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Abstract. The masking countermeasure is among the most powerful countermeasures to counteract
side-channel attacks. Leakage models have been exhibited to theoretically reason on the security of
such masked implementations. So far, the most widely used leakage model is the probing model defined
by Ishai, Sahai, and Wagner at (CRYPTO 2003). While it is advantageously convenient for security
proofs, it does not capture an adversary exploiting full leakage traces as, e.g., in horizontal attacks.
Those attacks target the multiple manipulations of the same share to reduce noise and recover the
corresponding value. To capture a wider class of attacks another model was introduced and is referred
to as the random probing model. From a leakage parameter p, each wire of the circuit leaks its value with
probability p. While this model much better reflects the physical reality of side channels, it requires
more complex security proofs and does not yet come with practical constructions.

In this paper, we define the first framework dedicated to the random probing model. We provide an
automatic tool, called VRAPS, to quantify the random probing security of a circuit from its leakage
probability. We also formalize a composition property for secure random probing gadgets and exhibit
its relation to the strong non-interference (SNI) notion used in the context of probing security. We
then revisit the expansion idea proposed by Ananth, Ishai, and Sahai (CRYPTO 2018) and introduce
a compiler that builds a random probing secure circuit from small base gadgets achieving a random
probing expandability property. We instantiate this compiler with small gadgets for which we verify
the expected properties directly from our automatic tool. Our construction can tolerate a leakage
probability up to 2−8, against 2−25 for the previous construction, with a better asymptotic complexity.
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1 Introduction

Most cryptographic algorithms are assumed to be secure against black-box attacks where the ad-
versary is limited to the knowledge of some inputs and outputs to recover the manipulated secrets.
However, as revealed in the late nineties [21], when implemented on physical devices, they be-
come vulnerable to the more powerful side-channel attacks which additionally exploit the physical
emanations such as temperature, time, power consumption, electromagnetic radiations.

As such attacks may only require cheap equipment and can be easily mounted in a short time
interval, the community had to adapt quickly by looking for efficient countermeasures. The most
widely deployed approach to counteract side-channel attacks was simultaneously introduced in 1999
by Chari et al. [12] and by Goubin and Patarin [18] and is now called masking. Basically, the idea
is to split each sensitive variable x of the implementation into n shares such that n − 1 of them
are generated uniformly at random and the last one is computed as the combination of x and



all the previous shares according to some group law ∗. When ∗ is the (bitwise) addition, we talk
about linear sharing (aka Boolean masking). The adversary thus needs to get information on all
the shares of x to recover information on the sensitive value. This countermeasure is really simple
to implement for linear operations which are simply applied on each share separately. However,
things are getting trickier for non-linear operations where it is impossible to compute the result
without combining shares.

To reason about the security of masked implementations, the community introduced leakage
models. One of the most broadly used is the probing model, introduced by Ishai, Sahai, and Wag-
ner [20]. In a nutshell, a circuit is claimed to be t-probing secure if the exact values of any set of t
intermediate variables do not reveal any information on the secrets. As leakage traces are assumed
to reveal noisy functions of the manipulated data, this model is motivated by the difficulty to re-
cover information from the combination of t variables from their noisy functions in masking schemes
(as t grows). Nevertheless, the probing model fails to capture the huge amount of information re-
sulting from the leakage of all manipulated data, and in particular from the repeated manipulation
of identical values (see horizontal attacks in [7]). Therefore, after a long sequence of works building
and analyzing masking schemes with respect to their security in the probing model [25, 15, 9], the
community is now looking for security in more practical models.

The noisy leakage model was originally considered by Chari et al. in [12] and was later formalized
by Prouff and Rivain in [24] as a specialization of the only computation leaks model [23] in order to
better capture the reality of the physical leakage. Informally, a circuit is secure in the noisy leakage
model if the adversary cannot recover the secrets from a noisy function of each intermediate variable
of the implementation. While realistic, this model is not convenient for security proofs, and therefore
masking schemes continued to be verified in the probing model relying on the not tight reduction
that was formally established by Duc, Dziembowski, and Faust [17].

The latter reduction actually came with an intermediate leakage model, called random probing
model, to which the security in the noisy leakage model reduces to. In the random probing model,
each intermediate variable leaks with some constant leakage probability p. A circuit is secure in this
model if there is a negligible probability that these leaking wires actually reveal information on the
secrets. It is worth noting that this notion advantageously captures the horizontal attacks which
exploit the repeated manipulations of variables throughout the implementation. Classical probing-
secure schemes are also secure in the random probing model but the tolerated leakage probability
(a.k.a. leakage rate) might not be constant which is not satisfactory from a practical viewpoint.
Indeed, in practice the side-channel noise might not be customizable by the implementer.

Only a few constructions [1, 3, 2] tolerate a constant leakage probability. These three construc-
tions are conceptually involved and their practical instantiation is not straightforward. The first
one from Ajtai et al. and its extension [3] are based on expander graphs. The tolerated probability
is not made explicit. The third work [2] is based on multi-party computation protocols and an
expansion strategy; the tolerated probability is around 2−26 and for a circuit with |C| gates, the
complexity is O(|C| · poly(κ)) for some parameter κ but the polynomial is not made explicit.

Following the long sequence of works relying on the probing security, formal tools have recently
been built to supervise the development of masking implementations proven secure in the probing
model. Namely, verification tools are now able to produce a security proof or identify potential
attacks from the description of a masked implementation at up to some masking orders (i.e.,
< 5) [4, 14, 11]. In the same vein, compilers have been built to automatically generate masked
implementations at any order given the high level description of a primitive [5, 11, 10]. Nevertheless,
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no equivalent framework has yet been proposed to verify the security of implementations in the
random probing model.

Our contributions. In this paper, we aim to fill this huge gap by providing a framework to verify,
compose, and build random probing secure circuits from simple gadgets. Our contributions are
three-fold.

Automatic verification tool. As a first contribution, we define a verification method that we in-
stantiate in a tool to automatically exhibit the random probing security parameters of any small
circuit defined with addition and multiplication gates whose wires leak with some probability p. In
a nutshell, a circuit is (p, f)-random probing secure if it leaks information on the secret with prob-
ability f(p), where f(p) is the failure probability function. From these notations, our tool named
VRAPS (for Verifier of Random Probing Security), based on top of a set of rules that were previ-
ously defined to verify the probing security of implementations [4], takes as input the description
of a circuit and outputs an upper bound on the failure probability function. While it is limited to
small circuits by complexity, the state-of-the-art shows that verifying those circuits can be partic-
ularly useful in practice (see e.g. the maskVerif tool [4]), for instance to verify gadgets and then
deduce global security through composition properties and/or low-order masked implementations.
The source code of VRAPS is publicly available.6

Composition and expanding compiler. We introduce a composition security property to make gad-
gets composable in a global random probing secure circuit. We exhibit the relation between this
new random probing composability (RPC) notion and the strong non-interference (SNI) notion
which is widely used in the context of probing security [5]. Then, we revisit the modular approach
of Ananth, Ishai, and Sahai [2] which uses an expansion strategy to get random probing security
from a multi-party computation protocol. We introduce the expanding compiler that builds ran-
dom probing secure circuits from small base gadgets. We formalize the notion of random probing
expandability (RPE) and show that a base gadget satisfying this notion can be securely used in the
expanding compiler to achieve arbitrary/composable random probing security. As a complementary
contribution, our verification tool, VRAPS, is extended to verify the newly introduced RPC and
RPE properties.

Instantiation. We instantiate the expanding compiler with new constructions of simple base gadgets
that fulfill the desired RPE property, which is verified by VRAPS. For a security level κ, our
instantiation achieves a complexity of O(κ7.5) and tolerates a constant leakage probability p ≈
0.0045 > 2−8. In comparison, and as a side contribution, we provide a precise analysis of the
construction from [2] and show that it achieves an O(κ8.2) complexity for a much lower tolerated
leakage probability (p ≈ 2−26). Finally, we note that our framework probably enables more efficient
constructions based on different base gadgets; we leave such optimizations open for future works.

2 Preliminaries

Along the paper, K shall denote a finite field. For any n ∈ N, we shall denote [n] the integer
set [n] = [1, n] ∩ Z. For any tuple x = (x1, . . . , xn) ∈ Kn and any set I ⊆ [n], we shall denote

6 See https://github.com/CryptoExperts/VRAPS
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x|I = (xi)i∈I . Any two probability distributions D1 and D2 are said ε-close, denoted D1 ≈ε D2, if
their statistical distance is upper bounded by ε, that is

SD(D1;D2) :=
1

2

∑
x

|pD1(x)− pD2(x)| ≤ ε ,

where pD1(·) and pD1(·) denote the probability mass functions of D1 and D2.

2.1 Circuit Compilers

In this paper, an arithmetic circuit over a field K is a labeled directed acyclic graph whose edges
are wires and vertices are arithmetic gates processing operations over K. We consider three types
of arithmetic gate:

– an addition gate, of fan-in 2 and fan-out 1, computes an addition over K,

– a multiplication gate, of fan-in 2 and fan-out 1, computes a multiplication over K,

– a copy gate, of fan-in 1 and fan-out 2, outputs two copies of its input.

A randomized arithmetic circuit is equipped with an additional type of gate:

– a random gate, of fan-in 0 and fan-out 1, outputs a fresh uniform random value of K.

A (randomized) arithmetic circuit is further formally composed of input gates of fan-in 0 and fan-
out 1 and output gates of fan-in 1 and fan-out 0. Evaluating an `-input m-output circuit C consists
in writing an input x ∈ K` in the input gates, processing the gates from input gates to output gates,
then reading the output y ∈ Km from the output gates. This is denoted by y = C(x). During the
evaluation process, each wire in the circuit is assigned with a value on K. We call the tuple of all
these wire values a wire assignment of C (on input x).

Definition 1 (Circuit Compiler). A circuit compiler is a triplet of algorithms (CC,Enc,Dec)
defined as follows:

– CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic circuit
C and outputs a randomized arithmetic circuit Ĉ.

– Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ K` to an encoded input
x̂ ∈ K`′.

– Dec (output decoding) is a deterministic algorithm that maps an encoded output ŷ ∈ Km′ to a
plain output y ∈ Km.

These three algorithms satisfy the following properties:

– Correctness: For every arithmetic circuit C of input length `, and for every x ∈ K`, we have

Pr
(
Dec

(
Ĉ(x̂)

)
= C(x)

∣∣ x̂← Enc(x)
)

= 1 , where Ĉ = CC(C).

– Efficiency: For some security parameter λ ∈ N, the running time of CC(C) is poly(λ, |C|), the
running time of Enc(x) is poly(λ, |x|) and the running time of Dec

(
ŷ
)

is poly(λ, |ŷ|), where
poly(λ, q) = O(λk1qk2) for some constants k1, k2.
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2.2 Linear Sharing and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function
⋃
nKn → K

defined as
LinDec : (x1, . . . , xn) 7→ x1 + · · ·+ xn ,

for every n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every n, ` ∈ N, on input
(x̂1, . . . , x̂`) ∈ (Kn)` the n-linear decoding mapping acts as

LinDec : (x̂1, . . . , x̂`) 7→ (LinDec(x̂1), . . . , LinDec(x̂`)) .

Let us recall that for some tuple x̂ = (x1, . . . , xn) ∈ Kn and for some set I ⊆ [n], the tuple
(xi)i∈I is denoted x̂|I .

Definition 2 (Linear Sharing). Let n, ` ∈ N. For any x ∈ K, an n-linear sharing of x is a random
vector x̂ ∈ Kn such that LinDec(x̂) = x. It is said to be uniform if for any set I ⊆ [n] with |I| < n
the tuple x̂|I is uniformly distributed over K|I|. A n-linear encoding is a probabilistic algorithm
LinEnc which on input a tuple x = (x1, . . . , x`) ∈ K` outputs a tuple x̂ = (x̂1, . . . , x̂`) ∈ (Kn)` such
that x̂i is a uniform n-sharing of xi for every i ∈ [`].

In the following, we shall call an (n-share, `-to-m) gadget, a randomized arithmetic circuit
that maps an input x̂ ∈ (Kn)` to an output ŷ ∈ (Kn)m such that x = LinDec(x̂) ∈ K` and
y = LinDec(ŷ) ∈ Km satisfy y = g(x) for some function g. In this paper, we shall consider gadgets
for three types of functions (corresponding to the three types of gates): the addition g : (x1, x2) 7→
x1 + x2, the multiplication g : (x1, x2) 7→ x1 · x2 and the copy g : x 7→ (x, x). We shall generally
denote such gadgets Gadd, Gmult and Gcopy respectively.

Definition 3 (Standard Circuit Compiler). Let λ ∈ N be some security parameter and let n =
poly(λ). Let Gadd, Gmult and Gcopy be n-share gadgets respectively for the addition, multiplication
and copy over K. The standard circuit compiler with sharing order n and base gadgets Gadd, Gmult,
Gcopy is the circuit compiler (CC,Enc,Dec) satisfying the following:

1. The input encoding Enc is an n-linear encoding.
2. The output decoding Dec is the n-linear decoding mapping LinDec.
3. The circuit compilation CC consists in replacing each gate in the original circuit by an n-share

gadget with corresponding functionality (either Gadd, Gmult or Gcopy), and each wire by a set
of n wires carrying a n-linear sharing of the original wire. If the input circuit is a randomized
arithmetic circuit, each of its random gates is replaced by n random gates, which duly produce
a n-linear sharing of a random value.

For such a circuit compiler, the correctness and efficiency directly holds from the correctness and
efficiency of the gadgets Gadd, Gmult and Gcopy.

2.3 Random Probing Leakage

Let p ∈ [0, 1] be some constant leakage probability parameter. This parameter is sometimes called
leakage rate in the literature. Informally, the p-random probing model states that during the eval-
uation of a circuit C each wire leaks its value with probability p (and leaks nothing otherwise),
where all the wire leakage events are mutually independent.

In order to formally define the random-probing leakage of a circuit, we shall consider two
probabilistic algorithms:
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– The leaking-wires sampler takes as input a randomized arithmetic circuit C and a probability
p ∈ [0, 1], and outputs a set W, denoted as

W ← LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with probability p to
W (where all the probabilities are mutually independent).

– The assign-wires sampler takes as input a randomized arithmetic circuit C, a set of wire labels
W (subset of the wire labels of C), and an input x, and it outputs a |W|-tuple w ∈ (K∪{⊥})|W|,
denoted as

w ← AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W for an evaluation on
input x.

We can now formally define the random probing leakage of a circuit.

Definition 4 (Random Probing Leakage). The p-random probing leakage of a randomized
arithmetic circuit C on input x is the distribution Lp(C,x) obtained by composing the leaking-wires
and assign-wires samplers as

Lp(C,x)
id
= AssignWires(C, LeakingWires(C, p),x) .

Remark 1. By convention the output wires of C (i.e. the wires incoming output gates) are excluded
by the LeakingWires sampler whereas the input wires of C (i.e. the wires connecting input gates to
subsequent gates) are included. Namely the output set W of LeakingWires(C, p) does not include
any output wire label of C. This is because when composing several circuits (or gadgets), the output
wires of a circuit are the input wires in a next circuit. This also relates to the widely admitted only
computation leaks assumption [23]: the processing of a gate leaks information on its input values
(and information on the output can be captured through information on the input).

Definition 5 (Random Probing Security). A randomized arithmetic circuit C with ` · n ∈ N
input gates is (p, ε)-random probing secure with respect to encoding Enc if there exists a simulator
Sim such that for every x ∈ K`:

Sim(C) ≈ε Lp(C,Enc(x)) . (1)

A circuit compiler (CC,Enc,Dec) is (p, ε)-random probing secure if for every (randomized) arith-
metic circuit C the compiled circuit Ĉ = CC(C) is (p, |C| · ε)-random probing secure where |C| is
the size of original circuit.

As in [2] we shall consider a simulation with abort. In this approach, the simulator first calls
the leaking-wires sampler to get a set W and then either aborts (or fails) with probability ε or
outputs the exact distribution of the wire assignment corresponding toW. Formally, for any leakage
probability p ∈ [0, 1], the simulator Sim is defined as

Sim(Ĉ) = SimAW(Ĉ, LeakingWires(Ĉ, p)) (2)
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where SimAW, the wire assignment simulator, either returns ⊥ (simulation failure) or a perfect
simulation of the requested wires. Formally, the experiment

W ← LeakingWires(Ĉ, p)

out← SimAW(Ĉ,W)

leads to

Pr[out = ⊥] = ε and
(
out | out 6= ⊥

) id
=
(
AssignWires(Ĉ,W,Enc(x)) | out 6= ⊥

)
. (3)

It is not hard to see that if we can construct such a simulator SimAW for a compiled circuit Ĉ, then
this circuit is (p, ε)-random probing secure.

3 Formal Verification

In this section we show how to compute the simulation failure probability f(p) as a function of
the leakage probability p for the base gadgets. Since even for simple gadgets this tasks would be
difficult to perform by hand, we use a formal verification tool to compute f(p).

3.1 Simulation Failure probability

We first derive an upper bound on the simulation failure probability as a function of the leakage
probability p. We consider a compiled circuit Ĉ composed of s wires labeled from 1 to s and a
simulator SimAW as defined in previous section. For any sub-set W ⊆ [s] we denote by δW the
value defined as follows:

δW =

{
1 if SimAW(Ĉ,W) = ⊥,

0 otherwise.

The simulation failure probability ε in (3) can then be explicitly expressed as a function of p.
Namely, we have ε = f(p) with f defined for every p ∈ [0, 1] by:

f(p) =
∑
W⊆[s]

δW · p|W| · (1− p)s−|W| . (4)

Letting ci be the number of sub-sets W ⊆ [s] of cardinality i for which δW = 1, namely for which
the simulation fails, we have ci =

∑
|W|=i δW and hence (4) simplifies to

f(p) =

s∑
i=1

ci · pi · (1− p)s−i . (5)

For any circuit Ĉ achieving t-probing security, the values δW with |W| ≤ t are equal to zero,
and therefore the corresponding ci’s are zero, which implies the following simplification:

f(p) =
s∑

i=t+1

ci · pi · (1− p)s−i .
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Moreover, by definition, the coefficients ci satisfy:

ci 6

(
s

i

)
(6)

which leads to the following upper-bound for f(p):

f(p) 6
s∑

i=t+1

(
s

i

)
· pi · (1− p)s−i .

Example: evaluating f(p) for the 2-share ISW multiplication gadget (ISW-2). This gadget takes at
input the 2-sharings (x0, x1) and (y0, y1) of x and y respectively, and outputs the 2-sharing

(z0, z1) = (x0 · y0 + r0, x1 · y1 + r0 + x0 · y1 + x1 · y0)

where r0 is a random value. The processing is composed of the following intermediate results, where
each variable is assigned a wire:

c0 = x0 ∗ y0 z0 = c0 + r0 c1 = x1 ∗ y1 c2 = c1 + r0

c3 = x0 ∗ y1 c4 = c2 + c3 c5 = x1 ∗ y0 z1 = c4 + c5

When the same variable is involved as input of several operations, a copy gadget (with 1 input wire
and 2 output wires) is applied to duplicate it. Consequently, each new use of the same variable
as input of an operation adds 2 wires to the final count of overall wires. It may be checked that
the circuit corresponding to ISW-2 is composed of 21 wires, excluding the 2 output wires. Since
it is 1-SNI but not 2-SNI, every set with a single wire can be simulated, which is not the case
for all pairs of wires. Actually, 51 among the latter pairs cannot be simulated. If we continue the
test for the sets of cardinality from 3 to 21, we get the following list of coefficients ci, 1 ≤ i ≤ 21,
computed with the verification tool described in the next section: 0, 51, 754, 4827, 18875, 52994,
115520, 203176, 293844, 352702, 352715, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210,
21, 1. Directly injecting these coefficients in (5) gives the expression of f(p) for ISW-2.

3.2 Verification method

For any compiled circuit Ĉ and any simulator defined as in Section 2.3, the computation of the
function f(p) for any probability p essentially amounts to computing the values of the coefficients
ci’s appearing in (5). If no assumption is made on the circuit, this task seems difficult to carry out
by hand. Actually, it may be checked that an exhaustive testing of all the possible tuples of wires
for a gadget with s wires has complexity lower bounded by 2s, which gives 221 for a simple gadget
like the ISW multiplication gadget with two shares per input. Here, we introduce a verification
tool, that we call VRAPS, enabling to automatically test the perfect simulation for any set of wires
of size lower than or equal to some threshold β. The role of the latter threshold is simply to control
the verification duration (which can be long if the circuit to test is complex). Our tool implicitly
defines a simulator that may fail with a probability ε = f(p) satisfying (5).
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The verification tool takes as input the representation of a compiled circuit Ĉ and a test
parameter β, and outputs the list of coefficients c1, ..., cβ. It is assumed that Ĉ takes as input the

n-linear encoding Enc(x) of vector x = (x1, . . . , x`) defined in K`. It is moreover assumed that Ĉ
is composed of s wires respectively denoted by w1, ..., ws. In the following, we consider s-tuples in
the form of u = (u1, . . . , us) ∈ {0, 1}s together with the common rule u′ ⊂ u iff for every i ∈ [s],
u′i = 1 ⇒ ui = 1 (in this case u′ will be said to be included in u). An s-tuple u for which there
exists an assignment of the wires in W = {wi; i ∈ [s], ui = 1} such that the simulation fails shall
be called a failure tuple. Such a tuple shall be said to be incompressible if no tuple t′ ⊂ t is a
failure tuple. The main idea of the proposed verification tool is to test the simulation failure only
on incompressible failure tuples whose Hamming weight ranges from 1 to β. The steps are described
in Algorithm 1.

Algorithm 1 Verification tool

Input: a compiled circuit Ĉ with s wires and a threshold β 6 s
Output: a list of β coefficients c1, ..., cβ

1: `p ← [] . will be used to store a list of failure tuples
2: c← (0, . . . , 0) . will be used to store the output coefficients
3: for h = 1 to β do
4: `h ← listTuples(s,h) . list of s-tuples of Hamming weight h
5: (`ph, `

f1
h )← eliminateFromSmaller(`h, `p) . select tuples including an incompressible failure tuple

6: `f2h ← failureTest(Ĉ, `ph) . identify failure tuples in `ph
7: `p ← `p ∪ `f2h . update list of incompressible failure tuples

8: c← updateCoeffs(c, `f1h ∪ `
f2
h ) . update coefficients

9: end for
10: return c

The function listTuples outputs the list of all s-tuples with Hamming weight h with h ∈ [s]. The
function eliminateFromSmaller takes as input the list `h of current tuples of Hamming weight h and
the list of incompressible failure tuples `p. It returns two lists:

– `f1h : the elements of `h which are not incompressible (i.e. which include at least one element
from `p)

– `ph: the elements of `h which are incompressible (i.e. `h\`f1h )

The function failureTest takes as input the second list `ph and checks if a perfect simulation can
be achieved for each wire family W corresponding to a tuple in `ph. Basically, for each wire family,
a sequence of rules taken from maskVerif [4] is tested to determine whether W can be perfectly

simulated. It outputs `f2h , the list of incompressible failure s-tuples of Hamming weight h. In a
nutshell, each wire wi in W is considered together with the algebraic expression ϕi(·) describing its
assignment by Ĉ as a function of the circuit inputs and the random values returned by the random
gates, then the three following rules are successively and repeatedly applied on all the wires families
W (see [4] for further details):

rule 1: check whether all the expressions ϕi(·) corresponding to wires wi in W contain all the
shares of at least one of the coordinates of x;

rule 2: for every ϕi(·), check whether a random r (i.e. an output of a random gate) additively
masks a sub-expression e (which does not involve r) and appears nowhere else in the other ϕj(·)
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with j 6= i; in this case replace the sum of the so-called sub-expression and r by r, namely
e+ r ← r;

rule 3: apply mathematical simplifications on the tuple.

Function updateCoeffs takes as input the current array of β coefficients ci for 1 6 i 6 β and the
concatenation of both lists of potential failure tuples `f1h and `f2h . For each failure tuple, these
coefficients are updated.

Link with the tool maskVerif . This tool was introduced in [4] to automatically and formally
verify higher-order masking implementations, and has further been improved to verify the t-NI and
t-SNI security properties. Essentially, this tool verifies each property by analyzing the dependency
of sets of fixed number of wires (say t) with a specific number of input shares. In our case, the size
of the wires’ sets which must be tested (to decide whether the corresponding coefficient ci must be
incremented or not) is a priori not bounded, or (for efficiency reasons) is bounded by a threshold β
that is not a security parameter but an efficiency one. Moreover, our testing must take intermediate
failures into account. Although maskVerif does not directly allows to answer our specific needs,
we could have exploited its rules directly in our tool with dedicated add-ons. However we wanted
to provide an easy-to-understand global tool and we therefore re-implemented the common parts
(essentially those enabling to decided whether a given set of wires can be simulated or not).

Optimization 1 (grouping the wires). In most of the compiled circuits that we usually consid-
ered, several wires are always assigned the same value. Grouping those wires altogether allows us
to significantly reduce the number of wires to be considered by the verification tool. Let us denote
by s? the number of groups, by αi the size of the i-th group and by wi a representative of the i-th
group. Then, Algorithm 1 can be almost directly applied to the shortened list of s? wires (instead of
s). The single main difference is that the updateCoeffs procedure also takes into account the weights
αi when updating the coefficients ci. For instance, considering h = 3, and the tuple (1, 1, 1, 0, ..., 0)
with respective weights α1 = 2 (for w1), α2 = 1 (for w2) and α3 = 3 (for w3), the function would
increase c3 with 6, c4 with 6, c5 with 4 and c6 with 1. The latter evaluation is performed using a
recursive function which evaluates the number of partitions of an integer j into h parts with the
constraints that each part should be at least one. When this optimization is applied, it may be
observed that the updateCoeffs procedure also starts to update some coefficients ci for i > β. These
updated coefficients can be used as lower bounds of the final ci values. They will be called cinf

i in
the rest of this paper. csup

i will be used to denote the maximal possible value for ci, namely the
binomial coefficient

(
s
i

)
.

Optimization 2 (using the ‘longest failure tuple’). To build all the potential failure tuples, a
strategy consists in exhaustively testing all the s-tuples with Hamming weight below the Hamming
weight of the longest incompressible attack tuple. Once this set, let say Uinc , has been built, the
set of all potential failure tuples can be deduced by executing the following procedure:

– for one uinc ∈ Uinc define Ufailure = {u ∈ {0, 1}s; uinc ⊂ u}.
– for every new uinc ∈ Uinc , update Ufailure = Ufailure ∪ {u ∈ {0, 1}s; uinc ⊂ u}

Implementation. An implementation of Algorithm 1 has been developed in Python. This tool,
named VRAPS, has been open sourced at:

https://github.com/CryptoExperts/VRAPS
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Small examples. In order to illustrate our automatic verification of gadgets in the random probing
model, we give the list of coefficients and the subsequent failure functions obtained for three known
gadgets from the literature, namely the 2-share and 3-share multiplication gadgets introduced by
Ishai, Sahai, and Wagner in [20] and a 3-share multiplication gadget from [8] with an optimal
number of random variables to achieve security in the 2-probing model. Descriptions for these
three gadgets are given below together with an approximation of the corresponding failure function
f produced by our tool. Operations are performed according to the standard priority rules. Sharings
x and y denote the inputs, sharings z denote the outputs, and ri are random variables. Copy gates
are implicit when variables are used more than once. Hereafter O(p5) is to be interpreted as p tends
to 0.

2-share ISW multiplication gadget (ISW-2):{
z0 = x0 · y0 + r0

z1 = x1 · y1 + r0 + x0 · y1 + x1 · y0
⇒ f(p) = 51p2 + 754p3 + 4827p4 +O(p5)

3-share multiplication gadget from [8] (EC16-3):
z0 = x0 · y0 + r0 + x0 · y2 + x2 · y0

z1 = x1 · y1 + r1 + x0 · y1 + x1 · y0

z2 = x2 · y2 + r0 + r1 + x1 · y2 + x2 · y1

⇒ f(p) = 1116p3 + 44909p4 +O(p5)

3-share ISW multiplication gadget (ISW-3):
z0 = x0 · y0 + r0 + r1

z1 = x1 · y0 + (x0 · y1 + r0) + x1 · y1 + r2

z2 = x2 · y0 + (x0 · y2 + r1)+
(x2 · y1 + (x1 · y2 + r2)) + x2 · y2

⇒ f(p) = 1219p3 + 55756p4 +O(p5)

For our three examples, our verification tool (Algorithm 1) has been launched respectively with
β = s = 21 for ISW-2, with β = 9 < s = 57 for ISW-3 and with β = 13 < s = 52 for EC16-3. In
the two later cases, the missing coefficients ci with i > β have been either set to 0 or to

(
s
i

)
. This

allowed us to define a lower bound finf and an upper bound fsup for the functions f corresponding
to ISW-3 and EC16-3. The behavior of these functions is plotted in Figures 1 to 3.

4 Composition

This section aims to provide composition properties for random-probing secure gadgets. In a nut-
shell, we aim to show how to build random probing secure larger circuits from specific random
probing secure building blocks.

4.1 Random Probing Composability

We introduce hereafter the random probing composability notion for a gadget. In the following
definition, for an n-share, `-to-m gadget, we denote by I a collection of sets I = (I1, . . . , I`) with
I1 ⊆ [n], . . . , I` ⊆ [n] where n ∈ N refers to the number of shares. For some x̂ = (x̂1, . . . , x̂`) ∈ (Kn)`,
we then denote x̂|I = (x̂1|I1 , . . . , x̂`|I`) where x̂i|Ii ∈ K|Ii| is the tuple composed of the coordinates
of the sharing x̂i of indexes included in Ii.

11



Fig. 1: Values taken by finf(p) for ISW-3 (red) and EC16-3 (green) compared to the function p 7→ p
(black).

Fig. 2: Values of log(finf(p)) (red) and log(fsup(p))
(blue) for ISW-3.

Fig. 3: For values p ranging from 1 to 0, values of
log(finf(p)) for ISW-3 (red) and EC16-3 (green) to-
gether with the values of log(f(p)) for ISW-2 (blue).

Definition 6 (Random Probing Composability). Let n, `,m ∈ N. An n-share gadget G :
(Kn)` → (Kn)m is (t, p, ε)-random probing composable (RPC) for some t ∈ N and p, ε ∈ [0, 1] if
there exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every

input x̂ ∈ (Kn)` and for every set collection J1 ⊆ [n], . . . , Jm ⊆ [n] of cardinals |J1| ≤ t, . . . ,
|Jm| ≤ t, the random experiment

W ← LeakingWires(G, p)

I ← SimG
1 (W,J)

out← SimG
2

(
x̂|I
)

yields

Pr
(
(|I1| > t) ∨ . . . ∨ (|I`| > t)

)
≤ ε (7)

and

out
id
=
(
AssignWires(G,W, x̂) , ŷ|J

)
where J = (J1, . . . , Jm) and ŷ = G(x̂). Let f : R → R. The gadget G is (t, f)-RPC if it is
(t, p, f(p))-RPC for every p ∈ [0, 1].

In the above definition, the first-pass simulator SimG
1 determines the necessary input shares

(through the returned collection of sets I) for the second-pass simulator SimG
2 to produce a perfect

simulation of the leaking wires defined by the setW together with the output shares defined by the
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collection of sets J . Note that there always exists such a collection of sets I since I = ([n], . . . , [n])
trivially allows a perfect simulation whatever W and J . However, the goal of SimG

1 is to return a
collection of sets I with cardinals at most t. The idea behind this constraint is to keep the following
composition invariant: for each gadget we can achieve a perfect simulation of the leaking wires plus
t shares of each output sharing from t shares of each input sharing. We shall call failure event the
event that at least one of the sets I1, . . . , I` output of SimG

1 has cardinality greater than t. When
(t, p, ε)-RPC is achieved, the failure event probability is upper bounded by ε according to (7). A
failure event occurs whenever SimG

2 requires more than t shares of one input sharing to be able to
produce a perfect simulation of the leaking wires (i.e. the wires with label in W) together with the
output shares in ŷ|J . Whenever such a failure occurs, the composition invariant is broken. In the
absence of failure event, the RPC notion implies that a perfect simulation can be achieved for the
full circuit composed of RPC gadgets. This is formally stated in the next theorem.

4.2 Composition Security

Theorem 1 (Composition). Let t ∈ N, p, ε ∈ [0, 1], and CC be a standard circuit compiler with
(t, p, ε)-RPC base gadgets. For every (randomized) arithmetic circuit C composed of |C| gadgets,
the compiled circuit CC(C) is (p, |C| · ε)-random probing secure. Equivalently, the standard circuit
compiler CC is (p, ε)-random probing secure.

Proof. LetW denote the leaking wires of the randomized circuit CC(C) with probability p for each
wire. We now build a simulator Sim taking as inputs CC(C) and W and that perfectly simulates
W with probability at least (1− |C| · ε) from the simulators of the (t, p, ε)-RPC base gadgets.

We start with splitting setW into |C| distinct subsetsWi for i ∈ {1, . . . , |C|} such that eachWi

stands for the output of LeakingWires when applied to the i’th gadget Gi of CC(C) with probability
p. Then, we start from end gadgets whose outputs coincide with the circuit’s outputs. We execute
their SimGi

1 with Wi and J = ∅, to get the sets I of required inputs. Then, we target their parents,
that are gadgets whose outputs are inputs of end gadgets. For each such gadget Gi, we execute
SimGi

1 with Wi and J as defined by children sets I, to get the new sets I of required inputs. The
simulation goes through the circuit from bottom to top by applying the SimG

1 simulators to get
the Wi and I/J sets. The simulation fails if at least one set I is of cardinal greater than t. For |C|
gadgets, this happens with probability 1− (1− ε)|C| ≤ |C| · ε. Otherwise, the simulation runs the
SimG

2 simulators from top to bottom by randomly picking the initial (xi)I , which completes the
construction of our global simulator Sim. �

4.3 Relation with Standard Probing Composition Notions

We first reformulate the Strong Non-Interference notion introduced in [5] with the formalism used
for our definition of the Random Probing Composability.

Definition 7 (Strong Non-Interference (SNI)). Let n, ` and t be positive integers. An n-share
gadget G : (Kn)` → Kn is t-SNI if there exists a deterministic algorithm SimG

1 and a probabilistic
algorithm SimG

2 such that for every set J ⊆ [n] and subset W of wire labels from G satisfying
|W|+ |J | 6 t, the following random experiment with any x̂ ∈ (Kn)`

I ← SimG
1 (W, J)

out← SimG
2

(
x̂|I
)
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yields
|I1| 6 |W|, . . . , |I`| 6 |W| (8)

and
out

id
=
(
AssignWires(G,W, x̂) , ŷ|J

)
(9)

where I = (I1, . . . , I`) and ŷ = G(x̂).

Then, we demonstrate that gadgets satisfying the t-SNI notion are also random probing com-
posable for specific values that we explicit in the following proposition, whose proof is available in
Appendix A.

Proposition 1. Let n, ` and t be positive integers and let G be a gadget from (Kn)` to Kn. If G
is t-SNI, then it is also (t/2, p, ε)-RPC for any probability p and ε satisfying:

ε =

s∑
i=b t

2
+1c

(
s

i

)
pi(1− p)s−i , (10)

where s is the number of wires in G.

4.4 Verification of Gadget Composability

Our random probing verification tool (Algorithm 1) can be easily extended to define a simulator
for the (t, p, ε)-random probing composability of a gadget for some t and some p. This essentially
amounts to extend Algorithm 1 inputs with a multi-set O and to modify the failureTest procedure
in order to test the simulation for each tuple in the input list `pn augmented with the outputs
coordinates with indices in O. Then, our extended algorithm is called for every set O composed of
at most t indices in each of the sets J1, . . . , Jm. The output for the call with input set O is denoted
by cO = (cO1 , . . . , c

O
β ). For our simulator construction, the probability ε satisfies

ε =
s∑
i=1

ci · pi · (1− p)s−i,

where s denotes the number of wires in the tested gadget. Moreover, the ci’s satisfy ci = maxO c
O
i .

Example. As an illustration of the proposition, let us consider the well deployed 3-share ISW
multiplication gadget GISW-3 : (K3)2 → (K3) displayed in Section 3 and satisfying 2-SNI from [5].
Considering implicit copy gadgets that are mandatory in the circuit definition when a variable is
reused, the corresponding circuit contains s = 57 wires. From Proposition 1, this gadget is also
(1, p, εISW)-RPC for any probability p and εISW such that

εISW =

57∑
i=2

(
s

i

)
pi(1− p)57−i.

Figure 4 displays for p ∈ [0, 1] the values taken by εISW (in red). It also displays (in green) the
values ε′ISW obtained by calling our verification tool on the same gadget GISW-3 with β = 5 (see
Algorithm 1) and by replacing the missing coefficients ci with i > β by their upper bound

(
s
i

)
(see

(6)). It may be checked for small values of p the failure probability ε′ISW is smaller than εISW which
directly implies that the simulation induced by our verification tool is tighter than that deduced
from Proposition 1.
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Fig. 4: Values taken by εISW and ε′ISW as a function of p ∈ [0, 1].

5 Expansion

Constructing random-probing-secure circuit compilers with a gadget expansion strategy has been
proposed by Ananth, Ishai and Sahai in [2]. Such strategy was previously used in the field of multi-
party computation (MPC) with different but close security goals [13, 19]. Note that such approach is
called composition in [2] since it roughly consists in composing a base circuit compiler several times.
We prefer the terminology of expansion here to avoid any confusion with the notion of composition
for gadgets as considered in Section 4 and usual in the literature – see for instance [5, 9, 11].

We recall hereafter the general principle of the gadget expansion strategy and provide an asymp-
totic analysis of the so-called expanding circuit compiler. Then we propose an implementation of
this strategy which relies on the new notion of gadget expandability. In contrast, the construction
of [2] relies on a t-out-n secure MPC protocol in the passive security model. The advantage of our
notion is that it can be achieved and/or verified by simple atomic gadgets leading to simple and
efficient constructions. After introducing the gadget expandability notion, we show that it allows
to achieve random-probing security with the expansion strategy. We finally explain how to adapt
the verification tool described in Section 3 to this expandability notion.

5.1 Expansion Strategy

The basic principle of the gadget expansion strategy is as follows. Assume we have three n-share
gadgets Gadd, Gmult, Gcopy and denote CC the standard circuit compiler for these base gadgets. We

can derive three new n2-share gadgets by simply applying CC to each gadget: G
(2)
add = CC(Gadd),

G
(2)
mult = CC(Gmult) and G

(2)
copy = CC(Gcopy). Let us recall that this process simply consists in

replacing each addition gate in the original gadget by Gadd, each multiplication gate by Gmult and
each copy gate by Gcopy, and by replacing each wire by n wires carrying a sharing of the original
wire. Doing so, we obtain n2-share gadgets for the addition, multiplication and copy on K. This
process can be iterated an arbitrary number of times, say k, to an input circuit C:

C
CC−−−→ Ĉ1

CC−−−→ · · · CC−−−→ Ĉk .

The first output circuit Ĉ1 is the original circuit in which each gate is replaced by a base gadget
Gadd, Gmult or Gcopy. The second output circuit Ĉ2 is the original circuit C in which each gate

is replaced by an n2-share gadget G
(2)
add, G

(2)
mult or G

(2)
copy as defined above. Equivalently, Ĉ2 is the

circuit Ĉ1 in which each gate is replaced by a base gadget. In the end, the output circuit Ĉk is hence
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the original circuit C in which each gate has been replaced by a k-expanded gadget and each wire
as been replaced by nk wires carrying an (nk)-linear sharing of the original wire. The underlying
compiler is called expanding circuit compiler which is formally defined hereafter.

Definition 8 (Expanding Circuit Compiler). Let CC be the standard circuit compiler with
sharing order n and base gadgets Gadd, Gmult, Gcopy. The expanding circuit compiler with expansion

level k and base compiler CC is the circuit compiler (CC(k),Enc(k),Dec(k)) satisfying the following:

1. The input encoding Enc(k) is an (nk)-linear encoding.
2. The output decoding Dec is the (nk)-linear decoding mapping.
3. The circuit compilation is defined as

CC(k)(·) = CC ◦ CC ◦ · · · ◦ CC︸ ︷︷ ︸
k times

(·)

The goal of the expansion strategy in the context of random probing security is to replace
the leakage probability p of a wire in the original circuit by the failure event probability ε in the
subsequent gadget simulation. If this simulation fails then one needs the full input sharing for the
gadget simulation, which corresponds to leaking the corresponding wire value in the base case.
The security is thus amplified by replacing the probability p in the base case by the probability ε
(assuming that we have ε < p). If the failure event probability ε can be upper bounded by some
function of the leakage probability: ε < f(p) for every leakage probability p ∈ [0, pmax] for some
pmax < 1, then the expanding circuit compiler with expansion level k shall result in a security
amplification as

p = ε0
f−−→ ε1

f−−→ · · · f−−→ εk = f (k)(p) ,

which for an adequate function f (e.g. f : p 7→ p2) provides exponential security. In order to get
such a security expansion, the gadgets must satisfy a stronger notion than the composability notion
introduced in Section 4 which we call random probing expandability ; see Section 5.3 below.

5.2 Asymptotic Analysis of the Expanding Compiler

In this section we show that the asymptotic complexity of a compiled circuit Ĉ = CC(k)(C) is
|Ĉ| = O

(
|C| · κe

)
for security parameter κ, for some constant e that we make explicit.

Let us denote by N = (Na, Nc, Nm, Nr)
T the column vector of gate counts for some base gadget

G, where Na, Nc, Nm, Nr stands for the number of addition gates, copy gates, multiplication gates
and random gates respectively. We have three different such vectors

Nadd
.
= (Nadd,a, Nadd,c, Nadd,m, Nadd,r)

T

Nmult
.
= (Nmult,a, Nmult,c, Nmult,m, Nmult,r)

T

Ncopy
.
= (Ncopy,a, Ncopy,c, Ncopy,m, Ncopy,r)

T

for the gate counts respectively in the base addition gadget Gadd, in the base multiplication gadget
Gmult and in the base copy gadgets Gcopy. Let us define the 4× 4 square matrix M as

M =
(
Nadd |Ncopy |Nmult |Nrand

)
with Nrand = (0, 0, 0, n)T ,

where the definition Nrand holds from the fact that the standard circuit compiler replaces each
random gate by n random gates.
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It can be checked that applying the standard circuit compiler with base gadgets Gadd, Gmult

and Gcopy to some circuit C with gate-count vector NC gives a circuit Ĉ with gate-count vector
N
Ĉ

= M ·NC . It follows that the kth power of the matrix M gives the gate counts for the level-k
gadgets as:

Mk = M ·M · · ·M︸ ︷︷ ︸
k times

=
(
N

(k)
add |N

(k)
copy |N

(k)
mult |N

(k)
rand

)
with N

(k)
rand =


0
0
0
nk


where N

(k)
add, N

(k)
mult and N

(k)
copy are the gate-count vectors for the level-k gadgets G

(k)
add, G

(k)
mult and

G
(k)
copy respectively. Let us denote the eigen decomposition of M as M = Q ·Λ ·Q−1, we get

Mk = Q ·Λk ·Q−1 with Λk =


λk1

λk2
λk3

λk4


where λ1, λ2, λ3, λ4 are the eigenvalues of M . We then obtain an asymptotic complexity of

|Ĉ| = O
(
|C| · (λk1 + λk2 + λk3 + λk4)

)
= O

(
|C| ·max(λ1, λ2, λ3, λ4)k

)
for a compiled circuit Ĉ = CC(k)(C) (where the constant in the O(·) depends on Q and shall be
fairly small).

Interestingly, if multiplication gates are solely used in the multiplication gadget (i.e. Nadd,m =
Ncopy,m = 0) which is the case in the constructions we consider in this paper, it can be checked
that (up to some permutation) the eigenvalues satisfy

(λ1, λ2) = eigenvalues(Mac) , λ3 = Nk
mult,m and λ4 = nk

where Mac is the top left 2× 2 block matrix of M i.e.

Mac =

(
Nadd,a Ncopy,a

Nadd,c Ncopy,c

)
.

We finally get

|Ĉ| = O
(
|C| ·Nk

max

)
with Nmax = max(eigenvalues(Mac), Nmult,m) . (11)

In order to reach some security level ε = 2−κ for some target security parameter κ and assuming
that we have a security expansion p → f (k)(p), the expansion level k must be chosen so that
f (k)(p) ≤ 2−κ. In practice, the function f is of the form

f : p 7→
∑
i≥d

ci p
i ≤ (cd +O(p)) pd .

where O(p) is to be interpredted as p tends to 0. In the rest of this paper, we shall say that such a
function has amplification order d.
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The upper bound f(p) ≤ c′d pd with c′d = cd +O(p) implies f (k)(p) < (c′d p)
dk . Hence, to satisfy

the required security f (k)(p) ≤ 2−κ while assuming c′d p < 1, the number k of expansions must
satisfy:

k > logd(κ)− logd(− log2(c′d p)) .

We can then rewrite (11) as

|Ĉ| = O
(
|C| · κe

)
with e =

logNmax

log d
. (12)

5.3 Random Probing Expandability

In the evaluation of random probing composability, let us recall that the failure event in the simu-
lation of a gadget means that more that t shares from one of its inputs are necessary to complete a
perfect simulation. For a gadget to be expandable we need slightly stronger notions than random
probing composability. As first requirement, a two-input gadget should have a failure probability
which is independent for each input. This is because in the base case, each wire as input of a gate
leaks independently. On the other hand, in case of failure event in the child gadget, the overall
simulator should be able to produce a perfect simulation of the full output (that is the full input
for which the failure occurs). To do so, the overall simulator is given the clear output (which is
obtained from the simulation of the base case) plus any set of n−1 output shares. This means that
whenever the set J is of cardinal greater than t, the gadget simulator can replace it by any set J ′

of cardinal n− 1.

Definition 9 (Random Probing Expandability). Let f : R → R. An n-share gadget G :
Kn×Kn → Kn is (t, f)-random probing expandable (RPE) if there exists a deterministic algorithm
SimG

1 and a probabilistic algorithm SimG
2 such that for every input (x̂, ŷ) ∈ Kn ×Kn, for every set

J ⊆ [n] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W, J)

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (13)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(14)

where ẑ = G(x̂, ŷ).
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The RPE notion can be simply extended to gadgets with 2 outputs: the SimG
1 simulator takes

two sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′1 and J ′2 satisfying the same
property as J ′ in the above definition (w.r.t. J1 and J2). The SimG

2 simulator must then produce
an output including ẑ1|J ′1 and ẑ2|J ′1 where ẑ1 and ẑ2 are the output sharings. The RPE notion can

also be simply extended to gadgets with a single input: the SimG
1 simulator produces a single set I

so that the failure event (|I| > t) occurs with probability lower than ε (and the SimG
2 simulator is

then simply given x̂|I where x̂ is the single input sharing). For the sake of completeness, and since
we only focus in 2 → 1 and 1 → 2 gadgets in this paper, the RPE definition for the 1 → 2 case is
given in Appendix B.

It is not hard to check that the above expandability notion is stronger that the composability
notion introduced in Section 4. Formally, we have the following reduction:

Proposition 2. Let f = R → R and n ∈ N. Let G be an n-share gadget. If G is (t, f)-RPE then
G is (t, f ′)-RPC, with f ′(·) = 2 · f(·).

Proof. We consider a (t, f)-RPE n-share gadget G : Kn × Kn → Kn. The (t, 2 · f)-random com-
posability property is directly implied by the (t, f)-random probing expandability by making use
of the exact same simulators and observing that

Pr
(
(|I1| > t) ∨ (|I2| > t)

)
≤ Pr(|I1| > t) + Pr(|I2| > t) = 2 · ε.

The case of 1→ 2 gadgets is even more direct. �

5.4 Expansion Security

Definition 9 of random probing expandability is valid for base gadgets. For level-k gadgets G(k) =
CC(k−1)(G) where G ∈ {Gadd, Gmult, Gcopy} is a base gadget, we provide a generalized definition of
random probing expandability.

Adequate subsets of [nk]. We first define the notion of “adequate” subsets of [nk], instead of
only bounded subsets. For this we define recursively a family Sk ∈ P([nk]), where P([nk]) denotes
the set of all subsets of [nk], as follows:

S1 = {I ∈ [n], |I| ≤ t}
Sk = {(I1, . . . , In) ∈ (Sk−1 ∪ [nk−1])n, Ij ∈ Sk−1 ∀ j ∈ [1, n] except at most t}

In other words, a subset I belongs to Sk if among the n subset parts of I, at most t of them are full,
while the other ones recursively belong to Sk−1; see Figure 9 in Appendix C.1 for an illustration
with n = 3 and t = 1.

Generalized definition of Random Probing Expandability. We generalize Definition 9 as
follows. At level k the input sets I1 and I2 must belong to Sk, otherwise we have a failure event.
As in Definition 9, the simulation is performed for an output subset J ′ with J ′ = J if J ∈ Sk,
otherwise J ′ = [nk] \ {j?} for some j? ∈ [nk].
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Definition 10 (Random Probing Expandability with {Sk}k∈N). Let f : R → R and k ∈ N.

An nk-share gadget G : Knk × Knk → Knk is (Sk, f)-random probing expandable (RPE) if there
exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input

(x̂, ŷ) ∈ Knk ×Knk , for every set J ∈ Sk ∪ [nk] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W, J)

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
I1 /∈ Sk

)
and F2 ≡

(
I2 /∈ Sk

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (15)

with ε = f(p) (in particular F1 and F2 are mutually independent),
2. the set J ′ is such that J ′ = J if J ∈ Sk, and J ′ = [nk] \ {j?} for some j? ∈ [nk] otherwise,
3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(16)

where ẑ = G(x̂, ŷ).

The notion of random probing expandability from Definition 10 naturally leads to the statement
of our main theorem; the proof is given in Appendix C.1.

Theorem 2. Let n ∈ N and f : R → R. Let Gadd, Gmult, Gcopy be n-share gadgets for the addi-
tion, multiplication and copy on K. Let CC be the standard circuit compiler with sharing order n
and base gadgets Gadd, Gmult, Gcopy. Let CC(k) be the expanding circuit compiler with base com-

piler CC. If the base gadgets Gadd, Gmult and Gcopy are (t, f)-RPE then, G
(k)
add = CC(k−1)(Gadd),

G
(k)
mult = CC(k−1)(Gmult), G

(k)
copy = CC(k−1)(Gcopy) are (Sk, f

(k))-RPE, nk-share gadgets for the addi-
tion, multiplication and copy on K.

The random probing security of the expanding circuit compiler can then be deduced as a
corollary of the above theorem together with Proposition 2 (RPE⇒ RPC reduction) and Theorem 1
(composition theorem).

Corollary 1. Let n ∈ N and f : R→ R. Let Gadd, Gmult, Gcopy be n-share gadgets for the addition,
multiplication and copy on K. Let CC be the standard circuit compiler with sharing order n and base
gadgets Gadd, Gmult, Gcopy. Let CC(k) be the expanding circuit compiler with base compiler CC. If

the base gadgets Gadd, Gmult and Gcopy are (t, f)-RPE then CC(k) is (p, 2 · f (k)(p))-random probing
secure.

5.5 Relaxing the Expandability Notion

The requirement of the RPE property that the failure events F1 and F2 are mutually independent
might seem too strong. In practice it might be easier to show or verify that some gadgets satisfy a
weaker notion. We say that a gadget is (t, f)-weak random probing expandable (wRPE) if the failure
events verify Pr(F1) ≤ ε, Pr(F2) ≤ ε and Pr(F1∧F2) ≤ ε2 instead of (22) in Definition 9. Although
being easier to achieve and to verify this notion is actually not much weaker as the original RPE.
We have the following reduction of RPE to wRPE; see Appendix C.3 for the proof.
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Proposition 3. Let f = R → [0, 0.14]. Let G : Kn × Kn → Kn be an n-share gadget. If G is
(t, f)-wRPE then G is (t, f ′)-RPE with f ′(·) = f(·) + 3

2f(·)2.

Assume that we can show or verify that a gadget is wRPE with the following failure event
probabilities

Pr(F1) = f1(p) , Pr(F2) = f2(p) and Pr(F1 ∧ F2) = f12(p) ,

for every p ∈ [0, 1]. Then the above proposition implies that the gadget is (p, f)-RPE with

f : p 7→ fmax(p) +
3

2
fmax(p)2 with fmax = max(f1, f2,

√
f12) .

We shall base our verification of the RPE property on the above equation as we describe hereafter.

5.6 Verification of Gadget Expandability

We can easily adapt our automatic tool to verify the weak random probing expandability for base
gadgets (Definition 9). Basically, the verification is split into two steps that we first describe for
the case of addition and multiplication gadgets with fan-in 2 and fan-out 1.

In a first step, our tool computes the function f to check the (t, f)-wRPE property for output sets
of shares of cardinal at most t. For 2-input gadgets, this step leads to the computation of coefficients
ci corresponding to three failure events F1, F2, and F1∧F2 as defined above but restricted to output
sets of shares of cardinal less than t. The process is very similar to the verification of random probing
composability but requires to separate the failure events counter into failure events for the first input
(|I1| > t), for the second input (|I2| > t) or for both ((|I1| > t) ∧ (|I2| > t)). In the following, we

denote the three functions formed from the corresponding coefficients as f
(1)
1 , f

(1)
2 , and f

(1)
12 .

Then, in a second step, our tool verifies that there exists at least one set of n−1 shares for each
output, such that the simulation failure is limited by f(p) for some probability p ∈ [0, 1]. In that
case, it still loops on the possible output sets of shares (of cardinal n− 1) but instead of computing
the maximum coefficients, it determines whether the simulation succeeds for at least one of such
sets. A failure event is recorded for a given tuple if no output sets of cardinal n−1 can be simulated
together with this tuple from at most t shares of each input. As for the first verification step, we

record the resulting coefficients for the three failure events to obtain functions f
(2)
1 , f

(2)
2 , and f

(2)
12 .

From these two steps, we can deduce f such that the gadget is (t, f)-wRPE:

∀p ∈ [0, 1], f(p) = max(f1(p), f2(p),
√
f12(p))

with

fα(p) = max(f (1)
α (p), f (2)

α (p)) for α ∈ {1, 2, 12}

The computation of f for a gadget to satisfy (t, f)-weak random probing expandability is a bit
trickier for copy gadgets which produce two outputs. Instead of two verification steps considering
both possible ranges of cardinals for the output set of shares J , we need to consider four scenarios
for the two possible features for output sets of shares J1 and J2. In a nutshell, the idea is to follow
the first verification step described above when both J1 and J2 have cardinal equal or less than
t and to follow the second verification step described above when both J1 and J2 have greater
cardinals. This leads to functions f (1) and f (2). Then, two extra cases are to be considered, namely
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when (|J1| ≤ t) and (|J2| > t) and the reverse when (|J1| > t) and (|J2| ≤ t). To handle these
scenarios, our tool loops over the output sets of shares of cardinal equal or less than t for the first
output, and it determines whether there exists a set of n − 1 shares of the second output that a
simulator can perfectly simulate with the leaking wires and the former set. This leads to function
f (12) and reversely to function f (21). From these four verification steps, we can deduce f such that
the copy gadget is (t, f)-wRPE:

∀p ∈ [0, 1], f(p) = max(f (1)(p), f (2)(p), f (12)(p), f (21)(p)).

Once gadgets have been proven (t, f)-weak RPE, they are also proven to be (t, f ′)-RPE from
Proposition 3 with f ′ : p 7→ f(p) + 3

2f(p)2. Examples of such computations for 3-share gadgets are
provided in Section 6.

6 New Constructions

In this section, we exhibit and analyze (1, f)-wRPE gadgets for the addition, multiplication, and
copy (on any base field K) to instantiate the expanding circuit compiler. These gadgets are sound
in the sense that their function f has amplification order strictly greater than one. As explained
in previous sections, an amplification order strictly greater than one guarantees that there exists
a probability pmax ∈ [0, 1] such that ∀p ≤ pmax, f(p) ≤ p, which is necessary to benefit from the
expansion. For 2-input gadgets, f is defined as the maximum between f1, f2, and

√
f12. Therefore,

the constraint on the amplification order also applies to the functions f1, f2, and
√
f12. For the

function f12, this means that the amplification order should be strictly greater than two.
We start hereafter with an impossibility result, namely there are no (2-share, 2-to-1) (1, f)-

RPE gadgets such that f has an amplification order greater than one. Then, we provide concrete
instantiations of addition, multiplication, and copy gadgets based on 3 shares which successfully
achieve (1, f)-RPE for amplification order greater than one and can be used in the expansion
compiler.

6.1 About 2-Share Gadgets

Consider a gadget G with a 2-share single output z = (z0, z1) and two 2-share inputs x = (x0, x1)
and y = (y0, y1). We reasonably assume that the latter are the outputs of gates with fan-in at most
two (and not direct input shares). For G to be (1, f)-RPE with f of amplification order strictly
greater than one, then f12 must be of amplification strictly greater than two. In other words, we
should be able to exhibit a simulator such that one share of each input is enough to simulate
anyone of the output shares and an arbitrary couple of leaking wires. But the output wire z0 and
both input gates of the second output share z1 represent the full output and require the knowledge
of both inputs to be simulated. Therefore, f12 has a non-zero coefficient in p and is thus not of
amplification order strictly greater than two. We thus restrict our investigation to n-share gadgets,
with n ≥ 3 to instantiate our compiler.

In the upcoming gadget descriptions, notice that variables ri are fresh random values, operations
are processed with the usual priority rules, and the number of implicit copy gates can be deduced
from the occurrences of each intermediate variable such that n occurrences require n − 1 implicit
copy gates. Also, the function expression below each gadget corresponds to the function obtained
from our verification tool when verifying weak random probing expandability. It implies that the
gadget is (t, f)-wRPE for t usually equal to one except when defined otherwise. A more complete
description of each function (with more coefficients) is available in Appendix D.1.
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6.2 Addition Gadgets

The most classical masked addition schemes are sharewise additions which satisfy the simpler
probing security property. Basically, given two input n-sharings x and y, such an addition computes
the output n-sharing z as z1 ← x1 + y1, z2 ← x2 + y2, . . . , zn ← xn + yn. Unfortunately, such
elementary gadgets do not work in our setting. Namely consider an output set of shares J of
cardinality t. Then, for any n, there exists sets W of leaking wires of cardinality one such that no
set I of cardinality ≤ t can point to input shares that are enough to simulate both the leaking wire
and the output shares of indexes in J . For instance, given a set J = {1, . . . , t}, if W contains xt+1,
then no set I of cardinal ≤ t can define a set of input shares from which we can simulate both the
leaking wire and z1, . . . , zt. Indeed, each zi for 1 ≤ i ≤ t requires both input shares xi and yi for its
simulation. Thus, a simulation set I would contain at least {1, . . . , t} and t + 1 for the simulation
of the leaking wire. I would thus be of cardinal t+ 1 which represents a failure event in the random
probing expandability definition. As a consequence, such a n-share addition gadget could only be
(t, f)-RPE with f with a first coefficient c1 as defined in Section 3 strictly positive. In other words,
f would be of amplification order one such that ∀p ∈ [0, 1], f(p) ≥ p.

In the following, we introduce two 3-share addition gadgets. From our automatic tool, both are
(1, f)-wRPE with f of amplification order strictly greater than one. Basically, in our first addition
gadget G1

add, both inputs are first refreshed with a circular refreshing gadget as originally introduced
in [6]:

G1
add : z0 ← x0 + r0 + r1 + y0 + r3 + r4

z1 ← x1 + r1 + r2 + y1 + r4 + r5 fmax(p) =
√

10p3/2 +O(p2)

z2 ← x2 + r2 + r0 + y2 + r5 + r3

The second addition gadget G2
add simply rearranges the order of the refreshing variables:

G2
add : z0 ← x0 + r0 + r4 + y0 + r1 + r3

z1 ← x1 + r1 + r5 + y1 + r2 + r4 fmax(p) =
√

69p2 +O(p3)

z2 ← x2 + r2 + r3 + y2 + r0 + r5

In each gadget, x and y are the input sharings and z the output sharing; fmax additionally
reports the maximum of the first non zero coefficient (as defined in Section 3) of the three functions
f1, f2, and f12, as defined in the previous section, obtained for the random probing expandability
automatic verifications. A further definition of these functions can be found in Appendix D.1. Note
that both gadgets G1

add and G2
add are built with 15 addition gates and 6 implicit copy gates.

6.3 Multiplication Gadget

We start by proving an impossibility result: no 3-share multiplication gadget composed of direct
products between input shares satisfies (1, f)-RPE with amplification order strictly greater than
one. Consider such a gadget G with two 3-input sharings x and y whose shares are directly mul-
tiplied together. Let (xi · yj) and (xk · y`) be two such products such that i, j, k, ` ∈ [3] and i 6= k
and j 6= `. If both results are leaking, then the leakage can only be simulated using the four input
shares. Namely, {i, k} ⊆ I1 and {j, `} ⊆ I2. This scenario represents a failure since cardinals of
I1 and I2 are both strictly greater than one. As a consequence, function f12 which records the
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failures for both inputs is defined with a coefficient c2 at least equal to one. Hence f12 is not of
amplification greater than two and f cannot be of amplification order greater than one. Regular
3-share multiplication gadgets consequently cannot be used as base gadgets of our compiler.

To circumvent this issue, we build a 3-share multiplication gadget G1
mult whose both inputs are

first refreshed, before any multiplication is performed:

u0 ← x0 + r5 + r6; u1 ← x1 + r6 + r7; u2 ← x2 + r7 + r5

v0 ← y0 + r8 + r9; v1 ← y1 + r9 + r10; v2 ← y2 + r10 + r8

z0 ←
(
u0 · v0 + r0

)
+
(
u0 · v1 + r1

)
+
(
u0 · v2 + r2

)
z1 ←

(
u1 · v0 + r1

)
+
(
u1 · v1 + r4

)
+
(
u1 · v2 + r3

)
z2 ←

(
u2 · v0 + r2

)
+
(
u2 · v1 + r3

)
+
(
u2 · v2 + r0

)
+ r4

fmax(p) =
√

83p3/2 +O(p2)

6.4 Copy Gadget

We exhibit a 3-share (1, f)-wRPE copy gadget G1
copy with f of amplification order strictly greater

than one:

v0 ← u0 + r0 + r1; w0 ← u0 + r3 + r4

v1 ← u1 + r1 + r2; w1 ← u1 + r4 + r5 fmax(p) = 33p2 +O(p3)

v2 ← u2 + r2 + r0; w2 ← u2 + r5 + r3

It simply relies on two calls of the circular refreshing from [6] on the input. This last gadget is made
of 6 addition gates and 9 implicit copy gates.

6.5 Complexity and Tolerated Probability

Following the asymptotic analysis of Section 5.2, our construction yields the following instantiation
of the matrix M

M =


15 12 28 0
6 9 23 0
0 0 9 0
6 6 11 3

 (17)

with

Mac =

(
15 12
6 9

)
and Nmult,m = 9 .

The eigenvalues of Mac are 3 and 21, which gives Nmax = 21. We also have a random probing
expandability with function f of amplification order d = 3

2 . Hence we get

e =
logNmax

log d
=

log 21

log 1.5
≈ 7.5
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which gives a complexity of |Ĉ| = O
(
|C| · κ7.5

)
. Finally, it can be checked from the coefficients of

the RPE functions given in Appendix D that our construction tolerates a leakage probability up
to

pmax ≈ 0.0045 > 2−8 .

This corresponds to the maximum value p for which we have f(p) < p which is a necessary and
sufficient condition for the expansion strategy to apply with (t, f)-RPE gadgets.

As explained in Sec. 5.2, we can compute the new gate count vectors for each of the compiled

gadgets G
2(k)
add , G

1(k)
copy, G

1(k)
mult by computing the matrix Mk. In Fig. 5, we plot the total number of

gates (Na +Nc +Nm +Nr) in each of the compiled gadgets as a function of the level k. For instance,
for level k = 9 the number of gates in the compiled gadgets is around 1012. For the latter level and
assuming a leakage probability of p = 0.0045 (which is the maximum we can tolerate), we achieve
a security of ε ≈ 2−76. On its right side, Fig. 6 plots the values taken by the function f such that
the gadgets G1

add, G2
add, G1

mult and G1
copy are (t, f)-RPE.

Fig. 5: Number of gates for G
2(k)
add , G

1(k)
copy, G

1(k)
mult circuits

with respect to the level k. Fig. 6: Values taken by the function f for (t, f)-RPE

7 Comparison with Previous Constructions

In this section, we compare our scheme to previous constructions. Specifically, we first compare
it to the well-known Ishai-Sahai-Wagner (ISW) construction and discuss the instantiation of our
scheme from the ISW multiplication gadget. Then we exhibit the asymptotic complexity (and
tolerated leakage probability) of the Ananth-Ishai-Sahai compiler and compare their results to our
instantiation.

7.1 Comparison with ISW

The classical ISW construction [20] is secure in the t-probing model when the adversary can learn
any set of t intermediate variables in the circuit, for n = 2t + 1 shares. This can be extended to t
probes per gadget, where each gadget corresponds to a AND or XOR gate in the original circuit.
Using Chernoff bound, security in the t-probing model per gadget implies security in the p-random
probing model, where each wire leaks with probability p, with p = O(t/|G|), where |G| is the
gadget size. Since in ISW each gadget has complexity O(t2), this gives p = O(1/t). Therefore, in
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the p-random probing model, the ISW construction is only secure against a leakage probability
p = O(1/n), where the number of shares n must grow linearly with the security parameter κ in
order to achieve security 2−κ. This means that ISW does not achieve security under a constant
leakage probability p; this explains why ISW is actually vulnerable to horizontal attacks [7], in
which the adversary can combine information from a constant fraction of the wires.

ISW-based instantiation of the expanding compiler. In our instantiation, we choose to con-
struct a new 3-share multiplication gadget instead of using the ISW multiplication gadget from [20].
In fact, ISW first performs a direct product of the secret shares before adding some randomness,
while we proved in Section 6 that no such 3-share multiplication gadget made of direct products
could satisfy (1, f)-RPE with amplification order strictly greater than one. Therefore the ISW
gadget is not adapted for our construction with 3 shares.

Table 1 displays the output of our tool when run on the ISW gadget for up to 7 shares with
different values for t. It can be seen that an amplification order strictly greater than one is only
achieved for t > 1, with 4 or more shares. And an order of 3/2 is only achieved with a minimum of
4 shares for t = 2, whereas we already reached this order with our 3-share construction for t = 1.
If we use the 4-share ISW gadget with appropriate 4-share addition and copy gadgets instead of
our instantiation, the overall complexity of the compiler would be greater, while the amplification
order would remain the same, and the tolerated leakage probability would be worse (recall that
our instantiation tolerates a maximum leakage probability p ≈ 2−8, while 4-share ISW tolerates
p ≈ 2−9.83). Clearly, the complexity of the 4-share ISW gadget (Na, Nc, Nm, Nr) = (24, 30, 16, 6) is
higher than that of our 3-share multiplication gadget (Na, Nc, Nm, Nr) = (28, 23, 9, 11). In addition,
using 3-share addition and copy gadgets (as in our case) provides better complexity than 4-share
gadgets. Hence to reach an amplification order of 3/2, a 4-share construction with the ISW gadget
would be more complex and would offer a lower tolerated leakage probability.

For higher amplification orders, the ISW gadgets with more than 4 shares or other gadgets can
be studied. This is a open construction problem as many gadgets can achieve different amplification
orders and be globally compared.

7.2 Complexity of the Ananth-Ishai-Sahai Compiler

The work from [2] provides a construction of circuit compiler (the AIS compiler) based on the
expansion strategy described in Section 5 with a (p, ε)-composable security property, analogous to
our (t, f)-RPE property. To this purpose, the authors use an (m, c)-multi-party computation (MPC)
protocol Π. Such a protocol allows to securely compute a functionality shared among m parties and
tolerating at most c corruptions. In a nutshell, their composable circuit compiler consists of multiple
layers: the bottom layer replaces each gate in the circuit by a circuit computing the (m, c)-MPC
protocol for the corresponding functionality (either Boolean addition, Boolean multiplication, or
copy). The next k − 1 above layers apply the same strategy recursively to each of the resulting
gates. As this application can eventually have exponential complexity if applied to a whole circuit
C directly, the top layer of compilation actually applies the k bottom layers to each of the gates of C
independently and then stitches the inputs and outputs using the correctness of the XOR-encoding
property. Hence the complexity is in

O(|C| ·Nk
g ) , (18)

where |C| is the number of gates in the original circuit and Ng is the number of gates in the circuit
computing Π. The authors of [2] prove that such compiler satisfies (p, ε)-composition security

26



Table 1: Complexity, amplification order and maximum tolerated leakage probability of the ISW multiplication
gadgets. Some leakage probabilities were not computed accurately by VRAPS for performances reasons. An interval
on these probabilities is instead given by evaluating lower and upper bound functions finf and fsup of f(p).

# shares Complexity
(Na, Nc, Nm, Nr)

t Amplification
order

log2 of maximum tolerated
leakage probability

3 (12, 15, 9, 3) 1 1 −

4 (24, 30, 16, 6)
1 1 −
2 3/2 −9.83

5 (40, 50, 25, 10)
1 1 −
2 3/2 −11.00
3 2 −8.05

6 (60, 75, 36, 15)

1 1 −
2 3/2 −13.00
3 2 [−9.83,−7.87]
4 2 [−9.83,−5.92]

7 (84, 105, 49, 21)

1 1 −
2 3/2 [−16.00,−14.00]
3 2 [−12.00,−7.87]
4 5/2 [−12.00,−2.27]
5 2 [−12.00,−3.12]

property, where p is the tolerated leakage probability and ε is the simulation failure probability.
Precisely:

ε = N c+1
g · pc+1 (19)

Equations (18) and (19) can be directly plugged into our asymptotic analysis of Sec. 5.2, with Ng

replacing our Nmax and where c+ 1 stands for our amplification order d. The obtained asymptotic
complexity for the AIS compiler is

O
(
|C| · κe

)
with e =

logNg

log c+ 1
. (20)

This is to be compared to e = logNmax

log d in our scheme. Moreover, this compiler can tolerate a leakage
probability

p =
1

N2
g

.

The authors provide an instantiation of their construction using an existing MPC protocol
due to Maurer [22]. From their analysis, this protocol can be implemented with a circuit of Ng =

(4m−c) ·
((
m−1
c

)2
+2m

(
m
c

))
gates. They instantiate their compiler with this protocol for parameters

m = 5 parties and c = 2 corruptions, from which they get Ng = 5712. From this number of gates,
they claim to tolerate a leakage probability p = 1

57122
≈ 2−25 and our asymptotic analysis gives

a complexity of O
(
|C| · κe

)
with e ≈ 7.87 according to (20). In Appendix E, we give a detailed

analysis of the Maurer protocol [22] in the context of the AIS compiler instantiation. From our
analysis, we get the following number of gates for the associated circuit:

Ng = (6m− 5) ·

((
m− 1

c

)2

+m(2k − 2) + 2k2

)
where k =

(
m

c

)
.
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Using the parameters m = 5 and c = 2 from the AIS compiler instantiation [2], we get Ng = 8150.
This yields a tolerated leakage probability of p ≈ 2−26 and an exponent e = log 8150/log 3 ≈ 8.19
in the asymptotic complexity O

(
|C| · κe

)
of the AIS compiler.

These results are to be compared to the p ≈ 2−8 and e ≈ 7.5 achieved by our construction. In
either case (Ng = 5712as claimed in [2] or Ng = 8150 according to our analysis), our construction
achieves a slightly better complexity while tolerating a much higher leakage probability. We stress
that further instantiations of the AIS scheme (based on different MPC protocols) or of our scheme
(based on different gadgets) could lead to better asymptotic complexities and/or tolerated leakage
probabilities. This is an interesting direction for further research.

8 Implementation Results

In this section, we describe and report the performances of a proof-of-concept implementation of
the expanding compiler with our base gadgets as well as a protected AES implementation. The
source code of these implementations are publicly available at:

https://github.com/CryptoExperts/poc-expanding-compiler

All implementations were run on a laptop computer (Intel(R) Core(TM) i7-8550U CPU, 1.80GHz
with 4 cores) using Ubuntu operating system and various C, python and sage libraries.

8.1 Circuit Compiler

First, we developed an implementation in python of a compiler CC, that given three n-share gadgets

Gadd, Gmult, Gcopy and an expansion level k, outputs the compiled gadgets G
(k)
add, G

(k)
copy ,G

(k)
mult,

each as a C function. The variables’ type is given as a command line argument. Table 2 shows
the complexity of the compiled gadgets from Section 6 using the compiler with several expansion
levels k, as well as their execution time in milliseconds when run in C on randomly generated 8-
bit integers. For the generation of random variables, we consider that an efficient external random
number generator is available in practice, and so we simply use the values of an incremented counter
variable to simulate random gates.

Table 2: Complexity and execution time (in ms, on an Intel i7-8550U CPU) for compiled gadgets G
2(k)
add , G

1(k)
copy, G

1(k)
mult

from Section 6 implemented in C.

k # shares Gadget Complexity (Na, Nc, Nm, Nr) Execution time

1 3
G

2(1)
add (15, 6, 0, 6) 1, 69.10−4

G
1(1)
copy (12, 9, 0, 6) 1, 67.10−4

G
1(1)
mult (28, 23, 9, 11) 5, 67.10−4

2 9
G

2(2)
add (297, 144, 0, 144) 2, 21.10−3

G
1(2)
copy (288, 153, 0, 144) 2, 07.10−3

G
1(2)
mult (948, 582, 81, 438) 9, 91.10−3

3 27
G

2(3)
add (6183, 3078, 0, 3078) 9, 29.10−2

G
1(3)
copy (6156, 3105, 0, 3078) 9, 84.10−2

G
1(3)
mult (23472, 12789, 729, 11385) 3, 67.10−1
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It can be observed that both the complexity and running time grow by almost the same factor
with the expansion level, with multiplication gadgets being the slowest as expected. Base gadgets
with k = 1 roughly take 10−4 ms, while these gadgets expanded 2 times (k = 3) take between
10−2 and 10−1 ms. The difference between the linear cost of addition and copy gadgets, and the
quadratic cost of multiplication gadgets can also be observed through the gadgets’ complexities.

8.2 AES Implementation

We describe hereafter a proof-of-concept AES implementation protected with our instantiation of
the expanding compiler. We start by describing the underlying AES circuit (over K = GF(256)),
followed by an analysis of the implementation in C of the complete algorithm.

AES circuit. We first describe the non-linear part of the AES, namely the sbox computa-
tion. For the field exponentiation (x 7→ x254 over GF(256)), we use the circuit representation
of the processing proposed in [16] and presented in Fig. 7. It corresponds to the addition chain
(1, 2, 4, 8, 9, 18, 19, 36, 55, 72, 127, 254) and it has been chosen due to its optimality regarding the
number of multiplications (11 in total). Each time an intermediate result had to be reused, a copy
gate (marked with ‖) has been inserted.

x ‖
‖
× ‖ × ‖ × ×

‖

‖ × ‖
‖
×

× ‖
‖
×

× × ‖ ×1 2 9

19

4 8 18 36 72 127 254

Fig. 7: Circuit for the exponentiation x 7→ x254.

For the second part of the sbox, the affine function is implemented according to the following
equation:

Affine(x) = (((((((207x)2 + 22x)2 + 1x)2 + 73x)2 + 204x)2 + 168x)2 + 238x)2 + 5x+ 99

with the necessary copy gates. Similarly, the inverse of the affine function is implemented for the
sbox inversion as follows:

Affine−1(x) = (((((((147x)2 + 146x)2 + 190x)2 + 41x)2 + 73x)2 + 139x)2 + 79x)2 + 5x+ 5

The rest of the operations (MixColumns, ShiftRows, AddRoundKey) are considered as in a standard
AES, while adding the necessary copy gates.

Gate count: Table 3 displays the gate count vectors for AES-128 encryption/decryption proce-
dures as well as for their building blocks. The sbox (resp. sbox inversion) gate count vector was
computed as the sum of the gate count vectors of both the exponentiation and affine (resp. affine
inversion) functions. We recall that Na, Nc, Nm, Nr stand for the number of addition gates, copy
gates, multiplication gates, and random gates, respectively.

Using the gadgets G2
add, G1

mult and G1
copy proposed in Sec. 6 for the compilation of the AES

algorithm, we obtain the instantiation given in Equation (17) of the matrix M introduced in Sec.
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Table 3: AES operations complexity.

AES Operation Complexity (Na, Nc, Nm, Nr)

AddRoundKey (for 1 byte) (1, 0, 0, 0)

SubBytes (for 1 byte) (8, 25, 26, 0)

MixColumns (for all columns) (60, 60, 16, 0)

ShiftRows (for all rows) (0, 0, 0, 0)

AES-128 encryption (1996 , 4540 , 4304 , 0 )

SubBytes Inversion (for 1 byte) (8, 25, 26, 0)

MixColumns Inversion (for all columns) (104, 104, 36, 0)

ShiftRows Inversion (for all rows) (0, 0, 0, 0)

AES-128 decryption (2392 , 4936 , 4484 , 0 )

5.2. Applying the same complexity analysis done previously on the gate count vectors, we display
in Fig. 8 the total number of gates in the AES-128 encryption/decryption procedures as functions
of the level k. For instance, for the same security level of 2−76 exhibited in Sec. 6.5 for the gadgets
of Fig. 5, the AES-128 would have to be compiled at a level k = 9, and would count around 1016

gates.

Fig. 8: Number of gates after compilation of AES-128 encryption/decryption circuits with respect to the level k.

Implementation in C: An n-share AES-128 implementation was developed in C from the above
description. Compiled gadgets from Section 8.1 were used for basic operations (addition, multipli-
cation, copy), as generated using our circuit compiler described in Sec. 8.1. We chose the C 8-bit
unsigned integer type, and considered operations in GF(256). For the generation of random values,
we assume the availability of an efficient (pseudo)random number generator, and so we simply
considered the values of an incremented counter variable to simulate the cost.

Table 4 shows the AES-128 execution time on a 16-byte message with 10 pre-computed sub-

keys, using compiled gadgets G
2(k)
add , G

1(k)
copy, G

1(k)
mult, with respect to the expansion level k and sharing

order n = 3k. It can be seen that the execution time increases with the expansion level with a
similar growth as in Table 2. This is because the complexity of the AES circuit strongly depends
on the gadgets that are used to replace each gate in the original arithmetic circuit. For example,
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with our 3-share gadgets that tolerate a leakage probability of p ≈ 2−8, a 27-share (k = 3) AES-128
takes almost 200 milliseconds to encrypt or decrypt a message.

Table 4: Standard and n-share AES-128 execution time (in ms, on an Intel i7-8550U CPU) using compiled gadgets

G
2(k)
add , G

1(k)
copy, G

1(k)
mult.

AES Version
Execution Time (in ms)

Encryption Decryption

Standard (no sharing) 0.06 0.05

3-share (k = 1) 1.08 1.07

9-share (k = 2) 11.71 10.26

27-share (k = 3) 200.29 197.70
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8. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.
Randomness complexity of private circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors,
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9. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.
Private multiplication over finite fields. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer Science, pages 397–426, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.
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11. Sonia Beläıd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits: Achieving probing security with the
least refreshing. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,
Part II, volume 11273 of Lecture Notes in Computer Science, pages 343–372, Brisbane, Queensland, Australia,
December 2–6, 2018. Springer, Heidelberg, Germany.

12. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 398–412, Santa Barbara, CA, USA, August 15–19, 1999. Springer,
Heidelberg, Germany.

13. Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran Raz, and Ron D. Rothblum.
Efficient multiparty protocols via log-depth threshold formulae - (extended abstract). In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 185–202, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.
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A Proof of Proposition 1

Proof. Since G is t-SNI there exist two simulators SimG
1 and SimG

2 satisfying (8) and (9) for any
J ⊆ [n] and anyW satisfying |W|+ |J | 6 t. This is in particular true for everyW and every J both
of cardinality lower than or equal to t

2 . For every set W such that |W| > t
2 and every set J such

that |J | 6 t
2 , we modify simulator SimG

1 to return the full set of input indices (i.e. I = [n]`). Then,

the second simulator SimG
2 is simply augmented to perfectly simulate (AssignWires(G,W, x̂) , ŷ|J)

from the full knowledge of the gadget inputs (which is trivially possible). By construction, for any
J with |J | 6 t

2 , the output I = (I1, . . . , I`) of SimG
1 (W, J) contains at least one Ij with cardinality

greater than t
2 only when W has cardinality strictly greater than t

2 (and in this case all the Ij ’s
have full cardinality [n]). Hence, the probability Pr

(
(|I1| > t

2) ∨ . . . ∨ (|I`| > t
2)
)

when J is a given
set with |J | 6 t

2 andW is the output of LeakingWires(G, p) satisfies (10), which concludes the proof.
�

B Random Probing Expandability for 1-to-2 Gadgets

We provide hereafter the formal definition of the RPE notion for gadgets with 1 input sharing and
2 output sharings.

Definition 11 (Random Probing Expandability). Let f = R → R. An n-share gadget G :
Kn → Kn×Kn is (t, f)-random probing expandable (RPE) if there exists a deterministic algorithm
SimG

1 and a probabilistic algorithm SimG
2 such that for every input x̂ ∈ Kn, for every pair of sets

J1 ⊆ [n] and J2 ⊆ [n], and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I, J ′1, J
′
2)← SimG

1 (W, J1, J2)

out← SimG
2 (W, J ′1, J

′
2, x̂|I)

ensures that

1. the failure event probability satisfies Pr
(
|I| > t

)
≤ ε with ε = f(p),

2. the set J ′1 is such that J ′1 = J1 if |J1| ≤ t and J ′1 ⊆ [n] with |J ′1| = n− 1 otherwise,

3. the set J ′2 is such that J ′2 = J2 if |J2| ≤ t and J ′2 ⊆ [n] with |J ′2| = n− 1 otherwise,

4. the output distribution satisfies

out
id
=
(
AssignWires(G,W, x̂) , ŷ|J ′1 , ẑ|J ′2

)
(21)

where (ŷ, ẑ) = G(x̂).
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C Expandability

C.1 Illustration of the subsets Sk

∈ S1

∈ S1

∈ S1

∈ S2

∈ S2

∈ S2

Fig. 9: Illustration of all elements of S1 and some elements of S2, for n = 3 and t = 1.

C.2 Proof of Theorem 2

The proof of the theorem relies on what we shall call the assignment expansion property. Through-
out the proof we shall denote εk = f (k)(p). We call level-k gadget a gadget that has been expanded
k − 1 times G(k) = CC(k−1)(G) where G is a base gadget (or a level-1 gadget) among Gadd, Gmult,
Gcopy.

We proceed by induction to show that the level-k gadgets are (Sk, f
(k))-RPE. The base case

is one of the theorem hypotheses, namely the base gadgets Gadd, Gmult and Gcopy (i.e. the level-1
gadgets) are (t, f)-RPE, which is equivalent to (S1, f)-RPE. We must then show the induction
step: assuming that the level-k gadgets are (Sk, f

(k))-RPE, show that the level-(k + 1) gadgets are
(Sk+1, f

(k+1))-RPE. For the sake of simplicity, we depict our proof by assuming that all the gadgets
are 2-to-1 gadget (which is actually not the case for copy gadgets). The proof mechanism for the
general case (with 2-to-1 and 1-to-2 gadgets) is strictly similar but heavier on the form.

In order to show that G(k+1) is (Sk+1, f
(k+1))-RPE we must construct two simulators SimG(k+1)

1

and SimG(k+1)

2 that satisfy the conditions of Definition 10 for the set of subsets Sk+1. More precisely,

we must construct two simulators SimG(k+1)

1 and SimG(k+1)

2 such that for every (x̂∗, ŷ∗) ∈ Knk+1 ×
Knk+1

, and for every set J∗ ∈ Sk+1 ∪ [nk+1], the random experiment

W∗ ← LeakingWires(G(k+1), p)

(I∗1 , I
∗
2 , J

∗′)← SimG
1 (W∗, J∗)

out← SimG
2 (W∗, J∗, x̂∗|I∗1 , ŷ

∗|I∗2 )

ensures that

1. the failure events F∗1 ≡
(
I∗1 /∈ Sk+1) and F∗2 ≡

(
I∗2 /∈ Sk+1) verify

Pr(F∗1 ) = Pr(F∗2 ) = εk+1 and Pr(F∗1 ∧ F∗2 ) = ε2
k+1 (22)

2. the set J∗′ is such that J∗′ = J∗ if J∗ ∈ Sk+1 and J∗′ = [nk+1] \ {j?} otherwise,
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3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J∗′

)
(23)

where ẑ = G(k+1)(x̂, ŷ).
We distinguish two cases: either J∗ ∈ Sk+1 (normal case), or J∗ = [nk+1] (saturated case).

Normal case: J∗ ∈ Sk+1. By definition of the expanding compiler, we have that a level-(k + 1)
gadget G(k+1) is obtained by replacing each gate of the base gadget by the corresponding level-k
gadget and by replacing each wire of the base gadget by nk wires carrying a (nk)-linear sharing of
the original wire. In particular G(k+1) has nk+1 output wires which can be split in n groups of nk

wires, each group being the output of a different G(k) gadget. We split the set J∗ accordingly so
that J∗ = J∗1 ∪ · · · ∪ J∗n, where each set J∗i pertains to the ith group of output wires. By definition
of Sk, since J∗ ∈ Sk+1, we must have J∗i ∈ Sk for all 1 ≤ i ≤ n, except at most t of them for
which J∗i = [nk]. We define Jbase as the set of indexes i such that J∗i /∈ Sk. Therefore we must have
|Jbase| ≤ t.

We first describe the simulator SimG(k+1)

1 that takes the leaking wires W∗ and the output wires
J∗ ∈ Sk+1 to be simulated and produce the sets I∗1 ⊆ [nk+1] and I∗2 ⊆ [nk+1] of required inputs.

The simulator SimG(k+1)

1 starts by defining a set Wbase which is initialized to ∅; this will correspond
to the set of leaking wires for the base gadget. Then the simulation goes through all the level-k
gadgets composing G(k+1) from bottom to top i.e. starting with the level-k gadgets producing the

output sharing up to the level-k gadgets processing the input sharings. Let us denote by {G(k)
j }j

these level-k gadgets. For each G
(k)
j , one runs the simulator Sim1 from the (Sk, f

(k))-RPE property
on input Wj and Jj defined as follows. The set of leaking wires Wj is defined as the subset of W∗

corresponding to the wires of G
(k)
j . For the gadgets G

(k)
j on the bottom layer, the set Jj is set to

one of the J∗i (with indices scaled to range in [nk]). For all the other gadgets G
(k)
j (which are not

on the bottom layer), the set J is defined as the set I1 or I2 output from Sim1 for the child gadget
G(k)

j′ (for which Sim1 has already been run).

Whenever a failure event occurs for a G
(k)
j gadget, namely when the set I (either I1 or I2)

output from Sim1 is such that I /∈ Sk, we add the index of the wire corresponding to this input

in the base gadget G to the set Wbase. Once the Sim1 simulations have been run for all the G
(k)
j

gadgets, ending with the top layers, we get the final sets I corresponding to the input shares. Each

of these sets corresponds to an nk-sharing as input of a G
(k)
j gadget, which corresponds to a wire

as input of the base gadget among the 2 · n wires carrying the two input n-sharings of the base
gadget. We denote by I∗1,1, . . . , I∗1,n and I∗2,1, . . . , I∗2,n the corresponding sets so that defining

I∗1 = I∗1,1 ∪ . . . ∪ I∗1,n and I∗2 = I∗2,1 ∪ . . . ∪ I∗2,n , (24)

the tuple x̂∗|I∗1 and ŷ∗|I∗2 contains the shares designated by the final I sets.

At the end of the SimG(k+1)

1 simulation, the set Wbase contains all the labels of wires in the

base gadget G for which a failure event has occurred in the simulation of the corresponding G
(k)
j

gadget. Thanks to the (Sk, f
(k))-RPE property of these gadgets, the failure events happen (mutually

independently) with probability εk which implies

Wbase
id
= LeakingWires(G, εk) (25)
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Recall that |Jbase| ≤ t. We can then run SimG
1 to obtain:

(I1,base, I2,base) = SimG
1 (Wbase, Jbase) . (26)

For all 1 ≤ i ≤ n, if i ∈ I1,base, we force I∗1,i ← [nk], so that the corresponding i-th input wire of the

base gadget can be computed from the corresponding input wires in I∗1,i. The simulator SimG(k+1)

1

then returns (I∗1 , I
∗
2 ) as output.

The (t, f)-RPE property of the base gadget G implies that the base failure events |I1,base| = n
and |I2,base| = n are εk+1-mutually unlikely, where εk+1 = f(εk). We argue that for all 1 ≤ i ≤ n,
I∗1,i /∈ Sk ⇐⇒ i ∈ I1,base. Namely if a failure event has occurred for a set I∗1,i (i.e. I∗1,i /∈ Sk) then
we must have i ∈ I1,base. Indeed, if a failure event has occurred for a set I∗1,i then the label of the

ith input wire (for the first sharing) of the base gadget G has been added to Wbase and SimG
1 has

no choice but to include this index to the set I1,base so that SimG
2 can achieve a perfect simulation

of the wire assignment (as required by the RPE property of G). Moreover if i ∈ I1,base then by
construction we have set I∗1,i = [nk] and therefore I∗1,i /∈ Sk. This implies that if |I1,base| ≤ t then
I∗1 ∈ Sk+1 (and the same happens for I∗2 w.r.t. I2,base). We deduce that the failure events F∗1 and
F∗2 are also εk+1-mutually unlikely, as required by the (Sk+1, f

(k+1))-RPE property of G(k+1).

We now describe the simulator SimG(k+1)

2 that takes as input x̂∗|I∗1 and ŷ∗|I∗2 and produces a

perfect simulation of
(
AssignWires(G(k+1),W∗, (x̂∗, ŷ∗)), ẑ|J∗

)
where ẑ = G(k+1)(x̂, ŷ). Let x̂b and

ŷb denote the n-linear sharings obtained by applying the linear decoding to each group of nk shares
in x̂∗ and ŷ∗, so that the elements of x̂b and ŷb correspond to the input wires in the base gadget
G. The assignment expansion property implies that a perfect assignment of the wires of G(k+1) on
input x̂∗ and ŷ∗ can be derived from an assignement of the wires of the base gadget G on input x̂b

and ŷb. The simulator makes use of this property by first running

outbase ← SimG
2 (Wbase, Jbase, x̂

b|I1,base , ŷ
b|I2,base) , (27)

Note that the input values x̂b|I1,base and ŷb|I2,base can be obtained from the corresponding shares in
I∗1 and I∗2 . Thanks to the (t, f)-RPE property of G and by construction of I1,base and I2,base, this
outputs a distribution satisfying

outbase
id
=
(

AssignWires(G,Wbase, (x̂
b, ŷb)), ẑb|Jbase

)
(28)

The simulator then goes through all the G
(k)
j gadgets from input to output and for each of them

runs the simulator Sim2 of the RPE property on inputs Wj , Jj , x̂|I1 and ŷ|I2 where Wj and Jj are

the sets from the first phase of the simulation for the gadget G
(k)
j , I1 and I2 are the corresponding

sets produced by the Sim1 simulator for G
(k)
j , and x̂ and ŷ are the inputs of G

(k)
j in the evaluation

of G(k+1)(x̂∗, ŷ∗). Provided that the partial inputs x̂|I1 and ŷ|I2 are perfectly simulated, this call

to Sim2 produces a perfect simulation of
(
AssignWires(G

(k)
j ,Wj , (x̂, ŷ), ẑ|Jj

)
where ẑ = G

(k)
j (x̂, ŷ).

In order to get perfect simulations of the partial inputs x̂|I1 and ŷ|I2 , the simulator proceeds as
follows. For the top layer of G(k) gadgets (the ones processing the input shares) the shares x̂|I1 and
ŷ|I2 can directly be taken from the inputs x̂∗|I∗1 and ŷ∗|I∗2 . For the next gadgets the shares x̂|I1 and
ŷ|I2 match the shares ẑ|J output from the call to Sim2 for a parent gadget. The only exception
occurs in case of a failure event.
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In that case the simulation needs the full input x̂ = (x1, . . . , xnk) (and/or ŷ = (y1, . . . , ynk)),
while we have set |I1| = nk−1 (and/or |I2| = nk−1) to satisfy the RPE requirements of the parent
gadget in the first simulation phase. Nevertheless, for such cases a perfect simulation of the plain
value x = LinDec(x̂) (and/or y = LinDec(ŷ)) is included to outbase by construction of Wbase. We
can therefore perfectly simulate the missing share from the nk − 1 other shares and the plain value

x (or y). We thus get a perfect simulation of
(
AssignWires(G

(k)
j ,Wj , (x̂, ŷ), ẑ|Jj

)
for all the level-k

gadgets G
(k)
j which gives us a perfect simulation of

(
AssignWires(G(k+1),W∗, (x̂∗, ŷ∗)), ẑ|J∗

)
.

Saturated case: J∗ = [nk+1]. The saturated case proceeds similarly. The difference is that we
must simulate all nk+1 output shares of the level-(k+ 1) gadget, except for one share index j∗ that
can be chosen by the simulator.

The simulator SimG(k+1)

1 is defined as previously. Since J∗ = [nk+1], we must define Jbase = [1, n].

Moreover we have J∗i = [nk] for all 1 ≤ i ≤ n. This implies that for the gadgets G
(k)
j on the output

layer, the sets Jj are all equal to [nk] as well. The set Wbase is defined as previously, and the

simulator SimG(k+1)

1 returns (I∗1 , I
∗
2 ) as previously. The failure events F∗1 and F∗2 are still εk+1-

mutually unlikely, as required by the (Sk+1, f
(k+1))-RPE property of G(k+1).

The simulator SimG(k+1)

2 is defined as previously. In particular, from the running of the base
gadget simulator SimG

2 , we obtain a perfect simulation of the output wires ẑb|J ′base for some J ′base

with |J ′base| = n − 1. Combined with the perfect simulation of the output wires corresponding to

the output sets J ′j from the gadgets G
(k)
j on the output layer, with |J ′j | = nk−1, we obtain a subset

J ′ of output wires for our level-(k + 1) gadget with |J ′| = nk+1 − 1 as required. Eventually this
gives us a perfect simulation of

(
AssignWires(G(k+1),W∗, (x̂∗, ŷ∗)), ẑ|J ′

)
. This terminates the proof

of Theorem 2.

C.3 Proposition 3

We give here the proof of Proposition 3.

Proof. Let SimG
1 be the simulator from the (t, f)-wRPE property. This simulator outputs I1 and

I2 such that

Pr(F1) = ε1 ≤ ε , Pr(F2) = ε2 ≤ ε and Pr(F1 ∧ F2) = ε12 ≤ ε2 , (29)

where F1 ≡ (|I1| > t) and F2 ≡ (|I2| > t). We show how to construct SimG
1
′

which outputs I ′1 and
I ′2 such that

Pr(F ′1) = Pr(F ′2) = ε′ and Pr(F ′1 ∧ F ′2) = (ε′)2 with ε′ = ε+
3

2
ε2 (30)

where F ′1 ≡ (|I ′1| > t) and F ′2 ≡ (|I ′2| > t) and such that I1 ⊆ I ′1 and I2 ⊆ I ′2. In particular, the
latter implies that we can keep the same SimG

2 simulator since it is always given the same input
shares plus additional input shares to achieve the same simulation as before.

The simulator SimG
1
′

first calls the simulator SimG
1 to get I1 and I2. Whenever |I1| and |I2| are

both lower than t, i.e. no failure event occurs, which happens with probability psucc = 1 − (ε1 +
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ε2 − ε12), SimG
1
′

outputs

(I ′1, I
′
2) =


([n], I2) with probability p1 = δ1/psucc

(I1, [n]) with probability p2 = δ2/psucc

([n], [n]) with probability p12 = δ12/psucc

(I1, I2) with probability 1− (p1 + p2 + p12)

for some δ1, δ2, δ12 ≥ 0 such that δ1 + δ2 + δ12 ≤ psucc. We hence get

Pr(F ′1) = ε1 + δ1 + δ12

Pr(F ′2) = ε2 + δ2 + δ12

Pr(F ′1 ∧ F ′2) = ε12 + δ12

We must now fix δ1, δ2, δ12 ≥ 0 to satisfy (30), with ε′ := ε+ 3ε2/2 and δ1 + δ2 + δ12 ≤ psucc =
1− (ε1 + ε2− ε12). We fix δ12 = (ε′)2− ε12; this gives Pr(F ′1 ∧F ′2) = (ε′)2, and from (29) we obtain
δ12 ≥ 0 as required. We let:

δ1 := ε′ − ε1 − δ12

which gives Pr(F ′1) = ε′ as required. Moreover we obtain using (29):

δ1 = ε+
3

2
ε2 − ε1 −

(
(ε+

3

2
ε2)2 − ε12

)
≥ 3

2
ε2 −

(
ε2 + 3ε3 +

9

4
ε4

)
≥ ε2 ·

(
1

2
− 3ε− 9

4
ε2

)
≥ 0 for ε ≤ 0.14.

We obtain similar conditions for δ2 := ε′ − ε2 − δ12. Finally, we have

δ1 + δ2 + δ12 = ε′ − ε1 − δ12 + ε′ − ε2 − δ12 + δ12

= 2ε′ − ε1 − ε2 − (ε′)2 + ε12 = psucc + 2ε′ − (ε′)2 − 1

≤ psucc + 2ε′ − 1 ≤ psucc for ε < 0.14.

as required. ut

D Instantiation

D.1 Verification functions

In this section, we give the whole set of coefficients obtained for gadgets in Section 6. When sets of
coefficients are completed with . . . , then a bound of the subsequent function can be obtained from
the binomial coefficients as explained in Section 3. In such cases, the number of coefficients (as the
number of wires in the circuit) is given in a last column.

Verification timings are also given in the tables by running the tool a laptop computer (Intel(R)
Core(TM) i7-8550U CPU, 1.80GHz with 4 cores) using Ubuntu operating system.
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D.2 Addition Gadgets

Hereafter are the coefficients ci as defined in Section 3 for addition gadgets G1
add and G2

add defined
in Section 6.

gadget function coefficient computed by our automatic tool
(β = 5)

# wires Verification
Time (in s)

G1
add

f
(1)
1 {0, 3, 150, 3649, 53830, . . . }
f
(1)
2 {0, 3, 116, 2429, 34469, . . . }

36 148

f
(1)
3 {0, 0, 10, 495, 10959, . . . }
f
(2)
1 {0, 3, 144, 3342, 45611, . . . }
f
(2)
2 {0, 3, 110, 2208, 27580, . . . }
f
(2)
3 {0, 0, 4, 228, 4933, . . . }

G2
add

f
(1)
1 {0, 3, 118, 2457, 34998, . . . }

36 176

f
(1)
2 {0, 3, 106, 2035, 27812, . . . }
f
(1)
3 {0, 0, 0, 69, 3034, . . . }
f
(2)
1 {0, 3, 118, 2403, 29859, . . . }
f
(2)
2 {0, 3, 106, 2007, 22079, . . . }
f
(2)
3 {0, 0, 0, 9, 600, . . . }

D.3 Multiplication Gadgets

Hereafter are the coefficients ci as defined in Section 3 for multiplication gadget Gmult defined in
Section 6.

gadget function coefficient computed by our automatic tool
(β = 5)

# wires verification
time (in s)

Gmult

f
(1)
1 {0, 3, 1232, 60940, 1653719, . . . }

97 5228

f
(1)
2 {0, 7, 1688, 74662, 2152987, . . . }
f
(1)
3 {0, 0, 62, 5300, 291603, . . . }
f
(2)
1 {0, 3, 1254, 42135, 1428624, . . . }
f
(2)
2 {0, 11, 2135, 47322, 1437774, . . . }
f
(2)
3 {0, 0, 83, 4248, 255461, . . . }

D.4 Copy Gadgets

Hereafter are the coefficients ci as defined in Section 3 for the copy gadget Gcopy defined in Section 6.

gadget function coefficient computed by our automatic tool (β = s = 33) # wires verification
time (in s)

Gcopy

f1,1

{0, 33, 1137, 16812, 145288, 852472, 3750849, 13073855,

33 49

37574146, 91573962, 192726070, 354263297, 572852089,
818662608, 1037103082, 1166786707, 1166799413,

1037157725, 818809139, 573166437, 354817320, 193536720,
92561040, 38567100, 13884156, 4272048, 1107568,

237336, 40920, 5456, 528, 33, 1}

f1,2

{0, 30, 1285, 19887, 166695, 951201, 4021599, 13567630,
38231896, 92255103, 193295461, 354654683, 573074084,

818765733, 1037141693, 1166798076, 1166801950,
1037158129, 818809180, 573166439, 354817320, 193536720,

92561040, 38567100, 13884156, 4272048, 1107568,
237336, 40920, 5456, 528, 33, 1}

f2,1 same coefficients than f1,2

f2,2

{0, 27, 1433, 23538, 188460, 1016149, 4150387, 13760724,
38465921, 92491608, 193496624, 354798258, 573159259,

818807160, 1037157912, 1166803059, 1166803107,
1037158320, 818809200, 573166440, 354817320, 193536720,
92561040, 38567100, 13884156, 4272048, 1107568, 237336,

40920, 5456, 528, 33, 1}
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E Complexity of the MPC Protocol in the AIS Compiler

In the following we compute the complexity and the value of Ng in the instantiation of the AIS
compiler [2]. First, using this compiler, given a circuit C to compile, each gate G is implemented
using a functionality F associated to the MPC protocol. Such a functionality F receives m shares
of each input and then reconstructs them to obtain original values. This reconstruction can be
done with 2(m − 1) addition gates. Then after computing the gate G, m additive shares of the
output are computed twice. This step consists of one gate for G, and 2(m−1) gates for the additive
sharing along with 2(m− 1) random gates.7 So each gate G to compile is replaced by 6m− 5 gates,
each computed jointly by the m parties in the MPC protocol. Next, we state the complexity of
the protocol from [22]. Each gate in a functionality F is jointly computed by all m parties. In the
beginning, each party holds one share of each input.

The first step consists in a k-secret sharing of each input share where k =
(
m
c

)
. For an input of

m shares, each party will hold a total of m
(
m−1
c

)
shares. For two inputs, this step has a complexity

of m(2k − 2).
The second step is either performing an addition or a multiplication, depending on the gate G

associated to the functionality. An addition simply means each party locally adding all its shares,
holding a complexity of m

(
m−1
c

)
. In case of a multiplication gate, each party will locally compute

the sum of the product of the shares of both inputs, and then share its local result using a secret

sharing scheme as in the first step. This procedure holds a complexity of
(
m−1
c

)2
for computing the

result, m(2k − 2) for the secret sharing, and 2k2 copy gates. Clearly, the cost of the second step is
more important for the multiplication and can be upper bounded by8

(
m− 1

c

)2

+m · (2k − 2) + 2k2.

In the final step, every party broadcasts its shares to all other parties, and then adds all the
shares it receives. The complexity of this step is

(
m
c

)
.

Considering the cost of replacing each gate G in the circuit to compile by 6m−5 gates, and the
cost to compute each of these gates using the protocol Π, the total number of gates Ng is upper
bounded by

(6m− 5) ·

((
m− 1

c

)2

+m(2k − 2) + 2k2

)
.

7 In [2], the authors only consider 2(m − 1) for the cost of this step, not counting the number of random gates
necessary to compute the additive sharing of the output.

8 The authors claim in their paper a complexity of
(
m−1
c

)2
+2mk, since they do not take into account the copy gates

needed to compute the product of input shares.
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