-stage assumptions that require polynomial-time
attackers to have negligible success probability, but does not extend to assuming stronger levels of security.
We demonstrate that this dependence on leakage size is in fact “tight.” In particular, we show that any
NIKE that is secure in a setting without leakage is also automatically leakage-resilient when the leakage
bound ` is logarithmic in the security parameter. This can be extended to leakage bound ` = ω(log λ) if the
original NIKE has poly(2`)-security without leakage.

Similar results were previously known to hold for all unpredictability primitives (e.g., one-way functions,
message-authentication codes, signatures, etc.), where the goal of the attacker is to win some game with
non-negligible probability. In such cases, it is always possible to guess the small leakage and get a 2`

loss in security. It is also known that similar positive results hold for some but not all indistinguishability
primitives, where the goal of the attacker is to win some game with probability that is non-negligibly larger
than 1/2. In particular, it holds for public-key encryption, CPA-secure symmetric-key encryption, and weak
pseudorandom functions, but it does not hold for pseudorandom generators, pseudorandom functions, or
one-time semantically secure symmetric-key encryption; in all of the latter cases even 1 bit of leakage can
completely break security (see [Pie09, DY13]). The aforementioned positive results can be proven using
techniques due to [BDK+11, DY13] showing that any indistinguishability primitive satisfying a so-called
“square friendliness” property is resilient to small leakage. However, it is not a priori clear if these techniques
apply to leakage-resilient NIKE.

To illustrate the difficulty, we briefly recall what it means for a generic (indistinguishability) primitive
to be “square-friendly” in the sense of [DY13]. Take an arbitrary partition of the challenger’s random coins
randC into randC = (randfix

C , rand
exp
C) (e.g. for CPA-secure symmetric-key encryption, randfix

C could be the
randomness of the secret key while randexp

C could be the challenge bit and the encryption randomness for
chosen plaintext queries). The following “square-security” game is then defined with respect to this partition:
an attacker (for the original primitive) is asked to play the standard security game twice, where in the first
run the challenger samples both randfix

C and randexp
C at random as in the standard game, but in the second

run, the challenger re-uses the same randfix
C coins and re-samples fresh randexp

C coins. The attacker wins the
square-security game only if it obtains the same result in both runs (win-win or lose-lose); square-security
holds if any efficient attacker’s can only win the square-security game with probability negligibly greater
than its chance of losing. [DY13] refer to a primitive as “square-friendly” if standard security implies square
security. As previously mentioned, [DY13] prove that any square-friendly primitive with poly(2`)-security
can withstand ` bits of leakage on randfix

C .
In the NIKE setting, we would like to argue security even given leakage on rA and rB , where rA and rB

and Alice and Bob’s secret values. A naive attempt to invoke the [DY13] lemma might set randfix
C = (rA, rB),

but then leakage-resilience/square-friendliness cannot possibly hold since even 1 bit of leakage on randfix
C

completely breaks security (simply leak the first bit of the shared key).

7

Instead, we take the following two-step approach. We first consider an alternate partitioning of the
challenger’s randomness where randfix

C = rA, and rB is now viewed as part of the experiment randomness
randexp

C . Under this partitioning, the NIKE security experiment is square-friendly, but now the [DY13] lemma
only implies security given leakage on rA alone.

To handle independent leakage on rA and rB , we consider yet another partitioning of the challenger’s
randomness. However, we start from a syntactically different NIKE security game — parameterized by
leakage function fA — in which the attacker is given leakage fA(rA) on Alice’s random coins in addition
to Alice and Bob’s public values. By our previous argument, security of the original NIKE scheme implies
security of this modified primitive provided fA has bounded-length outputs. Since we want to handle leakage
on Bob’s coins rB , we partition the challenger’s random coins so that randfix

C = rB , and rA is now part of
randexp

C . We prove that this is indeed square-friendly, so by [DY13], security holds with independent leakage
on rA and rB .

2.3.2 Adding Setups: CRS or Preprocessing

On an intuitive level, our black-box separation result went through because, when everything can leak, there
is no meaningful place for a reduction to embed its challenge. We consider two settings with some additional
setup that allows us to overcome the black-box separation, precisely by creating a place for the reduction to
meaningfully embed a challenge.

The first such setting considers a NIKE scheme with a common reference string (CRS). We assume that
the CRS is generated using some potentially secret, leak-free coins. The second setting considers NIKE where
users preprocess their individual random coins to derive their secret state. In particular, instead of having the
two secret states rA, rB consist of the uniformly random coins of Alice and Bob, we allow Alice and Bob to
sample their internal secret states from some specified (secret coin) distribution by running rA ← Gen(ρA),
rB ← Gen(ρB) on their secret random coins ρA, ρB respectively. The secret coins ρA, ρB are discarded
afterwards, and Alice and Bob can run the NIKE protocol using only their preprocessed states rA, rB . We
assume the adversary only gets leakage on the preprocessed states rA, rB but not on the underlying random
coins ρA, ρB used to sample them. The above two settings give the reduction an opportunity to embed its
challenge in either the CRS or in the states rA, rB without having to explain the underlying randomness.

Construction from Bilinear Maps. We first begin by constructing leakage-resilient NIKE in a model
with both a CRS and preprocessing. We give two constructions. A simpler one under the subgroup decision
assumption on composite-order groups with a bilinear map, and a slightly more complex one under the
decision-linear assumption (DLIN) in prime-order groups with a bilinear map. We give a high-level overview
of the first result.

The idea is inspired by “dual-system encryption” [Wat09, LW10, LRW11, . . .]. In a nutshell, dual-system
encryption allows us to switch regular ciphertexts and secret keys to so-called semi-functional counterparts,
which individually look legitimate, but when “paired” together result in some randomness that is not dictated
by the public key. In our case, we will switch the two states rA, rB to be semi-functional so that when Alice
and Bob run the NIKE with these values, the exchanged key k has true entropy even given the corresponding
protocol messages pA, pB . To convert such a key into a uniformly random one, we additionally apply a two-
seed extractor on it, where Alice and Bob each supply one seed.

In more detail, our construction uses a source group G which is a cyclic of composite order N = p1p2, so
that it can be decomposed using the Chinese Remainder Theorem into G ' Gp1 ×Gp2 , where Gp1 and Gp2
are cyclic of prime order p1 and p2 respectively. In our construction, everything happens in the subgroup
Gp1 . The CRS consists of two elements g ← Gp1 , h = gx ∈ Gp1 where x ← ZN . The secret states of
Alice and Bob are pairs of group elements rA = (ga, ha), rB = (gb, hb) ∈ G2

p1 where a, b ← ZN . The key

exchange protocol consists of Alice sending pA = ga and Bob sending pB = gb. The exchanged key is set
to k = e(g, h)ab which can be computed by Alice as e(pB , h

a) and by Bob as e(pA, h
b). Note that, both

the CRS and secret states of Alice and Bob in the above construction, are sampled from some distributions
using secret coins (namely the group G, and the exponents x, a and b) that we assume do not leak.

8

To argue leakage-resilience, we switch the secret states rA, rB to being sampled from the whole group G
rather than the subgroup Gp1 . Namely, the whole execution of the NIKE is indistinguishable from sampling
x ← ZN , u ← G, v = ux ∈ G, and setting rA = (ua, va) and rB = (ub, vb), while still keeping the CRS
elements g ← Gp1 and h = gx ∈ Gp1 in the subgroup. Indistinguishability follows from a standard subgroup
decision assumption, even if the adversary gets to see the entire secret states rA, rB in full.

With the above change, even if an adversary sees the CRS (g, h = gx) and the protocol transcript
(pA = ua, pB = ub), the value of x mod p2 is uniformly random since h = gx only reveals x mod p1.
Therefore the exchanged key k = e(ub, va) = e(ua, vb) = e(u, v)ab = e(u, u)xab also has log p2 bits of entropy
conditioned on the above. This means that given ` bits of leakage on each of rA, rB , the exchanged key k has
log p2 − 2` bits of entropy. As mentioned previously, we can upgrade this to a scheme where the exchanged
key is indistinguishable from uniform under leakage, by adding the two seeds of a two-seed extractor to the
states of Alice and Bob respectively, and having them exchange these seeds during the protocol and use
them to extract randomness from k as their final exchanged key.

To allow for a larger leakage bound `, we can either choose a larger prime p2, or we can execute many
copies of this protocol in parallel. Overall, the scheme can flexibly tolerate any polynomial leakage bound `
while keeping the size of Alice’s and Bob’s secret states bounded by O(`).

Constructions from Indistinguishability Obfuscation. We also give a construction from indistin-
guishability obfuscation (iO) and lossy functions (which can be instantiated from either DDH or LWE
[PW08]). This construction can be initialized with either just a CRS (without preprocessing) or just pre-
processing (without a CRS). Let us start with the CRS version of the scheme. The idea starts with the
construction of (multiparty) NIKE from iO due to Boneh and Zhandry [BZ14]. Each party has randomness
r and sets its protocol message to p = G(r) where G is some function that we specify later. The CRS includes
an obfuscated program that has a hard-coded PRF F : it takes as input two protocol messages pA, pB and
r, and checks that either pA = G(r) or pB = G(r); if so it outputs an evaluation of the PRF F (pA, pB) and
else it outputs ⊥. It is easy to see that this gives correctness.

To argue security, we will set G to be a function whose description is a part of the CRS and can be
indistinguishably created in either lossy or injective mode. We puncture the PRF F on the point (pA, pB)
and program a random output k. But instead of hard-coding k directly, we hard-code k ⊕ rA and k ⊕ rB ;
i.e., two one-time pad encryptions of k under rA and rB respectively. This allows the obfuscated program to
decrypt k given either rA or rB and so preserves correctness. But now we can switch G to lossy mode and
argue that even given the obfuscated program with the hard-coded ciphertexts, the protocol transcript, and
the leakages on rA, rB , the exchanged key k has high entropy. We can then convert this into a uniformly
random exchanged key by additionally applying a two-seed extractor on top. (Our actual construction does
something slightly more complicated to avoid two-seed extractors and gets better parameters via standard
seeded extractors.)

The above can also be converted into a scheme with preprocessing and without a CRS. In this case,
Alice creates the obfuscated program as part of the preprocessed state and sends it as her protocol message.
Furthermore, instead of putting the description of G in the CRS, we will have each of Alice and Bob
sample different functions G1, G2 that they send as part of their messages and are used as inputs to the
obfuscated program; the obfuscated program also adds them to the input on which it evaluates the PRF
F (G1, G2, pA, pB).

Open Problem: Imperfect Correctness? We note that our black-box separation result could also
potentially be circumvented by NIKE schemes with imperfect correctness. We leave it as an interesting open
problem whether one could leverage imperfect correctness to construct a leakage-resilient NIKE (without
a CRS or preprocessing) that could provably withstand large leakage under some single-stage assumptions
(e.g., even under iO).

9

3 Preliminaries

Basic Notation. For an integer N , we let [N] := {1, 2, . . . , N}. For a set S we let x← S denote sampling
x uniformly at random from S. For a distribution D we let x ← D denote sampling x according to the
distribution. We will denote the security parameter by λ. We say a function f(λ) is negligible, denoted
f(λ) = negl(λ), if f(λ) = O(λ−c) for every constant c > 0. A function is f(λ) is polynomial, denoted
f(λ) = poly(λ), if f(λ) = O(λc) for some constant c > 0.

Information Theory. For two random variables X,Y with support supp(X) and supp(Y) respectively,
we define their statistical distance SD(X,Y) as

SD(X,Y) :=
∑

u∈supp(X)∪supp(Y)

1

2
|Pr[X = u]− Pr[Y = u]|.

For two random variables X,Y with statistical distance SD(X,Y) ≤ ε, we will sometimes use the shorthand
X ≈ε Y .

Two ensembles of random variables X = {Xλ}λ, Y = {Yλ}λ are statistically close if SD(Xλ, Yλ) =
negl(λ). We will occasionally denote this as X ≈S Y .

The min-entropy H∞(X) of a random variable X is defined as

H∞(X) := − log(max
x∈supp(X)

Pr[X = x]).

A random variable X with min-entropy k is referred to as a k-source. When X is supported over {0, 1}n,
we refer to it as an (n, k)-source. We denote the uniform distribution over {0, 1}n by Un.

Definition 3.1 (Strong Seeded Extractors). An efficient function Ext : {0, 1}n×{0, 1}d → {0, 1}` is a strong
(k, ε)-extractor if for every (n, k)-source X,

SD((Ud,Ext(X,Ud)), (Ud, Um)) ≤ ε.

3.1 Background on Bilinear Maps

We review some definitions pertaining to bilinear maps, adapted from [LW10].

3.1.1 Composite-Order Bilinear Groups

Let G(1λ) be a group generator, which outputs the description of a pairing-friendly group G = (G,GT , N =
p1p2, e), where G and GT are cyclic groups of order N , and p1, p2 are distinct primes of bit-size Ω(λ), and
e : G×G→ GT is an efficiently computable bilinear map, that satisfies:

1. (Bilinearity) ∀g, h ∈ G, ∀a, b ∈ ZN , we have:

e(ga, hb) = e(g, h)ab.

2. (Non-degeneracy): There exists g ∈ G such that e(g, g) ∈ GT has order N .

We will assume that the descriptions of G and GT include respective generators. We also assume that the
random coins of G reveal the factorization N = p1p2.1 We will denote by Gp1 and Gp2 the subgroups of G
of order p1 and p2, respectively. Observe that any g ∈ Gp1 and any h ∈ Gp2 are “orthogonal” with respect
to e, i.e. e(g, h) is the identity element in GT .

Assumption 3.2. Let G(1λ) be a group generator. We define the following distributions:

G = (G,GT , N = p1p2, e)← G, g ← Gp1 , T1 ← Gp1 , T1,2 ← G.

We say that G satisfies Assumption 3.2 if for all PPT adversaries A:∣∣ Pr[A(G, g, T1) = 1]− Pr[A(G, g, T1,2) = 1]
∣∣ ≤ negl(λ).

1More generally, the ability to sample uniformly from Gp1 given the random coins of G would suffice for our purposes.

10

3.1.2 Prime-Order Bilinear Groups

Similarly to Section 3.1.1, let G(1λ) be a (prime-order) group generator, which outputs the description of a
pairing-friendly group G = (G,GT , p, e), where G and GT are cyclic groups of prime order p ≥ 2Ω(λ), and
e : G×G→ GT is an efficiently computable bilinear map, that satisfies bilinearity and non-degeneracy.

Assumption 3.3 (Decision Linear Assumption (DLIN) [BBS04]). Let G be a (prime-order) group generator.
We define the following distribution:

G = (G,GT , p, e)← G,
g, u, v ← G, a, b, c← Zp
D := (g, u, v, ua, vb).

We say that G satisfies the DLIN assumption if for all PPT adversaries A:∣∣ Pr[A(D, ga+b) = 1]− Pr[A(D, gc) = 1]
∣∣ ≤ negl(λ).

For a group generator g ∈ G of order p, we will denote for any scalar a ∈ Zp, [a]g := ga. This notation
generalizes to vectors and matrices over Zp. In particular, given [A]g and [B]g and C, where A,B,C ∈ Zn×np ,

one can efficiently compute [AC]g, [CA]g and e(g, g)AB.
In our constructions, we will actually use the following assumption, that is known to follow from DLIN

[NS09]:

Assumption 3.4 (Matrix 2-linear assumption [NS09]). Let G be a (prime-order) group generator. Let
Rkn×mi (Zp) be the set of matrices of dimension n ×m of rank i over Zp. We say that the Matrix 2-linear
assumption holds if for all PPT adversaries A:∣∣ Pr[A(G, g, [B]g) = 1]− Pr[A(G, g, [C]g) = 1]

∣∣ ≤ negl(λ),

where G = (G,GT , p, e)← G, g ← G, B← Rk3×3
2 (Zp), C← Z3×3

p .

3.2 Indistinguishability Obfuscation

The following definition is taken verbatim from [GGH+13].

Definition 3.5 (Indistinguishability Obfuscation (iO)). A uniform PPT machine iO is called an indistin-
guishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C0(x) = C(x) : C0 ← iO(λ,C)] = 1.

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function ε such that
the following holds: For all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have
that if C0(x) = C1(x) for all inputs x, then

|Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ ε(λ).

Definition 3.6 (iO for P/poly). For any λ ∈ N, let {Cλ} denote the class of all circuits of size at most λ.
Then iO is an indistinguishability obfuscator for P/poly if it is an indistinguishability obfuscator for {Cλ}
for all λ ∈ N.

We currently do not know how to build iO from any standard cryptographic assumption, but there are
a number of unbroken candidate iO constructions in the literature [BGMZ18, CVW18, GJK18, AJL+19,
BDGM20].

11

3.3 Puncturable PRFs

Definition 3.7 (Puncturable PRFs [BW13, KPTZ13, BGI14]). A puncturable PRF pPRF over input space
X and output space Y consists of efficient algorithms pPRF = (KeyGen,Puncture,Eval) with the following
syntax:

• KeyGen(1λ): on input a security parameter, outputs a PRF key k.

• Puncture(k, x): on input a PRF key k and an input x, outputs a punctured key k{x}.

• Evalk(x) is a deterministic algorithm parameterized by a PRF key k, which takes as input x and outputs
some y.

We require the following properties from a puncturable PRF:

Functionality Preservation under Puncturing. We have for all k ← pPRF.KeyGen, x and k{x} ←
pPRF.Puncture(k, x):

∀x′ 6= x, Evalk(x′) = Evalk{x}(x
′).

Pseudorandomness on Punctured Points. For all x ∈ X and any PPT adversary A, we have:∣∣Pr
[
A(k{x}, x,Evalk(x)) = 1

]
− Pr

[
A(k{x}, x, y) = 1

]∣∣ ≤ negl(λ),

where k ← pPRF.KeyGen(1λ), k{x} ← pPRF.Puncture(k, x), and y ← Y.

We have (explicit) constructions of puncturable PRFs from one-way functions [GGM86, BW13, KPTZ13,
BGI14].

3.4 Lossy Functions

Definition 3.8 (Lossy Functions). Let n = n(λ), k = k(λ) ≤ n and m = m(λ) ≥ n be polynomials.
A (family of) (n, k,m)-lossy functions consists of efficient algorithms LF = (Lossy, Inj,Eval) with the

following syntax:

• Inj(1λ) is a randomized algorithm which outputs an injective function evaluation key ek.

• Lossy(1λ) is a randomized algorithm which outputs a lossy function evaluation key ek.

• Evalek(x) is a deterministic algorithm parameterized by an evaluation key ek which takes as input
x ∈ {0, 1}n and outputs some y ∈ {0, 1}m.

We require a lossy function to satisfy the following properties:

• The function Evalek(·) where ek← LF.Inj(1λ) is injective with probability 1− negl(λ).

• The function Evalek(·) where ek← LF.Lossy(1λ) has image size at most 2n−k with probability 1−negl(λ).
In particular x← {0, 1}n has at least k bits of min-entropy given Evalek(x).

• The evaluation keys ekinj ← LF.Inj(1λ) and eklos ← LF.Lossy(1λ) are computationally indistinguishable.

Instantiations from Standard Assumptions. [AKPW13] show that under the LWE`,q,χ, where ` is the
LWE dimension, χ is a β-bounded error distribution and q ≥ poly(n, β, `, p) for parameters n, p and some
fixed polynomial, there exists a (n log q, (`+ λ) log q, n log p) lossy (trapdoor) function.

From DDH, we can use the following construction of a lossy function [FGK+13] for our purposes: an
injective evaluation key is a matrix of group elements [A]g where A is full rank, and a lossy evaluation key
is a matrix of group elements [A]g where A is of rank 1. To evaluate on an input x ∈ Znp where p is the
order of the ambient group G, we compute [A · x]g. In particular we do not need x have small coefficients
as we do not need any trapdoor property of the lossy function. This gives a (n log p, (n− 1) log p, n|g|)-lossy
function, where |g| denotes the size of the bit-representation of a group element.

12

4 Leakage-Resilient NIKE in the Symmetric-Key Setting

4.1 Definitions

We first define leakage-resilient NIKE in the symmetric setting, where both parties share a common secret
key with sufficiently high min-entropy.

Definition 4.1 (Symmetric-Key Leakage-Resilient NIKE). A symmetric-key NIKE protocol sk-NIKE with
secret key space SK, private state space R, public message space P and output key space K consists of the
algorithms:

• Publish(sk, r) is a deterministic algorithm which takes as input a secret key sk ∈ SK, a private state
r ∈ R and outputs a public message p ∈ P.

• SharedKey(sk, r, p) takes as input a secret key sk ∈ SK, a private state r ∈ R and a public message
p ∈ P, and outputs a key K ∈ K.

We require sk-NIKE to satisfy the following properties.

Perfect Correctness. An sk-NIKE = (Publish,SharedKey) protocol is perfectly correct if for all secret keys
sk ∈ SK and all private states rA, rB ∈ R:

SharedKey(sk, rA, pB) = SharedKey(sk, rB , pA),

where pA = Publish(sk, rA) and pB = Publish(sk, rB).

Information-Theoretic Leakage Resilience. We say that a symmetric-key NIKE protocol is (k, `, ε)-
secure if for any distribution L such that H∞(L) ≥ k and all (potentially inefficiently computable) functions
fA, fB : SK ×R → {0, 1}`, we have:

(pA, pB , fA(sk, rA), fB(sk, rB),K0) ≈ε (pA, pB , fA(sk, rA), fB(sk, rB),K1),

where sk ← L, rA, rB ← R, pA = Publish(sk, rA), pB = Publish(sk, rB), K0 = SharedKey(sk, pA, rB), and
K1 ← K.

Definition 4.2 (Leakage Rate). For a (k, `, ε)-secure symmetric-key NIKE, we define its leakage rate as

`

maxr∈R |r|
.

4.2 Two-Seed Extractors

We consider a new type of extractor called a two-seed extractor which suffices to construct leakage-resilient
symmetric-key NIKE.

Definition 4.3 (Two-Seed Extractors). A (k, 2`)-two-seed extractor Ext(X;R,S) : {0, 1}n × {0, 1}d1 ×
{0, 1}d2 → {0, 1}m with error ε is an efficient function such that for all (potentially inefficient) leakage
functions f : {0, 1}n × {0, 1}d1 → {0, 1}a, g : {0, 1}n × {0, 1}d2 → {0, 1}b with a + b = 2`, and any (n, k)-
source X, we have:(

Ext(X;R,S), R, S, f(X,R), g(X,S)
)
≈ε
(
Um, R, S, f(X,R), g(X,S)

)
,

where R,S are independent uniform random bits of length d1 and d2 respectively.

Remark 4.4. Our definition of a two-seed extractor corresponds to strong two-seed extractors in the sense
that the output is close to uniform even given the two seeds R and S. For simplicity, when we say a two-seed
extractor in this paper, we always mean a strong two-seed extractor. Without the “strong” condition, a
two-seed extractor is implied by any two source extractor on R and S.

13

Remark 4.5. For all applications in this paper, we only need two-seed extractors for full entropy k = n.
However such a construction also trivially implies a two-seed extractor for min-entropy k where the error
becomes 2n−kε.

Claim 4.6. Any (k, 2`)-two-seed extractor Ext with error ε induces a symmetric-key NIKE that is (k, `, ε)-
secure.

Proof. Let Ext be a (k, 2`)-two-seed extractor Ext : {0, 1}n × {0, 1}d1 × {0, 1}d2 → {0, 1}m with leakage
size 2` and error ε. We can construct an sk-NIKE as follows. Let the secret key space SK be {0, 1}n, let
both the private state space R and the public message space P be {0, 1}min(d1,d2), and let the key space
K be {0, 1}m. Suppose without loss of generality that d1 ≥ d2. Define Publish(sk, r) = r ∈ {0, 1}d2 and
SharedKey(sk, r, p) = Ext(sk, (r‖0d1−d2), p). Then any (potentially unbounded) distinguisher for sk-NIKE is a
distinguisher for Ext with the same advantage ε.

4.3 Construction

We show how to construct two-seed extractors from what we call BCP extractors, which are first studied
implicitly in [BNS92] and then explicitly defined in [KMS19].2 Looking ahead, we will build both two-
seed extractors and symmetric-key NIKE that satisfy slightly stronger security definitions than standard
leakage-resilience (Definition 4.8 and Definition 4.9).

We first recall the definition of a bounded collusion protocol, following [KMS19].

Definition 4.7 (Bounded Collusion Protocol (BCP) [KMS19]). An (interactive, potentially randomized)
communication protocol π among N parties is called a (p,N, µ)-bounded collusion protocol (BCP) if:

• the N parties start the protocol with input X1, . . . , XN , and the transcript τ is empty at the beginning
of the protocol;

• there is a function Next(τ)→ S takes as input a (partial) transcript τ , and outputs either a set S ⊂ [N]
with |S| ≤ p along with a function g, or ⊥;

• at each round with current transcript τ , the protocol computes Next(τ). If Next(τ) = (S, f), the
message g({Xi}i∈S) is appended to the current transcript τ ; otherwise the protocol stops and outputs
τ as the final transcript.

• the final transcript τ has size at most µ.

We say that a (p,N, µ)-BCP π ε-computes a (deterministic) boolean function f : (X1, . . . , XN)→ b ∈ {0, 1}
if there exists a (potentially unbounded) predictor P, given a BCP transcript τ of π, that computes b with
probability 1/2 + ε (over the randomness of {Xi}i, π and P).

In this section, we will actually build a two-seed extractor with a stronger security property than Def-
inition 4.3; namely, it remains secure against leakages computed as 3-party BCP transcripts over inputs
X,R, S. This results in a symmetric-key NIKE that is secure against the same type of leakage, by directly
adapting Claim 4.6.

Definition 4.8 (Two-Seed Extractors with BCP Leakage Resilience). A (k, 2`)-two-seed extractor Ext(X;R,S) :
{0, 1}n × {0, 1}d1 × {0, 1}d2 → {0, 1}m with error ε is an efficient function such that for all (1, 2, 2`)-BCP
protocol π : ({0, 1}n × {0, 1}d1)× ({0, 1}n × {0, 1}d2 → {0, 1}2` and any (n, k)-source X, we have:(

Ext(X;R,S), R, S, π((X,R), (X,S))
)
≈ε
(
Um, R, S, π((X,R), (X,S))

)
,

where R,S are independent uniform random bits of length d1 and d2 respectively.

2In [KMS19], these are referred to as “extractors for cylinder-intersection sources.”

14

Definition 4.9 (Symmetric-Key NIKE with BCP Leakage Resilience). We say that a symmetric-key NIKE
sk-NIKE = (Publish,SharedKey) is (k, `, ε)-secure against interactive leakages if for any distribution L such
that H∞(L) ≥ k all (1, 2, 2`)-BCP protocol π((sk, rA), (sk, rB)) (Definition 4.7), we have:

(pA, pB , π((sk, rA), (sk, rB)),K0) ≈ε (pA, pB , π((sk, rA), (sk, rB)),K1),

where sk ← L, rA, rB ← R, pA = Publish(sk, rA), pB = Publish(sk, rB), K0 = SharedKey(sk, pA, rB), and
K1 ← K.

Definition 4.10 (BCP Extractor). Let X1, · · · , XN be N independent (n, k)-sources. Let π be a (pos-
sibly randomized) (p,N, µ)-BCP and π(X1, · · · , XN) be the transcript. A deterministic function Ext :
({0, 1}n)N → {0, 1}m is an (n, k, p,N, µ)-BCP extractor with error ε if

(Ext(X1, · · · , XN), π(X1, · · · , XN)) ≈ε (Um, π(X1, · · · , XN)).

Definition 4.11. The ε-distributional communication complexity of a Boolean function f : ({0, 1}n)N →
{0, 1}, Cε(f) in a (p,N) bounded collusion model, is the minimum number µ of any (p,N, µ)-BCP that
ε-computes f .

Using the standard argument that unpredictability is the same as indistinguishability for any 1-bit random
variable, we have the following theorem.

Theorem 4.12. A Boolean function f : ({0, 1}n)N → {0, 1} with Cε(f) ≥ µ+1 gives an (n, n, p,N, µ)-BCP
extractor with error ε, and vice versa.

Next we show that any (n, k, p,N, µ + 1)-BCP extractor with sufficiently small error must be strong in
any subset of p sources if the transcript size is at most µ.

Theorem 4.13. Suppose Ext : ({0, 1}n)N → {0, 1}m is an (n, k, p,N, µ + 1)-BCP extractor with error ε.
Then for any (p,N, µ)-BCP transcript π(X1, · · · , XN) and any subset S ⊂ [N] with |S| = p, we have

(Ext(X1, · · · , XN), π(X1, · · · , XN), XS) ≈2m·ε (Um, π(X1, · · · , XN), XS),

where XS = {Xi, i ∈ S}.

Proof. Assume that there exists a set S ⊂ [N], a transcript π(X1, · · · , XN) of a (p,N, µ)-BCP, and a
distinguisher D such that

|Pr[D(Ext(X1, · · · , XN), π(X1, · · · , XN), XS) = 1]− Pr[D(Um, π(X1, · · · , XN), XS) = 1]| = ε′.

Let V be a uniformly random m-bit string, and consider the following (p,N, µ + 1)-BCP where the
transcript is (π(X1, · · · , XN), D(V, π(X1, · · · , XN), XS)). Now define another distinguisher TV as follows.
Given input (W,π(X1, · · · , XN), D(V, π(X1, · · · , XN), XS)), TV outputs D(V, π(X1, · · · , XN), XS) if W = V
and outputs a uniformly random bit otherwise. We have

|Pr[TV (Ext(X1, · · · , XN), π(X1, · · · , XN), D(V, π(X1, · · · , XN), XS)) = 1]

−Pr[TV (Um, π(X1, · · · , XN), D(V, π(X1, · · · , XN), XS)) = 1]|
=|2−m(Pr[D(Ext(X1, · · · , XN), π(X1, · · · , XN), Xs) = 1]− Pr[D(Um, π(X1, · · · , XN), XS) = 1])|
=2−mε′

However, note that the new protocol is a (p,N, µ + 1)-BCP, thus we have 2−mε′ ≤ ε. This means that
ε′ ≤ 2m · ε.

In the case of p = N − 1, BCP extractors with one bit of output are equivalent to hard functions in
the number-on-forehead (NOF) communication model. The communication in the NOF model is exactly
an (N − 1, N, µ)-BCP, and thus we can use the results in [BNS92] on hard functions in the NOF model.
Specifically, [BNS92] showed two explicit functions that are hard in the NOF model.

15

Generalized Inner Product (GIP) : GIPN,n : ({0, 1}n)N → {0, 1} is defined as GIPN,n(x1, · · · , xN) = 1
iff the number of positions where all the xi’s have 1 is odd.

Quadratic Residue (QR) : QRN,n : ({0, 1}n)N → {0, 1} is defined as QRN,n(x1, · · · , xN) = 1 iff
∑N
i=1 xi

is a quadratic residue mod p.

Theorem 4.14. In the NOF model with N parties, we have

1. [BNS92] For any n-bit long prime number p, Cε(QR) = Ω(n
2N + log ε).

2. [Chu90] Cε(GIP) = Ω(n
2N + log ε).

Using this theorem together with Theorem 4.12, we obtain explicit, efficient BCP extractors, which are
also two-seed extractors by Theorem 4.13 with N = 3:

Theorem 4.15. There exist explicit constructions of (n, `)-two-seed extractors Ext : {0, 1}n × {0, 1}n ×
{0, 1}n → {0, 1}, with leakage size ` = Ω(n) and error ε = 2−Ω(n).

We would like to get more output bits. Below we show two different methods to achieve this. The first
method is quite general and applies to any two-seed extractor, while the second method achieves better seed
length but only applied to the GIP extractor.

Construction 1: Take any two-seed extractor Ext which outputs one bit, choose m independent copies of
seeds (R1, · · ·Rm) and another independent copy of seed S. Compute Zi = Ext(X,Ri, S) for each i. The
final output is Z = (Z1, · · · , Zm).

We have the following lemma.

Lemma 4.16. If Ext is a (k, `+m)-two-seed extractor with error ε, then Construction 1 gives a (k, `)-two-
seed extractor with error mε.

Proof. Let R = (R1, · · · , Rm). Let the leakage be L1 = f(X,R) and L2 = g(X,S). Define Z−i =
(Z1, · · · , Zi−1, Zi+1, · · · , Zm). We show that for any i,

(Zi, Z−i, L1, L2, R, S) ≈ε (U1, Z−i, L1, L2, R, S).

To see this, first fix all the Rj ’s except Ri. Note that after this fixing, (Ri, S) are still independent and
uniform. Further note that conditioned on this fixing, L1 becomes a deterministic function of X and Ri,
while L2 is a deterministic function of X and S. Now Z−i can be viewed as an extra deterministic leakage
from (X,S) with size m− 1 and therefore the total size of leakage is at most m+ `.

Thus we have

(Zi, Z−i, L1, L2, R, S) ≈ε (U1, Z−i, L1, L2, R, S).

Now a standard hybrid argument implies that

(Z,L1, L2, R, S) ≈mε (Um, L1, L2, R, S).

This gives the following theorem.

Theorem 4.17. There exist explicit constructions of (n, `)-two-seed extractors Ext : {0, 1}n × {0, 1}mn ×
{0, 1}n → {0, 1}m with leakage size ` = Ω(n), error ε = 2−Ω(n) and output length m = Ω(n). One seed has
length mn and the other has length n.

Next we show a construction that uses smaller seed length. First we recall the following lemma from
[DEOR04].

Lemma 4.18. [DEOR04] For any number n, there exists an explicit construction of n matrices A1, · · · , An,
where each Ai is an n× n matrix over F2, such that for any S ⊆ [n] with S 6= ∅, we have that

∑
i∈S Ai has

full rank.

We can now describe our second construction.

16

Construction 2: Let Ext be the two-seed extractor constructed from GIP3,n. For some m < n, let
A1, · · · , Am be the first m matrices from Lemma 4.18. Let the seed be (R,S) ∈ Fn2 . For each i ∈ [m]
compute Zi = Ext(X,AiR,S) and let Z = (Z1, · · · , Zm).

To analyze the lemma we will use a standard XOR lemma.

Lemma 4.19. [Gol11] For any m-bit random variable T , we have:

SD(T,Um) ≤
√ ∑

0m 6=a∈{0,1}m
SD(T · a, U1)2,

where T · a denotes the inner product of T and a over F2.

We have the following lemma.

Lemma 4.20. Construction 2 gives an (n, `)-two-seed extractor with leakage size ` = Ω(n) and error ε =
2m−Ω(n).

Proof. Let the leakage be L1 = f(X,R) and L2 = g(X,S). For any a ∈ {0, 1}m with a 6= 0m, let Sa ⊆ [m]
denote the set of indices of a where the corresponding bit is 1. Then Sa 6= ∅. Observe that

Z · a = GIP(X,
∑
i∈Sa

AiR,S) = GIP(X, (
∑
i∈Sa

Ai)R,S).

Since
∑
i∈Sa

Ai has full rank, (
∑
i∈Sa

Ai)R is uniform in Fn2 . Thus we have

(Z · a, L1, L2, R, S) ≈ε (U1, L1, L2, R, S),

where ε = 2−Ω(n). By Markov’s inequality, with probability 1 −
√
ε over the fixing of (L1, L2, R, S), we

have that Z · a is
√
ε-close to uniform. By a union bound, with probability 1 − 2m

√
ε over the fixing of

(L1, L2, R, S), we have that for all a ∈ {0, 1}m with a 6= 0m, Z ·a is
√
ε-close to uniform. When this happens,

by Lemma 4.19 we have that

|Z − Um| ≤ 2m/2
√
ε.

Thus overall we have that

(Z,L1, L2, R, S) ≈ε′ (Um, L1, L2, R, S),

where ε′ ≤ 2m
√
ε+ 2m/2

√
ε = 2m−Ω(n).

This yields the following theorem.

Theorem 4.21. There exist explicit constructions of (n, `)-two-seed extractors Ext : {0, 1}n × {0, 1}n ×
{0, 1}n → {0, 1}m with leakage size ` = Ω(n), error ε = 2−Ω(n) and output length m = Ω(n). Each seed has
length n.

5 Definitions for Leakage-Resilient NIKE in the Public-Key Set-
ting

We define NIKE in the public-key setting.

Definition 5.1 (Non-Interactive Key Exchange). A Non-Interactive Key Exchange NIKE over parameter
space C, state space R, public message space P and key space K consists of the following efficient algorithms:

• Setup(1λ) is a randomized algorithm that takes as input the security parameter 1λ and outputs public
parameters params ∈ C.

17

• Gen(params) is a randomized algorithm that takes as input public parameters params ∈ C and outputs
a state r ∈ R.

• Publish(params, r) is a deterministic algorithm that takes as input public parameters params ∈ C and a
state r ∈ R and outputs a public message p ∈ P.

• SharedKey(params, r, p) is a deterministic algorithm that takes as input public parameters params ∈ C,
a state r ∈ R and a public message p ∈ P, and outputs a key K ∈ K.

For notational simplicity, we will omit the input params from these algorithms in the rest of the paper.
We require a NIKE protocol to satisfy the two following properties:

Perfect Correctness. We say that NIKE is perfectly correct if, over the randomness of Setup and Gen:

Pr[SharedKey(rA, pB) = SharedKey(rB , pA)] = 1

where params← Setup(1λ), rA ← Gen(params), pA = Publish(rA), rB ← Gen(params), pB = Publish(rB).

Security Against `-bit Leakage. We say that a NIKE protocol is secure against `-bit leakage if for all
PPT distinguishers D, and for all efficiently computable leakage functions fA, fB : C ×R → {0, 1}`, we have
(where we omit also params as an input to the distinguisher D and the leakage functions fA, fB in the rest
of the paper):∣∣Pr [D (pA, pB , fA(rA), fB(rB),K0)) = 1] − Pr [D (pA, pB , fA(rA), fB(rB),K1) = 1]

∣∣ ≤ negl(λ),

where params ← Setup(1λ), rA ← Gen(params), pA = Publish(rA), rB ← Gen(params), pB = Publish(rB),
K0 = SharedKey(rA, pB), and K1 ← K.

Default Definition versus Variants. We define several variants of NIKE depending on whether the
Setup algorithm and the Gen algorithm just output uniformly random coins or sample from some more
complex distribution. By default, we will only allow them to output uniformly random coins, which means
that the leakage can depend on all of the random coins used by the scheme and there is no reliance on
leak-free randomness. In particular, we say that a NIKE scheme is:

• a plain NIKE (default), if both Setup(1λ) and Gen(params) just output (some specified number of)
uniformly random bits. In particular Setup(1λ; ρS) = ρS and Gen(params; ρG) = ρG. In this case, we
will often exclude the algorithms Setup,Gen from the description of NIKE.

• a NIKE in the common reference string model, if the algorithm Setup(1λ) can be arbitrary (sample
from an arbitrary distribution). Note that this means that we rely on leak-free randomness to run the
Setup algorithm.

• a NIKE in the preprocessing model, if the algorithm Gen(params) can be arbitrary (sample from an arbi-
trary distribution). Note that this means we rely on leak-free randomness to generate the states rA, rB
of each party before the protocol starts (but we do not rely on any additional leak-free randomness
during the protocol execution).

• a NIKE in the common reference string and preprocessinf model, if both the algorithms Setup,Gen can
be arbitrary (sample from an arbitrary distribution).

As in the symmetric-key setting, we will also consider an alternative (and stronger) notion of leakage
resilience against BCP leakage (refer to Definition 4.7 for the definition of a Bounded Collusion Protocol
(BCP)).

We say that a BCP protocol π is efficient if Next is computable in polynomial time, and all functions g
output by Next are computable in polynomial time.

In the following, the total leakage L is now the transcript of an efficient BCP protocol π((params, rA), (params, rB)).
In particular, each message of the transcript might depend on the transcript produced so far.

18

Definition 5.2 (Security Against BCP Leakage). We say that NIKE = (Setup,Gen,Publish,SharedKey) is
(k, `)-secure against interactive leakage if for all PPT distinguishersD and all efficient (1, 2, 2`)-BCP protocols
π((params, rA), (params, rB)) (Definition 4.7), we have:∣∣Pr [D (pA, pB , L,K0) = 1] − Pr [D (pA, pB , L,K1) = 1]

∣∣ ≤ negl(λ),

where params ← Setup(1λ), rA ← Gen(params), pA = Publish(rA), rB ← Gen(params), pB = Publish(rB),
K0 = SharedKey(rA, pB), K1 ← K, and L is the transcript produced by π(params, rA, rB).

Similarly, we will omit params as in input of Π in the rest of the paper.

6 A Black-Box Separation

In this section, we show a broad black-box separation result, which rules out any efficient black-box reduction
from any single-stage assumption to the leakage-resilience of plain NIKE with sufficiently large leakage.

6.1 Single-Stage Assumptions

Roughly following [HH09, Wic13], we define single-stage (game-based) assumptions (also called cryptographic
games). For comparison, single-stage assumptions differ from falsifiable assumptions [Nao03, GW11] as
challengers can be potentially unbounded.

Definition 6.1 (Single-Stage Assumption). A single-stage assumption consists of an interactive (potentially
inefficient, stateful) challenger C and a constant c ∈ [0, 1). On security parameter λ, the challenger C(1λ)
interacts with a (stateful) machine A(1λ) called the adversary and may output a special symbol win. If this
occurs, we say that A(1λ) wins C(1λ). The assumption associated with the tuple (C, c) states that for any
PPT adversary A, we have

Pr[A(1λ) wins C(1λ)] ≤ c+ negl(λ)

where the probability is over the random coins of C and A.

Which assumptions are not single-stage? The definition above seems to cover all most common
cryptographic assumptions, so one can naturally ask which assumptions our black-box impossibility does not
cover. An example of a multi-stage assumption is the leakage resilience of NIKE itself (defined in Section 5)!
In particular, one can equivalently define leakage-resilience as a two-stage game, where the adversary is split
into two distinct entities: a leaker that produces the leakages fA(rA), fB(rB), and a distinguisher that uses
this leakage to distinguish the final key from uniform. Unlike the leaker, the distinguisher in that game does
not see the secret states rA, rB , and the only state kept by the adversary between the two stages are the
leakages fA(rA) and fB(rB).

6.2 Separating Leakage-Resilient NIKE from Single-Stage Assumptions

Next, we recall the notion of black-box reductions.

Definition 6.2 (Black-Box Reduction). A black-box reduction showing the leakage-resilience (for `-bit
leakage) of NIKE based on a single-stage assumption (C, c) is an efficient oracle-access machine R(·) such
that, for every (possibly inefficient, non-uniform) distinguisher D to the NIKE with (possibily inefficient,
non-uniform) leakage functions fA, fB : R → {0, 1}`, the machine RD,fA,fB breaks the assumption (C, c).

We are ready to state our black-box impossibility result.

Theorem 6.3 (Black-Box Separation). Let ` = ω(log λ). Let NIKE = (Publish,SharedKey) be a candidate
plain NIKE satisfying perfect correctness. Then for any single-stage assumption (C, c), one of the following
must hold:

19

• (C, c) is false.

• There is no black-box security reduction showing the leakage resilience of NIKE against `-bit leakages
based on the assumption (C, c).

Proof. Our proof strategy closely follows the ideas of [Wic13]. Looking ahead, our inefficient distinguisher
against NIKE is a simulatable attacker in the sense of [Wic13, Definition 4.1].

Let (C, c) be a single-stage assumption, and let R be a black-box reduction from the security of NIKE
against `-bit leakage to the assumption (C, c). In other words, for any (potentially inefficient, non-uniform)
distinguisher D with non-negligible advantage along with (potentially inefficient, non-uniform) leakage func-
tions fA, fB : R → {0, 1}`, the machine RD,fA,fB breaks (C, c) with non-negligible advantage.

Let H : P → {0, 1}` be a random function. We first define a family of inefficient distinguishers D(H)

along with (inefficient) leakage functions fA
(H)

, fB
(H)

as follows.

• fA
(H)

takes as input a state rA ∈ R. It has the function H hard-coded (say as a truth table). It
computes pA = Publish(rA) and outputs σA = H(pA).

• fB
(H)

takes as input a state rB ∈ R. It has the function H hard-coded (say as a truth table). It
computes pB = Publish(rB) and outputs σB = H(pB).

• D(H)
(pA, pB , σA, σB ,K) takes as input public messages pA, pB ∈ P, leakages σA, σB ∈ {0, 1}` and a

key K ∈ K. It checks that H(pA) = σA and H(pB) = σB .

If this equality holds, brute-force search for any rA ∈ R such that Publish(rA) = pA; output 1 if
K = SharedKey(rA, pB) and 0 otherwise.

Otherwise output a random bit b ∈ {0, 1}.

Claim 6.4. Assume NIKE is perfectly correct. Then D(H)
along with fA

(H)
, fB

(H)
is an (inefficient) distin-

guisher with leakage size ` and advantage 1− 1/|K|.

Proof. By perfect correctness of NIKE, for any pB in the image of Publish and any rA, r
′
A such that Publish(rA) =

Publish(r′A), we have SharedKey(rA, pB) = SharedKey(r′A, pB).

In particular, on input
(
pA, pB , fA

(H)
(rA), fB

(H)
(rB),K0

)
where pA = Publish(rA) andK0 = SharedKey(rA, pB),

the distinguisher D(H)
always outputs 1.

Similarly, on input
(
pA, pB , fA

(H)
(rA), fB

(H)
(rB),K1

)
where K1 ← K, the distinguisher D(H)

outputs 1 if
and only if K = SharedKey(rA, pB) (for any rA such that pA = Publish(rA)), which happens with probability
1/|K|.

We now consider the following efficient algorithm DSim along with efficient leakage functions f∗A, f
∗
B .

These three algorithms share a look-up table T of entries in R× {0, 1}` indexed by elements in P; we will
write T [p ∈ P] = (r, σ) ∈ R × {0, 1}`. We stress that DSim is not a distinguisher against NIKE because of
this shared state T .

• f∗A(r) takes as input r ∈ R. It computes p = Publish(r). If the entry of T indexed by p has not yet
been assigned, it samples a uniform σ ← {0, 1}`, and define T [p] = (r, σ). Otherwise it outputs the
second element of T [p].

• f∗B(r) takes as input r ∈ R. It computes p = Publish(r). If the entry of T indexed by p has not yet
been assigned, it samples a uniform σ ← {0, 1}`, and define T [p] = (r, σ). Otherwise it outputs the
second element of T [p].

20

• DSim takes as input public messages pA, pB ∈ P, leakages σA, σB ∈ {0, 1}` and a key K ∈ K.

It looks up in T whether both T [pA] and T [pB] are defined; if so it checks that the second elements
of T [pA] and T [pB] equal σA and σB , respectively. If this is the case, let rA be the first element of
T [pA] ∈ R× {0, 1}`. It outputs 1 if SharedKey(rA, pB) = K, and 0 otherwise.

Otherwise, it outputs a random bit b.

Claim 6.5. Suppose NIKE is perfectly correct. Let R be an efficient oracle-access machine. Then the outputs

of RD
(H)

, fA
(H)

, fB
(H)

and RDSim, f
∗
A, f

∗
B are within statistical distance Q/2` over the randomness of R and H,

where Q is the number of oracle queries of R, and ` is the size of the leakages.

Proof. Let Q = poly(λ) be the total number of oracle queries performed by RD,fA,fB to D, fA, fB . It suffices

to argue that the transcripts of the calls of R to (D(H)
, fA

(H)
, fB

(H)
) and to (RDSim, f

∗
A, f

∗
B) are within

statistical distance Q/2`.

We first note that the (transcripts of the) outputs of the calls to fA
(H)

, fB
(H)

and f∗A, f
∗
B are identically

distributed. We then distinguish two cases:

• RD,fA,fB calls D on input pA, pB , σA, σB but has either not previously called fA on any input rA such
that Publish(rA) = pA, or has not previously called fB on any input rB such that Publish(rB) = pB .
Then RDSim, f

∗
A, f

∗
B obtains a uniformly random output bit over such calls as either T [pA] or T [pB] has

not been defined. Further, the probability that RD
(H)

, fA
(H)

, fB
(H)

does not get a random output bit

over any such call to D(H)
is at most Q/2` (over the randomness of H(pA) and H(pB)).

• Otherwise for every call to D that does not result in a random output bit, RD,fA,fB has previously
queried both fA on rA such that Publish(rA) = pA and fB on rB such that Publish(rB) = pB . In

particular pB is in the image of Publish, and by perfect correctness, both DSim and D(H)
compute the

same value SharedKey(rA, pB). Therefore the two resulting distributions are identically distributed.

By Claim 6.5, we have in particular:

Pr[RDSim,f
∗
A,f
∗
B wins C] ≥ Pr[RD

(H)
,fA

(H)
,fB

(H)

wins C]−Q/2`,

over the randomness ofR, C and H. Note thatRDSim,f
∗
A,f
∗
B is a PPT algorithm. Now by Claim 6.4,RDSim,f

∗
A,f
∗
B

is an efficient adversary that wins (C, c) with advantage at least 1 − 1/|K| − Q/2`, which concludes the
proof.

6.3 Circumventing the Impossibility Result

The black-box impossibility result of Theorem 6.3 suggests several natural avenues to avoid it. We mention
below several such options, some of which lead to positive results in subsequent sections of the paper.

Small Leakage. Our impossibility result only covers super-logarithmically-sized leakages, and assumptions
asserting security against PPT adversary with negligible advantage. One natural way around this is to restrict
security to small leakages and/or to use stronger assumptions. In Section 7, we show that any standard NIKE
is actually directly secure againstO(log λ)-bit leakages, and, more generally, that any ε-secure standard NIKE
(where the advantage of any PPT distinguisher is at most ε) is (ε · 2O(`))-secure with `-bit leakage.

Multi-Stage Assumptions and Non-Black-Box Reductions. Our impossibility result only covers
single-stage assumptions under black-box reductions. All the constructions we are aware of for leakage
resilience use black-box reductions, and essentially all standard cryptographic assumptions are phrased as
single-stage game-based assumptions.

21

Imperfect Correctness. We crucially use in several steps of our proof that the NIKE is perfectly correct,

to ensure that both D(H)
is an (inefficient) distinguisher for NIKE, and that D(H)

and DSim compute the
same shared key. However we do not see a way to leverage this gap alone to build a secure construction.

The Common Reference String Model. On a more constructive side, an interesting way to get around
Theorem 6.3 is to further rely on trusted setup. A common setting is to assume the availability of a common
reference string (CRS), where the randomness used to generate the CRS cannot leak. The reason our black-
box impossibility result does not apply in that case is somewhat subtle: the reduction R can call (D, fA, fB)
using a malformed CRS (not in the image of Setup), where perfect correctness might not hold. As a matter
of fact, our black-box impossibility result does extend to the common random string model. In Section 9,
we build a leakage-resilient NIKE in the CRS model from iO.

The Preprocessing Model. A very similar workaround is to consider what we call the preprocessing
model, where parties generate their secret states r using some leak-free randomness. In the preprocessing
model, our impossibility result does not apply for the same reason it does not apply in the CRS setting. This
preprocessing could either be performed by the parties themselves during an earlier leak-free preprocessing
stage, or it could be generated by a trusted third party. In Section 8, we build a leakage-resilient NIKE in
the CRS model with preprocessing from bilinear maps; in Section 9 we build a leakage-resilient NIKE in the
pure preprocessing model from iO and lossy functions.

7 NIKE with Bounded Leakage

In this section, we show that any secure non-interactive key exchange (NIKE) protocol remains secure under
small amounts of independent leakage on Alice and Bob’s secret randomness. Recall that in our setting, a
NIKE distinguisher is given leakage fA(rA) and fB(rB) on Alice and Bob’s secret randomness rA, rB . We
show that if fA and fB are both efficiently computable functions with `-bit output, then leakage increases
the attacker’s advantage by at most a (multiplicative) 2O(`) factor.

Theorem 7.1 (Leakage Resilience for Bounded Leakage). Let fA and fB be L-time-computable functions
each producing `-bits of output. Suppose a distinguisher D running in time T is given leakage fA(rA) on
Alice’s secret rA and fB(rB) on Bob’s secret rB, and breaks the security of NIKE with advantage ε. Then
there exists a distinguisher D′ running in time 4T + 2L which uses no leakage, and breaks the security of
NIKE with advantage ε4/23`−3.3

An immediate corollary is that any secure NIKE scheme remains secure under O(log(λ)) bits of (efficiently
computable) independent leakage on Alice and Bob’s randomness. This can be extended to ` = ω(log λ)
by complexity leveraging: if no poly(λ)-time distinguisher for the original NIKE scheme attains advantage
2−Ω(`), then the NIKE remains secure under ` bits of leakage.

Furthermore, Theorem 7.1 also holds for NIKEs in the common reference string model, where the public
parameters of the NIKE are generated using leak-free random coins (that can be discarded after setup). Our
proof directly extends to that setting. We develop on that extension in Remark 7.7.

We prove Theorem 7.1 by invoking a connection between the notion of “square-friendliness” and leakage-
resilience [BDK+11, DRV12, DY13]; we refer the reader to Section 2.3.1 for a review of this notion and the
intuition for our approach.

7.1 Leakage Resilience of Square-Friendly Primitives

We briefly recall the notions of square security and square-friendly (indistinguishability) primitives due
to [DY13].

3In all of this section, we refer to running time of distinguishers up to additive poly(λ) terms.

22

Consider the security game for any indistinguishability primitive, i.e. an interaction between a randomized
challenger C and a distinguisher D, where D “wins” the game if it correctly guesses the challenger’s bit b.
Let randC denote the random coins of C in the experiment. The corresponding square-security game can be
defined with respect to any partition of these coins as randC = (randfix

C , rand
exp
C) as follows. The distinguishers

D considered in the square-security game are the same as those considered in the standard game, but D is
now challenged to play two runs of the original security game. In the first run, the challenger freshly samples
randfix

C , rand
exp
C , and in the second run the challenger re-uses the same randfix

C and re-samples fresh randexp
C

coins. D is defined to win the square-security game if it either wins both runs or loses both runs of the
underlying security game.

Formally, define AdvD(randfix
C) to be the (signed) advantage of D in the standard security game for a fixed

choice of randfix
C :

AdvD(randfix
C) := Pr

randexpC

[
D(1λ) wins C(randfix

C , rand
exp
C)

]
− 1/2.

Then the advantage of D in the square-security game is:

SqAdvD := E
randfixC

[
AdvD(randfix

C)2
]
.

Leakage Resilience. [DY13], building on [BDK+11, DRV12] showed the following relationship between
square-security and leakage resilience:

Theorem 7.2 (Square Security Implies Bounded Leakage Resilience [DY13]). Let D be a distinguisher for
the security game of an indistinguishability application. Let X be a distribution over {0, 1}m with collision-
entropy at least m− ` for some `.4 Then:

2`/2 ·
√
SqAdvD ≥

∣∣∣ E
X←X

[AdvD(X)]
∣∣∣ .

We will interpret Theorem 7.2 as a statement about leakage-resilience (since ` bits of leakage can only
result in ` bits of entropy loss). [DY13] call a security game square-friendly if standard security implies square
security; by Theorem 7.2, any primitive with a square-friendly security game is automatically leakage-resilient
for log-size leakage on randfix

C .

7.2 Proof of Theorem 7.1

As described in Section 2.3.1, our proof strategy for Theorem 7.1 applies the “double-run” trick of [BDK+11,
DY13] to two distinct security games. The first game is the standard NIKE security experiment, but where
randfix

C = rA; square security of this game implies that the original NIKE scheme is secure against leakage
on Alice’s secret (but not Bob’s). The second game is a slight modification of the standard NIKE security
experiment, and is parameterized by a choice of the leakage function fA. In this game, randfix

C = rB , and the
NIKE distinguisher additionally receives leakage fA(rA) on Alice’s secret rA (which is now considered part
of randexp

C). We use the “double-run” trick to argue that both of these games are square-friendly, meaning
that for both games, standard security implies square security. Taken together with Theorem 7.2, these
statements imply that the original NIKE is leakage-resilient given bounded-size leakage on Alice’s and Bob’s
secret values.

We start by defining Game 1. This is the standard NIKE security experiment, written with an explicit
partition of the challenger’s randomness randC = (randfix

C , rand
exp
C).

Security Game 1.

• The challenger C computes params ← Setup(1λ; ρSetup), and samples random coins rA, rB ← {0, 1}m.
It computes pA = Publish(rA), pB = Publish(rB), and K∗ ← K.

4The same statement holds using standard Shannon entropy instead.

23

It flips a random coin b← {0, 1}. If b = 0, it sets K = SharedKey(rA, pB). Otherwise it sets K = K∗.

It sends (params, pA, pB ,K) to the distinguisher. The random coins of the challenger are partitioned
so that randfix

C = rA and randexp
C = (b, rB ,K

∗).5

• The distinguisher D answers with a bit b′.

• The game outputs 1 (and the adversary wins) if b = b′, and 0 otherwise.

Lemma 7.3. Suppose a time-T distinguisher for Game 1 achieves square advantage ε. Then there exists a
time-2T distinguisher against NIKE with (standard) advantage 2ε.

Proof. Given D, a time-T distinguisher for Game 1 with square advantage ε, we exhibit a time-2T distin-
guisher B for Game 1 with (standard) advantage 2ε as follows. B receives a message (params, pA, pB ,K)
from its challenger. Next it plays the role of the challenger and runs D, but on a message consistent with the

same randfix
C coins as its challenger but a fresh choice of randexp∗

C coins. To do this, B simply chooses random
r∗B ← R, b∗ ← {0, 1},K ′ ← K. It sets pB∗ = Publish(r∗B), and if b∗ = 0 it sets K∗ = SharedKey(r∗B , pA)
and if b∗ = 1 it sets K∗ = K ′. It sends D the message (params, pA, p

∗
B ,K

∗), i.e. a message consistent with

interacting with the challenger C(randfix
C , rand

exp∗

C).
After it receives D’s guess, it determines if D won the experiment. Now B runs D again, but on the

original message (params, pA, pB ,K) that B received from its challenger. If D won the first run, then B
forwards D’s guess in the second run as its own guess. But if D lost in the first run, B flips D’s guess in the
second run before sending it to its challenger. This way, B wins so long as D wins both runs or loses both
runs. The probability B wins is then:

Pr
randfixC ,rand

exp
C

[
B wins C(randfix

C , rand
exp
C)

]
= Pr

randfixC ,rand
exp∗
C ,randexpC

[
D wins C(randfix

C , rand
exp∗

C) and D wins C(randfix
C , rand

exp
C)

]
+ Pr

randfixC ,rand
exp∗
C ,randexpC

[
D loses C(randfix

C , rand
exp∗

C) and D loses C(randfix
C , rand

exp
C)

]
=ErandfixC

[(
1/2 + AdvD(randfix

C)
)2
]

+ ErandfixC

[(
1/2− AdvD(randfix

C)
)2
]

=1/2 + 2ε.

Next, we consider a modified NIKE security game, parameterized by a leakage function fA. We highlight
the difference between the previous security game in red.

Security Game 2.

• This game is parameterized by a leakage function fA : R → {0, 1}`.

• The challenger C computes params ← Setup(1λ; ρSetup), and samples random coins rA, rB ← {0, 1}m.
It computes pA = Publish(rA), pB = Publish(rB), and K∗ ← K.

It flips a random coin b← {0, 1}. If b = 0, it sets K = SharedKey(rA, pB). Otherwise it sets K = K∗.

It sends (params, pA, pB , fA(rA),K).

The random coins of the challenger are partitioned so that randfix
C = rB and randexp

C = (b, rA,K
∗).

• The distinguisher D answers with a bit b′.

5Technically, randfix
C would need to include ρSetup as well. Looking ahead, this is because our reduction uses a value pA

provided by a challenger, which depends on params.

24

• The game outputs 1 (and the adversary wins) if b = b′, and 0 otherwise.

These games are defined so that Game 2 is secure (for any choice of fA) as long as Game 1 is secure against
attackers who get ` bits of leakage on rA. The following lemma is an immediate corollary of Lemma 7.3 and
Theorem 7.2.

Lemma 7.4. Suppose a time-T distinguisher for Game 2 achieves standard advantage ε, using a leakage
function fA of output size `. Then there exists a time-2T distinguisher for Game 1 with square advantage
ε2/2`−1.

Proof. Let D be a time-T distinguisher for Game 2 achieving advantage ε. By Theorem 7.2, the square
advantage of D in Game 1 (which from the attacker’s point of view is identical to Game 2 without the
leakage fA) is at least ε2/2`. By Lemma 7.3, there exists an attacker B running in time 2T achieving
advantage ε2/2`−1.

Next we prove that Game 2 is square-friendly.

Lemma 7.5. Suppose Game 2 is parameterized by an L-time computable function fA. If a time-T distin-
guisher for Game 2 achieves square advantage ε, then there exists a time-(2T + L) distinguisher for Game
2 with (standard) advantage 2ε.

Proof. The proof is essentially identical to the one of Lemma 7.3.
Given D, a time-T distinguisher for Game 2 with square advantage ε, we exhibit a time-(2T +L) distin-

guisher B for Game 2 with (standard) advantage 2ε as follows. B receives a message (params, pA, pB , fA(rA),K)
from its challenger. Next it plays the role of the challenger and runs D, but on a message consistent with the

same randfix
C coins as its challenger but with a fresh choice of randexp∗

C coins. To do this, B simply chooses ran-
dom r∗A ← R, b∗ ← {0, 1},K ′ ← K. It sets p∗A = Publish(r∗A), and if b∗ = 0 it sets K∗ = SharedKey(r∗A, pB)
and if b∗ = 1 it sets K∗ = K ′. It also computes fA(r∗A) (which adds L to its running time). It sends
D the message (params, p∗A, pB , fA(r∗A),K∗), i.e. a message consistent with interacting with the challenger

C(randfix
C , rand

exp∗

C).
After it receives D’s guess, it determines if D won the experiment. Now B runs D again, but on the

original message (params, pA, pB , fA(rA),K) that B received from its challenger. If D won the first run, then
B forwards D’s guess in the second run as its own guess. But if D lost in the first run, B flips D’s guess in
the second run before sending it to its challenger. As in the proof of Lemma 7.3, B wins with probability
1/2 + 2ε.

An analogue of Lemma 7.4 holds for Game 2 as well:

Lemma 7.6. Suppose a time-T distinguisher for Game 2 given ` bits of leakage on rB (in addition to
fA(rA)) achieves standard advantage ε. Then there exists a time-T distinguisher for Game 2 (who does not
receive any leakage on rB) achieving square advantage ε2/2`.

Together, Lemma 7.6, Lemma 7.5, Lemma 7.4 and Lemma 7.3 give Theorem 7.1.

Remark 7.7 (Bounded leakage in the common reference string model). As mentioned in the beginning of the
section, Theorem 7.1 extends to NIKEs in the common reference string model. Our proof directly extends
to that setting, up to the following syntactical changes.

8 Constructions from Bilinear Maps

8.1 Construction in Composite-Order Groups

In this section we leverage bilinear maps to build leakage-resilent NIKE in the CRS model with preprocessing.
We first provide a construction using composite-order bilinear groups.

25

Construction 8.1. Let sk-NIKE = (sk-NIKE.Publish, sk-NIKE.SharedKey) be a leakage-resilient symmetric
key NIKE (Definition 4.1) over secret key space SK, internal randomness space R, public message space P
and output key space K. We will assume that sk-NIKE.Publish does not take any secret key sk as input; all
our constructions from two-seed extractors in Section 4 satisfy this property.

Let G be a group generator for a composite-order group (defined in Section 3.1.1). We will assume that
there is a natural bijection GT ' SK.

We construct NIKE = (Setup,Gen,Publish,SharedKey) as follows:

• Setup(1λ): on input the security parameter, generate G = (G,GT , N = p1p2, e) ← G(1λ) of order
N = p1p2 where p1 and p2 are primes. Let u be a generator of G.

Sample α, x← ZN and use p2 (given by the random coins used to run G) to compute g = uα·p2 ∈ Gp1
and h = gx ∈ Gp1 .

Output params = (G, g, h).

• Gen(params): on input params, sample ρ← R. Sample a← ZN , and output the state r = (ρ, (ga, ha)) ∈
R×G2.

• Publish(r): on input a state r = (ρ, (X,Y)) ∈ R×G2, output the public message p = (sk-NIKE.Publish(ρ), X).

• SharedKey(r, p): on input a state r = (ρ, (X,Y)) ∈ R×G2 and a public message p = (P,Z) ∈ P ×G,
compute:

sk = e(Y,Z),

that we identify as an element of SK, and output:

K = sk-NIKE.SharedKey(sk, ρ, P).

Theorem 8.2 (Correctness). Assuming sk-NIKE is perfectly correct, Construction 8.1 is perfectly correct.

Proof. Let rA, rB be elements of R × G2, pA = Publish(rA), pB = Publish(rB). By perfect correctness of
sk-NIKE, it suffices to show that SharedKey(rA, pB) and SharedKey(rB , pA) compute the same intermediate
secret key sk. But this follows as for all Y, Z ∈ G2, e(Y,Z) = e(Z, Y).

Theorem 8.3 (NIKE in the CRS model with Preprocessing). Assume that Assumption 3.2 holds, and that
sk-NIKE is leakage resilient. Then Construction 8.1 is leakage-resilient.

Proof. Let D be an efficient algorithm which breaks the leakage resilience of NIKE with leakage functions
fA, fB . We proceed via a sequence of hybrid games.

Hybrid 0. This is the real security experiment: D is given as input

(params, pA, pB , fA(rA), fB(rB),Kb)

where b is the challenger’s bit.

Hybrid 1. We change how we compute params, rA, rB given to the distinguisher. We now sample g ← Gp1 ,
x, y ← ZN , v ← Gp1 , and set:

h = gx, rA = (ρA, v, v
x), rB = (ρA, v

y, vxy).

The resulting input distributions to the distinguisher D in Hybrid 0 and Hybrid 1 are statistically close.
Indeed, g is uniform in Gp1 in both cases, and for a ← ZN , ga is uniform in Gp1 , except when g = 1G
which happens with negligible probability 1/p1. If this is not the case, then ha can be computed as (ga)x.
Similarly, gy is in this case uniformly distributed in Gp1 , and therefore follows the same distribution as (ga)y

where y ← ZN , except if (ga) = 1G, which happens with probability 1/p1 over the randomness of a← ZN .
Overall, the statistical distance between the distributions is at most 2/p1 which is negligible.

26

Hybrid 2. We change how we compute rA, rB given to the distinguisher. We now pick x, y ← ZN , w ← G,
and set:

h = gx, rA = (ρA, w, w
x), rB = (ρA, w

y, wxy).

This change is undetectable to any efficient distinguisher, even given rA, rB :

Lemma 8.4. Under Assumption 3.2, the following distributions are computationally indistinguishable:(
G, g, h = gx, rA = (ρA, (v, v

x)), rB = (ρB , (v
y, vxy)),Kb

)(
G, g, h = gx, rA = (ρA, (w,w

x)), rB = (ρB , (w
y, wxy)),Kb

)
,

where G ← G, g ← Gp1 , x, y ← ZN , v ← G1, w ← G; and ρA, ρB ← R, K0 = SharedKey(rA,Publish(rB))
and K1 ← K.

In particular since Publish, fA and fB are efficiently computable, the input distributions — and therefore
the outputs of D in Hybrid 1 and Hybrid 2 — are statistically indistinguishable.

Proof. We define a reduction R to Assumption 3.2 that takes as input G, g, T , where G← G, g ← Gp1 and
T is either uniform in Gp1 or in G. R does the following:

• Samples x← ZN and sets h = gx,

• Samples ρA, ρB ← R, y ← ZN , and sets rA = (ρA, T, T
x) and rB = (ρB , T

y, T xy),

• Computes
K0 = sk-NIKE.SharedKey(e(T, T)xy, ρA, sk-NIKE.Publish(ρB)),

• Samples K1 ← K,

• Outputs (
G, g, h, rA, rB ,Kb

)
.

If T ← Gp1 then R produces the first distribution of Lemma 8.4, and if T ← G then it produces the
second distribution.

Hybrid 3. We again change how we compute rA, rB given to the distinguisher. In this experiment we
sample x← ZN . We now compute h = gx, and generate the state as r = (ρ, (ua, uax)) where a← ZN .

The distributions induced by Hybrid 2 and Hybrid 3 are statistically indistinguishable. Indeed, they only
differ when w ∈ Gp1 or w ∈ Gp2 , which happens with probability (p1 + p2 − 1)/(p1p2) = negl(λ).

Lemma 8.5. Assume sk-NIKE is an (n, `+(log p1)/2, ε)-secure symmetric key NIKE with error ε = negl(λ).
Then the advantage of any (even potentially unbounded) distinguisher in Hybrid 3 is negligible.

Proof. In Hybrid 3, the secret key sk for sk-NIKE is computed as sk = e(ua, uxy) = e(u, u)axy. In particular,
over the randomness of x alone (with high probability over a and y), sk is uniform in GT conditioned on
hx ∈ Gp1 , fA(rA) and fB(rB). In particular, hx can be computed given x mod p1, and therefore the view
of the distinguisher can be generated using (f∗A(rA), f∗B(rB)) = (x mod p1, fA(rA), fB(rB)) which is of size
log p1 + 2`.

By (n, `+ (log p1)/2, ε)-security of sk-NIKE, the advantage of any (potentially unbounded) distinguisher
is therefore at most ε = negl(λ).

Overall we conclude that the advantage of D, fA, fB against Construction 8.1 is at most negligible.

27

Parameters. In the above, we interpret elements from GT as elements in SK, and in the analysis we
assume that uniform elements in GT map to uniform elements in SK. Doing so defines the input bit-size n
of the symmetric-key NIKE. Starting with an sk-NIKE resilient to `-bit leakages, we obtain a NIKE resilient
against (` − (log p1)/2)-bit leakages. Combined with Theorem 4.21 and Claim 4.6, and assuming that the
leakage size `(n) supported by the symmetric-key NIKE is greater than ≈ logN/4 where N is the order of
the group G, we obtain a NIKE with public message size n, leakage resilience against Ω(n)-bits leakages,
and therefore constant leakage rate.

8.2 NIKE from Prime-Order Bilinear Groups

In this section, we construct leakage-resilient NIKE from prime-order bilinear groups.
We will define a slight variant of NIKE in which Alice and Bob run different algorithms (GenA,PublishA,SharedKeyA)

and (GenB ,PublishB ,SharedKeyB).6

Construction 8.6. Let sk-NIKE = (sk-NIKE.Publish, sk-NIKE.SharedKey) be a leakage-resilient symmetric
key NIKE (defined in Section 4) over secret key space SK, internal randomness space R, public message
space P and output key space K. We will assume that sk-NIKE.Publish does not take any secret key sk as
input; all our constructions from two-seed extractors in Section 4 satisfy this property.

Let G be a group generator for a prime-order group. We will assume that there is a bijective map
GT → SK.

We construct NIKE = (Setup,Gen,Publish,SharedKey) as follows:

• Setup(1λ): on input the security parameter, generate G = (G,GT , p, e)← G(1λ) of prime order p. Let
g be a generator of G. Sample B ← Rk3×3

2 (Zp), and compute [B]g. Sample R ← Z3×3
p , and compute

[RB]g and [BR]g. Output
params = (G, [B]g, [RB]g, [BR]g).

• GenA(params): on input params, sample U← Rk3×3
3 (Zp), and output:

rA = (MA,NA) =
(
[UB]g, [UBR]g

)
• GenB(params): on input params, sample V← Rk3×3

3 (Zp), and output:

rB = (MB ,NB) =
(
[BV]g, [RBV]g

)
• Publish(r): on input a state r = (ρ,M,N) ∈ R× Z3×3

p × Z3×3
p , output p = (ρ,M).

• SharedKeyA(r, p): on input a state r = (ρA,MA,NA) and a public message p = (ρB ,MB), compute:

sk = e(MB ,NA) = e(g, g)MBNA ,

that we identify as an element of SK, and output:

K = sk-NIKE.SharedKey(sk, ρA, ρB).

• SharedKeyB(r, p): on input a state r = (ρB ,MB ,NB) and a public message p = (ρA,MA), compute:

sk = e(MA,NB) = e(g, g)MANB ,

that we identify as an element of SK, and output:

K = sk-NIKE.SharedKey(sk, ρA, ρB).

6Up to a factor of 2 multiplicative loss in the leakage rate, this is equivalent to our definition in Section 5. This is because
each party can run the scheme twice, once as “Alice” and once as “Bob,” and XOR the resulting keys.

28

Claim 8.7. Assume sk-NIKE is perfectly correct. Then Construction 8.6 is perfectly correct.

Proof. This follows from the fact that both SharedKeyA and SharedKeyB compute

sk = e(g, g)UBRBV.

Claim 8.8. If sk-NIKE is leakage-resilient and Assumption 3.3 holds, then Construction 8.6 is leakage-
resilient.

Proof. Recall that Assumption 3.4 follows from Assumption 3.3 [NS09]. Let D, fA, fB be an efficient distin-
guisher along with efficient leakage functions against NIKE. We proceed via a sequence of hybrid games.

Hybrid 0. This is the real security experiment: D is given as input

(params, pA, pB , fA(rA), fB(rB),Kb),

where b is the challenge bit.

Hybrid 1. We change how we generate the parameters params. Namely, we now generate B← Z3×3
p .

The view of the distinguisher in Hybrid 0 and Hybrid 1 are indistinguishable by Assumption 3.4, even
given rA and rB (which allows the reduction to generate the leakage functions).

Hybrid 2. We change how we generate the states rA, rB . We now replace [UB]g by MA ← Z3×3
p , and

[BV] by MB ← Z3×3
p , and compute [NA]g = [MA]g ·R, [NB]g = R · [MB]g.

The view of the distinguisher in Hybrids 1 and 2 are statistically close. This is because B is invertible
with overwhelming probability ≥ 1− 1/N (e.g. [BKKV10, Lemma 4.1] for a quick proof), in which case the
two distributions are identical (over the randomness of U and V).

Hybrid 3. We change how we generate params. Namely, we now generate B← Rk3×3
2 (Zp).

As before, the view of the distinguisher in Hybrid 2 and Hybrid 3 are indistinguishable by Assumption 3.4,
even given rA and rB (which allows the reduction to generate the leakage functions).

Now because B is of rank 2, R has log p bits of min-entropy given [B]g, [RB]g, [BR]g. This is because
for any u ∈ Z3

p not in the column-span of B, and any v ∈ Z3
p not in the row-span of B, uTRv is uniform

in Zp over the randomness of R alone. Therefore so does sk = e(g, g)MARMB given MA,MB (up to
negligible statistical distance, as they are invertible with overwhelming probability), and a similar argument
to Lemma 8.5 finishes the proof.

9 Leakage-Resilient NIKE from iO
In this section, we show how to build a leakage-resilient NIKE in either the common reference string model
or the preprocessing model using iO and lossy functions.

Let iO be an indistinguishability obfuscator, pPRF = (KeyGen,Puncture,Eval) be a puncturable PRF
with image size Y = {0, 1}y, LF = (Inj, Lossy, f) be a (n, k,m)-lossy function and LF′ = (Inj′, Lossy′, g) be a
(n′, k,m′)-lossy function where n′ ≥ m. In particular the image of g is included in the domain of f .

We construct NIKE = (Setup,Publish,SharedKey) as follows.

Construction 9.1. Our construction consists of the following algorithms:

29

Circuit Ck,ek,ek′(r, pA, pB) :

If fek(r) = pA or fek(r) = pB , output PRFk(gek′(pA), gek′(pB)).
Else output ⊥.

Figure 1: Circuit C(r, pA, pB)

• Setup(1λ): On input security parameter 1λ, Sample a PRF key k ← KeyGen(1λ). Sample two injective
evaluation keys ek← Inj(1λ), ek′ ← Inj′(1λ).

Consider the following circuit C(r, pA, pB) that has k, ek, ek′ hard-coded:

Output params = (Ĉ = iO(C), ek, ek′).

• Publish(params, r): On input r ∈ X , output fek(r).

• SharedKey(params, r, p): Output Ĉ(r, fek(r), p).

Claim 9.2 (Correctness). Construction 9.1 is a perfectly correct NIKE protocol.

Claim 9.3 (Leakage Resilience). Assume iO is an indistinguishability obfuscator, (PRF.KeyGen,PRF.Puncture, {PRFk}k)
is a family of puncturable PRFs with image size {0, 1}y, LF = (Inj, Lossy, f) is a (n, k,m)-lossy function and
LF′ = (Inj′, Lossy′, g) is a (n′, k,m′)-lossy function where n′ ≥ m. Assume that 2(n−k′− `)−k ≥ m′+y+λ.
Then Construction 9.1 is resilient against `-bits leakages.

Proof. Let D be an efficient leakage-dependent distinguisher against NIKE with leakage functions (fA, fB).
We proceed via a sequence of hybrid distributions.

Let 2Ext : {0, 1}n × {0, 1}m → Y be a strong two-source extractor to be determined later.

Hybrid 0. This is the real security experiment. The challenger does the following:

1. It runs Setup(1λ) to obtain public parameters params = (iO(C), ek, ek′).

2. It samples private states r∗A ← X and r∗B ← X , computes public messages p∗A = Publish(params, r∗A)
and p∗B = Publish(params, r∗B), and computes leakage values σ∗A = fA(r∗A) and σ∗B = fB(r∗B).

3. It computes K0 = SharedKey(r∗A, p
∗
B) and samples K1 ← K.

4. It flips a random bit b and sends

(params, ek, ek′), p∗A, p
∗
B , fA(r∗A), fB(r∗B),Kb)

to the distinguisher D.

The distinguisher’s advantage in this experiment is its probability of guessing b.

Hybrid 1. This hybrid is identical to Hybrid 0, except that now params is sampled as (iO(C(1)), ek, ek′)
where C(1) has hard-coded the values k, ek, ek′, gek′(p

∗
A), gek′(p

∗
B) and PRFk(gek′(p

∗
A), gek′(p

∗
B)), and is defined

as follows:
We now set params = (iO(C(1)), ek, ek′).
Because fek and gek′ is injective, the first condition only triggers when pA = p∗A, pB = p∗B and either

rA = r∗A or rB = r∗B . Therefore C and C(1) are functionally equivalent, so that the view of D in Hybrid 0
and Hybrid 1 are computationally indistinguishable by security of iO.

30

Circuit C
(1)

k,ek,ek′,gek′ (p
∗
A

),gek′ (p
∗
B

),PRFk(gek′ (p
∗
A

),gek′ (p
∗
B

))(r, pA, pB) :

If gek′(pA) = gek′(p
∗
A), gek′(pB) = gek′(p

∗
B), and either gek′(fek(rA)) = gek′(p

∗
B) or gek′(fek(rB)) = gek′(pB),

then output the hard-coded value PRFk(gek′(p
∗
A), gek′(p

∗
B)).

If fek(r) = pA or if fek(r) = pB , output: PRFk(gek′(pA), gek′(pB)).
Else output ⊥.

Figure 2: Circuit C(1)(r, pA, pB)

Circuit C
(2)

k{(gek′ (p
∗
A

),gek′ (p
∗
B

))},ek,ek′,gek′ (p
∗
A

),gek′ (p
∗
B

),ρ(r, pA, pB) :

If gek′(pA) = gek′(p
∗
A), gek′(pB) = gek′(p

∗
B), and either gek′(fek(rA)) = gek′(p

∗
B) or gek′(fek(rB)) = gek′(pB),

then output the hard-coded value ρ.
If fek(r) = pA or if fek(r) = pB , output: PRFk{(gek′ (p∗A),gek′ (p

∗
B

))}(gek′(pA), gek′(pB)).
Else output ⊥.

Figure 3: Circuit C(2)(r, pA, pB)

Hybrid 2. We change how we generate params. We now compute

k{(gek′(p∗A), gek′(p
∗
B))} ← PRF.Puncture(k, (gek′(p

∗
A), gek′(p

∗
B)).

We now consider the following circuit C(2)(r, pA, pB) that has hard-coded k{(gek′(p∗A), gek′(p
∗
B))}, ek, ek′,

gek′(p
∗
A), gek′(p

∗
B) and some random ρ← Y:

We now set params = (iO(C(2)), ek, ek′).
The view of the D in Hybrid 1 and Hybrid 2 are indistinguishable by pseudorandomness on punctured

point of PRF (Definition 3.7).

Hybrid 3. We change how we generate params.
We now sample ρ← Y, and set zA = 2Ext(r∗A, p

∗
B)⊕ρ, and zB = 2Ext(r∗B , p

∗
A)⊕ρ, where 2Ext is a strong

two-source extractor to be determined later.
We now consider the following circuit C(3)(r, pA, pB) that has hard-coded k{(gek′(p∗A), gek′(p

∗
B))}, ek, ek′,

gek′(p
∗
A), gek′(p

∗
B) and zA, zB :

Circuit C
(3)

k{(gek′ (p
∗
A

),gek′ (p
∗
B

))},ek,ek′,gek′ (p
∗
A

),gek′ (p
∗
B

),zA,zB
(r, pA, pB) :

If gek′(pA) = gek′(p
∗
A), gek′(pB) = gek′(p

∗
B), and:

if gek′(fek(rA)) = gek′(p
∗
B) then output zA ⊕ 2Ext(rA, pB);

or if gek′(fek(rB)) = gek′(pB), then output zB ⊕ 2Ext(rB , pA).
If fek(r) = pA or if fek(r) = pB , output: PRFk{(gek′ (p∗A),gek′ (p

∗
B

))}(gek′(pA), gek′(pB)).
Else output ⊥.

Figure 4: Circuit C(3)(r, pA, pB)

We now set params = (iO(C(3)), ek, ek′).
As fek and gek′ are injective, whenever C(3) outputs zA ⊕ 2Ext(rA, pB) or zB ⊕ 2Ext(rB , pA), both values

equal ρ by construction. In particular C(2) and C(3) are functionally equivalent, and therefore the view of
the distinguisher in Hybrid 2 and Hybrid 3 are indistinguishable by security of iO.

Hybrid 4. We change how we generate params.
We now define C(4) by picking ek← Lossy, ek′ ← Lossy′.
The resulting distribution is indistinguishable from Hybrid 4 by lossy function security.
We now argue that in Hybrid 3, the value ρ is statistically hidden from the view of the distinguisher.

31

Lemma 9.4. The distribution of ρ conditioned on params, p∗A, p∗B, fA(r∗A), fB(r∗B) is statistically indistin-
guishable from uniform.

It suffices to argue that zA = 2Ext(r∗A, p
∗
B) ⊕ ρ, and zB = 2Ext(r∗B , p

∗
A) ⊕ ρ look uniformly random. All

the elements of E := (params, p∗A, p
∗
B , fA(r∗A), fB(r∗B)) can be generated given the following values:

k, ek, ek′, gek′(p
∗
A), gek′(p

∗
B), fA(r∗A), fB(r∗B), p∗A, p

∗
B , zA, zB .

In particular, by strong two-source extractor security, it suffices to argue that zA looks uniformly random,
and that r∗A and p∗B have high entropy given

k, ek, ek′, gek′(p
∗
A), gek′(p

∗
B), fA(r∗A), fB(r∗B).

By lossiness of f, g: r∗A has at least n− k − k′ − ` bits of min-entropy, and p∗B at least n− k′ − `.

Claim 9.5 (Explicit strong two-source extractors [LLTT05]). There exist explicit strong two-source extrac-
tors 2Ext : {0, 1}m′ × {0, 1}m′ 7→ {0, 1}y over sources of min-entropy b1 and b2 respectively, with error
ε = 2−(b1+b2−m′−y).

Note that the strong two-source extractor from [LLTT05] is efficient since it is essentially an inner product
over Fy2.

Combining the above and the fact that 2(n− k′ − `)− k ≥ m′ + y + λ, we obtain that zA is statistically
close to uniform in {0, 1}y, and similarly for zB . As a result, ρ is statistically uniform in {0, 1}y, which
concludes the proof.

Parameters. Instantiating the lossy functions from DDH or LWE, we obtain by setting n appropriately,
a construction for either any polynomial size leakage ` = poly(λ) and any leakage rate ρ ≤ 1−O(1).

NIKE with Preprocessing from iO. Construction 9.1 can be modified to give a NIKE with preprocessing
with similar parameters. The main observation is that parties do not need the obfuscated circuit Ĉ to
compute their public messages p. Therefore, we can delegate the generation of these obfuscated circuits
to the preprocessing phase of one of the parties, say Alice. Combined with lossy functions with uniformly
random injective keys [AKPW13, FGK+13], this directly gives a NIKE in the common random string model
with preprocessing.

To remove the common random string, we additionally notice that parties can sample individual lossy
function evaluation keys themselves, which they include in their public messages. We also replace the
obfuscated circuit (generated by Alice during a preprocessing phase) to take as input both evaluation keys.
Namely, Ĉ(rA, (ekA, pA), (ekB , pB)) outputs PRFk(ekA, ekB , gek′(pA), gek′(pB)) if the check on pB = fekB (rB)
also passes. This gives a construction using just preprocessing (and in particular without public parameters)
from iO and lossy functions.

Acknowledgments

Part of this work was done while Fermi Ma and Willy Quach were visiting the Simons Institute for the
Theory of Computing for the Spring 2020 program “Lattices: Algorithms, Complexity, and Cryptography.”
Xin Li is supported by NSF Award CCF-1617713 and NSF CAREER Award CCF-1845349. Daniel Wichs
is supported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795 and the Alfred P. Sloan Research
Fellowship.

32

References

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs. Public-
key encryption in the bounded-retrieval model. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 113–134. Springer, Heidelberg, May / June 2010.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In Halevi [Hal09], pages 36–54.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Reingold [Rei09], pages 474–495.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguisha-
bility obfuscation without multilinear maps: New paradigms via low degree weak pseudoran-
domness and security amplification. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 284–332. Springer, Heidelberg, August
2019.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding,
revisited - new reduction, properties and applications. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 57–74. Springer, Heidelberg, August
2013.

[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: public key distribution and
coin tossing. Proceedings of the IEEE International Conference on Computers, Systems and
Signal Processing, pages 175–179, 1984.

[BBCM95] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli M. Maurer. Generalized privacy
amplification. IEEE Transactions on Information Theory, 41(6):1915–1923, 1995.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM J. Comput., 17(2):210–229, 1988.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August 2004.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homo-
morphic encryption schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 79–109. Springer, Heidelberg, May 2020.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-
Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 1–20. Springer, Heidelberg, August 2011.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer,
Heidelberg, March 2014.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15: Provable
security against zeroizing attacks. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part II, volume 11240 of LNCS, pages 544–574. Springer, Heidelberg, November 2018.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Overcoming
the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In 51st
FOCS, pages 501–510. IEEE Computer Society Press, October 2010.

33

[BNS92] László Babai, Noam Nisan, and Márió Szegedy. Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. Journal of Computer and System Sciences, 45(2):204–
232, 1992.

[Bon03] Dan Boneh, editor. CRYPTO 2003, volume 2729 of LNCS. Springer, Heidelberg, August 2003.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 280–300. Springer, Heidelberg, December 2013.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 480–499. Springer, Heidelberg, August 2014.

[CAR17a] Suvradip Chakraborty, Janaka Alawatugoda, and C. Pandu Rangan. Leakage-resilient non-
interactive key exchange in the continuous-memory leakage setting. In Tatsuaki Okamoto, Yong
Yu, Man Ho Au, and Yannan Li, editors, ProvSec 2017, volume 10592 of LNCS, pages 167–187.
Springer, Heidelberg, October 2017.

[CAR17b] Suvradip Chakraborty, Janaka Alawatugoda, and C. Pandu Rangan. New approach to practical
leakage-resilient public-key cryptography. Cryptology ePrint Archive, Report 2017/441, 2017.
http://eprint.iacr.org/2017/441.

[Chu90] Fan RK Chung. Quasi-random classes of hypergraphs. Random Structures & Algorithms,
1(4):363–382, 1990.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching
programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607. Springer, Heidelberg, August
2018.

[DEOR04] Yevgeniy Dodis, Ariel Elbaz, Roberto Oliveira, and Ran Raz. Improved randomness extraction
from two independent sources. In Approximation, randomization, and combinatorial optimiza-
tion. Algorithms and techniques, pages 334–344. Springer, 2004.

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the (im)possibility
of cryptography with imperfect randomness. In 45th FOCS, pages 196–205. IEEE Computer
Society Press, October 2004.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th FOCS,
pages 293–302. IEEE Computer Society Press, October 2008.

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness condensers for efficiently
samplable, seed-dependent sources. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 618–635. Springer, Heidelberg, March 2012.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 1–22. Springer, Heidelberg, March 2013.

[FGK+13] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev. More con-
structions of lossy and correlation-secure trapdoor functions. Journal of Cryptology, 26(1):39–74,
January 2013.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

34

http://eprint.iacr.org/2017/441

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM (JACM), 33(4):792–807, 1986.

[GJK18] Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfuscation using tensor products. Cryp-
tology ePrint Archive, Report 2018/756, 2018. https://eprint.iacr.org/2018/756.

[Gol11] Oded Goldreich. Three xor-lemmas—an exposition. In Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and Computation, pages 248–272. Springer,
2011.

[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. In 53rd
FOCS, pages 31–40. IEEE Computer Society Press, October 2012.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011.

[Hal09] Shai Halevi, editor. CRYPTO 2009, volume 5677 of LNCS. Springer, Heidelberg, August 2009.

[HH09] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent encryption. In
Reingold [Rei09], pages 202–219.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing
attacks. In Boneh [Bon03], pages 463–481.

[KMS19] Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret sharing against collud-
ing parties. In David Zuckerman, editor, 60th FOCS, pages 636–660. IEEE Computer Society
Press, November 2019.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-
able pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013.

[LLTT05] Chia-Jung Lee, Chi-Jen Lu, Shi-Chun Tsai Tsai, and Wen-Guey Tzeng. Extracting randomness
from multiple independent sources. IEEE Transactions on Information Theory, 51(6):2224–2227,
June 2005.

[LRW11] Allison B. Lewko, Yannis Rouselakis, and Brent Waters. Achieving leakage resilience through
dual system encryption. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 70–88.
Springer, Heidelberg, March 2011.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS,
pages 455–479. Springer, Heidelberg, February 2010.

[Mau93] Ueli M. Maurer. Protocols for secret key agreement by public discussion based on common
information. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 461–470.
Springer, Heidelberg, August 1993.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In
Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 278–296. Springer, Heidelberg,
February 2004.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Boneh [Bon03],
pages 96–109.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Halevi [Hal09],
pages 18–35.

35

https://eprint.iacr.org/2018/756

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 462–482. Springer, Heidelberg, April 2009.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008.

[Rei09] Omer Reingold, editor. TCC 2009, volume 5444 of LNCS. Springer, Heidelberg, March 2009.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Halevi [Hal09], pages 619–636.

[Wic13] Daniel Wichs. Barriers in cryptography with weak, correlated and leaky sources. In Robert D.
Kleinberg, editor, ITCS 2013, pages 111–126. ACM, January 2013.

36

	Introduction
	Technical Overview
	Symmetric-Key NIKE
	A Black-Box Separation
	Circumventing the Black-Box Separation

	Preliminaries
	Background on Bilinear Maps
	Indistinguishability Obfuscation
	Puncturable PRFs
	Lossy Functions

	Leakage-Resilient NIKE in the Symmetric-Key Setting
	Definitions
	Two-Seed Extractors
	Construction

	Definitions for Leakage-Resilient NIKE in the Public-Key Setting
	A Black-Box Separation
	Single-Stage Assumptions
	Separating Leakage-Resilient NIKE from Single-Stage Assumptions
	Circumventing the Impossibility Result

	NIKE with Bounded Leakage
	Leakage Resilience of Square-Friendly Primitives
	Proof of thm:smallleakage

	Constructions from Bilinear Maps
	Construction in Composite-Order Groups
	NIKE from Prime-Order Bilinear Groups

	Leakage-Resilient NIKE from iO

