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Abstract. Cryptographic protocols often need to encompass time, e.g.
for time outs. Modeling time formally is therefore crucial, as security of
protocols can then be proven under more realistic assumptions. This
is particularly important when considering composition, as protocols
are rarely used in a stand-alone setting. This work extends the recent
TARDIS model of abstract composable time (ACT) to the case of mul-
tiparty functionalities encompassing communication, publicly verifiable
time-based primitives and secure computation. We model delayed multi-
party communication through an ACT treatment of broadcast channels
and public ledgers. Next, we introduce a publicly verifiable time-lock
puzzle (TLP) functionality which we realize by showing that the TLP
construction from TARDIS is publicly verifiable. Finally, we show that
these new primitives can be used as building blocks for obtaining highly
efficient composable randomness beacons and MPC with output inde-
pendent abort and financial fairness.

1 Introduction

Time has always been an important, although sometimes overlooked, resource
in cryptography. Interactive protocols make implicit and explicit assumptions
about rounds or message delivery time: for example, protocols often consider a
party as corrupt if it does not send information within a certain time frame. But
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the concrete assumptions and consequences of events in implementations are
often under-specified. This is particularly problematic when building complex
protocols using time-related constructions which recently gained more interest.
Examples for these are Time-Lock Puzzles (TLPs) [25] and Verifiable Delay
Functions (VDFs) [10] .

In order to make provable security guarantees for composed protocols, the
current default tool is the Universal Composability (UC) framework [13]. Un-
fortunately, the UC framework is inherently sequential: it models protocols as
communicating Turing Machines, and only one such Turing Machine can be ac-
tive at a time. This means that a notion of passing time has to be added in order
to analyze time-related protocols in UC. To this end, Katz et al. [20] introduced
the idea of a Global Clock, which is a global functionality that can be accessed
by parties and functionalities. Crucially, it shows the same passing of time to
every caller and only progresses if all honest parties permit it to.

Recently, Baum et al. [6] developed a notion of Abstract Composable Time
(ACT) where functionalities might be aware of centrally-controlled ticks, while
parties are oblivious to the progression of time and only interact based on events
that occur at ideal functionalities. This allows to analyze the guarantees that
a protocol gives under a variety of choices for time-related parameters of the
functionalities that it uses. For example, ACT allows to prove statements about
the same protocol under different models of message delivery.

Baum et al. [6] presented (among other results) constructions in the ACT
framework for Time-Lock Puzzles (TLPs) as well as Two-Party Computation
with Output-Independent Abort (OIA) and fair coin tossing. However, these re-
sults do not seem to leverage the full strength of their ACT framework. As an
example, TLPs have found many interesting applications in ledger-based pro-
tocols, so constructions in their framework should work with many parties and
ledgers as a primitive should be expressed naturally in ACT. Another interest-
ing subject that should be studied with respect to composability are randomness
beacons from time-based constructions. Finally, OIA does seem to be an interest-
ing property for secure computation with more than two parties. In particular,
combining it with financial incentives would yield a completely new direction for
protocols that punish cheating behavior.

1.1 Our Contributions

In this work, we make the following contributions:

Modeling multiparty communication in ACT. We present a formalization of
broadcast channels and public ledgers in the ACT framework. While the broad-
cast is a generalization of the secure message transmission functionality of [6],
the ledger functionality adapts the work of [4] to ACT. This is a particularly
interesting result, as [4] requires a Global Clock functionality.

Publicly Verifiable Time-Based Primitives in ACT. We introduce the notion of
publicly verifiable TLPs and present an ideal functionality as well as a construc-
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tion for this primitive in the ACT framework. We show that the TLP construc-
tion of [6] can already be proven to be publicly verifiable.

Multiparty Computation with Output Independent Abort (OIA-MPC). We realize
Multiparty Computation (MPC) with Output-Independent Abort in the ACT
framework by combining a synchronous broadcast channel together with a stan-
dard MPC functionality and multi-receiver commitments with delayed openings
(which are themselves constructed from TLPs). To the best of our knowledge,
no such protocol is known at the time of writing.

Publicly Verifiable OIA-MPC with Financial Penalties. We also generalize the
idea of financial punishments for cheaters in MPC [8,2,5] and construct the
first MPC protocol where adversaries must make the decision to cheat (and
be punished) before the output is known to them. As an intermediate result we
construct publicly verifiable OIA-MPC, which requires an MPC protocol with
certain public verifiability properties as in [5] apart from publicly verifiable TLPs.

Composable Randomness Beacons. We provide a construction for unbiasable and
publicly verifiable randomness beacons based on delayed broadcast channels or
public ledgers plus publicly verifiable TLPs. To the best of our knowledge, this is
the first unbiasable randomness beacon using time-based primitives to be proven
secure, and the first to achieve Universal Composability. These constructions and
proofs require not only publicly verifiable TLPs but careful modeling of delays
in broadcast channels/public ledgers versus the TLP delays.

1.2 Related Work

The recent work of Baum et al. [6] introduced the first construction of a com-
posable Time-Lock Puzzle. This is in comparison to previous constructions such
as [25,11,9] that were only proven to be stand-alone secure. The related notion
of verifiable delay functions has been investigated in [10,23,28]. Also for these
constructions, composition guarantees have so far not been shown. The lack of
composability guarantees for both of these primitives is a problem in protocol
design, as they are used as building blocks in more complex protocols. Their
security is not guaranteed when they are composed with other primitives.

Randomness beacons that resist adversarial bias have been constructed based
on verifiable delay functions [10] and on publicly verifiable secret sharing [21,15],
although neither of these constructions is composable. Universally composable
randomness beacons based on verifiable random functions [18,3] can on the other
hand be biased by adversaries.

Fair secure computation, where honest parties always obtain the output if
the adversary learns it, is known to be impossible in the standard communica-
tion model and with dishonest majority [16], which in particular includes the
two-party setting. Recently, Couteau et al. [17] presented a secure two-party
protocol for the “best possible” alternative, meaning where an adversary can
decide to withhold the output from an honest party but must make this decision
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independently of the actual output. Baum et al. [6] showed how to construct
such a protocol with composition guarantees. Neither of these works considers
the important multiparty setting.

An alternative, recently popularized idea is to circumvent the impossibility
result of [16] by imposing financial fairness. There, cheating behavior is punished
using cryptocurrencies and smart contracts and rational adversaries have a finan-
cial incentive to act fair. Works that achieve fair output delivery with penalties
such as [1,8,22,5] always allow the adversary to make the abort decision after he
sees the output. Therefore financial incentives must be chosen according to the
worst-case gain of an adversary. By forcing the adversary to make the decision
before seeing the output, he has to make it based on an expected gain instead.

1.3 Our Techniques

Multiparty Communication. We define a simultaneous broadcast with a delay
that can be adjusted by the adversary. The functionality is a generalization of the
Secure Message Transmission functionality of [6], although in the multi-receiver
setting. As a second definition for multiparty communication we define a com-
posable public ledger in ACT. We adapt the ledger functionality of Badertscher
et al. [4] to get a ticked public ledger functionality that do not need access to
a global clock functionality. Instead of the functionality internally keeping track
of diverse relevant times and interacting with the global clock in order to take
the necessary actions, it only keeps track of a few counters that are decreased
when a tick happens and that directly trigger the necessary actions when they
get to zero.

Publicly Verifiable TLPs. We define the notion of publicly verifiable TLPs, which
allow for a prover who performs all the computational steps needed to solve a
TLP to further convince any verifier that the TLP solution it obtained is valid,
while requiring the verifier to perform a constant number of computational steps.
This public verifiability property turns out to have interesting applications to
constructing and improving the efficiency of randomness beacons and MPC with
output-independent abort. We show that this notion can be realized by the
TLP construction of [6], since it has tags that encode both the initial and final
computational states of the TLP as well as a trapdoor that can be used to solve
the TLP in constant time. While these values are normally not revealed by the
tags, a party who solves the TLP can retrieve these values in order to verify
its own solution. We observe that this verification procedure can be consistently
repeated by any verifier who receives the information contained in the tags from
the party who solved the TLP.

Composable Randomness Beacon. We realize a guaranteed output delivery (G.O.D.)
coin tossing functionality that works like a randomness beacon from publicly ver-
ifiable TLPs and delayed multiparty communication (through either a delayed
broadcast or a public ledger). The idea builds on the standard commit-then-
reveal coin tossing protocol but substitutes the commitments with TLPs: 1.

4



each party broadcasts (or posts on the public ledger) a TLP containing a ran-
dom value as input that can be solved in δ ticks (i.e. computational steps), 2.
after δ ticks (counted by solving its own TLP), each party reveals the publicly
verifiable solution to its TLP (showing its random input) and stops considering
new TLPs received after this point, 3. if any party fails to reveal the valid so-
lution to its own TLP, the other parties can solve it by themselves and retrieve
that party’s random input, 4. the output is obtained by XORing all random
inputs from the valid TLPs. An adversary cannot make this protocol execution
abort because any party can solve all valid TLPs. Moreover, by choosing δ larger
than the maximum delay of the broadcast channel (or the maximum delay to get
into the stable state of the public ledger that was already received by all honest
parties), we guarantee that the adversary cannot bias the output, since it cannot
have solved the other parties’ TLPs before it has to send its own (which is not
considered in the protocol if it is received after the other parties have solved their
TLPs). This construction is particularly interesting in a setting with financial in-
centives as proposed by the popular Ethereum-based biased randomness beacon
RANDAO [24]. In this scenario, our protocol can achieve very good efficiency if
adversaries who fail to reveal valid solutions to their own TLPs are financially
punished for causing the extra work needed from the other parties to solve their
TLPs (and perhaps the punishment can be distributed among the parties who
perform the extra work to solve TLPs that were not revealed by their owners).

MPC with (Punishable) Output-Independent Abort. In our work, we want to
achieve that parties agree on the set of cheaters in case cheating occurs. More-
over, we want to ensure that an adversary does not learn the output of a secure
computation before deciding that it will cause an abort. This property, called
output-independent abort, allows honest parties to agree on which parties they
may exclude from future secure computations. While this property is trivial in
the two-party setting [6], it becomes much more complex with multiple par-
ties. We observe that the use of a synchronous primitive such as synchronous
broadcast seems crucial and use it to generalize the work of [6]. At the same
time, we are able to optimize their consistency check by using weaker, non-
homomorphic commitments in the process which also dramatically reduces the
protocol complexity. We then achieve punishable output-independent abort by
using publicly verifiable primitives and a smart contract in a way similar to [5].
While the modifications may appear to be straightforward, care must be taken
in the proof process as no ideal functionalities have previously been designed for
such composable timed primitives.

2 Preliminaries

Throughout this work, we will use λ for the statistical and τ for the computa-
tional security parameter.
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2.1 Universal Composability

We use the (Global) Universal Composability or (G)UC model [13,14] for ana-
lyzing security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties.
A protocol π will have n parties which we denote as P = {P1, . . . ,Pn}. The
adversary A, which also is an iTM, will be able to corrupt a subset I ⊂ P as
defined by the security model. The parties will be able to exchange messages via
resources, called ideal functionalities (which themselves are iTMs) and which
are denoted by F .

As usual, we define security with respect to an iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P.
Furthermore, the adversary A will control the corrupt parties I in the name of
Z and thus gain control over these parties. To define security, let πF1,... ◦ A be
the distribution of the output of an arbitrary Z when interacting with A in a
real protocol instance π using resources F1, . . . . Furthermore, let S denote an
ideal world adversary and F ◦ S be the distribution of the output of Z when
interacting with parties which run with F instead of π and where S takes care
of adversarial behavior.

Definition 1. We say that F UC-securely implements π if for every iTM A
there exists an iTM S (with black-box access to A) such that no environment Z
can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time.

2.2 Public Verifiability

Several functionalities in this work provide public verifiability. To model this, we
follow the approach of Badertscher et al. [4] and allow the set of verifiers V to be
dynamic by adding register and de-register instructions as well as instructions
that allow S to obtain the list of registered verifiers. All functionalities with
public verifiability include the following interfaces (which are omitted henceforth
for simplicity):

Register: Upon receiving (Register, sid) from some verifier Vi, set V = V ∪ Vi
and return (Registered, sid,Vi) to Vi.

Deregister: Upon receiving (Deregister, sid) from some verifier Vi, set V = V\Vi
and return (Deregistered, sid,Vi) to Vi.

Is Registered: Upon receiving (Is− Registered, sid) from Vi, return
(Is− Registered, sid, b) to Vi, where b = 1 if Vi ∈ V and b = 0 otherwise.

Get Registered: Upon receiving (Get− Registered, sid) from the ideal adver-
sary S, the functionality returns (Get− Registered, sid,V) to S.

The above instructions can also be used by other functionalities to register as
a verifier of a publicly verifiable functionality, which means that the verified
functionality must be global.
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2.3 Abstract Composable Time

ACT expresses abstract time within the GUC framework in such a way that
protocols can be made oblivious to clock ticks. To achieve this, ACT provides
a global ticker functionality Gticker as depicted in Fig. 1. This global ticker can
provide “ticks” to ideal functionalities in the name of the environment. A tick
represents a discrete unit of time which can only be advanced, and moreover
only one unit at a time. “Ticked” ideal functionalities have a ticking interface
through which they are contacted by Gticker. Parties may observe events triggered
by elapsed time, but not the time itself. Ticked functionalities can freely interpret
these ticks and perform arbitrary internal state changes.

Functionality Gticker

Initialize a set of registered parties P = ∅, a set of registered functionalities F = ∅,
a set of activated parties LP = ∅, and a set of functionalities LF = ∅ that have
been informed about the current tick.

Party registration: Upon receiving (register, pid) from honest party P with pid
pid, add pid to P and send (registered) to P .

Functionality registration: Upon receiving (register) from functionality F ,
add F to F and send (registered) to F .

Tick: Upon receiving (tick) from the environment, do the following:
1. If P = LP , reset LP = ∅ and LF = ∅, and send (ticked) to the adversary
S.

2. Else, send (notticked) to the environment.
Ticked request: Upon receiving (ticked?) from functionality F ∈ F , do the fol-

lowing:
– If F /∈ LF , add F to LF and send (ticked) to F.
– If F ∈ LF , send (notticked) to F.

Record party activation: Upon receiving (activated) from party P with pid
pid ∈ P, add pid to LP and send (recorded) to P .

Fig. 1. Global ticker functionality Gticker(from [6]).

To ensure that all honest parties have a chance of observing all relevant
timing-related events, Gticker only progresses if all honest parties have signaled
to it that they have been activated (in arbitrary order). To further control the
observable side effects of ticks, protocols and ideal functionalities are restricted
to interact in the ”pull model”, precluding functionalities from implicitly pro-
viding communication channels between parties: parties are required to actively
query functionalities in order to obtain new messages, and they obtain the acti-
vation token back upon completion. During each “tick” from the environment, a
functionality may perform arbitrary computations or contact the adversary, but
we restrict ourselves to adversaries which return the activation token to these
functionalities afterwards and require that ideal functionalities after each tick
return the token to Gticker. We refer to [6] for a more detailed description.
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How we use ACT. In comparison to [6] we require that the adversary per
“tick” gets activated by each functionality F and can provide an optional (Schedule, sid,D)
message parameterized by a queue D. This queue contains commands to F which
specify if the adversary wants to abort F or how it will schedule message delivery
to individual parties in P.

The reason for this requirement is twofold: first, it simplifies the specification
of F . Second and more importantly, any adversary that could influence message
delivery between two “ticks” might interfere with simultaneous message deliv-
ery that is necessary for some of our solutions. The latter might be true if an
adversary would be allowed to reschedule messages at any point.

As mentioned above, an adversary does not have to send (Schedule, sid,D) -
each F can take care of guaranteed delivery itself. On the other hand, D can
depend on information that the adversary learns upon (Tick, sid).

Ticked Functionalities. We will explicitly mention when a functionality F is
“ticked” - which means that it reacts to the (Tick, sid) command from Gticker. Each
such F internally has two listsM,Q which are initially empty. The functionality
will use these to store messages that the parties ought to obtain.
Q contains those messages to parties that are currently buffered. Actions by

honest parties can add new messages to Q, while actions of the adversary can
change the content of Q in certain restricted ways or move messages from Q to
M. In comparison,M contains all the “output-ready” messages that can be read
by the parties directly. On the other hand, the content ofM cannot be changed
by A and he cannot prevent parties from reading it. “Messages” from F is here
meant in a general sense - these must not only be messages that have been sent
between parties, but could also be delayed responses from F to a request from
an honest party.

We assume that each ticked functionality F has two interfaces. One, as men-
tioned above, is called Tick and should respond as outlined before. The second
is called Fetch Messages. This latter interface allows parties to obtain entries
of M. The code for this is actually identical across all ticked functionalities, so
we specify it here for conciseness:

Fetch Message: Upon receiving (Fetch, sid) by Pi ∈ P retrieve the set L of all
entries (Pi, sid, ·) in M, remove L from M and send (Fetch, sid, L) to Pi.

Macros. A recurring pattern in ticked ideal functionalities in [6] is that the
functionality F , upon receiving a request (Request, sid,m) by party Pi must first
internally generate unique message IDs mid to balance message delivery with
the adversarial option to delay messages. F then internally stores the message
to be delivered together with the mid in a list Q and finally hands out i,mid to
the ideal adversary S as well as potentially also m. This will later allow S to
influence message delivery of m by F at will. We will now define macros that
simplify the aforementioned process. When using the macros we will sometimes
leave out certain options if their choice is clear from the context.
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Macro “Notify the parties T ⊆ P about a message with prefix Request from Pi
via Q with delay ∆” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (∆,midij , sid,Pij , (Request, i)) to Q for each Pij ∈ T .

Macro “Send message m with prefix Request received from party Pi to the parties
T ⊆ P via Q with delay ∆” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (∆,midij , sid,Pij , (Request, i,m)) to Q for each Pij ∈ T .

Macro “Notify S about a message with prefix Request” expands to

– Send (Request, sid, i, ,midi1 , . . . ,midik) to S.

Macro “Send m with prefix Request and the IDs to S” expands to

– Send (Request, sid, i,m, ,midi1 , . . . ,midik) to S.

These macros are useful whenever honest parties send messages that can
arrive at different times at the recipients. If they send these via simultaneous
broadcast (ensuring simultaneous arrival), then we will instead only choose one
message ID for all messages. As the adversary can later influence delivery on
message ID-basis, this ensures simultaneous delivery. We indicate the use of
synchronized broadcast by using the prefix “simultaneously” in the first two
macros.

Functionality F∆BC,delay

F∆BC,delay is parameterized by maximal delay ∆ > 0, parties P = {P1, . . . ,Pn} with
a special sender PS ∈ P and adversary S. S may corrupt a strict subset I ⊂ P.

Send: Upon receiving an input (Send, sid,m) from party PS :
1. Simultaneously send message m to the parties P via Q with delay ∆.
2. Send m and mid to S.

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore

all further messages with this sid except to Fetch Message.

Fig. 2. Ticked ideal functionality F∆BC,delay for authenticated broadcast with maximal
message delay ∆.
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Functionality FLedger

FLedger is parameterized by the algorithms Validate,ExtendPolicy and the param-
eters slackWindow, qualityWindow, delaySync,maxTXDelay,maxEmpty ∈ N. It man-
ages variables state, nextBlock, buffer, emptyBlocks, which are initially set to ⊥,⊥,
∅, and maxEmpty respectively. The functionality maintains a list recentQuality that
keeps track of the quality (i.e., generated using the honest procedures or not) of
the last qualityWindow blocks proposed by S that were used to extend the state
state. The functionality maintains the set of registered parties P, and the subsets of
synchronized honest parties H and of de-synchronized honest parties D. Each party
Pi has a current-state view statei that is initially set to ⊥. Whenever an honest
party Pi is registered during the execution, it is added to the subset D, an entry
(Pi, delaySync) is added to the delayed entry table DE and the de-synchronized state
state′i is set to ⊥.

Tick: 1. For each entry (Pi, cnt) ∈ DE, if cnt = 1, set H ← H∪ Pi,D ← D \ Pi
and remove (Pi, cnt) from DE; otherwise decrease the counter value cnt

by 1.
2. For each entry transaction BTX = (tx, txid,Pi, cnt) ∈ buffer, decrease the

counter value cnt by 1. Remove from buffer all transaction with counter
value equal 0, and create a list mandatoryInclusion with them.

3. Set state ← ExtendPolicy(state, nextBlock, buffer,mandatoryInclusion,
recentQuality, emptyBlocks). If nextBlock = (hFlag, listTX) was used to
extend state, then update the list recentQuality using hFlag. If a block
was added to state, set emptyBlocks ← maxEmpty; otherwise decrease
emptyBlocks by 1.

4. Remove from buffer all transactions that were added into state. Set
nextBlock ← ⊥. For each entry transaction BTX ∈ buffer, if
Validate(BTX, state, buffer) = 0, then remove BTX from buffer.

Read: Upon receiving (Read, sid) from Pi ∈ P: if Pi ∈ D, return (Read, sid, state′i);
otherwise return (Read, sid, statei).

Read Buffer: Upon receiving (ReadBuffer, sid) from S, return (ReadBuffer, sid,
buffer).

Submit a Transaction: Upon receiving (Submit, sid, tx) from Pi, choose a
unique transaction ID txid and set BTX ← (tx, txid,Pi,maxTXDelay). If
Validate(BTX, state, buffer) = 1, then set buffer ← buffer ∪ {BTX}. Send
(Submit, sid,BTX) to S.

Propose a Block: Upon receiving (Propose, sid, hFlag, (txid1, . . . , txid`)) from S,
create the list of transactions listTX by concatenating the eventual transac-
tions contained in buffer that have transaction IDs txid1, . . . , txid`. Then set
nextBlock← (hFlag, listTX) and return (Propose, sid, ok) to S.

Set State-Slackness: Upon receiving (SetSlack, sid,Pi, t) from S, proceed as fol-
lows: if t ≥ |state| − slackWindow and t > |statei|, then set statei to contain the
first t blocks of state and return (SetSlack, sid, ok); otherwise, set statei ← state
and return (SetSlack, sid, fail).

Set State of De-synchronized Parties: Upon receiving (DeSyncState, sid,Pi,
s) from S for Pi ∈ D, set state′i ← s and return (DeSyncState, sid, ok).

Fig. 3. Ledger Functionality FLedger.
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3 Multi-Party Message Delivery

In this section we will model two common multi-party messaging primitives in
the ACT framework, namely authenticated broadcast and public ledgers.

3.1 Ticked Authenticated Broadcast

In Fig. 2 we describe an authenticated broadcast functionality with abstract
ticks and maximal delay ∆. The functionality uses a scheduling-based template
similar to [6] as this seems much easier to handle than an extension of F∆smt,delay.

Observe that this functionality delivers the broadcast message to all honest
parties in the same “tick round” (including the sender). This will be necessary
later as a point of synchronization between honest parties to allow them to make
identical decisions within protocols that use F∆BC,delay. This property is modeled
as the functionality uses the same ID mid for all parties and will permit S only
to schedule earlier delivery than ∆ simultaneously for all queued messages with
this mid.

A weaker formulation of this broadcast can e.g. model that all honest parties
obtain the message within a certain maximal number of ticks ∆, but where the
precise round at which each individual party obtains it can be decided by S.

3.2 Ticked Public Ledger

In order to define a ledger functionality FLedger, we adapt ideas from Badertscher
et al. [4]. The ledger functionality FLedger is presented in Fig. 3. It is parameter-
ized by the algorithms Validate,ExtendPolicy and the parameters slackWindow,
qualityWindow, delaySync,maxTXDelay,maxEmpty ∈ N. These parameters can
depend on the protocol used to realize the ledger. At any point the ledger has a
stable state, which is eventually received by all honest parties (but there is no
guarantee that they will receive it immediately, or even at the same time). The
parameter slackWindow is an upper bound on the number of the most recent
blocks in the current stable state that are still not received by all honest parties.

Any party can submit a transaction, which will be added to the buffer if it is
valid. Validate is used to validate the transactions, and should at least guaran-
tee that no transaction waiting in the buffer contradicts the stable state of the
ledger (the validity of the transactions waiting in the buffer needs to be tested
again once a new block is added to the stable state). The adversary is responsi-
ble for proposing the potential next blocks. It can choose such blocks using the
procedures of an honest miner or not, but the functionality keeps track of that.
It can also propose to have no new block in the next tick. Whenever the func-
tionality is ticked, it runs the algorithm ExtendPolicy to decide if a block will be
added, and what its content would be. ExtendPolicy normally accepts the block
proposed by the adversary, but it also enforces liveness and chain quality proper-
ties. maxTXDelay defines the maximum number of ticks that a valid transaction
will stay in the buffer. After maxTXDelay ticks without inclusion, ExtendPolicy
will force the inclusion of the valid transaction in the next block. maxEmpty

11



defines the maximum number of consecutive suggestions of not adding a new
block by the adversary will be accepted by ExtendPolicy. After that many ticks
without adding a new block, a new block insertion is forced. ExtendPolicy also
analyzes how many of the last qualityWindow blocks were honestly generated,
and force an honest behavior if the number of honest blocks do not meet the
chain quality properties.

Note that a good simulator acts in such way that it never forces an action
from ExtendPolicy, as a forced action may lead to a distinguishing advantage
for the environment. As the set of parties registered in the ledger is dynamic,
the ledger functionality FLedger includes registration interfaces similar to those
for public verifiers described in Section 2, and these are omitted for conciseness.
delaySync defines how long it takes for honest parties that just joined to become
synchronized (until that point, the adversary can arbitrarily set the state that
the de-synchronized parties view).

In the ledger functionality of Badertscher et al. [4] keeps track of many rel-
evant times and interacts with a global clock in order to take actions at the
appropriate time. Our ledger functionality, on the other hand, only keeps track
of a few counters. The counters are updated during the ticks, and the appro-
priate actions are done if they reach zero. However, our algorithm ExtendPolicy
also enforces liveness and chain quality properties, and our ledger functionality
can also be realized by the same protocols as in [4].

4 Publicly Verifiable Time-Lock Puzzle

In this section, we extend the UC treatment of time-lock puzzles from [6] to
the case of publicly verifiable TLPs. Intuitively, a publicly verifiable TLP allows
a party who solves a TLP by performing a certain number of computational
steps to later convince a third party that the solution is correct while only
requiring a constant amount of work from the third party. First, we introduce
an ideal functionality Ftlp modeling a publicly verifiable TLP by extending the
functionality presented in [6]. Functionality Ftlp is presented in Figure 4 and has
an extra interface for any third party verifier to check whether a certain solution
to a given TLP is correct.

4.1 Construction

We show that the protocol proposed in [6] can be augmented to realize the new
public verification interface. In the original protocol, a global random oracle
GrpoRO and an ideal functionality Frsw that captures the hardness assumption
used by Rivest et al. [25] are used as setup (we refer the reader to Supplementary
Material A for full descriptions). The main observation is that a puzzle solution
el,m for a puzzle puz can be verified to be valid by repeating the steps of the
Get Message interface with puz, el as input and checking that the output
obtained is equal to m. The reason this procedure works is that each puzzle
puz = (el0, Γ, tag) encodes in its tag both the final state elΓ obtained after
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Functionality Ftlp

Ftlp is parameterized by a set of parties P, a set of verifiers V, an owner Po ∈ P,
a computational security parameter τ , a state space ST and a tag space T AG. In
addition to P the functionality interacts with an adversary S. Ftlp contains initially
empty lists steps (honest puzzle states), omsg (output messages), in (inbox) and out
(outbox).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid, Γ,m) from Po
where Γ ∈ N+ and m ∈ {0, 1}τ , proceed as follows:

1. If Po is honest sample tag
$← T AG and Γ + 1 random distinct states

stj
$← {0, 1}τ for j ∈ {0, . . . , Γ}. If Po is corrupted, let S provide values

tag ∈ T AG and Γ + 1 distinct values stj ∈ ST .
2. Append (st0, tag, stΓ ,m) to omsg, append (stj , stj+1) to steps for j ∈
{0, . . . , Γ − 1}, output (CreatedPuzzle, sid, puz = (st0, Γ, tag), stΓ ) to Po
and (CreatedPuzzle, sid, puz = (st0, Γ, tag)) to S. Ftlp stops accepting mes-
sages of this form.

Solve: Upon receiving (Solve, sid, st) from party Pi ∈ P with st ∈ ST , if there
exists (st, st′) ∈ steps, append (Pi, st, st

′) to in and ignore the next steps. If
there is no (st, st′) ∈ steps, proceed as follows:

– If Po is honest, sample st′
$← ST .

– If Po is corrupted, send (Solve, sid, st) to S and wait for answer
(Solve, sid, st, st′).

Append (st, st′) to steps and append (Pi, st, st
′) to Q.

Get Message: Upon receiving (GetMsg, sid, puz, st) from party Pi ∈ P with st ∈
ST , parse puz = (st0, Γ, tag) and proceed as follows:

– If Po is honest and there is no (st0, tag, st,m) ∈ omsg, append
(st0, tag, st,⊥) to omsg.

– If Po is corrupted and there exists no (st0, tag, st,m) ∈ omsg,
send (GetMsg, sid, puz, st) to S, wait for S to answer with
(GetMsg, sid, puz, st,m) and append (st0, tag, st,m) to omsg.

Get (st0, tag, st,m) from omsg and output (GetMsg, sid, st0, tag, st,m) to Pi.
Fetch State: Upon receiving (Fetch, sid) from Pi ∈ P retrieve the set Li of all

entries (Pi, sid, ·, ·) in M, remove Li from M and send (Fetch, sid, Li) to Pi.
Public Verification: Upon receiving (Verify, sid, puz, st,m) from a party Vi ∈ V,

parse puz = (st0, Γ, tag) and, if there exists (st0, tag, st,m) ∈ omsg, set b = 1,
else set b = 0. Output (Verified, sid, puz, st,m, b) to Vi.

Tick: Set M←Q and Q = ∅.

Fig. 4. Functionality Ftlp for publicly verifiable time-lock puzzles.

Γ computational steps as well as the trapdoor td that can be used to compute
elΓ from el0 in constant time. Given a candidate solution el,m for puz, the
verifier can confirm that tag does encode el as elΓ and recompute m all in
constant time, since it also uses el to recover td. The use of a global Frsw for the
computation and of a global random oracle GrpoRO for generating tag guarantee
that any verifier Vi ∈ V obtains the same result as any party Pi ∈ P. Hence,
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if the verifier obtains a message m′ = m when executing the Get Message
procedure on input puz, st claimed to have an associated message m, we have
a guarantee that all other parties executing the protocol will obtain the same
message and that a verifier can check this message is valid with respect to puz

in constant time. We describe Protocol πtlp based on [6] in Figure 5 and formally
state its security in Theorem 1.

Protocol πtlp

Protocol πtlp is parameterized by a security parameter τ , a state space ST = {0, 1}τ
and a tag space T AG = {0, 1}τ × {0, 1}τ . πtlp is executed by a set of parties P,
an owner Po ∈ P and a set of verifiers V interacting among themselves and with
functionalities Frsw, GrpoRO1 (an instance of GrpoRO with domain {0, 1}2·τ and output
size {0, 1}2·τ ) and GrpoRO2 (an instance of GrpoRO with domain {0, 1}3·τ and output
size {0, 1}τ ).

Create Puzzle: Upon receiving input (CreatePuzzle, sid, Γ,m) for m ∈ {0, 1}τ , Po
proceeds as follows:
1. Send (Create, sid) to Frsw obtaining (Created, sid, td).
2. Send (Rand, sid, td) to Frsw, obtaining (Rand, sid, el0).
3. Send (Pow, sid, td, el0, 2

Γ ) to Frsw, obtaining (Pow, sid, td, el0, 2
Γ , elΓ ).

4. Send (Hash-Query, (el0|elΓ )) to GrpoRO1, obtaining (Hash-Confirm, h1).
5. Send (Hash-Query, (h1|m|td)) to GrpoRO2, obtaining (Hash-Confirm, h2).
6. Compute tag1 = h1 ⊕ (m|td) and tag2 = h2, set tag = (tag1, tag2) and

output (CreatedPuzzle, sid, puz = (el0, Γ, tag), elΓ ).
Solve: Upon receiving input (Solve, sid, el), a party Pi ∈ P, send (Mult, sid, el, el)

to Frsw. If Pi obtains (Invalid, sid), it aborts.
Get Message: Upon receiving (GetMsg, sid, puz, el) as input, a party Pi ∈ P

parses puz = (el0, Γ, tag), parses tag = (tag1, tag2) and proceeds as follows:
1. Send (Hash-Query, (el0|el)) to GrpoRO1, obtaining (Hash-Confirm, h1).
2. Compute (m|td) = tag1 ⊕ h1 and send (Hash-Query, (h1|m|td)) to
GrpoRO2, obtaining (Hash-Confirm, h2).

3. Send (Pow, sid, td, el0, 2
Γ ) to Frsw, obtaining (Pow, sid, td, el0, 2

Γ , elΓ ).
4. Send (IsProgrammed, (el0|el)) and (IsProgrammed, (h1|m|td))

to GrpoRO1 and GrpoRO2, obtaining (IsProgrammed, b1) and
(IsProgrammed, b2), respectively. Abort if b1 = 0 or b2 = 0,.

5. If tag2 = h2 and el = elΓ , output (GetMsg, sid, el0, tag, el,m). Other-
wise, output (GetMsg, sid, el0, tag, el,⊥).

Public Verification: On input (Verify, sid, puz, st,m), a verifier Vi executes the
steps of Get Message with input (GetMsg, puz, el) in order to obtain
(GetMsg, sid, el0, tag, el,m

′). If m = m′, Vi sets b = 1, else it sets b = 0.
Finally, Vi outputs (Verified, sid, puz, st,m, b).

Output: Upon receiving (Fetch, sid) as input, a party Pi ∈ P sends (Output, sid)
to Frsw, receives (Complete, sid, Li) in response and outputs it.

Fig. 5. Protocol πtlp realizing publicly verifiable time-lock puzzle functionality Ftlp in
the Frsw,GrpoRO-hybrid model.
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Theorem 1. Protocol πtlp UC-realizes Ftlp in the GrpoRO,Frsw-hybrid model with
computational security against a static adversary. Formally, there exists a sim-
ulator S such that for every static adversary A, and any environment Z, the
environment cannot distinguish πtlp composed with GrpoRO,Frsw and A from S
composed with Ftlp.

Proof. In order to prove this theorem, we construct a simulator S that in-
teracts with an internal copy A of the adversary forwarding messages between
A and GrpoRO1,GrpoRO2,Frsw unless otherwise stated. It forwards messages from
A and simulated hybrid functionalities to Gticker. For any environment Z, we
show that an execution with S and Frsw is indistinguishable from an execu-
tion with A in the GrpoRO,Frsw-hybrid model. First, we observe that, apart from
the Public Verification interface, S can be constructed exactly as the simu-
lator in Theorem 2 of [6], which we reproduce in Supplementary Material B. In
order to simulate the Public Verification procedure, S executes exactly the
same steps of an honest verifier in πtlp and, in case A performs public verifi-
cation, forwards all messages between A and GrpoRO1,GrpoRO2,Frsw. Notice that
the Public Verification procedure is executed locally by a verifier who has
received puz, el,m and that it corresponds exactly to executing the steps of
the Get Message procedure with input puz, el and verifying the output is
equal to m. Hence, since an execution of Get Message with S and Ftlp is
indistinguishable from an execution with A in the GrpoRO,Frsw-hybrid model
as proven in [6], the output of the simulated Public Verification procedure
with input puz = (el0, Γ, tag = (tag1, tag2)), el′,m′ where puz was gener-
ated with message m and trapdoor td will only differ from that of Ftlp if A
finds el′,m′ 6= m such that querying GrpoRO1 with (Hash-Query, (el0|el′))
yields h1 = tag1 where (m′|td) = tag1 ⊕ h1 and that querying GrpoRO2 with
(Hash-Query, (h1|m′|td)) yields h2 = tag2, which only happens with negligi-
ble probability in τ since A can only make a polynomial number of queries to
GrpoRO1,GrpoRO2. ut

5 Composable Randomness Beacons

We model a randomness beacon as a publicly verifiable coin tossing functionality
FRB presented in Figure 6. Even though this functionality does not periodically
produce new random values on its own as in some notions of randomness beacons,
it can be periodically queried by the honest parties when they need to obtain
new randomness.

5.1 Randomness Beacons from TLPs

In order to construct a UC-secure randomness beacon from TLPs and a broad-
cast channel or public ledger, we depart from a simple commit-then-open pro-
tocol for n parties realizing a simple coin tossing functionality with all messages
posted to the public ledger or broadcast channel. Such a protocol involves each
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Functionality FRB

FRB is parameterized by delay ∆TLP−RB and interacts with a set of parties P =
{P1, . . . ,Pn}, a set of verifiers V and an adversary S through the following inter-
faces:

Toss: Upon receiving (Toss, sid) from all honest parties in P, sample x
$← {0, 1}τ

and send (Tossed, sid, x) to all parties in P and V via Q with delay ∆TLP−RB.
Verify: Upon receiving (Verify, sid, x) from Vj ∈ V, if (Tossed, sid, x) has been

sent to all parties in P set f = 1, otherwise, set f = 0. Output (Verified,
sid, x, f) to Vj .

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

Fig. 6. Functionality FRB for G.O.D. Publicly Verifiable Coin Tossing.

party Pi posting a commitment comi containing a random value ri
$← {0, 1}τ

to the public ledger, waiting for enough time so that all com1, . . . , comn can be
posted on the ledger and then opening comi once all com1, . . . , comn have ap-
peared on the ledger. The output of the protocol is defined as r = r1 ⊕ · · · ⊕ rn.
However, an adversary can bias the output by aborting the opening.

The issue of adversarial bias in coin flipping protocols has been addressed
by relying on publicly verifiable secret sharing schemes (PVSS) [15] with O(n2)
communication complexity for achieving guaranteed output delivery. Recently, it
has been suggested that a computational vs. communication complexity trade-
off can be achieved by leveraging Verifiable Delay Functions [10] (VDFs) and
avoiding the commit-then-open template. This solution achieves O(n) commu-
nication complexity at the cost of the high computational complexity incurred by
computing VDFs, which are constructed from sequential computation similarly
to TLPs. However, these constructions are proposed as folklore and there is no
evidence that they can achieve any composability guarantees nor other standard
notions of security.

We observe that the commit-then-open template for randomness beacons
can be still salvaged from bias without resorting to PVSS by substituting the
commitments in simple commit-then-open coin tossing with TLPs as captured
in Ftlp. To see why the adversary cannot bias the output of the protocol, first
notice that after t+ 1 TLPs are posted to the ledger (where t is the number of
corrupted parties), at least one is generated by an honest party and all parties
can solve the TLPs. Moreover, if the time to solve the TLP δ is large enough that
TLPs of the adversary must be broadcast (or posted to the ledger) before the
first honest TLP opens, the adversary does not get any information about honest
parties’ random values ri, so it cannot choose its own random values in any way
that biases the output. The resulting protocol also achieves O(n) communication
complexity while sacrificing computational complexity in the worst case (where
TLPs must be solved). Using our UC-secure TLPs and a public ledger [4] or
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broadcast functionality with ticks (which we assume to be authenticated by e.g.
digital signatures), it is possible to construct a simulator for this protocol and
prove it UC-secure.

An interesting optimization of this construction can be obtained by observing
that Protocol πtlp is intrinsically publicly verifiable, allowing any third party
to verify a solution to a given TLP in constant time. Notice that a solution
(el,m) for a puzzle puz generated by Ftlp can be publicly verified by any third
party. Leveraging this property, we can optimize the simple randomness beacon
construction described above by having honest parties post solutions to their own
TLPs after the commitment phase is completed. In this case, if all parties who
act in the commitment phase are honest, the protocol terminates faster without
the need for all parties to solve each other’s TLPs. Otherwise, the honest parties
only have to solve the TLPs provided by corrupted parties (who do not post a
valid solution to these TLPs after the commitment phase).

This construction is particularly interesting in a setting with financial in-
centives as proposed by the popular Ethereum-based biased randomness beacon
RANDAO [24]. The core idea behind RANDAO is to leverage a smart contract
that collects a security deposit from all parties who participate in a protocol
execution before it starts. If corrupted parties misbehave, the smart contract re-
distributes their security deposits among the parties who successfully completed
the protocol. The rationale of this approach is that corrupted parties have no
financial incentive to introduce bias to the final output by selectively aborting
their execution. However, it is always possible for corrupted parties to bias the
beacon’s output if they are willing to forfeit their security deposits. Applying a
similar approach to our optimized randomness beacon protocol yields a beacon
that cannot be biased even by an adversary willing to pay the price of forfeiting
security deposits. In our case, parties would be required to provide a security
deposit in order to participate in a protocol execution and would forfeit this de-
posit if they fail to send a valid TLP or to provide a valid solution for their TLP.
Notice that an adversary would only be able to slow down protocol execution
by forcing honest parties to solve its unopened TLPs but it wouldn’t be able to
bias the final output.

We describe protocol πTLP−RB in Figure 7 and 8 and formally state its security
in Theorem 2. We prove this theorem in the semi-synchronous model where
F∆BC,delay has a finite but unknown maximum delay ∆ considering an honest
majority. However, if we have synchronous broadcast allowing us to detect when
parties do not act on time, we could prove it considering a dishonest majority
by proceeding to the Opening Phase after the first TLP is solved, since we
would have a guarantee that at least the one honest party would have broadcast
its TLP by then.

Theorem 2. There exists a delay parameter δ > ∆ such that Protocol πTLP−RB
UC-realizes FRB in the Ftlp,F∆BC,delay-hybrid model with computational security
against a static adversary corrupting t < n

2 parties in P. Formally, there exists a
simulator S such that for every static adversary A, and any environment Z, the
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Protocol πTLP−RB

Protocol πTLP−RB is parameterized by a delay δ and executed between a set of
parties P = {P1, . . . ,Pn} out of which t < n/2 are corrupted and a set of verifiers
V who interact with F∆BC,delay and an instance F itlp of Ftlp for which they act as Po:

Toss: On input (Toss, sid), all parties in P proceed as follows:

1. Commitment Phase: For i ∈ {1, . . . , n}, party Pi proceeds as follows:

(a) Sample ri
$← {0, 1}τ and send (CreatePuzzle, sid, δ, ri) to F itlp, receiving

(CreatedPuzzle, sid, puzi = (sti0, δ, tagi)) in response.
(b) Send (Send, sid, puzi) to F∆BC,delay.
(c) Send (Fetch, sid) to F∆BC,delay, receiving (Fetch, sid, L). Check that t+ 1 mes-

sages of the form (Pj , sid, puzj) from different parties are in L (we call the
set of such parties C). Once this check succeeds, record C and proceed.

2. Opening Phase: All parties Pi ∈ C proceed as follows:
(a) Send (Send, sid, stδ, ri) to F∆BC,delay.
(b) Wait for other parties to broadcast a solution to their TLPs by performing

one iteration of the following loop every time it is activated:
i. Send (Solve, sid, sticsti) to F itlp.

ii. Send (Fetch, sid) to F itlp and check that there is an entry (Pi, sticsti ,
sticsti+1) in Li. If yes, increment csti.

iii. If csti = δ, exit the loop and proceeds to the next step.
(c) Send (Fetch, sid) to F∆BC,delay, receiving (Fetch, sid, L). Check that each mes-

sage of the form (Pj , sid, stδ, rj) from Pj ∈ C is a valid solution to puzj
by sending (Verify, sid, puzj , stδ, rj) to Ftlp and checking that the answer is
(Verified, sid, puzj , stδ, rj , 1). If this check passes for all puzj from Pj ∈ C,
output r =

⊕
ri∈V ri and skip Recovery Phase. Otherwise, proceed.

3. Recovery Phase: For i ∈ {1, . . . , n}, party Pi proceeds as follows:
(a) For each j such that Pj ∈ C did not send a valid solution of puzj in

the opening phase, solve puzj = (stj0, δ, tagj) by setting cstj = 0 and
performing one iteration of the following loop in parallel for all puzj every
time it is activated:

i. Send (Solve, sid, stjcstj ) to Fjtlp.
ii. Send (Fetch, sid) to Fjtlp and check that there is an entry (Pi, stjcstj ,

st
j
cstj+1) in Li. If yes, increment cstj .

iii. If cstj = δ, send (GetMsg, sid, puzj , st
j
cstj

) to Fjtlp, obtaining (GetMsg,

sid, puzj , st
j
cstj

, rj) in response. If all r1, . . . , r|C| have been obtained,
Pi exits the loop and proceeds to the next step.

(b) Let V be the set of all ri ∈ {r1, . . . , r|C|} such that ri 6=⊥ (i.e. V is the set
of values ri obtained from valid TLPs posted in the commitment phase).
Send (Send, sid, (stj,δ, rj)j|rj∈V) to F∆BC,delay. Output r =

⊕
ri∈V ri.

Fig. 7. Protocol πTLP−RB

environment cannot distinguish and execution of πTLP−RB by A composed with
Ftlp,F∆BC,delay from an ideal execution with S and FRB.
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Protocol πTLP−RB (Verification)

Verify: On input (Verify, sid, x), send (Fetch, sid) to F∆BC,delay, receiving
(Fetch, sid, L) and determining C for sid from L. Check that each message
of the form (Pj , sid, stδ, rj) from Pj ∈ C is a valid solution to puzj
by sending (Verify, sid, puzj , stδ, rj) to Ftlp and checking that the answer is
(Verified, sid, puzj , stδ, rj , 1). Output r =

⊕
ri∈V ri.

Fig. 8. Protocol πTLP−RB

Proof. This theorem is proven in Supplementary Material C. ut

5.2 Using a Public Ledger FLedger

Instead of using a delayed broadcast F∆BC,delay, we can instantiate Protocol πTLP−RB
using a public ledger FLedger for communication. In this case, we must parame-
terize the TLPs with a delay δ that is large enough to guarantee that all honest
parties (including desynchronized ones) agree on the set of the first t+ 1 TLPs
that are posted on the ledger before proceeding to the Opening Phase. We
describe an alternative Protocol πTLP−RB−LEDGER that behaves exactly as Proto-
col πTLP−RB but leverages FLedger for communication.

Protocol πTLP−RB−LEDGER: This protocol is exactly the same as πTLP−RB except
for using FLedger for communication instead of F∆BC,delay in the following way:

– At every point of πTLP−RB where parties send (Send, sid,m) to F∆BC,delay,
instead they send (Submit, sid,m) to FLedger.

– At every point of πTLP−RB where parties send (Fetch, sid) to F∆BC,delay and
check for messages in (Fetch, sid, L), instead they send (Read, sid) to FLedger

and check for messages in (Read, sid, statei).

Theorem 3. There exists a delay parameter δ > maxTXDelay + emptyBlocks ·
slackWindow such that Protocol πTLP−RB−LEDGER UC-realizes FRB in the Ftlp,FLedger-
hybrid model with computational security against a static adversary corrupting
t < n

2 parties in P. Formally, there exists a simulator S such that for every
static adversary A, and any environment Z, the environment cannot distinguish
an execution of πTLP−RB−LEDGER by A composed with Ftlp,FLedger from an ideal
execution with S and FRB.

Proof. This theorem is proven in Supplementary Material C. ut

6 MPC with (Punishable) Output-Independent Abort

In this section we will describe how to construct a protocol that achieves MPC
with output-independent abort and subsequently outline how to financially pe-
nalize cheating behavior in the protocol. The starting point of this construction
will be MPC with secret-shared output, which is a strictly weaker primitive, as
well as (synchronized) broadcast as modeled in F∆BC,delay and TLPs.
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6.1 Functionalities for Output-Independent Abort

We begin by mentioning the functionalities that are used in our construction
and which have not appeared in previous work (when modeled with respect to
time). These functionalities are:

1. F∆mpc,sso (Fig. 10 and Fig. 11) for secure MPC with secret-shared output.

2. F∆,δcom (Fig. 12) for commitments with delayed non-interactive openings.
3. F∆ct (Fig. 17) for coin-flipping with abort.

4. F∆,δmpc,oia (Fig. 13 and Fig. 14) for MPC with output-independent abort.

In the Supplementary Material, we will additionally introduce the following
functionalities:

1. Fγ,δvcom (Fig. 22 and Fig. 23) for commitments with verifiable delayed non-
interactive openings.

2. Fγ,δSC (Fig. 25 and Fig. 26) which is an abstraction of a smart contract.

3. F∆,γ,δmpc,poia (Fig. 27 and Fig. 28) for MPC with Punishable Output-Independent
Abort.

Before formally introducing these functionalities and explaining them in more
detail, we will show how they are related in our construction.

Fig. 9. How Punishable MPC is constructed.

As can be seen in Figure 9 our approach is twofold. First, we will real-
ize F∆,δmpc,oia via the protocol πmpc,oia relying on F∆BC,delay,F∆ct ,F∆mpc,sso and F∆,δcom .

Then, we will show how to implement F∆,γ,δmpc,poia via the protocol πmpc,poia (a gen-

eralization of πmpc,oia) which uses Fγ,δSC ,F∆ct ,F∆mpc,sso as well as Fγ,δvcom. As men-

tioned in Fig. 9, Fγ,δvcom and Fγ,δSC can be thought of as generalizations of F∆,δcom

and F∆BC,delay. We will now describe the functionalities for πmpc,oia in more detail.

MPC with Secret-Shared Output. The functionality F∆mpc,sso is formally
introduced in Fig. 10 and Fig. 11. It directly translates an MPC protocol with
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Functionality F∆mpc,sso (Computation, Message Handling)

The ticked functionality interacts with n parties P = {P1, . . . ,Pn} and an adversary
S which may corrupt a strict subset I ⊂ P.

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Init, sid, C) then store C locally.
3. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. Accept xi as input for Pi.
3. Send m and the IDs to S if Pi ∈ I, otherwise notify S about a message

with prefix Input.
Computation: On first input (Compute, sid) by Pi ∈ P and if x1, . . . , xn were

accepted:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If all parties sent (Compute, sid) compute and store (y1, . . . , ym) ←

C(x1, . . . , xn).
3. Notify S about a message with prefix Compute.

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore

all further messages with this sid except to Fetch Message.

Fig. 10. Ticked Functionality F∆mpc,sso for MPC with Secret-Shared Output and Linear
Secret Share Operations.

secret-shared output into the ACT model, but does not make use of any tick-
related properties beyond scheduling of message transmission. The functionality
supports computations on secret input where the output of the computation is
additively secret-shared among the participants. Additionally, it allows parties
to sample random values, compute linear combinations of outputs and those
random values and allows to reliably but unfairly open secret-shared values.
F∆mpc,sso can be instantiated from many different MPC protocols, such as

those based on secret-sharing [7] or multiparty BMR [19].

Commitments with Delayed Openings. In Fig. 12 we describe the func-
tionality F∆,δcom for commitments with verifiable delayed non-interactive openings.
The functionality distinguishes between a sender PSend, which is allowed to make
commitments, and a set of receivers, which will obtain the openings. In compari-
son to regular commitments with a normal Open that simply reveals the output
to all parties, the sender is also allowed to perform a Delayed Open. This means

21



Functionality F∆mpc,sso (Computation on Outputs)

Share Output: Upon first input (ShareOutput, sid, T ) by Pi ∈ P for fresh identi-
fiers T = {cid1, . . . , cidm} and if Computation was finished:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If all parties sent ShareOutput:

(a) Send (RequestShares, sid, T ) to S, which replies with (OutputShares, sid,
{sj,cid}cid∈T ,Pj∈I). Then for each Pj ∈ P \I, h ∈ [m] sample sj,cidh ← F
uniformly random conditioned on yh =

⊕
k∈[n] sk,cidh .

(b) For cid ∈ T store (cid, s1,cid, . . . , sn,cid) and for each Pj ∈ P \ I send
sj,cid with prefix OutputShares to party Pj via Q with delay ∆. Finally
notify S about the message with prefix OutputShares.

3. Notify S about a message with the prefix ShareOutput.
Share Random Value: Upon input (ShareRandom, sid, T ) by all parties with

fresh identifiers T :

1. Notify parties P \ {Pi} via Q with delay ∆.
2. If all parties sent ShareRandom:

(a) Send (RequestShares, sid, T ) to S, which replies with (RandomShares,
sid, {sj,cid}cid∈T ,Pj∈I). Then for each Pj ∈ P\I, cid ∈ T sample sj,cid ←
F uniformly at random.

(b) For cid ∈ T store (cid, s1,cid, . . . , sn,cid) and for each Pj ∈ P \ I send
sj,cid with prefix RandomShares to party Pj via Q with delay ∆. Finally
notify S about the message with prefix RandomShares.

3. Notify S about a message with the prefix ShareRandom.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈T , cid′) from all par-
ties: If all αcid ∈ F, all (cid, s1,cid, . . . , sn,cid) have been stored and cid′ is unused,
set s′i ←

∑
cid∈T αcid · si,cid and record (cid′, s′1, . . . , s

′
n).

Reveal: Upon input (Reveal, sid, T ) by Pi ∈ P for identifiers T and if
(cid, s1, . . . , sn) is stored for each cid ∈ T :
1. Notify the parties P \ {Pi} via Q with delay ∆. Then notify S about a

message with prefix Reveal.
2. If all parties sent (Reveal, sid, T ) then send

(Reveal, sid, {(cid, s1,cid, . . . , sn,cid)}cid∈T ) to S.
3. If S sends (DeliverReveal, sid, T ) then send message
{(cid, s1,cid, . . . , sn,cid)}cid∈T with prefix DeliverReveal to parties P via
Q with delay ∆ and notify S about a message with prefix DeliverReveal.

Fig. 11. Ticked Functionality F∆mpc,sso for MPC with Secret-Shared Output and Linear
Secret Share Operations, Part 2.

that there is a delay between the choice of a sender to open a commitment (or
not) and the actual opening towards the receivers and also the adversary. F∆,δcom is
a generalization of a similar two-party functionality that can already be found in
[6]. At the same time, it is incomparable as it does not provide any homomorphic
operations on the secret values.

While both the Commit and Open directly resemble their counterparts in
a normal commitment functionality, the Delayed Open logic is not as straight-
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Functionality F∆,δcom

The ticked functionality is parameterized by ∆, δ ∈ N and interacts with a set of n
parties P = {P1, . . . ,Pn} where PSend ∈ P is a special party called “the sender” and
PRec = P \ {PSend} are the receivers. An adversary S may corrupt a strict subset
I ⊂ P of parties. The functionality internally has an initially empty list O and a
map commits.

Commit: Upon receiving (Commit, sid, cid, x) from PSend where cid is an unused
identifier and x is a bit-string proceed as follows:
1. Set commits[cid] = x.
2. Send a message cid with prefix Commit to PRec via Q with delay ∆.
3. Send cid and the IDs to S.

Open: Upon receiving (Open, sid, cid) from PSend, if commits[cid] = x 6=⊥ then
proceed as follows:
1. Send message (cid, x) with prefix Open to PRec via Q with delay ∆.
2. Send (cid, x) and the IDs to S.

Delayed Open: Upon receiving (DOpen, sid, cid) from PSend, if commits[cid] =
x 6=⊥ then proceed as follows:
1. Simultaneously send message cid with prefix DOpen to all parties in PRec

via Q with delay ∆.
2. Add (δ, sid,Pj , (cid, x)) for each Pj ∈ PRec and (δ, sid,S, (cid, x)) to O.
3. Send cid and the ID to S.

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. For each entry (cnt, sid,Pj , (cid, x) ∈ O with Pj ∈ PRec, if there is no entry

(cnt, sid,mid, sid,Pj , (DOpen, cid)) ∈ Q, proceed as follows:
– If cnt = 0, append (Pj , sid, (DOpened, (cid, x))) to M.
– If cnt > 0, replace (cnt, sid,Pj , (cid, x)) with (cnt− 1, sid,Pj , (cid, x))

in O.
4. For each entry (cnt, sid,S, (cid, x)) ∈ O, proceed as follows:

– If cnt = 0, append (PSend, sid, (DOpened, cid)) to M and output
(DOpen, sid,S, (cid, x)) to S.

– If cnt > 0, replace (cnt, sid,S, (cid, x)) with (cnt− 1, sid,S, (cid, x)) in
O.

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D and open = 0 then add (Pi, sid,Abort) toM for each i ∈

[n] and ignore all further messages with this sid except to Fetch Message.

Fig. 12. Ticked Functionality F∆,δcom For Commitments with Delayed Opening.

forward. What happens during such a delayed open is that first all honest parties
will simultaneously learn that indeed an opening will happen in the future - this
is the DOpen message which they obtain. Additionally, F∆,δcom stores the openings
in an internal queue O. These openings can not be rescheduled by the adversary,
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and therefore it will take δ ticks before S actually learns the opening of the
commitment. For honest parties, this may even take up to ∆+δ ticks depending
when DOpen is obtained by the honest parties. As the openings, once triggered
by Tick, are directly written to the output queueM and not Q, these can then
directly be read by the respective parties. This also means that all honest parties
will learn the delayed opening simultaneously.

In Supplementary Material D we provide a secure instantiation of a publicly
verifiable4 version of F∆,δcom . Since we do not require homomorphic operations, this
means that it can be realized with a much simpler protocol than the respective
two-party functionality in [6].

MPC with Output-Independent Abort. In Fig. 13 and Fig. 14 we describe
the functionality F∆,δmpc,oia for MPC with output-independent abort.

In terms of the actual secure computation, our functionality is identical with
F∆mpc,sso, although it does not reveal the concrete shares to the parties and the
adversary during the sharing. The output-independent abort property of our
functionality is then achieved as follows: in order to reveal the output of the
computation, at least one party will first have to send Reveal to F∆,δmpc,oia. Once
all honest parties and the verifiers thus learn that the parties indeed are syn-
chronized by seeing that the first synchronization message arrives at all par-
ties(st = sync and f = >), the internal state of the functionality changes. From
this point on, the adversary can, within an additional time-frame of δ ticks, de-
cide whether to reveal its shares or not. Then, once these δ ticks passed, S will
obtain the output y of the computation after having provided the set of aborting
parties J . If J = ∅ then F∆,δmpc,oia will, within δ additional ticks, simultaneously
output y to all honest parties, while it otherwise outputs the set J .

The additional up to δ ticks between the adversary learning y and the honest
parties learning y or J is due to our protocol and will be more clear later.

Coin Tossing. πmpc,oia additionally requires a functionality for coin tossing F∆ct
as depicted in Fig. 17 in the Supplementary Material. Note that F∆ct can easily
be realized in the F∆BC,delay,F∆,δcom -hybrid model.

6.2 Building MPC with Output-Independent Abort

We will now describe how to construct an MPC protocol that guarantees output-
independent abort. This generalizes the previous work of [6] to a multiparty
setting. Although this might appear like a natural generalization, constructing
the protocol is far from trivial as we must take care that all honest parties agree
on the exact set of cheaters.

Our protocol, on a high level, works as follows:

4 See Theorem 5 for more details. In order to adapt the construction to F∆,δcom it is
sufficient to replace the required bulletin board with our broadcast functionality
F∆BC,delay.
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Functionality F∆,δmpc,oia(Computation, Sharing)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary
S who may corrupt a strict subset I ⊂ P. F∆,δmpc,oia is parameterized by ∆, δ ∈ N+.
The functionality internally has an initially empty list O, a state st initially ⊥ as
well as an initially empty set J .

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Init, sid, C) then store C locally.
3. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. Accept xi as input for Pi.
3. Send xi and the IDs to S if Pi ∈ I, otherwise notify S about a message

with prefix Input.
Computation: On first input (Compute, sid) by Pi ∈ P and if all x1, . . . , xn were

accepted:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Compute, sid) compute y = C(x1, . . . , xn) and store y.
3. Notify S about a message with prefix Compute.

Share: On first input (Share, sid) by party Pi, if y has been stored and if st = ⊥:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If all parties sent Share then:

(a) Send (Shares?, sid) to S.
(b) Upon (DeliverShares, sid) from S simultaneously send a message with

prefix DeliverShares to each Pj ∈ P \I via Q with delay ∆. Then notify
S about messages with prefix DeliverShares and the ID.

(c) Otherwise, if S sends (Abort, sid) then send Abort to all parties
3. Notify S about a message with prefix Share.

Reveal: Upon first message (Reveal, sid, i) by party Pi ∈ P, if Share has finished,
if no DeliverShare message is in Q and if st = ⊥ or st = sync:
1. Simultaneously send a message i with prefix Reveal to parties P \ {Pi} via
Q with delay ∆.

2. Set st = sync.
3. Notify S about a message with prefix Reveal.

Fig. 13. The F∆,δmpc,oia Functionality for MPC with Output-Independent Abort.

1. The parties provide their inputs xi to F∆mpc,sso, perform the computation us-

ing F∆mpc,sso and obtain secret shares y1, . . . ,yn of the output y. Additionally,

they sample a blinding value ri ∈ Fλ for each party Pi inside F∆mpc,sso. The
values yi, ri are sent to each Pi.

2. Next, the parties commit to both yi, ri using F∆,δcom towards all parties. Dis-
honest parties may commit to a different value than the one they obtained
from F∆mpc,sso and consistency must therefore be checked.

3. All parties use the coin-flipping functionality to sample a uniformly random
matrix A ∈ Fλ×m. This matrix is used to perform the consistency check.
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Functionality F∆,δmpc,oia (Timing)

Tick:
1. Set f← ⊥.
2. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.

If m = (Reveal, i) then set f← >.
3. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
4. If st = wait(x) & x ≥ 0:

If x ≥ 0: Set st = wait(x− 1).
If x = 0:

(a) Send (Abort?, sid) to S and wait for response (Abort, sid, J) with
J ⊆ I.

(b) If J = ∅ then send message y with prefix Output to each party
P \ I via Q with delay δ.

(c) If J 6= ∅ then send message J with prefix Abort to each party P \ I
via Q with delay δ.

(d) Send (Output, sid, y) and the IDs to S.
5. If st = sync and f = >:

(a) Set st = wait(δ).
(b) Send (RevealStart, sid) to S

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D and st = ⊥ then add (Pi, sid,Abort) to M for each
Pi ∈ P and ignore all further messages with this sid except to Fetch
Message.

Fig. 14. The Ticked F∆,δmpc,oia Functionality for MPC with Output-Independent Abort.

4. For each i ∈ [n] the parties compute and open ti = ri + Ayi using F∆mpc,sso.
Due to the blinding value ri opening ti will not leak any information about
yi of Pi ∈ P \ I to the adversary.

5. Now the parties synchronize using F∆BC,delay. Once synchronized, they simul-
taneously perform a delayed open of both yi, ri using their commitments.
Parties which don’t open their commitments in time or whose opened values
do not yield ti by the same equation as above are considered as cheaters.

Intuitively, our construction has output-independent abort because of the timing
of the opening: Until Step 5, the adversary may abort at any time but no such
abort will provide it with information about the output. Once the opening phase
begins, parties can easily verify if an opening by an adversary is valid or not -
because he committed to its shares before A was chosen and the probability of a
collision with ti for different choices of y′i, r

′
i can be shown to be negligible in λ

as this is exactly the same as finding a collision to a universal hash function. The
decision to initiate its opening, on the other hand, must arrive at each honest
party before the honest party’s delayed opening finishes - which will be ensured
by the appropriate choice of δ with respect to ∆ for honest parties. In turn, an
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adversary must thus send its opening message before learning the shares of an
honest party, which is exactly the property of output-independent abort.

Identifiability of the abort requires that the honest parties agree on the same
set of cheaters. Towards achieving this, we need the synchronized broadcast that
is used in Step 1 of Reveal. If parties would start the opening at different
times, then there would not be agreement about a point at which all parties
decide that a certain received message timed out. But this agreement is crucial
to decide which parties cheated.

Interestingly, our construction does not need homomorphic commitments as
was necessary in [6,5] to achieve their verifiable or output-independent abort
in UC. Clearly, our solution can also be used to improve these protocols and
to simplify their constructions. The full protocol can be found in Fig. 15 and
Fig. 16.

Protocol πmpc,oia (Computation, Share)

All parties P have access to one instance of the functionalities F∆mpc,sso and F∆ct .

Furthermore, each Pi ∈ P has it’s own F∆,iBC,delay, and F∆,δ,icom where it acts as the
dedicated sender and all other parties of P are receivers.

Init: Each Pi ∈ P sends (Init, sid, C) to F∆mpc,sso and waits until it obtains messages
C with prefix Init from F∆mpc,sso for every other party P \ {Pi}.

Input: Each Pi ∈ P sends (Input, sid, i, xi) to F∆mpc,sso and waits until it obtains
messages j with prefix Input from F∆mpc,sso for every other party Pj ∈ P \ {Pi}.

Computation: Each Pi ∈ P sends (Computation, sid) to F∆mpc,sso and waits until
it obtains messages with prefix Computation from F∆mpc,sso for every other party
P \ {Pi}.

Share:
1. Set Ty = {cidy,j}j∈[m], Tr = {cidr,k}k∈[λ] and Tt = {cidt,k}k∈[λ].
2. Each Pi ∈ P sends (ShareOutput, sid, Ty) to F∆mpc,sso and wait until it obtains

a message {yi,cid}cid∈Ty with prefix OutputShares from F∆mpc,sso.
3. Each Pi ∈ P sends (ShareRandom, sid, Tr) to F∆mpc,sso and wait until it ob-

tains a message {ri,cid}cid∈Tr with prefix RandomShares from F∆mpc,sso. Set
yi = (yi,cidy,1 , . . . , yi,cidy,m) and equivalently define ri.

4. Each Pi ∈ P sends (Commit, sid, cidi, (yi, ri)) to F∆,δ,icom and then waits for
messages (Commit, sid, cidj) from the F∆,δ,jcom -instances of all other parties
Pj ∈ P \ {Pi}.

5. Each Pi ∈ P sends (Toss, sid,m · λ). It then waits for the message
(Coins, sid,A) where A ∈ Fλ×m.

6. Each Pi ∈ P for k ∈ [λ] sends (Linear, sid, {(cidv,j ,A[k, j])}j∈[m] ∪
{(cidr,k, 1)}, cidt,k) to F∆mpc,sso.

7. Each Pi ∈ P sends (Reveal, sid, Tt) to F∆mpc,sso and waits for the message
{(cid, t1,cid, . . . , tn,cid)}cid∈Tt with prefix DeliverReveal from F∆mpc,sso. Set tj =
(tj,cidt,1 , . . . , tj,cidt,λ) for each j ∈ [n].

Fig. 15. Protocol πmpc,oia for MPC with Output-Independent Abort.
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Protocol πmpc,oia (Reveal)

Reveal: If Share completed successfully:
1. Each Pi sends (Send, sid, sync) to F∆,iBC,delay,.

2. If Pi obtains the first message with prefix Sync from any F∆,jBC,delay, then Pi
sends (DOpen, sid, cidi) toF∆,δ,icom .

3. Each Pi ∈ P waits until F∆,δ,icom returns (DOpened, sid, (cidi, (yi, ri)). It then
checks if it obtained a message with prefix DOpen from all other F∆,δ,jcom .
Let J1 ⊂ P be the set of parties such that Pi did not obtain DOpen before
it received (DOpened, sid, (cidi, (yi, ri)).

4. Each Pi ∈ P waits until it obtains (DOpened, sid, (cidj , (yj , rj)) for each
Pj ∈ P \ (J1 ∪{Pi}) from the respective instance of F∆,δ,jcom . It then defines
J2 as the set of all parties Pj such that tj 6= rj + Ayj .

5. If J1 ∪ J2 = ∅ then each Pi ∈ P outputs (Output, sid,y =
⊕

j∈[n] yj) and

terminates. Otherwise it outputs (Abort, sid, J1 ∪ J2).

Fig. 16. Protocol πmpc,oia for MPC with Output-Independent Abort.

In Supplementary Material D we show the following Theorem:

Theorem 4. Let λ be the statistical security parameter and δ > ∆. Then the
protocol πmpc,oia GUC-securely implements the ticked functionality F∆,δmpc,oia in the

F∆mpc,sso,F∆,δcom ,F∆ct ,F∆BC,delay-hybrid model against any static adversary corrupting
up to n− 1 of the n parties in P. The transcripts are statistically indistinguish-
able.

Output-Independent Abort with Semi-Synchronous Broadcast. Our
solution to achieve output-independent abort crucially requires that all honest
parties obtain the broadcast messages in the same round. Otherwise they will not
be able to agree upon the abort event in the Output phase. It is an interesting
question if that can be generalized to semi-synchronous broadcast.

One naive solution which requires O(n · |BA|) rounds and where |BA| is the
number of rounds for binary byzantine agreement, works as follows: Each Pi ∈ P
sends a TLP with delay (n−i)·(∆+ζ) after running agreement that the previous
TLP was received by all, where ∆ is the maximal delay of the broadcast and ζ
is the maximal agreement delay.

Clearly, this resolves the problem of honest parties agreeing on abort, but
at the same time requires an honest majority for the byzantine agreement. We
leave a more detailed analysis of this as interesting future work.

6.3 Penalizing Cheaters

We will now outline how the idea behind the protocol πmpc,oia can be modified
in order to construct MPC with punishable output-independent abort.

First, in order to manage monetary contributions of parties, we will use a
smart contract functionality Fγ,δSC that accepts deposits of parties and distributes
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these to parties that do not cheat. As this smart contract will have to act upon
messages sent by all parties, we will let Fγ,δSC replace the broadcast functionality
F∆BC,delay. This has the additional advantage that it easily synchronizes honest

parties and Fγ,δSC concerning the abort condition that no DOpen message can be
accepted anymore. This is important, as we require that both the honest parties
and Fγ,δSC identify the same set of cheaters J1, which Fγ,δSC can then punish.

In order to identify the identical set J2, Fγ,δSC must be able to check openings
of F∆,δcom . For this reason we will enhance this functionality to Fγ,δvcom which has
verifiability for opened values. Moreover, we ask that the opened values of Fγ,δvcom

have to be transferable: if Pi has found the opening, then by sending it to
Fγ,δSC the smart contract should be able to verify the opening (possibly with less
computational overhead).

In the full protocol, parties will then first compute on their inputs and gen-
erate shares of the outputs as in πmpc,poia, although using the aforementioned
different functionalities. Then, before starting the opening phase, each party
will send the deposit to Fγ,δSC . Here all these deposits have to arrive within a δ
tick time span. Then, parties start the delayed openings as before, although the
timeout to Fγ,δSC is now longer (2δ + γ instead of 2δ). This is because we now
require that honest parties, once they find an opening to (possibly adversarial)

commitments, post these to Fγ,δSC , which may take additional γ time to complete.
Due to the length of the time span, all commitments from parties in P \ J1 will
have been posted at that time, so that the set J2 is identical for honest parties
and Fγ,δSC . At the same time, as Fγ,δvcom is a commitment functionality the ad-
versary cannot send “incorrect” openings for commitments of honest parties to
Fγ,δSC . We refer to Supplementary Material D for the concrete construction.

Penalizing Non-Optimistic Protocol Runs. An interesting optimization
would be an optimistic version of πmpc,poia. There, each party Pi, after having
determined the set of parties that do not open the commitments to their output
shares, would itself post the opening to its own commitment on Fγ,δSC . This

opening can then be verified by Fγ,δSC and the other parties. Now a dishonest
party Pj could always refrain from doing this and this would not be considered
per se as cheating, but honest parties would in such a setting have to invest
computational resources to perform the delayed opening of Fγ,δ,jvcom . Pj has no
incentive to follow the optimistic path of the protocol.

As Fγ,δSC could in this case observe which verifiable openings are posted on
time (and which had to be generated by other parties and are therefore posted
only later), it can reimburse honest parties for this extra work. This incentivizes
A not just to provide outputs to the honest parties, but also to do this with-
out them having to work extra in order to solve TLPs. We leave a concrete
construction as future work.
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Supplementary Material

A Additional Functionalities

In our work, we need two additional functionalities which we deferred to this Sup-
plementary Material, namely one for coin tossing and for a restricted observable
and programmable random oracle. Those are given in Fig. 17 and Fig. 18.
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Functionality F∆ct

The ticked functionality F∆ct interacts with the n parties P = {P1, . . . ,Pn} and an
adversary S.

Toss: Upon receiving (Toss, sid,m) from Pi ∈ P where m ∈ N:

1. Send m with prefix Toss to the parties P \ {Pi} via Q with delay ∆.
2. Send m and the IDs to S.
3. If all parties sent (Toss, sid,m):

(a) Uniformly sample m random elements x1, . . . , xm
$← F and send

(Tossed, sid,m,F, x1, . . . , xm) to S.
(b) If S sends (DeliverCoins, sid) then send the message x1, . . . , xm with

prefix Coins to the parties P via Q with delay ∆. Otherwise send the
message ⊥ with prefix Coins to the parties P via Q with delay ∆.

(c) Notify S about the message with prefix Coins.

Tick:
1. For each query (0,mid, sid,Pi,m) ∈ Q:

(a) Remove (0,mid, sid,Pi,m) from Q.
(b) Add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,P,m) in Q with (cnt− 1,mid, sid,Pi,m).
Upon receiving (Schedule, sid,D) from S:

– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and
add (Pi, sid,m) to M.

– If (Abort, sid) ∈ D and open = 0 then add (Pi, sid,Abort) toM for each i ∈
[n] and ignore all further messages with this sid except to Fetch Message.

Fig. 17. Functionality F∆ct for Multiparty Coin Tossing.

A.1 Modeling Rivest et al.’s Time-Lock Assumption [25]

We describe in Fig. 19 the ideal functionality Frsw from [6] that captures the
hardness assumption used by Rivest et al. [25] to build a time-lock puzzle pro-
tocol. Later on, we will use this functionality as setup for realizing UC-secure
publicly verifiable TLPs. Essentially, this functionality treats group (Z/NZ)

×
as

in the generic group model [27], giving unique handles to the group elements (but
not their descriptions) to all parties. In order to perform group operations, the
parties interact with the functionality but only receive the result of the operation
(i.e. the handle of the resulting group element) after the next computational tick
occurs. As pointed out in [6], this definition of Frsw is corroborated by a recent
result [26] showing that delay functions (such as a TLP) based on cyclic groups
that do not exploit any particular property of the underlying group cannot be
constructed if the order is known. Moreover, we cannot reveal the group struc-
ture to the environment, since it could use it across multiple sessions to solve
TLPs quicker than the regular parties.
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Functionality GrpoRO

GrpoRO is parameterized by an output size function ` and a security parameter τ ,
and keeps initially empty lists ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}`(τ)

and set ListH = ListH ∪ {(m,h)}.
2. If this query is made by S, or if s 6= sid, then add (s,m′, h) to the (initially

empty) list of illegitimate queries Qs.
3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.

Program: On input (Program-RO,m, h) with h ∈ {0, 1}`(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}`(τ) where (m,h′) ∈ ListH and h 6= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.

IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s 6= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Fig. 18. Restricted observable and programmable global random oracle functionality
GrpoRO from [12].
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Functionality Frsw

Frsw is parameterized by a set of parties P, an owner Po ∈ P, an adversary S and a
computational security parameter τ and a parameter N ∈ N+. Frsw contains a map
group which maps strings el ∈ {0, 1}τ to N as well as maps in and out associating
parties in P to a list of entries from ({0, 1}τ )2 or ({0, 1}τ )3. The functionality
maintains the group of primitive residues modulo N with order φ(N) denoted as
(Z/NZ)×.

Create Group: Upon receiving the first message (Create, sid) from Po:
1. If Pi is corrupted then wait for message (Group, sid, N, φ(N)) from S with

N ∈ N+, N < 2τ and store N,φ(N).
2. If Po is honest then sample two random distinct prime numbers p, q of

length approximately τ/2 bits according to the RSA key generation proce-
dure. Set N = pq and φ(N) = (p− 1)(q − 1).

3. Set td = φ(N) and output (Created, sid, td) to Po.
Random: Upon receiving (Rand, sid, td′) from Pi ∈ P, if td′ 6= td, send

(Rand, sid, Invalid) to Pi. Otherwise, sample el
$← {0, 1}τ and g

$← (Z/NZ)×,
add (el, g) to group and output (Rand, sid, el) to Pi.

GetElement: Upon receiving (GetElement, sid, td′, g) from Pi ∈ P, if g /∈
(Z/NZ)× or td′ 6= td, send (GetElement, sid, td′, q, Invalid) to Pi. Otherwise,
if there exists an entry (el, g) in group then retrieve el, else sample a random
string el and add (el, g) to group. Output (GetElement, sid, td′, g, el) to Pi.

Power: Upon receiving (Pow, sid, td′, el, x) from Pi ∈ P with x ∈ Z, if td′ 6= td or
(el, a) 6∈ group, output (Pow, sid, td′, el′, x, Invalid) to Pi. Otherwise, proceed:
1. Convert x ∈ Q into a representation x ∈ Zϕ(N). If no such x exists in Zϕ(N)

then output (Pow, sid, td′, el′, x, Invalid) to Pi.
2. Compute y ← ax mod N . If (el′, y) 6∈ group then sample el′

$← {0, 1}τ
randomly but different from all group entries and add (el′, y) to group.

3. Output (Pow, sid, td, el, x, el′) to Pi.
Multiply: Upon receiving (Mult, sid, el1, el2) from Pi ∈ P:

1. If (el1, a) 6∈ group or (el2, b) 6∈ group, then output (Invalid, sid) to Pi.
2. Compute c ← ab mod N . If (el3, c) 6∈ group then sample el3

$← {0, 1}τ
randomly but different from all group entries and add (el3, c) to group.

3. Add (Pi, (el1, el2, el3)) to in and return (Mult, sid, el1, el2) to Pi.
Invert: Upon receiving (Inv, sid, el) from some party Pi ∈ P:

1. If (el, a) 6∈ group then output (Invalid, sid) to Pi.
2. Compute y ← a−1 mod N . If (el′, y) 6∈ group then sample el′

$← {0, 1}τ
randomly but different from all group entries and add (el′, y) to group.

3. Add (Pi, (el, el′)) to in and return (Inv, sid, el) to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set Li of all entries

(Pi, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Set out← in and in = ∅.

Fig. 19. Functionality Frsw from [6] capturing the time lock assumption of [25].
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B Additional Details of πtlp Proof - Theorem 1

We reproduce verbatim the simulator from [6] in Figure 20 (Corrupted Po) and
in Figure 21 (Honest Po). This simulator covers all interfaces of Ftlp but the
Public Verification one, which is simulated by following the exact steps of an
honest party in πtlp as argued in the proof of Theorem 1.
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Simulator S for a corrupted Po in πtlp

Simulator S interacts with environment Z, functionalities Ftlp,GrpoRO1,GrpoRO2,Frsw

and an internal copy of an A corrupting Po. S forwards all messages between A
and Z. Moreover, S forwards all queries to GrpoRO1, GrpoRO2 and Frsw unless explicitly
stated, keeping lists of all such requests, which are updated every time S checks
these lists by appending the Qs set of request obtained by sending (Observe, sid) to
GrpoRO1 and GrpoRO2. All queries to GrpoRO1 or GrpoRO2 made by S go through dummy
honest parties so that the queries are not marked as illegitimate. S keeps a initially
empty lists tag-tag, el-st, omsg.

Create Puzzle: Upon receiving a puzzle puz from A, S proceeds as follows to
check if the tag is valid with respect to the puzzle and extract the message m:
1. Parse puz = (el0, Γ, tag), parse tag = (tag1, tag2) and check that there

exists a request (Hash-Query, (h1|m|td)) fromA to GrpoRO2 for which there
was a response (Hash-Confirm, tag2).

2. Send (Pow, sid, td, el0, 2
Γ ) to Frsw, obtaining (Pow, sid, td, el, 2Γ , elΓ ).

Check that there exists a request (Hash-Query, (elΓ |elΓ )) from A to
GrpoRO1 for which there was a response (Hash-Confirm, h1).

3. Check that (m|td) = tag1 ⊕ h1.
If any of the checks above fail, it means that verifying the opening of this puzzle
will always fail, so S sets m = ⊥. S proceeds as follows to simulate the creation
of a puzzle with message m:

1. For j ∈ {0, . . . , Γ}, sample stj
$← {0, 1}τ , add (elj , stj) to el-st and send

(Pow, sid, td, elj , 2) to Frsw, obtaining (Pow, sid, td, sti, 2, elj+1).

2. Sample tag
$← T AG, append (tag, tag) to tag-tag and append

(st0, tag, stΓ ,m) to omsg.
3. Send (CreatePuzzle, sid, Γ,m) to Ftlp and provide st0, . . . , stΓ , tag.

Solve: Upon receiving (Solve, sid, st) from Ftlp, S proceeds as follows:

– If there is (el, st) ∈ el-st, send (Pow, sid, td, el, 2) to Frsw, obtaining
(Pow, sid, td, st, 2, el′).

– If there is no (el, st) ∈ el-st, send (Rand, sid) to Frsw, obtaining
(Rand, sid, el′).

Sample st′
$← {0, 1}τ and add (el′, st′) to el-st. Finally, send (Solve, sid, st, st′)

to Ftlp.
Get Message: Upon receiving (GetMsg, sid, puz, st) from Ftlp, S parses puz =

(st0, Γ, tag) and proceeds as follows:
1. Check that there exist entries (el0, st0) and (el, st) in el-st and (tag, tag)

in tag-tag, using el0, el, tag for the remaining checks.
2. Check that the tag tag = (tag1, tag2) is valid with respect to the

puzzle puz and the solution el by proceeding as in the protocol: Send
(Hash-Query, (el0|el)) to GrpoRO1, obtain(Hash-Confirm, h1), compute
(m|td) = tag1 ⊕ h1, send (Hash-Query, (h1|m|td)) to GrpoRO2, ob-
tain (Hash-Confirm, h2), send (Pow, sid, td, el0, 2

Γ ) to Frsw, obtaining
(Pow, sid, td, st0, 2

Γ , elΓ ). Check that tag2 = h2 and el = elΓ .
If the above checks are successful, S sends (GetMsg, sid, st0, tag, st,m) to Ftlp.
Otherwise, S sends (GetMsg, sid, st0, tag, st,⊥) to Ftlp.

Fig. 20. Simulator S for the case of a corrupted Po in πtlp from [6].
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Simulator S for an honest Po in πtlp

Simulator S interacts with environment Z, functionalities Ftlp,GrpoRO1,GrpoRO2,Frsw

and an internal copy of an A corrupting one or more parties Pi ∈ P \ Po. S
forwards all messages between A and Z. Moreover, S forwards all queries to GrpoRO1,
GrpoRO2 and Frsw unless explicitly stated, keeping lists of all such requests. However,
for every query (IsProgrammed,m) to GrpoRO1 or GrpoRO2, S always answers with
(IsProgrammed, 0). S keeps an initially empty lists el-st, omsg, next.

Create Puzzle: Upon receiving (CreatedPuzzle, sid, puz = (st0, Γ, tag)) from Ftlp,
S proceeds as follows to create a puzzle (el0, Γ, tag) that can be later pro-
grammed to yield an arbitrary message obtained from Ftlp:

1. Sample a random m
$← {0, 1}τ and tag1

$← {0, 1}2τ and tag2
$← {0, 1}τ .

2. Send (Create, sid) to Frsw obtaining (Created, sid, td). Send (Rand, sid) to
Frsw, obtaining (Rand, sid, el0). Send (Pow, sid, td, el, 2Γ ) to Frsw, obtaining
(Pow, sid, td, el, 2Γ , elΓ ).

3. Append (el0, st0) to el-st, set tag = (tag1, tag2), append (tag, tag) to
tag-tag and output (CreatedPuzzle, sid, puz = (el0, Γ, tag)).

Solve: If A makes a query (Mult, sid, el, el) to Frsw on behalf of Pi ∈ P \ Po such
there exists an entry (el, st) in el-st, S proceeds as follows:
1. Send (Pow, sid, td, el, 2) to Frsw, obtaining (Pow, sid, td, el, 2, el′).
2. If there is no entry (el′, st′) in el-st, append (el′, st) to next and send

(Solve, sid, st) to Ftlp on behalf of Pi.
Get Message: Forward queries to GrpoRO1, GrpoRO2 and Frsw from A on behalf of

corrupted parties Pi ∈ P \ Po, allowing A to perform the necessary steps for
Get Message. However, for every query (IsProgrammed,m) to GrpoRO1 or
GrpoRO2, S always answers with (IsProgrammed, 0).

Tick: Immediately after each tick, if S sent a query (Solve, sid, st) to Ftlp before
this tick, it sends (Output, sid) to Ftlp on behalf of each corrupted PiP \ Po,
obtaining (Output, sid, Li). For each Li and each entry (Pi, st, st′) ∈ Li, S
proceeds as follows:

1. If there exists an entry (el′, st) in next, remove (el′, st) from next and
append (el′, st′) to el-st.

2. If there is an entry (elΓ , st
′) in el-st, it means A should be able to execute

Get Message and obtain message m in puzzle puz when activated after
this tick. S proceeds as follows to program the global random oracles so
that executing Get Message with (el0, Γ, tag), elΓ will return m:

(a) Send (GetMsg, sid, puz, st′) to Ftlp, obtaining (GetMsg, sid, puz, st′,m).
(b) Compute h1 = tag1 ⊕ (m|td) and send (Program-RO, (el0|elΓ ), h1)

to GrpoRO1. Since elΓ is randomly chosen by Frsw and still unknown
to A, Z or any other party at this point, the probability that this
programming fails in negligible.

(c) Send (Program-RO, (h1|m|td)), h2) to GrpoRO2. Since h1 is randomly
chosen by S and still unknown to A, Z or any other party at this point,
the probability that this programming fails in negligible.

Fig. 21. Simulator S for the case of an honest Po in πtlp from [6].
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C Proofs for Theorems 2 and 3 from Section 5

We present the proofs for Theorems 2 and 3 from Section 5 below.

C.1 Proofs for Theorems 2

In order to prove this theorem, we construct a simulator S that interacts with an
internal copy A of the adversary simulating Ftlp and F∆BC,delay towards A. For any
environment Z, we show that an execution with S and FRB is indistinguishable
from an execution with A in the Ftlp,F∆BC,delay-hybrid model.

First of all, we observe that there exists such δ > ∆ since ∆ is finite. Without
loss of generality, in the remainder of this proof we assume that the parties in
P receive their (Toss, sid) inputs and start the Commitment Phase at the
same time (i.e. at the same tick). However, notice that, if this is not the case and
there’s a delay of δact ticks between the first party in P receiving (Toss, sid) and
the last party in P receiving this input, we can adjust for that by increasing the
delay parameter δ by δact ticks, which makes sure that the last party’s message
(Pj , sid, puzj) is received by all the other parties in P before the first party’s
TLP is solved.

We focus on constructing S for the worst case where t of the parties are
corrupted by A. In this case, S proceeds in the Commitment Phase by exe-
cuting the exact instructions of an honest party in πTLP−RB. Notice that this will
ensure that a simulated party is in the set C and that the protocol proceeds to
the Opening Phase, since only t+ 1 TLPs must be received before proceeding
and we are guaranteed that this happens because at least t + 1 parties are not
corrupted. We denote one simulated honest party in C by Ph and S will use it
to force the output of the protocol to be equal to that of FRB. After the Com-
mitment Phase is complete, S waits for (Pi, sid, x) from FRB. S executes the
rest of the steps of an honest party in πTLP−RB for the simulated parties in C
with the following exceptions:

– For each Pj ∈ C, S checks that the TLP puzj in (Pj , sid, puzj) broadcast by
Pj is valid according to Ftlp and extracts all rj values from the valid puzj ,
obtaining a set CV of parties Pj that broadcast a valid rj , which will be either
opened in the Opening Phase or recovered in the Recovery Phase.

– S sends (Toss, sid) to FRB on behalf of each corrupted party Pj ∈ C′ that
broadcast a valid TLP.

– S equivocates the opening of puzh from Ph in the Opening Phase so that
it opens to a value r′ such that r′⊕{j|Pj∈CV\Ph} = x.

After the simulated execution of πTLP−RB is complete and an r = x is obtained,
S outputs whatever A outputs and halts.

Notice that the simulated opening of puzh to r′ is distributed exactly as in
a real world execution of πTLP−RB and that A obtains the same output x given
by FRB. This holds since only the valid TLPs puzj are considered in computing
the final output and since r′ is computed by S based on the extracted rj from
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the valid TLPs. Moreover, S sends (Toss, sid) to FRB for each of the corrupted
parties that participated in the simulated execution correctly. Hence, an exe-
cution with S and FRB is indistinguishable from an execution with A in the
Ftlp,F∆BC,delay-hybrid model.

C.2 Proofs for Theorems 3

The proof of this theorem follows from the proof of Theorem 2 by observing
the our choice of δ ensures that similar conditions to those of πTLP−RB are also
maintained in the end of the Commitment Phase in πTLP−RB−LEDGER, allow-
ing us to use the same simulation strategy. We observe that there exists such
δ > maxTXDelay + emptyBlocks · slackWindow since maxTXDelay, emptyBlocks,
slackWindow are finite. Without loss of generality, in the remainder of this proof
we assume that the parties in P are already registered to FLedger and synchro-
nized with respect to FLedger when they receive their (Toss, sid) inputs and that
they start the Commitment Phase at the same time (i.e. at the same tick).
However, notice that, if this is not the case and there’s a delay of δact ticks be-
tween the first party in P receiving (Toss, sid) and the last party in P receiving
this input, we can adjust for that by increasing the delay parameter δ by δact
ticks, which makes sure that the last party’s message (Pj , sid, puzj) is received
by all the other parties in P before the first party’s TLP is solved. Since we
guarantee this condition, we can use the same simulator S with the difference
that it simulates FLedger towards an internal copy A of the adversary by following
the exact instructions of FLedger and executing all the queries to FLedger by A.
Hence, we argue that an execution with S and FRB is indistinguishable from an
execution of πTLP−RB−LEDGER by A composed with Ftlp,FLedger.

D MPC with Punishable Output-Independent Aborts,
continued

In this Supplementary Material Section, we will first give a full proof of Theorem
4. Then, we show how to extend πmpc,oia from Section 6 to financially punish

cheaters. This will be done using a smart contract functionality Fγ,δSC as well as
a multi-party publicly verifiable delayed commitment Fγ,δvcom, both of which we
will now introduce. The protocol then implements a modification of the previous
functionality, which we call F∆,γ,δmpc,poia.

D.1 Proof of Theorem 4

To prove security, we will construct a PPT simulator S and then argue indistin-
guishability of the transcripts of πmpc,oia ◦ A and F∆,δmpc,oia ◦ S.

Proof. The simulator will, towards the dishonest parties I that are corrupted
by A, simulate honest parties while additionally interacting with F∆,δmpc,oia. S will

39



furthermore simulate the hybrid functionalities F∆mpc,sso,F∆,δcom i,F∆ct and F∆BC,delayi
towards A. S forwards the messages from the hybrid functionalities and A to
Gticker honestly.

Init: If an honest party sends (Init, sid, C) to F∆,δmpc,oia then S gets informed by

the functionality. It will then simulate sending the same message to F∆mpc,sso.

Similarly, if a dishonest party inputs such a message into F∆mpc,sso then S
will forward this to F∆,δmpc,oia. If A decides to reschedule the arrival of such a

message to any of the honest parties in F∆mpc,sso, then S will forward this to

F∆,δmpc,oia.
Input: The simulator behaves as during Init. For any honest party that pro-

vides an input into F∆,δmpc,oia it inputs a dummy value into F∆mpc,sso. For every

dishonest party Pi that provides an input to F∆mpc,sso it observes that value
xi as S simulates the functionality and then sends xi in the name of Pi to
F∆,δmpc,oia.

Computation: S will follow the same strategy as during Init.
Share: S simulates the protocol πmpc,oia as follows:

1. For each correct message ShareOutput by a dishonest party, send (Share, sid)

to F∆,δmpc,oia in the name of that party. For each message (Share, sid) by an

honest party through F∆,δmpc,oia let that party follow the protocol πmpc,oia.

2. In step 4 the simulated honest parties commit to yi, ri using F∆,δ,icom that
were obtained from F∆mpc,sso. For each dishonest party Pj , observe which

values yj , rj it commits to using F∆,δ,jcom . Set J2 as the set of parties
where yj , rj are inconsistent with the outputs of the respective parties
from F∆mpc,sso.

3. If the revealing of shares in Step 7 of the protocol succeeds, then S
sends DeliverShares to F∆,δmpc,oia, otherwise it sends Abort. Observe that

if S sends DeliverShares to F∆,δmpc,oia then message delivery to the honest

parties in F∆,δmpc,oia will be synchronized with how the adversary delays

the DeliverShares message in F∆mpc,sso. Abort will also be sent if A aborts

F∆mpc,sso or F∆ct .
Reveal: S simulates the protocol πmpc,oia as follows:

1. If an honest party Pi in F∆,δmpc,oia sends Reveal then broadcast the Send-

message in the protocol simulation using F∆,iBC,delay,. Any influence on

arrival of the broadcast by A is forwarded to F∆,δmpc,oia. Conversely, if a
dishonest party broadcasts Send then send a Reveal-message in the name
of that party to F∆,δmpc,oia.

2. Once the first Send message arrives at all simulated honest parties (which

means that each honest party in F∆,δmpc,oia obtains its first Reveal message),

let each simulated honest party Pi send DOpen to its instance F∆,δ,icom as
in the protocol.

3. S now waits for δ ticks. When A sends the tick, it checks from which
parties of P the honest parties did not yet obtain DOpen or for which
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commitments they already received an opened value. Let J1 be that set.
Then it sets J = J1 ∪ J2, forwards the tick to Gticker and responds with
the appropriate (Abort, sid, J) to F∆,δmpc,oia.

4. Upon obtaining the output y from F∆,δmpc,oia S picks one simulated honest

party Pi uniformly at random. It then reprograms F∆,δ,icom to output y′i, r
′
i

such that y′i = y −
∑
j∈[n]\{i} yj (where the yj where committed by all

other parties in F∆,δ,jcom ) and r′i = ti −Ay′i.

5. When the last F∆,δ,jcom of a party Pj ∈ I opens, S lets F∆,δmpc,oia deliver the
output to the honest parties.

First, the honest parties react upon their inputs from Z or send outputs to it
at the same points of time both during the real protocol and the simulation. For
the Init, Input, Computation phase that is clear, and aborts are also carried
to F∆,δmpc,oia during Share at the same time. Similarly, actions that honest parties

take towards F∆,δmpc,oia lead to equivalent actions in the simulation that can be
observed by A in Init, Input, Computation, Share. In Reveal they do not
have any input from Z, so we have to consider the output that they provide in
both cases.

Both in S and in the real protocol, A will always get the correct output of
the computation. It will also always get messages from the (simulated) honest
parties with the same distribution: we only reprogram one commitment F∆,δ,icom

in S but this is indistinguishable due to the random choice of ri that hides the
committed share perfectly.

The simulated honest parties in the simulation will always abort if they
would get the wrong output of the computation, due to the choice of J : J1 is
determined identically in both the simulation and the real protocol, but J2 is
computed differently and it is computed in the simulation according to incorrect
output shares yj of dishonest parties.

Due to the choice of A ∈ Fλ×m we know that fA(y, r) := r + Ay is a
universal hash function, which implies that J1 differs between S and πmpc,oia only
when A in the real protocol commits to values y′j , r

′
j such that fA(yj , rj) = tj =

fA(y′j , r
′
j), which it has to do before A is known. By the properties of a universal

hash function, we then have that tj 6= fA(y′j , r
′
j) except with probability that is

negligible in λ.
Now if the honest parties do not output y then they output the set J . Honest

parties in the protocol will simply output J while those in the ideal setting only
output J to Z that does not contain any honest parties. But because δ > ∆
all honest messages DOpen will always arrive before DOpened occurs at an
honest party, so J1 never contains an honest party in either the simulation or
real protocol. ut

D.2 Commitments with Publicly Verifiable Delayed Openings

In Fig. 22 and Fig. 23 we describe the functionality Fγ,δvcom for commitments
with publicly verifiable delayed non-interactive openings. The functionality dis-
tinguishes between a sender, which is allowed to make commitments, a set of
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Functionality Fγ,δvcom (Commit, Opening)

The ticked functionality is parameterized by γ, δ ∈ N and interacts with a set of
verifiers V and a set of n parties P = {P1, . . . ,Pn} where PSend ∈ P is a special
party called “the sender” and PRec = P \ {PSend} are the receivers. An adversary
S may corrupt a strict subset I ⊂ P of parties. The functionality internally has an
initially empty list O and a map commits.

Commit: Upon receiving (Commit, sid, cid, x) from PSend where cid is an unused
identifier and x is a bit-string proceed as follows:

1. Set commits[cid] = (x, vt) where vt
$← {0, 1}τ .

2. Send a message cid with prefix Commit to PRec ∪ V via Q with delay γ.
3. Send cid and the IDs to S.

Open: Upon receiving (Open, sid, cid) from PSend, if commits[cid] = (x, vt) 6=⊥ then
proceed as follows:
1. Send message (cid, x, vt) with prefix Open to PRec via Q with delay γ.
2. Send (cid, x, vt) and the IDs to S.

Delayed Open: Upon receiving (DOpen, sid, cid) from PSend, if commits[cid] =
(x, vt) 6=⊥ then proceed as follows:
1. Simultaneously send message cid with prefix DOpen to all parties in PRec

via Q with delay γ.
2. Add (δ, sid,Pj , (cid, x, vt)) for each Pj ∈ PRec and (δ, sid,S, (cid, x, vt)) to
O.

3. Send cid and the ID to S.
Public Verification: Upon receiving (Verify, sid, (cid, x, vt)) from Vi ∈ V,

if commits[cid] = (x, vt), set b = 1, else set b = 0. Output
(Verified, sid, (cid, x, vt), b) to Vi.

Fig. 22. Ticked Functionality Fγ,δvcom For Multiparty Commitments with Verifiable De-
layed Opening.

receivers, which will obtain the openings, and a set of verifiers, which will be
able to verify that a claimed opening is indeed correct. For Public Verifica-
tion any verifier Vi ∈ V (which does not have to be part of PRec) can check
whether a certain opening for a commitment cid is indeed valid. This allows
parties from PRec to “verifiably transfer” openings to other parties. The string
vti makes it computationally infeasible for any Vi ∈ V to simply brute-force the
value.

We construct a protocol πvcom realizing Fγ,δvcom by combining a standard ran-
dom oracle-based commitment with a TLP. The core of the protocol is having
the sender commit to a message m by sampling some randomness r and broad-
casting the commitment c obtained from the random oracle being queried on
(m|r), which is revealed later in the opening phase so that the receivers can
repeat the query to verify that the output matches the previously received c.
This basic scheme can be augmented with a delayed opening procedure by sim-
ply generating a TLP containing (m|r) that can be solved in δ steps, so that
receivers only learn the message (and verification information) for the commit-
ment after the desired delay δ. In order to make this scheme publicly verifiable,
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Functionality Fγ,δvcom (Message Handling)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. For each entry (cnt, sid,Pj , (cid, x, vt) ∈ O with Pj ∈ PRec, if there is no

entry (cnt, sid,mid, sid,Pj , (DOpen, cid)) ∈ Q, proceed as follows:
– If cnt = 0, append (Pj , sid, (DOpened, (cid, x, vt))) to M.
– If cnt > 0, replace (cnt, sid,Pj , (cid, x, vt)) with (cnt −

1, sid,Pj , (cid, x, vt)) in O.
4. For each entry (cnt, sid,S, (cid, x, vt)) ∈ O, proceed as follows:

– If cnt = 0, append (PSend, sid, (DOpened, cid)) to M and output
(DOpen, sid,S, (cid, x, vt)) to S.

– If cnt > 0, replace (cnt, sid,S, (cid, x, vt)) with (cnt −
1, sid,S, (cid, x, vt)) in O.

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D and open = 0 then add (Pi, sid,Abort) toM for each i ∈

[n] and ignore all further messages with this sid except to Fetch Message.

Fig. 23. Ticked Functionality Fγ,δvcom For Multiparty Commitments with Verifiable De-
layed Opening.

we use a bulletin board incorporated into the smart contract functionality Fγ,δSC

and a global random oracle GrpoRO, so that any verifier who joins the protocol
execution at any point can retrieve commitments, openings and delayed open-
ings from the bulletin board and verify them while obtaining the same results
as the parties who participated in the execution so far.

Theorem 5. Protocol πvcom GUC-realizes Fγ,δvcom in the GrpoRO,Fγ,δSC ,Ftlp hybrid
model.

Proof. [Sketch] The fact that the Commit and Open steps of πvcom realize the
corresponding interfaces of the standard commitment functionality in the GrpoRO
and FAuth-hybrid model (FAuth is the functionality for authenticated channels)
is proven in [12]. In our case FAuth is substituted by the authenticated bulletin

board embedded in Fγ,δSC through which messages are sent among parties. We
can further extend the simulator S from [12] to capture the delayed opening and
public verification. The delayed opening can be simulated by equivocating the
message contained in the simulated TLP with the one received from Fγ,δvcom in
case A corrupts parties in P but not PSend. In case A corrupts PSend, the delayed
opening can be simulated by extracting (x, r) from its TLP and checking that
these values represent a valid opening, in which case S instructs Fγ,δvcom to start
a delayed opening. S can do this since it simulates Ftlp towards A, similarly to
the strategy of the delayed homomorphic commitment of [6]. Public verification
follows in a straightforward manner since verifiers V receive the same messages
as parties P and perform the exact same procedures of an honest receiver to
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Protocol πvcom

Protocol πvcom is parameterized by an opening delay δ and operates with parties
P = {P1, . . . ,Pn} and verifiers V that interact with each other and with GrpoRO
(with output in {0, 1}τ ), Fγ,δSC and Ftlp as follows:

Commit: On input (Commit, sid, cid, x), PSend uniformly samples r
$← {0, 1}τ and

queries GrpoRO on (cid, x|r) to obtain c. PSend sends (Broadcast, sid, (cid, c)) to Fγ,δSC .
All parties Pj ∈ P for j 6= i output (Committed, sid,PSend, cid) upon receiving this
message from Fγ,δSC .

Open: On input (Open, sid, cid), PSend sends (Broadcast, sid, (cid, x, r)) to Fγ,δSC .

Upon receiving (cid, x, r) from Fγ,δSC , each party Pj queries GrpoRO on (cid, x|r)
and checks that the answer is equal to c and that this output is not pro-
grammed by sending (IsProgrammed, cid, x|r) to GrpoRO, aborting if the answer
is (IsProgrammed, 1). Output (Open, sid,PSend, cid,m).

Delayed Open: On input (DOpen, sid, cid), PSend sends (CreatePuzzle, sid, δ, (x, r)),
receiving (CreatedPuzzle, sid, puz = (st0, δ, tag)). PSend sends (Broadcast, sid,
(cid, puz)) to Fγ,δSC . Upon receiving (cid, puz) from Fγ,δSC all parties Pi ∈ P parse
puz = (st0, δ, tag) and solve it by performing one iteration of the following loop at
every activation, where cst = 0 in the beginning:
1. Send (Solve, sid, stcst) to Ftlp.

2. Send (Fetch, sid) to Ftlp and check that there is an entry (Pi, stcst, st) in Li. If
yes, increment cst and set stcst = st.

3. If cst = δ, Pi sends (GetMsg, sid, puz, stcst) to Ftlp, receiving (GetMsg, sid,
st0, tag, stcst, (x, r)). Pi queries GrpoRO on (cid, x|r) and checks that the
answer is equal to c and that the output is not programmed by send-
ing (IsProgrammed, cid, x|r) to GrpoRO. If any of these checks fail, Pi
aborts. Otherwise, it sends (Broadcast, sid, (cid, st, x, r)) to Fγ,δSC , outputs
(DOpened, sid, (cid, x, r)) and exits the loop.

PSend executes a similar loop after sending (Broadcast, sid, (cid, puz)) to Fγ,δSC but

when cst = δ in Step 3, it sends (Broadcast, sid, (cid, st, x, r)) to Fγ,δSC and outputs
(DOpened, sid, cid).

Verify: On input (Verify, sid, (cid, x, r)), Vj ∈ V sends (Fetch− BB, sid) to Fγ,δSC ,
receives (Return− BB, sid,B) and checks that there exists (cid, c) in B. Vj queries
GrpoRO on (cid, x|r) and checks that the answer is equal to c and that this output is
not programmed by sending (IsProgrammed, cid, x|r) to GrpoRO, checking that the
answer is (IsProgrammed, 0). Moreover, if there is (cid, puz) ∈ B, Vj checks that
there exists a valid (cid, st, x′, r′) ∈ B with respect to Ftlp such that (x′, r′) = (x, r).
If any of these checks fail set b = 0, else set b = 1. Output (Verified, sid, (cid, x, r), b).

Fetching Messages: At every activation, all parties P and in V send (Fetch, sid)
to Fγ,δSC , receiving (Fetch, sid, L) and parsing L according to the steps above.

Fig. 24. Protocol πvcom for Multiparty Commitments with Verifiable Delayed Opening.

verify the validity of such messages. S simulates public verification towards A
by also following the exact steps of honest parties. Notice that this would only
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fail if it was possible to find alternative openings x′, r′ for a commitment (cid, c),
which only happens with negligible probability. Hence, since GrpoRO is global the
output obtained by V in the public verification procedure is 1 if and only if the
output x was really obtained from a valid opening of the commitment identified
by cid. ut

D.3 The Smart Contract Functionality

Functionality Fγ,δSC (Contract Code, Bulletin Board)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary
S. Fγ,δSC is parameterized by the compensation amount q, the security deposit d =
(n− 1)q and has a state st initially set to ⊥ as well as a list B.

Register: On first input (Register, sid, {Fγ,δ,jvcom }j∈[n]) by Pi ∈ P:
1. Notify the parties P \ {Pi} via Q with delay 0.
2. If each party sent (Register, sid, {Fγ,δ,jvcom }j∈[n]) with the same functionalities

then set st = ready, register to all functionalities as verifier and store
references to all these functionalities.

3. Send (Register, sid,Pi, {Fγ,δ,jvcom }j∈[n]) to S.
Broadcast: Upon receiving an input (Broadcast, sid,m) from a party Pi ∈ P:

1. Simultaneously send message (m, i) to the parties P via Q with delay γ.
2. Send (m, i) and the ID to S.

Fetch Bulletin Board: Upon receiving an input (Fetch− BB, sid) from a party
in P or V, output (Return− BB, sid,B) to that party.

Deposit: On input (Deposit, sid, coins(d)) by Pi ∈ P, if for each Pj ∈ P there is
the same (sid, (Broadcast, (A, t1, . . . , tn, j))) ∈ B and if st ∈ {ready, dep(x)}:
1. Simultaneously send a message (“coins(d)′′, i) with prefix Deposit to the

parties P \ {Pi} via Q with delay 0.
2. If st = ready then set st = dep(γ).
3. Send (Deposit, sid, “coins(d)′′, i) to S.

Fig. 25. Ticked Functionality Fγ,δSC for Smart Contracts.

The smart contract functionality Fγ,δSC is depicted in Fig. 25 and Fig. 26. It
realizes the coin-handling parts of our protocol. At the same time, it serves in
the protocol as a bulletin board (and therefore also broadcast) functionality and
is a verifier to Fγ,δvcom. Therefore, our construction requires Fγ,δvcom to be a global
functionality. This hides details of the commitment verification from the smart
contract.

At any point the parties will be able to use the bulletin board property of
Fγ,δSC , where Fγ,δSC also keeps track about all messages that have been broadcast
in an internal list B. All such sent messages can at any point be retrieved using
Fetch Bulletin Board.

Before being able to use Fγ,δSC with respect to coins, the parties will have to
register the instances of Fγ,δvcom that they want to use. Once this is finished, they
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Functionality Fγ,δSC (Ticks)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M

and, if there is no other (cnt,mid, sid,Pj ,m) ∈ Q, add (sid,m) to B.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. If st = wait(x) and x ≥ 0:

(a) Set st = wait(x− 1).
(b) If x = 0:

i. Let L ⊂ P \J1 be the set of parties such that for i ∈ L there exists
(cidi,yi, ri, vti) in B such that public verification on Fγ,δ,ivcom outputs
1. Set J2 as the set of all parties Pi ∈ L such that ti 6= ri + Ayi.
Set J ← J1 ∪ J2. If J = ∅ then set e1, . . . , en ← d.

ii. If instead J 6= ∅ then set ei ← d+ |J | · q for each party Pi ∈ P \ J
and ei ← d− q · (n− |J |) for each Pi ∈ J .

iii. Send message coins(ei) to each party Pi ∈ P via M.
iv. Set st = ⊥ and send (Coins, sid, {ei}Pi∈P) to S.

(c) If x = δ + γ: Set J1 as the set of parties Pj such that Fγ,δ,jvcom did not
send DOpen to Fγ,δSC .

4. If st = dep(x):
If x > 0: Set st = dep(x− 1).
If x = 0: If all parties in P sent (Deposit, sid, coins(d)) then set st =

wait(2δ + γ) and send a message AllDeposited to P and S via M.
Otherwise send a message coins(d) with prefix Coins to each party that
sent the deposit viaM, set st = ready and send a message Reimbursed
to P and S via M.

Fig. 26. Ticked Functionality Fγ,δSC for Smart Contracts.

can then deposit coins to the functionality if the protocol has actually shared
the output to all parties which is indicated by Fγ,δSC having obtained A. This

way we avoid that the adversary can activate Deposit of Fγ,δSC prematurely.
All parties then, once Deposit is activated, have time γ to deposit their coins
as well, otherwise these will automatically be returned by Fγ,δSC . If all parties

indeed deposited their coins then Fγ,δSC will notify both the parties and S about
this state change, which will allow them to react to this event by opening their
instances of Fγ,δvcom. After this, no more coins can be deposited by any party.

Once the coins are locked, Fγ,δSC will similarly to πmpc,oia wait for the parties
to initialize the opening of their commitments for δ ticks. Afterwards it will
wait δ + γ ticks where parties in the protocol first obtain the committed values
for each commitment (which takes δ ticks) which they then broadcast via Fγ,δSC

(which takes another γ ticks to succeed). Fγ,δSC can then verify these openings
using the respective instances of Fγ,δvcom. Honest parties will always succeed in
doing this in the respective amount of time.

None of the actions done by Fγ,δSC rely on any secret information or secret

state and all messages that are provided by Fγ,δSC are provided immediately. In
an implementation, this can be implemented with a non-private smart contract.
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D.4 MPC with Punishable Output-Independent Abort

Functionality F∆,γ,δmpc,poia (MPC)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary S
who may corrupt a strict subset I ⊂ P. F∆,γ,δmpc,poia is parameterized by ∆, γ, δ ∈ N+,
the compensation amount q and the security deposit d = (n − 1)q. The computed
circuit is defined over F. The functionality has a state st that is initially ⊥ as well
as an initially empty set J .

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Init, sid, C) then store C locally.
3. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. Accept xi as input for Pi.
3. Send m and the IDs to S if Pi ∈ I, otherwise notify S about a message

with prefix Input.
Computation: On first input (Compute, sid) by Pi ∈ P and if all x1, . . . , xn were

accepted:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Compute, sid) compute y = C(x1, . . . , xn) and store y.
3. Notify S about a message with prefix Compute.

Share: On first input (Share, sid) by party Pi, if y has been stored and if st = ⊥:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If all parties sent Share then:

(a) Send (Shares?, sid) to S.
(b) Upon (DeliverShares, sid) from S simultaneously send a message with

prefix DeliverShares to each Pj ∈ (P ∪V) \ I via Q with delay ∆. Then
notify S about messages with prefix DeliverShares and the ID.

(c) Otherwise, if S sends (Abort, sid) then send Abort to all parties
3. Notify S about a message with prefix Share.

Deposit: On first input (Deposit, sid, coins(d)) by Pi ∈ P, if Share finished, if no
DeliverShare message is in Q and if st ∈ {dep,⊥}:
1. Simultaneously send a message (i, “coins(d)′′) to the parties P \ {Pi} via
Q with delay 0.

2. If st = ⊥ then set st = dep(γ).
3. Notify S about the message.

Fig. 27. Ticked Functionality F∆,γ,δmpc,poia for Secure Multiparty Computation with Pun-
ishable Output-Independent Abort.

Finally, we now describe the functionality F∆,γ,δmpc,poia which provides MPC with
punishable output-independent abort as described in Fig. 27 and Fig. 28.
F∆,γ,δmpc,poia contains, as previous MPC functionalities, the MPC capabilities for

input sharing, computation and output sharing. Any party can, after the output
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Functionality F∆,γ,δmpc,poia (Message Scheduling)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. If st = wait(x) & x ≥ 0:

If x ≥ 0: Set st = wait(x− 1).
If x = δ + γ:

(a) Send (Abort?, sid) to S and wait for (Abort, sid, J) with J ⊆ I.
(b) If J = ∅ then send message y with prefix Output to each party
P \ I via Q with delay δ.

(c) If J 6= ∅ then send message J with prefix Abort to each party P \ I
via Q with delay δ.

(d) Send (Output, sid, y) and the IDs to S.
If x = 0:

(a) If J = ∅ then set e1, . . . , en ← d.
(b) If J 6= ∅ set ei ← d + |J | · q for each party Pi ∈ P \ J and

ei ← d− q · (n− |J |) for each Pi ∈ J .
(c) Send message coins(ei) with prefix Coins to each party P \ I via
M with delay 0.

(d) Send (Coins, sid, {coins(ei)}Pi∈I) to S.
4. If st = dep(x):

(a) Set st = dep(x− 1).
(b) If x = 0: If all parties in P sent (Deposit, sid, coins(d)) then set st =

wait(2δ + γ) and send a message AllDeposited to P and S via M.
Otherwise send a message coins(d) with prefix Coins to each party that
sent the deposit via M, set st ← ⊥ and send a message Reimbursed
to P and S via M.

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D and st = ⊥ then add (Pi, sid,Abort) toM for each i ∈ [n]

and ignore all further messages with this sid except to Fetch Message.

Fig. 28. Ticked Functionality F∆,γ,δmpc,poia for Secure Multiparty Computation with Pun-
ishable Output-Independent Abort.

sharing is finished, deposit coins to F∆,γ,δmpc,poia which will then also immediately
notify all other parties and S about this event, which if it happens the first time
will lead to an internal state-change. Unless all parties then deposit coins within
γ, they will be reimbursed by F∆,γ,δmpc,poia, otherwise it switches to a waiting state
wait.

Similar to F∆,δmpc,oia, the functionality F∆,γ,δmpc,poia will first remain in the waiting
state for δ ticks. Then it asks S to provide the set J of cheating parties to it. After
obtaining J , the functionality will then return the output of the computation
y to S. Ultimately, the functionality will wait for another δ + γ ticks during
which it either reveals the output y to all honest parties (if J = ∅) or the set J -

exactly as F∆,δmpc,oia. In addition, after these δ+γ ticks the functionality will either
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reimburse all parties with coins(d) if J = ∅ or share all coins among the non-
cheating parties P\J otherwise. The strategy for calculating this reimbursement

is identical to Fγ,δSC .

Protocol πmpc,poia (Computation, Sharing)

All parties P have access to one instance of the functionalities F∆mpc,sso,F∆ct and

Fγ,δSC . Furthermore, each Pi ∈ P has it’s own Fγ,δ,ivcom where it acts as the dedicated
sender and all other parties of P are receivers.

Init:
1. Each Pi sends (Register, sid, {Fγ,δ,jvcom }j∈[n]) to Fγ,δSC . Then it waits until it

receives Register from Fγ,δSC for each P \ {Pi}.
2. Each Pi ∈ P sends (Init, sid, C) to F∆mpc,sso and waits until it obtains mes-

sages C with prefix Init from F∆mpc,sso for every other party P \ {Pi}.
Input: Each Pi ∈ P sends (Input, sid, i, xi) to F∆mpc,sso and waits until it obtains

messages j with prefix Input from F∆mpc,sso for every other party Pj ∈ P \ {Pi}.
Computation: Each Pi ∈ P sends (Computation, sid) to F∆mpc,sso and waits until

it obtains messages with prefix Computation from F∆mpc,sso for every other party
P \ {Pi}.

Share:
1. Set Ty = {cidy,j}j∈[m], Tr = {cidr,k}k∈[λ] and Tt = {cidt,k}k∈[λ].
2. Each Pi ∈ P sends (ShareOutput, sid, Ty) to F∆mpc,sso and wait until it obtains

a message {yi,cid}cid∈Ty with prefix OutputShares from F∆mpc,sso.
3. Each Pi ∈ P sends (ShareRandom, sid, Tr) to F∆mpc,sso and wait until it ob-

tains a message {ri,cid}cid∈Tr with prefix RandomShares from F∆mpc,sso. Set
yi = (yi,cidy,1 , . . . , yi,cidy,m) and equivalently define ri.

4. Each Pi ∈ P sends (Commit, sid, cidi, (yi, ri)) to Fγ,δ,ivcom and then waits for
messages (Commit, sid, cidj) from the Fγ,δ,jvcom -instances of all other parties
Pj ∈ P \ {Pi}.

5. Each Pi ∈ P sends (Toss, sid,m · λ). It then waits for the message
(Coins, sid,A) where A ∈ Fλ×m.

6. Each Pi ∈ P for k ∈ [λ] sends (Linear, sid, {(cidv,j ,A[k, j])}j∈[m] ∪
{(cidr,k, 1)}, cidt,k) to F∆mpc,sso.

7. Each Pi ∈ P sends (Reveal, sid, Tt) to F∆mpc,sso and waits for the message
{(cid, t1,cid, . . . , tn,cid)}cid∈Tt with prefix DeliverReveal from F∆mpc,sso. Set tj =
(tj,cidt,1 , . . . , tj,cidt,λ) for each j ∈ [n].

8. Each Pi ∈ P sends (Broadcast, sid, (A, t1, . . . , tn)) to Fγ,δSC .
9. Each Pi ∈ P waits until it received n identical broadcasts

(Broadcast, sid, (A, t1, . . . , tn)), one from each Pj ∈ P.

Fig. 29. Protocol πmpc,poia for MPC with Punishable Output-Independent Abort.

The Protocol. The full protocol πmpc,poia is depicted in Fig. 29 and Fig. 30. It
uses a similar approach as πmpc,oia, although the broadcast of A, t1, . . . , tn as well

as the inherent broadcasts in Fγ,δvcom must now be done via Fγ,δSC . In comparison to
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Protocol πmpc,poia (Deposit)

Deposit:
1. If Pi finished Share, then it sends (Deposit, sid, coins(d)) to Fγ,δSC .

2. Upon having received (AllDeposited, sid) from Fγ,δSC Pi sends
(DOpen, sid, cidi) toFγ,δ,ivcom . If the party instead obtains (Coins, sid, coins(d))
then it aborts and outputs (Reimbursed, sid, coins(d)).

3. Each Pi ∈ P waits until Fγ,δ,ivcom returns (DOpened, sid, (cidi, (yi, ri)). It then
checks if it obtained a message with prefix DOpen from all other Fγ,δ,jvcom .
Let J1 ⊂ P be the set of parties such that Pi did not obtain DOpen before
it received (DOpened, sid, (cidi, (yi, ri)).

4. Each Pi ∈ P waits until it obtains (DOpened, sid, (cidj , (yj , rj)) for each
Pj ∈ P \ (J1 ∪ {Pi}) from the respective instance of Fγ,δ,jvcom . Pi then sends
(Broadcast, sid, (cidj ,yj , rj , vtj)) to Fγ,δSC and defines J2 as the set of all
parties Pj such that tj 6= rj + Ayj .

5. If J1 ∪ J2 = ∅ then each Pi ∈ P defines y =
⊕

j∈[n] yj and outputs

(Output, sid,y). Otherwise it outputs (Abort, sid, J1 ∪ J2).
6. Each Pi waits for a message (Coins, sid, coins(ei)) from Fγ,δSC . It then out-

puts (Coins, sid, coins(ei)).

Fig. 30. Protocol πmpc,poia for MPC with Punishable Output-Independent Abort.

πmpc,oia we do not have to synchronize the honest parties first, as the AllDeposited

message from Fγ,δSC now serves as synchronization.
Afterwards, honest parties will now open their commitments Fγ,δvcom as before

and wait for DOpen messages from other parties’ commitment functionalities
Fγ,δ,jvcom . Once they obtain a solution by Fγ,δ,jvcom , however, they post it on Fγ,δSC to

allow Fγ,δSC to verify it. Then, those parties who started the opening at the right

time, got their openings on Fγ,δSC and whose openings are correct will then be
reimbursed. Here, observe that honest parties will be able to solve the TLPs and
solve the solutions within the time-frame given by Fγ,δSC , so the set J2 identified

by Fγ,δSC will be identical with the set determined by each honest party.
For the correctness of the protocol, we see that honest parties can never be

framed as cheaters as long as δ > γ i.e. as long as the TLPs do not time out
before they succeeded at sending their TLPs to the bulletin board.

Overall, this leads to the following

Theorem 6. Let λ be the statistical security parameter and δ > γ. Then the pro-
tocol πmpc,poia GUC-securely implements the ticked functionality F∆,γ,δmpc,poia in the

F∆mpc,sso,Fγ,δvcom,F∆ct ,F
γ,δ
SC -hybrid model against any static adversary corrupting up

to n− 1 of the n parties in P. The transcripts are statistically indistinguishable.
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