
Dynamic Universal Accumulator with
Batch Update over Bilinear Groups ?

Giuseppe Vitto1, Alex Biryukov1

DCS&SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
name.surname@uni.lu

Abstract. We propose a Dynamic Universal Accumulator in the Ac-
cumulator Manager setting for bilinear groups which extends Nguyen’s
positive accumulator and Au et al. [18] and Damg̊ard and Triandopoulos
non-membership proof mechanism [16]. The new features include support
for batch addition and deletion operations as well as a privacy-friendly
decentralized batch witness update protocol, where the witness update
information is the same for all users. Together with a non-interactive
zero-knowledge protocol, these make the proposed scheme suitable as
an efficient and scalable Anonymous Credential System, accessible even
by low-resource users. We show security of the proposed protocol under
the t-SDH assumption through a proper initialization of the accumulator
and we demonstrate its practical relevance by providing and discussing
an implementation realized using state-of-the-art libraries.

Keywords: accumulator, universal, dynamic, batch update, privacy-preserving
KYC, anonymous credentials

1 Introduction

A cryptographic accumulator allows to aggregate many different values from a
finite set into a fixed-length digest called accumulator value. Differently than
hash functions, accumulators permit to further verify if an element is either
accumulated or not in a given accumulator value by using the so-called member-
ship and non-membership witnesses, respectively. Accumulator schemes which
support membership witnesses are referred to as positive accumulators, the ones
that support non-membership witnesses are called negative, while the ones that
support both are called universal accumulators. A common requirement for the
accumulator schemes is the ability to change the set of accumulated elements,
hence permitting accumulator updates: when the accumulator allows to dynam-
ically add and delete elements, it is said to be a dynamic accumulator.

Whenever addition or deletion operations occur for one or several elements
(in the latter case these are called batch additions and deletions), already issued
witnesses should be updated to be consistent with the new accumulator value.

? This work is supported by the Luxembourg National Research Fund (FNR) project
FinCrypt (C17/IS/11684537).

2 Giuseppe Vitto, Alex Biryukov

Ideally this should be done using a short amount of witness update data (i.e.
whose cost/size is not dependent on the number of elements involved) and with
only publicly available information (i.e. without knowledge of any secret accu-
mulator parameters). While there are many constructions that satisfy the public
update condition, as regards to the update cost, Camacho and Hevia showed
in [20] an impossibility result to have batch witness updates whose update data
size is independent from the number of elements involved. More precisely, they
showed that for an accumulator state which accumulates n elements, the witness
update data size for a batch delete operation involving m elements cannot be
less than Ω(m log n

m), thus requiring at least Ω(m) operations to update.

Our Contributions. In this paper we propose a Dynamic Universal Accumu-
lator in the Accumulator Manager setting for pairing-friendly elliptic curves,
which supports batch operations and public batch witness updates as well as
privacy preserving zero-knowledge proof of knowledge for membership and non-
membership witnesses. Its features are manifold:

– Efficiency: starting from Nguyen’s positive accumulator and Au et al. [18]
and Damg̊ard and Triandopoulos non-membership proof mechanism [16], we
state a Dynamic Universal Accumulator in the Accumulator Manager setting
(i.e. it is managed by a central authority who knows the accumulator trap-
door), by using efficient and secure Type-III pairing-friendly elliptic curves.

– Support for Batch Operations: the underlying accumulator is then ex-
tended to fully support batch addition and deletion operations, as well as
membership and non-membership batch witness updates.

– Decentralized Batch Witness Update Protocol: we designed a de-
centralized batch witness update protocol where the batch witness update
information published by the Accumulator Manager after a batch operation
is the same for all users. This information can be securely (and privately)
pre-processed by third-party servers in order to allow users to update their
witnesses in a constant number of elementary operations, even in the case
many batch operations occurred from their last update. This allows the
accumulator to be used even when only limited-resource devices (ex. smart-
phones) are available to users.

– Optimal Batch Update: the number of operations needed to batch update
witnesses equals the lower bound given by Camacho and Hevia [20] in the
case of a batch deletion operation. The same complexity holds in the case of
either a batch addition operation and a batch addition & deletion operation,
where m new elements are added and other m elements are deleted, namely
O(m) update time for a batch witness update information size of m log pq
bits, where p is the size of the underlying bilinear group and q is the size of
the defining finite field.

– Security: the accumulator is shown to be collision resistant under the
t−SDH assumption and also addresses the relevant recent attacks found in
[30]. Additional security analysis which considers attackers that have access
to the now public batch witness update information is also provided.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 3

– Zero-Knowledge Friendly: zero-knowledge protocols are supported for
any operation involving witnesses: we detail an efficient zero-knowledge proof
of knowledge to show ownership of a valid witness and the batch witness
update protocol is designed so that the results of a delegated batch witness
update pre-processing is obtained without letting the third-party servers to
learn anything except the publicly available data.

– Implementation: to show efficiency and its practical relevance, we imple-
mented and benchmarked the proposed accumulator using state-of-the-art
libraries for pairing-friendly elliptic curves.

It follows, that our accumulator is well suited to be the building block of an
Anonymous Credential System, which originally motivated this work. In these
systems only the users which were previously authorized by a central author-
ity (the Accumulator Manager) can use the issued credentials to authenticate
to the third-party verifier (ex. some financial service provider, like bank or an
exchange). They do so by proving in zero-knowledge ownership of a valid mem-
bership or non-membership witnesses, depending if the accumulator is used as
a white- or black-list. Furthermore, doing so anonymously and unlinkably, even
if the verifier colludes with the accumulator manager. This could be crucial in
many applications given current societal challenges of protecting user privacy on
the one hand and government-imposed know-your-customer regulations on the
other hand.

Outline of the Paper. In Section 2 we describe related work about relevant
accumulator schemes, while in Section 3 we set out the notation used in the whole
paper. In Section 4 we summarize Nguyen’s [11] positive accumulator extended
with the non-membership proof mechanism of Au et al. [18] and Damg̊ard and
Triandopoulos [16], both restated for Type-III bilinear pairings. In Section 4.1
we show collision resistance under the t−Strong Diffie-Hellman assumption of
the resulting accumulator, thus showing that it is infeasible to forge member-
ship witnesses for not-accumulated elements and, respectively, non-membership
witnesses for accumulated ones. In Section 5 we further extend the accumulator
scheme in order to support batch addition and deletion operations in a way that
enable users to publicly update both their membership and non-membership
witnesses (Section 6). Motivated by a recent cryptanalysis [30] of Au et al. accu-
mulator scheme, we discuss in Section 7 how the proposed accumulator can be
initialized in order to prevent the possibility to issue arbitrary non-membership
witnesses for non-accumulated elements and thus be safe from collusion attacks.
In Section 8 we fully detail a zero-knowledge protocol to show ownership of a
valid witness for a given accumulator state, while in Section 9 benchmarks of
a concrete implementation of the scheme are discussed. We then present our
conclusions in Section 10.

2 Related Works

The first accumulator scheme was formalized by Benaloh and De Mare [3] in
1993 as a time-stamping protocol. Since then, many other accumulator schemes

4 Giuseppe Vitto, Alex Biryukov

have been proposed. Currently, three main families of accumulators can be dis-
tinguished in literature: schemes designed in groups of unknown order [3, 4, 9, 13,
5, 22, 26], others designed in groups of known order [11, 16, 18, 19] and hash-based
constructions [2, 6, 8, 15, 25]. Relevant to this paper are the schemes belonging to
the second family, where the considered group is a prime order bilinear group.

Nguyen in [11] proposed a dynamic positive accumulator for symmetric bi-
linear groups, where up to t elements can be accumulated assuming that the
t−Strong Diffie-Hellman assumption holds in the underlying group. Damg̊ard
and Triandopoulos [16] extended Nguyen’s scheme, under the same security as-
sumptions, to support non-membership proofs, thus defining a universal accu-
mulator based on bilinear pairings. Soon after this work, Au et al. [18] extended
Nguyen’s scheme to a universal accumulator by proposing two possible variants:
the more efficient α-based construction best suitable when a central authority
−the Accumulator Manager− keeps the accumulator updated, and the alterna-
tive more decentralized but less efficient reference string-based construction. We
note that non-membership witness definition provided in the latter construction
is equivalent to Damg̊ard and Triandopoulos’ one.

Recently, Biryukov, Udovenko and Vitto [30] cryptanalized both Au et al.
variants and found different attacks able to either recover the accumulator se-
cret parameter or issue arbitrary witnesses. While they consider the α-based
construction insecure, they conclude that in presence of an Accumulator Man-
ager, it is possible to safely use the witness defining equations provided in the
reference string-based construction (or equivalently, the Damg̊ard and Trian-
dopoulos’ construction) by properly initializing the accumulator value.

The Dynamic Universal Accumulator obtained by combining Nguyen’s posi-
tive accumulator and Au et al. and Damg̊ard and Triandopoulos’ non-membership
witness mechanism, will be the starting point of our dynamic universal accumu-
lator scheme, which we will further extend to support batch operations and
public batch witness update.

Another approach on how to build a dynamic positive accumulator based
on bilinear groups is given by Camenisch et al. in [19] where, alternatively to
Nguyen’s construction, a scheme relying on the t−DHE assumption is proposed.

3 Notation

Following the notation of [17], an efficiently computable non-degenerate bilinear
map e : G1 × G2 → GT is said to be a Type-I pairing if G1 = G2, while
it’s called Type-III pairing if G1 6= G2 and there are no efficiently computable
isomorphisms between G1 and G2. We will denote with uppercase Roman letters
(e.g. P, V) elements belonging to G1 and with uppercase Roman letters with a
tilde above (e.g. P̃ , Q̃) elements in G2. The identity points of G1 and G2 are
denoted with O and Õ, respectively.

Sets are denoted with uppercase letters in calligraphic fonts (e.g. ACC,Y)
while accumulator elements are denoted with (eventually indexed) lowercase Ro-
man letters: y usually denotes the reference element, that is the one we take as

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 5

an example to perform operations, while yS denotes an element in the set S. Ex-
ceptions are the membership and non-membership witness, denoted respectively
with w and w̄, and the partial non-membership witness d.

Vectors are denoted with capital Greek letters (e.g. Υ,Ω). The vector opera-
tion 〈Φ, Ψ〉 is the dot product, that is the sum of the products of the correspond-
ing entries of Φ and Ψ , while a ◦Φ denotes the usual scalar-vector multiplication
where each entry of Φ is multiplied by a.

We also use a convention that sum and the product of a sequence of terms
with starting index greater than the ending one are assumed to be equal to∑j
i ai = 0 and

∏j
i bi = 1 when i > j.

4 A Dynamic Universal Accumulator for Pairing Friendly
Elliptic Curves

We now summarize Nguyen’s positive accumulator scheme [11] (i.e. Membership
Witness, Update and Verification) extended with the non-membership proof sys-
tem of Au et al. [18] and Damg̊ard and Triandopoulos [16] (i.e. Non-membership
Witness, Update and Verification).

Due to recent progresses in discrete logarithm computations [23, 24, 28], which
weaken the security of efficient implementable elliptic curves provided with a
Type-I pairing, we restate their definitions into a Type-III setting, making it
best suitable for efficient and more secure pairing-friendly elliptic curves.

In addition, we introduce new concepts (e.g. Accumulator States, Epochs) and
parameters (e.g. batchMax), to make the accumulator definition coherent with
the batch operations and the batch witness update protocol we will describe
starting from Section 5.

Bilinear Group Generation.1 Given a security parameter 1λ, generate over a
prime order finite field Fq an elliptic curve E(Fq) with embedding degree k which
has an efficiently computable non-degenerate bilinear map e : G1 × G2 → GT
such that

– G1 is a subgroup of E(Fq).
– Letting d be the cardinality of the automorphisms group of E(Fq), G2 is a

subgroup of Ẽ(Fqk/d) which is the unique degree-d twist of E over Fqk/d .

– GT is a subgroup of (Fqk)∗.

– |G1| = |G2| = |GT | = p is prime.

– P, P̃ , e(P, P̃) are generators of G1,G2,GT , respectively.

– There are no efficiently computable isomorphisms between G1 and G2.

Then denote as G = (p,G1, G2, GT , P, P̃ , e) the resulting bilinear group.2

1 We refer, for example, to [21] for more technical details on how these bilinear groups
can be efficiently generated and implemented.

2 We note that the accumulator scheme works with any bilinear group.

6 Giuseppe Vitto, Alex Biryukov

Accumulator Parameters. Randomly select an α ∈ (Z/pZ)∗ and consider
ACC = (Z/pZ)∗ \ {−α} as the domain of accumulatable elements. Moreover, set
a bound batchMax to the maximum number of batch additions and/or deletions
possible in each epoch (See Section 5).

The bilinear group G, the bound batchMax and the point Q̃ = αP̃ are the
accumulator public parameters and are available to all accumulator users, while
α is the accumulator secret parameter and is known only to the Accumulator
Manager.

Accumulator Initialization. Select a set YV0
⊂ ACC and let the initial accu-

mulator value to be equal to

V0 =

 ∏
y∈YV0

(y + α)

P

The set YV0 is kept secret and its elements are never removed from the accumu-
lator.3

Accumulator States and Epochs. An accumulator state is a pair (V,YV)
where V ∈ G1 is the corresponding accumulator value and YV ⊆ ACC denotes
the set of elements accumulated into V (initialization elements excluded). We call
epoch the period of time during which an accumulator state remains unchanged.

Given an accumulator state (V,YV), the accumulator value V is equal to

V =

 ∏
y∈YV

(y + α)

V0 =

 ∏
y∈YV ∪YV0

(y + α)

P

and can be computed from YV and V0 only if the secret parameter α is known.

Accumulator Update. The accumulator state (V,YV) changes when one or
more elements are added or removed from the accumulator. This can be done
using the following single element Addition or Deletion operations.

– Addition: if y ∈ ACC\YV , the element y is added into the accumulator when
the accumulator value is updated from V to V ′ as V ′ = (y + α)V It follows
that YV ′ = YV ∪ {y}.

– Deletion: if y ∈ YV , the element y is deleted from the accumulator when
the accumulator state is updated from V to V ′ as V ′ = 1

y+αV It follows that

YV ′ = YV \ {y}.

Membership Witness. Let (V,YV) be an accumulator state and y an element
in ACC. Then wy,V is a membership witness for y with respect to the accumulator
value V if

C =
1

y + α
V

3 The security of the scheme strongly depends on how the elements in YV0 are chosen.
See Section 7 for a complete discussion.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 7

and wy,V = C.
The Accumulator Manager issues the membership witness wy,V to a user

associated to the element y, in order to permit him to prove that y is accumulated
into V .4

Membership Witness Update. When accumulator state changes happen,
users whose elements are not involved in the corresponding Addition or Deletion
operations, have to update their witnesses with respect to the new accumulator
state to continue being able to prove statements about their associated elements.

After an accumulator state change, users’ membership witnesses are updated
according to the following operations:

– On Addition: suppose the accumulator state changes from (V,YV) to (V ′,YV ′)
as a result of an Addition operation. Hence, for a certain y′ ∈ ACC \ YV ,
V ′ = (y′ + α)V and YV ′ = YV ∪ {y′}.
Then, for any y ∈ YV , wy,V = C is updated with respect to the accumulator
state (V ′,YV ′) by computing

C ′ = (y′ − y)C + V

and letting wy,V ′ = C ′.
– On Deletion: suppose the accumulator state changes from (V,YV) to (V ′,YV ′)

as a result of a Deletion operation. Hence, for a certain y′ ∈ YV , V ′ = 1
y′+αV

and YV ′ = YV \ {y′}.
Then, for any y ∈ YV ′ , wy,V = C is updated with respect to the accumulator
state (V ′,YV ′) computing

C ′ =
1

y′ − y
C − 1

y′ − y
V ′

and letting wy,V ′ = C ′.

Membership Witness Verification. A membership witness wy = C for an
element y ∈ ACC is valid for the accumulator state (V,YV) if and only if

e(C, yP̃ + Q̃) = e(V, P̃)

When wy is a valid membership witness for the state (V,YV) we assume that
y ∈ YV and hence wy = wy,V .

Non-Membership Witness. Let (V,YV) be an accumulator state and y an
element in ACC. Then w̄y,V is a non-membership witness for y with respect to
the accumulator state V if, by letting

fV (x) =
∏

yi∈YV ∪YV0

(yi + x) ∈ Z/pZ[x]

4 We note that the witness C is equal to the previous accumulator state value, while
y can be deduced from the public witness update information. When the accumula-
tor is employed as an authentication mechanism, single additions in place of batch
operations lack users’ privacy and expose to impersonation attacks.

8 Giuseppe Vitto, Alex Biryukov

it holds

d = fV (−y) mod p with d 6= 0, C =
fV (α)− d
y + α

P

and w̄y,V = (C, d).
The Accumulator Manager issues the non-membership witness w̄y,V to a

user associated to the element y, in order to permit him to prove that y is not
accumulated into the accumulator value V .

Non-Membership Witness Update. After an accumulator state change,
users’ non-membership witnesses are updated according to the operation oc-
curred as:

– On Addition: suppose the accumulator state changes from (V,YV) to (V ′,YV ′)
as a result of an Addition operation. Hence, for a certain y′ ∈ ACC \ YV ,
V ′ = (y′ + α)V and YV ′ = YV ∪ {y′}.
Then, for any y ∈ YV , w̄y,V = (C, d) is updated with respect to the accumu-
lator state (V ′,YV ′) computing

C ′ = (y′ − y)C + V, d′ = d · (y′ − y)

and letting w̄y,V ′ = (C ′, d′).
– On Deletion: suppose the accumulator state changes from (V,YV) to (V ′,YV ′)

as a result of a Deletion operation. Hence, for a certain y′ ∈ YV , V ′ = 1
y′+αV

and YV ′ = YV \ {y′}.
Then, for any y ∈ YV ′ , w̄y,V = (C, d) is updated with respect to the accumu-
lator state (V ′,YV ′) computing

C ′ =
1

y′ − y
C − 1

y′ − y
V ′, d′ = d · 1

y′ − y

and letting w̄y,V ′ = (C ′, d′).

Non-Membership Witness Verification. A non-membership witness w̄y =
(C, d) for an element y ∈ ACC is valid for the accumulator state (V,YV) if d 6= 0
and

e(C, yP̃ + Q̃)e(P, P̃)d = e(V, P̃)

When w̄y is a valid non-membership witness for the state (V,YV) we assume
that y /∈ YV and hence w̄y = w̄y,V .

4.1 Security Proof

Since the outlined Dynamic Universal Accumulator is built on top of Nguyen’s
positive dynamic accumulator [11] and Au et al. [18] and Damg̊ard and Trian-
dopoulos’ non-membership proof system [16], it follows that the security proofs
provided in [11, 16] can be straightforwardly generalized to show security of our

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 9

scheme under the t−Strong Diffie-Hellman assumption. Security of accumulator
schemes is usually intended as collision resistance: for universal accumulators,
this property requires that an adversary forges with a negligible probability in
the security parameter λ a valid membership witness for a not-accumulated ele-
ment and, respectively, a non-membership witness for an accumulated element.
Formal definitions, as well as the security reduction to the t-SDH assumption
restated for Type-III pairings follow.

Definition 1. (Collision Resistance) The proposed Dynamic Universal Ac-
cumulator is collision resistant if, for any probabilistic polynomial time adversary
A that has access to an oracle O which returns the accumulator value resulting
from the accumulation of the elements of any given input subset of (Z/pZ)∗, the
following probabilities

P


(G, α, Q̃)← Gen(1λ) , (y, C,Y)← AO(G, Q̃) :

Y ⊂ (Z/pZ)∗ ∧ V =
(∏

yi∈Y(yi + α)
)
P ∧

y ∈ (Z/pZ)∗ \ Y ∧ e(C, yP̃ + Q̃) = e(V, P̃)



P


(G, α, Q̃)← Gen(1λ) , (y, C, d,Y)← AO(G, Q̃) :

Y ⊂ (Z/pZ)∗ ∧ V =
(∏

yi∈Y(yi + α)
)
P ∧

y ∈ Y ∧ d 6= 0 ∧
e(C, yP̃ + Q̃)e(P, P̃)d = e(V, P̃)


are both negligible functions in the security parameter λ.

Definition 2. (t−Strong Diffie-Hellman Assumption [14]) Let G be a prob-
abilistic polynomial time algorithm that, given a security parameter 1λ, outputs
a bilinear group G = (p,G1, G2, GT , P, P̃ , e). We say that the t−Strong Diffie-
Hellman Assumption holds for G with respect to an α ∈ (Z/pZ)∗ if, for any proba-
bilistic polynomial time adversary A and for every polynomially bounded function

t : Z → Z, the probability P
(
A(P, αP, α2P, ..., αt(λ)P, P̃ , αP̃) =

(
y, 1

y+αP
))

is

a negligible function in λ for any freely chosen value y ∈ Z/pZ \ {−α}.

In Definition 1 the adversary has access to an oracle O that outputs the

accumulator value V =
(∏

y∈YV (y + α)
)
P for any chosen input set YV . Its

purpose is to model the information the adversary can eventually get by looking
at the published accumulator states. Since we want to show collision resistance
under the t−SDH assumption, we should make sure that accessing the oracle O

is not an extra requirement for our adversary. In this respect, by denoting with t
the maximum number of elements allowed to be accumulated simultaneously, the
following Lemma shows that accessing this oracle is equivalent to the knowledge
of the set RS = {P, αP, ..., αtP}, a set which is assumed to be known to the
adversary under the t−SDH assumption.

10 Giuseppe Vitto, Alex Biryukov

Lemma 1. Having access to the oracle O defined in Definition 1 is equivalent to
the knowledge of the set RS = {P, αP, ..., αtP} where t is the maximum number
of elements allowed to be accumulated simultaneously.

Proof.
�� ��⇒ Let y be a generator of (Z/pZ)∗. Then the polynomials {1, (y +

x), (y+x) · (y2 +x), . . . ,
∏t
i=1(yi+x)} form a basis for the additive vector space

of polynomials in Z/pZ[x] with degree lower equal t and, hence, for any given
1 ≤ i ≤ t, there exists a linear combination of these polynomials that sums up
to xi. It follows that, iteratively calling O on the sets Yi = {y, y2, . . . , yi}, it is
possible to write a linear combination of the VYi values returned which is equal
to αiP .�� ��⇐ Suppose the set RS is known. Then, for any given YV ⊂ (Z/pZ)∗ with

|YV | ≤ t, using the RS, it is possible to compute V =
(∏

yi∈YV (yi + α)
)
P =∑|Y|

i=0 ci · (αiP).

We now have all the required definitions to show collision resistance of the
proposed accumulator scheme under the t−SDH assumption.

Theorem 1. Let G be a probabilistic polynomial time algorithm that, given a
security parameter 1λ, outputs a bilinear group G = (p,G1, G2, GT , P, P̃ , e) and
consider an instantiation of the Dynamic Universal Accumulator outlined in
Section 4 obtained using G for the bilinear group generation and α ∈ (Z/pZ)∗ as
the secret accumulator parameter. Then, the accumulator is collision resistant if
the t−Strong Diffie-Hellman Assumption holds for G with respect to α.

Proof. We note that a solution (y, C, d) for the pairing equation e(C, yP̃ +
Q̃)e(P, P̃)d = e(V, P̃) is also a solution for the elliptic curve points equation
(y+α)C + dP = V . We will then prove the Theorem considering this last equa-
tion only, distinguishing between membership and non-membership witnesses.

Membership witnesses. By contradiction, suppose there exists a probabilistic
polynomial time adversary A that with respect to an (non-trivial) accumulator
state (V,YV) outputs with a non-negligible probability a membership witness
C ∈ G1 for an element y ∈ (Z/pZ)∗\YV . It follows that (y+α)C = V = fV (α)P
where fV (x) =

∏
yi∈YV (yi + x). Since y /∈ YV , we have that (y + α) - fV (x).

Using the polynomial extended Euclidean algorithm,A computes g(x) ∈ Z/pZ[x]
of degree |YV | − 1 and r ∈ (Z/pZ)∗ such that fV (x) = g(x) · (y + x) + r.
Therefore, C = g(α)P + r

y+αP and using the RS = {P, αP, α2P, ..., αq(λ)},
with |YV | ≤ q(λ), can compute g(x)P and hence 1

y+αP = r−1(C − g(α)P),
contradicting the t−SDH assumption.

Non-membership witnesses. Suppose there exists a probabilistic polynomial
time adversary A that with respect to an (non-trivial) accumulator state (V,YV)
outputs with a non-negligible probability a non-membership witness (C, d) ∈
G1 × (Z/pZ)∗ for an element y ∈ YV . Then (y + α)C = fV (α)P − dP . Now,
since (y + x)|fV (x) we have that (y + x) - fV (x) − d for any d 6= 0. Thus,
similarly as done before, A uses the polynomial extended Euclidean algorithm
to compute g(x) ∈ Z/pZ[x] of degree |YV | − 1 and r ∈ (Z/pZ)∗ such that

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 11

fV (x) − d = g(x) · (y + x) + r. Therefore, C = g(α)P + r
y+αP and, using

the RS, A can compute 1
y+αP = r−1(C − g(α)P), contradicting the t−SDH

assumption.

5 Batch Operations

We now describe how the Dynamic Universal Accumulator defined in previous
Section can be further extended to coherently support batch addition and dele-
tions operations both for accumulator and users’ witnesses update.

We start by defining a family of polynomials which will help us show in a
compact way correctness of our batch operations with respect to the underlying
accumulator scheme.

Batch Polynomials. Given the secret accumulator parameter α and two dis-
joint sets A,D ⊆ Z/pZ where A = {yA,1, . . . , yA,n} and D = {yD,1, . . . , yD,m},
we define the following polynomials in Z/pZ:

vA(x)
.
=

n∑
s=1

s−1∏
i=1

(yA,i + α)

n∏
j=s+1

(yA,j − x)



vD(x)
.
=

m∑
s=1

 s∏
i=1

(yD,i + α)−1
s−1∏
j=1

(yD,j − x)


vA,D(x)

.
= vA(x)− vD(x) ·

n∏
i=1

(yA,i + α)

dA(x)
.
=

n∏
t=1

(yA,t − x) , dD(x)
.
=

m∏
t=1

(yD,t − x)

Accumulator Batch Update. Several elements are added into or removed
from the accumulator using the following Batch Addition and Batch Deletion
operations.

– Batch Addition: if A = {yA,1, . . . , yA,n} ⊆ ACC \ YV , the elements in A
are batch added into the accumulator when the accumulator value is updated
from V to V ′ as V ′ = dA(−α) · V . It follows that YV ′ = YV ∪ A.

– Batch Deletion: if D = {yD,1, . . . , yD,m} ⊆ YV , the elements in D are batch
deleted from the accumulator when the accumulator state is updated from V
to V ′ as V ′ = 1

dD(−α) · V . It follows that YV ′ = YV \ D.

– Batch Addition & Deletion: if A = {yA,1, . . . , yA,n} ⊆ ACC \ YV , D =
{yD,1, . . . , yD,m} ⊆ YV and A∩D = ∅, the elements in A are batch added into
the accumulator and the elements in D are batch deleted from the accumulator
when the accumulator state is updated from V to V ′′ as V ′′ = dA(−α)

dD(−α) · V . It

follows that YV ′′ = YV ∪ A \ D.

12 Giuseppe Vitto, Alex Biryukov

Membership Batch Witness Update. When a batch addition or deletion
changes the accumulator state, users’ membership witnesses are updated ac-
cording to the following operation.

– On Batch Addition: suppose the accumulator state changes from (V,YV)
to (V ′,YV ′) as a result of an Batch Addition operation. Hence, for certain
A = {yA,1, . . . , yA,n} ⊆ ACC\YV , we have V ′ = dA(−α)·V and YV ′ = YV ∪A.
Then, for any y ∈ YV , the witness wy,V = C is updated with respect to the
accumulator state (V ′,YV ′) computing

C ′ = dA(y) · C + vA(y) · V

and letting wy,V ′ = C ′.

Proof. For the ease of notation, we will denote the elements yA,i with yi, the

accumulator value corresponding to
(∏j

i=1(yi + α)
)
V with Vj and, for any

y ∈ YV , the intermediate membership witnesses wy,Vj with Cj .
We prove the formula by induction on n, the number of batch added elements:�� ��n = 1 : We get C1 = V + (y1 − y)C, the same formula defined for the mem-
bership witness update after a single addition operation.�� ��n− 1→ n : Let bs =

∏s−1
i=1 (yi + α)

∏n
j=s+1(yj − y). Using the inductive hy-

pothesis for Cn−1, we have

Cn = (yn − y)Cn−1 + Vn−1

=

(
n∏
t=1

(yt − y)

)
C +

(
n−1∑
s=1

bs +

n−1∏
t=1

(yt + α)

)
V

=

(
n∏
t=1

(yt − y)

)
C +

(
n∑
s=1

bs

)
V

as required.

– On Batch Deletion: suppose the accumulator state changes from (V,YV)
to (V ′,YV ′) as a result of a Batch Deletion operation. Hence, for certain
D = {yD,1, . . . , yD,m} ⊆ YV , we have V ′ = 1

dD(−α)V .

Then, for any y ∈ YV ′ , the witness wy,V = C is updated with respect to the
accumulator state (V ′,YV ′) computing

C ′ =
1

dD(y)
C − vD(y)

dD(y)
V

and letting wy,V ′ = C ′.

Proof. Similarly as before, we will denote the elements yD,i with yi, the ac-

cumulator value corresponding to
(∏j

i=1(yi + α)−1
)
V with Vj and, for any

y ∈ YV ′ , the intermediate membership witnesses wy,Vj with Cj .

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 13

We prove the formula by induction on m, the number of batch deleted ele-
ments:�� ��m = 1 : We get C1 = 1

y1−yC −
1

(y1−y)(y1+α)V = 1
y1−y (C − V1), the same

formula defined for the membership witness update after a single deletion
operation.�� ��m− 1→ m : Let bs =

∏s
i=1(yi + α)−1

∏s−1
j=1(yj − y). Then

Cm =
1

ym − y
(Cm−1 − Vm)

=
1

dD(y)
C − 1

dD(y)
·

(
m−1∑
s=1

bs

)
V −

(
(ym − y)−1

m∏
i=1

(yi + α)−1

)
V

=
1

dD(y)
C − 1

dD(y)
·

(
m∑
s=1

bs

)
V

as required.

– On Batch Addition & Deletion: suppose the accumulator state changes
from (V,YV) to (V ′′,YV ′) as a result of a Batch Addition & Deletion oper-
ation. Hence for certain disjoint sets A = {yA,1, . . . , yA,n} ⊆ ACC \ YV and

D = {yD,1, . . . , yD,m} ⊆ YV we have V ′′ = dA(−α)
dD(−α) · V .

Then, for any y ∈ YV , the witness wy,V = C is updated with respect to the
accumulator state (V ′,YV ′) computing

C ′ =
dA(y)

dD(y)
· C +

νA,D(y)

dD(y)
· V

and letting wy,V ′ = C ′.

Proof. Performing a batch addition and then a batch deletion, the membership
witness wy,V = C for y with respect to the accumulator value V is iteratively
updated to w̄y,V ′′ = (C ′′, d′′) with respect to the updated accumulator value

V ′′ =

(∏n
i=1(yA,i + α)∏m
i=1(yD,i + α)

)
V

as follows

C
Add−→ C ′ = dA(y)C + vA(y)V

Delete−→

C ′′ =
1

dD(y)
C ′ − vD(y)

dD(y)
V ′ =

dA(y)

dD(y)
C +

(
vA(y)

dD(y)
− vD(y)

dD(y)
·
n∏
i=1

(yA,i + α)

)
V

where V ′ =
∏n
i=1(yA,i + α) · V .

14 Giuseppe Vitto, Alex Biryukov

Non-Membership Batch Witness Update. When a batch addition or dele-
tion changes the accumulator state, users’ non-membership witnesses are up-
dated according to the following operations. Proofs of correctness are similar
to the corresponding ones described in the case of membership batch witness
update and so are omitted.

– On Batch Addition: suppose the accumulator state changes from (V,YV)
to (V ′,YV ′) as a result of an Batch Addition operation. Hence, for certain
A = {yA,1, . . . , yA,n} ⊆ ACC\YV , we have V ′ = dA(−α)·V and YV ′ = YV ∪A.
Then, for any y /∈ YV , the witness w̄y,V = (C, d) is updated with respect to
the accumulator state (V ′,YV ′) computing

C ′ = dA(y) · C + vA(y) · V , d′ = d · dA(y)

and letting w̄y,V ′ = (C ′, d′).

– On Batch Deletion: suppose the accumulator state changes from (V,YV)
to (V ′,YV ′) as a result of a Batch Deletion operation. Hence, for certain
D = {yD,1, . . . , yD,m} ⊆ YV , we have V ′ = 1

dD(−α) · V and YV ′ = YV \ D.

Then, for any y ∈ YV ′ , the witness w̄y,V = C is updated with respect to the
accumulator state (V ′,YV ′) computing

C ′ =
1

dD(y)
· C − vD(y)

dD(y)
· V , d′ = d · 1

dD(y)

and letting w̄y,V ′ = (C ′, d′).

– On Batch Addition & Deletion: suppose the accumulator state changes
from (V,YV) to (V ′′,YV ′) as a result of a Batch Addition & Deletion oper-
ation. Hence for certain disjoint sets A = {yA,1, . . . , yA,n} ⊆ ACC \ YV and

D = {yD,1, . . . , yD,m} ⊆ YV we have V ′′ = dA(−α)
dD(−α) · V .

Then, for any y ∈ YV , the witness w̄y,V = (C, d) is updated with respect to
the accumulator state (V ′,YV ′) computing

C ′ =
dA(y)

dD(y)
· C +

νA,D(y)

dD(y)
· V , d′ = d · dA(y)

dD(y)

and letting w̄y,V ′ = (C ′, d′).

6 The Batch Witness Update Protocol

Users cannot batch update their witnesses directly using the formulae defined in
previous section, since they would need the secret parameter α. However, starting
from their definition, the Accumulator Manager can efficiently compute and pub-
lish some update information (more precisely, the polynomials dA(x), dD(x) and
an elliptic curve points vector) so that users are able to update their witnesses
without requiring nor leaking (see Section 6.1) any information related to α. This
will allow to define a decentralized batch membership and non-membership wit-
ness update protocol for the proposed accumulator scheme.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 15

6.1 The Batch Witness Update Information

From now on, we will focus on the Batch Witness Update Addition & Deletion
polynomial vA,D(x) only: indeed, the polynomials vA(x) and vD(x) are special
cases of this more general one.

We recall that our main goal is to allow users possessing a witness (C, d) for
an element y with respect to the accumulator value V to compute the quantities

C ′ =
dA(y)

dD(y)
· C +

νA,D(y)

dD(y)
· V , d′ = d · dA(y)

dD(y)

We note that the Accumulator Manager cannot publish all the polynomials
dA(x), dD(x) and vA,D(x), because their coefficients can leak some information
related to the secret accumulator parameter α. To give an example, suppose
that after a batch addition operation, the Accumulator Manager publishes the
polynomials vA(x) and dA(x), defined as above, with |A| > 1. Doing simple
algebra, we find that the coefficient of the (|A| − 2)−degree monomial of vA(x)
is equal to α+

∑
yA∈A yA : extracting the roots of dA(x) in Z/pZ we obtain all

the elements in A and hence the secret parameter α.
Leakages about α can be prevented by requiring the Accumulator Manager

to publish in place of vA,D(x), the vector of elliptic curve points

Ω = ΩA,D,V = (c0V, c1V, . . . , cbatchMaxV)

where vA,D(x) =
∑batchMax
i=0 cix

i and ci = 0 if i > max(|A|, |D|).
Users can then update their membership witness wy,V = C to wy,V ′ = C ′ by

first evaluating the two polynomials dA(x) and dD(x) in the element y and then
computing

C ′ =
dA(y)

dD(y)
· C +

1

dD(y)
· 〈Υy, Ω〉

where Υy = (1, y, y2, ..., ybatchMax) and 〈·, ·〉 denotes the dot product.
Similarly, a non-membership witness w̄y,V = (C, d) is updated to w̄y,V ′ =

(C ′, d′) by computing

C ′ =
dA(y)

dD(y)
· C +

1

dD(y)
· 〈Υy, Ω〉 , d′ = d · dA(y)

dD(y)

In this scenario, assuming the Discrete Logarithm Problem to be hard in
G1 (a weaker assumption with respect to the t−SDH assumption under which
accumulator collision resistance is shown), from the published Ω, dA(x) and
dD(x) it is only possible, performing roots extraction on the polynomials, to
compute the respective sets A and D of batch added and batch deleted elements.

It follows that witness update operations can be performed either autonomously
by users or by delegating to third-party servers the computation of (some of)
the values 〈Υy, Ω〉, dA(y), dD(y). Indeed, since the required updating values are
decoupled from users’ previous witnesses, trusted third-party servers which are

16 Giuseppe Vitto, Alex Biryukov

Epoch Accumulator State Witness Update Information

0 (V0, ∅)

1 (V1,YV1) Ω1 dA1(x) dD1(x)

...
...

...

i− 1 (Vi−1,YVi−1) Ωi−1 dAi−1(x) dDi−1(x)

i (Vi,YVi) Ωi dAi(x) dDi(x)

Table 1. Data published by the Accumulator Manager in each epoch.

asked to compute the witness updating values with respect to an element y,
cannot impersonate the corresponding user, since they don’t know any previous
valid witness for y.

In the case of untrusted third-party servers, it is possible to use Oblivious
Polynomial Evaluation techniques such as [12], [27] and [7] to delegate the com-
putation of the elliptic curve point 〈Υy, Ω〉 = vA,D(y) ·V and of the values dA(y)
and dD(y), in a way that third-party will not learn anything about y. This can be
useful especially in the case of low-resource devices, thus permitting a lightweight
privacy-preserving delegation for batch witness update operations.

6.2 Batch Witness Update Among Epochs

We now show how the adoption of the elliptic curve points vector Ω = ΩA,D,V
not only permits the users to batch update their (non-)membership witnesses
from the previous accumulator state, but also enables them to directly update
from the accumulator state of any older epoch. This feature doesn’t force users
to permanently keep their witnesses updated to the latest accumulator state,
enabling them to update their witnesses just right before they want to prove
statements about the associated element y.

Before showing how this is possible, we extend our notation to associate
accumulator and batch witness update data to a specific epoch. Given an epoch
i > 0, we denote with (Vi,YVi) the corresponding accumulator state, where
YV1

= A1 \ D1 and YVi = YVi−1
∪ Ai \ Di for i > 1, with dAi(x) and dDi the

addition and deletion batch witness update polynomials, respectively, and with
Ωi = ΩAi,Di,Vi . An overview of the data published by the Accumulator Manager
is given in Table 1.

We further denote a membership witness wy,Vi for an element y with respect
to the accumulator value Vi as wy,Vi = Ci and, similarly, a membership witness
w̄y,Vi as w̄y,Vi = (Ci, di).

Epoch Witnesses Batch Update. A user who owns a valid non-membership
witness w̄y,Vi = (Ci, di) (resp. a valid membership witness wy,Vi = Ci) with
respect to the accumulator state (Vi,YVi) can update it to w̄y,Vj = (Cj , dj)

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 17

(resp. wy,Vj = Cj), for any j > i, as

Cj =
dAi→j (y)

dDi→j (y)
· Ci +

1

dDi→j (y)
· 〈 Υy , Ωi→j(y) 〉 , dj = di ·

dAi→j (y)

dDi→j (y)

where

dAa→b(x) =

b∏
s=a+1

dAs(x) dDa→b(x) =

b∏
s=a+1

dDs(x)

Ωi→j(y) =

j∑
t=i+1

(
dDi→t−1

(y) · dAt→j (y)
)
◦Ωt

Proof. We prove the result by induction on j > i.�� ��j = i+ 1 A non-membership witness w̄y,Vi = (Ci, di) is updated to w̄y,Vi+1
=

(Ci+1, di+1) as

Ci+1 =
dAi+1

(y)

dDi+1
(y)
· Ci +

1

dDi+1
(y)
· 〈 Υy , Ωi+1 〉 , di+1 = di ·

dAi+1
(y)

dDi+1
(y)

obtaining the same result we get by using the formula for non-membership wit-
nesses batch update.�� ��j ⇒ j + 1: By inductive hypothesis, we assume the formula holds for Cj . Then

Cj+1 =
dAj+1

(y)

dDj+1(y)
· Cj +

1

dDj+1(y)
· 〈 Υy , Ωj+1 〉

=
dAi→j+1(y)

dDi→j+1
(y)
· Ci +

1

dDi→j+1
(y)
·
〈
Υy , dAj+1

(y) ◦Ωi→j
〉

+
1

dDi→j+1(y)
· 〈 Υy , dDi→j (y) ◦Ωj+1 〉

=
dAi→j+1

(y)

dDi→j+1
(y)
· Ci +

1

dDi→j+1
(y)
· 〈 Υy , Ωi→j+1 〉

as required, since

Ωi→j+1 =

j+1∑
t=i+1

(
t−1∏
h=i+1

dDh(y)

j+1∏
k=t+1

dAk(y)

)
◦Ωt

=

(
j∑

t=i+1

(
t−1∏
h=i+1

dDh(y)

j+1∏
k=t+1

dAk(y)

)
◦Ωt

)
+

(
j∏

h=i+1

dDh(y)

)
◦Ωj+1

= dAj+1
(y) ◦Ωi→j + dDi→j (y) ◦Ωj+1

The induction on dj is straightforward.

18 Giuseppe Vitto, Alex Biryukov

7 Accumulator Initialization

Collision resistance under the t−SDH assumption (see Theorem 1), assures
that forging non-membership witnesses for accumulated elements and, similarly,
membership witnesses for non-accumulated elements, is possible only with neg-
ligible probability in the security parameter λ.

By the way, collision resistance doesn’t take into account the possibility to
forge non-membership witnesses for “never authorized” non-accumulated ele-
ments, i.e. elements for which the Accumulator Manager did not issue witnesses.
This is relevant, for example, in the cases when the accumulator is used as an au-
thentication mechanism and accumulated elements represents either whitelisted
or blacklisted users which authenticate with respect to the accumulator value by
showing possession of a valid membership or non-membership witness.

Forging witnesseses in the case when the Accumulator Manager should be the
only authorized entity to do so is, in fact, what the Witness Forgery Attack out-
lined by Biryukov, Udovenko and Vitto in [30] does: a set of colluding users who
share their non-membership witnesses can recover the (secret) reference-string
sets RSs = {P, αP, ..., αsP}s>0, which enable them to compute membership and
non-membership witnesses with respect to the latest accumulator value. Indeed,
the knowledge of the set RS = RSt results to be functionally equivalent to the
knowledge of α: it is possible to either update the accumulator value (see Lemma
1) or issue valid membership and non membership witnesses (see the reference
string RS-based construction in [30, 18]).

The Witness Forgery Attack is possible as long as the number of collud-
ing users is equal or greater to the number of elements added to initialize the
accumulator value. In fact, the countermeasure proposed in [30] is to set an
upper limit NMWitnessesMax to the total number of issuable non-membership
witnesses and initialize the accumulator by adding at least NMWitnessesMax+ 1
secret elements.

This will clearly prevent the reconstruction of the sets RSs, but in our pro-
tocol the attackers have access in each epoch to the witness update information
(see Table 1), which in principle could help circumventing the fact that they will
not be able to collect and share enough non-membership witnesses.

We will show that this is indeed possible but we will prove that it can be
easily prevented by carefully choosing few of the NMWitnessesMax + 1 elements
added to prevent the Witness Forgery Attack.

We start by introducing some theoretical result. The purpose of the following
Proposition is to show some properties on elements that have particular multi-
plicative orders in the group (Z/pZ)∗. These properties will be useful to prove the
subsequent Theorem 2, which will give us sufficient conditions on the elements
we need to add to prevent the reconstruction of the RS from the publicly avail-
able information. Thus, initializing the accumulator with NMWitnessesMax + 1
random elements where some of them satisfies the hypothesis of Theorem 2 will
ultimately prevent any, even partial, successful execution of the Witness Forgery
Attack [30].

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 19

Proposition 1. Let p ∈ N be a prime such that p− 1 = pe11 · ... · penn factorizes
as the product of n > 1 powers of distinct primes pi ∈ N. Let f(x) ∈ Z/pZ[x] be
a polynomial with n ≤ t < p − 1 distinct non-zero roots x1, . . . , xt ∈ Z/pZ such
that the multiplicative order in (Z/pZ)∗ of xi, for 1 ≤ i ≤ n, is peii . Then

i. The least k > 0 for which there exists z ∈ Z/pZ and g(x) ∈ Z/pZ[x] such
that g(x)f(x) ≡ xk − z mod p is k = p− 1.

ii. The degree of the minimal-degree non-constant monomial of f(x) is s with
0 < s < t.

Proof. Suppose there exists z ∈ Z/pZ and g(x) ∈ Z/pZ[x] such that

g(x)f(x) ≡ xk − z mod p

Then, each root x1, . . . , xt of f(x) must be a root for xk − z in Z/pZ, that is

xk1 ≡ · · · ≡ xkt ≡ z mod p (1)

Since, by hypothesis (Z/pZ)∗ ' Z/(p − 1)Z ' 〈x1〉 × · · · × 〈xn〉 with n > 1
we have z ∈

⋂t
i=1〈xi〉 ≤

⋂n
i=1〈xi〉 = 〈1〉. Hence a solution to (1) exists only

if z ≡ 1 and the least k for which it holds is k = lcm(ord(x1), . . . , ord(xt)) ≥
lcm(ord(x1), . . . , ord(xn)) = p− 1. Since k ≤ p− 1, we have k = p− 1.

It follows that as long as t < p− 1, there are no z ∈ Z/pZ such that f(x) ≡
xt − z mod p. Hence the degree of the minimal-degree non-constant monomial
of f(x) is s with 0 < s < t.

Theorem 2. Let p ∈ N be a prime such that p− 1 = pe11 · ... · penn factorizes as
the product of n > 1 powers of distinct primes pi ∈ N. Let f(x) ∈ Z/pZ[x] be
a polynomial with n ≤ t < p − 1 distinct non-zero roots x1, . . . , xt ∈ Z/pZ such
that the multiplicative order in (Z/pZ)∗ of xi, for 1 ≤ i ≤ n, is peii .

For a secret α ∈ Z/pZ, suppose P 6= O ∈ G1, V = f(α)P , f(x) and the map
ϕ : N<p−1 → G1 defined as ϕ(k) = αkV are known5.

Then, from this information, it is not possible to obtain by using linear com-
binations any point of the form αkP with 1 ≤ k < p− 1.

Proof. Let (V,+) be the vector space of polynomials with degree lower equal
p− 2 and B = {1, x, . . . , xp−2} its (p− 1)−dimensional canonical basis.

Since ϕ(k) = αkf(α)P , the statement is then equivalent to prove that for
every 1 ≤ k < p− 1

rank





1
f(x)
xf(x)

...
xp−t−2f(x)

xk


B


= p− t+ 1

5 The knowledge of ϕ models the fact that from the coordinates of Ωi together with
the knowledge of the sets Ai and Di it could be possible to compute some values
g(α)Vi for known polynomials g(x) ∈ Z/pZ[x] and, ultimately, the values αkVi for
1 ≤ k ≤ batchMax.

20 Giuseppe Vitto, Alex Biryukov

The rank is maximum when the row vectors are linearly independent in V,
that is for any a0, . . . , ap−t−2, b, c ∈ Z/pZ such thatp−t−2∑

j=0

ajx
jf(x)

+ bxk + c = 0 (2)

we have a0 ≡ · · · ≡ ap−t−2 ≡ b ≡ c ≡ 0.

We will prove the statement by exhaustion on the values of k.�� ��1 ≤ k < t: The dependence relation (2) can be rewritten as

g(x)f(x) = −bxk − c

where g(x) =
∑p−t−2
j=0 ajx

j . By hypothesis f(x) has t different roots, while

−bxk − c can have at most k < t distinct roots. The equation then holds only
if both sides are equal to the 0 polynomial, that is −bxi − c = 0 and g(x) = 0.
This implies a0 ≡ · · · ≡ ap−t−2 ≡ 0 and b ≡ c ≡ 0 because the elements
{1, x, . . . , xp−t−2} are linearly independent vectors of V.�� ��k = t: In this case the dependence relation (2) can be rewritten as

g(x)f(x) = −bxt − c

with g(x) defined as in the previous case. By hypothesis f(x) has t distinct
roots, while the right side can have at most t distinct roots. This implies that
g(x) = g(0) = a0 is a constant polynomial or, equivalently, that a1 ≡ · · · ≡
ap−t−2 ≡ 0. Suppose by contradiction that a0 6= 0, then f(x) = −a−10 bxt − a−10 c
is a contradiction since, by Proposition 1, the degree of the minimal-degree non-
constant monomial of f(x) is s with s 6= t and s > 0. Hence a0 ≡ 0, and then
−bxt − c = 0 which implies b ≡ c ≡ 0.�� ��t < k < p− 1: Let k = t+ k′ with 1 ≤ k′ ≤ p− t− 2. From

g(x)f(x) = −bxt+k
′
− c

it follows that deg(g) ≤ k′ and then, if k′ < p − t − 2, we have ak′+1 ≡ · · · ≡
ap−t−2 ≡ 0.

Assume, by contradiction, b 6= 0 and c ≡ 0. In this case the dependence
relation becomes g(x)f(x) = −bxt+k′ , but the right side has only 0 as root while
the left side has, by hypothesis, at least t non-zero distinct roots. This implies,
similarly as before, that g(x) = 0 and b ≡ 0, a contradiction.

Let us therefore assume b 6= 0 and c 6= 0. In this case the dependence relation
can be rewritten as g′(x)f(x) = xt+k

′ − z where g′(x) = (−b)−1g(x) and z =
(−b)−1c 6= 0.

If, by contradiction, g′(x) 6= 0, then, by Proposition 1, the least value for t+k′

such that the dependence relation holds is t+ k′ = p− 1, that is k′ = p− t− 1,

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 21

a contradiction to 1 ≤ k′ ≤ p − t − 2. Hence g′(x) = 0, which in turn implies
b ≡ c ≡ 0, a contradiction to our assumption b 6= 0.

It follows that b ≡ 0 and then g(x)f(x) = −c. Since by hypothesis f has t
distinct roots, this equation holds only if c = 0 and g(x) = 0, which, similarly
as before, implies a0 ≡ · · · ≡ ak′ ≡ b ≡ c ≡ 0.

We are now ready to explicitly define the Accumulator Initialization proce-
dure for our protocol:

Accumulator Initialization Set an upper limit NMWitnessesMax to the total
number of issuable non-membership witnesses. Assume p is such that p − 1 =
pe11 · ... · penn factorizes as the product of n > 1 powers of distinct primes pi
and consider n elements x1, . . . , xn ∈ Z/pZ such that the multiplicative order in
(Z/pZ)∗ of xi is peii , for 1 ≤ i ≤ n. Then, the Accumulator Manager sets

YV0 = {x1, . . . , xn} ∪ {NMWitnessesMax− n+ 1 random elements in ACC}

so that |YV0
| = NMWitnessesMax+ 1 and defines the corresponding initialization

polynomial as f0(x) =
∏
xi∈YV0

(x− xi), where V0 = f0(α)P . He then publishes

(V0, ∅), the accumulator state at epoch 0, and keeps secret and never deletes the
elements in YV0

.

We note that as soon as an epoch changes, the Accumulator Manager pub-
lishes the corresponding Batch Witnesses Update information: at epoch 1, for
example, this corresponds to the new state (V1,YV1

), the updating vector Ω1

and the polynomials dA1
(x) and dD1

(x). At this point, the polynomial

fV1
(x) = f0(x) · f1(x) =

∏
yi∈YV0

(yi + x) ·
∏

yj∈YV1

(yj + x)

has |YV0
|+ |YV1

| distinct non-zero roots, n of which are x1, . . . , xn, and is such
that V1 = fV1

(α)P . Even if it is possible to obtain from Ω1, A1 and D1 all
the values αkV1 for 1 ≤ k < p − 1 (we relax the condition k ≤ batchMax) we
still are under the hypothesis of Theorem 2, which assures us the infeasibility to
obtain any element of the RS. This reasoning can be easily generalized to any
subsequent epoch.

One last question arises with regard to all these considerations: is it possi-
ble to obtain some elements in the RS combining the vectors Ωi coming from
different epochs? When the accumulator is initialized as described in Theorem
2, the answer is no. To show this, consider, without loss of generality, the m
vectors Ω1, . . . , Ωm, where the j-entry of any Ωi is of the form cjVi. Hence a
linear combination with coefficients ai,j ∈ Z/pZ of entries of these vectors can
be written as

m∑
i=1

|batchMax|∑
j=0

ai,jcjVi =

 m∑
i=1

|batchMax|∑
j=0

ai,jcjfi(α)

 · f0(α)P = g(α) · V0

22 Giuseppe Vitto, Alex Biryukov

where g(x) =
∑m
i=1

∑batchMax
j=0 ai,jcjfi(x). In other words, in the luckiest situ-

ation, what we can obtain combining all these vectors is not more than the
elements αkV0 with 1 ≤ k ≤ batchMax which, as we already discussed, does not
permit to obtain any element in RS.

8 Zero-Knowledge Proof of Knowledge

We now explicitly show how an interactive zero-knowledge protocol can be in-
stantiated between a Prover and a Verifier to prove the ownership of a valid non-
membership witness w̄y,V for y with respect to the accumulator state (V,YV)
(the corresponding protocol to show ownership of a valid membership witness
wy,V is similar and will not be discussed).

We will extend the zero-knowledge proof of knowledge protocol defined by
Boneh et al. in [10], which proves under the Decision Linear Diffie-Hellman
assumption the knowledge of a pair (y, C) such that (y + α)C = V , in order to
support tuples (y, C, d) which verify (y + α)C + dP = V .

However, for non-membership witnesses we need to further ensure that d 6= 0
or, equivalently inG1, that has a multiplicative inverse. At this scope we will then
consider, for a random generator K ∈ G1 and random a, b ∈ Z/pZ, the Pedersen
commitments Ed = dP +aK and Ed−1 = d−1P +bK for d and d−1, respectively.
Noticing that P = dEd−1 − dbK, we then extend the protocol applying EQ-
composition to the factor d among the values Ed and P , thus showing that Ed−1

is a Pedersen commitment to the multiplicative inverse of the committed value
in Ed.

We refer to [10] and [29] for the completeness, soundness and (special) honest-
verifier zero-knowledgeness proof of Boneh et al. protocol and EQ-composition
for multiplicative-inverse relation, respectively.

Under the Random Oracle Model, we can made such proof of knowledge
non-interactive and full zero-knowledge by applying Fiat-Shamir heuristic [1].
We will do so by using an heuristic variant adopted by Boneh et al. in [10] in
order to reduce Prover’s proof size. We assume that calls to the random oracle
can be concretely realized through evaluations to a cryptographic hash function
H : {0, 1}∗ → Z/pZ.

The resulting protocol is the following.

Setup The Prover and Verifier agree on the public values P,X, Y, Z,K ∈ G1

and P̃ , Q̃ ∈ G2, where X,Y, Z,K are distinct random generators of G1.

Proof Of Knowledge The Prover randomly selects σ, ρ, τ, π ∈ Z/pZ and com-
putes

EC = C + (σ + ρ)Z, Ed = dP + τK, Ed−1 = d−1P + πK,

Tσ = σX, Tρ = ρY, δσ = yσ, δρ = yρ

A non-interactive zero knowledge Proof of Knowledge of values (y, d, σ, ρ, τ, π, δσ, δρ)
satisfying

P = dEd−1 − dπK, Ed = dP + τK,

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 23

σX = Tσ, ρY = Tρ, yTσ − δσX = O, yTρ − δρY = O,

e(EC , P̃)ye(Z, P̃)−δσ−δρe(Z, Q̃)−σ−ρe(K, P̃)−τ =
e(V, P̃)

e(EC , Q̃)e(Ed, P̃)

is undertaken between Prover and Verifier as follows:

Blinding (P) The Prover randomly picks ry, ru, rv, rw, rσ, rρ, rδσ , rδρ ∈ Z/pZ,
computes

RA = ruP + rvK, RB = ruEd−1 + rwK,

RE = e(EC , P̃)rye(Z, P̃)−rδσ−rδρ e(Z, Q̃)−rσ−rρe(K, P̃)−rv ,

Rσ = rσX, Rρ = rρY, Rδσ = ryTσ − rδσX, Rδρ = ryTρ − rδρY

Challenge (P) The Prover sets the challenge c ∈ Z/pZ to

c = H(V,EC , Ed, Ed−1 , Tσ, Tρ, RA, RB , RE , Rσ, Rρ, Rδσ , Rδρ)

Response (P) The Prover computes

sy = ry + cy, su = ru + cd, sv = rv + cτ, sw = rw − cdπ,

sσ = rσ + cσ, sρ = rρ + cρ, sδσ = rδσ + cδσ, sδρ = rδρ + cδρ

and sends (EC , Ed, Ed−1 , Tσ, Tρ, c, sy, su, sv, sw, sσ, sρ, sδσ , sδρ) to the Verifier.

Verify (V) The Verifier computes

RA = suP + svK − cEd, RB = swK + suEd−1 − cP,

Rσ = sσX − cTσ, Rρ = sρY − cTρ, Rδσ = syTσ − sδσX, Rδρ = syTρ − sδρY,

RE = e(EC , P̃)sy · e(Z, P̃)−sδσ−sδρ · e(Z, Q̃)−sσ−sρ · e(K, P̃)−sv ·

(
e(V, P̃)

e(EC , Q̃)e(Ed, P̃)

)−c
and accepts if c = H(V,EC , Ed, Ed−1 , Tσ, Tρ, RA, RB , RE , Rσ, Rρ, Rδσ , Rδρ).

Complexity Analysis. Within this protocol, zero-knowledge proofs for valid
non-membership witnesses consists of 5 elements in G1 and 11 elements in Z/pZ,
while they consists of 3 elements in G1 and 6 elements in Z/pZ in the case of
membership witnesses. Thus, if elliptic curve points compression is used, zero-
knowledge non-membership and membership proofs can be represented with
5(log q+1)+9 log p bits and 3(log q+1)+6 log p bits, respectively. In our concrete
instantiation (see Section 9) this translates to 4926 bits ≈ 616 bytes proofs for
non-membership witnesses and 3135 bits ≈ 392 bytes proofs for membership
witnesses.

24 Giuseppe Vitto, Alex Biryukov

As regards computational costs, if the quantities e(Z, P̃), e(Z, Q̃), e(K, P̃)
and e(V, P̃) are pre-computed and stored by both Prover and Verifier, zero-
knowledge proofs of knowledge for non-membership witnesses are computed with
15 scalar-point multiplications in G1, 7 point additions in G1, 4 exponentiation
in GT and 1 pairing. We note that the Prover can reduce the cost of evaluating
e(EC , P̃) by computing and storing the value e(C, P̃). Thus, with just 1 pairing
per-epoch, the Prover can compute each e(EC , P̃) as e(Z, P̃)σ+ρ · e(C, P̃) with 1
exponentiation and 1 multiplication in GT . Using this optimization, the cost to
compute a proof of knowledge of a membership witness boils down to a total of
9 scalar-point multiplications in G1, 3 point additions in G1, 5 exponentiation
in GT and 1 multiplication in GT .

Similarly, the Verifier needs 16 scalar-point multiplications in G1, 9 point
additions in G1, 4 exponentiation in GT and 2 pairings (by merging the term
e(EC , P̃)sye(EC , cQ̃) in e(EC , syP̃ + cQ̃)) to verify a non-membership witness
zero-knowledge proof, while he needs 10 scalar-point multiplications in G1, 5
point additions in G1, 3 exponentiation in GT and 1 pairing to verify a zero-
knowledge proof of knowledge for a membership witness.

9 Implementation Results

To show efficiency and its practical relevance, we implemented the proposed
accumulator scheme by using RELIC library [31]. In order to guarantee a security
level of 128-bits, we selected the available pairing-friendly Type-III prime curve
B12-P446. We then benchmarked the main features of the proposed accumulator,
obtaining the following average results:

– Accumulator Updates: 1.27 seconds to add 1.000.000 elements (random
elements generation included); 0.48 seconds to delete 1.000.000 elements.

– Witness Issuing: 1.9 milliseconds to issue a membership witness; 229.5 mil-
liseconds for a non-membership witness (1.000.000 elements accumulated).

– Witness Verification: 2.2 milliseconds to verify a membership witness; 3.2
milliseconds to verify a non-membership witness.

– Public Batch Witness Update: 37.9 seconds to generate batch update data
corresponding to a 10.000 elements batch addition operation; 27.1 seconds for
a 10.000 elements batch deletion operation.

– Batch Witness Update: 2.12 seconds to update either membership or non-
membership witness after a batch addition or deletion operation of 10.000
elements.

– Zero-Knowledge Proof Creation: 5.2 milliseconds to create a zero knowl-
edge proof of knowledge of a membership witness; 7.4 milliseconds to create
a proof for a non-membership witness.

– Zero-Knowledge Proof Verification: 6.5 milliseconds to verify a zero
knowledge proof of knowledge of a membership witness; 11.2 milliseconds to
verify a proof for a non-membership witness.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 25

These benchmarks came from running our implementation on a standard
Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz desktop provided with 8.00GB of
RAM and running Ubuntu 18.04 x64. No parallelization was used.

10 Conclusions

We presented a Dynamic Universal Accumulator in the Accumulator Manager
setting for efficient Type-III pairing-friendly elliptic curves, which supports batch
operations and batch membership and non-membership public witness update.

The proposed accumulator extends a combination of previous schemes by
adding batch operations, enabling users to update witnesses in optimal time.
Furthermore, since batch update data is designed to be decoupled from users’
witnesses, our protocol permits (privacy-preserving) witness updates delegation,
thus enabling lightweight users to keep their witnesses updated with a constant
number of elementary operations.

We further showed how to initialize the accumulator in order to be safe from
an attack which would allow to forge witnesses for non-authorized elements, an
essential requirement in the case the accumulator scheme is used as an authen-
tication mechanism under the Accumulator Manager authority.

We then described how to instantiate a zero-knowledge proof of ownership of
a valid witness for a given accumulator state and we implemented the accumu-
lator logic along with batch operations, the public witness update protocol and
the zero-knowledge proof mechanism in order to show its practical relevance as
an efficient and scalable privacy-preserving authentication mechanism.

References

1. Fiat, A. and Shamir, A. How to prove yourself: Practical solutions to identification
and signature problems. In Conference on the Theory and Application of Crypto-
graphic Techniques, 186–194 (1986)

2. Merkle, R. C. A certified digital signature. In Advances in Cryptology – CRYPTO
1989, 218-–238 (1989)

3. Benaloh, J. and de Mare, M. One-way Accumulators: A Decentralized Alternative
to Digital Signatures. In EUROCRYPT, 274–285 (1993)

4. Baric, N. and Pfitzmann, B. Collision-free Accumulators and Fail-stop Signature
Schemes Without Trees. In EUROCRYPT, 480–494, (1997)

5. Sander, T. Efficient Accumulators Without Trapdoor. In ICICS, 252–262 (1999)
6. Buldas, A., Laud, P. and Lipmaa, H. Accountable Certificate Management Using

Undeniable Attestations. In ACM CCS, 9–17 (2000)
7. Chang, Y.-C. and Lu, C.-J. Oblivious Polynomial Evaluation and Oblivious Neural

Learning. In Advances in Cryptology — ASIACRYPT 2001, 369–384 (2001)
8. Buldas, A., Laud, P. and Lipmaa, H. Eliminating Counterevidence with Appli-

cations to Accountable Certificate Management. Journal of Computer Security,
10:2002, (2002)

9. Camenisch, J. and Lysyanskaya, A. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In CRYPTO, 61–76 (2002)

26 Giuseppe Vitto, Alex Biryukov

10. Boneh, D., Boyen, X., Shacham, H. Short Group Signatures. In Advances in Cryp-
tology – CRYPTO 2004, Springer LNCS, 41–55 (2004)

11. Nguyen, L. Accumulators from Bilinear Pairings and Applications. In CT-RSA,
Springer LNCS, 3376, 275–292 (2005)

12. Naor, M. and Pinkas, B. Oblivious polynomial evaluation. Siam Journal On Com-
puting. 35, 1254–1281 (2006)

13. Li, J., Li, N. and Xue, R. Universal Accumulators with Efficient Nonmembership
Proofs. In ACNS, Springer LNCS, 4521, 253–269 (2007)

14. Boneh, D. and Boyen, X. Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology, 21(2), 149–177, (2008).

15. Camacho, P., Hevia, A., Kiwi, M. A. and Opazo, R. Strong Accumulators from
Collision-Resistant Hashing. In ISC, Springer LNCS, 4222, 471–486 (2008)

16. Damg̊ard, I. and Triandopoulos, N. Supporting Non-membership Proofs with
Bilinear-map Accumulators. IACR Cryptology ePrint Archive, 538 (2008)

17. Galbraith, S. D., Paterson, K. G. and Smart, N. P. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16), 3113–3121 (2008).

18. Au, M. H., Tsang, P. P., Susilo, W. and Mu, Y. Dynamic Universal Accumulators
for DDH Groups and Their Application to Attribute-Based Anonymous Credential
Systems. In CT-RSA, Springer LNCS, 5473, 295–308 (2009)

19. Camenisch, J. and Soriente, C. An Accumulator Based on Bilinear Maps and Effi-
cient Revocation for Anonymous Credentials. In PKC 2009, Springer LNCS, 5443,
481–500 (2009)

20. Camacho, P. and Hevia, A. On the impossibility of batch update for cryptographic
accumulators. In International Conference on Cryptology and Information Security
in Latin America, 178–188 (2010)

21. Aranha, D. F., Fuentes-Castañeda, L., Knapp, E., Menezes, A. and Rodŕıguez-
Henŕıquez, F. Implementing pairings at the 192-bit security level. In International
Conference on Pairing-Based Cryptography, 177–195 (2012)

22. Lipmaa, H. Secure Accumulators from Euclidean Rings without Trusted Setup. In
ACNS, Springer LNCS, 7341, 224–240 (2012)

23. Adj, G., Menezes, A., Oliveira, T. and Rodŕıguez-Henŕıquez, F. Computing Dis-
crete Logarithms in F36·137 and F36·163 Using Magma. In International Workshop
on the Arithmetic of Finite Fields, 3–22 (2014)

24. Granger, R., Kleinjung, T. and Zumbrägel, J. Discrete logarithms in the Jacobian
of a genus 2 supersingular curve over GF(2367). In NMBRTHRY list, 30, (2014)

25. Boneh, D. and Corrigan-Gibbs, H. Bivariate polynomials modulo composites and
their applications. In International Conference on the Theory and Application of
Cryptology and Information Security, 42–62 (2014)

26. Boneh, D., Bünz, B. and Fisch, B. Batching techniques for accumulators with
applications to IOPs and stateless blockchains. Cryptology ePrint Archive, Report
2018/1188, (2018)

27. Hazay, C. Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. Journal Of Cryptology. 31, 537–586 (2018)

28. Kleinjung, T., and Wesolowski, B. Discrete logarithms in quasi-polynomial time in
finite fields of fixed characteristic. IACR Cryptology ePrint Archive, 751 (2019)

29. Schoenmakers, B. Cryptographic Protocols. Lecture Notes, 108–109 (2019)
30. Biryukov, A., Udovenko, A. and Vitto, G. Cryptanalysis of Au et al. Dynamic

Universal Accumulator. IACR Cryptology ePrint Archive, 598 (2020)
31. Aranha, D. F. and Gouvêa C. P. L. RELIC is an Efficient LIbrary for Cryptography.

https://github.com/relic-toolkit/relic

