
An Instruction Set Extension to Support
Software-Based Masking

Johann Großschädl1, Ben Marshall2, Dan Page2, Thinh Pham2 and
Francesco Regazzoni3,4

1 Department of Computer Science, University of Luxembourg.
johann.groszschaedl@uni.lu

2 Department of Computer Science, University of Bristol.
{ben.marshall,daniel.page,th.pham}@bristol.ac.uk

3 University of Amsterdam,
f.regazzoni@uva.nl

4 ALaRI, University of Lugano.
regazzoni@alari.ch

Abstract. In both hardware and software, masking can represent an effective means
of hardening an implementation against side-channel attacks such as Differential
Power Analysis (DPA). Focusing on software, however, the use of masking can present
various challenges: specifically, it often 1) requires significant effort to translate any
theoretical security properties into practice, and, even then, 2) imposes a significant
overhead in terms of efficiency. To address both challenges, this paper explores use of
an Instruction Set Extension (ISE) as a means of supporting masking in software-
based implementations of symmetric cryptographic algorithms: we design, implement,
and evaluate such an ISE using RISC-V as the base architecture.

Keywords: side-channel attack, masking, ISE

1 Introduction
The threat of implementation attacks. Evolution of the technology landscape, for
example improvement in storage, computational, and communication capability, has
produced a corresponding evolution in user-facing platforms and applications that we now
routinely depend on. Many such cases are now deemed security-critical, as a result of trends
such increased connectivity (cf. IoT), outsourced computation (cf. cloud computing), and
use of identity-, location-, and finance-related data. Within this setting, cryptography often
represents a transparent enabler: cryptographic solutions are routinely tasked with ensuring
the secrecy, robustness, and provenience of our data (when communicated and/or while
stored), plus the authenticity of interacting parties. While robust theoretical foundations
often underpin such solutions, their realisation in practice can remain difficult. For example,
per the remit above, cryptographic implementations represent an important component of
the attack surface; within an attack landscape of increasing breadth and complexity (where
“attacks only get better”), the threat of so-called implementation attacks is particularly
acute.

The premise of an implementation attack is that by considering a concrete imple-
mentation, vs. an abstract specification say, theoretical security properties (however
strong) can potentially be bypassed. At a high level, they are often divided into active
(e.g., fault injection) or passive (i.e., side-channel) classes. Differential Power Analysis

mailto:johann.groszschaedl@uni.lu
mailto:{ben.marshall,daniel.page,th.pham}@bristol.ac.uk
mailto:f.regazzoni@uva.nl
mailto:regazzoni@alari.ch


2 An Instruction Set Extension to Support Software-Based Masking

(DPA) [KJJ99, MOP07] is a concrete example1 of a side-channel attack with particular
relevance to embedded devices. Following an optional profiling (or characterisation) phase,
a typical DPA attack performs an initial, online acquisition phase: (passive) monitoring
by the attacker yields traces of power consumption during computation of some target
operation by the target device. The underlying assumption is that both a) operations
(e.g., addition vs. multiplication), and b) the operands they process (e.g., higher vs. lower
Hamming weight) contribute to features, or leak information, then evident in the traces.
Such features are harnessed by a subsequent, offline analysis phase, which attempts to
recover security-critical information (e.g., key material) they relate to.

Challenges in realisation of countermeasures. Techniques for mitigating implementation
attacks are becoming increasingly well understood. At a high level, examples pertinent
to DPA are typically classified as being based on hiding [MOP07, Chapter 7] and/or
masking [MOP07, Chapter 10]. The latter, which is our focus, can be described as a
low-level realisation of the more typically higher level “computing on encrypted data”
concept. For a target operation normally invoked as r = f(x), application of a given
masking scheme demands that 1) x is encrypted (resp. masked) to yield x̃, 2) alternative
computation is applied to x̃, i.e., r̃ = f̃(x̃), st. it acts on the underlying x in a manner
compatible with f , then 3) r̃ is decrypted (resp. unmasked) to yield r; any leakage
stemming from the computation of f̃ will now relate to x̃ rather than x, so the latter
cannot be directly recovered as would likely be the case using f .

In common with other countermeasure techniques, masking can be utilised at various
levels in either hardware and/or software: for example, algorithm-level (e.g., to a block
cipher such as AES [Mes01]), system-level (e.g., across the data-path of a processor
core [GJM+16, MGH19]), and gate-level (e.g., in secure logic style such as MDPL [PM05])
techniques are all viable. For a concrete implementation that uses such techniques, however,
at least two significant challenges must be addressed. First, it must translate theoretically
modelled security properties into practice. This challenge is neatly illustrated by the
contrast between a theoretically, provably secure masking scheme proposed by Rivain
and Prouff [RP10], vs. attacks on a practical implementation thereof by Balasch et
al. [BGG+14]. Second, it must do so while satisfying other quality metrics such as demand
for high-volume, low-latency, high-throughput, low-footprint, and/or low-power.

An ISE-assisted approach to masking. Instruction Set Extensions (ISEs) [GB11, BGM09,
RI16] have proved an effective implementation technique within the context of cryptogra-
phy. The idea is to identify, e.g., through benchmarking, a set of additional instructions
that allow the target operation to leverage special-purpose, domain-specific functionality
in the resulting ISE, vs. general-purpose functionality in the base Instruction Set Archi-
tecture (ISA), and thereby deliver improvement wrt. pertinent quality metrics. ISEs are
particularly effective for embedded devices, because they afford a compromise improving
footprint and latency vs. a software-only option while also improving area and flexibility
vs. a hardware-only option.

There is an increasingly accepted argument (see, e.g., [RKL+04, RRKH04, BMT16])
that security should be considered as a first-class metric at design-time, rather than a
problem to be addressed in a reactive, post hoc manner. In line with such an argument,
this paper explores use of an ISE as a means of supporting masking in software-based
implementations of cryptography: we design, implement, and evaluate such an ISE using
RISC-V as the base ISA. We suggest there are (at least) three reasons an ISE-based
approach may be attractive vs. alternatives (e.g., a dedicated IP module). First, use of
masking in software-only implementations will impose a significant overhead, e.g., wrt. a)

1Although our focus is specifically on DPA, we note that associated attack and countermeasure
techniques apply more generally, e.g., to classes such as EM.



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 3

execution latency and b) demand for high-quality randomness; our ISE can help mitigate
this problem. Second, an ISE is well positioned to act as an interface wrt. security
properties. For example, there is increased evidence (see, e.g., [CGD18, GMPO19]) that
secure use of masking in software-only implementations is complicated by the lack of
guarantees wrt. leakage stemming from the underlying micro-architecture; our ISE can
help mitigate this problem, e.g., by adopting an approach similar to the augmented ISA
(or aISA) of Ge et. al [GYH18] and constraining the micro-architecture to meet properties
demanded by the ISA. Third, the design of masking schemes is a relatively fast-paced field,
with novel designs and techniques appearing regularly. Our ISE mitigates this problem
by following a RISC-like ethos: it provides a suite of general-purpose “building block”
operations, that can be used to support a wide range of cryptographic constructions (e.g.,
block ciphers) and higher-level masking schemes.

We note that concurrently with our work, Kiaei and Schaumont [KS20] published a
similar proposal: vs. their work, we a) enrich the ISE with a wider set of operations,
b) provide an implementation of the ISE within an existing RISC-V compliant micro-
architecture, and c) evaluate it, wrt. efficiency and security properties, using a suite of
representative kernels.

Organisation. Section 2 surveys related work. Section 3 then presents 1) the ISE design,
and 2) an implementation of said design in a RISC-V compliant micro-architecture. The
associated efficiency and security properties are then evaluated in Section 4, via a suite of
representative software implementations. Finally, Section 5 presents some conclusions and
potential directions for future work.

2 Background
2.1 RISC-V
RISC-V (see, e.g., [AP14, Wat16]) is an open ISA specification. It adopts strongly RISC-
oriented design principles (so is similar to MIPS) and can be implemented, modified,
or extended by anyone with neither licence nor royalty requirements (so is dissimilar to
MIPS, ARM, and x86). A central tenet of the ISA is modularity: a general-purpose base
ISA can be augmented with some set of special-purpose, standard or non-standard (i.e.,
custom) extensions. As a result of these features, coupled with the surrounding community
and availability of supporting infrastructure such as compilation tool-chains, a range of
(typically open-source) RISC-V implementations exist.

We focus wlog. on extending RV32I [RV:19, Section 2], i.e., the 32-bit integer RISC-V
base ISA. Let GPR[i], for 0 ≤ i < 32, denote the i-th entry of the general-purpose register
file. RISC-V uses XLEN to denote the word size; we adopt the same approach, but by
focusing on RV32I assume a focus on XLEN = 32.

2.2 Masking
Masking is a protection technique based on secret-sharing schemes. The key idea is to
split the message into parts called shares. The reconstruction of the message become
then possible only if a sufficient number of shares is known. In this direction, Chari et
al [CJRR99], propose to split the data of the original computation into k shares having
two properties: the shares have to be equiprobably distributed and every subset of k − 1
shares have to be statistically independent from the encoded data, and then perform
the computation on the shares. The word masking applied appeared for the first time
in 2000 [Mes00], where Messerges described the use of a “random mask to obscure the
calculation made by the fundamental operations”of the AES candidates. Thanks to the



4 An Instruction Set Extension to Support Software-Based Masking

mask, which has to be random, the recovery of the secret key using the power consumption
should be more difficult.

A given masking scheme specifies a) a non-standard representation of data, where
each variable x is represented by (or split into) n separate shares, and b) a non-standard
implementation of functions, which operate on the representations. Use of the scheme
should resist a t-th order attack (e.g., under the probing model of Ishai, Sahai, and
Wagner [ISW03]), where information from at most t < n shares is combined.

2.2.1 Representation

Under Boolean masking this means x = x0 ⊕ x1 ⊕ · · · ⊕ xn−1, whereas under arithmetic
masking this means x = x0 + x1 + · · · + xn−1 (mod 2w). Consider the specific case of
n = 2, and let x̂ = (x0, x1) denote the representation of some x under Boolean masking,
i.e., as two shares x0 and x1: this demands that x = x0 ⊕ x1.

2.2.2 Hardware-oriented implementation

Masking is a generic approach for mitigating power analysis attacks, and as such it can be
applied to several classes of algorithms (including block ciphers [], but also post quantum
algorithms []). Furthermore it can be applied in hardware, in software, or in a combination
of both. In this section we will revise the main approaches used in the past for implementing
masking in hardware and in software.

Classical Goubin and Patarin [GP99] formalized the idea of replacing each intermediate
variable of the computation that is dependent of the inputs or outputs, and thus potentially
being used by the attacker to guess the secret key, and depending on the inputs (or the
outputs), by a combination of sub-variables, that would allow to retrieve the original
variable if combined together. This is secure if the function selected for implementing the
combination operation is such that allows to perform the transformation of the algorithm
on the sub-variables, without calculating the original variable. The two functions analyzed
are the bit-by-bit exclusive or function (which was later called additive masking) and the
multiplication mod “n” (multiplicative masking).

Threshold Implementation (TI) Threshold Implementation (TI), presented by Nikova
et al.[NRR06], is a countermeasure that is provable secure against first order attacks (also
when the circuits implementing the schema cause glitches. TI requires to use shares having
three fundamental properties: correctness, incompleteness and uniformity. Correctness
means that the computation carried out on the shares, should be correct, namely that
composition of the results of the operations carried out on each shares has to be equal
to the shared representation of the original result. incompleteness means that each share
should be independent from at lest one input share. The security of the schema requires
that the masks are uniformly distributed. Uniformity is usually the most difficult property
to guarantee, by this can be relaxed by using functions that do not always satisfy the
uniformity but their randomness is refreshed frequently.

Domain-Oriented Masking (DOM) Domain-Oriented Masking (DOM) has been pre-
sented by Gross et al. [GMK16]. The main objective of the work was to guarantee security
against i-th order attack using i+1 shares, thus reaching the same level of security of
TI, but incurring in less area (when implemented in hardware) and less randomness. To
achieve this, the authors concentrate their effort in the design of the DOM-dep multiplier,
that is a dedicated masked multiplier suitable to implementing the proposed schema in an
efficient and secure way. The approach is evaluated using the AES algorithm as a case



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 5

of study, which is analyzed in depth presenting several variants of protection up to 15
protection order.

2.2.3 Software-oriented implementation

The main challenge when applying masking in software is to implement the round functions
of a block cipher in such a way that the shares can be processed independently from each
other, while it still must be possible to recombine them at the end of the execution to get
the correct result. This is fairly easy for all linear operations, but can introduce massive
overheads for the non-linear parts of a cipher, e.g. S-boxes or modular additions/subtrac-
tions. Furthermore, all round transformations need to be executed twice (namely for x1 and
for x2, where x = x1 ⊕ x2), which entails an extra performance penalty. Another problem
is that a basic masking scheme with two shares is vulnerable to a so-called second-order
DPA attack where an attacker combines information from two leakage points. Such a
second-order DPA attack can, in turn, be thwarted by second-order masking, in which
each sensitive variable is concealed with two random masks and, consequently, represented
by three shares.

Depending on the algorithmic properties of a cipher, a masking scheme can have
to protect Boolean operations (e.g. XOR, shift) or arithmetic operations (e.g. modular
addition). When a cipher involves both Boolean and arithmetic operations, it is necessary
to convert the masks from one form to the other to obtain the correct ciphertext (or
plaintext). Examples of symmetric algorithms that involve arithmetic as well as Boolean
operations include the widely-used hash functions SHA-2, Blake and Skein, and any ARX-
based block cipher (e.g. Speck). In essence, the basic operations performed by common
block ciphers can be divided into three categories depending on how costly they are to
mask in software: (i) linear operations (e.g. XOR, NOT, shift, rotation), (ii) non-linear
Boolean operations (e.g. and, or), and (iii) non-linear arithmetic operations (e.g. modular
addition, inversion in GF(28)).

As mentioned before, linear operations like XOR and rotation are fairly easy to mask
in software since one just has to apply the operation to each pair of shares individually.
The XOR of a constant to a set of shares can be performed by XORing it to a single share.
Similarly, the logical NOT operation is masked by applying NOT to one of the shares.
Computing a non-linear Boolean function on the shares assuring all variables processed are
independent of sensitive variables is more complicated and introduces higher computational
overheads. The simplest non-linear Boolean operations is the logical AND, which can
be masked in different ways, whereby the different approaches proposed in the literature
differ by the amount or randomness and the number of underlying basic operations. The
first proposal for a first-order masked AND gate came from Trichina and was published
more than 15 years ago [Tri03]. This so-called “Trichina AND-gate” consists of four basic
AND operations, four XORs, and requires additional fresh randomness to ensure that the
shares are statistically independent of any sensitive variable. Biryukov et al introduced
in [BDCU17] an improved expression for masked AND that consists of only seven basic
operations does not require an additional random variable since the shares are inherently
refreshed. Furthermore, on ARM microcontrollers, the masked AND can be performed
using only six basic instructions. Biryukov et al also presented a masked OR operation,
which consists of only six basic operations (and six basic instructions on ARM) and does
not require fresh randomness.

Highly non-linear arithmetic operations, such as modular addition or inversion in a
binary field, are the most costly operations when it comes to masking in software. There
are two basic options for implementing a masked addition (or subtraction) in software;
the first consists of converting the Boolean shares to Arithmetic shares, then performing
the addition on the arithmetic shares, and finally converting the arithmetic shares of
the sum back to Boolean shares. The second option is to perform the modular addition



6 An Instruction Set Extension to Support Software-Based Masking

directly on Boolean shares without conversion. Both options have in common that a
straightforward software implementation has a complexity that increases linearly with
the length of the operands to be added. Coron et al presented in [CGTV15] a recursive
formula for arithmetic addition on Boolean shares with logarithmic complexity. This
approach is based on the Kogge-Stone adder (a special variant of a carry-lookahead adder)
and uses masked AND, masked XOR, and masked shift as sub-operations. Biryukov et al
presented an improved Kogge-Stone adder that uses the more efficient masked operations
from [BDCU17] and is able to perform a 32-bit addition on Boolean shares between 14%
and 19% faster than the Kogge-Stone adder of Coron et al.

2.3 Related work
As mentioned, the masking countermeasures can be applied at hardware level, at software
level (or a combination of both) or can be applied at different granularities (at the level of
whole core or at minimal portion of the accelerator, while still guaranteeing the security.
This is also valid when the approach is applied at the level of CPUs. In that context, in
fact, it is possible to modify complete block of the CPU (such as ALU or similarly large
components), or the modifications can be applied at much lower level, protecting only
small registers and limited portions of the datapath.

Concerning the level of whole core within CPUs, the topic was widely explored in open
literature, and a number of masked accelerators have been proposed, designed, implemented
and evaluated in the last years. We focus here on the one related with RISC-V architecture.

Gross et al [GJM+16] propose a SCA-protected processor design based on the open-
source V-scale RISC-V processor. The starting point is the experience gained with the
study of domain oriented masking, which is leveraged to modify the CPU to make it
resistant against side channel attacks. To achieve this, the authors split the processor in a
protected and an unprotected part, and they propose to realize a protected ALU, which
implements basic operations protected using the domain oriented approach. Experimental
results show an increased resistance against side channel attacks and a scale of the system
almost linear with the order of protection.

Protection against power analysis attacks for the RISC-V processor have been also
proposed by De Mulder et al[MGH19]. With the goal of simplify the implementation of
software resistant against power analysis attacks, the authors proposed to integrate side
channel countermeasures into the RISC-V core. The proposed solution aims at protect
against first-order power and electromagnetic attacks. The protection is achieved using a
combination of known masking techniques and a masked access to memory. The second
mask for access to memory is generated on the fly within the boundary of the CPU, and
thus, at least in principle, robust. The leakage reduction is demonstrated by a number of
practical experiments.

The most relevant work related to our concerns is probably the one of Kiaei and Schau-
mont [KS20]. They propose to extend the RISC-V processor with dedicated instructions
to mitigate side channel attacks, focusing in particular on Domain-Oriented-Masking.
Our paper shares the core idea of extending the instruction set of a processor to achieve
side channel resistance, but provides novel contributions. Firstly, our instructions are
not limited to the case of Domain-Oriented-Masking, but are suitable for implementing
masking countermeasures in general and are suitable to protect a wide range of algorithms.
Secondly, our instructions are integrated in the core providing an quantitative analysis of
the achieved robustness and of the performance overhead. Lastly, we show that to achieve
security of masking using dedicated instructions, there is no need to have a duplication
of the datapath for achieving strong separation between secure and insecure zone. To
the best or our knowledge, previous works on instruction set extension for accelerating
masking and for side channel security in general, have always proposed to have such strong
differentiation.



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 7

3 Implementation
3.1 ISE design
Concept. Focusing wlog. on use of Boolean masking, the ISE targets inclusion of
instructions to support

1. binary masked operations, i.e., r̂ = x̂	 ŷ for some set of 	,

2. unary masked operations, i.e., r̂ = �x̂ for some set of �, and

3. various auxiliary operations, such as conversion into, from, and between masked
representations.

The set of supported operations should be general-purpose in the sense they are useful for
a range of cryptographic constructions and masking schemes; they often have an equivalent
in, and so represent close to a “drop in” replacement for instructions in the base ISA by
including, e.g., 	 ∈ {∧,∨,⊕} and � ∈ {¬} to mirror the unmasked Boolean operations
already available. Doing so is complicated, however, by the fact that for n = 2 shares we
have

r̂ = x̂	 ŷ =⇒ (r0, r1) = (x0, x1)	 (y0, y1).

That is, doing so increases the number of register indexes required, and, therefore, pressure
on instruction encoding: an unmasked binary (resp. unary) operation requires 3 (resp. 2)
register indexes, whereas a masked equivalent requires 6 (resp. 4). The same scenario is
articulated by Lee et al. [LYS04], who describe use the term Multi-word Operand, Multi-
word Result (MOMR) to characterise and thereby distinguish cryptographic operations
from the general case. There are various ways to satisfy this requirement: we use an
implied approach, where two indexes are encoded as one, i.e., (i, i + 1) 7→ i. For example,
the even-odd index pair (2, 3) is encoded as the first, even index 2; the second, odd index
3 is then implicit rather than explicit. This is an limited instance of the Register File
Extension for Multi-word and Long-word Operation (RFEMLO) approach proposed by
Lee and Choi [LC08].

Design. We defer a complete description of the instruction semantics and encoding to
Appendix A and Appendix B respectively; the former is specified in terms of a common set
of atomic operations, described algorithmically in Appendix C to avoid repetition inline.

In short, however, the ISE includes a suite of instructions that support Boolean masking.
They allow masking, unmasking, remasking, and application of operations to (masked)
operands: these operations include NOT, AND, OR, XOR, left- and right-shift, and
(left-)rotation, addition and subtraction. For example, the instruction

mask.b.add (rd1,rd2), (rs1,rs2), (rs3,rs4)

uses the inputs x̂ = (x0, x1) = (GPR[rs1], GPR[rs2]) and ŷ = (y0, y1) = (GPR[rs3], GPR[rs4])
st. x = x0 ⊕ x1 and y = y0 ⊕ y1; it computes r̂ = (r0, r1) = (GPR[rd1], GPR[rd2]) st.
r = r0 ⊕ r1 = x + y.

3.2 ISE implementation
The ISE operations are executed by a masked ALU. The masked ALU gets two 2-share-
masked operands (rs1_s0, rs1_s1) and (rs2_s0, rs2_s1) to produce one 2-share-masked
output (rd_s0, rd_s1). The masked ALU is designed with a compact architecture in
which the functional submodules of the ISEs are shared between the instructions as
much as possible to reduce area overhead. A block diagram of the masked ALU is



8 An Instruction Set Extension to Support Software-Based Masking

Figure 1: Masked ALU architecture

shown in Figure 1. The PRNG generates pseudo random numbers for masking, re-
masking operations. The MASK/REMASK masks and re-masks the operands rs1_s0 and
(rs1_s0, rs1_s1), respectively. The SHIFT/ROTATE performs left-shift, right-shift, and
right-rotate operations on the Boolean masked operand (rs1_s0, rs1_s1). The BOOL
XOR and the BOOL AND execute XOR and AND operations under Boolean masking,
respectively. mask.b.add and mask.b.sub instructions are executed by a shared Add-Sub
operation consisting of three steps (i.e., pre-processing, iteration, and post-processing)
based on the Kogge-Stone adder’s algorithm. These instructions share the BOOL XOR
and the BOOL AND with mask.b.xor and mask.b.and instructions to perform the pre-
processing step of the Add-Sub operation. The BOOL ADD/SUB ITERATION and the
BOOL ADD/SUB POST perform iterative and post-processing steps, respectively, of
the Add-Sub operation. The SUB OPT controls the Add-Sub operation to perform the
mask.b.sub instruction. Boolean masking OR operation is executed by reusing the BOOL
AND. The IOR POST calculates the output of the OR operation from the return values of
the AND operation according to the De Morgan’s law. All algorithms of the instructions
are listed in Appendix C.

3.3 ISE integration
The masked ALU described in Section 3.2 was integrated into the SCARV2 core, a 5-stage
pipelined micro-architecture implementing the RISC-V rv32i base instruction set, with
the multiply/divide and compressed standard extensions. A block diagram of the core is
show in Figure 2, with masking ISE related blocks hilighted.

The masking ISE adds reading and writing of adjacent odd/even pairs of general
purpose registers to the ISA. This nessesitated a re-structuring of the register file read
ports, and a single additional 32-bit pipeline register (s2_opr_d) to hold all of the masked
ALU operands.

Share 0 (resp. 1) of a variable is stored in the even (resp. odd) register. Share 0 (resp.
1) of rs1 is stored in s2_opr_a (resp. s2_opr_c). Likewise, Share 0 (resp. 1) of rs2 is

2https://github.com/scarv/scarv-cpu

https://github.com/scarv/scarv-cpu


Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 9

Figure 2: CPU Micro-architecture. Masking ISE components are hilighted in yellow.

stored in s2_opr_b (resp. s2_opr_d). For base ISA instructions, rs1 (resp. rs2) is stored
in s2_opr_a (resp. s2_opr_b). This makes the masked ISE instruction operands partially
resistant to accidental un-masking, since both shares of the same variable cannot enter
other functional units in the execute stage.

The odd/even paired nature of the reads meant that the register file could be split into
odd and even groups of registers, with each pair element read in parallel. For register-pair
reads, the values from each 16-to-1 mux tree is selected. For single-register reads, an
additional multiplexer in the decode stage selects between either the odd or even register
based on the least significant bit of the register address. This structuring of the mux
trees helps avoid the nearest neighbour effect [PV17], which could result in the accidental
un-masking of shares stored in adjacent registers. The final selection between an odd/even
register (i.e. shares of a variable) is done at the very last mux-tree stage, which reduces the
chance of select signal glitches causing the muxes to switch from one share to the other3.

Further opportunities for accidentally combining shares occur throughout the execution
pipeline; particularly in the register forwarding network which must be capable of switching
between shares stored in pipeline registers. This leads some to suggest that entirely
separate datapaths (and the attendant increase in resources) are needed for masked v.s.
base instrucitons [KS20].

We mitigate this problem by transparently storing share 1 of every masked ISE
instruction source and result in a bit reversed representaiton, both in the register file, and
in pipeline registers. Hence any switching between shares (in the forwarding network, for
example) will cause non-corresponding bits of the shares to interract. I.e. gliches would
cause a transition from bit 0 of share 0 to bit 31 of share 1, rather than to bit 0 of share
1. This bit reversal is transparent to the software developer, and shares which are read

3 This technique does not solve the problem entirely; developers may deliberately read first share 0,
then share 1. Careful ordering of instructions and register selection is still nessesary.



10 An Instruction Set Extension to Support Software-Based Masking

by non-masking ISE instructions (e.g. loads and stores) are automatically un-reversed.
Un-reversal of operands is performed at the last possible moment before any computation.
Non-masking ISE instructions have operands un-reversed immediately before the they enter
the s2_opr_a and s2_opr_b pipeline registers. Masking ISE instructions only un-reverse
their instructions in the execute stage, immediately before entering the masked ALU. Share
1 is immediately reversed on exiting the masked ALU, before entering the mux tree to
decide the next values of the s3_opr_b pipeline register.

By utilising this bit-reversed representation, and tracking the reversed-ness of operands
across masking ISE and base instrucitons, we were able to share the CPU datapath and
save significant resources. The alternative would have required adding two extra 32-bit
registers to the s3 and s4 pipeline stages, and four extra 32-bit registers to the s2 pipeline
stage. In contrast, the bit-reversal scheme requires 16-bits of register storage in the GPRs,
one extra register bit per s[2,3,4] pipeline stage, and 1 32-bit multiplexer per s2_opr_*
pipeline register. This is only for the CPU datapath; it does not include duplicating
architectural state (the GPRs) or mechanisms for accessing that state.

3.4 ISE verification
Here we describe how we verified the correctness and security properties of the masking
ISE. We then discuss some wider considerations for verifying ISE designs which claim
security properties in the context of power side-channels. Verifying the masking ISE was
split into two steps: functional correctness and security properties.

Functional correctness captures whether instructions behave as they are specified.
There are two ways to check this: 1) given known inputs, expect these exact outputs. 2)
given known inputs, this relationship between the outputs must hold. Option 1 gives the
best assurance that the instructions are doing exactly what is specified, and enables easy
co-simulation with a golden reference model4 for the CPU, or specification in a formal
model.

The masking ISE instructions can also be sources of randomness however. While the
relationships between the two output shares is well defined, the exact output values are
not, because they involve mixing random values into the outputs. Co-simulation based
verification methods hence require hints from the hardware to produce correct results and
be kept in sync with the design under test. This becomes complex to maintain in even
simple designs.

For this paper, we used formal verification methods5 to ensure that the relationships
between input and output shares was always correct, without needing to know the exact
values. The baseline SCARV core was already formally verified using the riscv-formal6

framework. We extended the framework to support new double-width register access idioms.
This enabled verification of the base ISA instrucitons, the masking ISE instructions, and
their interractions, since we include checks for register read/write consistency.

Functional verification is primarily done on Register Transfer Level (RTL) designs,
with no modelling of gate delays or net capacitances. This is possible because synthesis
and layout tools must always preserve the functionality of a design, while optimising for
power, performance and area. Security properties, particularly those dealing with physical
aspects of the manufactured device (power, EM emissions) cannot be verified in the same
way, and come with specific challenges.

There are clear trade-offs between speed and accuracy when evaluating side-channel
vulnerablity at different levels of abstraction between RTL and post layout or even
implemented systems. While some side-channel evaluation can be done at the RTL to
provide early feedback to designers [CS09, HPN+19, ZBPF18] (particularly as to which

4Such as QEMU or OVPSim.
5Specifically, Bounded Model Checking (BMC).
6https://github.com/SymbioticEDA/riscv-formal/

https://github.com/SymbioticEDA/riscv-formal/


Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 11

modules are causing leakage), this is not sufficient to be sure that the design will be secure
at the post-layout level. Indeed, synthesis and layout tools can undermine or even reverse
some side-channel countermeasures implemented at the RTL [GBR+19]. In [BDG+13],
the authors assert that digital simulation of a post layout design is sufficient for effective
side-channel analysis, though we note this was for a hardware implementation of the
PRESENT block cipher, not a general purpose CPU. Likewise in [HPN+19], the authors
describe an RTL leakage evaluation methodology targeting the AES block ciper.

Because our design targets an FPGA platform, we were able to perform evaluations of
the complete design very quickly, and make changes very easily based on leakage we found.
We recognise that this would not be possible in an ASIC, or design IP style commercial
project, and discuss extra verification steps later.

We created kernels which executed each masking ISE instruction in isolation, surrounded
by nops. We then evaluated each kernel for leakage using a T-Test, and hamming weight
based corrolation analysis on the un-masked inputs and outputs. These baseline tests
helped us gain confidence than masking ISE instructions in isolation would not leak. For
comparison, we executed the same set of kernels on the equivalent baseline ISA instructions.
The results of these evaluations and comparisons are listed in Section 4.2.2.

For our purposes, this was enough confidence to begin evaluating entire ciphers. A
more rigorous verificaton exercise would need to look at interractions between adjacent
and non-adjacent (for pipeline forwarding) masking ISE instructions, and forwarding of
values between masking and non-masking instructions. We note that the verification effort
needed to ensure side-channel security proeprties for a general purpose CPU is orders
of magnitude higher than for a dedicated cryptography module (e.g. an AES or SHA
accelerator). This stems from the number of individual functions (instructions) present in
a CPU design, and how those functions interract in an execution pipeline.

Ultimately, functional correctness of a single code sequence can usually be verified with
a single execution of that code sequence. Verification complexity then increases with the
number of code sequences which need to be covered. Side-channel security however must
be evaluated statistically, requiring many thousands of executions of the same code path to
build any level of confidence. This may make verifying all side-channel security property
relevant interractions between instructions infeasible in even a shallow CPU pipeline with
reasonable engineering budgets. Note that the verification complexity would not nessesarily
be aided by complete separation of datapaths, since it is interractions between masking
and non-masking ISE instructions which form the bulk of the verification problem space.
Nonetheless this may be interpreted as an implicit argument for separation of masked
cryptographic functions from general purpose CPU pipelines, or against general-purpose
masking instructions altogether.

3.5 ISE utilisation
Here we detail the ciphers used to demonstrate the masking ISE, and several issues
encountered while using the masking ISE instructions to implement side-channel secure
software.

Implemented kernels. To demonstrate the effectiveness of the masking ISE, we im-
plemeted the Speck [BSS+13] and Sparx [DPU+16] block-ciphers, plus the ChaCha20 [Ber08]
stream cipher. These were chosen because their ARX nature made them good candidates
to evaluate the complete set of proposed masking ISE instructions. For Speck and Sparx,
the Key-Schedule, Encrypt and Decrypt functions were all implemented in masked and
un-masked representations. For ChaCha20, we focus on only the round function. All
implementations were written in assembly, using the same policies for loop unrolling to
ensure fair comparisons..



12 An Instruction Set Extension to Support Software-Based Masking

Register pressure. By using pairs of general purpose registers to store mask shares,
register pressure is inevitably increased. While the same is true for any implementation of
masking in software, the requirement for corresponding shares to be stored in adjacent
odd/even pairs of registers makes allocation more complex. While this would be a burden
on a compiler’s register allocator, we note that side-channel secure code must usually be
written in assembly anyway. We found that RISC-V had enough registers for all of the
Speck and Sparx functions without the need for inner-loop stack spills, though the function
epilog/prolog needed to store saved registers to the stack. The ChaCha20 kernel needed 4
additional stack load/store operations due to the number of working variables it requires.
Again, this would be the case in any 2-share masked implementation.

The additional register pressure could be alleviated by storing extra shares in coppies
of the general purpose register file. While this is a reasonable design choice it comes with
considerable extra resource costs. Further, one must either 1) add additional instructions
to load/store to/from the new state (i.e. the new state is architectural, and must be
saved/restored on a context switch), or 2) existing load/store instructions could automati-
cally create masked versions of values as they enter the register file from memory. We note
that point 2 on its own is inadequate, as side-channel protection then only applies within
the CPU boundary. Registers in the memory hierarchy would still cause hamming weight
leakage of secret values as they are loaded or stored. An additional mechanism (such as
the one described in [DMGH19]) would then be required to protect memory values.

Register access scheduling. Loading and storing shares required careful sheduling of
instructions. It was nessesary to re-order instruction sequences such that all 0-th shares
were loaded in sequence, followed by all 1-st shares. This prevented hamming distance
leakage due to share collisions. Where re-ordering of instructions was not possible,
fence-like instructions which loaded/stored dummy random values were used to clear
micro-architectural resources. The techniques used in this paper were identical to those
described in [SRS+]. We note that dedicated micro-architectural leakage fence instructions
as described in [GMPP20] also work, with potentially less overhead.

Implicit register access. Before implementing the bit-reversal scheme detailed in Sec-
tion 3.3, we found that keeping loop-counter or pointer variables in even-numbered registers
removed some sources of leakage. We believe this is because all masking ISE instructions
store even-numbered register addresses in their encodings, hence only explicitly accessing
even-numbered registers using base ISA instructions removes the possibility of glitching
between odd and even register values.

We also found that the use of the compressed instruction extension could cause un-
expected leakages. We believe that this was due to race-conditions in the register address
decoding logic, where decoding of the register address in mixed sequences of 32-bit and
16-bit instructions requires the source register addresses to come from different places in
the instruction buffer. This was solved by disabling compressed instruction encodings for
the target functions, and aligning the target functions to a 4-byte boundary.

Both of these can be related to the Neighbour Leakage effect detailed in [PV17]. We
suggest Implicit Register Access effects as a more general term for these sorts of leakage
hazard.

Speculative execution. Despite being a very simple micro-controller, the SCARV-CPU
still implements a degree of speculative execution. Specifically, it has no branch-predictor,
and all control flow changes are resolved very late in the pipeline7. This means that
instructions immediately following a taken branch are partially executed before being
flushed from the pipeline. In some cases, this led to the unmasking of variables (e.g.

7One could describe this as an “assume always not-taken" branch prediction strategy.



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 13

the mask.b.unmask instruction immediately following the end of a loop) and required
re-ordering or padding instructions to avoid speculatively excuting instructions which
caused leakage.

We note that most CPUs analysed in the literature do not have pipelines deep enough
to exhibit this effect; the ARM M0, M0+, M3 and M4 all have only 3 pipeline stages.
As side-channel secure implementations are moved to more powerful CPUs with deeper
pipelines, we expect this effect to become more prevelant.

4 Evaluation

4.1 Experimental platform
We used a standard experimental platform for evaluating the masking ISE, outlined here
in the interest of reproducibility.

The augmented SCARV core was implemented on a Sasebo GIII [HKSS12] side-channel
analysis platform. It contains two FPGAs: a Xilinx Kintex-7 (model xc7k160tfbg676)
target FPGA, and a Xilinx Spartan-6 (model xc6slx45) support FPGA. Our evaluation
only used the Kintex-7. The design was synthesised using Xilinx Vivado 2019.2, using
the default synthesis and implementaiton strategies. No effort was spent on optimising
the synthesis or routing. The Kintex-7 FPGA uses a 200MHz differential external clock
source, which is transformed into a 50MHz internal clock used by the entire design.

Trace capture uses a standard pipeline of components, including: a MiniCircuits
BLK+89 D/C blocker, an Agilent 8447D amplifier (with a 100 kHz to 1.3 GHz range,
and 25 dB gain), and a PicoScope 5000 series oscilloscope. The oscilloscope uses a 250
MHz sample rate, with a 12-bit sample resolution. The capture process is coordinated
using a laptop, which is responsible for: 1) configuring the target device with the correct
experiment program, 2) uploading and retrieving experiment input and output values, 3)
recording oscilloscope trace data and packaging it for storage.

Initial leakage experiments on the baseline core showed the presence of some noise in
the capture pipeline. This was removed after trace capture using software filtering. A
butterworth low-pass filter with 5 taps and a 8MHz cutoff frequency was used to remove
the noise. The 8 MHz cutoff was chosen to maximise detectable leakage in the baseline
ISA instructions.

4.2 Results
4.2.1 Hardware overhead

Table 1 shows the hardware implementation costs of the masking ISE, using the un-modified
SCARV core as a baseline. We first evaluate the design targeting the FPGA platform
described in Section 4.1. We also give ASIC synthesis results using the Yosys [Wol] open
Synthesis Suite. For the ASIC results, area is reported in NAND2 gate equivilent cells,
and timing as the Longest Topological Path (LTP) through the circuit. Note that these
results are not tied to a particular technology library, but an abstract library bundled with
Yosys. This makes design comparisons and reproduction easier, as it does not depend on
researchers being able to source any technology libraries.

Note the difference in area overheads between the FPGA implementation (1.48x LUTs)
and simple ASIC flow (1.22x NAND2 Cells). We believe this is down to the granularity of
the FPGA synthesis target cells (i.e. N-input LUTs) v.s 2-input CMOS cells. That is, not
all LUTs are fully utilised.

We also note that the masked ALU does not appear on the critical path, but its
inclusion still results in a reduction in timing slack. This is likely due to extra logic in



14 An Instruction Set Extension to Support Software-Based Masking

Table 1: Implementation results for the ISE, as integrated into the SCARV core. Note
that timing slack is quoted for a frequency of f = 50 MHz.

FPGA ASIC
Implementation Slice LUTs FFs Timing slack NAND2 cells
SCARV core 4229 2141 3.417 ns 46750
SCARV core + ISE 6261 2348 2.736 ns 57385

Table 2: A summary of cycle count (i.e., execution latency) for each instruction in the
ISE, plus, where appropriate, a comparison with an equivalent from the base ISA.

Instruction Cycle count
Base ISA ISE

mask.b.mask 1
mask.b.unmask 1
mask.b.remask 1
mask.b.not 1 1
mask.b.and 1 1
mask.b.ior 1 1
mask.b.xor 1 1
mask.b.add 1 6
mask.b.sub 1 6
mask.b.srli 1 1
mask.b.slli 1 1
mask.b.rori 1 1

Table 3: Comparison of a) instruction count (i.e., number of instructions executed), b)
cycle count (i.e., execution latency), and c) instruction footprint (measured in bytes) for
both unmasked (using the base ISA) and masked (using the ISE) implementations of
various cryptographic kernels.

Kernel Instruction count Cycle count Instruction footprint
Base ISA ISE Base ISA ISE Base ISA ISE

Sparx Key Schedule 435 685 561 1131 118 244
Sparx Encrypt 708 935 825 1231 350 604
Sparx Decrypt 707 928 778 1300 358 576

Speck Key Schedule 198 245 219 396 656 946
Speck Encrypt 173 237 207 405 610 920
Speck Decrypt 173 237 204 409 664 896

ChaCha20 Round 1260 1766 1631 3720 468 1406



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 15

(a) AND (ISA). (b) AND (ISE).

(c) XOR (ISA). (d) XOR (ISE).

(e) Add (ISA). (f) Add (ISE).

(g) Left-shift (ISA). (h) Left-shift (ISE).

Figure 3: Comparison of leakage for selected instructions as executed on the SCARV core
using the base ISA and ISE: each case relates to TVLA-based leakage detection, plotting
the (absolute) t-statistic stemming from 100, 000 power consumption traces.



16 An Instruction Set Extension to Support Software-Based Masking

(a) Encrypt (ISA).

(b) Encrypt (ISE).

(c) Key schedule (ISA).

(d) Key schedule (ISE).

Figure 4: Comparison of leakage for kernels related to the Speck block cipher as executed
on the SCARV core: each case relates to TVLA-based leakage detection, plotting the
(absolute) t-statistic stemming from 100, 000 power consumption traces.



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 17

(a) Encrypt (ISA).

(b) Encrypt (ISE).

(c) Key schedule (ISA).

(d) Key schedule (ISE).

Figure 5: Comparison of leakage for kernels related to the Sparx block cipher as executed
on the SCARV core: each case relates to TVLA-based leakage detection, plotting the
(absolute) t-statistic stemming from 100, 000 power consumption traces.



18 An Instruction Set Extension to Support Software-Based Masking

(a) Round (ISA).

(b) Round (ISE).

Figure 6: Comparison of leakage for kernels related to the ChaCha20 stream cipher as
executed on the SCARV core: each cases relates to TVLA-based leakage detection, plotting
the (absolute) t-statistic stemming from 100, 000 power consumption traces.



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 19

forcing signals to be routed along longer paths, rather than the circuits having any extra
logical depth.

4.2.2 Leakage and execution latency: single instruction

Each masking ISE instruction was compared against the relevant baseline ISA instruction
in terms of execution latency (Table 2) and leakage (Figure 3). We can see from Figure 3
that, as expected, the base ISA instructions leak strongly, and that the masking ISE
instructions do not.

4.2.3 Leakage and execution latency: whole kernel

We evaluated several block cipher algorithms using the masking ISE. Table 3 shows the
execution latency and static code size for each masked and un-masked implementation of
the ciphers.

5 Conclusion
Summary. In this paper, we presented the design, implementation, and evaluation of an
ISE to support software-based masking; we pitch it as an option positioned, and so, to some
extent, a compromise between software-only and hardware-only alternatives. Accepting
the inherent overhead in hardware, our evaluation suggests that the ISE can support
secure first-order masked implementations of various kernels; the associated overhead wrt.
execution latency and memory footprint is modest.

That said, however, implementing the ISE highlighted various challenges which demand
care. For example, vs. whole-core masking [GJM+16, MGH19] it is challenging to ensure
non-interaction between shares: even if the masked ALU is modular and so physically
separate, the unmasked datapath may require some changes to ensure this property. It is
challenging to both a) identify when and where change is required, and b) implement such
change, because the ISE becomes more invasive as a result. Likewise, utilising the ISE is
not as “drop in” a process as one may expect intuitively. For example, one must contend
with increased register pressure while simultaneously considering the security properties of
loading/storing shares from/to memory; doing so is not trivial.

Future work. Beyond any more incremental improvements, such as increasing the num-
ber and diversity of kernels we evaluate, various higher-level directions represent either
important and/or interesting future work:

• Our ISE directly supports masked operations for n = 2 shares. The question remains,
however, how such support generalises: for example, 1) how to bootstrap higher-order
masking schemes using an ISE, such as ours, that includes first-order oriented building
blocks, and/or 2) how such an ISE might be alter the ISA to enhance generality wrt.
said order.

• It is plausible to consider extending the ISE to assist with various challenges wrt.
utilisation. For example, one can imagine enforcing secure register access scheduling
via ISE-supported, and so “share aware” memory access instructions.

• Belaïd et al. [BDM+20] present Tornado, a tool capable of deriving secure masked
implementations from a high-level description. [BDM+20, Section 3.1] states the
model of computation assumed, which includes a number of masked “gadgets” whose
form implies that Tornado could be retargeted to benefit from an ISE-enabled
platform.



20 An Instruction Set Extension to Support Software-Based Masking

• Instructions such as mask.b.add (rd1,rd2), (rs1,rs2), (rs3,rs4) perform arith-
metic with an assumed word size of XLEN. However, consider a case where
XLEN = 32 but we implement a kernel which demands masked arithmetic modulo
2w for some w 6= 32, e.g., w = 16 or w = 64. Doing so may be problematic, because
the masked operation lacks any direct support for, e.g., management of carries.

• Ge et. al [GYH18] pitch their aISA as “a new hardware-software contract”, and,
as a result, weaken the abstraction afforded by an ISA of some associated micro-
architecture. To meet the required security properties, our ISE demands care wrt.
implementation (in hardware) and utilisation (in software). Per the aISA, one could
therefore question how much the ISE can (or if it even should) dictate details of an
associated micro-architectural implementation. Exploration of this question, e.g.,
what requirements are required, and how to specify them, seems an interesting
challenge.

Acknowledgements
We would like to thank the anonymous reviewers for their helpful and constructive
comments. This work has been supported in part by EPSRC via grant EP/R012288/1,
under the RISE (http://www.ukrise.org) programme.

References
[AP14] K. Asanović and D.A. Patterson. Instruction sets should be free: The case for

RISC-V. Technical Report UCB/EECS-2014-146, 2014.

[BDCU17] A. Biryukov, D. Dinu, Y. Le Corre, and A. Udovenko. Optimal first-order
Boolean masking for embedded IoT devices. In Smart Card Research and
Advanced Applications (CARDIS), LNCS 10728, pages 22–41. Springer-Verlag,
2017.

[BDG+13] Shivam Bhasin, Jean-Luc Danger, Tarik Graba, Yves Mathieu, Daisuke Fuji-
moto, and Makoto Nagata. Physical security evaluation at an early design-
phase: A side-channel aware simulation methodology. In Proceedings of Inter-
national Workshop on Engineering Simulations for Cyber-Physical Systems,
pages 13–20, 2013.

[BDM+20] S. Belaïd, P.-É. Dagand, D. Mercadier, M. Rivain, and R. Wintersdorff.
Tornado: Automatic generation of probing-secure masked bitsliced implemen-
tations. In Advances in Cryptology (EUROCRYPT), LNCS 12107, pages
311–341. Springer-Verlag, 2020.

[Ber08] Daniel J Bernstein. Chacha, a variant of salsa20. In Workshop Record of
SASC, volume 8, pages 3–5, 2008.

[BGG+14] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert. On the
cost of lazy engineering for masked software implementations. In Smart Card
Research and Advanced Applications (CARDIS), LNCS 8968, pages 64–81.
Springer-Verlag, 2014.

[BGM09] S. Bartolini, R. Giorgi, and E. Martinelli. Instruction set extensions for
cryptographic applications. In Ç.K. Koç, editor, Cryptographic Engineering,
chapter 9, pages 191–233. Springer, 2009.

http://www.ukrise.org


Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 21

[BMT16] W. Burleson, O. Mutlu, and M. Tiwari. Who is the major threat to tomorrow’s
security? you, the hardware designer. In Design Automation Conference
(DAC), pages 145:1–145:5, 2016.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The simon and speck families of lightweight block
ciphers. IACR Cryptology ePrint Archive, 2013(1):404–449, 2013.

[CGD18] Y. Le Corre, J. Großschädl, and D. Dinu. Micro-architectural power simulator
for leakage assessment of cryptographic software on ARM Cortex-M3 proces-
sors. In Constructive Side-Channel Analysis and Secure Design (COSADE),
LNCS 10815, pages 82–98. Springer-Verlag, 2018.

[CGTV15] J.-S. Coron, J. Großschädl, M. Tibouchi, and P.K. Vadnala. Conversion from
arithmetic to boolean masking with logarithmic complexity. In Fast Software
Encryption (FSE), LNCS 9054, pages 130–149. Springer-Verlag, 2015.

[CJRR99] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Annual
International Cryptology Conference, pages 398–412. Springer, 1999.

[CS09] Zhimin Chen and Patrick Schaumont. Early feedback on side-channel risks
with accelerated toggle-counting. In 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust, pages 90–95. IEEE, 2009.

[DMGH19] Elke De Mulder, Samatha Gummalla, and Michael Hutter. Protecting risc-v
against side-channel attacks. In Proceedings of the 56th Annual Design Automa-
tion Conference 2019, DAC âĂŹ19, page 1âĂŞ4. Association for Computing
Machinery, Jun 2019.

[DPU+16] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann
Großschädl, and Alex Biryukov. Design strategies for arx with provable
bounds: Sparx and lax. In International Conference on the Theory and Ap-
plication of Cryptology and Information Security, pages 484–513. Springer,
2016.

[GB11] C. Galuzzi and K. Bertels. The instruction-set extension problem: A survey.
ACM Transactions on Reconfigurable Technology and Systems, 4(2):18:1–18:28,
2011.

[GBR+19] Vinod Ganesan, Rahul Bodduna, Chester Rebeiro, et al. Param: A micro-
processor hardened for power side-channel attack resistance. arXiv preprint
arXiv:1911.08813, 2019.

[GJM+16] H. Gross, M. Jelinek, S. Mangard, T. Unterluggauer, and M. Werner. Con-
cealing secrets in embedded processors designs. In Smart Card Research and
Advanced Applications (CARDIS), LNCS 10146, pages 89–104. Springer-Verlag,
2016.

[GMK16] H. Gross, S. Mangard, and T. Korak. Domain-Oriented Masking: Compact
masked hardware implementations with arbitrary protection order. In Theory
of Implementation Security (TIS), page 3, 2016.

[GMPO19] S. Gao, B. Marshall, D. Page, and E. Oswald. Share slicing: friend or
foe? IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2020(1):152–174, 2019.



22 An Instruction Set Extension to Support Software-Based Masking

[GMPP20] Si Gao, Ben Marshall, Dan Page, and Thinh Pham. Fenl: an ise to mitigate
analogue micro-architectural leakage. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 73–98, 2020.

[GP99] L. Goubin and J. Patarin. DES and differential power analysis the duplication
method. In Cryptographic Hardware and Embedded Systems (CHES), LNCS
1717, pages 158–172. Springer-Verlag, 1999.

[GYH18] Q. Ge, Y. Yarom, and G. Heiser. No security without time protection: we
need a new hardware-software contract. In Asia-Pacific Workshop on Systems
(APSys), 2018.

[HKSS12] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. SASEBO-GIII: A hardware
security evaluation board equipped with a 28-nm FPGA. In IEEE Global
Conference on Consumer Electronics, pages 657–660, 2012.

[HPN+19] Miao Tony He, Jungmin Park, Adib Nahiyan, Apostol Vassilev, Yier Jin, and
Mark Tehranipoor. Rtl-psc: automated power side-channel leakage assessment
at register-transfer level. In 2019 IEEE 37th VLSI Test Symposium (VTS),
pages 1–6. IEEE, 2019.

[ISW03] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In Advances in Cryptology (CRYPTO), LNCS 2729, pages
463–481. Springer-Verlag, 2003.

[KJJ99] P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology (CRYPTO), LNCS 1666, pages 388–397. Springer-Verlag, 1999.

[KS20] P. Kiaei and P. Schaumont. Domain-oriented masked instruction set architec-
ture for RISC-V. Cryptology ePrint Archive, Report 2020/465, 2020.

[LC08] S.H. Lee and L. Choi. Accelerating symmetric and asymmetric ciphers with
register file extension for multi-word and long-word operation. In International
Conference on Information Science and Security (ICISS), pages 102–107, 2008.

[LYS04] R.B. Lee, X. Yang, and Z. Shi. Validating word-oriented processors for bit and
multi-word operations. In Annual Computer Security Applications Conference
(ACSAC), pages 473–488, 2004.

[Mes00] Thomas S Messerges. Securing the aes finalists against power analysis at-
tacks. In International Workshop on Fast Software Encryption, pages 150–164.
Springer, 2000.

[Mes01] T.S. Messerges. Securing the AES finalists against power analysis attacks. In
Fast Software Encryption (FSE), LNCS 1978, pages 150–164. Springer-Verlag,
2001.

[MGH19] E. De Mulder, S. Gummalla, and M. Hutter. Protecting RISC-V against side-
channel attacks. In Design Automation Conference (DAC), pages 45:1–45:4,
2019.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

[NRR06] S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against
side-channel attacks and glitches. In Information and Communications Security
(ICICS), LNCS 4307, pages 529–545. Springer-Verlag, 2006.



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 23

[PM05] T. Popp and S. Mangard. Masked dual-rail pre-charge logic: DPA-resistance
without routing constraints. In Cryptographic Hardware and Embedded Systems
(CHES), LNCS 3659, pages 172–186. Springer-Verlag, 2005.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: towards secure
1st-order masking in software. In International Workshop on Constructive
Side-Channel Analysis and Secure Design, pages 282–297. Springer, 2017.

[RI16] F. Regazzoni and P. Ienne. Instruction set extensions for secure applications.
In Design, Automation, and Test in Europe (DATE), pages 1529–1534, 2016.

[RKL+04] S. Ravi, P.C. Kocher, R.B. Lee, G. McGraw, and A. Raghunathan. Security as
a new dimension in embedded system design. In Design Automation Conference
(DAC), pages 753–760, 2004.

[RP10] M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In
Cryptographic Hardware and Embedded Systems (CHES), LNCS 6225, pages
413–427. Springer-Verlag, 2010.

[RRKH04] S. Ravi, A. Raghunathan, P.C. Kocher, and S. Hattangady. Security in
embedded systems: Design challenges. ACM Transactions on Embedded
Computer Systems, 3(3):461–491, 2004.

[RV:19] The RISC-V instruction set manual. Technical Report Volume I: User-Level
ISA (Version 20191213), 2019.

[SRS+] Madura A Shelton, Francesco Regazzoni, Niels Samwel, Markus Wagner,
Lejla Batina, and Yuval Yarom. Rosita: Towards automatic elimination of
power-analysis leakage in ciphers.

[Tri03] E. Trichina. Combinational logic design for AES SubByte transformation on
masked data. Cryptology ePrint Archive, Report 2003/236, 2003.

[Wat16] A. Waterman. Design of the RISC-V Instruction Set Architecture. PhD thesis,
University of California at Berkeley, 2016.

[Wol] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

[ZBPF18] Davide Zoni, Alessandro Barenghi, Gerardo Pelosi, and William Fornaciari. A
comprehensive side-channel information leakage analysis of an in-order risc
cpu microarchitecture. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 23(5):1–30, 2018.

http://www.clifford.at/yosys/


24 An Instruction Set Extension to Support Software-Based Masking

A Instruction semantics
• mask.b.mask (rd1,rd2), rs1

begin
x← GPR[rs1]
(r0, r1)← BoolMask(x)
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.unmask rd1, (rs1,rs2)

begin
x0 ← GPR[rs1], x1 ← GPR[rs2]
r ← BoolUnmask((x0, x1))
GPR[rd1]← r

end

• mask.b.remask (rd1,rd2), (rs1,rs2)

begin
x0 ← GPR[rs1], x1 ← GPR[rs2]
(r0, r1)← BoolRemask((x0, x1))
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.not (rd1,rd2), (rs1,rs2)

begin
x0 ← GPR[rs1], x1 ← GPR[rs2]
(r0, r1)← BoolNOT((x0, x1))
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.and (rd1,rd2), (rs1,rs2), (rs3,rs4)

begin
x0 ← GPR[rs1], x1 ← GPR[rs2], y0 ← GPR[rs3], y1 ← GPR[rs4]
(r0, r1)← BoolAND((x0, x1), (y0, y1))
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.ior (rd1,rd2), (rs1,rs2), (rs3,rs4)

begin
x0 ← GPR[rs1], x1 ← GPR[rs2], y0 ← GPR[rs3], y1 ← GPR[rs4]
(r0, r1)← BoolIOR((x0, x1), (y0, y1))
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.xor (rd1,rd2), (rs1,rs2), (rs3,rs4)

begin
x0 ← GPR[rs1], x1 ← GPR[rs2], y0 ← GPR[rs3], y1 ← GPR[rs4]
(r0, r1)← BoolXOR((x0, x1), (y0, y1))
GPR[rd1]← r0, GPR[rd2]← r1

end



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 25

• mask.b.add (rd1,rd2), (rs1,rs2), (rs3,rs4)

begin
x0 ← GPR[rs1], x1 ← GPR[rs2], y0 ← GPR[rs3], y1 ← GPR[rs4]
(r0, r1)← BoolAdd((x0, x1), (y0, y1))
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.sub (rd1,rd2), (rs1,rs2), (rs3,rs4)

begin
x0 ← GPR[rs1], x1 ← GPR[rs2], y0 ← GPR[rs3], y1 ← GPR[rs4]
(r0, r1)← BoolSub((x0, x1), (y0, y1))
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.slli (rd1,rd2), (rs1,rs2), imm

begin
x0 ← GPR[rs1], x1 ← GPR[rs2],
(r0, r1)← BoolSLL((x0, x1), imm)
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.srli (rd1,rd2), (rs1,rs2), imm

begin
x0 ← GPR[rs1], x1 ← GPR[rs2],
(r0, r1)← BoolSRL((x0, x1), imm)
GPR[rd1]← r0, GPR[rd2]← r1

end

• mask.b.rori (rd1,rd2), (rs1,rs2), imm

begin
x0 ← GPR[rs1], x1 ← GPR[rs2],
(r0, r1)← BoolROR((x0, x1), imm)
GPR[rd1]← r0, GPR[rd2]← r1

end



26 An Instruction Set Extension to Support Software-Based Masking

B Instruction encodings

Table 4: An overview of instruction encodings (operations under Boolean masking).
012345678910111213141516171819202122232425262728293031

0000000 00010 rs1 000 rdm 1011011 mask.b.mask

0000000 00011 rsm1 000 rd 1011011 mask.b.unmask

0000000 00011 rsm1 000 rdm 1011011 mask.b.remask

0000001 00000 rsm1 010 rdm 1011011 mask.b.not

0000001 rsm2 rsm1 111 rdm 1011011 mask.b.and

0000001 rsm2 rsm1 110 rdm 1011011 mask.b.ior

0000001 rsm2 rsm1 100 rdm 1011011 mask.b.xor

0000001 rsm2 rsm1 000 rdm 1011011 mask.b.add

0000001 rsm2 rsm1 001 rdm 1011011 mask.b.sub

000010 shamt rsm1 000 rdm 1011011 mask.b.slli

000010 shamt rsm1 001 rdm 1011011 mask.b.srli

000010 shamt rsm1 010 rdm 1011011 mask.b.rori



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 27

C Additional algorithms

Data: The value x.
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x.
function BoolMask((x0, x1)) begin

t
$←− {0, 1}w

r1 ← t
r0 ← x⊕ t
return(r0, r1)

end
Algorithm 1: BoolMask: apply mask operation (under Boolean masking).

Data: The masked value x̂ = (x0, x1).
Result: The value r = r0 ⊕ r1 = x.
function BoolUnmask((x0, x1)) begin

r ← x0 ⊕ x1
return r

end
Algorithm 2: BoolUnmask: apply unmask operation (under Boolean masking).

Data: The masked value x̂ = (x0, x1).
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x.
function BoolRemask((x0, x1)) begin

t
$←− {0, 1}w

r1 ← x1 ⊕ t
r0 ← x0 ⊕ t
return(r0, r1)

end
Algorithm 3: BoolRemask: apply remask operation (under Boolean masking).



28 An Instruction Set Extension to Support Software-Based Masking

Data: The masked value x̂ = (x0, x1).
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = ¬x.
function BoolNOT((x0, x1)) begin

t
$←− {0, 1}w

r1 ← t⊕ (¬x1)
r0 ← t⊕ x0
return(r0, r1)

end
Algorithm 4: BoolNOT: apply NOT operation (under Boolean masking).

Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1).
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x ∧ y.
function BoolAND((x0, x1), (y0, y1)) begin

t
$←− {0, 1}w

r1 ← t⊕ (x1 ∧ y1)⊕ (x1 ∨ ¬y0)
r0 ← t⊕ (x0 ∧ y1)⊕ (x0 ∨ ¬y0)
return(r0, r1)

end
Algorithm 5: BoolAND: apply AND operation (under Boolean masking).

Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1).
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x ∨ y.
function BoolIOR((x0, x1), (y0, y1)) begin

(s0, s1)← BoolAnd((x0,¬x1), (y0,¬y1))
r1 ← ¬s1
r0 ← s0
return(r0, r1)

end
Algorithm 6: BoolIOR: apply OR operation (under Boolean masking).

Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1).
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x⊕ y.
function BoolXOR((x0, x1), (y0, y1)) begin

t
$←− {0, 1}w

r0 ← t⊕ x0 ⊕ y0
r1 ← t⊕ x1 ⊕ y1
return(r0, r1)

end
Algorithm 7: BoolXOR: apply XOR operation (under Boolean masking).



Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham and Francesco Regazzoni 29

Data: The maked values x̂ = (x0, x1) and ŷ = (y0, y1)
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x + y.
function BoolAdd((x0, x1), (y0, y1)) begin

(a0, a1)← BoolXor((x0, x1), (y0, y1))
(p0, p1)← (a0, a1)
(g0, g1)← BoolAnd((x0, x1), (y0, y1))
for i← 1 to log2 w do

(h0, h1)← BoolSHL((g0, g1), 2i−1)
(u0, u1)← BoolSHL((p0, p1), 2i−1)
(h0, h1)← BoolAnd((p0, p1), (h0, h1))
(g0, g1)← BoolXor((g0, g1), (h0, h1))
(p0, p1)← BoolAnd((p0, p1), (u0, u1))

end
(h0, h1)← BoolSHL((g0, g1), 1)
(r0, r1)← BoolXor((a0, a1), (h0, h1))
return(r0, r1)

end
Algorithm 8: BoolAdd: apply addition operation (under Boolean masking).

Data: The maked values x̂ = (x0, x1) and ŷ = (y0, y1)
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x− y

function BoolSub((x0, x1), (y0, y1)) begin
(a0, a1)← BoolXor((x0, x1), (y0, y1))
(p0, p1)← (a0, a1)
(g0, g1)← BoolAnd((x0, x1), (y0, y1))
(u0, u1)← BoolAnd((p0, p1), (0, 1))
(g0, g1)← BoolXor((g0, g1), (u0, u1))
for i← 1 to log2 w do

(h0, h1)← BoolSHL((g0, g1), 2i−1)
(u0, u1)← BoolSHL((p0, p1), 2i−1)
(h0, h1)← BoolAnd((p0, p1), (h0, h1))
(g0, g1)← BoolXor((g0, g1), (h0, h1))
(p0, p1)← BoolAnd((p0, p1), (u0, u1))

end
(h0, h1)← (g0 � 1 ‖ 0, g1 � 1 ‖ 1)
(r0, r1)← BoolXor((a0, a1), (h0, h1))
return(r0, r1)

end
Algorithm 9: BoolSub: apply subtraction operation (under Boolean masking).

Data: The masked value x̂ = (x0, x1), and an integer 0 ≤ i < w.
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x� i.
function BoolSHL((x0, x1), i) begin

t
$←− {0, 1}i

r1 ← (x1 � i) ‖ t
r0 ← (x0 � i) ‖ t
return(r0, r1)

end
Algorithm 10: BoolSHL: apply left-shift operation (under Boolean masking).



30 An Instruction Set Extension to Support Software-Based Masking

Data: The masked value x̂ = (x0, x1), and an integer 0 ≤ i < w.
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x� i.
function BoolSHR((x0, x1), i) begin

t
$←− {0, 1}i

r1 ← t ‖ (x1 � i)
r0 ← t ‖ (x0 � i)
return(r0, r1)

end
Algorithm 11: BoolSHR: apply right-shift operation (under Boolean masking).

Data: The masked value x̂ = (x0, x1), and an integer 0 ≤ i < w.
Result: The masked value r̂ = (r0, r1) st. r = r0 ⊕ r1 = x ≫ i.
function BoolROR((x0, x1), i) begin

r1 ← x1 ≫ i
r0 ← x0 ≫ i
return(r0, r1)

end
Algorithm 12: BoolROR: apply right-rotate operation (under Boolean masking).


	Introduction
	Background
	RISC-V
	Masking
	Related work

	Implementation
	ISE design
	ISE implementation
	ISE integration
	ISE verification
	ISE utilisation

	Evaluation
	Experimental platform
	Results

	Conclusion
	Instruction semantics
	Instruction encodings
	Additional algorithms

