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Abstract. Lightweight authenticated key exchange (AKE) protocols based on symmetric-
key cryptography is important in securing the Internet of Things (IoT). However, achiev-
ing perfect forward secrecy (PFS) is not trivial for AKE based on symmetric-key cryp-
tography, as opposed to AKE based on public-key cryptography. The most recent pro-
posals that provide PFS are SAKE and SAKE-AM. In this paper, we first take a closer
look at these protocols and observe that they are vulnerable to a number of attacks,
such as, replay attack, denial of service (DoS) attack, tracking attack, etc. We then pro-
pose countermeasures to both protocols to restore security. Additionally, our proposed
scheme SAKE+ enables concurrent execution of the protocol, whereas the original SAKE
scheme supports the sequential execution of the protocol. The concurrency provided by
our scheme makes it more suitable for IoT applications where a server receives and sends
information from a large number of IoT end devices. Finally, we prove the security and
soundness of our schemes, and verify using ProVerif tool.
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1 Introduction

Key Exchange (KE) is a cryptographic building block that enables two parties to ne-
gotiate a shared key securely over an insecure channel. KE protocols are widely used in
secure communication protocols, including IPSec, SSH, SSL/TLS, etc., where two par-
ties aim to share a key to securely communicate with each other. The resulted shared
key may further be used to provide some cryptographic goals such as authentication, in-
tegrity, and confidentiality [10]. For instance, the shared key could be used in symmetric
cryptographic algorithms such as AES, 3DES, etc., (which are embedded in the men-
tioned protocols, i.e., IPSec, SSH etc.,) to provide confidentiality [36]. Authenticated
key exchange (AKE) schemes are a wide selection of KE protocols in which a user and
server authenticate each other and establish a session key that is used for transmitting
data securely [10, 36]. The Needham-Schroeder protocol is one of the AKE schemes
designed in the earliest publications [29]. TLS handshake is also the most widely-used
protocol on the Internet, which is an example of AKE protocol [5, 29]. In [9], Blake-
Wilson, Johnson, and Menezes have identified several major security attributes of an
AKE protocol as below.



– known session keys: If an adversary learns the previous session keys, s/he will not
compromise the security of the protocol.

– (perfect) forward secrecy (PFS): PFS attribute prevents an adversary who has
obtained the current long-term secret key from learning the previous session keys.

– unknown key-share (UKS): Considering this attack, the party A believes that he
has shared a key K with the party B, while the party B mistakenly believes that
he has shared the key K with another party C; see also [10].

– key-compromise impersonation: Let’s assume that the adversary ξ has compro-
mised the party A’s long-term key (K). It is trivial that ξ can easily impersonate
the party A to any other parties using the key K. However, it is not sensible that
the adversary ξ masquerades as another party, say B, to establish a valid session
with the corrupted party A; see also [33].

– loss of information: Comprising any information that is usually not available to
an adversary should not impact the security of the protocol.

– message independence: The flows of a protocol run between two honest parties need
to be independent of each other per session.

AKE protocols could be designed in various settings, including a two-party, three-
party, asymmetric, symmetric, group key exchange, and password-based settings. The
work [3], for example, made use of two-party and symmetric settings, while the research
paper [2] used three-party and symmetric settings. Several studies attempt to achieve
PFS among the attributes mentioned above. Researchers tend to take advantage of
Diffie-Hellman key agreement (DHKA) schemes to provide PFS, e.g., [16, 17, 34, 35];
however, these protocols are not suitable for use in lightweight applications. In fact,
DHKA schemes use two heavy modular exponentiation operations (or elliptic curve
operations), which makes it too heavy for resource-limited devices such as the Internet
of Things (IoT), the Industrial Internet of Things (IIoT), the Internet of Medical Things
(IoMT), etc. Hence, a few proposed schemes [1,3,8,13,19,32] aim at achieving PFS by
employing symmetric key settings in which long-term keys (from which the session keys
are derived) are modified regularly [19]. Such schemes based on the regular update of
the long-term keys are Key-Evolving Schemes [19,20].

In [19] the authors state that the symmetric key based AKE protocols are designed
in ad hoc fashion, and such protocols are susceptible to several attacks such as de-
synchronization. Therefore, design of symmetric key based protocols in a systematic
way to ensure the security and privacy issues is crucial. Recently, Avoine, Canard, and
Ferreira presented two symmetric key based AKE schemes, namely, SAKE and SAKE-
AM, to achieve PFS in [3]. Unlike most of the previous ad hoc designs, SAKE and
SAKE-AM are designed in a systematic manner.

In this paper we demonstrate that although the SAKE and SAKE-AM offer several
key security features, these schemes suffer from several drawbacks and weaknesses.
Finally, we elaborate on our proposed symmetric-based AKE protocols and discuss
how our schemes overcome the drawbacks of SAKE and SAKE-AM.
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Contributions. In this paper we take a closer look at SAKE and SAKE-AM, observe
a few weaknesses of them, and propose fixes. Our specific contributions are as follows.

– We demonstrate that although SAKE and SAKE-AM offer several key security
features, these schemes are vulnerable to timeful, replay, DoS, and tracking attacks.

– We propose SAKE+, which not only does inherit the merits of the SAKE, including
the PFS and mutual authentication but also mitigates the weaknesses of SAKE.

– We present SAKE+-AM which overcomes the SAKE-AM’s vulnerabilities.

– Our proposed scheme SAKE+ supports concurrent/parallel protocol execution, while
SAKE only allows sequential execution. The concurrency of our scheme makes it
more appropriate for IoT applications.

– In addition to formally proving security, we demonstrate the properties, such as,
soundness, secrecy, and mutual authentication, of our schemes using ProVerif [12].

1.1 Related work

Here we discuss the related work concerning the symmetric key based protocols that
ensure PFS. Various research studies have used different terms for PFS [3,19], including
forward security [8,13,19,32] and forward secrecy [3,13]. In [3], the authors claim that
symmetric key based protocols generally do not ensure security as much as asymmetric
key-based protocols do. Particularly, they do not ensure forward secrecy. So far, a few
research studies have been conducted with regard to symmetric key based protocols
which are discussed in the following. Authors of [19] introduced a definition and model
for AKE protocols. They presented an algorithm for their model/definition that can
be used by automatic verification tools. They proved that their protocol named FOR-
SAKES is secure within the model. FORSAKES is unconditionally secure in the random
oracle model. The notion of FORSAKES is based on the key-evolving scheme in which
the long-term keys of the protocol get updated. The proposed scheme assumes a uni-
versal clock that is shared between the parties; however, making such an assumption is
strong given that achieving perfect time synchronization, in any context, is complicated
in practice. Additionally, the presented scheme has not considered an adversary with
the capability to desynchronize the long-term keys between two parties [3]. The authors
left the side channel attack resistance of their protocol as a future work. The presented
scheme in [8] made use of pseudo-random bit generators as the main cryptographic
building block to ensure forward security. A pseudo-random generator is secure if its
output is computationally indistinguishable from a random string with the same size.
Their scheme provides forward-secure symmetric encryption and forward-secure mes-
sage authentication. Forward-secure message authentication prevents an adversary, who
obtained the key used for message authentication, from compromising future uses of the
key and from making the previously authenticated data untrustworthy. However, their
scheme has not considered the issue of de-synchronization between two parties [3]. The
work [32] extended a previous framework for RFID protocols that supports anonymity,
authenticity, and availability. This extension attempts to provide forward security when
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the long-term keys are compromised by an adversary. The new proposed protocols ben-
efited from a pseudo-random bit generator to address the resource-constraint issues by
providing a lightweight mechanism. The schemes have been designed in the Universal
Composability framework [15]. To ensure forward security, they assumed that the ad-
versary is able to compromise the activated tag, getting access to keys and memory
parameters that are persistent. On the contrary, the server is assumed to be incorrupt-
ible. Considering the strong security model where the adversary is capable of corrupting
either a tag or a server, the proposed scheme is inherently insecure [3]. The proposed
scheme also did not consider attacks that exploit side-channel vulnerabilities of the tags.
Authors of [1] posed questions regarding “re-keying” and attempted to answer them.
Forward security is one of the benefits gained by re-keying. The authors separated the
re-keying process that is dealt with producing sub-keys from the associated application
which makes use of these sub-keys. They analyzed different methods of re-keying and
their respective applications and demonstrated that re-keying increases the life-time
of the master key. However, they did not consider the de-synchronization issue that
arises from key-evolving [3]. Recently, authors of [3] proposed a symmetric key based
AKE protocol named SAKE that provides PFS for resource-constrained devices. In this
protocol, first, an initiator and a server attempt to authenticate each other mutually,
and afterward, a session key will be established between them. This protocol makes
use of the symmetric-key setting to ensure PFS, whereas many existing schemes use
the asymmetric-key setting to do so. However, the resource-constrained devices such
as IoT, WSNs, passive RFID tags, and smart cards cannot exploit such schemes since
they are too heavy in terms of computation. The authors made several major contribu-
tions which makes their scheme distinguishable from their counterparts. In the case of
de-synchronization, the parties involved in the protocol can be resynchronized without
using a clock or any extra resynchronizing mechanism. The protocol, in fact, benefits
from the second chain of master keys to provide synchronization. These master keys
provide the tracking the internal state of the protocol and allow resynchronization in
case the parties are desynchronized. Moreover, this scheme uses bandwidth efficiently
in the sense that it prevents from sending additional data such as large counters. The
authors also presented a second scheme called SAKE-AM which is derived from the
SAKE protocol. In SAKE-AM, a resource constrained device can be an initiator or a
responder. In this case, the end-device does less computation compared to the server.

Relevance. The authors of [3] made use of the security model which is based on the
model presented in [14]. This security model [14] is considered for the authenticated
key exchange protocols that work using the asymmetric methods (e.g., protocols de-
signed based on the DH scheme with signature). Considering this model, the parties
can participate in multiple executions of the protocol either sequentially or concurrent-
ly/parallelly; however, the designers of the SAKE in [3] presented a security model that
does not support the concurrent/parallel executions. On the other hand, the authors
of [3] claim that their scheme is suitable for IoT application, while their presented
model conflicts with the way IoT devices act in the real world environment. For exam-
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ple, the research study [32] - discussed in the related work section of the reference [3] -
states that almost all the RFID systems operate in a concurrent environment. The ar-
ticle [32], more precisely, discusses that a tag reader in a commercialized RFID system
should be able to simultaneously identify several tag devices. The work [28] explains
that in an IoT application, hundred or thousands of IoT devices send simultaneously
their collected data every few seconds to a server. Hence, in our scheme SAKE+, we
are motivated by modifying the SAKE protocol such that the parties can take part in
concurrent executions of the protocol. This modification not only obviates the need for
an exhaustive search which is time-consuming and process-intensive, but also it pre-
vents from the timeful attack. Furthermore, we modify the SAKE-AM scheme to make
it resistant against the DoS, replay and traceability attacks.

Outline. We discuss the security of building blocks used in this paper and also list
some notation used in the paper’s body in Section 2. In Section 3, we explain the secu-
rity model used in our proposed protocol. We provide a brief description of the SAKE
and SAKE-AM protocols and their security analysis in Sections 4 and 5, respectively.
In Section 6 we present our proposed SAKE+ and SAKE+-AM protocols. We evalu-
ate the soundness and security of the proposed SAKE+ protocol in Sections 7 and 8,
respectively. Finally, we conclude the paper and discuss future work in Section 9.

2 Security definitions of building blocks

In this section we review the security definition of the building blocks used in this
paper. Our definition is based on the research paper [3]. We will further make use of
the notations explained in this section in our results. The definition of a negligible
function, secure pseudo-random function (PRF), strong unforgeability under chosen-
message attacks (SUF-CMA), and matching conversations are discussed as follows:

Definition 1 (Negligible function): A function ε : N→ N is said to be a negligible
function of k if for every positive polynomial p(.) we have ε(k) < 1

p(k) for all sufficiently
large k which is a security parameter of a cryptographic building block.

PRF: A PRF F : {0, 1}λ × {0, 1}∗ 7→ {0, 1}γ , where λ, γ are positive integers, is
a family of functions that takes one input of length λ and another input of arbitrary

length, and returns an output of length γ. For any k
$← {0, 1}λ, one can define fk :

{0, 1}∗ 7→ {0, 1}γ by fk(x) = f(k, x). Then, fk is an instance of F .
We describe the security of F using an experiment between an Adversary A and a

challenger below. Note that x
$← X denotes sampling x uniformly at random from X.

– Let fk is an instance of the PRF family function F , and the challenger samples the

following values uniformly at random: K
$← {0, 1}λ, G

$← F , and b
$← {0, 1};

– The adversary adaptively sends the values x to the oracles O-PRF (·) and O-Test(·).
The responses are as follows: the oracle O-Test(·) either returns y = f(k, x) for
b = 0, or returns y = G(x) for b = 1; the oracle O-PRF (·) returns f(k, x) if x /∈ X;

– Finally, the adversary makes a guess b′ ∈ {0, 1} of b.
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The experiment between the adversary and the challenger described above is sum-
marized as the following pseudo codes.

EXP PRF:

K
$← KeyGen(1λ)

b
$← {0, 1}

X = ∅; c← 0

b′
$← AO−Test(·),O−PRF (·)

return b = b′

O-PRF(x):
if x ∈ X:
return ⊥

else:
X ← X ∪ {x}
return f(k, x)

O-Test(x):
if (c = 1) ∨ (x ∈ X):
return ⊥

c← 1;X ← X ∪ {x}
if (b = 0): y ← f(k, x)

else: y
$← G(x)

return y

Based on the experiment EXP PRF, we have the advantage of A as

advPRFfk
(A) = |Pr[b = b′]− 1

2
|.

Definition 2 (Secure PRF ) If for all probabilistic polynomial time (PPT) adver-
sary A, advPRFfk

(A) is a negligible in λ, then fk : {0, 1}∗ 7→ {0, 1}γ is a secure PRF.
Secure Message authentication code (MAC): It consists of three different

algorithms named KeyGen, MAC(·, ·) and V rf(·, ·, ·) [22]. These algorithms are de-
scribed as follows:

– KeyGen: This randomized algorithm generates a k−bit key K that is used as a
parameter in the algorithms MAC(·, ·) and V rf(·, ·, ·).

– MAC(·, ·): This algorithm (tagging) takes as input a key K ∈ {0, 1}k and a message
m ∈ {0, 1}∗ and returns an output named tag τ ∈ {0, 1}γ .

– V rf(·, ·, ·): This verification algorithm takes as input a key K, a message m, and a
corresponding tag τ , and outputs 1 if a tag on message m is valid, otherwise 0.

Strong unforgeability under chosen-message attacks (SUF-CMA)
We define the notion of SUF-CMA for aMAC G = (KeyGen,MAC(·, ·), V rf(·, ·, ·))

with the help of the experiment between a challenger and an adversary A as follows:

– The challenger sets S ← ∅ and then samples K
$← {0, 1}k.

– The adversary may send values m to the challenger, and it sends back the respective
values τ = MAC(K,m) and then saves (m, τ) : S ← S ∪ {(m, τ)}. The adversary,
additionally, may send the values (m′, τ ′) to the challenger, and it returns the re-
spective values V rf(K,m′, τ ′) to the challenger.

– At the end, A sends to the challenger the pair (m∗, τ∗).

The experiment between the adversary and the challenger described above is sum-
marized as the following pseudo codes.

EXP SUF-CMA:

K
$← KeyGen(1k)

S = ∅
(m∗, τ∗)← AMAC(·,·),V rf(·,·,·)

return (m∗, τ∗)

MAC(K, m):
τ = MAC(K,m)
saves (m, τ)
S ← S ∪ {(m, τ)}
return MAC(K,m)

V rf(K,m′, τ ′):
if (m′, τ ′) /∈ S:

return V rf(K,m′, τ ′)
else:

return ⊥

The advantage of A is as advsuf−cmaG (A) = Pr[V rf(K,m∗, τ∗) = 1 ∧ (m∗, τ∗) /∈ S].
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Definition 3 (SUF-CMA): If for all PPT adversary A, advsuf−cmaG (A) is a
negligible function in k, then G = (KeyGen,MAC(·, ·), V rf(·, ·, ·)) with MAC :
{0, 1}k × {0, 1}∗ → {0, 1}γ is secure against SUF-CMA.

Sessions and Instances: Before explaining the matching conversation, we discuss
the session as follows. A session refers to one run of the protocol, and each party can
create at most q sessions. We associate an instance πsi to the party Pi’s sth session,
which has access to the master keys K and K ′.

Definition 4 (Matching Conversations): The authors of [4] discussed the def-
inition of matching conversations proposed by [6, 24]. We assume that Ti,s is the the
sequence of all messages in chronological order which are sent and received by an in-
stance πsi . Considering two transcripts Tj,t and Ti,s, if Ti,s includes one message at least,
and the messages in Ti,s are the same as the first |Ti,s| messages of Tj,t then we say that
Ti,s is a prefix of Tj,t. The instance πsi has a matching conversation to πtj , if [Tj,t is a
prefix of Ti,s, and πsi has sent all protocol messages], or [Ti,s = Tj,t, and πtj has sent all
protocol messages].

2.1 Preliminaries

In this section the notations (Table 1) and preliminaries used in the paper are described.

Table 1. Notations

Notation Description

A,B Identities of an initiator and a responder, respectively.
K The master key used for authentication purpose.
K′ The master key used for session key generation.
K′j−1, K′j , K

′
j+1 These values refer to the protocol states j − 1, j and j + 1, respectively.

rA, rB Random numbers generated by the entities A and B, respectively
kdf(·, ·) This function updates the session key sk such that sk ← kdf(K, g(rA, rB)) the function g(., .)

can be the bit string concatenation.
updi(·), upd?i (·) These functions are used for updating the master keys of entity i.
V rf(K,m, τ) This function returns true if the tag τ on message m is true, otherwise it returns false.
‖ Concatenation operation

These master keys K, K ′, K ′j−1, K ′j and K ′j+1 are initialized such that K and K ′

are random values, K ′j−1 ←⊥, K ′j ← K ′, and K ′j+1 ← update(K ′).
The initiator A and the responser B update their master keys using, respectively,

updA(·) and updB(·) functions as follows:

updA(·): updB(·):
K ← update(K) K ← update(K)
K′j−1 ← K′j K′ ← update(K′)

K′j ← K′j+1

K′j+1 ← update(K′j+1)

Session Key generation: It is based on the key-evolving method. Using this
method, both the initiator and responder update the master key K regularly per ses-
sion. This protects against computing the past session keys by an adversary who has
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corrupted either the initiator or responder, and gained the current session key sk. Con-
sidering the session key generation process, the key point is that the session key must
be computed after the mutual authentication, not during the session. In fact, if the
session key sk is computed in the session, this can cause a de-synchronization problem.

3 Security model

We profit from the model explained in [3] which itself is based on the work [14]. The
adversary in this model has a full control over the channel in that s/he is capable of
forwarding, altering, dropping any messages sent by honest parties, or even s/he is able
to create new messages. It is worth noting that we adopted the concurrent execution
approach which is discussed in [14]. We later discuss in detail the concurrent approach
versus of sequential approach in the Section 3.2.

Parties: We assume that all the parties in our protocol constitute the set P =
{P0, P1, . . . , Pn−1}. Each party has its own unique master keys K,K ′. The key K is used
for the purpose of session key creation, while the key K ′ is used for the authentication
purpose. Each party in our scheme can take part in multiple concurrent executions of
the protocol. On the contrary, a party in SAKE [3] can participate in multiple sequential
executions of the protocol. Each instance πsi comprises the following states:

Table 2. The States of an Instance

States Description

ρ This state denotes the role of the session that belongs to the set ρ ∈ {init, resp}. The init
and resp values refer to the roles initiator and responder, respectively.

pid This identity is associated with the intended communication partner of πsi , and pid ∈ P.
α It shows the state of the instance which could be one of the following elements {⊥

, running, accepted, rejected}.
sk It denotes the session key that is derived by πsi .
κ It indicates the status of the session key πsi · sk, and κ ∈ {⊥, revealed}.
sid It refers to the the identifier of the session.
b It indicates a random bit b ∈ {0, 1} that is sampled at initialization of πsi .

Below we define two correctness requirements with the help of variables α, sk, sid,
and pid as follows:

(πsi · α = accepted)⇒ (πsi · sk 6=⊥ ∧ πsi · sid 6=⊥) (1)

(πsi · α = πtj · α = accepted ∧ πsi · sid = πtj · sid)⇒


πsi · sk = πtj · sk
πsi · pid = Pj

πtj · pid = Pi

(2)

Adversarial Queries: The adversary interacts with the instances by means of the
following queries:
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– NewSession(Pi, ρ, pid): This query creates an instance πsi with the role ρ and the
intended partner pid.

– Send(πsi ,m): Using this query, the adversary can send a message m to the instance
πsi and the instance responds as follows: it returns ⊥, if πsi ·α 6= running; otherwise,
πsi responds according to the protocol specification.

– Corrupt(Pi): The adversary, using this query, can obtain the long-term key Pi · ltk
of Pi. We say that Pi is v-corrupted if Corrupt(Pi) is the v-th query sent by the
adversary. If v = +∞, it means that the party has not been corrupted.

– Reveal(πsi ): It returns the session key πsi · sk, and then the value revealed will be
assigned to πsi · κ.

– Test(πsi ): Through the game, this query can be called only once. This query returns

⊥ if πsi · α 6= accepted. Otherwise, it creates an independent key sk0
$← κ, and

returns skb (Test-challenge), where sk1 = πsi · sk.

Definition 5 (Partnership): If πsi · sid = πtj · sid, we say that these two instances
are partners.

Definition 6 (Freshness): An instance πsi is fresh with intended partner Pj , if

– πsi · α = accepted and πsi · pid = Pj when the adversary sends its v0-th query,
– πsi · κ 6= revealed and Pi is uncorrupted (resp. v − corrupted with v0 < v), and
– for any partner instance πtj of πsi , we have that πtj · κ 6= revealed and Pj is v′ −
corrupted with v0 < v′.

An AKE protocol satisfies the two aforementioned correctness requirements (1) and (2),
and its security is defined using the AKE experiment that is played between a challenger
and an adversary A. Following definitions 7 and 8, A can win this experiment.

Definition 7 (Entity Authentication (EA)): The adversary can win the AKE
experiment by making an instance accepts maliciously. An instance πsi of a protocol Π
accepts maliciously with intended partner Pj , if

– πsi · α = accepted and πsi · pid = Pj when the adversary A sends its v0-th query,
– Pi and Pj are uncorrupted (resp. v− and v′ − corrupted with v0 < v, v′ ), and
– there is no unique instance πtj such that πsi and πtj are partners.

The adversary’s advantage is defined as advent−authΠ (A) = Pr[A wins the EA game].
Definition 8 (Key Indistinguishability): An adversary A can win the AKE

experiment by guessing the secret bit of the Test-instance. The adversary A sends the
Test-query to the instance πsi during this experiment and answers the Test-challenge
correctly if the output b′ and the instance πsi are as follows:

– πsi is fresh with some intended partner Pj , and
– πsi · b = b′.

The adversary’s advantage is defined as advkey−indΠ (A) = |Pr[πsi · b = b′]− 1
2 |.

It is worth mentioning that an adversary can make use of the definitions 7 and 8 in
order to corrupt an instance involved in the experiment.
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Definition 9 (AKE Security): A two-party AKE protocol Π is secure if it
meets the correctness requirements (1) and (2), and the advantages advent−authΠ (A)

and advkey−indΠ (A) are negligible.

3.1 Data search operation

Our proposed protocols SAKE+ and SAKE-AM+ benefit from a technique named
content-addressable memory (CAM, associative memory or associative storage) [27].
The merit of this technique is that we can find the desired data in a CAM memory just
in a single clock cycle compared to traditional memories. The function fetch() used
in our schemes makes use of this technique. In fact, the initiator uses the fetch() to
search the digest of a respoder’s identity against all the digests stored in the database
and obtain the corresponding address. This search takes constant time; that is, with
the complexity O(1) which makes our protocol independent of the number of the re-
sponders involved. By means of this method, not only the initiator can search within a
constant time and independent of number of end devices involved in the protocol, but
also this technique prevents from the timeful attack in that the server spends the same
amount of time to look for all responders’ data and authentication at every execution
of the protocol (see Section 5 for details).

3.2 Concurrent vs. sequential

Let P = {P1, P2, . . . , Pn} denote a set of parties participating in a two-party protocol.
In a sequential approach, two parties, e.g., P1 and P2 each one executes just one instance
of a protocol, while in a concurrent approach the mentioned parties run parallel execu-
tions of the protocol [3, 14]. The AKE protocols that operate based on the DH scheme
support unlimited number of concurrent executions, whereas the AKE symmetric-based
protocols do not allow parallel executions of the protocol in the sense that the shared
master keys that evolves regularly cause abortion problem to some sessions [3]. However,
we overcome this problem using separate master keys associated with parties’ identity.

4 Description of the SAKE and the SAKE-AM protocols

In this section, a brief review of the SAKE and its variant SAKE-AM is presented.
In these schemes, with the help of two type of pre-shared master keys K and K ′,
both parties, the end device and back end device, not only mutually authenticate each
other but also establish a session key to support confidentiality. More precisely, the
key K ′ along with two other pseudo-random values rA, and rB are used in MAC(·, ·)
as MAC(K ′, B||A||rB||rA) (on the responder’s side) and MAC(K ′, A||B||rA||rB) (on
the initiator’s side) for mutual authentication purpose, whereas the master key K to-
gether with rA, and rB values are utilized in the pseudo-random generator kdf(·, ·) as
kdf(K, g(rA, rB)) for the session key generation purpose.

10



(𝐴,𝐾,𝐾𝑗+ 1
′ ,  𝐾𝑗

′ ,𝐾𝑗− 1
′ ) (𝐵,𝐾,𝐾′)

 

 𝑖𝑓 (V𝑟𝑓(𝐾𝑗
′,B‖A‖rB‖rA ,𝜏𝐵)= 𝑡𝑟𝑢𝑒)  

                  𝛿𝐴𝐵 ⟵ 0 
𝐾′⟵ 𝐾𝑗

′

𝑒𝑙𝑠𝑒 
                  𝛿𝐴𝐵 ⟵ 1 

;  ℰ  ⟵ 1 

 

  𝑒𝑙𝑠𝑒 

 

 𝑖𝑓 (V𝑟𝑓(𝐾j-1
′ ,B‖A‖rB‖rA ,𝜏𝐵)=𝑡𝑟𝑢𝑒)

𝐾′⟵ 𝐾
𝑗-1
′

𝑒𝑙𝑠𝑒 

 ;updA ;kdf ; updA ;  ℰ  ⟵ 0 

 𝑖𝑓 (V𝑟𝑓(𝐾j+1
′  ,B‖A‖rB‖rA ,𝜏𝐵)=𝑡𝑟𝑢𝑒)

𝐾′⟵ 𝐾
𝑗+1
′

                  𝛿𝐴𝐵 ⟵ -1 

𝑎𝑏𝑜𝑟𝑡 

 

𝜏𝐴 ⟵  𝑀𝐴𝐶(𝐾′ ,ℰ‖𝐴‖𝐵‖rA‖rB) 

 

𝑚𝐴 ⟵ ℰ‖𝜏𝐴 

 

𝑟𝐴  
$
՚ ሼ0,1ሽλ  

,B‖A‖𝑟B‖𝑟𝐴 , 𝜏B)= 𝑡𝑟𝑢𝑒)

 ;kdf ; updA ;  ℰ  ⟵ 0 

 

𝑟𝐴  
$

{0,1}  λ  ⟵ 

𝑟B
 

$
{0,1}  λ  ⟵

 

𝜏𝐵 ⟵ 𝑀𝐴𝐶(𝐾′ ,𝐵‖A‖rB‖rA)

𝑚𝐵 ⟵ 𝑟𝐵‖𝜏𝐵 

𝐴‖𝑟𝐴 

𝑚𝐵  

𝑚𝐴  

 

𝑖𝑓(V𝑟𝑓(𝐾′ ,ℰ‖ 𝐴‖𝐵‖rA‖rB)=𝑓𝑎𝑙𝑠𝑒) 
𝑎𝑏𝑜𝑟𝑡 

𝑖𝑓 (ℰ = 1) 
updB

 

 

kdf ;updB
 

 

𝜏′𝐵 ⟵  𝑀𝐴𝐶(𝐾′ , rB‖rA)
𝜏𝐵
′  

 

𝑖𝑓 (ℰ  = 0) 

 

     𝐾′ ⟵ 𝐾𝑗
′  

 

     𝑖𝑓 (V𝑟𝑓(𝐾′ ,rB‖rA
, 𝜏′𝐵)=𝑓𝑎𝑙𝑠𝑒) 

𝑎𝑏𝑜𝑟𝑡 

 

𝑒𝑙𝑠𝑒 𝑖𝑓 (ℰ  = 1) 

 

     𝐾′ ⟵ 𝐾𝑗+ 1
′  

 

     𝑖𝑓 (V𝑟𝑓(𝐾′ ,rB‖rA
, 𝜏′𝐵)=𝑓𝑎𝑙𝑠𝑒) 

𝑎𝑏𝑜𝑟𝑡 

 

    𝑘𝑑𝑓;𝑢𝑝𝑑𝐴  

 

𝜏′𝐴 ⟵  

 

𝑖𝑓 (V𝑟𝑓(𝐾′ ,rA‖rB 
, 𝜏′𝐴)=𝑓𝑎𝑙𝑠𝑒) 

𝑎𝑏𝑜𝑟𝑡 

SAKE

 

 

 𝑖𝑓 (V𝑟𝑓( 𝐾𝑗
′,B‖A‖rB,𝜏𝐵)= 𝑡𝑟𝑢𝑒)  

                  𝛿𝐴𝐵 ⟵ 0 
𝐾′⟵ 𝐾𝑗

′

𝑒𝑙𝑠𝑒 
                 𝛿𝐴𝐵 ⟵ 1 

;  ℰ  ⟵ 1 

 

  𝑒𝑙𝑠𝑒 

 

 𝑖𝑓 (V𝑟𝑓(𝐾j-1
′ ,B‖A‖rB,𝜏𝐵)=𝑡𝑟𝑢𝑒)

𝐾′⟵ 𝐾
𝑗-1
′

𝑒𝑙𝑠𝑒 

 ;updA ;kdf ; updA ;  ℰ  ⟵ 0 

 𝑖𝑓 (V𝑟𝑓(𝐾j+1
′  ,B‖A‖rB,𝜏𝐵)=𝑡𝑟𝑢𝑒)

𝐾′⟵ 𝐾
𝑗+1
′

                  𝛿𝐴𝐵 ⟵ -1 

𝑎𝑏𝑜𝑟𝑡 

 

𝜏𝐴 ⟵  𝑀𝐴𝐶(𝐾′ ,ℰ‖𝐴‖𝐵‖rA‖rB) 

 

𝑚𝐴 ⟵ ℰ‖𝜏𝐴

 

𝑟𝐴  
$
՚ ሼ0,1ሽλ  

,B‖A‖𝑟B‖𝑟𝐴 , 𝜏B)= 𝑡𝑟𝑢𝑒)

 

𝑟B
 

$
{0,1}  λ  ⟵ 

𝜏𝐵 ⟵ 𝑀𝐴𝐶(𝐾′ ,𝐵‖A‖rB)

𝑚𝐵 ⟵ B‖𝑟𝐵‖𝜏𝐵 
𝑚𝐵  

𝑚𝐴 

𝜏𝐵
′  

 

 

 

 

 

 

‖rA 

 

SAKE-AM

[Same as the SAKE]

[Same as the SAKE][Same as the SAKE]

 ;kdf ; updA ;  ℰ  ⟵ 0 

𝑀𝐴𝐶(𝐾′ ,rA‖rB)

𝜏′𝐴  

𝜏′𝐴  

(𝐴,𝐾,𝐾𝑗+ 1
′ ,  𝐾𝑗

′ ,𝐾𝑗− 1
′ ) (𝐵,𝐾,𝐾′)

Fig. 1. SAKE and SAKE-AM Protocols.

11



4.1 SAKE protocol

As depicted in Figure 1, the SAKE protocol starts with initiator A sending the fresh
random value rA along with its identity A. In response, the responder B sends the
message mB = rB||τB in which rB is the new random value generated by B and τB
generated using the MAC function to inform the A about the current state of the B
securely. Using the DRSP (see Section 6.1), A distinguishes in which state the party B is
and generates the session key in the case of ε = 0. Then, A responds with the message
mA that includes the current state of the party B. At this point, B syncs itself and
generates the session key after the verification and informs A by sending the message
τ ′B. After receiving the message, A verifies the message and generates the session key
in the case ε = 1. Then, A sends the confirmation message τ ′A to B. Finally, B finishes
the session if and only if the received message is valid.

4.2 SAKE-AM protocol

The authors of [3], presented a variant of the SAKE scheme named SAKE-AM in which
the end device can be an initiator (see Figure 1). Due to this variant, the authors claim
that SAKE-AM is suitable for IoT applications where a resource-constrained end device
establishes a connection with a central server. The SAKE and the SAKE-AM protocols
differ as follows: the initiator A in the SAKE has the master keys (K,K ′j+1,K

′
j ,K

′
j−1),

whereas B in the SAKE-AM scheme has those master keys. The initiator A in the
SAKE does most of the operation, while the initiator A in the SAKE-AM does the
lease calculations.

5 Security analysis of SAKE and SAKE-AM

In this section, we perform security analysis of the SAKE and SAKE-AM protocols.

5.1 Exhaustive search problem

The SAKE protocol suffers from the exhaustive search, which makes it unsuitable for
an IoT application, particularly an application with many IoT sensors. In the SAKE
protocol, the initiator must perform a complete search in its database upon receiving
the message mB from the responder. This is due to the fact that the responder does
not send its identity along with mB, therefore the initiator does not know which end
device has sent the mB message. The initiator, hence, has to check all the conditional if
statements (four if statements) against all the different identities exist in the database
until it finds the identity associated with the message mB. For example, if there are
n number of end devices in a real scenario, the initiator must at least execute 4n/2
number of if statements on average along with the computation of τA and mA, (In
case of δAB = 0 and δAB = −1, the PRF function is executed at least twice within
the if statements) to find the identity corresponding to the message mB. To address
this problem, in our scheme SAKE+ the responder sends its identity, which is random,
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along with the message mB to the initiator. The initiator, then, benefits from an efficient
search technique called CAM to find the corresponding responder’s information in its
database.

5.2 Timeful attack

The authors of [4, 21, 23] described an attack named timeful. This type of attack can
be performed in the AKE protocols in which the server (reader) must perform exhaus-
tive search to find a tag’s related information. The adversary, in fact, can exploit this
fact that the same amount of time is always spent by the server to authenticate and
accordingly respond to a particular tag for every execution of the protocol. This leads
an adversary to detect which tag has been authenticated by the server (reader). The
SAKE protocol is vulnerable to this attack as the initiator do exhaustive search to
authenticate a responder. In our scheme SAKE+, we profit from random identities to
prevent from this attack.

5.3 DoS and replay attacks

An adversary is able to lunch a DoS attack by means of the message mB = B||rB||τB
sent by the initiator B in the SAKE-AM protocol. To do so, the attacker first capture
the valid message mB related to the last session between the initiator and the respon-
der A. Then, the adversary resends the captured message mB to A, repeatedly. After
receiving the message mB by A, it will use the V rf(·, ·, ·) function to check the validity
of the value τB attached to mB. Whatever the master key K ′ is (it could be either
(K ′j+1 or K ′j or K ′j−1)), the value τB computed by one of the if statements will equal
true. This is due to the assumption that the captured message mB by the adversary is
valid. After the verification of τB, A will compute τA = MAC(K ′, ε||A||B||rA||rB) and
create the message mA = ε||τA||rA. Now, A sends the created message to the initiator
B. Hence, the adversary succeeded in forcing the party A to perform calculations by
calling the following functions and eventually creating and sending mA for each re-
ceived message mB. If K ′ = K ′j , A computes (V rf(·, ·, ·), kdf(·, ·), updA(·),MAC(·, ·)),
if K ′ = K ′j−1, A computes (V rf(·, ·, ·),MAC(·, ·)), and If K ′ = K ′j+1, A computes
(V rf(·, ·, ·), updA(·), kdf(·, ·), updA(·),MAC(·, ·)).

It is worth mentioning that the described attack includes the replay attack as the
adversary can replay the message mB, which belongs to the last valid session, and
accordingly receive mA as a response from A. This scenario holds until the initiator
establishes a new session with the responder. Later we propose SAKE+-AM which
is resilient against these attacks with the help of a random value and performing a
comparison on the responder’s side.

5.4 Traceability (tracking) attack

Considering the SAKE-AM protocol, an adversary can easily relate all the messages mB

that has captured through the valid sessions between B and A. This attack is based
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on the fact that the initiator B attaches its identity, B, to mB in plaintext; hence,
the adversary is able to eavesdrop this identity and thus tracking all the eavesdropped
messages mB. This traceability can be done using a simple comparison among the
identities attached to mB messages. Based on the privacy model presented in [26], this
attack formally captured by the following queries. The untraceability (UNT) is the fact
that an adversary A cannot tell between two responders.

– Execute(A,B, j) query. The adversary A requests for access to the messages of the
j-the session between A and B.

– Test(B0, B1, j+ 1) query. For a random b ∈ {0, 1}, A is challenged by the messages
exchanged between Bb and A in their j + 1-th session, and has to guess b.

Following the above queries, A performs the traceability attack as follows.

– In round j, A sends an Execute(A,B0, j) query and obtains B0,j ;
– The attacker A selects two responders B0 and B1, sends a Test(B1, B0, j+1) query,

and obtains Bb, where b
$← {0, 1};

– Then, A sends an Execute(A,Bb, j + 1) query and obtains Bb,j+1;
– A learns that b = 0 if B0,j = Bb,j+1, otherwise b = 1;
– Since the value of B in the message mB is constant (i.e., the responder’s identity is

fixed), Bb,j+1 = B0,j implies that Bb = B0.

As a result, AdvUNTA (k) = (Pr[A guesses b correctly] − 1/2) = 1 − 1/2 = 1/2. In our
scheme SAKE+-AM, to mitigate this attack, the parties’ identities are updated per
session.

6 Description of our proposed protocols SAKE+ and SAKE+-AM

This section presents our enhanced protocols SAKE+ and SAKE+-AM, addressing the
aforementioned security issues associated with SAKE and SAKE-AM. We begin by
describing the intended security properties of our improved protocols.

6.1 Intended properties of our protocols

To enhance the SAKE protocol the (PFSP), (SP) and (DRSP) solutions are inherited
from SAKE and the rest are proposed in the current article.

Perfect forward secrecy property (PFSP): Considering that the SAKE scheme
guarantees the synchronization of the master key K and benefits from the key-evolving
technique, it ensures the perfect forward secrecy, which is the goal of SAKE+ protocol.

Synchronization property (SS): The SAKE+ scheme takes advantage of K ′

used for mutual authentication to prevent from synchronization problem. The initiator
makes use of three keys, namely update(K ′j),K

′
j ,K

′
j−1 to track the session key. This

tracking is guaranteed by ensuring that the master keys, K and K ′, will be updated
simultaneously. It is the initiator, in fact, that makes the responder (with the help of
ε) how to behave. This behaviour is discussed as follows: if ε = 0, it means that the
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initiator and responder are synchronized, so B will update its session key sk along with
its master keys (K,K ′) (using upd?B(·)), and if ε = 1, it means that the initiator and
responder are not synchronized and B must first update its master keys (K,K ′) and
then update its session key sk together with the master keys (K,K ′) for the second
time.

Distinguishing the responder’s state property (DRSP): The initiator (A)
uses the message mB, sent by the responder (B), to distinguish in which state the party
B is. The value K ′ which is used in mB indicates the state of the party B. The party
A makes use of the parameters update(K ′j),K

′
j ,K

′
j−1 and the message mB to compute

the value δAB. The value δAB is interpreted as follows:

– δAB = 0: This means that A and B both are synchronized, thus updating their
session key sk using kdf(·, ·) function as well as updating their corresponding master
keys with the help of upd?A(·) and upd?B(·) functions, respectively.

– δAB = 1: This means that A is one step further, and, therefore, B needs first to
resynchronize its master keys (K,K ′). Then B behaves just the same as the case
where δAB = 0, i.e., to compute the new session key sk and its master keys (K,K ′).

– δAB = -1: This means that A is one step behind; hence, A must resynchronize its
master keys (K,update(K ′j),K

′
j ,K

′
j−1). Then, A follows the protocol to update the

session key sk and its master keys (K,update(K ′j),K
′
j ,K

′
j−1).

Tracking resistance (TR): The identity of a responder B is updated per ses-
sion on both initiator and responder sides. This update is intended to prevent tracking
attacks. It is noteworthy that our architecture includes several responders communi-
cating concurrently with one initiator. So, employing the fixed identity for the typical
responder makes it vulnerable to following tracking attack. An attacker creates a mes-
sage A‖rA, sends it continually to B, and receives a response containing the responder’s
identity (B) for each message. By linking the identities in the responses, the attacker
can successfully trace the target responder. To overcome this privacy threat, the respon-
der B saves a one-bit flag ϕ in it’s memory. This flag is used to prevent the tracking
attack. Let us say that in SAKE+, the user has set the flag ϕ to one at the beginning
of the protocol, and the value of the flag has reset to zero (after updating the identity
B), then, the responder can easily recognize whether the attacker is trying to track:

– ϕ = 1, This means that B has received the message A‖rA, responded with the
message mB and is waiting to receive the corresponding message mA.

– ϕ = 0: This means that B has received the message mA, verified this message and
successfully executed the upd?B(·) and kdf(·, ·) functions.

Security Against Replay and DoS (SRD): The initiator A stores
(K,K ′j−1,K

′
j , Bj−1, Bj , rBj−1) in which Bj and Bj−1 are the identity of the responder

in a current and a previous sessions, respectively. Using an identity B in the responder’s
messages makes it possible for the initiator A to search with O(1) (we refer the reader
to the subsection 3.1). The value of the rBj−1 is stored on the initiator’s side to protect
the protocol against the replay and DoS attacks. The following comparisons are made
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by the initiator using the equal(·, ·) function. Note that by equal(a, b or c) we mean
equal(a, b) or equal(a, c).

– rBj−1 = rBj : This means that the attacker is trying to replay the message mB.

– rBj−1 6= rBj : This means that A has received the fresh message mB. In this case, A
starts to verify this message.

Moreover, A does not need to store K ′j+1; it can compute this value using K ′j .
However, A retains the value K ′j , although it can compute the value K ′j using K ′j−1;
in fact, it needs to run upd?A(·) function per session, and thus causing the computation
overhead. The same logic applies to the B value (i.e., A does not need to store Bj+1).

It is worth mentioning that in SAKE+, there are some changes with regard to
upd?A(·) and upd?B(·) functions as follows (the new changes are shown in blue):

upd?A(·): upd?B(·):
K ← update(K) K ← update(K)
Bj−1 ← Bj B ← update(B‖K′)
Bj ← update(Bj‖K′j) K′ ← update(K′)

K′j−1 ← K′j
K′j ← update(K′j)

6.2 Description of the SAKE+ protocol

In this subsection, we propose our solutions to overcome the drawbacks of the SAKE
protocol. To enhance this protocol, we just made several changes illustrated in Figure
2 with blue color. Considering the intended properties discussed in Section 6.1, the
protocol runs as below. The initiator A generates a random number rA and starts the
new session by broadcasting a challenge A‖rA to all the responders3. Upon receiving
the message, the responder B generates a random number rB and computes τB. At this
point, the responder runs the equal(·, ·) function4. In case of ϕ equal to 0, the responder
learns that the protocol is well done in the last session and computes mB as B‖rB‖τB
and sets ϕ = 1. Conversely, if the value of the bit ϕ equals to 1, the responder concludes
that the attacker may be trying to execute the tracking attack. Then, it generates the
random number rα and computes mB as rα‖rB‖τB. Finally, the responder sends the
message mB to the initiator. Once the initiator receives the message mB, it runs the
fetch() function to obtain the corresponding values related to one of the identities
Bj−1, Bj or update(B‖K ′j) (i.e., (K,K ′j−1,K

′
j , rBj−1).) If none of the values Bj−1, Bj ,

or update(B‖K ′j) are present in the memory, A will find the responder’s identity with
the help of the if−else statements. Then, A runs the equal(·, ·) function for the received
value rB and the fetched value rBj−1 . If it is not true, A will run the next three if−else
conditions as the same as the SAKE protocol does to distinguish the responder’s state
and to set the δAB value. Finally, A replaces the value of rBj−1 with the received rB and
sends mA to the responder. At this point, the responder B authenticates the initiator A

3 As we discussed in subsection 3.2, the SAKE+ is a concurrent protocol. For the sake of simplification,
when explaining a protocol, we only consider one responder.

4 This function takes two inputs and performs as follows: if the given inputs are equal to each other,
it returns true, otherwise it returns false.
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  𝑒𝑙𝑠𝑒 

 

 𝑖𝑓 (V𝑟𝑓(𝐾j-1
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𝐾′⟵ 𝐾
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𝜏𝐴 ⟵  𝑀𝐴𝐶(𝐾′ ,ℰ‖𝐴‖𝐵‖rA‖rB) 

 

𝑚𝐴 ⟵ ℰ‖𝜏𝐴 

 

𝑟𝐴  
$
՚ ሼ0,1ሽλ  
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 𝑖𝑓 (𝑒𝑞𝑢𝑎𝑙(𝐵,𝐵𝑗  𝑜𝑟 𝐵𝑗− 1 𝑜𝑟 𝑢𝑝𝑑𝑎𝑡𝑒(𝐵𝑗‖𝐾𝑗
′)) = 𝑡𝑟𝑢𝑒) 

                  𝐵,𝐾𝑗
′ ,𝐾𝑗− 1

′ ⟵ 𝑓𝑒𝑡𝑐ℎ() 

 𝑖𝑓(𝑒𝑞𝑢𝑎𝑙(rB , rBj-1)= 𝑡𝑟𝑢𝑒) 
𝑎𝑏𝑜𝑟𝑡 

[Same as the SAKE+]

‖rA 

𝐵‖

𝐵‖

𝜏𝐵
′  

 

 

 

 
 

𝐵‖

𝐵‖

(𝐵,𝐾,𝐾′ ,𝜑) 

𝜏′𝐴  

𝜏′𝐴  

𝜑  ⟵ 0 

𝜏𝐵 ⟵ 𝑀𝐴𝐶(𝐾′ ,𝐵‖A‖rB)

𝑚𝐵 ⟵ B ‖𝑟𝐵‖𝜏𝐵  

𝑖𝑓 (𝑒𝑞𝑢𝑎𝑙(𝜑, 0) = 𝑡𝑟𝑢𝑒) 

𝜑  ⟵ 1 

𝑒𝑙𝑠𝑒 
       𝑟𝛼  

$
⟵ (0,1)  λ  

       𝑚𝐵 ⟵ 𝑟𝛼‖𝑟𝐵‖𝜏𝐵 

(𝐴,𝐾 ,  𝐾𝑗
′ ,𝐾𝑗− 1

′  , 𝐵𝑗− 1,𝐵𝑗 , 𝑟𝐵𝑗− 1 ) (𝐵,𝐾,𝐾′ ,𝜑) 

Fig. 2. SAKE+ and SAKE+-AM Protocols.
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by verification of the received message mA and runs the kdf(·, ·) and upd?B(·) functions
based on the ε value. Finally, B resets the value of the ϕ to ′0′ and sends the message
B||τ ′B to the initiator. By resetting the value of the ϕ, B indicates for the next session
that the message mA was received successfully in the last session and it was valid.
The rest flows and computations of the protocol are the same as those in the SAKE
protocol. The only difference is with regard to the identity of B. It is concatenated with
the protocol messages in order to preserve the concurrency property.

6.3 Description of the SAKE+-AM protocol

In this subsection, we describe our proposed protocol SAKE+-AM. The SAKE+-AM is
based on the SAKE+ with some modifications. These modifications are shown in Figure
2 (in blue color). These changes are related to the message mA, input of the MAC(·, ·),
and V rf(·, ·, ·) functions because of the absence of the party A’s random number rA. The
SAKE+-AM renders it possible that a party involved in the protocol becomes either an
initiator or a responder. The SAKE+-AM scheme is resistant against the vulnerabilities
of SAKE-AM discussed in Section 5. It is appropriate for IoT applications in that it is
a lightweight protocol in terms of computation and communication; additionally, using
the SAKE+-AM scheme, resource-constrained devices establishing a connection to a
server perform the least computation as the initiator, in this scheme, does lightweight
calculations compared to the responder.

7 Soundness of SAKE+

In this section we discuss that our proposed scheme is sound, which means once a correct
session is finished, both parties have shared the same new session key and the same new
identities, updated their respective internal states, and are synchronized successfully.
For showing the soundness of our scheme, we make use of the similar notions used
in [3]. We first define a lemma and then try to prove the corresponding items. We use
the following notations in our proof:

– cA, cB: These are the monotonically increasing counters that are initialized with 0.
The cA follows the master keys K,K ′j ,K

′
j−1, Bj , Bj−1, while cB follows the master

keys K,K ′, B.

– δAB: As we mentioned earlier, the δAB denotes the gap between A and B, and it is
computed as δAB = cA − cB.

– (iA, iB): This notation means that the last valid message received by A is the value
iA, and similarly the last valid message received by B is iB (we assume that the
session is completed).

– (iA, iB)-session: This is a session where the last message received by A is iA, and
the last message received by B is iB.

– iA = 0: It means that A has received no message.

– A and B send back and forth the messages which are numbered from 1 to 5.
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We consider that by default the value (4, 5) is set for (iA, iB), and the only possible
valid values for (iA, iB) are as follows: (0, 1), (2, 1), (2, 3), (4, 3), (4, 5).

Lemma 1: We assume that the initiator A and the responder B are participating
in a session of the SAKE+ protocol. Considering this assumption, we can conclude that
δAB ∈ {−1, 0, 1}, and after termination of the session between A and B, independent
of the value of δAB, the following conditions holds: A and B have updated their master
keys at least once, A and B are synchronized which means δAB is set to 0, A and B
share the same session key K, and finally A and B share the same identity.

The proof of this lemma is given in Appendix A.

8 Security of SAKE+

We make use of the security model described earlier in Section 3 and the sequence of
games [7, 31] approach to prove the security of the SAKE+ protocol. With the help of
matching conversations, we define the partnering between two instances. Additionally,
we benefit from the ProVerif tool [12] to automatically analyze the security of our
proposed scheme.

8.1 Security of SAKE+ using the sequence of games

We use the sequence of games approach in which an attack game is played between an
adversary and a challenger, and the security is linked to an event S. Security means
that considering every efficient adversary, the probability that event S happens is very
close to some specified target probability. The target probability is either 0, 1

2 , or the
probability of some event T in some other game [31]. To prove using this approach, one
builds a sequence of games, i.e., Game 0, Game 1, . . . , Game n, where Game 0 is the
original attack game regarding a cryptographic primitive and a given adversary [31].
We use the notations presented in Table 3 in our proof.

Table 3. Notations for sequence of games

Notation Description Notation Description
n a number of parties Ei an event that A wins experiment in Game i
λ the size of values (rA, rB) B an adversary against PRF -security of update(·)
q a maximum number of instances per party C an adversary against SUF-CMA-security
π an instance that is targeted by A D an adversary against PRF -security of kdf(·, ·)
update(·) K ← f(k, x), for some (constant) value x

Theorem 1: The protocol SAKE+ is a secure AKE protocol, and for any PPT
adversary A in the AKE security experiment against protocol SAKE+, the following
conditions hold:

advent−auth
SAKE+ (A) ≤ nq((nq − 1)2−λ + (q + 1)advPRFupdate(B) + 2advsuf−cmaMAC (C))

advkey−ind
SAKE+(A) ≤ nq((q − 1)advPRFupdate(B) + advPRFkdf (D)) + advent−auth

SAKE+ (A)
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The proof can be found in Appendix B.

8.2 Formal verification using ProVerif

We verify that SAKE+ is robust and that it ensures forward secrecy, synchronisation,
and mutual authentication using ProVerif tool [12], which is an automated formal ver-
ification tool. The source code and its description are presented in Appendix C.

9 Conclusion

In this paper we reviewed the symmetric-based AKE protocols that attempt to ensure
an important security feature, i.e., the perfect forward secrecy. We focused on the re-
cent state-of-the-art work [3] that presented two symmetric-based AKE schemes named
SAKE and SAKE-AM. The authors of [3], claimed that these schemes are lightweight
and secure to be employed in IoT applications consisting of resource-constrained IoT
devices. However, we explained in detail how SAKE and SAKE-AM are vulnerable to
several attacks, including the timeful, tracking, denial of service and replay attacks, and
we discussed how the SAKE scheme suffers from the exhaustive search that makes it
unsuitable for the context of the IoT. Considering the SAKE and SAKE-AM schemes,
we presented two enhanced symmetric-based AKE protocols, i.e. SAKE+ and SAKE+-
AM. This enhancement is achieved by making as less changes as possible in the original
protocols, and the improvements include PFSP, SP, DRSP, TS, and SRD. We claim
that our protocols SAKE+ and SAKE+-AM not only maintain the security features of
the original protocols, but also our schemes are resilient against the mentioned vulnera-
bilities and drawbacks. Additionally, in our schemes parties can take part in concurrent
executions unlike the SAKE and SAKE-AM protocols. This concurrency makes our
schemes far applicable to IoT applications in the sense that hundred or thousands of
IoT devices simultaneously can send their collected data every few seconds to a server.
We benefited from the sequence of games approach and the Profverif tool as well to
prove the security and soundness of our schemes.

Considering that SAKE+ and SAKE+-AM are lightweight and ensure vital security
features, they can be used in IoT applications. However, entities such as sensors and
RFID tags in IoT application need to access their related information, not all the data
stored on the server. Hence, providing lightweight access control in such applications
plays a crucial role. In our future work, we aim to design symmetric-based AKE proto-
cols that provide the lightweight access control mechanism for entities while maintaining
the security features.
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A Proof of Lemma 1

Proof of Lemma 1 (item1) We first prove the item 1 of Lemma 1 and consider the
following three different cases:

– when A and B both are synchronized, i.e., δAB = cA − cB = 0. After all valid
(iA, iB)-sessions, the values for (cA, cB) and δAB are as follows:

• After a (0, 1)−session ⇒ (cA, cB) = (i, i) and δAB = 0
• After a (2, 1)−session ⇒ (cA, cB) = (i+ 1, i) and δAB = 1
• After a (2, 3)−session ⇒ (cA, cB) = (i+ 1, i+ 1) and δAB = 0
• After a (4, 3)−session ⇒ (cA, cB) = (i+ 1, i+ 1) and δAB = 0
• After a (4, 5)−session ⇒ (cA, cB) = (i + 1, i + 1) and δAB = 0

It is obvious that, in this case, the possible values for δAB are 0 and 1.

– When A is one step further, i.e., δAB = cA−cB = 1. After all valid (iA, iB)-sessions,
the values for (cA, cB) and δAB are as follows:

• After a (0, 1)−session ⇒ (cA, cB) = (i+ 1, i) and δAB = 1
• After a (2, 1)−session ⇒ (cA, cB) = (i+ 1, i) and δAB = 1
• After a (2, 3)−session ⇒ (cA, cB) = (i+ 1, i+ 2) and δAB = −1
• After a (4, 3)−session ⇒ (cA, cB) = (i+ 2, i+ 2) and δAB = 0
• After a (4, 5)−session ⇒ (cA, cB) = (i + 2, i + 2) and δAB = 0

We see that all possible values for δAB are 0, 1, and -1.

– When A is one step behind, i.e., δAB = cA−cB = −1. After all valid (iA, iB)-sessions,
the values for (cA, cB) and δAB are as follows:

• After a (0, 1)−session ⇒ (cA, cB) = (i, i+ 1) and δAB = −1
• After a (2, 1)−session ⇒ (cA, cB) = (i+ 2, i+ 1) and δAB = 1
• After a (2, 3)−session ⇒ (cA, cB) = (i+ 2, i+ 2) and δAB = 0
• After a (4, 3)−session ⇒ (cA, cB) = (i+ 2, i+ 2) and δAB = 0
• After a (4, 5)−session ⇒ (cA, cB) = (i + 2, i + 2) and δAB = 0

Similar to the previous case, the only possible values for δAB are 0, 1, and -1.
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Based on the discussed cases, we can conclude that the only possible values for δAB are
0, 1, and -1, i.e., δAB ∈ {0, 1,−1}.

Proof of Lemma 1 (item2) As we can see, the item 2 of Lemma 1 has four
different cases. We discuss each case as follows:

– A and B have updated their master keys at least once: Whatever the value of δAB
at the beginning of each session, after the (4, 5)−session, the value of the tuple
(cA, cB) is incremented at least by one (shown in bold). This means that A and B
have updated their internal states at least once.

– A and B are synchronized: Whatever the value of δAB at the beginning of each
session, after the (4, 5)−session, the value of δAB equals 0 (shown in bold). This
means that when the session is completed, the initiator A and responder B will
eventually be synchronized.

– A and B share the same session key K: Considering that the master keys K and K ′

are updated simultaneously on the B side (resp K, K ′j−1, and K ′j on the A side),
and the function kdf(K, g(rA, rB)) updates the session key immediately after K has
been updated, we can guarantee that A and B share the same session key sk. More
precisely, after a correct and complete session ((4, 5)-session), and using the same
values rA and rB, the initiator and responder share the same session key sk.

– A and B share the same identity value: Considering that the master keys K ′, Bj−1,
and Bj are updated simultaneously on the A side within upd?A(·), and the master
keys K ′ and B are updated together on the B side within upd?B(·), we claim that A
and B share the same identity B after a correct and complete session ((4, 5)-session).

B Proof of Theorem 1

Before starting our proof, we discuss the following notes that could be helpful during
the proof of the security of SAKE+. Note: An initiator instance πsi at some party Pi
accepts, if two valid messages mB and τ ′B (valid MAC tags) are received by πsi . We
can reduce the security of the MAC function to the ability to forge a valid output. We
assume that the value K ′, used during the first session between the initiator and the
responder, is uniformly chosen at random. Considering that K ′ is random, we can rely
on the pseudo-randomness of the function update(·) = PRF (·, ·). On the other hand,
since f(k′, ·) can be replaced with a truly random function, the updated K ′ accordingly
is random. Hence, we can conclude that we can rely on the pseudo-randomness of the
function update(·) with the new updated key K ′, and so forth. Each update of K ′ means
a loss (advPRFupdate(B)) that corresponds to the ability of an adversary B to distinguish
between the update(·) function and a random function.

Note: Pi updates its keys at most once per session on average. This is due to the
following facts:

– δAB = 0: In this case Pi updates its master keys only once.
– δAB = 1: Pi updates its keys at most once.
– δAB = −1: Pi updates its keys twice.
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Note: Pi updates its keys at most once per session on average. Where, in the case
δAB = 0, Pi updates its master keys only once; in the case δAB = 1, Pi updates its keys
at most once; and in the case δAB = −1, Pi updates its keys twice.

We conclude that when Pi starts the u-session, it has updated its keys at most u−1
times on average, and Pi updates its keys at most two times upon receiving the message
τ ′B.

Note: The previous note also applies to the responder. It means that it updates its
keys at most once per session on average. This is due to the following facts:

– ε = 0: In this case (upon reception of the message mA), the responders updates its
keys only once.

– ε = 1: Upon reception of the message mA, the responders updates its keys twice.

Note: The previous note also applies to the responder, meaning that it updates
its keys at most once per session on average. Where, in the case ε = 0, the responder
updates its keys only once, and in the case ε = 1, the responder updates its keys twice.

The responder Pj has updated its keys at most u − 1 times on average, when it
starts the u-session. It updates its keys twice when receiving the message mA.

Proof of entity authentication: In our proof, each consecutive game aims at
reducing the challenger’s dependency on the functionsMAC(·, ·), update(·) and kdf(·, ·).

– Game 0: This game is associated with the experiment between the adversary and
the challenger defined in definition 7 (Entity Authentication). The probability that
the adversary wins the entity authentication is:

Pr[E0] = advent−auth
SAKE+ (A).

– Game 1: There is at most n×q random values rA or rB chosen uniformly at random
in {0, 1}λ. Hence, the probability that at least two random values be equal is at

most nq(nq−1)
2λ

. If there exists any instance that chooses a random value rA or rB
that is not unique, then the challenger will abort. Therefore

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ
.

– Game 2: The challenger tries to guess which instance will be the first to accept
maliciously. The game is aborted if the guess is wrong. The number of instances is
at most nq. Hence

Pr[E2] = Pr[E1]× 1

nq
.

– Game 3: We define an abort rule as follows:
If π receives a valid message mB (resp. mA), the challenger aborts the experiment.
We reduce the probability of this event to the security of the function MAC(·, ·)
and update(·).

Pr[E2] ≤ Pr[E3] + (q − 1)advPRFupdate(B) + advsuf−cmaMAC (C)
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– Game 4: In this game, we reduce the probability of the adversary to win the game
to the security of the MAC(·, ·) function (for τ ′B(resp.τ ′A) computation). In fact, we
must rely on the randomness of the MAC(·, ·) key and accordingly to the security of
the function update(·) which is used for updating K ′ (i.e., used as an input for the
function MAC(·, ·)). Considering that the master keys are updated at most twice
between the message mB (resp. mA) being received by π and the message τ ′B (resp.
τ ′A) being received by π, we conclude that

Pr[E3] ≤ Pr[E4] + 2advPRFupdate(B) + advsuf−cmaMAC (C).

By adding up all the probabilities from Game 0 to 4, we reach the mentioned bound

advent−auth
SAKE+ (A) ≤ nq((nq − 1)2−λ + (q + 1)advPRFupdate(B) + 2advsuf−cmaMAC (C)).

Proof of the key indistinguishability security: We assume that E′i is an event
that an adversary wins the key indistinguishability experiment in Game i, and

advi = Pr[E′i]−
1

2
.

– Game 0: This game is concerned with the experiment between the adversary and the
challenger defined in definition 8 (Key Indistinguishability). The probability that
the adversary wins the key indistinguishability experiment is computed as

Pr[E′0] =
1

2
+ advkey−ind

SAKE+(A) =
1

2
+ adv0.

– Game 1: If there exists an instance that accepts maliciously, the challenger aborts
the experiment and chooses b′ ∈ {0, 1} uniformly at random. Hence

adv0 ≤ adv1 + advent−auth
SAKE+ (A).

– Game 2: The challenger tries to guess which instance is targeted by the adversary.
If the guess is wrong, the game is aborted. Hence

adv2 = adv1 ×
1

nq
.

– Game 3: We reduce the advantage of the adversary to win this game to the security
of the pseudo-random function kdf(·, ·). By assumption, the value of K used by this
function is uniformly chosen. On average, the key K is updated at most once per
session as discussed earlier. Hence, K has been updated at most u−1 times when the
u−th session starts. We must, therefore, consider the successive losses caused by the
key update using the update(·) function. This loss is at most (q− 1)advPRFupdate(B) as
there is at most q sessions per party. Therefore, we consider truly random functions
Gupdate0 , . . . , Gupdateq−2 instead of each function update(K) = f(k, x). Additionally, to
key update, if an instance uses the same key K = Ki, 0 ≤ i ≤ q − 1, then we
use Gupdatei instead of the update(·). Hence, we reduce the ability of A to win the
security of the function kdf(·, ·) as
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adv2 ≤ adv3 + (q − 1)advPRFupdate(B) + advPRFkdf (D).

The value of adv3 is zero as to that point the session key is random. Indeed, the
adversary has no advantage in guessing whether π · b = b′.
By summation of all the probabilities from Game 0 to 3, we reach the mentioned
bound

advkey−ind
SAKE+(A) ≤ nq((q − 1)advPRFupdate(B) + advPRFkdf (D)) + advent−auth

SAKE+ (A).

C Security verification of the SAKE+ with ProVerif

We use the ProVerif tool [12] to formally prove the SAKE+ protocol. The ProVerif en-
ables us to verify the concurrent execution of our protocol and to make sure whether
our protocol achieves the desired security objectives or not. Parties involved in the pro-
tocol use a channel to communicate with each other. This channel is assumed to be
controlled by an adversary that is able to read, change, delete, and create messages,
and the model in which the attacker operates is called “Dolev-Yao” [18]. The attacker
is capable of the modification of the protocol’s messages in that s/he can decrypt mes-
sages (if s/he gets access to the related keys) and can even compute the ith element
of a tuple. We can encode our desired protocol and its objectives using the ProVerif’s
input language formally, enabling the ProVerif tool to verify our claimed security prop-
erties. The cryptographic primitives used in ProVerif is assumed to be perfect, i.e.,
the adversary is not able to make use of any polynomial-time algorithm and s/he can
only makes use of the cryptographic primitives defined by the user. With the help of
rewrite rules and/or an equational theory, the cryptographic primitives are associated
with each other.

A protocol that is written in the ProVerif tool’s input language (the typed pi calculus
[30]) includes the following components: the declarations, the processmacros and the
mainprocess. These components are discussed as follows:

– Declarations: The declarations consists of the user types, the functions describing
the cryptographic primitives, and the security properties as well.

– Process macros: The process macros include sub-process definitions; each sub-
process is a sequence of events.

– Main process: It is defined with the help of macros. In our particular SAKE+ pro-
tocol, the main process is defined as the parallel composition (denoted by |) of
the unbounded replication (denoted by !) of two process macros representing the
processInitiator, and processResponder nodes.

ProVerif can prove both reachability property and correspondence assertions [11].
The Reachability property allows us to check which information an attacker can access,
i.e. secrecy. Correspondence property is of the form “if some event is executed, then
another event has been executed previously”, and could be used for checking various
types of authentication [25]. We encoded the SAKE+ AKE protocol in the ProVerif
language. In general, a protocol model can be divided into three different parts: the
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declarations (lines 1-49), the process macros (lines 49-255), and the main process (lines
256-264).

1 (*-SAKE+ channel -*)

2 free c: channel.

3 (*-SAKE+ types -*)

4 type key.

5 type nonce.

6 type host.

7 (*-SAKE+ keys -*)

8 free SKa ,SKb ,K,Kj0 ,Kj1 ,Kj2:bitstring [private ].

9 free Bj0 ,Bj1 ,Bj2 ,Rb0 ,B:bitstring.

10 free A: host.

11 (*-SAKE+ constants -*)

12 const f0 ,f1 ,Dhel0 ,Dhel1 ,DhelN ,Epsi0 ,Epsi1 ,X: bitstring.

13 table TA(host ,key ,bitstring ,bitstring ,bitstring ,bitstring ,nonce).

14 table TB(bitstring ,key ,bitstring ,bitstring).

15 (*-SAKE+ functions -*)

16 fun nonce_to_bitstring(nonce): bitstring [data ,typeConverter ].

17 fun bitstring_to_key(bitstring): key [data ,typeConverter ].

18 fun host_to_bitstring(host): bitstring [data ,typeConverter ].

19 fun bitstring_to_nonce(bitstring): nonce [data ,typeConverter ].

20 fun mac(bitstring , key): bitstring.

21 reduc forall m: bitstring , k: key; get_message(mac(m,k)) = m.

22 fun PRF(bitstring ,key): bitstring.

23 fun con(bitstring ,bitstring): bitstring.

24 (*-SAKE+ events -*)

25 event beginAparam(host , nonce).

26 event endAAuth(host , nonce).

27 event beginBparam(bitstring , nonce).

28 event endBAuth(bitstring , nonce).

29 event beginsyncBkey(bitstring , host , nonce , key).

30 event endsyncBkey(bitstring , host , nonce , key).

31 (*-SAKE+ queries -*)

32 query attacker(SKa).

33 query attacker(SKb).

34 query attacker(K).

35 query attacker(Kj0).

36 query attacker(Kj1).

37 query attacker(Kj2).

38 query x: host , y: nonce; inj -event(endAAuth(x, y)) ==> inj -event(

beginAparam(x, y)).

39 query x: bitstring , y: nonce; inj -event(endBAuth(x, y)) ==> inj -event(

beginBparam(x, y)).

40 query x: bitstring , y: host , z: nonce , t: key; inj -event(endsyncBkey(x,y

,z,t)) ==> inj -event(beginsyncBkey(x,y,z,t)).

C.1 Declarations

The declarations include the user types, the functions that describe the cryptographic
primitives, and the security properties. Additional user types can be declared as in lines
4-6 apart from the built-in types: channel and bitstring. Free names are defined as in

27



lines 2 and 8-10 where the channel with names c is declared. By default, the free names
are accessible to the attacker unless qualified by [Private]. Finally, constant values are
declared by const. The language supports tables for persistent storage. In lines 13 and
14, tables that model the subscribers database is declared.

Constructors are functions used to build terms. A constructor is declared by defining
its names, the types of its arguments and the return value (see lines 16-20, 22-23).
Functions, by default, are one-way; i.e., the attacker cannot infer the arguments from
the return value, unless qualified by [data]. Destructors (line 21) are special functions
that are used to manipulate terms. Constructors and destructors jointly are used to
capture the relationship between cryptographic primitives.

Message authentication codes (MAC) can be declared by a constructor (with no
associated destructor or equation), much like a keyed hash function as follow:

type key.

fun mac (bitstring,key):bitstring.

This model is strong in the sense that it considers the MAC as a random oracle. If
the MAC is considered to be a pseudo-random function (PRF), it is probably the best
possible model (in line 22, it is presented as fun PRF (bitstring,key):bitstring.).

Considering that the MAC is unforgeable (UF-CMA), one can declare a destructor
which leaks the MACed message as follow:

reduc for all m:bitstring, k: key; getmessage (mac(m,k)) = m.

A sequences of events presented in lines 25-30, are defined as follows:

– The beginAparam event declares that the initiator A starts the authentication pro-
tocol with its identity A and a fresh nonce.

– The endAAuth event declares that the initiator A will authenticated with the re-
sponder that received the fresh nonce generated by A.

– The events beginBparam and endBAuth for the entity B are the same as
beginAparam and endAAuth events for the entity A, respectively.

– The eginsyncBkey and endsyncBkey events declare that the responder B is in the
synchronize state with the initiator A.

We model correspondence assertions of the form: “if an event end has been executed,
then event begin has been previously executed.” with the queries presented in lines
38-40 that the first two queries (lines 38 and 39) are for the mutual authentication
and the last one is for the synchronization. The rest of the queries which are presented
in lines 32-37 is base on a built-in predicate attacker used to check which terms are
compromised.

C.2 Process macros

The process macros consist of sub-process definitions that are a sequence of events.
Messages are represented by terms, i.e., a name, a variable, a tuple of terms, a con-
structor or destructor application. The language, additionally, supports some common
Boolean functions (=,&&, ||, <>) with the infix notation.
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There are term evaluation, restriction, communication and condition events defined
as follows:

– The pattern x : t matches any term of type t and binds it to x.
– the let x = M in binds the term M to x.
– The name restriction event new declares a fresh name of a specific type and binds

it inside the events. For instance, line 43 binds the type nonce to the fresh name Ra.
– The communication event in (c,(x:host,y:nonce)) listen from a channel c and binds

the received terms to x and y where the first one has type host and the second one
has type nonce.

– The communication event textbfout (c,(x:host,y:nonce)), sends the terms x and y on
channel c.

– The conditional if M else P then Q continues as the process P if the term M evaluates
to true, continues as the process Q if M evaluates to another value.

41 (* Role of the initiator *)

42 let processInitiator =

43 new Ra: nonce;

44 new aDhel: bitstring;

45 new aEpsi: bitstring;

46 new akj: bitstring;

47 get TA(aA ,aK ,aKj0 ,aKj1 ,aBj0 ,aBj1 ,aRb0) in

48 let A = aA in

49 let m0 = (A,Ra) in

50 event beginAparam(A, Ra);

51 (* ---->A||r_A *)

52 out(c,m0);

53 (* m_B <---- *)

54 in(c,(aB:bitstring ,aRb:nonce ,aTb:bitstring));

55 let aBj2 = PRF(X, bitstring_to_key(aBj1)) in

56 if aB = aBj0 then let B = aBj0 in

57 if aB = aBj1 then let B = aBj1 in

58 if aB = aBj2 then let B = aBj2 in

59 if aB <> aBj0 && aB <> aBj1 && aB <> aBj2 then let B = aBj1 in

60 if aRb0 <> aRb then

61 (

62 let Tbin = con(B,con(host_to_bitstring(A),con(nonce_to_bitstring(aRb),

nonce_to_bitstring(Ra)))) in

63 let Tb = mac(Tbin , bitstring_to_key(aKj1)) in

64 if Tb = aTb then

65 (

66 let aDhel = Dhel0 in

67 let akj = aKj1 in

68 let SKa = PRF(con(nonce_to_bitstring(Ra),nonce_to_bitstring(aRb)), aK)

in

69 let aK = PRF(X, aK) in

70 let aBj1 = PRF(X, bitstring_to_key(con(aBj1 ,aKj1))) in

71 let aKj0 = aKj1 in

72 let aKj1 = PRF(X, bitstring_to_key(aKj1)) in

73 let aBj0 = aBj1 in

74 let aEpsi = Epsi0 in
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75 let aRb0 = aRb in

76 insert TA(A,bitstring_to_key(aK),aKj0 ,aKj1 ,aBj0 ,aBj1 ,aRb0);

77 let Tain = con(aEpsi ,con(host_to_bitstring(A),con(B,(

nonce_to_bitstring(Ra),nonce_to_bitstring(aRb))))) in

78 let Ta = mac(Tain , bitstring_to_key(akj)) in

79 let ma = (B,aEpsi ,Ta) in

80 out(c,ma)

81 (* ---->m_A *)

82 )

83 else

84 let Tbin = con(B,con(host_to_bitstring(A),con(nonce_to_bitstring(aRb),

nonce_to_bitstring(Ra)))) in

85 let Tb = mac(Tbin , bitstring_to_key(aKj0)) in

86 if Tb = aTb then

87 (

88 let aDhel = Dhel1 in

89 let akj = aKj0 in

90 let aEpsi = Epsi1 in

91 let aRb0 = aRb in

92 insert TA(A,aK ,aKj0 ,aKj1 ,aBj0 ,aBj1 ,aRb0);

93 let Tain = con(aEpsi ,con(host_to_bitstring(A),con(B,(

nonce_to_bitstring(Ra),nonce_to_bitstring(aRb))))) in

94 let Ta = mac(Tain , bitstring_to_key(akj)) in

95 let ma = (B,aEpsi ,Ta) in

96 out(c,ma)

97 (* ---->m_A *)

98 )

99 else

100 let Tbin = con(B,con(host_to_bitstring(A),con(nonce_to_bitstring(aRb),

nonce_to_bitstring(Ra)))) in

101 let Tb = mac(Tbin , bitstring_to_key(PRF(X, bitstring_to_key(aKj1))))

in

102 if Tb = aTb then

103 (

104 let aDhel = DhelN in

105 let akj = PRF(X, bitstring_to_key(aKj1)) in

106 let aK = PRF(X, aK) in

107 let aBj1 = PRF(X, bitstring_to_key(con(aBj1 ,aKj1))) in

108 let aKj0 = aKj1 in

109 let aKj1 = PRF(X, bitstring_to_key(aKj1)) in

110 let aBj0 = aBj1 in

111 let SKa = PRF(con(nonce_to_bitstring(Ra),nonce_to_bitstring(aRb)),

bitstring_to_key(aK)) in

112 let aK = PRF(X, bitstring_to_key(aK)) in

113 let aBj1 = PRF(X, bitstring_to_key(con(aBj1 ,aKj1))) in

114 let aKj0 = aKj1 in

115 let aKj1 = PRF(X, bitstring_to_key(aKj1)) in

116 let aBj0 = aBj1 in

117 let aEpsi = Epsi0 in

118 let aRb0 = aRb in

119 insert TA(A,bitstring_to_key(aK),aKj0 ,aKj1 ,aBj0 ,aBj1 ,aRb0);

120 let Tain = con(aEpsi ,con(host_to_bitstring(A),con(B,(

nonce_to_bitstring(Ra),nonce_to_bitstring(aRb))))) in
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121 let Ta = mac(Tain , bitstring_to_key(akj)) in

122 let ma = (B,aEpsi ,Ta) in

123 out(c,ma)

124 (* ---->m_A *)

125 )

126 else

127 yield

128 )

129 else

130 (* B||T^P_B <---- *)

131 in(c,(aB:bitstring ,aTpb:bitstring));

132 let B = aB in

133 if aEpsi = Epsi0 then

134 (

135 let akj = aKj1 in

136 let Tpbin = con(nonce_to_bitstring(aRb),nonce_to_bitstring(Ra)) in

137 let Tpb = mac(Tpbin , bitstring_to_key(akj)) in

138 if Tpb = aTpb then

139 (

140 let Tpain = con(nonce_to_bitstring(Ra),nonce_to_bitstring(aRb)) in

141 let Tpa = mac(Tpain , bitstring_to_key(akj)) in

142 let m3 = (B,Tpa) in

143 event beginsyncBkey(B, A, aRb , bitstring_to_key(akj));

144 out(c,m3)

145 (* ---->B||T^p_A *)

146 )

147 else

148 yield

149 )

150 else

151 if aEpsi = Epsi1 then

152 (

153 let akj = PRF(X, bitstring_to_key(aKj1)) in

154 let Tpbin = con(nonce_to_bitstring(aRb),nonce_to_bitstring(Ra)) in

155 let Tpb = mac(Tpbin , bitstring_to_key(akj)) in

156 if Tpb = aTpb then

157 (

158 let SKa = PRF(con(nonce_to_bitstring(Ra),nonce_to_bitstring(aRb)),

aK) in

159 let aK = PRF(X, aK) in

160 let aBj1 = PRF(X, bitstring_to_key(con(aBj1 ,aKj1))) in

161 let aKj0 = aKj1 in

162 let aKj1 = PRF(X, bitstring_to_key(aKj1)) in

163 let aBj0 = aBj1 in

164 let Tpain = con(nonce_to_bitstring(Ra),nonce_to_bitstring(aRb)) in

165 let Tpa = mac(Tpain , bitstring_to_key(akj)) in

166 let m3 = (B,Tpa) in

167 event beginsyncBkey(B, A, aRb , bitstring_to_key(akj));

168 event endBAuth(B, aRb);

169 out(c,m3)

170 (* ---->B||T^p_A *)

171 )

172 else
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173 yield

174 )

175 else

176 0.

177 (* Role of the responder *)

178 let processResponder =

179 (* A||r_A <---- *)

180 in(c,(bA:host , bRa:nonce));

181 get TB(bB ,bK ,bKj ,bf) in

182 new Rb: nonce;

183 let bTbin = con(bB ,con(host_to_bitstring(bA),con(nonce_to_bitstring(Rb),

nonce_to_bitstring(bRa)))) in

184 let bTb = mac(bTbin , bitstring_to_key(bKj)) in

185 new Ralfa: nonce;

186 let mb = (if bf= f1 then (nonce_to_bitstring(Ralfa),Rb ,bTb) else (bB ,Rb ,

bTb)) in

187 let bf= f1 in

188 event beginBparam(bB , Rb);

189 (* ---->m_B *)

190 out(c,(mb));

191 (* m_A <---- *)

192 in(c,(bBp: bitstring ,bEpsi: bitstring ,bTa: bitstring));

193 let Tapin = con(bEpsi ,con(host_to_bitstring(bA),con(bB ,con(

nonce_to_bitstring(bRa),nonce_to_bitstring(Rb))))) in

194 let Tap = mac(Tapin , bitstring_to_key(bKj)) in

195 if Tap = bTa then

196 if bEpsi = Epsi1 then

197 (

198 let bK = PRF(X, bK) in

199 let bB = PRF(X, bitstring_to_key(con(bB ,bKj))) in

200 let bKj = PRF(X, bitstring_to_key(bKj)) in

201 let SKb = PRF(con(nonce_to_bitstring(bRa),nonce_to_bitstring(Rb)),

bitstring_to_key(bK)) in

202 let bK = PRF(X, bitstring_to_key(bK)) in

203 let bB = PRF(X, bitstring_to_key(con(bB ,bKj))) in

204 let bKj = PRF(X, bitstring_to_key(bKj)) in

205 let bf= f0 in

206 insert TB(bB,bitstring_to_key(bK),bKj ,bf);

207 let Tpbpin = con(nonce_to_bitstring(Rb),nonce_to_bitstring(bRa)) in

208 let Tpbp = mac(Tpbpin , bitstring_to_key(bKj)) in

209 let m2 = (bB ,Tpbp) in

210 (* ---->B||T^p_B *)

211 out(c,m2)

212 )

213 else

214 let SKb = PRF(con(nonce_to_bitstring(bRa),nonce_to_bitstring(Rb)), bK)

in

215 let bK = PRF(X, bK) in

216 let bB = PRF(X, bitstring_to_key(con(bB ,bKj))) in

217 let bKj = PRF(X, bitstring_to_key(bKj)) in

218 let bf= f0 in

219 insert TB(bB,bitstring_to_key(bK),bKj ,bf);

220 let Tpbpin = con(nonce_to_bitstring(Rb),nonce_to_bitstring(bRa)) in
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221 let Tpbp = mac(Tpbpin , bitstring_to_key(bKj)) in

222 let m2 = (bB ,Tpbp) in

223 (* ---->B||T^p_B *)

224 out(c,m2);

225 (* B||T^p_A <---- *)

226 in(c,(bBpp:bitstring ,bTpa:bitstring));

227 let bTpapin = con(nonce_to_bitstring(bRa),nonce_to_bitstring(Rb)) in

228 let bTpap = mac(bTpapin , bitstring_to_key(bKj)) in

229 if bTpap = bTpa then

230 (

231 event endsyncBkey(bBpp , bA , Rb , bitstring_to_key(bKj));

232 event endAAuth(bA , bRa)

233 )

234 else

235 0.

C.3 Main process

Finally, the main process is defined by means of two process macros that represent the
processInitiator (line 242) and processInitiator (line 243) nodes. The initialization
phase of the scheme is presented in lines 237-240 for an initiator A and a responder B
in line 237, and lines 238-240, respectively. Finally, in lines 240-243, the parallel com-
positions of processInitiator and processResponder denoted by | with the unbounded
replication (denoted by !).

236 process

237 insert TA(A,bitstring_to_key(K),Kj0 ,Kj1 ,Bj0 ,Bj1 ,bitstring_to_nonce(Rb0

));

238 new f: bitstring;

239 let f = f0 in

240 insert TB(B,bitstring_to_key(K),Kj0 ,f);

241 (

242 (! processInitiator) |

243 (! processResponder)

244 )

C.4 Security properties

Security properties are declared with the keyword. In our example of SAKE+, the
goal is to establish the shared session key SKa = SKb between A and B after mutual
authentication by preserving the forward secrecy. The protocol should be robust against
the traceability and de-synchronization attacks. In order to check this, we consider the
following queries.

31 (*-SAKE+ queries -*)

32 query attacker(SKa).

33 query attacker(SKb).

34 query attacker(K).

35 query attacker(Kj0).

36 query attacker(Kj1).
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37 query attacker(Kj2).

38 query x: host , y: nonce; inj -event(endAAuth(x, y)) ==> inj -event(

beginAparam(x, y)).

39 query x: bitstring , y: nonce; inj -event(endBAuth(x, y)) ==> inj -event(

beginBparam(x, y)).

40 query x: bitstring , y: host , z: nonce , t: key; inj -event(endsyncBkey(x,y

,z,t)) ==> inj -event(beginsyncBkey(x,y,z,t)).

– The first six queries presented in lines 32-37 is base on a built-in predicate attacker
used to check which terms are compromised.

– The query presented in line 38 proves that B successfully authenticates A, if ProVerif
returns true. The event beginAparam is called in line 50 on the new nonce Ra

generated by the initiator A and the event endAAuth is called by the responder B
in line 23 after successful authentication of the initiator and establishing the session
key.

– The query presented in line 39 proves that A successfully authenticates B, if ProVerif
returns true. The events of this query are presented as beginBparam and endBAuth
in lines 188 and 168, respectively.

– The query presented in line 40 proves that the responder B will be successful in
the synchronization state using the events eginsyncBkey and endsyncBkey on the
master key K ′ (see lines 143,167 and 231) in case that true is resulted from ProVerif.

The results are illustrated bellow and show that all the events result in true, which
prove that the SAKE+ can preserve all the mentioned security queries.

1 Verification summary:

2 Query not attacker(SKa[]) is true.

3 Query not attacker(SKb[]) is true.

4 Query not attacker(K[]) is true.

5 Query not attacker(Kj0[]) is true.

6 Query not attacker(Kj1[]) is true.

7 Query not attacker(Kj2[]) is true.

8 Query inj -event(endAAuth(x,y)) ==> inj -event(beginAparam(x,y)) is true.

9 Query inj -event(endBAuth(x,y)) ==> inj -event(beginBparam(x,y)) is true.

10 Query inj -event(endsyncBkey(x,y,z,t)) ==> inj -event(beginsyncBkey(x,y,z,

t)) is true.

C.5 Analysis and discussion

As mentioned earlier, all the queries are solved as expected, that is, the correspondence
and secrecy ones are proved. We encode our security goals using the ProVerif queries
as follows:

Secrecy for a message, such as m2, encoded using MAC function that asks the ad-
versary to guess the value of K ′j ; if the adversary succeeds, the ProVerif issues false to
the query query attacker(Kj0).. We have the same discussion for the other terms free

X:bitstring [private]. in our scheme. For all of these queries, we received the result true

from ProVerif, which means that the protocol satisfies secrecy.
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Forward secrecy for a master key K ′j−1, we use the free Kj1:bitstring. instead of free

Kj1:bitstring [private]., which gives the attacker knowledge of the current master key K ′j
and asks the adversary to guess the value of K ′j−1 using the query query attacker(Kj0).;
if the adversary succeeds, the ProVerif issues false to the query. We received the result
true from ProVerif meaning that the protocol satisfies forward secrecy.

Authentication Considering the query presented in line 38, if ProVerif returns true,
it proves that B successfully authenticates A and considering the query presented in
line 39, if ProVerif returns true, it proves that A successfully authenticates B. By satis-
fying these two queries, we can ensure that our scheme provides mutual authentication
successfully.

Replay The events beginAparam, endAAuth, beginBparam and endBAuth used for
the authentication are based on the fresh nonces Ra and Rb. With regard to the result
true from both queries presented in lines 38 and 39, it proves that the scheme is secure
against the replay attack.

synchronization The query presented in line 40 proves that the responder B
will be successful in the synchronization state using the events eginsyncBkey and
endsyncBkey on the master key K ′ (see lines 143,167 and 231) in case that ProVerif
shows the true results.

In addition to the above queries, our scripts also include built-in predicate attacker
used to check which terms are compromised (presented in lines 32-37).
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