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Abstract

Time-lock puzzles are a mechanism for sending messages “to the future”, by allowing a
sender to quickly generate a puzzle with an underlying message that remains hidden until a
receiver spends a moderately large amount of time solving it.

We introduce and construct a variant of a time-lock puzzle which is non-malleable. A non-
malleable time-lock puzzle guarantees, roughly, that it is impossible to “maul” a puzzle into
one for a related message without solving it. The security of this construction relies on the
existence of any (plain) time-lock puzzle and it is proven secure in the auxiliary-input random
oracle model. We show that our construction satisfies bounded concurrency and prove that it is
impossible to obtain full concurrency. We additionally introduce a more general non-malleability
notion, termed functional non-malleability, which protects against tampering attacks that affect
a specific function of the related messages. We show that in many (useful) cases, our construction
satisfies fully concurrent functional non-malleability.

We use our (functional) non-malleable time-lock puzzles to give efficient multi-party protocols
for desirable tasks such as coin flipping and auctions. Our protocols are (1) fair, meaning that
no malicious party can influence the output, (2) optimistically efficient, meaning that if all
parties are honest, then the protocol terminates within two message rounds, and (3) publicly
verifiable, meaning that from the transcript of the protocol anyone can quickly infer the outcome,
without the need to perform a long computation phase. Our protocols support an unbounded
number of participants and require no adversary-independent trusted setup. Our protocol is
the first protocol that satisfies all of the above properties under any assumption. Security is
proven assuming the repeated squaring assumption and in the auxiliary-input random oracle
model. Along the way, we introduce a publicly verifiable notion of time-lock puzzles which is
of independent interest. This notion allows the solver of the puzzle to compute the solution
together with a proof which can be quickly verified by anyone.
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1 Introduction

Time-lock puzzles (TLPs), introduced by Rivest, Shamir, and Wagner [RSW96], are a cryptographic
mechanism for committing to a message, where a sender can (quickly) generate a puzzle with a
solution that remains hidden until the receiver spends a moderately large amount of time solving it
(even in the presence of parallel processors). Rivest et al. [RSW96] gave a very efficient construction
of TLPs where security relies on the repeated squaring assumption. This assumption postulates,
roughly, that it is impossible to significantly speed up repeated modular exponentiations in a group
of unknown order. This construction and assumption have proven extremely useful in various (and
sometimes unexpected) applications [BN00, LPS17, Pie19, Wes19, EFKP19, MT19, DKP20], some
of which have already been implemented and deployed in existing systems.

Non-malleability. In a Man-In-the-Middle (MIM) attack, an eavesdropper tries to actively maul
intermediate messages to compromise the integrity of the underlying values. To address such
attacks, Dolev, Dwork and Naor [DDN91] introduced the general concept of non-malleability in
the context of cryptographic commitments. Roughly speaking, non-malleable commitments are
an extension of plain cryptographic commitments (that guarantee binding and hiding) with the
additional property that no adversary can maul a commitment for a given value into a commitment
to a “related” value. As this is a fundamental concept with many applications, there has been a
tremendous amount of research on this topic [Bar02, PR05b, PR05a, LPV08, PPV08, LP09, PW10,
Wee10, Goy11, LP11, GLOV12, GPR16, COSV16, COSV17, Khu17, LPS17, KS17, KK19].

Non-malleable TLPs and applications. To date, non-malleability has never been considered
in the context of TLPs (or other timed primitives). Indeed, the construction of TLPs of [RSW96]
is malleable.1 This fact actually has negative consequences in various settings where TLPs could
be useful. For instance, consider a scenario where n parties perform an auction by posting bids on
a public bulletin board. To implement this fairly, a natural approach is to use a commit-and-reveal
style protocol, where each party commits to its bid on the board, and once all bids are posted each
party publishes its opening. Clearly, one has to use non-malleable commitments to guarantee that
bids are independent (otherwise, a malicious party can potentially bid for the maximal other bit
plus 1). However, non-malleability is not enough since there is a fairness issue: a malicious party
may refuse to open after seeing all other bids and so other parties will never know what her bid
was.

Using non-malleable TLPs to “commit” to the bids solves this problem. Indeed, the puzzle of
a party who refuses to reveal its bid can be recovered after some moderately large amount of time
by all honest parties. This style of protocol can also be used for fair multi-party collective coin
flipping where n parties wish to agree on a common unbiased coin. There, each party encodes a
random bit via a TLP and all parties will eventually agree on the parity of those bits.2 This gives
a highly desirable collective coin flipping protocol with an important property called optimistic
efficiency : when all parties are honest and publish their “openings” immediately after seeing all
puzzles, the protocol terminates and all parties agree on an unbiased bit. As we will see, no other
known protocol for this (highly important) task has this property.

1The puzzle of [RSW96] for a message s and difficulty T is a tuple (g,N, T, s⊕ g2
T

mod N), where N is an RSA
group modulus and g is a random element from ZN . The puzzle is trivially malleable since the message is one-time
padded.

2For coin flipping, there is an inherent fairness issue where a malicious party can always “prematurely abort” and
bias the output [Cle86]. Boneh and Naor [BN00] used timed primitives and interaction to circumvent the issue in the
two-party case but we care about the multi-party case and prefer to avoid interaction as much as possible.
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1.1 Our Result 1: Non-Malleable TLPs

Our first result is a construction of a non-malleable TLP. We emphasize that, as explained above,
this primitive is not only natural on its own right, but also has important applications to the design
of secure protocol for various basic tasks. Our construction relies on the existence of any given
TLP [RSW96, BGJ+16] and is proven secure in the (auxiliary-input) random oracle model [Unr07].
Our construction achieves non-malleability even in a bounded concurrent setting [PR08], preventing
any man-in-the-middle (MIM) attacker that sees an a priori bounded polynomial number of TLPs
with underlying values s1, . . . , sn from generating puzzles with underlying solutions s̃1, . . . , s̃n that
are somehow non-trivially related to s1, . . . , sn.

Theorem 1.1 (Informal; See Theorem 4.2 and Corollary 4.3). Assuming that there exists a TLP,
there exists a bounded concurrent non-malleable TLP. The scheme is proven secure in the auxiliary-
input random oracle model.

We remark about two additional useful properties of our construction:

• Depth-preserving hardness: If the given TLP is secure against attackers of depth T ε ·
poly(λ), where ε > 0 is a fixed constant and poly(·) is a fixed polynomial in the security
parameter λ, then so is the resulting non-malleable TLP. In other words, the reduction is
depth-efficient.

• Message length proportional security loss: If we want the resulting (one-one3) non-
malleable TLP to support L bit messages, we need the given underlying TLP to be secure
for bounded polynomial depth attackers of size 2L · poly(λ) for all polynomials poly(·) of the
security parameter λ. In particular, if we need a (one-one) non-malleable TLP for messages
of length up to L = O(log λ) bits, then we need to start off with a TLP with standard
polynomial security. If we need to encode much longer messages, say of length λ bits, then
we need our given TLP to be sub-exponentially secure. More generally, if we want to allow
the MIM attacker to see n concurrent TLPs with messages of length L and output n TLPs,
then the security loss is proportional to 2n·L · poly(λ).

Instantiating the TLP with the construction of [RSW96], our scheme is extremely efficient:
encoding a message requires a single invocation of a random oracle and few (modular) exponentia-
tions. Additionally, our construction is very simple to describe: to generate a puzzle for a solution
s with opening r, we sample a puzzle for (s, r) using randomness which itself depends (via the
random oracle) on s and r. Nevertheless, the proof of security turns out to be somewhat tricky
and non-trivial; see Section 2 for details. The efficiency and simplicity of our construction stand
in contrast to a previous construction [DKP20] whose main feature is that it is in the plain model
(without any form of setup), albeit they rely on a variety of assumptions and their construction is
not practical.

We prove that our scheme is non-malleable against all polynomial-size attackers that cannot
solve the puzzles (and this is inherent as the latter ones can easily maul any puzzle). We even allow
the attacker’s description to depend arbitrarily on the random oracle. We formalize this notion by
showing that our TLP is non-malleable in the auxiliary-input random oracle model, a model that
was introduced by Unruh [Unr07] (see also [CDGS18]) in order to capture preprocessing attacks,
where a non-uniform attacker obtains an advice string that depends arbitrarily on the random
oracle. Thus, in a sense, our construction does not require any form of attacker-independent setup.

3In one-one non-malleability the MIM attacker gets to see a single TLP and is allowed to output a single TLP.
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We emphasize that our protocol only achieves bounded concurrency, where the number of in-
stances the attacker participates in is a priori bounded (and the scheme may depend on this bound).
We show that the stronger notion of full concurrency, which does not place such limitations and
is achievable in all other standard settings of non-malleability, is actually impossible to achieve for
TLPs. Therefore, our result is best possible in this sense.

Theorem 1.2 (Informal; See Theorem 4.17). There is no fully concurrent non-malleable TLP
(even in the random oracle model).

In a nutshell, the impossibility from Theorem 1.2 is proven by the following generic MIM attack.
Given a puzzle z, if the number of “sessions” the attacker can participate in at least as large as
|z|, she can essentially generate |z| puzzles encoding the bits of z. Since the distinguisher in of the
MIM game (which is now given those bits) can run in arbitrary polynomial time, it can simply
solve the original puzzle and recover the original solution in full. This attack is circumvented in the
bounded concurrency setting (Theorem 1.1) by setting the length of the puzzle to be longer than
the concurrency bound.

Functional non-malleability. We note that the attack on fully concurrent non-malleable time-
lock puzzles crucially relies on the fact that the distinguisher in the MIM game can solve the
underlying puzzles. However, it is easy to see that if the distinguisher is restricted to bounded
depth, this attack fails.

In light of this observation, we introduce a new definition of non-malleability that generalizes
the standard notion considered in Theorem 1.1. We call the notion functional non-malleability
and, as the name suggests, the security notion is parameterized by a class of functions F . Denote
by L the bit-length of the messages we want to support and by n the number of sessions in
the input of the MIM attacker. We think of f ∈ F as some bounded depth function of the form
f : ({0, 1}L)n → {0, 1}m, which is the target function of the input messages that the MIM adversary
is trying to bias. Formally, we require that the distinguisher in the MIM game cannot distinguish
the function f applied to the values underlying the puzzles the MIM attacker outputs. When
F includes all identity functions (which are bounded depth and have output length m = n · L),
functional non-malleability implies the standard definition of concurrent non-malleability (as the
distinguisher just gets all the messages from the n mauled puzzles).

Naturally, it makes sense to ask what guarantees can we get if we a priori restrict f , say in
its output length, without limiting the number of sessions n. This turns out to particularly useful
when the application in hand only requires non-malleability against a specific form of tampering
functions (this indeed will be the case for us below). Concretely, let Fm,d to be the class of all
functions whose output length is at most m bits and can be computed in fixed depth d on input
length n · L (using the notation given above). Then, we have the following result.

Theorem 1.3 (Informal; See Theorem 4.2). Assuming that there exists a TLP, then for every
m, d ∈ poly(λ) there exists a fully concurrent functional non-malleable TLP for the class functions
Fm,d. The scheme is proven secure in the auxiliary-input random oracle model assuming the given
TLP is secure for all attackers of size at most 2m · poly(λ).

The above construction satisfies depth hardness preserving property as the construction from
Theorem 1.1. Further, note that as long as m ∈ O(log λ), we only require standard polynomial
hardness from the given TLP.

We remark that Theorem 1.3 will turn out to be instrumental for our applications we discuss
below. We also believe that the abstraction of functional non-malleability is important on its own
right and view it as an independent contribution.
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1.2 Our Result 2: Fair Multi-Party Auctions and Coin Flipping

As we mentioned, an appealing application of non-malleable TLPs is for tasks such as fair multi-
party auctions or coin flipping. Our protocols (for both tasks) are extremely efficient and consist
of just two phases: first each party “commits” to her bid/randomness using some puzzle, and then
after all puzzles are made public, each party publishes its solution. If some party refuses to open
their puzzle, a force-opening phase is performed.

In what follows, we focus on the task of fair multi-party coin-flipping, which is a core building
blocks in recent proof-of-stake block-chain designs; see below. The application to auctions follows
in a similar manner. It is convenient to consider our protocol in a setting where there is a public
bulletin board. Any party can publish a puzzle to the bulletin board during the commit phase
and then publish its solution after some pre-specified amount of time has elapsed. Our protocol
requires no form of adversary-independent trusted setup (not even a common random string). We
further emphasize the following highly desirable properties we achieve:

• Optimistic Efficiency: If all participating parties are honest, then the protocol terminates
within two message rounds (without the need to wait the pre-specified amount of time for
the second phase), and all parties can efficiently verify the output of the protocol.

• Fairness: No malicious party can bias the output of the protocol. Namely, as long as there is
at least one honest participating party, the output will be a (nearly) uniformly random value.

• Public Verifiability: In the case that any participating party is dishonest and does not publish
their solution, any party can break the puzzle in a moderate amount of time and provide a
publicly verifiable proof of the solution. We even require that an honest party can prove that
a published puzzle has no valid solution.

We note that optimistic efficiency is a typical feature of multi-party protocols using the “commit-
and-reveal” paradigm, which we employ using time-lock puzzles as the analog of commitments.
However, to obtain fairness and public verifiability, we make use of new additional properties
of time-lock puzzles. Fairness follows from the notion of concurrent functional non-malleability,
which, as described above, we achieve generically from any time-lock puzzle in the auxiliary-input
random oracle model. In order to get public verifiability, we define and construct a related notion
of publicly verifiable time-lock puzzles. We build such time-lock puzzles using a variant of verifiable
delay functions (VDFs) [BBBF18, Wes19, Pie19] that can be solved fast using a trapdoor—the
precise set of properties that we need are (non-trivially) satisfied by the known VDF construction
of Pietrzak [Pie19] based on the repeated squaring assumption in the random oracle model. Put
together, we achieve the following result.

Theorem 1.4 (Informal; See Theorem 6.1). Assuming the repeated squaring assumption, there
exist multi-party coin-flipping and auction protocols that satisfy optimistic efficiency, fairness, and
public verifiability. The protocols support an unbounded number of participants and require no
adversary-independent trusted setup. Security is proven in the auxiliary-input random oracle.

Our protocol is the first multi-party auction protocol under any assumption that satisfies fairness
and requires no adversary-independent setup—the construction of [BN00] relies on trusted setup
and the construction of [MT19] does not satisfy fairness. For coin-flipping, a protocol due to Boneh
et al. [BBBF18] (that uses VDFs and a random oracle4) does not satisfy optimistic efficiency: even

4In their protocol, each party publishes a random string ri and then the agreed upon coin is defined by running
a VDF on the seed H(r1‖ . . . ‖rn), where H is a random oracle.
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in the fully honest execution getting the agreed upon coin flip requires a long computation. In
contrast, our protocol terminates extremely fast when all parties are honest. On the other hand,
our protocol requires two phases while the one of Boneh et al. [BBBF18] requires only one (if the
the setup is given for free or in the random oracle model). For our protocol, we could fall back
to a single phase where a single party solves all puzzles after they are published, but this is more
expensive than the protocol of [BBBF18] which requires only a single party to solve one puzzle.
Malavolta and Thyagarajan [MT19] address this inefficiency in the context of time-lock puzzles by
constructing homomorphic time-lock puzzles, where many separate puzzles can be combined into
a single puzzle to be solved. However, their TLP scheme is malleable and so cannot be directly
used to obtain a fair protocol. We note that because our protocol satisfies public verifiability, only
a single honest party needs to solve each puzzle, and this computation can easily be delegated to
an external server.

We emphasize that our protocol supports an a priori unbounded number of participants. This
may seems strange in light of our impossibility from Theorem 1.2. We bypass this lower bound
(as mentioned above) by observing that for most natural applications (including coin-flipping and
auctions), the notion of functional non-malleability from Theorem 1.3 suffices. The key insight
is that we only need indistinguishability with respect to specific depth-bounded functions with
short output (e.g., parity for coin-flipping, or taking the maximum for auctions). Since the output
in both cases is short, we can actually support full concurrency which translates into having an
unbounded number of participants. Additionally, we do not need complexity leveraging and can
base our protocol on standard polynomial hardness.
Non-interactive coin flipping. As mentioned, our protocol has a natural non-interactive fall
back to a non-interactive (single phase) protocol where all parties just publish their puzzles and
then a (possibly external) evaluator solves all puzzles. Our protocol does not rely on any attacker-
independent trusted setup. This is the first protocol of this kind—the only previously known
protocol of [BBBF18] relies on (adversary-independent) trusted setup.

Publicly-verifiable non-malleable TLPs. As we hinted above, along the way we construct a
non-malleable TLP which has an additional public verifiability property: after one party solves the
puzzle, she can publish the underlying solution together with a proof which can be later used by
anyone to quickly verify the correctness of the solution. We believe this primitive is of independent
interest. We build our TLP assuming a very weak form of (partially) trusted setup. We design the
setup to fit into our multi-party protocol application (Theorem 1.4) such that the parties themselves
will generate this setup in the puzzle generation phase. The setup of our publicly-verifiable non-
malleable TLP consists of a set of many public parameters where we only assume that at least one
of them was generated honestly. We call this model the All-But-One-string (ABO-string) model.5

Theorem 1.5 (Informal; See Corollary 5.10). Assuming the repeated squaring assumption, there
exists a publicly verifiable non-malleable TLP in the ABO-string model. The construction is proven
secure in the auxiliary-input random oracle model.

The above construction satisfies the same depth hardness preserving and message length pro-
portional security loss properties as the construction from Theorem 1.1.

5Our ABO-string model is a variant of the multi-string model of Groth and Ostrovsky [GO14], where it is assumed
that a majority of the public parameters are honestly generated.
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1.3 Related Work

Non-malleable TLPs. The study of non-malleability in the context of TLPs is new to this
work and as we mentioned it has exciting applications. Such a puzzle was implicitly constructed
in [DKP20] (presented there as a non-malleable code for bounded polynomial depth attackers).
That construction is in the plain model, without any setup assumptions, however it relies on a
variety of assumptions and it should be viewed as a feasibility result. Our approach, on the other
hand, is more oriented towards practical constructions and therefore we are willing to assume some
very weak form of setup (i.e., AI-ROM). Additionally, our construction is somewhat reminiscent to
the Fujisaki-Okamoto (FO) transformation [FO13] used to generically transform any CPA-secure
public-key encryption scheme into a CCA-secure one using a random oracle. Nevertheless, while
conceptually the transformation is similar, since we are dealing with concurrent non-malleability
in the bounded polynomial depth setting, our actual proof turns out to be quite challenging.

Fair multi-party coin flipping. A recent work of Malavolta and Thyagarajan [MT19] sug-
gested to use plain TLPs to implement fair auctions and coin flipping protocols. They showed
how efficiency in such protocols can be improved by modifying the [RSW96] repeated-squaring
based TLP to be homomorphic in the sense that one can homomorphically combine many TLPs
into a single one and then only solve that one. However, using plain TLPs results in a secure
protocol only if one assumes that the parties act honestly (i.e., the honest-but curious model).
It is possible to make this protocol maliciously secure using say concurrent non-malleable zero-
knowledge proofs [BPS06, OPV10, LPTV10, LP11], proving that each party acted honestly, but
this (1) makes the construction significantly less efficient, and (2) requires either trusted setup
and additional hardness assumptions, or additional rounds of interaction. Our solution achieves
malicious security while avoiding all of these drawbacks (but our puzzles are not homomorphic).

Let us remark that the protocols that we described guarantee fairness but not privacy. The
latter, however, can be obtained in specific applications by composing our protocols with existing
privacy-preserving tools such as Anonize [HMPS15].

Applications of fair coin flipping. Obtaining unbiased randomness (or a coin flip) is a natural
and important building block in many systems. One well known example is online games, say card
games, where participants desire to be certain that the randomness that is used in the game is
unbiased.

In fact, generating unbiased bits is one of the largest bottlenecks in modern proof-of-stake
crypto-currency designs [BPS16, DPS19, DGKR18]. Recall that in a proof-of-stake blockchains, the
idea is, very roughly speaking, to enforce “one vote per unit of stake”. This is usually implemented
by choosing random small committees at every epoch and letting that committee decide on the
next block. The main question is how to obtain “pure” randomness so that the chosen committee
is really “random”.

One option is to use the hash of an old-enough block as the randomness. Unfortunately, it
is known that the hash of a block is not completely unbiased: an attacker can essentially fully
control about logarithmically many of its bits. In existing systems, this is mitigated by “blowing
up” parameters to compensate for the (small yet meaningful) advantage the attacker has, making
those systems much less efficient. Using a mechanism that generates unbiased bits, we could make
proof-of-stake crypto-currencies much more efficient.

Timed commitments. Boneh and Naor [BN00] introduced timed commitments, which can be
viewed as a publicly verifiable and interactive TLP. They additionally require that the puzzle (which
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is an interactive commitment) convinces the receiver that if they brute-force the solution, they will
succeed. Because of this additional property, their commitment scheme is interactive and relies on
a less standard assumption called the generalized Blum-Blum-Shub assumption. Their scheme is
additionally malleable.

2 Technical Overview

In Section 2.1, we give an overview of our non-malleable time-lock puzzle construction and its proof
of security. Then in Section 2.2, we overview our construction public verifiable (and non-malleable)
time-lock puzzles from repeated squaring. Finally in Section 2.3, we discuss how our non-malleable
and publicly verifiable time-lock puzzle construction can be used for fair multi-party coin-flipping
with various desirable properties.

We start by recalling the definition of TLPs, as necessary to give an overview of our techniques.
A TLP consists of two algorithms (Gen, Sol). Gen is a probabilistic procedure that takes as input
an embedded solution s and a time parameter t, and outputs a puzzle z. Sol is a deterministic
procedure that on input a puzzle z for time bound t, outputs a solution in depth (or parallel time) t.
We note that TLPs can be thought of as a fine-grained analogue to commitments where “hardness”
of the puzzle means that the puzzles are hiding against distinguishers of depth less than t. On the
other hand, hiding can be broken in depth t (using Sol). Additionally, we require that Sol always
finds the correct underlying solution s for a puzzle z. This corresponds to perfect biding in the
language of commitments.

2.1 Non-Malleability for Time-Lock Puzzles

Non-malleability, at a high level, requires that any man-in-the-middle (MIM) attacker A that
receives a puzzle z with solution s cannot output a different puzzle z̃ for a related value s̃. Formally,
we consider the (inefficient) distribution mimA(s, t) that computes z̃ = A(Gen(s, t)) and outputs
the value s̃ underlying z̃. However, if z = z̃, then s̃ = ⊥ (since simply forwarding the commitment
does not count as a valid mauling attack), and if there is no valid value underlying z̃, then s̃ is also
⊥. Then, non-malleability requires that for any MIM attacker with depth much less than t (so it
cannot break hiding) and solution s, the distribution for value s̃ given by mimA(s, t) is statistically
indistinguishable from the distribution mimA(0, t) for an unrelated value, 0. We emphasize that
indistinguishability should hold even against unbounded distinguishers that, in particular, can run
Sol.6

Our construction. Our construction relies on any time-lock puzzle TLP and a common random
oracle O. We now describe our non-malleable TLP, which we denote nmTLP. In order to generate
a puzzle for a solution s that can be broken in time t, nmTLP.Gen uses randomness r and feeds s‖r
into the random oracle to get a string rtlp. It then uses TLP.Gen to create a puzzle with difficulty
t for s‖r using randomness rtlp. That is,

nmTLP.Gen(s, t; r) := TLP.Gen(s‖r, t;O(s‖r)).

Note that in order to solve the puzzle output by nmTLP.Gen, it suffices to just solve the puzzle
generated using TLP.Gen, which takes time t. In other words, nmTLP.Sol(z) simply computes
s‖r = TLP.Sol(z) and outputs s.

6We could also naturally consider a computational notion of non-malleability that requires only computational
indistinguishability. Still, an arbitrary polynomial time attacker could also run the Sol algorithm.
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Hardness. To show the hardness of nmTLP relative to a random oracle, we rely on the hardness
of TLP in the plain model, against attackers of depth much less than t. At a high level, we should
that breaking the hardness of nmTLP requires either guessing the randomness r used to generate
the randomness O(s||r) for the underlying puzzle, or directly breaking the hardness of TLP, both
of which are infeasible for bounded attackers. To formalize this, we consider any depth-bounded
distinguisher DO, who receives as input a nmTLP puzzle z corresponding to solution s0 or s1 and
distinguishes the two cases with noticeable probability. By construction, z actually corresponds to
a TLP puzzle for s0||r0 or s1||r1, so we would like to use D to construct a distinguisher against the
hardness of TLP.

We first note that if D never makes a query to O containing the randomness rb underlying z,
then we can simulate O by lazily sampling it in the plain model, and hence use D as a distinguisher
for the hardness of TLP. If D does make a query containing rb, then with overwhelming probability
it must have received a puzzle corresponding to sb||rb (since in this case, r1−b is independent of D
and its input z). Moreover, all of its queries up until that point have uniformly random answers
independent of z, so we can simulate them as well, up until receiving this query. Therefore, in both
cases, we can carry out this attack in the plain model and rely on the hardness of TLP.

Non-malleability. To show non-malleability of nmTLP, we want to argue that any depth-
bounded man-in-the-middle (MIM) attacker A cannot maul a puzzle z for s (received on the left) to
a puzzle z̃ (output on the right) for a related value s̃ 6= s. At a high level, whenever A changes the
underlying value s to s̃, then the output of the random oracle on s̃ is now uniformly random and
independent of z. Indeed, we show that for any fixed puzzle z̃ and a value s̃, a randomly generated
puzzle for s̃ will not be equal to z̃ with high probability (otherwise we show how to break the
hardness of TLP). So, intuitively, the only way to generate a valid puzzle z̃ for s̃ is to “know” the
underlying value s̃, but hardness intuitively implies that no depth-bounded adversary can “know”
s.

We formalize this intuition by a hybrid argument to show that the MIM distribution s̃ ←
mimA(s, t) is indistinguishable from mimA(0, t). At a high level, we first replace the inefficient
distribution mimA(s, t) by a low-depth circuit B. At this point, we want to use the hiding property
to indistinguishably swap the puzzle to 0, so the hybrid is now unrelated to s. We describe the key
ideas for these hybrids below.

For the first hybrid, the key insight is that we can compute mimA(s, t) in low depth using an
algorithm B by simply looking at the oracle queries made by A. In this sense, we are relying on the
extractability property of random oracles to say that A must know any valid value s̃ it generates
a puzzle for. Specifically, let z̃ be the output of A. For every query (si‖ri) that A makes to O, B
outputs si if z̃ = nmTLP(si‖ri, t;O(si‖ri)). If there are no such queries, B outputs ⊥. B requires
depth comparable to the depth of A since all of these checks can be done in parallel. Furthermore,
the output of B is indistinguishable from the true output given the above observation that A cannot
output a valid puzzle for a value it doesn’t query.

For the next hybrid, we would like to indistinguishably replace the underlying puzzle for s with
a puzzle for 0, which would suffice to show non-malleability. Because B is low-depth, it seems
that we should be able to use the hiding property of nmTLP to say that the output of B does
not depend on the underlying value s. Specifically, we want to conclude that if the output of B
(who outputs many bits) is statistically far when the underlying value is s versus 0, then there
exists a distinguisher (who outputs a single bit) that can distinguish puzzles for s and 0. Towards
this claim, we show how to “flatten” any (possibly unbounded) distinguisher D who distinguishes
between the output of B in the case where the underlying value is s versus 0. Specifically, we encode
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the truth table of D as a low-depth distinguishing circuit of size roughly 2|s| to make this reduction
go through. As a result, we need to rely on a sub-exponentially security of the underlying TLP
when |s| = λ. Namely, the underlying TLP cannot be broken by sub-exponential sized circuits with
depth much less than t. However, when |s| ∈ O(log λ), we only need to rely on polynomial security
of the underlying TLP.

Impossibility of fully concurrent non-malleability. Ideally, we would like to achieve fully
concurrent non-malleability, meaning that any MIM attacker that receives any polynomial n number
of puzzles on the left cannot maul them to n puzzle for related values. However, we show that this
is impossible to achieve.

Consider an arbitrary TLP for a polynomial time bound t. We construct a MIM attacker A
that receives only a single puzzle z on the left with solutions s where the length of z is L. A can
split z into L bits and output a puzzle on the right for each bit of the puzzle z. Then, the values
underlying the puzzles output by A when viewed together yield z, which is related to the value s!
More formally, there exists a polynomial time distinguisher that solves the puzzle z in polynomial
time t and can distinguish A’s output in the case when it receives a puzzle for s or an unrelated
value, say 0.

This implies that for any n which is greater than the size of a puzzle, the TLP cannot be non-
malleable against MIM attackers who output at most n puzzles on the right. At a high level, the
impossibility follows from the fact that hardness does not hold against arbitrary polynomial-time
distinguishers (which usually is the case for hiding of standard commitments).

Despite this impossibility, we show that we actually can achieve concurrent non-malleability
against a specific class of distinguishers in the non-malleability game. We refer to this notion as
concurrent functional non-malleability.

Achieving concurrent functional non-malleability. In many applications, we only need a
form of non-malleability to hold with respect to certain classes of functions. For example, in our
application to coin-flipping, we only need that a puzzle z with solution s cannot be mauled to a set
of puzzles z̃1, . . . , z̃n with underlying values s̃1, . . . , s̃n such that

⊕
i∈[n] s̃i “depends on” s. With this

in mind, we define a concurrent functional non-malleability with respect to a class of functions F .
We say that a TLP satisfies functional non-malleability for a class F if the output of f(mimA(s, t))
is indistinguishable from f(mimA(0, t)) for any f ∈ F , which also naturally generalizes to the
concurrent setting. we note that functional non-malleability for a class F actually implies standard
non-malleability whenever the class F contains the identity function, so functional non-malleability
generalizes the standard notion of non-malleability.

Going back to the proof of standard (non-concurrent) non-malleability for our construction
nmTLP, we observe that the security we need for the underlying time-lock puzzle we use depends
on 2|s| where |s| is the size of the puzzle solutions. Specifically, given any distinguisher in the non-
malleability that had input of size |s|, we were able to construct a distinguisher for hardness of size
2|s|. In fact, this exact same proof works in the context of concurrent functional non-malleability
for functions f that have low depth and bounded output length m. We require f to be low depth
so the reduction constitutes a valid attack against hardness, and then we only require security
proportional to 2m!

We briefly discuss how our nmTLP construction works for concurrent functional non-malleability
for the class Fm of function with low depth and output length m. Specifically, for every m, we define
a scheme nmTLPm assuming that TLP is secure against attackers of size roughly 2m. Because TLP
requires security against 2m size attackers, our construction nmTLPm also only achieves security
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against 2m size attackers. As such, our nmTLP.Gen algorithm needs to use at least m + λ bits of
randomness (otherwise an attacker could cycle through all choices of randomness to break security).
Recall that nmTLPm.Gen with randomness r outputs a puzzle using TLP.Gen with solution s‖r.
As a result, if we want to support solutions of size |s| in nmTLPm, we need our underlying TLP so
support solutions of size at least |s|+m+λ. By correctness, this implies that our schemes outputs
puzzles of size roughly O(|s|+m+ λ).

Bounded concurrent non-malleability. Our construction of time-lock puzzles for concurrent
functional non-malleability can also be seen as a construction for bounded concurrent (plain) non-
malleability. Specifically, consider the case where the MIM attacker outputs at most n puzzles “on
the right.” We can think of this as functional non-malleability where the low depth function is
simply identity on n · |s| bits. From the above discussion, this implies a protocol assuming a TLP
with security against size 2n·|s| attackers, with puzzles of size roughly O(n · |s|+ λ).

Security in the auxiliary-input random oracle model. Finally, we remark that all of our
constructions and all formal proofs in the main body of the paper are in the auxiliary-input random
oracle model (AI-ROM) introduced by Unruh [Unr07]. In this model, the non-uniform attacker is
allowed to depend arbitrarily on the random oracle, so there is no attacker-independent non-uniform
advice. At a high level, we use the result from [Unr07] (restated in Lemma 3.6) to conclude that the
view of any bounded-size MIM attacker A with oracle access to O (where A may depend arbitrarily
on O) is indistinguishable the view of A with access to a “lazily sampled” oracle P that is fixed
at a set of points F (which depend on A). Formally, in the non-malleability analysis, we switch
to an intermediate hybrid where the MIM attacker has access to a partially fixed, lazily sampled
oracle P. Then, because the MIM attacker A must maul honestly generated puzzles that have high
entropy, we show that it is necessary for A to query the oracle P outside the fixed set of points F .
From this, we carefully show that a similar analysis follows as discussed above for the ROM.

2.2 Publicly Verifiable Time-Lock Puzzles

We observe that the non-malleable time-lock puzzle construction nmTLP we described above has
a very natural—yet incomplete—public verifiability property. Solving a puzzle yields both the
solution s and the randomness r use to generate that puzzle. As such, anyone who solves a valid
puzzle can send the opening r to another party, and convince them that s is the unique valid
solution to the puzzle. However, we emphasize that this only works for valid puzzles and solutions.

Consider the following problematic scenario for our nmTLP construction. Suppose a party
“commits” to a value via a puzzle z and refuses to open the commitment. As we said before, if
z is a valid puzzle, any party can can solve the puzzle, get the solution s and an opening r that
proves that s is the unique solution. What if the puzzle corresponds to no solution? We refer to
this scenario by saying that the puzzle corresponds to the solution ⊥. In this case (by definition),
there is no solution s and opening r for any such that z = Gen(s, t; r). Anyone who solve the invalid
puzzle—which requires a lot of computational power—will be able to conclude that the puzzle is
malformed, but they will not be able to convince anyone else that this is the case. Ideally, we
would have a time-lock puzzle where Sol additionally outputs a publicly verifiable proof π that the
solution it computes is correct, even if the solution may be ⊥! We refer to such a time-lock puzzle
as a publicly verifiable time-lock puzzle. We next discuss the definition and our construction of
publicly verifiable time-lock puzzles.
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Defining public verifiability. More formally, a publicly verifiable time-lock puzzle consists
of algorithms (Gen,Sol,Verify). As with normal time-lock puzzles, Gen(s, t) outputs a puzzle
z. Sol(z, t) outputs the solution s as well as a proof π that it computed s correctly. Finally
Verify(z, (s, π), t) checks that s is indeed the correct solution for the puzzle z (corresponding to
Sol(z, t)), using the proof π. In addition to (Gen,Sol) being a valid time-lock puzzle, we require
that Sol and Verify constitute a sound non-interactive argument. In fact, we require a very strong
notion of soundness. We need it to be the case that even for maliciously chosen puzzles that have
no solution, the time-lock puzzle is still sound—even against the adversary that generated the
malformed puzzle. In other words, we require that no attacker can compute a puzzle z, a value s′,
and a proof π′ such that Verify(z, (s′, π′), t) accepts yet s′ is not the value s computed by Sol(z, t),
which may be ⊥.

Ideally, we would want a publicly verifiable time-lock puzzle that requires no setup. We instead
consider a weak form of setup which we refer to as the All-But-One-string (ABO-string) model. In
this model, Sol and Verify additionally take as input a string mcrs = (crs1, . . . , crsn) ∈ ({0, 1}λ)n,
and we require that soundness holds as long as one of the values of crsi is sampled uniformly
(without necessarily knowing which one); this is why we refer to it as the all-but-one string model.
We note that in multi-party protocols, the ABO-string model is realistic as each participant i ∈ [n]
can post a value for crsi. Then, we require soundness to hold as long as one participant is honest,
which is a reasonable assumption in this multi-party setting.

Constructing publicly verifiable time-lock puzzles. Our construction of a publicly verifi-
able time-lock puzzle follows the blueprint of Rivest, Shamir, and Wagner [RSW96] for construct-
ing time-lock puzzles from repeated squaring. Namely, we use the output of a sequential function
(repeated squaring in a suitable group) essentially as one-time pad to mask the value underlying
the time-lock puzzle. As in [RSW96], we require that the sequential function has a trapdoor so that
puzzles can be generated efficiently. Unlike [RSW96], we additionally require that the sequential
function is publicly verifiable to enable publicly verifiability for the time-lock puzzle. Finally, we
apply the non-malleability transformation described above to achieve full public verifiability. In
what follows, we describe each of these steps in more detail.

For the underlying sequential function, we use what we call a strong trapdoor verifiable delay
function (VDF). A VDF (introduced by Boneh et al. [BBBF18]) is a publicly verifiable sequential
function that can be computed in time t but not much faster, even with lots of parallelism. A
trapdoor VDF (formalized by Wesolowski [Wes19]) additionally has a trapdoor for quick evaluation.
We require a trapdoor VDF in the ABO-string model that satisfies additional properties required
by our application. While the properties we define—an achieve—are heavily tailored towards our
application, we believe some of the techniques may be of independent interest. More specifically, a
strong trapdoor VDF comes with a Sample algorithm to generate inputs for an evaluation algorithm
Eval. We emphasize that, even in the ABO-string model, Sample is independent of any form of
setup. Previous definitions of VDFs require the proof to be sound with probability over an honestly
sampled input. In contrast, we require that the proof is sound for any maliciously chosen input that
is in the support of the Sample algorithm. We note that this property is satisfied by a variant of
Pietrzak’s VDF [Pie19] based on repeated squaring. At a high level, this is because Pietrzak’s VDF
is sound (at least in the random oracle model) for any group of unknown order where no adversary
can find a group of low order (see e.g.[BBF18] for further discussion), so by using any RSA group
with no low order elements (as in [Pie19]), the proof is sound even if the group is maliciously chosen
(yet still a valid RSA group), which gives the strong property we need. We note that the proof of
soundness for our strong trapdoor VDF in the ABO-string + auxiliary-input random oracle model
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follows by a similar argument to that of [Pie19] in the (plain) random oracle model after applying
Unruh’s Lemma [Unr07] (stated in Lemma 3.6).

Next, we construct what we refer to as a one-sided publicly verifiable time-lock puzzle in the
ABO-string model by using the strong trapdoor VDF in the RSW-style construction described
above. By one-sided, we mean that completeness and soundness hold only for puzzles in the
support of Gen (again, we emphasize that this is in contrast to a randomly sampled puzzle). Then,
our full construction applies our non-malleability transformation to a one-sided publicly verifiable
time-lock puzzle. We already argued that the non-malleability transformation provides a form of
public verifiability for puzzles z in the support of Gen. Namely, anyone can prove to another party
that a valid puzzle z has a solution s, but the proof may not be sound when trying to prove that
a puzzle has no solution. However, we next show that if the underlying puzzle satisfies one-sided
public verifiability, then the resulting (NM) PV TLP is sound for any z ∈ {0, 1}∗ (possibly not in
the support of Gen).

Proof of full public verifiability. Let (Gen,Sol,Verify) be the result of applying our non-
malleability transformation to a one-sided PV TLP (Gentlp, Soltlp,Verifytlp). Consider any puzzle
z ∈ {0, 1}∗. If z is in the support of Gen, we want to ensure that no one can prove that s′ = ⊥ is a
valid solution. At the same time, if z is not in the support of Gen, we want to ensure that no one
can prove that s′ 6= ⊥ is a valid solution.

When we run Sol(z, t), we first run Soltlp(z, t) and get a solution stlp = ŝ‖r̂ with a proof πtlp.
If r̂ is a valid opening for the proposed solution ŝ, then Sol can simply output the solution s = ŝ
and the proof π = r̂. If r̂ is not a valid opening for ŝ, Sol must output ⊥ and a proof π that this
is the case. We set π = (stlp, πtlp), which intuitively gives anyone else a way to “shortcut” the
computation of Soltlp.

Now suppose that an adversary tries to falsely convince you that a puzzle z with no solution
has a solution s′ 6= ⊥ using a proof π′ = r′. To do so, it must be the case that r′ is a valid opening
for s′ with respect to Gen. But if that were the case, then z would have a solution, in contradiction.

On the other hand, suppose that an adversary tries to falsely convince you that a puzzle z with
solution s has no solution, i.e. s′ = ⊥, using a proof π′ = (s′tlp, π

′
tlp). Since z has a solution, it

means that z is in the support of Gentlp. By one-sided public verifiability, this means that π′tlp is a
valid proof that s′tlp = ŝ‖r̂ is the correct solution to z with respect to Gentlp. So if r̂ is not a valid
opening for ŝ with respect to Gen, we know the adversary must be lying. In other words, the only
way the adversary can cheat is by cheating in the underlying one-sided PV TLP on a puzzle z in
the support of Gentlp.

Discussion of our non-malleable PV TLP. We note that the publicly verifiable time-lock
puzzle we described above can be made to satisfy the same non-malleability guarantees as we
discuss in Section 2.1 (as we construct it using the same transformation but with a specific un-
derlying time-lock puzzle). Thus, assuming the repeated squaring assumption, we get a publicly
verifiable time-lock puzzle that satisfies concurrent function non-malleability for any class of low
depth functions Fm with output length m. Our construction is in the ABO-string model, and we
prove security in the auxiliary-input random oracle model (which is needed for soundness of the
strong trapdoor VDF in the ABO-string model in addition to the non-malleability transforma-
tion). This model is reasonable for our practical applications to multi-party protocols, as we will
see below.

We note that our explicit repeated squaring assumption states that repeated squaring in RSA
groups for n-bit integers cannot be sped up even by size 2m adversaries. The repeated squaring
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assumption is closely related to the assumption on factoring. The current best known algorithms
for factoring run in time at least 2n

1/3
. In the case where m ∈ O(log λ), for example, we only

require that polynomial-size attackers cannot speed up repeated squaring, which is a relatively
mild assumption. In the case where m is larger, say m = λ, then we need to choose n to be at least
λ3 (based on known algorithms for factoring). This gives an example of the various trade-offs we
get for the security and efficiency of our construction depending on the class of low depth functions
Fm that we want non-malleability for.

2.3 The Fair Multi-Party Protocols

We will focus on coin flipping for concreteness, and note that for auctions the ideas are similar. At a
high level, the coin flipping protocol is very simple. Each party chooses a random bit and publishes
a time-lock puzzle that encodes the chosen bit. After all puzzles are published, each party open their
puzzle by revealing the bit that it used as well as the randomness used to generate the puzzle. Any
puzzle that is not opened can be “solved” after a moderately large amount of time t. Once all puzzles
have been opened, the agreed upon bit (i.e., the output of the protocol) is the XOR of all revealed
bits. The above protocol template is appealing because it naturally satisfies optimistic efficiency:
if all parties are honest and open their puzzles, the protocol terminates immediately. When using
time-lock puzzles which are both non-malleable (as discussed in Section 2.1) and publicly verifiable
(as discussed in Section 2.2), we achieve the following highly desirable properties:

• Fairness: No malicious party can bias the output of the protocol.

This crucially relies on non-malleability for the underlying time-lock puzzle. For a protocol
with n participants, we need the time-lock puzzle to satisfy n-concurrent non-malleability.
This guarantees that as long as one party is honest, the output of the protocol will be (at
least statistically close to) a uniformly random bit.

• Unbounded participants: Anyone can participate in the protocol.

This property might come at a surprise since we show fully concurrent non-malleability is
impossible to achieve. However, we emphasize that our time-lock puzzle achieves fully con-
current functional non-malleability for the XOR function. This allows us to deal with any
a priori unbounded number of participants, which is important in many decentralized and
distributed settings.

• Public verifiability: Only one party needs to solve each unopened puzzle, and can provide a
publicly verifiable proof that it solved it correctly.

This follows immediately by the public verifiability property we achieve for the underlying
time-lock puzzle. Without this property, any unopened puzzles may need to be solved by
every party that want to know the output of the protocol, which is prohibitively expensive.
However, public verifiability instead opens up the application to any party, not even involved
in the protocol. Furthermore, this work can even be delegated to an external server since
trust is guaranteed by the attached proof.

We note that our non-malleable and publicly verifiable time-lock puzzle is defined in the All-
But-One-string (ABO-string) model, which is required for public verifiability. To implement this
model, we have each participant i publish a fresh random string crsi ← {0, 1}λ in addition to its
puzzle zi. Then, whenever some party tries to solve (or verify) a puzzle, it puts all of the random
strings together as a multi-common random string mcrs = (crs1, . . . , crsn) from all n participants,
and uses this for the publicly verifiable proof. As long as a single party is honest and publishes a
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random string crsi independent of all other participants, then the publicly verifiable proof system
will be sound.

3 Preliminaries

We denote by x ← X the process of sampling a value x from the distribution X. For a set
X , we denote by x ← X the process of sampling a value x from the uniform distribution on
X . We let Supp(X ) denote the support of the distribution X. For an integer n ∈ N we denote
by [n] the set {1, 2, . . . , n}. We use PPT as an acronym for probabilistic polynomial time. A
function negl : N → R is negligible if it is asymptotically smaller than any inverse-polynomial
function, namely, for every constant c > 0 there exists an integer Nc such that negl(λ) ≤ λ−c for all
λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally
indistinguishable if for any non-uniform PPT algorithm A there exists a negligible function negl
such that

∣∣Pr
[
A(1λ, Xλ) = 1

]
− Pr

[
A(1λ, Yλ) = 1

]∣∣ ≤ negl(λ) for all λ ∈ N.
A non-uniform algorithm A = {Aλ}λ∈N is a sequence of circuits for all λ ∈ N. We assume

that Aλ always implicitly receives 1λ as its first input. We define size(Aλ) to be the size of the
circuit (corresponding to total time) and depth(Aλ) to be the depth of the circuit (corresponding
to parallel time). A uniform circuit family C = {Cλ}λ∈N is a sequence of circuits with a constant-
size description. Formally, there exists a constant-size polynomial-time Turing machine M that on
input 1λ outputs Cλ for all λ ∈ N. We also consider circuit families indexed my multiple inputs,
defined similarly. Let RFλ be the set of all functions for a security parameter λ (exact parameters
will be given in the construction). For a partial assignment F , we define RFλ[F ] to be the set of
functions consistent with F .

3.1 Time-Lock Puzzles

We first define the standard definition of time-lock puzzles without any additional properties.

Definition 3.1. Let B : N → N and ε ∈ (0, 1). A (B, ε)-secure time-lock puzzle (TLP) is a tuple
(Gen, Sol) with the following syntax:

• z ← Gen(1λ, t, s): A PPT algorithm that on input a security parameter λ ∈ N, a difficulty
parameter t ∈ N, and a solution s ∈ {0, 1}λ, outputs a puzzle z ∈ {0, 1}∗.

• s = Sol(1λ, t, z): A deterministic algorithm that on input a security parameter λ ∈ N, a difficulty
parameter t ∈ N, and a puzzle z ∈ {0, 1}∗, outputs a solution s ∈ ({0, 1}λ ∪{⊥}).

We require (Gen,Sol) to satisfy the following properties.

• Correctness: For every λ, t ∈ N, solution s ∈ {0, 1}λ, and z ∈ Supp
(
Gen(1λ, t, s)

)
, it holds

that Sol(1λ, t, z) = s.

• Efficiency: There exist a polynomial p such that for all λ, t ∈ N, Sol(1λ, t, ·) is computable in
time t · p(λ, log t).

• (B, ε)-Hardness: There exist positive polynomials p, ` such that for all functions T with
`(λ) ≤ T (λ) ≤ B(λ) for all λ ∈ N and every non-uniform distinguisher A = {Aλ}λ∈N
where size(Aλ) ∈ poly(B(λ)) and depth(Aλ) ≤ (T (λ))ε · p(λ) for all λ ∈ N, there exists a
negligible function negl such that for all λ ∈ N, and s, s′ ∈ {0, 1}λ,∣∣∣Pr

[
Aλ(Gen(1λ, T (λ), s)) = 1

]
− Pr

[
Aλ(Gen(1λ, T (λ), s′)) = 1

]∣∣∣ ≤ negl(λ),
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where the probabilities are over the randomness of Gen and Aλ.

In the above definition, we assume for simplicity that the solutions s are λ-bits long. We can
naturally generalize this to consider the case where solutions have some specified length L(λ).

We discuss the definition of (B, ε)-hardness in comparison with the definition given by Bitansky
et al. [BGJ+16]. First, they consider only polynomial B, whereas we expand this notion to possibly
allow for possibly super-polynomial functions B. Second, their definition requires that the poly-
nomial p satisfies p(λ) = 1 for all λ ∈ N. We instead allow for any polynomial p(λ) multiplicative
slack, which is independent of the time bound T , in the depth of Aλ. We believe that the depen-
dence on T is the more intuitive and more important quantity to consider (as poly(λ) factors may
be more dependent on the specific implementation), and furthermore, we believe our definition is
easier to work with. We additionally note that if a time-lock puzzle satisfies (B, ε)-hardness when
restricted to the polynomial p(λ) = 1 then it satisfies the full definition of (B, ε′)-hardness for any
constant ε′ < ε.7

3.2 Non-Malleable Time-Lock Puzzles

To formalize non-malleability in the context of time-lock puzzles, we introduce a Man-In-the-Middle
(MIM) adversary. Because time-lock puzzles are designed to be broken in some depth t, we restrict
our MIM adversary to have at most depth tε · poly(λ) for some ε ∈ (0, 1). Furthermore, we allow
for concurrent MIM adversaries that possibly interact with many senders and receivers at the same
time.

Definition 3.2 (MIM Adversaries). Let nL, nR, B, T, p : N → N and ε ∈ (0, 1). An (nL, nR,
B, ε, T, p)-Man-In-the-Middle (MIM) adversary is a non-uniform algorithm A = {Aλ}λ∈N satisfying
depth(Aλ) ≤ (T (λ))ε · p(λ) and size(Aλ) ∈ poly(B(λ)) for all λ ∈ N that receives nL(λ) puzzles on
the left and outputs nR(λ) puzzles on the right.

We next define the MIM distribution, which corresponds to the values underlying the puzzles
output by the MIM adversary. To capture adversaries that simply forward one of the puzzles on
the left to a receiver on the right, we set the value for any forwarded puzzle to be ⊥.

Definition 3.3 (MIM Distribution). Let nL, nR, B, T, p : N→ N and ε ∈ (0, 1). Let A = {Aλ}λ∈N
be an (nL, nR, B, ε, T, p)-MIM adversary. For any λ ∈ N and ~s = (s1, . . . , snL(λ)) ∈ ({0, 1}λ)nL(λ),
we define the distribution

(s̃1, . . . , s̃nR(λ))← mimA(1λ, T (λ), ~s)

as follows. Aλ receives puzzles zi ← Gen(1λ, T (λ), si) for all i ∈ [nL(λ)] and outputs puzzles
(z̃1, . . . , z̃nR(λ)). Then for each i ∈ [nR(λ)], we define

s̃i =


⊥ if there exists a j ∈ [nL(λ]) such that z̃i = zj ,

s if there exists a unique s such that z̃i = Gen(1λ, T (λ), s; r) for some r, or

⊥ otherwise.

Intuitively, a time-lock puzzle is non-malleable if the MIM distribution of a bounded depth
attacker does not depend on the solutions underlying the puzzles it receives on the left. We
formalize this definition below.

7This follows by considering a large enough polynomial ` satisfying `(λ) ≥ p(λ)1/(ε−ε
′) so it holds that (T (λ))ε

′
·

p(λ) ≤ (T (λ))ε.

15



Definition 3.4 (Concurrent Non-malleable). Let nL, nR, B, T, p : N→ N and ε ∈ (0, 1). A (B, ε)-
secure time-lock puzzle (Gen,Sol) is (nL, nR)-concurrent non-malleable if there exist positive poly-
nomials p, ` such that for every function T with `(λ) ≤ T (λ) ≤ B(λ) for all λ ∈ N and every
(nL, nR, B, ε, T, p)-MIM adversary A = {Aλ}λ∈N, the following holds.

For any distinguisher D, there exists a negligible function negl such that for all λ ∈ N and
~s = (s1, . . . , snL(λ)) ∈ ({0, 1}λ)nL(λ),∣∣∣Pr

[
D(mimA(1λ, T (λ), ~s)) = 1

]
− Pr

[
D(mimA(1λ, T (λ), (0λ)nL(λ))) = 1

]∣∣∣ ≤ negl(λ).

We consider standard variants for the definition of non-malleable above.

Definition 3.5. Let (Gen, Sol) be a (B, ε)-secure time-lock puzzle. We say the following non-
malleability properties are satisfied when Definition 3.4 holds against (nL, nR, B, ε, T, p)-MIM ad-
versaries for the following settings of nL and nR:

• fully concurrent non-malleable if the definition holds against any mL,mR ∈ poly(λ),

• one-many non-malleable if the definition holds for any nR(λ) ∈ poly(λ) and nL = 1,

• n-concurrent non-malleable if the definition holds for nL = nR = n,

• one-n non-malleable for nL(λ) = 1 and nR = n,

• and simply non-malleable (not concurrent) for nL(λ) = nR(λ) = 1.

3.3 Time-Lock Puzzles in the Auxiliary-Input Random Oracle Model

In the random oracle model [BR93], security is proven in the case where all relevant parties have
oracle access to a common random function. For security in the (plain) random oracle model, it
is assumed that a fixed adversary is independent of the common random function and must break
security with probability over the choice of the random function. Security in the auxiliary-input
random oracle model, introduced by [Unr07], is proven assuming that the attacker may depend
arbitrarily on the random oracle, as long as the attacker is of polynomial (or bounded) size.

One of the main benefits of proving security in the random oracle model is that you can argue
security when the random oracle is sampled “lazily.” The following lemma, adapted from Un-
ruh [Unr07], shows how we can use similar lazy sampling techniques in the auxiliary-input random
oracle model without significant loss in security. At a high level, it says that for any computation-
ally bounded adversary A in the AI-ROM model, we can “switch” a random O (that the attacker
may depend arbitrarily on) with an oracle P that is lazily sampled on almost all points. In other
words, A cannot distinguish the output of O from P on a random query.

Lemma 3.6 (Unruh [Unr07]). For any functions p, f , λ ∈ N, and unbounded algorithm Z that on
input a random oracle O ∈ Supp(RFλ ) outputs p(λ)-size oracle machines, there is an (inefficient)
algorithm Sam that outputs a partial assignment F on f(λ) points, such that for any λ ∈ N and
unbounded distinguisher D,∣∣∣∣∣∣∣∣∣∣

Pr

 O ← RFλ
A = Z(O)
y ← AO

: D(y) = 1

− Pr


O ← RFλ
A = Z(O)
F = Sam(A)
P ← RFλ[F ]
y ← AP

: D(y) = 1


∣∣∣∣∣∣∣∣∣∣
≤

√
(p(λ))2

f(λ)
.
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We now formalize non-malleable time-lock puzzles in the auxiliary-input random oracle model.
As the AI-ROM only affects the security properties against computationally bounded adversaries,
the syntax, correctness, efficiency, and completeness properties are left relatively unchanged. As
a result, we focus on the definitions of hardness and non-malleability. In the AI-ROM, we model
computationally bounded adversaries that are allowed to depend arbitrarily on the random oracle.
To formalize this, we consider inefficient algorithms Z that, for any λ ∈ N, take as input a random
oracle O ∈ Supp(RFλ ) (of exponential size) and output circuits of bounded size. Additionally,
we consider a MIM distribution for a (n, n,B, ε, T, p)-oracle adversary A, mimOA, where A and the
distribution have oracle access to the same oracle O.

Definition 3.7. Let B,n : N → N, and ε ∈ (0, 1) be a constant. A (B, ε)-secure n-concurrent
non-malleable time-lock puzzle in the AI-ROM is a tuple of oracle algorithms (Gen,Sol) that satisfy
correctness, efficiency, and completeness relative to any O ∈ Supp(RFλ ), and the following:

• (B, ε)-Hardness: There exists positive polynomials p, ` such that for any function T with `(λ) ≤
T (λ) ≤ B(λ) for all λ ∈ N and unbounded algorithm Z that on input O ∈ Supp(RFλ ) outputs
circuits of size poly(B(λ)) and depth at most (T (λ))ε · p(λ), there exists a negligible function
negl such that for all λ ∈ N and values s0, s1 ∈ {0, 1}λ,∣∣∣∣∣∣Pr

 O ← RFλ
A ← Z(O)

z ← GenO(1λ, T (λ), s0)

: AO(z) = 1


−Pr

 O ← RFλ
A = Z(O)

z ← GenO(1λ, T (λ), s1)

: AO(z) = 1

∣∣∣∣∣∣ ≤ negl(λ).

• Concurrent Non-malleable: There exist positive polynomials p, ` such that for every function
T with `(λ) ≤ T (λ) ≤ B(λ) for all λ ∈ N, polynomials nL, nR, and unbounded algorithm Z
that on input O ∈ Supp(RFλ ) outputs an (nL, nR, B, ε, T, p)-MIM adversary, the following
holds.

For any distinguisher D, there exists a negligible function negl such that for all λ ∈ N and
~s = (s1, . . . , sn(λ)) ∈ ({0, 1}λ)nL(λ),∣∣∣∣∣∣Pr

 O ← RFλ
A = Z(O)
~̃s← mimOA(1λ, T (λ), ~s)

: D(~̃s) = 1


− Pr

 O ← RFλ
A ← Z(O)
~̃s← mimOA(1λ, T (λ), (0λ)n(λ))

: D(~̃s) = 1

∣∣∣∣∣∣ ≤ negl(λ).

4 Non-Malleable Time-Lock Puzzles

In Section 4.1, we define the notion of concurrent functional non-malleability for a class of functions
F . Then, in Section 4.2, we give a transformation from any time-lock puzzle to one that satisfies
concurrent functional non-malleable for depth-bounded functions F , in the auxiliary-input random
oracle model. The security of our construction depends on the output length of the functions f ∈ F .
We discuss how this general result for concurrent functional non-malleability implies our result for
bounded concurrent (standard) non-malleability. In Section 4.4, we show that no time-lock puzzle
satisfies fully concurrent (standard) non-malleability.
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4.1 Functional Non-Malleable Time-Lock Puzzles

We formally define concurrent functional non-malleability. For simplicity, we define it in the case
of unbounded concurrency, but we note that it can be defined for restricted cases as in Section 3.2.

Definition 4.1 (Concurrent Functional Non-malleable). Let B,L : N → N, ε ∈ (0, 1), and
(Gen, Sol) be a (B, ε)-secure time-lock puzzle (Gen, Sol) for messages of length L(λ). Let F be a
class of functions of the form f : ({0, 1}L(λ))∗ → {0, 1}∗. We say that (Gen, Sol) is concurrent
functional non-malleable for F if for any function f ∈ F and polynomial n, there exist positive
polynomials p, ` such that for every function T with `(λ) ≤ T (λ) ≤ B(λ) for all λ ∈ N, every
(n, n,B, ε, T, p)-MIM adversary A = {Aλ}λ∈N, the following holds.

For any distinguisher D, there exists a negligible function negl such that for all λ ∈ N and
~s = (s1, . . . , sn(λ)) ∈ ({0, 1}L(λ))n(λ),∣∣∣Pr

[
~̃s← mimA(1λ, T (λ), ~s) : D(f(~̃s)) = 1

]
−Pr

[
~̃s← mimA(1λ, T (λ), (0L(λ))n(λ)) : D(f(~̃s)) = 1

]∣∣∣ ≤ negl(λ).

We note that functional non-malleability for a class F that contains the identity function id
implies standard non-malleability as D(id(~̃s)) = D(~̃s).

4.2 Non-Malleable Time-Lock Puzzles Construction

In this section, we give our construction of a fully concurrent functional non-malleable time-lock
puzzle for functions with bounded depth and output length. We rely on the following building
blocks and parameters.

– A function m denoting the output length for our function non-malleability. We require m(λ) ∈
λO(1).

– A (B, ε)-secure time-lock puzzle TLP = (Gentlp, Soltlp). We let λtlp = λtlp(λ) = m(λ)+λ be the
bits of randomness needed for TLP on security parameter λ, and we let λ+λtlp be the length
of the solutions for TLP. We require that the time-lock puzzle satisfies B(λ) ∈ 2m(λ) ·poly(λ).
We note that our function Gen defined below will also require λtlp bits of randomness.

– A class of functions FmB of the form f : ({0, 1}λ)∗ → {0, 1}m(λ). We assume that there exists
a polynomial d such that for every polynomial n, every function f ∈ FmB can be computed in
depth d(λ, log n(λ)) and size poly(B(λ)) on inputs of length at most λ · n(λ).

– A random oracle O ∈ RFλ, where O on input (1λ, t, s, r) ∈ {0, 1}3λ+λtlp outputs a random
value r′ ∈ {0, 1}λtlp .

Our construction nmTLPm = (Gen,Sol) in the auxiliary-input random oracle model:

• z = GenO(1λ, t, s; r):

1. Get r′ = O(1λ, t, s, r).

2. Output z ← Gentlp(λ, t, (s||r); r′).

• s← SolO(1λ, t, z):

1. Compute s′ = Soltlp(1λ, t, z) and parse s′ = s||r.
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2. If z = GenO(1λ, t, s; r), output s.

3. If not, output ⊥.

Theorem 4.2 (Fully Concurrent Functional Non-Malleable TLPs). Let B : N→ N, m(λ) ∈ λO(1),
and ε ∈ (0, 1), where λ ≤ B(λ) ∈ 2m · poly(λ). Assuming TLP is a (B, ε)-secure time-lock puzzle,
then nmTLPm is a (B, ε)-secure fully concurrent functional non-malleable time-lock puzzle in the
AI-ROM for the class of functions FmB .

We provide the proof of this theorem in Section 4.3 below. Before doing so, we observe the
following corollaries to the above theorem:

• If m(λ) ∈ O(log(λ)) then we can simply assume a polynomially-secure TLP.

• For any m(λ) ∈ poly(λ), then our theorem follows by assuming a sub-exponentially secure
TLP. Specifically, it suffices that there exists a constant γ ∈ (0, 1) such that B(λ) = 2λ

γ
, and

we can instantiate this with λtlp = (λ ·m(λ))1/γ bits of randomness.

We also observe that the above theorem can be used to get n-bounded concurrency for any
polynomial n, simply by setting the output length m of the functions in FmB to λ ·n(λ). Specifically,
let fid be the identity function with input and output length λ·n(λ). We observe that since fid ∈ FnB,
a fully concurrent functional non-malleable TLP for FnB implies an n-concurrent non-malleable TLP,
which gives the following corollary.

Corollary 4.3 (n-Concurrent Non-Malleable TLPs). Let B : N→ N, n(λ) ∈ λO(1), and ε ∈ (0, 1),
where λ ≤ B(λ) ∈ 2λ·n(λ)·poly(λ). Assuming TLPn is a (B, ε)-secure time-lock puzzle, then nmTLPn
is a (B, ε)-secure n-concurrent non-malleable time-lock puzzle in the AI-ROM.

4.3 Proof of Concurrent Functional Non-Malleability

We prove Theorem 4.2 by showing correctness, efficiency, hardness, and non-malleability below.

Lemma 4.4 (Correctness). Assuming (Gentlp, Soltlp) satisfies correctness, then (Gen,Sol) satisfies
correctness.

Proof. Fix any λ, t ∈ N and O ∈ Supp(RFλ ). We want to show that

1. For z = GenO(1λ, t, s; r) for some s ∈ {0, 1}λ and r ∈ {0, 1}λtlp , it holds that SolO(1λ, t, z) = s,
and

2. For z not in the support of Gen(1λ, t, ·)), it holds that SolO(1λ, t, z) = ⊥.

The first condition follows from correctness of TLP. Recall that the algorithm SolO(1λ, t, z)
runs ŝ||r̂ = Soltlp(1λtlp , t, z) and outputs ŝ if z = GenO(1λ, t, ŝ; r̂). Since we assumed z was in the
support of GenO, it follows by definition of GenO that z = Gentlp(1λtlp , t, (s||r); r′) for some s, r, r′.
By correctness of TLP, this implies that Soltlp(1λtlp , t, z) = s||r so s||r = ŝ||r̂ and Sol outputs the
correct solution.

For the second condition, since z is not in the support of GenO, then for any s′ = (s||r) given
by Soltlp(1λ, t, z), it cannot be the case that z = GenO(1λ, t, s; r). Therefore, SolO(1λ, t, z) outputs
⊥, as required.

Lemma 4.5 (Efficiency). Assuming that (Gentlp,Soltlp) satisfies efficiency, then (Gen,Sol) satisfies
efficiency.
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Proof. Fix any λ, t ∈ N and O ∈ Supp(RFλ ). First, we show that GenO is PPT. We have that
GenO(1λ, t, ·) makes a single oracle call to O, which takes time λtlp = λ+m to read the output, and
evaluates Gentlp(1λ, t, ·), which takes time poly(λ, log t). It follows that there exists a polynomial
p1 such that GenO(1λ, t, ·) can be computed in time p1(λ, log t).

For SolO, recall that SolO(1λ, t, ·) runs Soltlp(1λ, t, ·) and GenO(1λ, t, ·). By the above, GenO can
be run in time p1(λ, log t). For Soltlp, recall that by the efficiency of TLP there exists a polynomial
p2 such that for all λ, t ∈ N, Soltlp(1λ, t, ·) can be computed in time t · p2(λ, log t). Putting these
together, we have that SolO(1λ, t, ·) can be computed in time p1(λ, log t) + t · p2(λ, log t).

Lemma 4.6 (Hardness). Assuming that (Gentlp,Soltlp) satisfies (B, ε)-hardness, then (Gen,Sol)
satisfies (B, ε)-hardness in the AI-ROM.

Proof. To show hardness, suppose for contradiction that for all positive polynomials p, `, there
exists a function T with `(λ) ≤ T (λ) ≤ B(λ) for all λ ∈ N, an unbounded algorithm Z that outputs
circuits of size poly(B(λ)) and depth at most (T (λ))ε · p(λ), and a polynomial q such that for
infinitely many λ ∈ N, there exist values s0, s1 ∈ {0, 1}λ such that∣∣∣∣∣∣Pr

 O ← RFλ
D = Z(O)

z ← GenO(1λ, T (λ), s0)

: DO(z) = 1


−Pr

 O ← RFλ
D = Z(O)

z ← GenO(1λ, T (λ), s1)

: DO(z) = 1

∣∣∣∣∣∣ ≥ 1

q(λ)
. (4.1)

As the above holds for all p, ` by assumption, we will give specific polynomials p and ` and
use them to reach a contradiction. Specifically, let ptlp, `tlp be the polynomials guaranteed by
the hardness of TLP. We will show a contradiction to the above for p(λ) = ptlp(λ)/p′(λ) and
`(λ) = `tlp(λ), where p′ is a fixed polynomial specified in the proof of Claim 4.10.

To derive a contradiction, we will define a sequence of hybrid experiments, and we will use
the fact that the statistical distance between the above probabilities is noticeable to construct an
adversary that breaks the hiding of TLP. For any λ ∈ N and s ∈ {0, 1}λ, we define the following
sequence of hybrid experiments. Throughout these hybrids, we let t = T (λ) and m = m(λ).

• Hybs0(λ) : This hybrid is equivalent to the terms in the probabilities above for a puzzle generated
with solution s ∈ {0, 1}λ, where GenO is written out explicitly.

Hybs0(λ) =


O ← RFλ; D = Z(O)
r ← {0, 1}λtlp ; r′ = O(1λ, t, s, r)
z = Gentlp(1λ, t, (s‖r); r′)

: DO(z) = 1


• Hybs1(λ) : Let Z ′ be the algorithm such that for any O ∈ RFλ and D = Z(O), the algorithm

Z ′(D) outputs an oracle algorithm AO which does the following:

1. Sample r ← {0, 1}λtlp and query r′ = O(1λ, t, s, r).

2. Compute z = Gentlp(1λ, t, (s||r); r′).
3. Output DO(z).

This hybrid uses A to determine the output of the experiment.

Hybs1(λ) =
{
O ← RFλ; D = Z(O); A = Z ′(D) : AO = 1

}
Note that size(A) ∈ poly(λ, 2m), which holds by the efficiency of Gen and because λtlp = m+λ
and size(D) ∈ poly(B(λ)).
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• Hybs2(λ) : Let qA be the polynomial such that size(A) = qA(λ, 2m). Let fhard(λ) = (qA(λ, 2m) ·
4q(λ))2, and let Sam be the inefficient algorithm from Lemma 3.6 that on input an adversary
A outputs a partial assignment F on fhard(λ) points. This hybrid swaps O with a random
function P fixed at the set of points F determined by Sam.

Hybs2(λ) =

{
O ← RFλ; D = Z(O); A = Z ′(D)
F ← Sam(A); P ← RFλ[F ]

: AP = 1

}
• Hybs3(λ) : This hybrid samples r′ uniformly randomly from {0, 1}λtlp , rather than using P

to compute it. It also gives D oracle access to a modified version of P, where on input
(1λ, t, s, r) it outputs r′, and agrees with P on all other inputs. We denote this oracle by
P[(1λ, t, s, r)→ r′]. In this hybrid, we additionally write out A’s actions explicitly.

Hybs3(λ) =


O ← RFλ; D = Z(O); A = Z ′(D)
F ← Sam(A); P ← RFλ[F ]
r ← {0, 1}λtlp ; r′ ← {0, 1}λtlp
z = Gentlp(1λ, t, (s‖r); r′)

: DP[(1λ,t,s,r)→r′](z) = 1


To conclude the proof, fix any λ ∈ N and values s0, s1 ∈ {0, 1}λ for which Equation 4.1 holds.

Since Hybsb0 (λ) is equal to the probability in Equation 4.1 for value sb, we get that

|Hybs00 (λ)− Hybs10 (λ)| ≥ 1

q(λ)
.

In the following claims, we bound the distance between each pair of consecutive hybrids. Specif-
ically, in Claim 4.7 we show that Pr [Hybs0(λ)] = Pr [Hybs1(λ)] for all s ∈ {0, 1}λ. Then, in
Claim 4.8, we bound the statistical distance between Hybs1(λ) and Hybs2(λ) by 1

8q(λ) for all

s ∈ {0, 1}λ. Then, we show in Claim 4.9 that there exists a negligible function negl such that
|Pr [Hybs2(λ)] − Pr [Hybs3(λ)]| ≤ negl(λ) for all s ∈ {0, 1}λ. Given these claims, it follows that the
statistical distance between Hybsb0 (λ) and Hybsb3 (λ) is at most 2/(8q(λ)) + 2negl(λ) for b ∈ {0, 1}.
By combining this with the above, it holds that |Pr [Hybs03 (λ)]−Pr [Hybs13 (λ)]| ≥ 1

2q(λ) . To conclude
the proof, we show in Claim 4.10 that this implies an adversary that breaks the hardness of TLP
with probability 1/2q(λ)− negl(λ) ≥ 1/4q(λ), in contradiction.

Claim 4.7. For all s ∈ {0, 1}λ, Pr [Hybs0(λ)] = Pr [Hybs1(λ)].

Proof. This follows immediately from the definition of A. Specifically, in Hybs1(λ), the algorithm
A samples r, r′, and z exactly as done in Hybs0(λ), and then outputs 1 exactly in the event that
Hybs0(λ) holds. �

Claim 4.8. For all s ∈ {0, 1}λ,

|Pr [Hybs1(λ)]− Pr [Hybs2(λ)]| ≥ 1/(4q(λ)).

Proof. Recall that size(A) = qA(λ, 2m). We can therefore apply Lemma 3.6 (by viewing Z and
Z ′ as a single sampling algorithm outputting A based on O). Therefore, the statistical distance
between the output of AO and AP is at most√

(qA(λ, 2m))2

fhard(λ)
=

√
(qA(λ, 2m))2

(qA(λ, 2m) · 4q(λ))2
=

1

4q(λ)
,

which implies the claim. �
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Claim 4.9. There exists a negligible function negl2 such that for all s ∈ {0, 1}λ,

|Pr [Hybs2(λ)]− Pr [Hybs3(λ)]| ≤ negl2(λ).

Proof. We start by using the definition of A to rewrite Hybs2(λ) as

Hybs2(λ) =


O ← RFλ; D = Z(O); A = Z ′(D)
F ← Sam(A); P ← RFλ[F ]
r ← {0, 1}λtlp ; r′ = P(1λ, t, s, r)
z = Gen(1λ, t, (s||r); r′)

: DP(z) = 1

 .

The difference between this and Hybs3(λ) is that r′ is sampled uniformly at random in Hybs3(λ), and
D has oracle access to P[(1λ, t, s, r)→ r′] rather than P. Let us denote this oracle by P ′. We will
show that these hybrids occur with the same probability, except in the case that the query to P
in Hybs2(λ) (which results in r′) appears in F , where we recall that F is the partial assignment on
f(λ) points given by Sam(A).

To show this, let E be the event that (1λ, t, s, r) 6∈ F . When E holds, then the distribution
of (P, r, r′) in Hybs2(λ) is identical to that of (P ′, r, r′) in Hybs3(λ). Namely, in both hybrids r is
uniformly sampled from {0, 1}λtlp . For the oracles, in Hybs2(λ), P is sampled uniformly from RFλ[F ]
and r′ = P(1λ, t, s, r), whereas in Hybs3(λ), P ′ can be sampled according to RFλ[F ] for all points
except r, and then lazily evaluated it on r to obtain r′. Note that this relies on E holding, since
otherwise P ′ on input r would be determined by F . As D has oracle access to the oracle (P or P ′),
and receives z as input which is fully determined by r, r′, it follows that for all λ ∈ N,

Pr [Hybs1(λ) | E] = Pr [Hybs2(λ) | E] .

Furthermore, since r ← {0, 1}λtlp , the probability that E fails to hold, i.e. (1λ, t, s, r) ∈ F , is at most

fhard(λ)

2λtlp
=

(qA(λ, 2m) · 4q(λ))2

2λtlp
=

(qA(λ, 2m) · 4q(λ))2

2m+λ
∈ 2O(m) · poly(λ)

2m+λ
= negl2(λ),

which is negligible, where we used the fact that λtlp = m+ λ. So, it holds that for all λ ∈ N,

Pr [¬E] = negl2(λ).

Putting these together, we conclude that for all λ ∈ N,

|Pr [Hybs1(λ)]− Pr [Hybs2(λ)]|
= |Pr [E] · (Pr [Hybs1(λ) | E]− Pr [Hybs2(λ) | E])

+ Pr [¬E] · (Pr [Hybs1(λ) | ¬E]− Pr [Hybs2(λ) | ¬E])|
≤ 1 · 0 + negl2(λ) · 1 = negl2(λ),

so the claim follows. �

Claim 4.10. If there exists function µ such that for infinitely many λ ∈ N and values s0, s1 ∈
{0, 1}λ, it holds that

|Pr [Hybs03 (λ)]− Pr [Hybs13 (λ)]| ≥ µ(λ),

then there exists an adversary A that breaks the hardness of TLP with probability µ(λ) − 2negl(λ)
for a negligible function negl.
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Proof. We first note that by an averaging argument, the inequality in the statement of the claim
implies that for infinitely many λ ∈ N there exists an O ∈ Supp(RFλ ) and F ∈ Supp(Sam(A)),
where D = Z(O), A = Z ′(D) such that∣∣∣∣∣∣Pr

 P ← RFλ[F ]
r0, r

′
0 ← {0, 1}λtlp

z0 = Gentlp(1λ, t, (s0‖r0); r′0)
: DP[(1λ,t,s0,r0)→r′0](z0) = 1


− Pr

 P ← RFλ[F ]
r1, r

′
1 ← {0, 1}λtlp

z1 = Gentlp(1λ, t, (s1‖r1); r′1)
: DP[(1λ,t,s1,r1)→r′1](z1) = 1

∣∣∣∣∣∣ ≥ µ(λ).

The above implies that

Pr


P ← RFλ[F ]
b← {0, 1}
rb, r

′
b ← {0, 1}λtlp

zb = Gentlp(1λ, t, (sb‖rb); r′b)

: DP[(1λ,t,sb,rb)→r′b](zb) = b

 ≥ 1

2
+
µ(λ)

2
. (4.2)

Note that D’s success may depend on it’s ability to “hit” the randomness rb in one of its oracle
queries, since in this case, it can trivially check if zb corresponds to a puzzle for sb||rb. Looking
ahead, we will be fixing values of r0, r1 and using D to try to distinguish a puzzle corresponding to
s0||r0 from a puzzle corresponding to s1||r1, based on which values of rb he queries. Therefore, it
will also be important to consider the event that D(zb) makes a query corresponding to r1−b. Next,
we formally define these two events:

• Let hit = hit(D,P, z) denote the event that D on input a puzzle corresponding to (s||r)
queries (1λ, t, s, r). Note that in the case that hit does not occur, then the answers to the
oracle queries made by D are distributed according to P.

• Let bad = bad(D,P, zb, rb, r1−b) denote the event that D(zb) queries (1λ, t, s1−b, r1−b).

We note that for a uniformly random value of r1−b, it holds that

Pr [bad] ∈ poly(B(λ))

2|r1−b|
∈ 2O(m) · poly(λ)

2λtlp
∈ 2O(m) · poly(λ)

2m+λ
≤ negl(λ),

for all λ ∈ N, where the probability is over P, r0, r1, z, b, and the randomness of D. This
holds because D has size poly(λ,m,B(λ)) ∈ poly(λ, 2m), and r1−b is independent of D’s input
and the answers to its queries. Combining this with Equation 4.2, we get the following, where
all probabilities are over the choice of P ← RFλ[F ], b ← {0, 1}, r0, r1 ← {0, 1}λtlp , and zb ←
Gentlp(1λ, t, (sb||rb)):

1

2
+
µ(λ)

2
≤ Pr

[
DP[(1λ,t,sb,rb)→r′b](zb) = b

]
≤ Pr

[
DP[(1λ,t,sb,rb)→r′b](zb) = b ∧ bad

]
+ Pr [bad]

≤ Pr
[
DP[(1λ,t,sb,rb)→r′b](zb) = b ∧ hit ∧ bad

]
+ Pr

[
hit ∧ bad

]
+ negl(λ)

= Pr
[
DP(zb) = b ∧ hit ∧ bad

]
+ Pr

[
hit ∧ bad

]
+ negl(λ),

where in the last line we used the fact that when hit occurs, the answers toD’s queries are distributed
according to P.
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By an averaging argument, there exist fixed values r0, r1 such that the above holds for those
fixed values, namely,

Pr
[
DP(zb) = b ∧ hit ∧ bad

]
+ Pr

[
hit ∧ bad

]
+ negl(λ) ≥ 1

2
+
µ(λ)

2
(4.3)

where the probability is only over P ← RFλ[F ], b← {0, 1}, and zb ← Gentlp(1λ, t, (sb||rb)).
We will use this to construct an adversary that breaks the hardness of TLP. The adversary B

that has s0, s1, r0, r1, F , and D hardcoded, and receives as input a puzzle z corresponding to sb||rb
for b ∈ {0, 1}. It does the following:

1. Run D(·)(z). For each query q made by D, if q ∈ F , give the corresponding answer; otherwise,
if q has been asked previously, give the same answer as before; otherwise, give a uniformly
random answer sampled from {0, 1}λtlp .

2. If there exists unique bit b such that B queries (1λ, t, sb, rb) but not (1λ, t, s1−b, r1−b), output
b. Otherwise, output the bit output by B.

To analyze the success probability of B, we can look at whether hit or bad occur. By definition
of B, we have the following, where all probabilities are over P ← RFλ[F ], b ← {0, 1}, and zb ←
Gentlp(1λ, t, (sb||rb)):

• Pr
[
B(zb) = b ∧ hit ∧ bad

]
= Pr

[
hit ∧ bad

]
, since when hit and bad occur, then B(zb)

always outputs b.

• Pr
[
B(zb) = b ∧ hit ∧ bad

]
= Pr

[
DP(zb) = b ∧ hit ∧ bad

]
, since when neither hit nor bad

occur, then the query answers that B gives to D are distributed according to P, and B simply
outputs what D outputs.

• Pr [B(zb) = b ∧ bad] ≥ 0.

Combining these with Equation 4.3, we get

Pr [B(zb) = b] ≥ Pr
[
hit ∧ bad

]
+ Pr

[
DP(zb) = b ∧ hit ∧ bad

]
≥ 1

2
+
µ(λ)

2
− negl(λ)

for infinitely many λ ∈ N, where the probabilities are over P ← RFλ[F ], b ← {0, 1}, and zb ←
Gentlp(1λ, t, (sb||rb)).

To put everything together and letting s = s0||r0 and s′ = s1||r1, the above implies that∣∣∣Pr
[
z ← Gentlp(1λ, t, s) : Br0,r1(z) = 1

]
− Pr

[
z = Gentlp(1λ, t, s′) : Br0,r1(z) = 1

]∣∣∣ > µ(λ)− 2negl(λ).

We will show that this contradicts hardness of TLP for T . Recall that ptlp, `tlp are the poly-
nomials guaranteed to exist by the hardness of TLP, and recall that we set `(λ) = `tlp(λ) and
p(λ) = ptlp(λ)/p′(λ) for a polynomial p′ specified below. To complete the proof, we need to show
that `tlp(λ) ≤ T (λ) ≤ B(λ) and that the size and depth of B are set such that B breaks the hiding of
TLP. The bounds on T are immediate as we assumed that `(λ) ≤ T (λ) ≤ B(λ) and `(λ) = `tlp(λ).

For the size and depth of B, we have that B needs to run D, and needs to be able to answer D’s
oracle queries consistently with F and with each other. One way to implement this is for B to keep
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track of a set Q of the queries asked so far, initialized to F . At any point during the emulation
of B, the set Q contains at most size(D) + fhard(λ) queries. For each query made by B, checking
if it appears in Q and adding it to Q if necessary can be done in size poly(Q), and so in total
results in adding size(D) · poly(Q) to the size of B to account for all the queries. For the depth,
each query can be checked in poly(λ, log |Q|) depth and added to Q (while keeping Q sorted) with
an additional poly(λ, log |Q|) depth. This can be done in parallel for queries made in parallel, so
this results in an extra additive depth of depth(D) · poly(λ, log |Q|) over the depth of D.

To put everything together, recall that fhard(λ) = (qA(λ, 2m) · 4q(λ))2, B(λ) ∈ 2m ·poly(λ), and
size(D) ∈ poly(B(λ)). Therefore, we get that

size(B) ∈ poly(size(D), fhard(λ)) ∈ poly(B(λ), (qA(λ, 2m) · 4q(λ))2) ∈ poly(λ, 2m)

∈ poly(B(λ))

and

depth(B) ≤ depth(D) + depth(D) · poly(λ, log |Q|)
∈ depth(D) · poly(λ, logB(λ), log fhard(λ))

∈ depth(D) · poly(λ,mλ)

∈ depth(D) · p′(λ)

for a fixed polynomial p′, depending only on m and on log fhard(λ). Note that log fhard(λ) is in
poly(λ,m, log(q(λ))). Since q was assumed to be a polynomial, this can be upper bounded by a
fixed polynomial in λ, which is independent of q, for sufficiently large λ. It follows that we can
assume p′ is independent of q.

Recall that depth(D) ≤ (T (λ))ε · p(λ) where we set p(λ) = ptlp(λ)/p′(λ) for p′ as defined above.
We can therefore upper bound depth(D) in the above to get that

depth(B) ≤ (T (λ))ε · p(λ) · p′(λ)

= (T (λ))ε · (ptlp(λ)/p′(λ)) · p′(λ)

= (T (λ))ε · ptlp(λ).

Therefore, B breaks the hardness of TLP with probability µ(λ)− 2negl(λ) for infinitely many λ. �

This completes the proof of the lemma.

Lemma 4.11. Assuming that (Gen, Sol) satisfies correctness and (B, ε)-hardness, and that
(Gentlp,Soltlp) is a (B, ε)-secure time-lock puzzle, then (Gen, Sol) is fully concurrent functional non-
malleable for FmB .

Proof. We will show that (Gen,Sol) satisfies one-many functional non-malleability for FmB , which
suffices for fully concurrent functional non-malleability for FmB by Lemma A.1.

To show one-many functional non-malleability, suppose for contradiction that there exists an
f ∈ FmB such that for all positive polynomials p, `, there exists a function T satisfying `(λ) ≤
T (λ) ≤ B(λ) for all λ ∈ N, an unbounded algorithm Z and polynomial n such that Z outputs
(1, n,B, ε, T, p)-MIM adversaries, an unbounded distinguisher D, and a polynomial q, such that for
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infinitely many λ ∈ N and s ∈ {0, 1}λ, it holds that∣∣∣∣∣∣Pr

 O ← RFλ
A = Z(O)
~̃s← mimOA(1λ, T (λ), s)

: D(f(~̃s)) = 1

 (4.4)

− Pr

 O ← RFλ
A = Z(O)
~̃s← mimOA(1λ, T (λ), 0λ)

: D(f(~̃s)) = 1

∣∣∣∣∣∣ > 1

q(λ)
. (4.5)

Let `hard, phard be the positive polynomials from the hardness property of nmTLPm, given by 4.6,
and let `tlp, ptlp be the positive polynomials from the hardness of TLP. We will derive a contradiction
to the above for p, ` given by p(λ) = phard(λ)/p′(λ) and `(λ) = `hard(λ) + `tlp(λ) + (`′(λ))1/ε, where
p′ is a fixed polynomial specified in the proof of Claim 4.16, and `′ is a fixed polynomial specified
in the proof of Subclaim 4.15.

In order to show a contradiction, we will give a sequence of hybrid experiments starting with
the event in the first probability above and ending with the second, and we will show that each
consecutive pair either has large statistical distance, or can be used to break hardness of nmTLPm
or of TLP. Before giving the formal description of the hybrids, we give a short overview. At a
high level, our strategy will be to change the way that ~̃s is computed, so as to make it independent
of s. Specifically, we start with a hybrid corresponding to the first probability above, where ~̃s
is computed using the unbounded sampler mimA. Next, we switch mimA to a sampler that has
polynomial size. This allows us to transition from the random oracle O to an oracle P that is lazily
sampled on most points using Lemma 3.6, so that the MIM adversary A only depends on a small
fraction of points in the oracle (rather than the whole oracle). This enables us to then switch to

sampling ~̃s using a depth-bounded, but sub-expenential size sampler. Once we have done so, we
can apply the hardness of our time-lock puzzle to switch the initial puzzle for s to a puzzle for 0λ,
thereby making the experiment independent of s. The hybrids are formalized next.

For any λ ∈ N and value s ∈ {0, 1}λ, we consider the following sequence of hybrid experiments.
Throughout these hybrids, we let t = T (λ) and m = m(λ).

• Hybs0(λ) : This hybrid is equivalent to the terms in the probabilities above for s ∈ {0, 1}λ.

Hybs0(λ) =

{
O ← RFλ; A = Z(O)
~̃s← mimOA(1λ, t, s)

: D(f(~̃s)) = 1

}
• Hybs1(λ) : In this hybrid, we replace mimA with a polynomial-time algorithm B, which is defined

based on A, and sampled by an algorithm Z ′. Specifically, let Z ′ be the algorithm such that
Z ′(A) outputs the following probabilistic oracle algorithm BO:

1. Sample z ← GenO(1λ, t, s).

2. Run ~̃z ← AO(z).

3. Do the following to compute the output vector ~̃s. For each i ∈ [n(λ)], if ~̃zi = z, set
s̃i = ⊥. Otherwise, compute s′ = SolO(1λ, t, z̃i), and set s̃i = s′.

4. Output ~̃s.

Note that BO forwards all queries made by internal algorithms to its own oracle. We can now
define the hybrid experiment:

Hybs1(λ) =

{
O ← RFλ; A = Z(O); B = Z ′(A)
~̃s← BO

: D(f(~̃s)) = 1

}
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Note that size(B) ∈ poly(λ, 2m), which follows by the efficiency of Gen and Sol, and because
n(λ) ∈ poly(λ) and size(A) ∈ poly(B).

• Hybs2(λ) : Let qB be the polynomial such that size(B) = qB(λ, 2m). Let fnm(λ) = (qB(λ, 2m) ·
4q(λ))2 and let Sam be the inefficient algorithm given in Lemma 3.6 that on input an ad-
versary, outputs a partial assignment F on fnm(λ) points. This hybrid switches the random
oracle O with a random function P fixed at the set of points F .

Hybs1(λ) =


O ← RFλ; A = Z(O); B = Z ′(A)
F ← Sam(B); P ← RFλ[F ]
~̃s← BP

: D(f(~̃s)) = 1


• Hybs3(λ) : In this hybrid, we change the experiment so that ~̃s can be computed in depth less

than t (given A and F ). Specifically, we define the distribution bmim (standing for “bounded
MIM”) and replace B with this distribution, defined as follows. Define bmim as follows:

bmimPA,F (1λ, t, s):

1. Sample z ← GenP(1λ, t, s)

2. Run ~̃z ← A(·)(z) by forwarding all of A’s queries to the oracle P.

3. Let Q be the set containing all oracle queries made by A and all points in the partial
assignment F , where Qj = (1λ, tj , sj , rj) for each j ∈ [|Q|].

4. Next, we form the output vector ~̃s. For each i ∈ [n(λ)], if z̃i = z, set s̃i = ⊥. Otherwise,
check if there exists a query Qj ∈ Q with z̃i = GenP(1λ, t, sj ; rj), and if so set s̃i = sj .
Otherwise, set s̃i = ⊥. Note that this check can be done in parallel for each pair (i, j).

5. Output ~̃s.

We define this hybrid experiment from the previous one by using bmim instead of B to sample
~̃s, as follows.

Hybs3(λ) =


O ← RFλ; A = Z(O); B = Z ′(A)
F ← Sam(B); P ← RFλ[F ]
~̃s← bmimPA,F (1λ, t, s)

: D(f(~̃s)) = 1


To complete the proof, we show that for each consecutive pair of hybrids, either the statistical

distance is bounded or we can use it to break security of TLP or nmTLPm. Next, we discuss how
to use these claims to complete the proof, and then we give the claims.

In Claim 4.12, we show that Pr [Hybs0(λ)] = Pr [Hybs1(λ)] for all λ ∈ N and s ∈
{0, 1}λ. Then, in Claim 4.13 we show that there exists a negligible function negl1 such that
|Pr [Hybs1(λ)]− Pr [Hybs2(λ)]| ≤ negl1(λ) for all λ ∈ N and s ∈ {0, 1}λ. Combining these with
Equation 4.4, we get that for infinitely many λ ∈ N, there exists a value s ∈ {0, 1}λ such that∣∣∣Pr [Hybs2(λ)]− Pr

[
Hyb0

λ

2 (λ)
]∣∣∣ ≥ 1

q(λ)
− negl1(λ) ≥ 1

2q(λ)
.

It follows that for infinitely many λ ∈ N, there exists a value s ∈ {0, 1}λ and a pair of consecutive

hybrids in the sequence Hybs2(λ),Hybs3(λ),Hyb0
λ

3 (λ),Hyb0
λ

2 (λ) whose statistical distance is at least
1/(6q(λ)). We first discuss the case where the statistical distance between Hybs2(λ) and Hybs3(λ) is
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large, and then discuss the case where the distance between Hybs3(λ) and Hyb0
λ

3 (λ) is large. The
third case will follow analogously to the second one.

To show a contradiction in the first case, we show in Claim 4.14 that if for infinitely many λ ∈ N
there exists a value s ∈ {0, 1}λ such that the statistical distance between Hybs2(λ) and Hybs3(λ) is at
least µ(λ) for any function µ, then this implies an adversary that breaks the hardness of TLP with
probability µ(λ)/n(λ). In this case, the statistical distance is 1/(6q(λ)), which implies an adversary
that breaks the hardness of TLP with probability 1/(6q(λ) · n(λ)) which is a contradiction, since n
is a polynomial.

For the second case, where
∣∣∣Pr [Hybs3(λ)]− Pr

[
Hyb0

λ

3 (λ)
]∣∣∣ ≥ 1

6q(λ) , we show in Claim 4.16 that if

for infinitely many λ ∈ N there exists a value s ∈ {0, 1}λ such that the statistical distance between
these hybrids is at least µ(λ) for any function µ, then this implies an adversary that breaks the
hardness of nmTLPm with probability µ(λ)−negl(λ) for a negligible function negl. In our case, this
results in statistical distance 1/(6q(λ)) − negl(λ) ≥ 1/(12q(λ)), which contradicts the hardness of
nmTLPm, and concludes the proof.

Claim 4.12. For all s ∈ {0, 1}λ, Pr [Hybs0(λ)] = Pr [Hybs1(λ)].

Proof. In both of these hybrids, the oracle O and adversary A are sampled equivalently. The
difference between the two distributions is the following:

• In Hybs0(λ), the vector ~̃s is sampled by mimOA(1λ, t, s).

• In Hybs1(λ), the vector ~̃s is determined by letting B = Z(A) and sampling ~̃s← BO.

We will show that these have the same distribution.
To sample ~̃s, both B and mimA compute a puzzle z for s and run ~̃z ← A(z), but then form the

output vector ~̃s differently. For ease of understanding, denote this vector as computed by mimA in
Hybs0(λ) as s̃(0), and denote the vector as computed by B in Hybs1(λ) as s̃(1). Specifically, for each
output element s̃i, mimA computes it as

s̃
(0)
i =


⊥ if z̃i = z

s′ if there is a unique s′ with z̃i = GenO(1λ, t, s′; r) for some r

⊥ otherwise,

while BO computes it as

s̃
(1)
i =

{
⊥ if z̃i = z

s′ otherwise, where s′ = SolO(1λ, t, z̃i).

We will show that s̃
(0)
i = s̃

(1)
i . Note that if z̃i = z, then s̃i = ⊥ in both cases, so we only need

to focus on the case when z̃i 6= z. To complete the proof, we will show that there exists a unique
s′ ∈ {0, 1}∗ with z̃i = GenO(1λ, t, s′; r) for some r if and only if SolO(1λ, t, z̃i) 6= ⊥. This suffices
for the claim since whenever this occurs, correctness of nmTLPm implies that both mimA and BO
will set s̃i = s′. Otherwise, both will set it to ⊥, implying that s̃i is identically distributed in both
hybrids for all i.

For the “if” direction, suppose that there exists a unique value s′ ∈ {0, 1}∗ with z̃i =
GenO(1λ, t, s′; r) for some r. Correctness of nmTLPm directly implies that SolO(1λ, t, z̃i) will output
s′, and hence the output of Sol is not equal to ⊥.
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For the “only if” direction, suppose SolO(1λ, t, z̃i) 6= ⊥. Recall that Sol solves the underlying
time-lock puzzle to obtain a value s′′||r, and then outputs s′′ if z̃i = GenO(1λ, t, s′′; r) and ⊥
otherwise. As we are in the case where Sol does not output ⊥, it holds that z̃i = GenO(1λ, t, s′′; r).
Correctness of nmTLPm implies that s′′ is the unique solution to z̃i. This completes the proof of
the claim. �

Claim 4.13. There exists a negligible function negl1 such that for all s ∈ {0, 1}λ,

|Pr [Hybs1(λ)]− Pr [Hybs2(λ)]| ≤ negl1(λ).

Proof. We start by noting that Hybs1(λ) can be rewritten as

Hybs1(λ) =

{
O ← RFλ; B = Z ′′(O)
~̃s← BO

: D(f(~̃s)) = 1

}
where Z ′′(O) samples A = Z(O) and B = Z ′(A). Using Z ′′, we can also rewrite Hybs2(λ) as

O ← RFλ; B = Z ′′(O)
F ← Sam(B); P ← RFλ[F ]
~̃s← BP

: D(f(~̃s)) = 1

 .

Since |F | = fnm(λ) = (qB(λ, 2m) · 4q(λ))2, then by Lemma 3.6 the statistical distance between
these hybrids is at most √

(qB(λ, 2m))2

fnm(λ)
=

√
(qB(λ, 2m))2

(qB(λ, 2m) · 4q(λ))2
=

1

4q(λ)

where we recall that size(B) = qB(λ, 2m). �

Claim 4.14. If there exists a function µ such that for infinitely many λ ∈ N there exists a value
s ∈ {0, 1}λ with

|Pr [Hybs2(λ)]− Pr [Hybs3(λ)]| ≥ µ(λ),

then there exists an adversary that breaks the hardness of TLP with probability µ(λ)/n(λ) for in-
finitely many λ ∈ N.

Proof. The difference between these two hybrids is that in Hybs2(λ), the values ~̃s are sampled
from BP , while in Hybs3(λ) they are sampled by bmimPA,F (1λ, t, s). We will show that if these two
distributions are far, then we can construct an adversary that breaks the hardness of TLP with
probability roughly the statistical distance between the two hybrids.

The way that ~̃s is sampled in each hybrid is as follows. Both BP and bmimPA,F (1λ, t, s) first

sample a puzzle z for s, and then run ~̃z ← A(z). They then calculate ~̃s as follows. For ease of
understanding, denote this vector as computed by B in Hybs2(λ) as s̃(2), and denote the vector as
computed by bmim in Hybs3(λ) as s̃(3). Then, we have that for each output element i, BP computes
it as

s̃
(2)
i =

{
⊥ if z̃i = z

s′ otherwise, where s′ = SolP(1λ, t, z̃i)
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while bmimPA,F (1λ, t, s) computes it as

s̃
(3)
i =


⊥ if z̃i = z

vj if there exists a Qj = (1λ, t, vj , rj) ∈ Q with z̃i = GenP(1λ, t, vj ; rj)

⊥ otherwise,

where we recall that Q consists of all queries made by A and all elements of the partial assignment
F . Unless otherwise stated, note that all following probabilities are over O ← RFλ, A = Z(O),

B = Z ′(A), F = Sam(B), P ← RFλ[F ], ~̃s
(2)
← BP , ~̃s

(3)
← bmimPA,F (1λ, t, s). By assumption, we

have that

µ(λ) ≤ |Pr [Hybs2(λ)]− Pr [Hybs3(λ)]| ≤ Pr
[
s̃(2) 6= s̃(3)

]
= Pr

[
∃i ∈ [n(λ)] : s̃

(2)
i 6= s̃

(3)
i

]
≤

∑
i∈[n(λ)]

Pr
[
s̃
(2)
i 6= s̃

(3)
i

]
by a union bound. Therefore, there exists some i ∈ [n(λ)] such that

Pr
[
s̃
(2)
i 6= s̃

(3)
i

]
≥ µ(λ)/n(λ). (4.6)

Fix this index i. We will continue by expanding this probability.
Let E be the event that there exists a Qj = (1λ, t, sj , rj) ∈ Q such that z̃i = GenP(1λ, t, sj ; rj).

We have that

Pr
[
s̃
(2)
i 6= s̃

(3)
i

]
= Pr

[
s̃
(2)
i 6= s̃

(3)
i ∧ E

]
+ Pr

[
s̃
(2)
i 6= s̃

(3)
i ∧ ¬E

]
≤ Pr

[
s̃
(2)
i 6= s̃

(3)
i | E

]
+ Pr

[
s̃
(2)
i 6= s̃

(3)
i | ¬E

]
, (4.7)

We continue by bounding each term in Equation 4.7 separately.
For the first term, we have that

Pr
[
s̃
(2)
i 6= s̃

(3)
i | E

]
= 0.

To see this, note that conditioning on E implies s̃
(3)
i = sj , where Qj = (1λ, t, sj , rj) ∈ Q is the query

such that z̃i = GenP(1λ, t, sj ; rj). By the correctness of nmTLPm, this implies that SolP(1λ, t, z̃i)

outputs sj , so s̃
(2)
i = sj .

To bound the second term of Equation 4.7, conditioning on ¬E implies s̃
(3)
i = ⊥, and so

Pr
[
s̃
(2)
i 6= s̃

(3)
i | ¬E

]
= Pr

[
s̃
(2)
i 6= ⊥ | ¬E

]
.

Recall that s̃
(2)
i is sampled as SolP(1λ, t, z̃i). By definition of Sol, it holds that its output is not ⊥

when z̃i = GenP(1λ, s′, t; r) for s′||r = Soltlp(1λ, t, z̃i). Therefore, the above is equal to

Pr
[
SolP(1λ, t, z̃i) 6= ⊥ | ¬E

]
= Pr

[
z̃i = GenP(1λ, s′, t; r) | ¬E

]
= Pr

[
z̃i = Gentlp

(
1λ, t, (s′||r); P(1λ, t, s′, r)

)
| ¬E

]
,
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where the above probabilities are over the choice of O,A,B, F,P and the randomness used by A to
produce z̃i. Since we are conditioning on ¬E, it follows that P(1λ, t, s′, r) is uniformly random and
independent from A and hence from z̃i, so it suffices to bound the following probability, relative to
any z̃i. Therefore, by combining this with equations 4.7 and 4.6, we get the following, where the
probability is only over r′ ← {0, 1}λtlp :

Pr
[
r′ ← {0, 1}λtlp : Gentlp(1λ, t, (s′||r); r′) = z̃i

]
≥ µ(λ)/n(λ).

In the following sub-claim, we show that this implies we can break the hardness of TLP with the
same probability, which completes the claim. Note that the following sub-claim is general, so the
notation is independent from the above.

Subclaim 4.15. If for infinitely many λ ∈ N there exist values z? ∈ {0, 1}∗ and s ∈ {0, 1}λtlp+λ
with

Pr
[
r ← {0, 1}λtlp : Gentlp(1λ, T (λ), s; r) = z?

]
≥ µ(λ)/n(λ),

then there exists an adversary that breaks the hardness of TLP with probability µ(λ)/n(λ).

Proof. We will show that there exists a depth-bounded distinguisher D′ = {D′λ}λ∈N that breaks

the hardness of the time-lock puzzle with respect to T and any inputs s 6= s′ ∈ {0, 1}λtlpλtlp+λ.
Specifically, we will show that for infinitely many λ ∈ N,∣∣∣Pr

[
D′λ(Gentlp(1λ, T (λ), s)) = 1

]
− Pr

[
D′λ(Gentlp(1λ, T (λ), s′)) = 1

]∣∣∣ > µ(λ), (4.8)

which contradicts the hardness of TLP. For any λ ∈ N, we define D′λ on input z to simply output
1 if z = z? and 0 otherwise.

To show that D′ contradicts the hardness of TLP, we start by bounding the distinguishing
probabilities. Let Λ be the infinitely large set of λ ∈ N such that Equation 4.8 holds. It follows
that for all λ ∈ Λ,

Pr
[
Dλ(Gentlp(1λ, T (λ), s)) = 1

]
= Pr

[
Gentlp(1λ, T (λ), s) = z?

]
> µ(λ).

In particular, it holds that z? is in the support of Gentlp(1λ, T (λ), s) for all λ ∈ Λ. By completeness
of TLP, this implies that Soltlp(1λ, T (λ), z?) = s. It follows that z? is not in the support of
Gentlp(1λ, T (λ), s′) for any λ ∈ Λ since otherwise it would be the case that Soltlp(1λ, T (λ), z?) also
equals s′, but s 6= s′. As a result, it follows that for all λ ∈ Λ that

Pr
[
D′λ(Gentlp(1λ, T (λ), s′)) = 1

]
= Pr

[
Gentlp(1λ, T (λ), s′) = z?

]
= 0,

To complete the proof, we need to show that T and the size and depth of D′ are bounded
by the necessary parameters. Recall that the hardness of TLP is given by parameters B, ε and
polynomials `tlp, ptlp. We want to show that `tlp(λ) ≤ T (λ) ≤ B(λ), that size(D′λ) ∈ poly(B(λ)),
and that depth(D′λ) ≤ (T (λ))ε · ptlp(λ). Note that the bounds on T (λ) are immediate as we are
given that `(λ) ≤ T (λ) ≤ B(λ) and we set `(λ) ≥ `tlp(λ) + (`′(λ))1/ε ≥ `tlp(λ).

It remains to bound the size and depth of D′. As z? is in the support of Gentlp(1λ, T (λ), ·), the
efficiency of TLP implies that the size of z? and hence size(D′λ) can be bounded by poly(λ, log T (λ))
and so is bounded by a fixed polynomial `′(λ) by the above bounds on T (where `′ is the polynomial
used to specify `, and depends only on m). Note that this also bounds depth(D′λ). It follows that

size(D′λ) ≤ `′(λ) ∈ poly(λ) ∈ poly(B(λ))
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and
depth(D′λ) ≤ `′(λ) ≤ (`(λ))ε ≤ (T (λ))ε.

as desired, which completes the proof of the subclaim. �

This completes the proof of Claim 4.14. �

Claim 4.16. If there exists a function µ such that for infinitely many λ ∈ N there exists a value
s ∈ {0, 1}λ with ∣∣∣Pr [Hybs3(λ)]− Pr

[
Hyb0

λ

3 (λ)
]∣∣∣ ≥ µ(λ),

then there exists an adversary that breaks the hardness of nmTLPm with probability µ(λ)− negl(λ)
for a negligible function negl for infinitely many λ ∈ N.

Proof. By an averaging argument, the inequality in the statement of the claim implies that for
infinitely many λ ∈ N, there exists an O ∈ Supp(RFλ ), such that for A = Z(O), B = Z ′(A) and
F = Sam(B), it holds that∣∣∣∣Pr

[
P ← RFλ[F ]
~̃s← bmimPA,F (1λ, t, s)

: D(f(~̃s)) = 1

]
− Pr

[
P ← RFλ[F ]
~̃s← bmimPA,F (1λ, t, 0λ)

: D(f(~̃s)) = 1

]∣∣∣∣ ≥ µ(λ).

In order to complete the proof of the claim, our goal is to use bmim and D to construct an
adversary against the hardness of nmTLPm, for which we need the probability to be over the choice
of a random oracle O′ rather than a partially fixed on P. Toward that goal, for any oracle O′, let

b̃mimO
′
A,F (1λ, t, s) be the same as bmim, except that whenever any internal algorithm (such as A or

Gen) makes an oracle query Q, bmim first checks if Q ∈ F . If so, it returns the corresponding point
as given by F , and otherwise it forwards the query to its oracle O′.

We observe that sampling P ← RFλ[F ] and ~̃s← bmimPA,F (1λ, t, s) has the same distribution as

sampling a fully-defined oracle O′ ← RFλ and then ~̃s← b̃mimO
′
A,F (1λ, t, s). Therefore, we have that∣∣∣∣∣Pr

[
O′ ← RFλ
~̃s← b̃mimO

′
A,F (1λ, t, s)

: D(f(~̃s)) = 1

]

− Pr

[
O′ ← RFλ
~̃s← b̃mimO

′
A,F (1λ, t, 0λ)

: D(f(~̃s)) = 1

]∣∣∣∣∣ ≥ µ(λ). (4.9)

We will use this to break the hiding of nmTLPm by constructing an algorithm D′ that receives

a puzzle z either to s or 0λ, behaves exactly as b̃mim does to obtain ~̃s, computes f(~̃s), and finally
uses D to distinguish between the two cases. Specifically, let D′O′ be the oracle algorithm that on
input a puzzle z, does the following:

1. Run ~̃z ← A(·)(z), where for each query Q made by A, if Q ∈ F then answer with the
corresponding image given by F , and otherwise forward Q to O′. Let Q be the set containing
all queries and answers made by A as well as all points in F .

2. In parallel, for each i ∈ [n(λ)] and j ∈ [|Q|], compute s̃i as done by b̃mim
(·)
A,F (1λ, t, ·) by

checking if z̃i is the result of generating a puzzle using Qj ∈ Q.
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3. Compute y = f(~̃s).

4. Let ttD be the circuit with width 2m and depth O(m) corresponding to the truth table of D.
Run D(y) to get b = D(y), and output b.8

To analyze the success probability of D′ in breaking the hardness of TLP, we observe that the only

difference between running D′O′ and running D on the output of b̃mimO
′
A,F is that the puzzle given

to D′ is sampled using O′, while the puzzle that bmim uses is sampled using O′, but replacing
any queries to F with the image given in F . Specifically, let z be the puzzle given as input to
D′. In the first case, where z is a puzzle for s, let r be the uniformly random value such that
z = GenO

′
(1λ, t, s; r), so that z = Gentlp(1λ, t, (s||r);O′(1λ, t, s, r)). Whenever (1λ, t, s, r) 6∈ F , it

follows that the output of D′ is distributed as in the first probability in Equation 4.9. By the same
argument, when z is a puzzle for 0λ then the output of D′ is distributed according to the second
probability in Equation 4.9, so long as (1λ, t, 0λ, d) 6∈ F . As r is chosen uniformly at random from
{0, 1}λtlp , it follows that the probability that this occurs is at most

fnm(λ)

2λtlp
=

(qB(λ, 2m) · 4q(λ))2

2λtlp
=

(qB(λ, 2m) · 4q(λ))2

2m+λ
∈ poly(λ, 2m)

2m+λ
≤ negl′(λ)

which is negligible, where we used the fact that λtlp = m+ λ. Therefore∣∣∣∣Pr

[
O′ ← RFλ
z ← GenO

′
(1λ, t, s)

: D′O′(z) = 1

]
− Pr

[
O′ ← RFλ
z ← GenO

′
(1λ, t, 0λ)

: D′O′(z) = 1

]∣∣∣∣ ≥ µ(λ)− negl′(λ).

It will follow that D′ succeeds at breaking the hardness of nmTLPm as long as its size is bounded
by poly(B(λ)) and its depth is bounded by (T (λ))ε ·phard(λ) for some T with `hard(λ) ≤ T (λ) ≤ B(λ)
for all λ ∈ N, where `hard, phard are the positive polynomials guaranteed by the hardness of nmTLPm.
We bound the size and depth required for each step of D′ next, and then bound T . For the size
and depth of D′, we have that:

1. The first step requires running A and checking if each of its queries appears in F , and if so
returning the correct answer, and so requires size poly(|A| , |F |) and can be done in depth
depth(A) ·poly(λ, log |F |) since for each of A’s queries, it takes depth poly(λ, log |F |) to check
in parallel if the query appears in F and output the answer.

2. The second step can be done with size poly(λ,m, log t, |Q|) and depth poly(λ,m, log t) since
it requires generating a puzzle in parallel for each i ∈ [n(λ)] and j ∈ [|Q|].

3. The third step requires computing y = f(~̃s). Since the input length is n(λ), this can be done
in depth poly(λ, log n(λ)) and size poly(B(λ)) by assumption on f ∈ FmB .

4. The third step requires running ttD′(y), which can be done with size poly(λ, 2m) and depth
poly(λ,m).

Putting everything together, we have that

size(D′) ∈ poly(λ,m, n(λ), B(λ), log t, |Q| , |A| , |F | , 2m)

∈ poly(λ,m,B(λ), fnm(λ), 2m)

∈ poly(λ,m, 2m)

∈ poly(B(λ)),

8This trick, of ”flattening” D using its truth table, was used in this context [DKP20].
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where we used the fact that n(λ) ∈ λO(1), B(λ) = 2m · poly(λ), and |F | = fnm(λ) = (qB(λ, 2m) ·
4q(λ))2. For the depth,

depth(D′) ≤ depth(A) · poly(λ, log |F |) + poly(λ,m, log n(λ), log T (λ))

≤ depth(A) · poly(λ,m, log n(λ))

≤ depth(A) · p′(λ)

for a fixed polynomial p′ (which depends only on m, log n, and log fhard(λ)), where we used the fact
that m(λ) ∈ λO(1) and T (λ) ≤ B(λ). Note that log(n(λ)) can be bounded by λ for sufficiently large
λ. Similarly, log fhard(λ) can be bounded by a fixed polynomial in λ which depends on log q(λ).
As q is a polynomial, this can also be bounded by a fixed polynomial in λ independently of q, for
sufficiently large λ. Moreover, we can simply have D′ output ⊥ on security parameters which are not
sufficiently large. Therefore, depth(D′) ≤ p′(λ) for all λ ∈ N. Recall that depth(A) ≤ (T (λ))ε ·p(λ),
where we set p(λ) = phard(λ)/p′(λ). Therefore, the above is bounded by (T (λ))ε · phard(λ).

Finally, to bound T , we have that T (λ) ≥ `(λ) ≥ `hard(λ) and T (λ) ≤ B(λ). It follows that D′
breaks the hardness of nmTLPm with probability µ(λ)− negl′(λ), which completes the claim. �

This completes the proof of Lemma 4.11.

4.4 Impossibility of Fully Concurrent Non-malleability

In the following theorem, we show that there does not exist a concurrent non-malleable time-lock
puzzle. Specifically, consider a time-lock puzzle with message length L that has puzzles of length
at most L′. We give an explicit attack that violates n-concurrent non-malleability for n = dL′/Le.
As L,L′ are polynomial, this is an explicit polynomial for which non-malleability cannot hold.
Furthermore, this attack works even in the random oracle model. This means that for a time-
lock puzzle to satisfy n-concurrent non-malleability, the puzzles must be sufficiently long. In the
context of functional non-malleability, the following theorem shows that concurrent functional non-
malleability is impossible to achieve for any class F that contains the identity function.

Theorem 4.17. Let B,L,L′ : N → N, and ε ∈ (0, 1) where B(λ) ∈ 2poly(λ) and L ∈ poly(λ).
Suppose that (Gen, Sol) is a (B, ε)-secure time-lock puzzle for messages of length L(λ) with puzzles
of length at most L′(λ). Then, (Gen,Sol) does not satisfy n(λ)-concurrent non-malleability for
n(λ) = dL′(λ)/L(λ)e.

Proof. We note that as n-concurrent non-malleability implies one-n non-malleability, it suffices to
break one-n non-malleability.

Let p, ` be positive polynomials. For any function T , we define a (1, n,B, ε, T, p)-MIM adversary
A = {Aλ}λ∈N as follows. For any λ ∈ N, let L = L(λ), L′ = L′(λ), and n = n(λ) = dL′/Le. Note
that, since Gen is a PPT algorithm, L′ is at most poly(λ, L(λ), log T (λ)) for any T . This implies
that L′ and n are both bounded by polynomials. On input a puzzle z ∈ {0, 1}L′ , Aλ splits z
into n parts z1, . . . , zn ∈ {0, 1}L, padding the last part with zeroes if necessary. Aλ outputs
z̃(1), . . . , z̃(n) where z̃(i) ← Gen(1λ, T (λ), zi) for all i ∈ [n]. Note that the size (and depth) of Aλ is
at most n · q(λ, log T (λ)) for some polynomial q since Gen is a PPT algorithm. Thus, A is a valid
(1, n,B, ε, T, p)-MIM adversary for any function T such that `(λ)+n ·q(λ, log T (λ)) ≤ (T (λ))ε ·p(λ).
In particular, this is true for T (λ) = (`(λ) +n · (logB(λ)) · q(λ))1/ε/p(λ), which is a polynomial as ε
is a constant and B(λ) ∈ 2poly(λ). We show for this function T , A violates one-n non-malleability.

For any λ ∈ N and message s ∈ {0, 1}λ, consider the following distinguisher D for the MIM
distribution of Aλ. D gets as input values s̃(1), . . . , s̃(n) corresponding to (z̃(1), . . . z̃(n)). For each
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i ∈ [n], D computes ŝi ← Sol(1λ, T (λ), z̃(i)) and computes ẑ to be the first L′ bits of ŝ1‖ . . . ‖ŝn.
D then computes s′ = Sol(1λ, T (λ), ẑ). D outputs 1 if s = s′ and 0 otherwise. By correctness
of (Gen, Sol), it holds that D outputs 1 only on input mimA(1λ, T (λ), s), which contradicts one-n
non-malleability of (Gen,Sol), as required. Furthermore, we note that D only needs to run in depth
T (λ) · poly(λ, log T (λ)).

5 Publicly Verifiable Non-Malleable Time-Lock Puzzles

In this section, we define and construct a publicly verifiable time-lock puzzle (PV TLP) that is
additionally non-malleable as in Section 4. At a high level, a PV TLP is one where the Sol function
additionally outputs a succinct proof of correctness that can be checked by a Verify function.

In order for the proof to be sound, we use a weak form of setup independent of a cheating
prover’s advice. Specifically, we rely on what we call the all-but-one (ABO) string model. In this
model, the Sol and Verify algorithms take as input a multi-common random string, mcrs ∈ ({0, 1}λ)n

for some n ∈ N, and we require soundness to hold as long as a single random string is honest. In the
case that n = 1, this corresponds to the standard common random string model. The ABO-string
model is also very related to the multi-string model of [GO14], except that the ABO-string model
requires only one string—as opposed to a majority of strings—to be honestly generated.

While the ABO-string model is a weak form of setup, we prove security in the relatively strong
auxiliary-input random oracle model (AI-ROM). At a high level, we do this to ensure that the
puzzles generated by Gen are independent of any setup, while also being able to prove a meaningful
notion of security in essentially the “plain” random oracle model. Furthermore, the combination is
realistic for our application in Section 6.

We define a publicly verifiable time-lock puzzle in the ABO-string model as follows. We note
that we don’t explicitly define the functions and properties with respect a random oracle, and defer
such a treatment to the proofs of security.

Definition 5.1 (Publicly Verifiable Time-Lock Puzzle). A tuple (Gen, Sol,Verify) is a (B, ε)-secure
publicly-verifiable time-lock puzzle in the ABO-string model if (Gen,Sol,Verify) have the following
syntax:

• z ← Gen(1λ, t, s): A PPT algorithm that on input a security parameter λ ∈ N, a difficulty
parameter t ∈ N, and a solution s ∈ {0, 1}λ, outputs a puzzle z ∈ {0, 1}∗, and a proof
π ∈ {0, 1}∗.

• (s, π) ← Sol(1λ,mcrs, t, z): A randomized algorithm that on input the security parameter
λ ∈ N, a multi-common random string mcrs ∈ ({0, 1}λ)∗, a difficulty parameter t ∈ N, and a
puzzle z, outputs a solution s ∈ ({0, 1}λ ∪{⊥}) and a proof π ∈ {0, 1}∗. We denote Sol1 and
Sol2 as the first and second outputs of Sol, respectively.

• b = Verify(1λ,mcrs, t, z, (s, π)): A deterministic algorithm that on input a security parameter
λ ∈ N, a multi-common random string mcrs ∈ ({0, 1}λ)∗, a difficulty parameter t ∈ N, a
puzzle z, a possible solution s ∈ ({0, 1}λ ∪ {⊥}), and a proof π, outputs a bit b indicating
whether to accept or reject.

We require that (Gen, Sol,Verify) satisfy the following properties.

• Full correctness: For every λ, t, n ∈ N, mcrs ∈ ({0, 1}λ)n, and z ∈ {0, 1}∗, the following hold:

• If z ∈ Supp
(
Gen(1λ, t, s)

)
for some s ∈ {0, 1}λ, then Sol1(1

λ,mcrs, t, z) = s.
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• If z 6∈ Supp
(
Gen(1λ, t, s)

)
for any s ∈ {0, 1}λ, then Sol1(1

λ,mcrs, t, z) = ⊥.

• Efficiency: There exist a polynomial p such that for all λ, t, n ∈ N, mcrs ∈ ({0, 1}λ)n,
Sol(1λ,mcrs, t, ·) is computable in time t · p(λ, log t, n).

• (B, ε)-Hardness: The same as for time-lock puzzles as in Definition 3.1.

• Completeness: For any λ, t, n ∈ N, z ∈ {0, 1}∗, mcrs ∈ ({0, 1}λ)n, it holds that

Verify(1λ,mcrs, t, z, Sol(1λ,mcrs, t, z)) = 1.

• Soundness: For all non-uniform probabilistic polynomial-time adversaries A = {Aλ}λ∈N and
polynomials T , there exists a negligible function negl such that for all λ, n ∈ N and i ∈ [n], it
holds that

Pr


crsi ← {0, 1}λ
(z, s′, π, crs−i)← Aλ(1λ, crsi, T (λ))
mcrs = (crs1, . . . , crsn)
s = Sol1(1

λ,mcrs, T (λ), z)

:
Verify(1λ,mcrs, T (λ), z, (s′, π)) = 1
∧ s 6= s′

 ≤ negl(λ).

We note that the above notion of full correctness is stronger than the standard definition of
correctness for TLPs given in Definition 3.1. Also, the soundness notion is strong in the sense that
the adversary can try to break soundness even for invalid puzzles.

Towards achieving this strong definition, we define a notion of a one-sided publicly verifiabble
time-lock puzzle in which correctness holds only for z in the support of Gen and soundness requires
that the adversary cheats on puzzles in the support of Gen. We formalize this as follows.

Definition 5.2 (One-sided PV TLP). A tuple (Gen, Sol,Verify) is a (B, ε)-secure one-sided
publicly-verifiable time-lock puzzle in the ABO-string model if correctness holds only for z ∈
Supp

(
Gen(1λ, t, ·)

)
and the soundness property is replaced with the following:

• One-sided Soundness: For all non-uniform probabilistic polynomial-time adversaries A =
{Aλ}λ∈N and polynomials T , there exists a negligible function negl such that for all λ, n ∈ N
and i ∈ [n], it holds that

Pr


crsi ← {0, 1}λ
(z, s′, π, crs−i)← Aλ(1λ, crsi, T (λ))
mcrs = (crs1, . . . , crsn)
s = Sol1(1

λ,mcrs, T (λ), z)

:
Verify(1λ,mcrs, T (λ), z, (s′, π)) = 1
∧ s 6= s′

∧ z ∈ Supp
(
Gen(1λ, T (λ), ·)

)
 ≤ negl(λ).

In Section 5.1, we formalize the notion of a strong trapdoor verifiable delay function (VDF),
which satisfies the requirements we need for the underlying sequential function. We then give a
construction based on the repeated squaring assumption. We note that it may be possible to give a
construction that satisfies the necessary properties based on randomized encodings as in [BGJ+16],
but we instead focus on a more practical construction.

In Section 5.2, we formalize the construction of a one-sided PV TLP given a strong trapdoor
VDF. Finally in Section 5.3, we construct a full PV TLP by applying our non-malleability trans-
formation of Section 4.
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5.1 Strong Trapdoor VDFs

A trapdoor VDF provides a way to generate inputs to a function that take a long time to com-
pute. At the same time, the function can be computed efficiently using a trapdoor, and even
without the trapdoor, can be efficiently verified given a proof. Trapdoor VDFs were first defined
by Wesolowski [Wes19] as an extension of standard VDFs [BBBF18].

We define a strong notion of a trapdoor VDF in the ABO-string model. While the formal
definition is highly tailored towards our definition of PV TLPs and application to multi-party coin-
flipping, we believe that some of the stronger requirements we define—and achieve—may be of
independent interest. Conceptually, we require the following additional properties over previous
definitions of VDFs (or trapdoor VDFs):

1. We have no setup algorithm, and instead are in the ABO-string model. In particular, this
means that sampling inputs for the VDF can be done completely independently of any trusted
setup.

2. We allow the sampling procedure to specify the domain X of the evaluation function.

3. We require that completeness must hold for all inputs x ∈ {0, 1}∗ and domains X ∈ {0, 1}∗
rather than only honestly generated inputs.

4. We require soundness to hold for any adversarially chosen—yet in the support of the Sample
algorithm—input x and domain X , rather than with high probability over randomly sampled
x and X .

5. We require a natural encoding property for elements in the domain X with strings, and
additionally require that X defines a natural bijection that is amenable to being used as a
one-time pad (like ⊕ for strings or + for rings, for example).

We formally define the requirements of a strong trapdoor VDF in the ABO-string model as
follows.

Definition 5.3. Let B : N → N and ε ∈ (0, 1). A (B, ε)-secure strong trapdoor verifiable delay
function in the ABO-string model is a tuple (Sample,Eval,TDEval,Verify) with the following syntax:

• (x,X , td)← Sample(1λ, t): A PPT algorithm that on input a security parameter λ ∈ N, a diffi-
culty parameter t ∈ N, outputs a value x in a specified domain X , and a trapdoor td ∈ {0, 1}∗.

• (y, π)← Eval(1λ,mcrs, t, (x,X )): An algorithm that on input a security parameter λ ∈ N, a
difficulty parameter t ∈ N, and a value x in a specified domain X , outputs a value y ∈ X
and a proof π ∈ {0, 1}∗. We denote Eval1 and Eval2 as the first and second outputs of Eval,
respectively, and require that Eval1 is a deterministic function.

• y = TDEval(1λ, t, (x,X ), td): A polynomial-time algorithm that on input a security parameter
λ ∈ N, a difficulty parameter t ∈ N, a value x in a specified domain X , and a trapdoor
td ∈ {0, 1}∗, outputs a value y ∈ X .

• b = Verify(1λ,mcrs, t, (x,X ), (y, π)): A polynomial-time algorithm that on input a security pa-
rameter λ ∈ N, a difficulty parameter t ∈ N, values x, y in a specified domain X , and a proof
π ∈ {0, 1}∗, outputs a bit b indicating whether to accept or reject.

We require that (Sample,Eval,TDEval,Verify) satisfy the following properties.
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• Completeness: For every λ, t, n ∈ N, x,X ∈ {0, 1}∗, mcrs ∈ ({0, 1}λ)n, it holds that

Verify(1λ,mcrs, t, (x,X ),Eval(1λ,mcrs, t, (x,X ))) = 1.

• Soundness: For all non-uniform PPT adversaries A = {Aλ}λ∈N and polynomials T , there
exists a negligible function negl such that for all λ, n ∈ N, i ∈ [n], it holds that

Pr


crsi ← {0, 1}λ
(x,X , y′, π, crs−i)

← Aλ(1λ, crsi, T (λ), n)
mcrs = (crs1, . . . , crsn)
y = Eval1(1

λ,mcrs, T (λ), (x,X ))

:
Verify(1λ,mcrs, T (λ), (x,X ), (y′, π)) = 1
∧ y 6= y′

∧ (x,X , ∗) ∈ Supp
(
Sample(1λ, T (λ))

)
 ≤ negl(λ).

• Trapdoor Evaluation: For every λ, t, n ∈ N, (x,X , td) ∈ Supp
(
Sample(1λ, t)

)
, and mcrs ∈

({0, 1}λ)n, it holds that

Eval1(1
λ,mcrs, t, (x,X )) = TDEval(1λ, t, (x,X ), td).

• Honest Evaluation: There exists a polynomial p such that for all λ, t, n ∈ N, and mcrs ∈
({0, 1}λ)n, Eval(1λ,mcrs, t, ·) is computable in time t · p(λ, log t, n).

• (B, ε)-Sequentiality: There exist positive polynomials p, ` such that for all functions T with
`(λ) ≤ T (λ) ≤ B(λ) for all λ ∈ N and every non-uniform adversary A = {Aλ}λ∈N where
size(Aλ) ∈ poly(B(λ)) and depth(Aλ) ≤ (T (λ))ε · p(λ) for all λ ∈ N, there exists a negligible
function negl such that for all λ ∈ N, n ∈ N, mcrs ∈ ({0, 1}λ)n,∣∣∣∣Pr

[
(x,X , td)← Sample(1λ, T (λ))
y = Eval1(1

λ,mcrs, T (λ), (x,X ))
: Aλ(x,X , y) = 1

]
− Pr

[
(x,X , td)← Sample(1λ, T (λ))
r ← X : Aλ(x,X , r) = 1

] ∣∣∣∣ ≤ negl(λ).

• Encoding: For λ, t ∈ N, and any domain X output by Sample(1λ, t), it holds that strings in
{0, 1}λ can be uniquely encoded as elements in X , and elements in X can be uniquely decoded
to elements in {0, 1}∗. Additionally, for any element x ∈ X , there is an efficiently computable
bijective map fx : X → X , written as fx(y) = x⊕ y.

In the above definition, we note that only Eval and Verify receive as input the multi-common
random string mcrs, as they require it for public verifiability. In particular, TDEval can be computed
without access to mcrs since we do not require it to output a proof of correctness (in fact, the
trapdoor itself can be thought of as a privately verifiable proof). By trapdoor evaluation, this
implies that the output y of the function is actually independent of mcrs.

Candidate strong trapdoor VDF. Our candidate strong trapdoor VDF is based on repeated
squaring with a publicly verifiable proof of correctness from Pietrzak [Pie19]. As in [Pie19], we use
the group G = QR+

N of signed quadratic residues mod N , where N is the product of safe primes p, q
such that (p−1)/2 and (q−1)/2 are prime. We note that QR+

N has size |QR+
N | = (p−1) · (q−1)/4

and has the property that it only subgroups are of size (p− 1)/2 and (q − 1)/2 which are both at
least 2λ by construction. Elements in this group can be encoded as integers in [0, (N − 1)/2]. For
any two elements a, b ∈ QR+

N , we can define multiplication (and similarly addition) by computing
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x = a · b mod N and taking the smaller of x and N − x, which is in [0, (N − 1)/2]. For further
discussion of the group, we refer the reader to [Pie19].

To generate such a group, we can sample random numbers in [2λ+1, 2λ+2) until we find two
safe primes p and q and output QR+

N where N = p · q. As discussed in [Pie19], it is conjectured
(in [VZGS13]) that for some constant c, there are c ·2λ/λ2 safe λ-bit primes. Under this conjecture,
it takes expected polynomial time to sample N which is a product of two safe primes. Rather
than doing this, we define a group generator algorithm RSWGen(1λ) that searches for safe primes
in [2λ+1, 2λ+2) for some fixed polynomial time until it fails to halt with probability at least 2−λ.
Specifically, suppose it takes expected p(λ) time to find two safe primes. If we run for 2 · λ · p(λ)
time, we will halt with probability at least 2−λ. When this failure event occurs, RSWGen(1λ)
deterministically searches for safe primes starting with 2λ+1, 2λ+1 + 1, . . . until finding the first two
safe primes (alternatively, we could hard code these safe primes with preprocessing). Assuming
that the safe primes are evenly spread out, this will only need to search through O(λ2) numbers.
We additionally define RSWGen(1λ) to output a random group element and the size of the group
to be used as a trapdoor. In summary, we have the following:

• (g,G, |G|) ← RSWGen(1λ): A PPT algorithm that outputs (g,G, |G|) where G = QR+
N such

that N is the product of two safe primes p and q, g ← G is a random element in the group,
and |G| = (p − 1) · (q − 1)/4 is the size of the group. It holds that with probability at least
1− 2−λ, p and q are uniformly random safe primes in [2λ+1, 2λ+2).

We next define formalize the repeated squaring assumption we make for RSWGen. We note
that this assumption for QR+

N is implied by the more standard repeated squaring assumption for
Z?N with at most a factor of 8 loss in advantage, as discussed in [Pie19].

Assumption 5.4 (Repeated Squaring Assumption). Let B : N → N and ε ∈ (0, 1). We say that
the (B, ε)-repeated squaring assumption for RSWGen holds if there exist functions `, p such that
for all functions T with `(λ) ≤ T (λ) ≤ B(λ) for all λ ∈ N and every non-uniform distinguisher
A = {Aλ}λ∈N where size(Aλ) ∈ poly(B(λ)) and depth(Aλ) ≤ (T (λ))ε · p(λ) for all λ ∈ N, there
exists a negligible function negl such that for all λ ∈ N,∣∣∣∣Pr

[
(g,G, |G|)← RSWGen(1λ)

y = g2
T (λ) : Aλ(g,G, y) = 1

]
− Pr

[
(g,G, |G|)← RSWGen(1λ)
r ← G : Aλ(g,G, r) = 1

] ∣∣∣∣ ≤ negl(λ).

Proof of repeated squaring. We next discuss the publicly verifiable proof of repeated squaring
for the group QR+

N given in Pietrzak [Pie19]. We use a slightly modified version of this protocol,
which is in the ABO-string model and where we explicitly assume access to a random oracle
O : {0, 1}∗ → [2λ].

We first describe the interactive protocol of [Pie19]. In order to prove the claim that x2
T

= y
in QR+

N
9, the interactive protocol does the following. If T = 1, the verifier directly checks that

x2 = y. Otherwise, the prover sends to the verifier the value µ = x2
T/2

and the verifier replies with
r ← [2λ]. The prover and verifier recursively engage in a protocol to prove that (xrµ)T/2 = µry.
This interactive proof consists of 2 · log T rounds of communication, where the prover sends a single
group element and the verifier responds with a λ-bit challenge. The proof has soundness error at
most 3 · log T/2λ even against unbounded cheating provers. In particular, [Pie19] shows that at

9we assume for simplicity that T is a power of 2, which can be easily dealt with as in [Pie19] if this is not the case
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there are at most 3 “bad challenges” that the verifier might send in each round of the protocol, in
the sense that a bad challenge might cause the verifier to wrongly accept false statements.

In order to make the above protocol non-interactive via the Fiat-Shamir heuristic, the prover
uses the random oracle O on the transcript so far to generate the random challenges of the verifier
itself. The verifier then accepts the proof if all challenges are consistent with H and the interactive
verifier would have accepted. We emphasize that in our version of the protocol, the oracle O is
indexed with mcrs, which is assumed to have at least λ bits of entropy independent of any possible
adversary. Following the above idea, we formalize the algorithms RSWProve and RSWVerify that
we use:

• π = RSWProveO(1λ,mcrs, t, (g,G), y):

1. Let x0 = g, y0 = y.

2. For i = 1, . . . , log t,

(a) Compute πi = x2
t/2i

i−1 .

(b) Let ri = O(1λ,mcrs, t, (g,G), y, π1, . . . , πi).

(c) Compute xi = xrii−1 · πi and yi = πrii · yi−1.
3. Output π = (π1, . . . , πlog t).

• b = RSWVerifyO(1λ,mcrs, t, (g,G), y, π):

1. Let x0 = g, y0 = y.

2. For i = 1, . . . , log t,

(a) Let ri = O(1λ,mcrs, t, (g,G), y, π1, . . . , πi).

(b) Compute xi = xrii−1 · πi and yi = πrii · yi−1.
3. Output 1 if and only if x2log t = ylog t.

We note that RSWProve can be computed in time t · poly(λ, log t, n) and RSWVerify can be
computed in time poly(λ, log t, n). We note that [Pie19] shows how to compute RSWProve in time
t+
√
t when using

√
t memory from computing y = g2

t
(ignoring poly(λ, n) factors).

In the following lemmas, we show that these algorithms satisfy the following completeness and
soundness properties.

Lemma 5.5 (Completeness). For any λ, t, n ∈ N, G which is a valid representation of QR+
N for

some N , g ∈ G, and mcrs ∈ ({0, 1}λ)n, let y = g2
T

and π = RSWProve(1λ,mcrs, t, (g,G), y). Then,
it holds that

RSWVerify(1λ,mcrs, t, (g,G), y, π) = 1.

Completeness follows immediately from [Pie19].

Lemma 5.6 (Soundness). For any polynomial T and unbounded algorithm Z that on input O ∈
Supp(RFλ ) outputs polynomial-size circuits, there exists a negligible function negl such that for all
λ, n ∈ N, i ∈ [n], it holds that

Pr



O ← RFλ
A = Z(O)
crsi ← {0, 1}λ
(g,G, y′, π, crs−i)
← AO(1λ, crsi, T (λ), n)

mcrs = (crs1, . . . , crsn)

:

RSWVerifyO(1λ,mcrs, T (λ), (g,G), y′, π) = 1

∧ y′ 6= g2
T (λ)

∧ (g,G, ∗) ∈ Supp
(
RSWGen(1λ, T (λ))

)
 ≤ negl(λ).
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At a high level, the proof follows by a simple application of Lemma 3.6 of Unruh [Unr07] followed
by an analysis of Pietrzak’s VDF [Pie19] in the (plain) random oracle model. We give the proof in
Appendix B.

Strong trapdoor VDF construction. We are now ready to state our strong trapdoor VDF
construction VDF = (Samplevdf ,Evalvdf ,TDEvalvdf ,Verifyvdf) in the ABO-string model. We give
Evalvdf and Verifyvdf access to an oracle function O. We note that we can efficiently check if G is
a valid representation of QR+

N for some N , and we can efficiently check membership in G = QR+
N .

In particular, we say that (g,G) are valid if G can be parsed as a valid representation of QR+
N and

g ∈ G.

• (g,G, |G|)← Samplevdf(1
λ, t):

1. Output (g,G, |G|)← RSWGen(1λ).

• (y, π)← EvalOvdf(1
λ,mcrs, t, (g,G)):

1. If (g,G) are invalid, output y = π = ⊥.

2. Otherwise, compute y = g2
t

in G and π = RSWProveO(1λ,mcrs, t, (g,G), y).

• y = TDEvalvdf(1
λ,mcrs, t, (g,G), |G|):

1. If (g,G) are invalid, output y = ⊥.

2. Otherwise, output y = g(2
t mod |G|).

• b = VerifyOvdf(1
λ,mcrs, t, (g,G), (y, π)):

1. If (g,G) are invalid, output 1 if and only if y = π = ⊥.

2. Otherwise, output 1 if and only if RSWVerifyO(1λ,mcrs, t, (g,G), y, π) = 1.

Theorem 5.7. Assuming the (B, ε)-repeated squaring assumption holds for RSWGen, then there ex-
ists a (B, ε)-secure strong trapdoor VDF in the ABO-string model. Soundness holds in the auxiliary-
input random oracle model.

Each of the required properties follow almost directly from the definition of a strong trapdoor
VDF. We provide the full proof for completeness in Appendix B.

5.2 One-sided PV TLPs from Strong Trapdoor VDFs

Let VDF = (Samplevdf ,Evalvdf ,TDEvalvdf ,Verifyvdf) be any strong trapdoor VDF. Our construction
is given by the tuple TLP = (Gentlp, Soltlp,Verifytlp), where Soltlp and Verifytlp have oracle access to
a function O, defined as follows.

• z ← Gentlp(1λ, t, s):

1. Compute (x,X , td)← Samplevdf(1
λ, t) and y = TDEvalvdf(1

λ, t, (x,X ), td).

2. Encode s as an element xs ∈ X and compute xc = xs ⊕ y.

3. Output z = (x,X , c).

• (s, π)← Soltlp(1λ,mcrs, t, z):
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1. Parse z as (x,X , c). If z cannot be parsed this way, output (⊥,⊥).

2. Compute (y, πvdf)← Evalvdf(1
λ,mcrs, t, (x,X )).

3. Let xs = y ⊕ c, and let s be the string encoding of xs.

4. Output (s, (y, πvdf)).

• b = Verifytlp(1λ,mcrs, t, z, (s, π)):

1. Parse z as (x,X , c) and π as (y, πvdf). If z cannot be parsed this way, output 1 if and
only if s = π = ⊥.

2. Otherwise, output 1 if and only if Verifyvdf(1
λ,mcrs, t, (x,X ), (y, πvdf)) = 1 and c⊕y = xs

where xs is the encoding of s in X .

In the following theorem, we show that TLP is one-sided publicly verifiable time-lock puzzle in
the ABO-string model, assuming that VDF is any strong trapdoor VDF. However, we emphasize
that for our explicit construction of VDF, soundness holds in the auxiliary-input random oracle
model, so we achieve the same soundness for our explicit TLP construction.

Theorem 5.8. Suppose there exists a (B, ε)-secure strong trapdoor VDF. Then, there exists a
(B, ε)-secure one-sided publicly verifiable time-lock puzzle.

We provide a full proof of this thoerem in Appendix B.

5.3 Non-Malleable PV TLP from One-sided PV TLPs

By applying a similar transformation as in Section 4 to any one-sided PV TLP, we achieve a publicly
verifiable time-lock puzzle (with full correctness and soundness) that is additionally non-malleable.
For completeness, we restate the transformation with the syntax of publicly verifiable time-lock
puzzles, and note that we assume the same parameters as in Section 4. Let m be a polynomial, and
let TLPmos = (Genos, Solos,Verifyos) be a one-sided PV TLP. We construct a non-malleable PV TLP
(Gen,Sol,Verify) in the ABO-string model, where all algorithms have oracle access to a function O.

• z = GenO(1λ, t, s; r):

1. Get ros = O(1λ, t, s, r).

2. Output z ← Genos(1
λos , t, (s||r); ros).

• (s, π)← SolO(1λ,mcrs, t, z):

1. Compute (sos, πos) = Solos(1
λtlp ,mcrs, t, z) and parse sos = s||r.

2. If z = GenO(1λ, t, s; r), output (s, r).

3. Otherwise, output (⊥, (sos, πos)).

• b = VerifyO(1λ,mcrs, t, z, (s, π)):

1. If s 6= ⊥, parse π = r. Output 1 if and only if z = GenO(1λ, t, s; r).

2. If s = ⊥, parse π = (sos, πos) and sos = s||r. Output 1 if and only if z 6= GenO(1λ, t, s; r)
and Verifyos(1

λos ,mcrs, t, z, (sos, πos)) = 1.

Recall the class of depth-bounded functions FmB with m(λ)-bit outputs defined in Section 4.
We get the following theorem.

42



Theorem 5.9 (Non-malleable PV TLP from one-sided PV TLP). Let B : N → N, m(λ) ∈ λO(1),
and ε ∈ (0, 1), where λ ≤ B(λ) ∈ 2m(λ) ·poly(λ). Assuming the existence of a (B, ε)-secure one-sided
publicly verifiable time-lock puzzle TLPos in the ABO-string model, then there exists a (B, ε)-secure
publicly verifiable time-lock puzzle in the ABO-string model. Soundness holds in the auxiliary-
input random oracle model. Furthermore, the construction satisfies fully concurrent functional
non-malleability for the class of functions FmB .

Before proving the above theorem, we state the following corollary by combining Theo-
rems 5.7, 5.8, and 5.9. We emphasize that the resulting construction is proven secure in the
auxiliary-input random oracle model.

Corollary 5.10 (NM PV TLP from Repeated Squaring). Let B : N → N, m(λ) ∈ λO(1), and
ε ∈ (0, 1), where λ ≤ B(λ) ∈ 2m(λ)·poly(λ). Assuming the (B, ε)-repeated squaring assumption holds
for RSWGen, then there exists a (B, ε)-secure publicly verifiable time-lock puzzle in the ABO-string
model. Soundness holds in the auxiliary-input random oracle model. Furthermore, the construction
satisfies concurrent functional non-malleability for the class of functions FmB .

The proof of Theorem 5.9 follows by considering the construction (Gen, Sol,Verify) assum-
ing (Genos, Solos,Verifyos) is a (B, ε)-secure one-sided publicly verifiable time-lock puzzle. The
proofs of efficiency, hardness, and concurrent functional non-malleability follow immediately from
Thorem 4.2. We provide proofs of full correctness and completeness in Appendix B. We proceed
to prove that the construction satisfies the full notion of soundness in the auxiliary-input random
oracle model assuming the underlying construction satisfies only one-sided soundness.

Lemma 5.11 (Soundness). Assuming (Genos,Solos,Verifyos) is a (B, ε)-secure one-sided publicly
verifiable time-lock puzzle, then the construction (Gen,Sol,Verify) satisfies the soundness property
in the auxiliary-input random oracle model for publicly verifiable time-lock puzzles in the ABO-string
model.

Proof. Suppose by way of contradition that (Gen,Sol,Verify) does not satisfy soundness. Namely,
there exists a polynomial T , unbounded algorithm Z that outputs polynomial-size circuits, a poly-
nomial q, and integers n ∈ N, i ∈ [n] such that for infinitely many λ ∈ N, it holds that

Pr



O ← RFλ
A = Z(O)
crsi ← {0, 1}λ
(z, s′, π′, crs−i)← AO(1λ, crsi, T (λ))
mcrs = (crs1, . . . , crsn)

s = SolO1 (1λ,mcrs, T (λ), z)

:
VerifyO(1λ,mcrs, T (λ), z, (s′, π′)) = 1
∧ s′ 6= s

 > 1/q(λ).

Fix any λ for which this holds. Throughout the proof, we let t = T (λ). Additionally, it will be
helpful to define (s, π) = SolO(1λ,mcrs, t, z) to be the output of Sol for the values given by A.
Furthermore, by completeness, we know that VerifyO(1λ,mcrs, t, z, (s, π)) = 1.

We consider three possible events that may occur when A succeeds in the above experiment.
Either (1) s 6= ⊥ and s′ 6= ⊥, (2) s = ⊥ and s′ 6= ⊥, or (3) s 6= ⊥ and s′ = ⊥. As s 6= s′ when
A succeeds, this covers all of the possible cases. We show that (1) and (2) cannot occur, and then
proceed to bound the probability that (3) occurs.

For (1), suppose that it is the case that neither s nor s′ are equal to ⊥. We know that
VerifyO(1λ,mcrs, t, z, (s, π)) = 1 and VerifyO(1λ,mcrs, t, z, (s′, π′)) = 1. This implies that z is both
in the support of GenO(1λ, t, s) and the support of GenO(1λ, t, s′), but this contradicts correctness
since it means that SolO1 (1λ,mcrs, t, z) must be equal to both s and s′.
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For (2), suppose that s = ⊥ and s′ 6= ⊥. Becuase VerifyO(1λ,mcrs, t, z, (s′, π′)) = 1 and
s′ 6= ⊥, this means that z = GenO(1λ, t, s′; r′) where r′ = π′. Then by correctness, it holds that
SolO1 (1λ,mcrs, t, z) = s′, which contradicts the facts that s′ 6= s.

As a result, we know that (3) occurs with probability at least 1/q(λ), meaning that when A
wins, s 6= ⊥ and s′ = ⊥. We show that this can be used to break the one-sided soundness of
(Genos, Solos,Verifyos).

We define a non-uniform algorithm B = {Bλ}λ∈N as follows. In order for Bλ to use A in
the reduction, Bλ needs to simulate the oracle calls that A makes to O. To do so, we need to
make use of Lemma 3.6 of Unruh [Unr07]. Specifically, let p(λ) be an upper bound on the size of
the adversaries that Z outputs, which is polynomial by assumption. For the polynomial function
f(λ) = 4 · (p(λ))2 · (q(λ))2, we consider the inefficient algorithm Sam that on input A outputs a
partial assignment F of size f(λ). By Lemma 3.6, it holds that the output distribution of A with
access to P ← RFλ[F ] has statistical distance at most

√
p(λ)2/f(λ) = 1/(2 · q(λ)) from before.

Thus, it holds that

Pr



O ← RFλ; A = Z(O)
F = Sam(A); P ← RFλ[F ]
crsi ← {0, 1}λ
(z, s′, π′, crs−i)← AP(1λ, crsi, T (λ))
mcrs = (crs1, . . . , crsn)

s = SolP1 (1λ,mcrs, T (λ), z)

:
VerifyP(1λ,mcrs, T (λ), z, (s′, π′)) = 1
∧ s′ 6= s

 > 1/(2 · q(λ)).

Now, for each λ ∈ N, Z wins with at least 1/(2 · q(λ)) probability over a random O ← RFλ.
By a simple averaging argument, there must exist a fixed oracle O such that Z wins with at least
1/(2 · q(λ)) probability on that oracle. Let A be the output of Z on such an O. We give Bλ the
description of A hardcoded as non-uniform advice as well as the set of points F . As |F | and A are
polynomial-size, it holds that Bλ is also be polynomial-size.

We are now ready to define the behavior of Bλ. On input (1λ, crsi, T (λ)), Bλ computes
(z, s′, π′, crs−i) ← AP(1λ, crsi, T (λ)). Whenever A queries the oracle P, Bλ responds using F if
possible, and otherwise responds with a uniformly random value (responding consistently if the
same query is made multiple times). Bλ then parses π′ as (sos, πos) and outputs (z, sos, πos, crsi) if
possible.

For correctness, we have already shown that when A wins, it must be the case that
s′ = ⊥ and s 6= ⊥. Since s′ = ⊥ and VerifyP(1λ,mcrs, T (λ), z, (s′, π′)) = 1, it holds
that π′ = (s′os, π

′
os) and Verifyos(1

λos ,mcrs, t, z, (s′os, π
′
os)) = 1. However, because s 6= ⊥ and

VerifyP(1λ,mcrs, T (λ), z, (s, π)) = 1, it must be the case that z = GenP(1λ, t, s; r) for π = r. This
implies that z ∈ Supp

(
Genos(1

λos , t, sos)
)

where sos = s‖r. By correctness and completeness of the
underlying TLP, (sos, πos) = Solos(1

λos ,mcrs, t, z). However, this implies that Bλ wins whenever A
wins as s′os 6= sos, Verifyos(1

λos ,mcrs, T (λ), z, (s′os, π
′
os)) = 1, and z ∈ Supp

(
Genos(1

λos , t, ·)
)
. More

precisely, Bλ satisfies the following for infinitely many λ ∈ N,

Pr


crsi ← {0, 1}λ
(z, s′os, π

′
os, crs−i)
← Bλ(1λ, crsi, T (λ))

mcrs = (crs1, . . . , crsn)
sos = Solos,1(1

λ,mcrs, T (λ), z)

:
Verifyos(1

λ,mcrs, T (λ), z, (s′os, π
′
os)) = 1

∧ s′os 6= sos
∧ z ∈ Supp

(
Genos(1

λos , t, ·)
)

 > 1/(2 · q(λ)),

which contradicts one-sided soundness of the underlying TLP.
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6 Applications to Multi-Party Coin-Flipping and Auctions

In this section, we discuss our fair multi-party protocols. We focus on the case of multi-party
coin-flipping and address auctions in Remark 1 below.

Our multi-party coin-flipping protocol is based on a publicly verifiable time-lock puzzle that
satisfies concurrent functional non-malleability for the XOR function f⊕. Specifically, in order
to produce L bits of randomness, we need concurrent function non-malleability for the function
f⊕ : ({0, 1}L)∗ → {0, 1}L that on input (r1, . . . , rn) outputs

⊕
ri 6=⊥ ri.

We describe our protocol in a public bulletin board model, where any party may “publish” a
message that all other parties will see within some fixed time. Our protocol consists four phases:
a commit phase, open phase, force open phase, and output phase. The commit and open phases
consist of a single synchronous round of communication where all participating parties publish a
message on the bulletin board. The force open phase can be computed by any party, and only
needs to be computed by a single (honest) party. Once all puzzles have been opened (or force
opened), any party can run the output phase to get the output of the protocol. When we refer
to an honest participant, we mean a party that runs the protocol as specified, independent of all
other participants.

For any B,L : N → N and ε ∈ (0, 1), let (Gen,Sol,Verify) be a (B, ε)-secure publicly verifiable
time-lock puzzle with message length L(λ) that satisfies concurrent functional non-malleability for
the function f⊕ (which has output length L(λ)). The protocol takes as common input a security
parameter λ and a time bound t = T (λ) where T is any sufficiently large function smaller than B.

• Commit phase: Each participant i samples si ← {0, 1}L(λ) and ri, crsi ← {0, 1}λ, computes
zi ← Gen(1λ, t, si; ri), and publishes zi and crsi. Let mcrs = (crs1, . . . , crsn). We assume that
only unique puzzle are published to the bulletin board.

• Open phase: Each participant i that published in the commit phase publishes the solution
si and with an opening ri.

• Force open phase: For each puzzle zj , if either (a) there is no published solution sj and
opening rj or (b) if zj 6= Gen(1λ, t, sj ; rj), compute and publish (sj , πj) ← Sol(1λ,mcrs, t, zj)
(where sj might be ⊥).

• Output phase: If for every puzzle zj and solution sj , either (a) there is a pub-
lished opening rj such that zj = Gen(1λ, t, sj ; rj) or (b) a published proof πj such that
Verify(1λ,mcrs, t, zj , (sj , πj)) = 1, then output s =

⊕
sj 6=⊥ sj .

We note that the protocol above does not assume an a priori bound on the number of partici-
pants. Furthermore, there is no external setup needed by the protocol. All participants, however,
do publish a random string crsi ← {0, 1}λ to implement the ABO-string model for (Gen,Sol,Verify).

Theorem 6.1. Let B : N → N, L(λ) ∈ λO(1), and ε ∈ (0, 1) where λ ≤ B(λ) ∈ 2L(λ) · poly(λ)
Assume the existence of a (B, ε)-secure publicly verifiable time-lock puzzle for L(λ) bit messages
in the ABO-string model that satisfies concurrent function non-malleability for f⊕ with L(λ) bit
output. Then, there exists a multi-party coin-flipping protocol that satisfies optimistic efficiency,
fairness, and public verifiability. The protocol supports an unbounded number of participants and
requires no adversary-indpendent trusted setup.

We note the following result by plugging Corollary 5.10 into Theorem 6.1.
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Corollary 6.2. Let B,L : N → N and ε ∈ (0, 1) where λ ≤ B(λ) ∈ 2L(λ) · poly(λ). Assuming
the (B, ε)-repeated squaring assumption for RSWGen, there exists a multi-party coin-flipping pro-
tocol that satisfies optimistic efficiency, fairness, and public verifiability. The protocol supports an
unbounded number of participants and requires no adversary-indpendent trusted setup. Security is
proven in the auxiliary-input random oracle.

We remark how we can adapt our protocol to deal with auctions.

Remark 1 (Multi-Party Auctions). For our application to auctions, we consider a standard second-
price, sealed-bid auction, in which the auctioned item is assigned to the highest bidder who pays
the second highest bid for the item. We assume some form of authenticated channels so we can
know the bidders’ identities in order to distribute the auctioned items. We leave these as external
implementation details for the protocol. The main protocol proceeds as follows.

In the commit phase, each participant computes a time-lock puzzle to their bid. The open and
force open phases are identical to the case of coin-flipping. Then in the output phase, we need to
determine the identity of the highest bidder and the value of the second highest bid.

The function that computes the output consists of finding the top two values in a set. This
can be computed in low depth (doing a tree of comparisons in parallel) and has output length
log n+logM where n is the number of participants and M is a bound on the largest valid bid. Thus,
using our publicly verifiable time-lock puzzle that satisfies concurrent functional non-malleability
for this function, the resulting protocol is secure assuming n ·M · poly(λ) security for the repeated
squaring assumption. Assuming n and M are polynomially bounded, we only need polynomial
security assumptions.

In the remainder of this section, we discuss the various properties satisfied by our construction
of Theorem 6.1.

Complexity. We discuss the efficiency of each phase in the above protocol. As mentioned above,
the commit and open phase consist of a single round of synchronous communication. For the
commit phase, each participating party requires at most poly(λ, log t) local computation time by
the efficiency of Gen, and we require that all messages be posted within a specified time at most
tε. After this specified time, all participating parties can publish their solutions and openings as
part of the open phase, and if needed, unopened puzzles can be force opened. By the efficiency of
Sol, force open requires time t ·poly(λ, log t) per unopened puzzle and can be computed by a single
party. The output phase can be computed by anyone and requires at most n · poly(λ, log t) time
by the efficiency of Gen and Verify, where n is the number of puzzles submitted during the commit
phase.

Optimistic efficiency. If all parties that publish a puzzle in the commit phase also publish a
valid solution and opening in the open phase, then the output phase can be run immediately
without running the force open phase.

Public verifiability. Let zj be any puzzle which was not opened, or was opened incorrectly
during the open phase. Suppose an honest party runs the force open phase for puzzle zj and
publishes (sj , πj) ← Sol(1λ,mcrs, t, zj). By completeness of (Gen,Sol,Verify), it follows that
Verify(1λ,mcrs, t, zj , (sj , πj)) = 1 for any zj ∈ {0, 1}∗, so that check in the output phase will
pass. Thus, if a single honest party runs the entire force open phase, then any party can run the
output phase and all checks will pass.
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Fairness. We formalize and prove fairness in the following lemma. At a high level, we show that
as long as there is a single honest participant (who only needs to publish an honestly sampled
puzzle independent of all other participants), the output of the protocol is statistically close to a
uniformly random distribution over L(λ) bits.

Lemma 6.3 (Fairness). For any distinguisher D, there exists a negligible function negl such that
for all λ ∈ N, the following holds. Suppose that at most n(λ) ∈ poly(λ) participants for the commit
phase, and at least one honest party runs the commit phase. Let s be the output of the open phase
at the end of the protocol for security parameter λ, and r ← {0, 1}L(λ). It holds that

|Pr [D(s) = 1]− Pr [D(r) = 1]| ≤ negl(λ).

Proof. Suppose by way of contradication that there exists a polynomial q such that for infinitely
many λ ∈ N,

|Pr [D(s) = 1]− Pr [D(r) = 1]| > 1/q(λ).

Fix any λ ∈ N for which the above holds, and let n = n(λ), L = L(λ), and t = T (λ). Let
z1, . . . , zn be the (unique) puzzles published in the commit phase and let mcrs = (crs1, . . . , crsn).
Without loss of generality, suppose that participant “1” is honest, so z1 and crs1 are generated
honestly and published to the bulletin board. More specifically, s1 ← {0, 1}L, r1, crs1 ← {0, 1}λ,
z1 ← Gen(1λ, t, s1; r1), and only z1 and crs1 are published before the open phase begins. Note that
since z1 is generated honestly and independently of all other parties, it will be unique with all but
negligible probability, so will be successfully published to the bulletin board.

Let A = {Aλ}λ∈N be a non-uniform algorithm where Aλ consists of the actions of all parties in
the protocol other than participant 1 that outputs puzzles z2, . . . , zn. By definition of the protocol,
Aλ has polynomial size and depth bounded by (T (λ))ε. Thus, A is a valid (1, n,B, ε, T, 1)-MIM
adversary, and we can consider the corresponding distribution mimA(1λ, t, v) for any v ∈ {0, 1}L.

Let B = {Bλ}λ∈N be a non-uniform algorithm where Bλ receives as input (1λ, crs1, t), where
crs1 is the random string output by the honest party, and then simulates the actions of all parties
in the protocol and eventually computes the output s. In particular, we assume that Bλ publishes
all of the relevant values on the public bulletin board.

We consider the following hybrid distributions:

Hyb0(λ) = s,

Hyb1(λ) = Bλ(1λ, crs1, t),

Hyb2(λ) = f⊕(s1,mimA(1λ, t, s1)),

Hyb3(λ) = f⊕(s1,mimA(1λ, t, 0L)),

Hyb4(λ) = r.

By assumption, we have that

|Pr [D(Hyb0(λ)) = 1]− Pr [D(Hyb4(λ)) = 1] | > 1/q(λ).

Towards a contradiction, we will show that for each i ∈ {1, 2, 3, 4} that |Pr
[
D(Hybi−1(λ)) = 1

]
−

Pr [D(Hybi(λ)) = 1] | ≤ 1/(4 · q(λ)).

• |Pr [D(Hyb0(λ)) = 1]− Pr [D(Hyb1(λ)) = 1] | ≤ 1/(4 · q(λ))

By definition of B, Hyb0(λ) and Hyb1(λ) are identically distributed, so it holds that

|Pr [D(Hyb0(λ)) = 1]− Pr [D(Hyb1(λ)) = 1] | = 0.
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• |Pr [D(Hyb1(λ)) = 1]− Pr [D(Hyb2(λ)) = 1] | ≤ 1/(4 · q(λ))

Assume by way of contradiction that |Pr [D(Hyb1(λ)) = 1] − Pr [D(Hyb2(λ)) = 1] | > 1/(4 ·
q(λ)). Under this assumption, we show how to break soundness of (Gen,Sol,Verify).

Consider a non-uniform algorithm C = {Cλ}λ∈N defined as follows. Cλ on input (1λ, crs1, t)
simulates Bλ(1λ, crs1, t). For i ∈ [2, n], let crsi be the random string posted, and s′i be the
solution published on the bulletin board for puzzle zi with valid opening r′i or proof π′1. If zi
is equal to a puzzle zj for j < i, set si = ⊥, and otherwise let (si, πi) = Sol(1λ,mcrs, t, zi). If
there exists an i ∈ [n] such that si 6= s′i, Cλ outputs (zi, s

′
i, π
′
i, crs−1), and outputs ⊥ otherwise.

Since there are a polynomial n number of participants, each of which is polynomial time, Bλ
and hence Cλ runs in polynomial time. We proceed to argue that Cλ breaks soundness with
1/(4 · q(λ)) probability.

Recall that si is the solution given by Sol. By full correctness of (Gen,Sol,Verify), for
every i ∈ [n], si is either the unique value such that zi ∈ Supp

(
Gen(1λ, t, si)

)
or si is ⊥.

By definition of mimA, it follows that (s2, . . . , sn) is the output of mimA(1λ, t, s1) (as we can
assume without loss of generality that duplicate puzzles are ignored by Bλ). Thus, in the
event where si = s′i for all i ∈ [n], it follows that Hyb1(λ) = Hyb2(λ) However, we assumed
that with probability Hyb1(λ) 6= Hyb2(λ) with at least 1/(4 · q(λ)) probability, so it follows
that there exists an i ∈ [n] such that si 6= s′i with the same probability.

Whenever si 6= s′i, we claim that Cλ breaks soundness. We have that Bλ outputs
f⊕(s′1, . . . , s

′
n). We know that the checks in the output phase pass for s′i, so either (a)

zi = Gen(1λ, t, s′i; r
′
i) or (b) Verify(1λ,mcrs, t, zi, (s

′
i, π
′
i)) = 1. We have that (a) is impossi-

ble since if zi ∈ Supp
(
Gen(1λ, t, s′i)

)
, this means that si = s′i by correctness. Thus, it must be

the case that (b) holds with at least 1/(4 · q(λ)) probability. This implies that for infinitely
many λ ∈ N,

Pr


crs1 ← {0, 1}λ
(z, s′i, π

′
i, crs−1)← Cλ(1λ, crs1, t)

mcrs = (crs1, . . . , crsn)
si = Sol1(1

λ,mcrs, t, zi)

:
Verify(1λ,mcrs, t, zi, (s

′
i, π
′
i)) = 1

∧ si 6= s′i

 > 1/(4 · q(λ)),

which contradicts soundness.

• |Pr [D(Hyb2(λ)) = 1]− Pr [D(Hyb3(λ)) = 1] | ≤ 1/(4 · q(λ))

Assume by way of contradiction that |Pr [D(Hyb2(λ)) = 1] − Pr [D(Hyb3(λ)) = 1] | > 1/(4 ·
q(λ)). Under this assumption, we show how to break concurrent functional non-malleability
of (Gen, Sol,Verify) for the function f⊕.

We already mentioned that A is a valid (1, n,B, ε, T, 1)-MIM adversary. Thus, it suffices to
come up with a distinguisher Dnm for non-malleability that can distinguish f⊕(mimA(1λ, t, v))
for v = s1 or v = 0L.

Dnm on input f⊕(mimA(1λ, t, v)) has s1 hardcoded and simply outputs D(s1 ⊕
f⊕(mimA(1λ, t, v))). By definition of f⊕, it holds that

s1 ⊕ f⊕(mimA(1λ, t, v)) = f⊕(s1,mimA(1λ, t, v)).

Thus, Dnm distinguishes v = s1 and v = 0L with the same probability as D, so it holds that

|Pr
[
Dnm(f⊕(mimA(1λ, t, s1))) = 1

]
− Pr

[
Dnm(f⊕(mimA(1λ, t, 0L))) = 1

]
| > 1/(4 · q(λ)),
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in contradiction.

• |Pr [D(Hyb3(λ)) = 1]− Pr [D(Hyb4(λ)) = 1] | ≤ 1/(4 · q(λ))

By assumption that participant 1 is honest, it holds that mimA(1λ, t, 0L) is independent of
s1. Since s1 ← {0, 1}λ, this implies that f⊕(s1,mimA(1λ, t, 0L) is uniformly random. Thus, it
is identically distributed to r ← {0, 1}λ. It follows that

|Pr [D(Hyb3(λ)) = 1]− Pr [D(Hyb4(λ)) = 1] | = 0.

This completes the proof of the lemma.
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A One-Many Non-malleability

We show that one-m non-malleable time-lock puzzles are in fact m-concurrent non-malleable. The
structure of the proof follows from [LPV08], who show the claim for standard non-malleable puzzles.

Lemma A.1 (One-many to concurrent). Let B(λ) ≥ λ and ε ∈ (0, 1). If (Gen,Sol) is a (B, ε)-
secure time-lock puzzle that is one-many functional non-malleable for a class of functions F , then
it is also fully concurrent function non-malleable for F .

Proof. Let (Gen,Sol) be a (B, ε)-secure one-many functional non-malleable time-lock puzzle for a
class of functions F .

To show the claim, suppose for contradiction that the time-lock puzzle is not fully-concurrent
non-malleable, meaning that there exists a function f ∈ F such that for every positive polynomials
p, `, there exists a function T with `(λ) ≤ T (λ) ≤ B(λ) and polynomial n such that the following
holds. Fix a probabilistic polynomial-time (n, n,B, ε, T, p)-MIM adversary A = {Aλ}λ∈N, and
suppose there exists a distinguisher D = {Dλ}λ∈N, a polynomial q, and a vector ~s = (s1, . . . , sn(λ))
such that for infinitely many λ ∈ N it holds that∣∣∣Pr

[
Dλ(f(mimA(1λ, T (λ), ~s)) = 1

]
− Pr

[
Dλ(f(mimA(1λ, T (λ), (0λ)m(λ))) = 1

]∣∣∣ ≥ 1

q(λ)
.

Looking ahead, let `tlp, ptlp be the positive polynomials associated with the functional non-
malleability of (Gen, Sol) for f . We will show that the above implies a (1, n,B, ε, T, ptlp)-MIM
adversary B such that for infinitely many λ ∈ N, there exists a value s ∈ {0, 1}λ such that Dλ can
be used to distinguish the output of f(mimB(1λ, T (λ), s)) from f(mimB(1λ, T (λ), 0λ)), which will
contradict the one-many functional non-malleability of the time-lock puzzle.

To so do, fix any λ for which Dλ succeeds at distinguishing above, and for i ∈ {0, . . . , n(λ)}
define ~v(i) to be the vector where the first i entries are (s1, . . . , si) and the remaining n(λ)−i entries
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are set to 0λ. As ~v(n(λ)) = ~s and ~v(0) = (0λ)n(λ), it follows by a hybrid argument that there exists
an i ∈ [n(λ)] such that∣∣∣Pr

[
Dλ(f(mimA(1λ, T (λ), ~v(i−1))) = 1

]
− Pr

[
Dλ(f(mimA(1λ, T (λ), ~v(i))) = 1

]∣∣∣ ≥ 1

n(λ) · p(λ)
(A.1)

We can now define the (1, n,B, ε, T, ptlp)-MIM adversary Bλ, which we will use to contradict
the one-many non-malleability of the time-lock puzzle relative to the value si. The adversary Bλ
has ~v(i) hardcoded, and receives as input a puzzle z? either to si or 0λ. It then does the following:

1. Sample puzzles zj ← Gen(1λ, T (λ), ~v
(i)
j ) in parallel for j ∈ [n(λ)] \{i}.

2. Let ~z = (z1, . . . , zi−1, z
?, zi+1, . . . , zn(λ)), and run ~̃z ← Aλ(~z).

3. In parallel, check if any of the puzzles in ~̃z are equal to any puzzles in ~z. If so, replace the
matching puzzles with ⊥, and output the resulting vector.

We will show that Bλ succeeds at breaking the one-n functional non-malleability of the time-lock
puzzle, which suffices to break one-many functional non-malleability. We first analyze its success
probability, and then its efficiency. To analyze its success probability, we claim that when Bλ
receives a puzzle for si, then

mimB(1λ, T (λ), si) ≡ mimA(1λ, T (λ), ~v(i))

and when Bλ receives a puzzle for 0, it holds that

mimB(1λ, T (λ), 0λ) ≡ mimA(1λ, T (λ), ~v(i−1)).

To see this, recall that for any vector ~s, the distribution mimA(1λ, T (λ), ~s) is given by (a) sampling
a vector of puzzles for ~s, (b) running Aλ on that vector to obtain its output vector, (c) replacing
any puzzle that appear in both vectors with ⊥, and (d) finding the unique solutions to the resulting
puzzles (or ⊥). Next, we compare this to the output of mimB, both on input 0 and si:

• The distribution mimB first samples the puzzle z?, either to 0λ or to si, and proceeds to run
Bλ(z?), who computes the vector ~z. When Bλ receives a puzzle for si, then it sets ~z to be a
puzzle vector to ~v(i), and when Bλ receives a puzzle for 0λ, it sets the puzzle vector to corre-
spond to ~v(i−1). Therefore, ~z as computed by mimB(1λ, T (λ), si) has the same distribution as
the input to A computed by mimA(1λ, T (λ), ~v(i)), and ~z as computed by mimB(1λ, T (λ), 0λ)
has the same distribution as the input to A computed by mimA(1λ, T (λ), ~v(i−1)).

• Next, Bλ computes ~̃z ← Aλ(~z), exactly as done in step (b) of mimA.

• Bλ then replaces any puzzles in ~̃z that have been copied from ~z with ⊥, exactly as in step (c)

of mimA. Note that at this point Bλ outputs ~̃z, so mimB is done running Bλ.

• Finally, mimB compares the puzzles in ~̃z with z? and replaces any that have been copied, but
since z? is part of ~z, this has already been done by Bλ and so doesn’t change ~̃z. Lastly, mimB
uniquely solves these puzzles, exactly as in step (d) of mimA.
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We conclude that mimB(1λ, T (λ), si) ≡ mimA(1λ, T (λ)), ~v(i)) and mimB(1λ, T (λ), 0λ) ≡ mimA(1λ,
T (λ), ~v(i−1)). When coupling this with Equation A.1, it implies that for infinitely many λ ∈ N,
the distinguisher Dλ can distinguish f(mimB(1λ, T (λ), si)) and f(mimB(1λ, T (λ), 0λ)) with inverse
polynomial probability.

We next analyze the efficiency of Bλ. Recall that Bλ samples n(λ) − 1 puzzles to form the
vector ~z, runs Aλ(~z), and then compares the resulting puzzles given by Aλ to those in ~z. As
Gen(1λ, T (λ), ·) runs in poly(λ, log T (λ)) time and size(Aλ) ∈ poly(B(λ)), it follows that

size(Bλ) ∈ poly(λ, n(λ), log T (λ), B(λ)) ∈ poly(B(λ)).

To analyze its depth, since the puzzles are sampled in parallel, this can be done in fixed polynomial
depth d(λ, log T (λ)) (independent of n) by the efficiency of Gen. Running Aλ requires at most
(T (λ))ε · p(λ) depth since it is an (n, n,B, ε, T, p)-MIM adversary. Finally, comparing the resulting
puzzles to the original also requires depth d(λ, log T (λ)), by comparing each of the (n(λ))2 pairs in
parallel, since d bounds the length of each puzzle. Putting everything together, we have that

depth(Bλ) = 2d(λ, log T (λ)) + (T (λ))ε · p(λ)

∈ (T (λ))ε · p′(λ) · p(λ),

for a polynomial p′ depending only on logB(λ) and d (which are fixed in advance). Since the
above holds for any p, we can choose p related to ptlp. Specifically, set p(λ) = ptlp(λ)/p′(λ). Then,
depth(Bλ) ∈ (T (λ))ε · p(λ), as desired. Lastly, we need to show that `tlp(λ) ≤ T (λ) ≤ B(λ). We are
given that `(λ) ≤ T (λ) ≤ B(λ), and the analysis holds for all positive polynomials `. Therefore,
setting `(λ) = `tlp(λ) gives the desired bound on T , which gives the contradiction.

B Proof from Section 5

In this section, we state and prove the theorems for our construction of publicly-verifiable, non-
malleable time-lock puzzles of Section 5.

Lemma B.1 (Restatement of Lemma 5.6). For any polynomial T and unbounded algorithm Z that
on input O ∈ Supp(RFλ ) outputs polynomial-size circuits, there exists a negligible function negl
such that for all λ, n ∈ N, i ∈ [n], it holds that

Pr



O ← RFλ
A = Z(O)
crsi ← {0, 1}λ
(g,G, y′, π, crs−i)
← AO(1λ, crsi, T (λ), n)

mcrs = (crs1, . . . , crsn)

:

RSWVerifyO(1λ,mcrs, T (λ), (g,G), y′, π) = 1

∧ y′ 6= g2
T (λ)

∧ (g,G, ∗) ∈ Supp
(
RSWGen(1λ, T (λ))

)
 ≤ negl(λ).

Proof. Let C be a checking algorithm that has hardcoded λ, T (λ), n, i and on input (g,G, y′, π,mcrs)
outputs 1 if and only if the event in the experiment of the lemma statement holds. Then, we can
rephrase what we want to show as Pr [Hyb0(λ))] ≤ negl(λ) where Hyb0(λ) is defined as follows:

Hyb0(λ) =


O ← RFλ; A = Z(O)
crsi ← {0, 1}λ
(g, y′, π, crs−i)← AO(1λ, crsi, T (λ),G, n)
mcrs = (crs1, . . . , crsn)

: C(g,G, y′, π,mcrs) = 1

 .
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Let f(λ) = 2λ/2 and let Sam be the inefficient algorithm given in Lemma 3.6 that on input
an adversary, outputs a partial assignment F on f(λ) points. Consider the hybrid distribution
Hyb1(λ), defined as follows:

Hyb1(λ) =


O ← RFλ; A = Z(O)
F ← Sam(A); P ← RFλ[F ]
crsi ← {0, 1}λ
(g, y′, π, crs−i)← AP(1λ, crsi, T (λ),G, n)
mcrs = (crs1, . . . , crsn)

: C(g,G, y′, π,mcrs) = 1

 .

By Lemma 3.6, it follows that there exists a negligible function negl1(λ) ∈
√

poly(λ)/2λ/2 such
that |Pr [Hyb1(λ)]− Pr [Hyb0(λ)] | ≤ negl1(λ).

Next, we define an inefficient checking algorithm C ′ that additionally receives F as input and
outputs 1 if and only if C(g,G, y′, π,mcrs) = 1 and F doesn’t contain an assignment for any inputs
that contain crsi. We next consider the hybrid Hyb2(λ) defined as folows:

Hyb2(λ) =


O ← RFλ; A = Z(O)
F ← Sam(A); P ← RFλ[F ]
crsi ← {0, 1}λ
(g, y′, π, crs−i)← AP(1λ, crsi, T (λ),G, n)
mcrs = (crs1, . . . , crsn)

: C ′(g,G, y′, π,mcrs, F ) = 1

 .

Since |F | = 2λ/2 and crsi is uniform over 2λ different values, this implies that |Pr [Hyb2(λ)] −
Pr [Hyb1(λ)] | ≤ negl2(λ) for negligible function negl2(λ) = 2λ/2/2λ = 2−λ/2.

Pr [Hyb2(λ)] is bounded by the probability that a non-uniform PPT algorithm can break the
soundness of Pietrzak’s VDF in the plain random oracle model for any group QR+

N where N is
the product of two safe primes (which is the case since G is in the support of RSWGen). By the
analysis in [Pie19], it follows that any adversary that makes at most Q queries to the random oracle
can break soundness with probability at most Q · (3/2λ) ≤ negl3(λ), which is negligible when Q is
bounded by a polynomial.

Finally, we conclude that there exists a negligible function negl(λ) = negl1(λ)+negl2(λ)+negl3(λ)
such that Pr [Hyb0(λ)] ≤ negl(λ), as required.

Theorem B.2 (Restatement of Theorem 5.7). Assuming the (B, ε)-repeated squaring assumption
holds for RSWGen, then there exists a (B, ε)-secure strong trapdoor VDF in the ABO-string model.
Soundness holds in the auxiliary-input random oracle model.

Proof. Let RSWGen,RSWProve,RSWVerify be defined as above. The theorem follows by considering
VDF = (Samplevdf ,Evalvdf ,TDEvalvdf ,Verifyvdf). In what follows, we separately argue completeness,
soundness, trapdoor evaluation, honest evaluation, and sequentiality.

Completeness. Let λ, t, n ∈ N, g,G ∈ {0, 1}∗, mcrs ∈ ({0, 1}λ)n. If (g,G) is invalid, then Evalvdf
outputs y = π = ⊥. In this case, Verifyvdf outputs 1 as required. Otherwise, it must be the
case that g ∈ G and G = QR+

N for some N . In this case, Evalvdf computes y = g2
t

and π =
RSWProveO(1λ,mcrs, t, (g,G), y). Verifyvdf outputs 1 if RSWVerifyO(1λ,mcrs, t, (g,G), y, π) = 1,
which holds by Lemma 5.5.
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Soundness. Let A = {Aλ}λ∈N be a non-uniform PPT adversary and T be a polynomial.
We note that we only require soundness to hold for valid (g,G) which are in the support of
Samplevdf(1

λ, T (λ)). By definition of Samplevdf , this implies that (g,G) are in the support of
RSWGen(1λ, T (λ)). It follows by definition of Evalvdf and Verifyvdf that if A violates soundness of
VDF, then it also violates soundness for the proof of repeated squaring. By Lemma 5.6, this can
happen with at most negligible probability in the auxiliary-input random oracle model.

Trapdoor evaluation. Let λ, t, n ∈ N, (g,G, |G|) ∈ Supp
(
Samplevdf(1

λ, t)
)
, and mcrs ∈

({0, 1}λ)n. Since (g,G) are in the support of Samplevdf , they must be valid. In this case, TDEvalvdf
outputs y = g2

t mod |G| and Evalvdf outputs y′ = g2
t
. Since |G| is the order of the group, y = y′ by

definition.

Honest evaluation. Computing y = g2
t

takes time t ·poly(λ) to compute t sequential squares in
G. As discussed above, RSWProve takes time t · poly(λ, log t, n) to compute. It follows that there
exists a polynomial p such that for all λ, t, n ∈ N, and mcrs ∈ ({0, 1}λ)n, Evalvdf(1

λ,mcrs, t, ·) can
be computed in time t · p(λ, log t, n), as required.

Sequentiality. (B, ε)-Sequentiality of VDF follows immediately from the (B, ε)-repeated squaring
assumption for RSWGen stated in Assumption 5.4. Namely, Samplevdf simply outputs (g,G) given

by RSWGen, and Eval1 simply computes g2
T (λ)

. So sequentiality follows syntactically.

Encoding. The group G = QR+
N is a ring. The group can be encoded by the integerN represented

by a string in {0, 1}∗. Elements can be encoded by the string representation of integers in [0, (N −
1)/2]. The natural bijective function fx(y) is simply addition x+ y in this group.

Theorem B.3 (Restatement of Theorem 5.8). Suppose there exists a (B, ε)-secure strong trapdoor
VDF. Then, there exists a (B, ε)-secure publicly verifiable time-lock puzzle with honest soundness.

Proof. Let VDF = (Genvdf ,Evalvdf ,TDEvalvdf ,Verifyvdf) be any one-time trapdoor VDF. The the-
orem follows by considering the construction TLP = (Gentlp,Soltlp,Verifytlp) as defined above. In
what follows, we separately argue correctness, efficiency, hardness, completeness, and soundness for
this transformation.

Correctness. Let λ, t ∈ N, s ∈ {0, 1}λ, z = (x,X , c) ∈ Supp
(
Gentlp(1λ, t, s)

)
, and s′ =

Soltlp,1(1
λ,mcrs, t, z) for any n ∈ N and mcrs ∈ ({0, 1}λ)n. We need to show that s′ = s. By

definition of Gentlp, it holds that (x,X , td) ∈ Supp
(
Genvdf(1

λ, t)
)
, y = TDEvalvdf(1

λ, t, (x,X ), td),
and c = y ⊕ xs where xs is the encoding of s. In particular, this implies that xs = y ⊕ c since ⊕
is a bijection over X by the encoding property of VDF. By definition of Soltlp, it also holds that
y′ = Evalvdf,1(1

λ,mcrs, t, (x,X )) and xs′ = y′ ⊕ c where xs′ is the encoding of s′. By the trapdoor
evaluation property of VDF, it holds that y′ = y, so xs′ = xs. Since the string encodings are unique,
this implies that s′ = s, as required.

Efficiency. We note that by honest evaulation property of VDF, there exists a polynomial pvdf
such that Evalvdf(1

λ,mcrs, t, ·) is computable in time t · pvdf(λ, log t, n). Computing y ⊕ c and
encoding s as xs takes fixed polynomial time α(λ) independent of t. This implies that there exists
a polynomial ptlp(λ, log t) ≥ pvdf(λ, log t, n) +α(λ)/t such that Soltlp(1λ,mcrs, t, ·) can be computed
in time t · pvdf(λ, log t, n) + α(λ) ≤ t · ptlp(λ, log t, n), as required.
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Hardness. We show that (B, ε)-hardness of TLP follows from the (B, ε)-sequentiality of VDF.
Suppose by way of contradiction that (B, ε)-hardness of TLP does not hold. Specifically, for any
positive polynomial `tlp and ptlp there exists a function T with `tlp(λ) ≤ T (λ) ≤ B(λ) for all λ ∈ N, a
non-uniform adversaryA = {Aλ}λ∈N where size(Aλ) ∈ poly(B(λ)) and depth(Aλ) ≤ (T (λ))ε·ptlp(λ)
for all λ ∈ N, a polynomial q, and strings s, s′ ∈ {0, 1}λ such that for infinitely many λ, it holds
that ∣∣∣Pr

[
Aλ(Gentlp(1λ, T (λ), s)) = 1

]
− Pr

[
Aλ(Gentlp(1λ, T (λ), s′)) = 1

]∣∣∣ > 1/q(λ),

where the probabilities are over the randomness of Gentlp and Aλ.
For any value v ∈ {0, 1}λ, let Hybv(λ) be the distribution Gentlp(1λ, T (λ), v). Let Hybrandv (λ)

be the distribution that outputs z = (x,X , c) where (x,X , td) ← Genvdf(1
λ, T (λ)) and c = r ⊕ xs

where xs is the encoding of s and r ← X is uniformly sampled. By assumption, it holds that

|Pr [Aλ(Hybs(λ)) = 1]− Pr [Aλ(Hybs′(λ))] | > 1/q(λ).

We next note that Hybrands (λ) and Hybrands′ (λ) are identically distributed. This is because random
element r ← X is uniformly random and, by the encoding property of VDF, ⊕ is a bijective function
on X . It follows that c is uniformly distributed over X in both Hybrands (λ) and Hybrands′ (λ).

As a result, it must be the case that

|Pr [Aλ(Hybs(λ)) = 1]− Pr
[
Aλ(Hybrands (λ))

]
| > 1/(2 · q(λ))

for either s or s′. Assume that this holds for s without loss of generality. We show that this breaks
the (B, ε)-sequentiality of VDF.

We first define a reduction from adversaries against hardness of TLP to adversaries against
sequentiality of VDF. Given any adversary A = {Aλ}λ∈N for TLP and string s ∈ {0, 1}λ, we
construct an adversary B = {Bλ}λ∈N against the sequentiality of the one-time trapdoor VDF as
follows. Bλ on input (x,X , a) computes c = a ⊕ xs where xs is the encoding of s and outputs
Aλ(x,X , c). Whenever a is equal to y = TDEvalvdf(1

λ, t, x), we note that the distribution output
by Bλ is indentically distributed to Aλ(Hybs(λ)). Whenever a is a random element r ← X , it holds
that the output of Bλ is indentically distributed to Aλ(Hybrands (λ)). Thus, for any adversary A and
string s, it holds that

|Pr [Bλ(x, y) = 1]− Pr [Bλ(x, r) = 1]| =
∣∣∣Pr [Aλ(Hybs(λ)) = 1]− Pr

[
Aλ(Hybrands (λ)) = 1

]∣∣∣
We next argue that this reduction can be used to break the (B, ε)-sequentiality of VDF. Let

`vdf and pvdf be any positive polynomials, and let α(λ) be the polynomial function representing the
time to do an encoding and compute ⊕ for any domain X specified by VDF. Consider the function
`tlp defined as

`tlp(λ) = `vdf(λ) +

(
2 · α(λ)

pvdf(λ)

)1/ε

and then ptlp is defined as

ptlp(λ) = pvdf(λ)− α(λ)

(`tlp(λ))ε
.

Note that `tlp and ptlp are polynomials as ε is a constant and `vdf , pvdf , and α are all polynomials.
Furthermore, ptlp is positive as pvdf is positive and

α(λ)

(`tlp(λ))ε
≤ pvdf(λ)

2
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by construction. Thus, by assumption, there exists a function T with `tlp(λ) ≤ T (λ) ≤ B(λ), an
adversary A = {Aλ}λ∈N with size(Aλ) ∈ poly(B(λ)) and depth(Aλ) ≤ (T (λ))ε ·ptlp(λ), a polynomial
q, and a string s satisfying

|Pr [Aλ(Hybs(λ)) = 1]− Pr
[
Aλ(Hybrands (λ))

]
| > 1/(2 · q(λ))

for infinitely many λ ∈ N, as defined above.
For the same function T , consider an adversary B = {Bλ}λ∈N based on A and s given by the

reduction above. First note that `tlp(λ) ≥ `vdf(λ), so it holds that T satisfies `vdf(λ) ≤ T (λ) ≤ B(λ)
for all λ ∈ N. Next, we note that size(Bλ) ≤ size(Aλ) + α(λ) ∈ poly(B(λ)). Also, depth(Bλ) ≤
depth(Aλ) + α(λ) ≤ (T (λ))ε · ptlp(λ) + α(λ). Given that ptlp(λ) = pvdf(λ) − α(λ)/(`tlp(λ))ε and
T (λ) ≥ `tlp(λ), it holds that

α(λ) = (`tlp(λ))ε · (pvdf(λ)− ptlp(λ)) ≤ (T (λ))ε · (pvdf(λ)− ptlp(λ)) .

This implies that

depth(Bλ) ≤ (T (λ))ε · ptlp(λ) + α(λ)

≤ (T (λ))ε · ptlp(λ) + (T (λ))ε · (pvdf(λ)− ptlp(λ))

= (T (λ))ε · pvdf(λ),

as required. Finally, we recall that, for x← Genvdf(1
λ, t), y = TDEvalvdf(1

λ, t, x) and r ← {0, 1}λ,

|Pr [Bλ(x, y) = 1]− Pr [Bλ(x, r) = 1]|

=
∣∣∣Pr [Aλ(Hybs(λ)) = 1]− Pr

[
Aλ(Hybrands (λ)) = 1

]∣∣∣
> 1/(2 · q(λ)),

for infinitely many λ ∈ N by assumption, in contradiction.

Completeness. Let λ, t, n ∈ N, z ∈ {0, 1}∗, and mcrs ∈ ({0, 1}λ)n. If z cannot be parsed
as (x,X , c), Soltlp outputs (s, π) = (⊥,⊥). As Verifytlp can also check if z is parsed this way,
it outputs 1 in this case, as required. Otherwise, z can be parsed as (x,X , c). Let (y, πvdf) =
Evalvdf(1

λ,mcrs, t, (x,X )) and xs = y ⊕ c with string encoding s as computed by Soltlp. As x,X ∈
{0, 1}∗, it follows by completeness of VDF that Verifyvdf(1

λ,mcrs, t, (x,X ), (y, πvdf)) = 1. Since
xs = y ⊕ c by definition, it follows that Verifytlp outputs 1, as required.

Honest soundness. Suppose there is a non-uniform PPT adversary A = {Aλ}λ∈N that breaks
soundness of TLP. Specifically, suppose there exist polynomials T , q, integers n ∈ N and i ∈ [n]
such that for infinitely many λ ∈ N, it holds that

Pr


crsi ← {0, 1}λ
(z, s′, π, crs−i)← Aλ(1λ, crsi, T (λ), n)
mcrs = (crs1, . . . , crsn)
s = Sol1(1

λ,mcrs, T (λ), z)

:
Verify(1λ,mcrs, T (λ), z, (s′, π)) = 1
∧ s 6= s′

∧ z ∈ Supp
(
Gen(1λ, T (λ), ·)

)
 > 1/q(λ).

We construct an adversary B = {Bλ}λ∈N such that for the polynomial T , integers n ∈ N and
i ∈ [n], B breaks that soundness of VDF with probability 1/q(λ) for infinitely many λ ∈ N. Bλ on
input (1λ, crsi, T (λ), n) computes (z, s′, π, crs−i) = Aλ(1λ, T (λ), (x,X , c)), parses π as (y′, πvdf), and
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outputs (x,X , y′, πvdf , crs−i). First, we note that since Aλ runs in polynomial time, so does Bλ. We
next analyze the success probability of B for security parameter λ. First we note that when Aλ suc-
ceeds, the puzzle z = (x,X , c) output by Aλ is in the support of Gen(1λ, T (λ), ·), so it also holds that
(x,X , ∗) ∈ Supp

(
Samplevdf(1

λ, T (λ))
)
. Next, whenever Verifytlp(1λ,mcrs, T (λ), (x,X , c), (s′, π))

outputs 1, it holds that xs′ = c ⊕ y′ and Verifyvdf(1
λ,mcrs, T (λ), (x,X ), (y′, πvdf)) = 1. By com-

pleteness of TLP, it holds that xs = c⊕ y. However, since s 6= s′, it holds that xs 6= xs′ so y 6= y′.
It follows that for the polynomial T , integers n ∈ N and i ∈ [n], for infinitely many λ ∈ N, it holds
that

Pr


crsi ← {0, 1}λ
(x,X , y′, πvdf , crs−i)

← Bλ(1λ, crsi, T (λ), n)
mcrs = (crs1, . . . , crsn)
y = Evalvdf,1(1

λ,mcrs, T (λ), (x,X ))

:
Verifyvdf(1

λ,mcrs, T (λ), (x,X ), (y′, πvdf)) = 1
∧ y 6= y′

∧ (x,X , ∗) ∈ Supp
(
Samplevdf(1

λ, T (λ))
)

 > 1/q(λ),

in contradiction.

Lemma B.4 (Correctness and completeness proofs). Let (Gen,Sol,Verify) be the construction of
a publicly verifiable time-lock puzzle from any one-sided publicly verifiable time-lock puzzle from
Section 5.3. (Gen, Sol,Verify) satisfy full correctness and completeness.

Proof. We separately prove full correctness and completeness.

Full correctness. Let λ, t ∈ N, z ∈ {0, 1}∗, and s′ = Soltlp,1(1
λ,mcrs, t, z) for any n ∈ N and

mcrs ∈ ({0, 1}λ)n.
In the case that z ∈ Supp

(
GenO(1λ, t, s)

)
for some s ∈ {0, 1}λ, we need to show that s′ = s.

Let r be a value such that z = GenO(1λ, t, s; r) First note that z ∈ Supp
(
Genos(1

λtlp , t, (s‖r))
)
.

Next, Sol computes (ŝos, πos) = Solos(1
λtlp ,mcrs, t, z) and parses ŝos = ŝ‖r̂. By correctness of Solos,

it holds that ŝ = s and r̂ = r. Then, by assumption, it holds that z = GenO(1λ, t, s; r), so Sol
outputs s′ = s, as required.

In the case that z 6∈ Supp
(
GenO(1λ, t, s)

)
for any s ∈ {0, 1}λ, we need to show that s′ = ⊥.

Note that Sol only outputs a value s′ 6= ⊥ if z = GenO(1λtlp , t, s; r) for some s. By definition, this
can only be the case for z ∈ Supp

(
Gen(1λ, t, s)

)
for some s. Thus, s′ must be equal to ⊥ in this

case.

Completeness. Let λ, t, n ∈ N, z ∈ {0, 1}∗, mcrs ∈ ({0, 1}λ)n. Let (s, π) = SolO(1λ,mcrs, t, z).
We need to show that VerifyO(1λ,mcrs, t, z, (s, π)) = 1.

First, we consider the case where z ∈ Supp
(
GenO(1λ, t, s)

)
for some s ∈ {0, 1}λ. This means

that z = GenO(1λ, t, s; r) for some r ∈ {0, 1}∗. In the proof of correctness above, we showed
that SolO(1λ,mcrs, t, z) output (s, r) in this case. Since s 6= ⊥, verify outputs 1 if any only if
z = GenO(1λ, t, s; r), which it does by assumption.

Next, we consider the case where z 6∈ Supp
(
GenO(1λ, t, s)

)
for any s ∈ {0, 1}λ. In this case, we

argued in correctness that s = ⊥, so it must be the case that π = (sos, πos) = Solos(1
λos ,mcrs, t, z).

By completeness of the underlying TLP, we know that Verifyos(1
λos ,mcrs, t, z, (sos, πos)) = 1.

Thus, Verify outputs 1 as long as z 6= GenO(1λ, t, s; r), but this must be the case as z 6∈
Supp

(
GenO(1λ, t, ·)

)
by assumption.
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