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Abstract. In this paper, we extend the concept of bias amplifiers and show how they can be used to
detect badly broken noise sources both in the design and production phases of a true random number
generator. We also develop a theoretical framework that supports the experimental results obtained in
this paper.
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1 Introduction

Based on the mathematical Trojan horse described in [12], the author of [9] introduces the concept of bias
amplifiers as well as two new classes of digital filters: greedy bias amplifiers and Von Neumann bias amplifiers.
The main role of these filters is to boost health tests3 implemented in a random number generator (RNG).
Thus, they allow users to have an early detection mechanism for RNG failure.

Usually, digital filters are applied to RNGs to correct biases4, but the filters described in [9, 12] have an
opposite purpose. When applied to a stream of unbiased bits the filters are benign. On the other hand, if
applied to a stream of biased bits the filters amplify their bias. Thereby, making the RNG worse.

When designing bias amplifiers, a couple of rules must be respected. The first one states that if the input
bits are unbiased or have a maximum bias (i.e. the probability of obtaining 1 is either 0 or 1) the filter must
maintain the original bias. For unbiased bits this rule keeps the amplifiers transparent to a user, as long
as the noise source functions according to the original design parameters. For maximum bias the rule is a
functional one. Since the RNG is already totally broken, changing the bias does not make sense (from a
designing point of view). The second rule states that the filter should amplify the bias in the direction that it
already is. This rule helps the designer amplify the bias in an easier manner.

Based on bias amplifiers, the author of [9] introduces a generic architecture for implementing health tests.
More precisely, using a lightweight test on the amplified bits the architecture can detect deviations from
the uniform distribution. Unfortunately, the architecture’s instantiations are devised only for RNGs that
generate uniform, independent and identically distributed (u.i.i.d.) bits. Also, it can only detect deviation
from the initial parameters of the source. In this paper we extend the initial results to noise sources that
have a Bernoulli distribution and show that the architecture can detect, starting from the design phase,
badly broken sources. To support our results we develop a theoretical model and provide the reader with
simulations based on our model.

When manufacturing noise sources one must evaluate the statistical properties of each source. But this
requires specialized expertize and increases production time. If the noise source has a Bernoulli distribution
and the designer implements the generic architecture from [9], our results indicate that the manufacturer
can automatically detect large deviations from the uniform distribution. Hence, broken noise sources can be
discarded without consulting an expert and, thus, decreasing production time.
3 According to recent standards [7, 10] health tests are mandatory.
4 They are called randomness extractors [5].



The author of [9] states that for an u.i.i.d. source, its architecture can detect deviation from the initial
parameters, but does not provide a theoretical argument. Our theoretical model fills this gap and is in
accordance with their experimental claims.

In time, noise sources can become biased (e.g. due to ageing or malfunctioning). To automatically detect
this type of anomaly, the RNG designer can use our theoretical estimates, implement a long term testing
methodology (i.e. internally compute the percent of failing samples) and signal the operator if the percent is
lower than the selected threshold.

Structure of the paper. Notations and definitions are presented in Section 2. In Section 3 we apply greedy
and Von Neumann amplifiers to broken Bernoulli noise sources and present some experimental results.
The theoretical model is provided in Section 4. We conclude in Section 5. Additional results are given in
Appendix A.

2 Preliminaries

Throughout the paper, we consider binary strings of length m composed of independent bits that follow a
Bernoulli distribution B(p̃), where p̃ is the probability of obtaining a 1. The probability of obtaining a 0 is
denoted by q̃ = 1− p̃. We will refer to ε = p̃− 0.5 as bias and to Pr[X] as the probability of event X. Let Pa

be the probability of a random string being a. Then for any A ⊆ Zn
2 we denote by Pr[A] =

∑
a∈A Pa. Note

that n denotes the number of bits mapped into one bit by an amplifier.
To ease description, we use the notation Cn

k to denote binomial coefficients and [s, t] to denote the subset
{s, . . . , t} ∈ N. When s and t are real numbers by [s, t] we understand the set of real numbers lying between
s and t. We further state a lemma from [4].

Lemma 1. Let si, i ∈ [1, b] be integers such that s = s1 + . . .+ sb ≤ a. Then, the number of integer solutions
of the equation x1 + . . .+ xb = a with the restrictions xi ≥ si is Cb+a−s−1

b−1 .

2.1 Bias Amplification

In this paper, we consider a digital filter to be a mapping from Zn
2 to Z2. A bias amplifier is a digital filter

that increases the bias of the input data.
Let n = 2k+ 1 ≥ 3 be an odd integer and w(u) the Hamming weight of an element u ∈ Zn

2 . Define the sets

Sn
0 = {u ∈ Zn

2 | 0 ≤ w(u) ≤ k} and Sn
1 = {u ∈ Zn

2 | k + 1 ≤ w(u) ≤ n}.

If Dg is a digital filter that maps Sn
0 and Sn

1 to 0 and 1, then according to [9] Dg is a greedy bias amplifier
(see Lemma 2). A visual representation of the relation between n and Dg’s bias amplification performance
can be found in Figure 1a.

Lemma 2. Let k ≥ 0. Then the following hold

1. Pr[Sn
0 ] =

∑k
i=0 C

n
i · p̃i · q̃n−i and Pr[Sn

1 ] =
∑k

i=0 C
n
i · p̃n−i · q̃i.

2. Pr[Sn
0 ] > Pr[Sn+2

0 ] and Pr[Sn
1 ] < Pr[Sn+2

1 ].
3. Pr[Sn

1 ]− Pr[Sn
0 ] < Pr[Sn+2

1 ]− Pr[Sn+2
0 ].

4. Pr[Sn
0 ]− Pr[Sn+2

0 ] > Pr[Sn+2
0 ]− Pr[Sn+4

0 ] and Pr[Sn+2
1 ]− Pr[Sn

1 ] > Pr[Sn+4
1 ]− Pr[Sn+2

1 ].

Let n = 2k ≥ 4 be an even integer and x an integer such that
∑x

i=1 C
n
i < Cn

k /2 <
∑x+1

i=1 C
n
i . Define

y = Cn
k /2−

∑x
i C

n
i and the sets

Wn
0 ⊂ {u ∈ Zn

2 | w(u) = x+ 1} and Wn
1 ⊂ {u ∈ Zn

2 | w(u) = n− x− 1},
V n

0 = {u | 1 ≤ w(u) ≤ x} ∪Wn
0 and V n

1 = {u | n− x ≤ w(u) ≤ n− 1} ∪Wn
1 ,

such that |W0| = |W1| = y. If Dv is a digital filter that maps V n
0 and V n

1 to 0 and 1, then according to [9]
Dv is a greedy bias amplifier (see Lemma 3). A visual representation of the relation between n and Dv’s bias
amplification performance can be found in Figure 1b.
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(a) Greedy amplifiers.
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(b) Von Neumann amplifiers.

Fig. 1: Probability of obtaining 1 after amplification.

Lemma 3. Let k ≥ 0. Then the following hold

1. Pr[V n
0 ] =

∑x
i=1 C

n
i p̃

iq̃n−i + yp̃x+1q̃n−x−1 and Pr[V n
1 ] =

∑x
i=1 C

n
i p̃

n−iq̃i + yp̃n−x−1q̃x+1.
2. Pr[V n

0 ] > Pr[V n+2
0 ] and and Pr[V n

1 ] < Pr[V n+2
1 ].

Due to the nature of x and y, the relation between greedy and Von Neumann amplifiers is found
through heuristically methods (see Figure 2). The observations are formally stated in [9] as a conjecture (see
Conjecture 1). Remark that in the case of greedy amplifiers the metric (Pr[Sn−1

1 ]− Pr[Sn−1
0 ])/(Pr[Sn−1

1 ] +
Pr[Sn−1

0 ]) is equal to Pr[Sn−1
1 ]−Pr[Sn−1

0 ]. Note that in Figure 2 the y-axis represents the values P (Sn−1
1 )−

P (Sn−1
0 ) (interrupted line) and Mn (continuous line).

Conjecture 1 Let n be even. Denote by Mn = (Pr[V n
1 ]− Pr[V n

0 ])/(Pr[V n
1 ] + Pr[V n

0 ]). Then Mn < Mn+2

and Pr[Sn−1
1 ]− Pr[Sn−1

0 ] < Mn.

Remark that in the case of greedy amplifiers the metric equivalent toMn, (Pr[Sn−1
1 ]−Pr[Sn−1

0 ])/(Pr[Sn−1
1 ]+

Pr[Sn−1
0 ]), is equal to Pr[Sn−1

1 ] − Pr[Sn−1
0 ]. Note that in Figure 2 the y-axis represents the values

P (Sn−1
1 )− P (Sn−1

0 ) (interrupted line) and Mn (continuous line).
Informally, Conjecture 1 states that the Von Neumann amplifier for a given n is better at amplifying ε

than its greedy counterpart. But, a downside is that they require more data than greedy amplifiers. Another
disadvantage is that Von Neumann amplifiers require a variable number of input bits, compared to a constant
number for greedy ones.

2.2 Generic Architecture for Implementing Health Tests

RNG standards [7,10] require manufactures to implement some early detection mechanism for entropy failure.
Health tests represent one such method for detecting major failures. There are two categories of health tests:
startup tests and continuous tests. The former are one time tests conducted before the RNG starts producing
outputs, while the latter are tests performed in the background during normal operation.

In [9], a generic architecture for implementing continuous health tests (see Figure 3) is proposed5. The
data D (obtained from the noise source) is stored in a buffer, then a greedy bias amplifier is applied to it
5 Note that when n = 1 we obtain Intel’s testing architecture.
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Fig. 2: Greedy (interrupted line) vs Von Neumann (continuous line) amplifiers.

and data Da is obtained. Next, some lightweight tests are applied on Da. If the tests are passed, the RNG
outputs D, otherwise D is discarded. Note that the greedy bias amplifier can be implemented as a lookup
table, thus obtaining no processing overhead at the expense of O(2n) memory.

If we replace the greedy amplifier with a Von Neumann one, the generic architecture becomes suited for
devising a startup test. Thus, before entering normal operation, the amplified data can then be tested using
the lightweight tests and if the tests pass the RNG will discard the data and enter normal operation. Note
that the first buffer from Figure 3 is not necessary in this case and that the Von Neumann module can be
instantiated using a conversion table. Because Von Neumann amplifiers require n > 2, the speed of the RNG
will drop. This can also be acceptable as a continuous test if the data speed needed for raw data permits
it, the RNG generates data much faster than the connecting cables are able to transmit or the raw data is
further used by a pseudo-random number generator (PRNG).

Noise source

Buffer

Bias amplifier

Buffer

Lightweight tests

Output Pass Discard
yes no

Fig. 3: Generic architecture for implementing health tests.

The architecture’s instantiations presented in [9] employ the health tests implemented in Intel’s processors
[6]. Intel’s health tests (denoted by Hi) use a sliding window and count how many times each of the six
different bit patterns (1, 01, 010, 0110, 101 and 1001) appear in a 256 bit sample. If the number of patterns
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belongs to some given intervals then the sample is marked pass6. In the case of bias amplification, if a 256
bit buffer ba from Da passes Hi, all the input buffers that where used to produce ba are considered marked
pass.

3 Empirical Investigation

In order to implement Intel’s health tests, we experimentally computed the initial thresholds used in Hi.7
The results are presented in Table 1 and were computed using 106 256 bit samples generated based on the
Bernoulli distribution instantiated with the Mersenne Twister engine (mt19937) found in the C++ random
library [1]. When the data used to generate the thresholds follows a B(p̃) distribution, we denote by Hi(p̃)
the resulting health test.

Note that ε might be different for each individual noise source (e.g. due to manufacturing variations) and
since our scope is to automatically detect large deviations, we had to experimentally determine the initial
bounds. A similar process needs to be carried out internally by each RNG during a setup phase. Remark that
since the bias is unknown, using theoretical estimates increases design complexity.

Bit Allowable number of occurrences per sample
pattern p̃ = 0.1 p̃ = 0.2 p̃ = 0.3 p̃ = 0.4 p̃ = 0.5

1 5 − 50 24 − 87 45 − 115 67 − 138 92 − 167
01 5 − 44 20 − 64 32 − 75 42 − 80 45 − 83
010 3 − 43 13 − 57 14 − 64 12 − 66 10 − 58
0110 0 − 12 0 − 21 0 − 27 2 − 32 1 − 35
101 0 − 14 0 − 27 1 − 39 5 − 50 9 − 61
1001 0 − 15 0 − 23 0 − 31 1 − 34 2 − 35

Table 1: Health bounds for Hi(p̃).

When the architecture presented in Figure 3 is instantiated with Hi(p̃) we denote it by At(p̃). To analyze
the behavior of At(p̃) we conducted a series of experiments. Thus, we generated 450450 256 bit samples using
the Bernoulli distribution B(p̂)8 instantiated with mt19937. Then, we applied the greedy bias amplifying
filters from Section 2.1 with amplifying factors n = 1, 3, 5, 7, 9, 11, 13 and counted how many samples are
marked pass. The probability Ppass of a sequence to be marked pass is derived by dividing the counter with
450450. The results are presented in Figure 10. Note that for p̃ ∈ [0.5, 1.0] the resulting plots are mirrored
version of the plots obtained for p̃ ∈ [0.0, 0.5] and thus are omitted. We further consider p̃ ≤ 0.5.

Remark 1. Let n = 9, 11, 13. We can easily see that the number of samples that are marked pass is close to
zero for p̃ ≤ 0.3 and is considerably lower (Ppass < 0.60) when 0.3 ≤ p̃ ≤ 0.4. We can also observe that when
p̃ ≤ 0.3, p̂ needs to drift at least 0.05 to have Ppass < 0.40. When p̃ = 0.4, p̂ needs to drift at least 0.01 to
have Ppass < 0.85. Thus, if we instantiate At(p̃) with greedy amplifiers with n = 9, 11, 13 the architecture can
detect catastrophic RNG failure (i.e. p̃ ≤ 0.4).

Remark 2. Let p̃ = 0.5. We can easily see that when n = 9, 11, 13 and p̂ 6∈ (0.46, 0.54) we have Ppass < 0.97.
Thus, the architecture enables us to detect when a good source deviates9 with more than 0.04 from 0.5.

We also conducted a series of experiments to test the performance of At(p̃) instantiated with the Von
Neumann bias amplifying filters from Section 2.1 with amplifying factors n = 1, 4, 6, 8, 10, 12, 14. So, we
6 The terminology used by Intel is that the sample is “healthy”.
7 Intel also experimentally generated, using their noise source, the initial thresholds.
8 Note that in our experiments p̃ is fixed, while p̂ drifts from 0.01 to 0.99.
9 The deviation might be an effect of components’ ageing or malfunctioning.
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generated data with B(p̂) until we obtained 10000 256-bit samples10, then we applied the Von Neumann bias
amplifying filters and counted how many of these samples pass the Hi(p̃) test. The results are presented in
Figure 11. Note that in this case Ppass is obtained by dividing the counter with 10000. Another metric that
we computed is the number of input bits required to generate one output bit. The results are presented in
Figure 4.

Remark 3. Let n ≥ 6. We can easily see that the number of samples that are marked pass is close to zero for
p̃ ≤ 0.4. We can also observe that when p̃ ≤ 0.3, p̂ needs to drift at least 0.08 to have Ppass < 0.42. When
p̃ = 0.4, p̂ needs to drift at least 0.03 to have Ppass < 0.84. Thus, if we instantiate At(p̃) with Von Neumann
amplifiers with n = 6, 8, 10, 12, 14 the architecture can detect catastrophic RNG failure. Also, remark that
the drift for Von Neumann amplifiers is larger than in the case of greedy amplifiers.

Remark 4. Let p̃ = 0.5. We can easily see that when n = 6 and p̂ 6∈ (0.47, 0.53) we have Ppass < 0.975, while
for n ≥ 8 and p̂ 6∈ (0.48, 0.52) we have Ppass < 0.985. Thus, the architecture enables us to detect when a good
source deviates with more than 0.03 and, respectively, 0.02 from 0.5. Hence, Von Neumann amplifiers provide
us with a better detection method than the greedy counterparts.

Remark 5. Although, Von Neumann amplifiers are better suited to detect deviations than greedy amplifiers,
we can observe that the data requirements fluctuate and even in the uniform case efficiency can get to as low
0.01495 bitsout/bitsin. This translates into longer testing times that in the case of greedy amplifiers where
the data requirements are fixed. Thus, when choosing between greedy and Von Neumman amplifiers one need
to consider what is more important: faster testing times or better detection of source deviations.
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Fig. 4: Bit requirements for Von Neumann amplifiers.

4 Theoretical Model

In this section we develop the theoretical framework that supports the findings presented in Section 3. First
we derive a series of lemmas that are later used for estimating Ppass. Then, we provide the reader with a
series of simulations.
10 We generated less data than the greedy counterpart due to the amplifier’s high bit requirements (see Figure 4).
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4.1 Description

We first state a known result regarding the number of 1s (denoted by c1) in a sequence of length m. Then,
we determine the number of overlapping 01s (denoted by c01), 010s (denoted by c010), 101s (denoted by c101),
0110s (denoted by c0110) and 1001s (denoted by c1001) in a sequence of length m. Note that we assume that
all the sequences are generated by a Bernoulli noise source B(p).

Lemma 4. Let k a positive integer. Then

Pr[c1 = k] = Cm
k · pk · qm−k.

Remark 6. Note that when the Hamming weight ω of a sequence is either 0 or m, we have c01 = c010 =
c101 = c0110 = c1001 = 0. Thus, when computing the probability P of k occurrences of a pattern, the cases
ω = 0 and ω = m add to P a term qm + pm only when k = 0. For uniformity, we further consider the term
qm + pm as being implicit.

Lemma 5. Let k be a positive integer. Then

Pr[c01 = k] =
m−1∑
ω=1

Cω
k · Cm−ω

k · pω · qm−ω.

Proof. First we form a sequence Γ of k concatenated 01s. Thus, for a given Hamming weight ω we are left
with ω−k 1s and m−ω−k 0s that are unused. When inserting the m−2k bits into Γ , for ease of description,
we always insert 0s and 1s before a 0 and, respectively, a 1 that is already in Γ . Remark that we can insert a
number of 1s and 0s at the beginning and, respectively, the end of Γ without changing the number of 01
patterns.

After inserting in Γ the m− 2k bits we obtain the sequence

1 . . . 1︸ ︷︷ ︸
y0

0 . . . 0︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
y1

1 . . . 0 . . . 0︸ ︷︷ ︸
xk

0 1 . . . 1︸ ︷︷ ︸
yk

1 0 . . . 0︸ ︷︷ ︸
xk+1

with the restrictions

x1 + . . .+ xk+1 = m− ω − k, xi ≥ 0, i ∈ [1, k + 1], (1)
y0 + . . .+ yk = ω − k, yi ≥ 0, i ∈ [0, k]. (2)

According to Lemma 1, the number of solutions that satisfy Equation (1) and Equation (2) is Cm−ω
k and,

respectively, Cω
k . Using the number of solutions and the law of total probability we obtain the desired result.

Lemma 6. Let k a positive integer. Then

Pr[c010 = k] =
m−1∑
ω=1

ω∑
r=k

Cm−ω
r · Cr

k · Cω−r
r−k · p

ω · qm−ω.

Proof. Let r be the maximum number of 01 patterns. Using a similar reasoning to the proof of Lemma 5 we
obtain the sequence

1 . . . 1︸ ︷︷ ︸
y0

0 . . . 0︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
y1

1 . . . 0 . . . 0︸ ︷︷ ︸
xr

0 1 . . . 1︸ ︷︷ ︸
yr

1 0 . . . 0︸ ︷︷ ︸
xr+1

with the restrictions

x1 + . . .+ xr+1 = m− ω − r, xi ≥ 0, i ∈ [1, r + 1], (3)
y0 + . . .+ yr = ω − r, y0 ≥ 0. (4)
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According to Lemma 1 the number of solutions that satisfy Equation (3) is Cm−ω
r .

To ensure that there are exactly k 010 patterns Equation (4) that have to satisfy the following condition:
exactly k out of r y1, . . . , yr must be 0. We further assume that y1 = . . . = yk = 0 and yk+1, . . . , yr ≥ 1.
Note that the number of solutions obtained under this assumption must be multiplied with a factor of Cr

k .
Equation (4) now becomes

y0 + yk+1 + . . .+ yr = ω − r, y0 ≥ 0, yi ≥ 1, i ∈ [k + 1, r] (5)

According to Lemma 1 the number of solutions for Equation (5) is Cω−r
r−k . By adding everything together and

using the law of total probability we obtain the desired result.

Lemma 7. Let k be a positive integer. Then

Pr[c101 = k] =
m−1∑
ω=1

m−ω∑
r=k

Cω
r · Cr

k · Cm−ω−r
r−k · pω · qm−ω.

Proof. In this case, we consider r as the maximum number of 10 patterns and Γ as the sequence composed
of k concatenated 10s. Remark that we can insert a number of 0s and 1s at the beginning and, respectively,
the end of Γ without affecting r. Thus, after inserting in Γ the m− 2k bits, we obtain the sequence

0 . . . 0︸ ︷︷ ︸
x0

1 . . . 1︸ ︷︷ ︸
y1

1 0 . . . 0︸ ︷︷ ︸
x1

0 . . . 1 . . . 1︸ ︷︷ ︸
yr

1 0 . . . 0︸ ︷︷ ︸
xr

0 1 . . . 1︸ ︷︷ ︸
yr+1

with the restrictions

x0 + . . .+ xr = m− ω − r, x0 ≥ 0, (6)
y1 + . . .+ yr+1 = ω − r, yi ≥ 0, i ∈ [1, r + 1]. (7)

According to Lemma 1 the number of solutions that satisfy Equation (7) is Cω
r .

To ensure that there are exactly k 101 patterns Equation (6) that have to satisfy the following condition:
exactly k out of r x1, . . . , xr must be 0. We further assume that x1 = . . . = xk = 0 and xk+1, . . . , xr ≥ 1.
Note that the number of solutions obtained under this assumption must be multiplied with a factor of Cr

k .
Equation (6) now becomes

x0 + xk+1 + . . .+ xr = m− ω − r,
x0 ≥ 0, xi ≥ 1, i ∈ [k + 1, r] (8)

According to Lemma 1 the number of solutions for Equation (8) is Cm−ω−r
r−k . By adding everything together

and using the law of total probability we obtain the desired result.

Remark 7. In [8], an analysis for Pr[c0110 = k] is presented. But, the authors consider bits that have a B(0.5)
distribution and that are arranged in a circle. Thus, in our case, we need to reanalyze Pr[c0110 = k].

Lemma 8. Let k be a positive integer. Then

Pr[c0110 = k] =
m−1∑
ω=1

ω∑
r=k

r−k∑
s=t

Cm−ω
r · Cr

k · Cr−k
s · Cω−2r+s

r−k−s · p
ω · qm−ω,

where t = 2r − ω.

Proof. Let r be the maximum number of 01 patterns. Using a similar reasoning to the proof of Lemma 5 we
obtain the sequence

1 . . . 1︸ ︷︷ ︸
y0

0 . . . 0︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
y1

1 . . . 0 . . . 0︸ ︷︷ ︸
xr

0 1 . . . 1︸ ︷︷ ︸
yr

1 0 . . . 0︸ ︷︷ ︸
xr+1

8



with the restrictions presented in Equations (3) and (4). According to Lemma 1 the number of solutions that
satisfy Equation (3) is Cm−ω

r .
To ensure that there are exactly k 0110 patterns Equation (4) that have to satisfy the following condition:

exactly k out of r y1, . . . , yr must be 1. We further assume that y1 = . . . = yk = 1 and yk+1, . . . , yr 6= 1. Note
that the number of solutions obtained under this assumption must be multiplied with a factor of Cr

k .
Let s be the number of yi, i ∈ [k + 1, r] that are 0. We assume that yk+1 = . . . = yk+s. Thus, yi ≥ 2 for

i ∈ [k + s+ 1, r]. Note that the number of solutions obtained under this assumption must be multiplied with
a factor of Cr−k

s .
Equation (4) now becomes

y0 + yk+s+1 + . . .+ yr = ω − r − k,
y0 ≥ 0, yi ≥ 2, i ∈ [k + s+ 1, r] (9)

According to Lemma 1 the number of solutions for Equation (9) is Cω−2r+s
r−k−s . By adding everything together

and using the law of total probability we obtain the desired result.

Lemma 9. Let k a positive integer. Then

Pr[c1001 = k] =
m−1∑
ω=1

m−ω∑
r=k

r−k∑
s=t

Cω
r · Cr

k · Cr−k
s · Cm−ω−2r+s

r−k−s · pω · qm−ω,

where t = 2r −m+ ω.

Proof. As in Lemma 7, r is the maximum number of 10 patterns and we obtain the sequence

0 . . . 0︸ ︷︷ ︸
x0

1 . . . 1︸ ︷︷ ︸
y1

1 0 . . . 0︸ ︷︷ ︸
x1

0 . . . 1 . . . 1︸ ︷︷ ︸
yr

1 0 . . . 0︸ ︷︷ ︸
xr

0 1 . . . 1︸ ︷︷ ︸
yr+1

with the restrictions presented in Equations (6) and (7). According to Lemma 1 the number of solutions that
satisfy Equation (6) is Cω

r .
To ensure that there are exactly k 1001 patterns Equation (6) that have to satisfy the following condition:

exactly k out of r x1, . . . , xr must be 1. We further assume that x1 = . . . = xk = 1 and xk+1, . . . , xr 6= 1.
Note that the number of solutions obtained under this assumption must be multiplied with a factor of Cr

k .
Let s be the number of xi, i ∈ [k + 1, r] that are 0. We assume that xk+1 = . . . = xk+s. Thus, xi ≥ 2 for

i ∈ [k + s+ 1, r]. Note that the number of solutions obtained under this assumption must be multiplied with
a factor of Cr−k

s .
Equation (6) now becomes

x0 + xk+s+1 + . . .+ xr = m− ω − r − k,
x0 ≥ 0, xi ≥ 2, i ∈ [k + s+ 1, r] (10)

According to Lemma 1 the number of solutions for Equation (10) is Cm−ω−2r+s
r−k−s . By adding everything

together and using the law of total probability we obtain the desired result.

To compute the probability Ppass that a sequence of length m is marked pass, we further assume that the
6 statistical tests are independent. Note that this is a standard assumption [2, 11] and offers us an estimate
for the real probability. To derive the estimates for the bias amplifiers we use the probabilities from Lemmas 2
and 3.

Lemma 10. For a greedy amplifier with an amplification factor n = 2k + 1 and a Bernoulli noise source
B(p̃) we have that

Ppass '
6∏

i=1

(
bi∑

`=ai

Pr[ci = `]
)
,

where ai, bi are the lower and upper limits for ci ∈ {c1, c01, c010, c101, c0110, c1001} and p =
∑k

j=0 C
n
j · p̃n−j q̃j .
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Fig. 5: Kullback-Leibler divergence

Lemma 11. For a Von Neumann amplifier with an amplification factor n = 2k and a Bernoulli noise source
B(p̃) we have that

Ppass '
6∏

i=1

(
bi∑

`=ai

Pr[ci = `]
)
,

where ai, bi are the lower and upper limits for ci ∈ {c1, c01, c010, c101, c0110, c1001}, p =
∑x

j=1 C
n
j p̃

n−j q̃j +
yp̃n−x−1q̃x+1, x is an integer such that

∑x
j=1 C

n
j < Cn

k /2 <
∑x+1

j=1 C
n
j and y = Cn

k /2−
∑x

j=1 C
n
j .

4.2 Results

To test our model we implemented Lemmas 10 and 11 using the GMP library [3]. The results are presented
in Figure 12 and, respectively, Figure 13. We can easily remark that for p 6= 0.1 the theoretical estimates are
close to the experimental results obtained in Section 3.

Let P = {0.01, 0.02, . . . , 0.99}. To measure the exact distance between the experimental En,p̃ and
theoretical Tn,p̃ distributions, we computed the Kullback-Leibler divergence

KL(En,p̃||Tn,p̃) =
∑
p̂∈P

En,p̃(p̂) log(En,p̃(p̂)/Tn,p̂(p̂))

and the total variation distance

δ(En,p̃, Tn,p̃) =
∑
p̂∈P

|En,p̃(p̂)− Tn,p̃(p̂)|/2.

Roughly speaking, KL(En,p̃||Tn,p̃) represents the amount of information lost when Tn,p̃ is used to approximate
En,p̃ and δ(En,p̃, Tn,p̃) represents the largest possible difference between the probabilities that the two
probability distributions can assign to the same event [13]. The results for p̃ ∈ {0.1, 0.11, . . . , 0.2, 0.3, 0.4, 0.5}
are presented in Figures 5 and 6. We remark that for p̃ ≥ 0.20 we have KL(En,p̃||Tn,p̃) ' 0.01 and
δ(En,p̃, Tn,p̃) ' 0.02. Thus, the theoretical model is a good estimate for the real probability when p̃ ≥ 0.2.
Also, note that Remarks 1 to 5 remain true for the theoretical estimates.
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Fig. 6: Total variance distance
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When p̃ < 0.2 the model starts to distance himself from the real probability, due to the high correlations
between the statistical tests. More precisely, the assumption made for Lemmas 10 and 11 starts to fail. To
see how the tests are correlated, we computed the Pearson correlation coefficient

rp(T1, T2) =
∑1000

i=1 (t1i − t̄1)(t2i − t̄2)√∑1000
i=1 (t1i − t̄1)2

√∑1000
i=1 (t2i − t̄2)2

,

where t1i and t2i represent the number of samples that pass test T1 and, respectively, T2 in experiment i,
while t̄1 and t̄2 represent the associated expected values. The results for p ∈ P are presented in Figure 7.
Note that in Figure 7 the correlation between testing for the allowable number of occurrences per sample for
1 and 01 patterns is denoted by 01, for 1 and 010 patterns is denoted by 02 and so on.
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5 Conclusions

In our paper we extended the architecture introduced in [9] to Bernoulli noise sources and provided the
reader with both experimental and theoretical performance metrics. As a practical application, we showed
that the architecture can detect catastrophic failures of a noise source. Another possible application would be
a detection mechanism for large deviations from the original parameters of a good noise source.

Future Work. Bias is not the only way for a RNG to go wrong. Another important feature that can deviate
is correlation. Thus, an interesting question is the following: can bias amplifiers detect when random data
becomes correlated or other classes of amplifiers need to be developed?

The theoretical model presented in this paper is devised only for Intel’s health tests. But the architecture
presented in Figure 3 can be applied to any health test. Thus, an important step into understanding the
behavior of bias amplifiers would be to model the architecture’s behavior when it is instantiated with other
health tests and compare the results with our initial findings.
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A Finer measurements

In this section we provide the reader with theoretical data for greedy amplifiers when p̃ ∈ [0.41, 0.46] and
for Von Neumann amplifiers when p̃ ∈ [0.43, 0.48]. According to the Kullback-Leibler divergence and total
variance distance presented in Figures 8 and 9 and this suffices.

In the case of greedy amplifiers, for p̃ ≥ 0.46 we cannot reliably detect the drift from 0.5 (Ppass > 0.99).
Let n = 11, 13. For p̃ ∈ [0.44, 0.45], according to Table 3a, we can detect the drift from 0.5 as long as the
source is stable (i.e. p̂ ≤ 0.45). When p̃ ∈ [0.41, 0.44), p̂ can drift with 0.01 and we still have Ppass ≤ 0.97.
Thus, if we use n = 11, 13 At(p̃) enables us to have an early detection mechanism for catastrophic RNG
failure (i.e. p̃ ≤ 0.45).

In the case of Von Neumann amplifiers, for p̃ = 0.49 we cannot reliably detect the drift from 0.5
(Ppass > 0.99), while for p̃ ∈ [0.41, 0.42] and n ≥ 8 we have Ppass ' 0.00. When p̃ = 0.48 and n > 8, according
to Table 3b, we can detect the drift from 0.5 as long as the source is stable. In the case p̃ = 0.47 we can
detect the drift from 0.5 when the source is stable and n = 8, 10, while for n = 12, 14 p̂ can drift with 0.01
and we still have Ppass ≤ 0.97. Let n = 8, 10, 12, 14. For p̃ ∈ [0.43, 0.46], p̂ can drift with 0.01 and we still
have Ppass ≤ 0.97. Thus, if we use n = 10, 12, 14 At(p̃) enables us to have an early detection mechanism for
catastrophic RNG failure (i.e. p̃ ≤ 0.48). Note that although Von Neumann amplifiers have a larger range for
detecting deviations from 0.5, greedy amplifiers have faster testing times.

Bit Allowable number of occurrences per sample
pattern p̃ = 0.41 p̃ = 0.42 p̃ = 0.43 p̃ = 0.44 p̃ = 0.45 p̃ = 0.46 p̃ = 0.47 p̃ = 0.48

1 70 − 141 72 − 144 74 − 147 76 − 149 79 − 151 81 − 154 85 − 157 87 − 161
01 43 − 82 43 − 81 44 − 81 44 − 82 44 − 83 44 − 84 44 − 84 45 − 84
010 13 − 68 13 − 66 13 − 66 13 − 62 13 − 61 12 − 61 10 − 60 10 − 60
0110 1 − 33 1 − 34 1 − 33 1 − 33 1 − 33 1 − 33 1 − 33 1 − 34
101 5 − 51 5 − 55 7 − 55 8 − 55 8 − 55 8 − 56 9 − 57 7 − 60
1001 1 − 34 1 − 34 1 − 36 1 − 36 2 − 36 2 − 35 1 − 34 1 − 36

Table 2: Health bounds for Hi(p̃).

p̃ = 0.41 p̃ = 0.42 p̃ = 0.43 p̃ = 0.44 p̃ = 0.45
p̂ = 0.41 p̂ = 0.42 p̂ = 0.42 p̂ = 0.43 p̂ = 0.43 p̂ = 0.44 p̂ = 0.44 p̂ = 0.45 p̂ = 0.45 p̂ = 0.46

n = 11 0.44 0.76 0.67 0.90 0.83 0.97 0.94 0.99 0.98 0.99
n = 13 0.21 0.56 0.45 0.78 0.69 0.92 0.87 0.98 0.95 0.99

(a) Greedy amplifiers

p̃ = 0.43 p̃ = 0.44 p̃ = 0.45 p̃ = 0.46 p̃ = 0.47 p̃ = 0.48
p̂ = 0.43 p̂ = 0.44 p̂ = 0.44 p̂ = 0.45 p̂ = 0.45 p̂ = 0.46 p̂ = 0.46 p̂ = 0.47 p̂ = 0.47 p̂ = 0.48 p̂ = 0.48

n = 8 0.00 0.09 0.05 0.41 0.27 0.77 0.68 0.97 0.90 0.99 0.99
n = 10 0.00 0.00 0.00 0.14 0.07 0.52 0.41 0.90 0.78 0.99 0.98
n = 12 0.00 0.00 0.00 0.02 0.01 0.23 0.16 0.76 0.57 0.97 0.95
n = 14 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.52 0.32 0.93 0.89

(b) Von Neumann amplifiers.

Table 3: Approximate theoretical values for Ppass.
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Fig. 8: Kullback-Leibler divergence
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Fig. 9: Total variance distance
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Fig. 10: Experimental results for greedy amplifiers.
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Fig. 11: Experimental results for Von Neumann amplifiers.
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Fig. 12: Theoretical estimates for greedy amplifiers.
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Fig. 13: Theoretical estimates for Von Neumann amplifiers.
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Fig. 14: More theoretical estimates for greedy amplifiers.
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(a) Theoretical estimates when p̃ = 0.43
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(c) Theoretical estimates when p̃ = 0.45
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(d) Theoretical estimates when p̃ = 0.46
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(e) Theoretical estimates when p̃ = 0.47
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(f) Theoretical estimates when p̃ = 0.48

Fig. 15: More theoretical estimates for Von Neumann amplifiers.
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