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Abstract. A double-authentication preventing signature (DAPS) scheme is a digital signature scheme
equipped with a self-enforcement mechanism. Messages consist of an address and a payload component,
and a signer is penalized if she signs two messages with the same addresses but different payloads. The
penalty is the disclosure of the signer’s signing key. Most of the existing DAPS schemes are proved secure
in the random oracle model (ROM), while the efficient ones in the standard model only support address
spaces of polynomial size.
We present DAPS schemes that are efficient, secure in the standard model under standard assumptions
and support large address spaces. Our main construction builds on vector commitments (VC) and double-
trapdoor chameleon hash functions (DTC). We also provide a DAPS realization from Groth-Sahai (GS)
proofs that builds on a generic construction by Derler et al., which they instantiate in the ROM. The
GS-based construction, while less efficient than our main one, shows that a general yet efficient instantiation
of DAPS in the standard model is possible.
An interesting feature of our main construction is that it can be easily modified to guarantee security even
in the most challenging setting where no trusted setup is provided. It seems to be the first construction
achieving this in the standard model.
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1 Introduction

Digital signatures (DS) are a cryptographic primitive that guarantees authenticity and integrity. Its security is
defined via the notion of unforgeability, which protects the signer, and there is no notion of a signer behaving
badly. There are however applications in which the signer should be restricted; for example, a certificate authority
should not certify two different public keys for the same domain.

Double-authentication-prevention signatures (DAPS) are a natural extension of digital signatures that prevent
malicious behavior of the signer by a self-enforcement strategy. A message for DAPS consists of two parts,
called address and payload i.e., m = (a, p). A signer behaves maliciously if it signs two messages with the same
addresses but different payloads, that is, m1 = (a1, p1) and m2 = (a2, p2) with a1 = a2 and p1 6= p2. Such a pair
(m1,m2) is called compromising and the signer is penalized for signing a compromising pair by having its signing
key revealed. We next discuss typical applications of DAPS.

Certificate Subversion. Consider a certificate authority (CA) issuing certificates to different severs. A
certificate is of the form (server.com, pks, σs), where server.com is the domain, pks is the server’s public key
and σs is a signature on (server.com, pks) by the CA. Entities that trust the CA’s public key can now securely
communicate with server.com by using pks. Consider a national state court that has jurisdiction over the CA
and compels it to issue a rogue certificate for server.com for a public key under the control of an intelligence
agency. The latter can then impersonate server.com without its clients detecting the attack. Using DAPS for
certification gives the CA a strong argument to deny the order, as otherwise its key is leaked. It leads to an
all-or-nothing situation where if one certificate has been subverted then all have (as once the key is revealed,
everything can be signed).

Cryptocurrencies and Non-Equivocation Contracts. In traditional e-cash systems (such as [CFN90]),
double-spending is prevented by revealing the identity of the misbehaving party. This works well in systems
where some central authority (e.g. a bank) can take concrete actions to penalize dishonest behaviors (such as
blocking their accounts). In the setting of modern cryptocurrencies, disclosing the identity of users is much
harder to implement mainly because of the decentralized nature of these systems, and indeed double-spending is
typically prevented by consensus. Transactions are considered effective only after a certain amount of time. This
naturally prevents double-spending but induces delays to reach agreement. Using DAPS to sign transactions
could provide a strong deterrent to malicious behaviors. Double-spenders would disclose their secret signing keys,
which, for the case of Bitcoin, translates to an immediate financial loss.
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Translating to the DAPS setting, the address would be the coin and the payload the receiver when spending
it. This is reminiscent to accountable assertions [RKS15] (who give a ROM instantiation). For cryptocurrencies
it is natural to implement this mechanism via DAPS, as digital signatures are already needed to authenticate
transactions.

Practically, one can make non-equivocation contracts (i.e. contracts that allow to penalize parties that make
conflicting statements to others, by the loss of money) by combining a DAPS scheme and a deposit. To ensure
that an extracted DAPS secret key is a worthy secret, it can be associated to a deposit. Each party is required
to put aside a certain amount of currency in a deposit which can be securely retrieved by the owner at the end
of a time-locked session if the owner has not made conflicting statements during the session. Otherwise, anyone
obtaining the extracted secret key has access to the funds.

1.1 Challenges in Constructing DAPS

Here we discuss some general challenges in constructing DAPS regarding their security, efficiency and functionality.
Our aim is to construct a scheme that achieves a good balance among them.

Exponentially large address space. The address part of a message for DAPS typically refers to a user/coin identity.
Only allowing a polynomial number of predefined identities [DRS18b, Poe18] severely restricts the possible
applications, while an exponential number of addresses practically amounts to no restrictions, as one can use a
collision-resistant hash function to map into the address space.

Security against untrusted setup. DAPS schemes should satisfy two security notions. Unforgeability ensures that
signatures from an honest signer (who does not sign compromising message pairs) are secure against an outside
attacker. Key extractability requires that issuing signatures on compromising message pairs leaks the signer’s
signing key; the notion can be defined with respect to a trusted or untrusted setup. In the latter case, each signer
generates its own key pair, while assuming a trusted setup, which generates and distributes key pairs to the
signers, is arguably unrealistic.

The majority of existing DAPS constructions assumes a trusted setup [DRS18b,Poe18,PS14,BPS17]. Those
that do not, are in the random oracle model [RKS15] or have polynomial-size signatures (w.r.t the length of the
address) [BKN17] or only support small address spaces [DRS18b,Poe18].

Standard assumptions. While giving reductionist security proofs is the preferred method of gaining trust in a
cryptosystem, these guarantees are only meaningful if the underlying hardness assumptions have been well-studied.
Moreover, such analyses often rely on idealizations like assuming hash functions are random functions (in the
ROM). Our schemes are proven secure from very well-studied assumptions (e.g. RSA, CDH) and we do not make
idealizing assumptions in our proofs, i.e., they are in the standard model.

Efficient/concrete instantiations. Some prior DAPS schemes [DRS18a] that claim efficient size of the signatures
or achieve others of the above properties are black-box constructions from building blocks whose instantiation is
often left open. This can be a non-trivial task and leaves the concrete efficiency of such schemes unclear.

1.2 Our Contribution

In this paper we present new DAPS constructions that address all of the above challenges. In this sense, our
main contributions are as follows.

Exponentially large address spaces without random oracles. Most of the existing DAPS schemes
supporting an exponentially large address space need to rely on the RO heuristic (e.g. [RKS15,PS14,BKN17,
BPS17]). For some of these constructions such as the one based on ID-protocols, the need for the RO assumption
mainly comes from the transformation of an interactive protocol to an non-interactive version like the DAPS
scheme of [Poe18]. In the other schemes it is due to the fact that the simulator cannot simulate the signatures in
a security reduction. The RO assumption then lets the simulator program its responses without having access
to the signing key [RKS15]. We circumvent many of the difficulties arising in previous works by combining
vector commitments [CF13] and double-trapdoor chameleon hash functions [BCG07,CDFG08]. Our methodology
follows the authentication tree approach also adopted in a previous work [RKS15]: a signature is simply an
authenticated path from a leaf (the address part of the message) to a given root (the public key).

In previous work, the signer either had to create the whole tree in advance (thus limiting the address space
to polynomial size) or use the random oracle to be able to deal with exponentially large address spaces. In our
construction the signer creates the tree incrementally using the equivocation properties of the chameleon hash.
Moreover, we prove our schemes secure by relying on the double-trapdoor property: the simulator will be able to
issue signatures by knowing only one of the two trapdoors. If an adversary manages to create a forgery (or if it
signs a compromising pair), our reduction uses this information to extract the other trapdoor with non-negligible
probability. Moreover, we use vector commitments [CF13] to realize a “flat” authentication tree (i.e. a tree
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Table 1: Comparison with related works. Here n is the bit length of the address, which we write as n = h · log q
for integers h and q; values n0 and q0 = poly(n0) are LWE parameters, and polyNIZK stands for the proof size in
the underlying NIZK system for statements of length n. The notation |G| stands for the size of group elements,
λH is the bit length of the random oracle output, and N is an RSA modulus.

Scheme |Sign| |vk| Assumption ROMaddressuntrusted
space setup

[Poe18] |G| O(2n) DLog yes poly. no
[RKS15] q · h · |G| O(1) DLog yes exp. yes
[PS14] (λH + 1) · logN O(1) Fact yes exp. no
[BPS17] logN O(1) Fact yes exp. no
[BKN17] O(n2

0 log q0) O(n4
0 log3 q0) LWE/SIS yes exp. yes

[DRS18b] polyNIZK(n) O(2n) DLog yes poly. yes
[LGW+19] logN or 2 · |G| O(1) Fact or CDH yes exp. yes
[DRS18a] polyNIZK(n) O(1) PRF& OWF yes exp. yes
DAPS-GS 36n · |G| O(1) SXDH no exp. no
DAPS-VC-DTC 3h · |G| q CDH no exp. no
DAPS-DTC q · h · |G| O(1) DLog no exp. yes

with branching degree q > 2). Since both vector commitments [CF13] and double-trapdoor chameleon hash
([BCG07,CDFG08], see also our DTC scheme in Appendix D) can be realized under standard assumptions, the
security of our schemes relies on the same assumptions (w.r.t. the trusted setup for the VC scheme).

Security in untrusted setup. Interestingly, our construction can be easily extended to the setting where
no trusted setup is available. This comes at the cost of slightly longer signatures and is in sharp contrast to
previous proposals that all rely on trusted setup (or random oracles). The basic intuition here is that double-
trapdoor chameleon hash functions can be realized in an untrusted setup (see our DTC scheme in Appendix D),
and substituting the vector commitments with a standard collision-resistant hash function, the construction
highlighted above still works. The downside is that the produced signatures are now longer, as more values have
to be stored in the authentication chain. While the DTC schemes suggested in [BCG07,CDFG08] are considered
w.r.t. a trusted setup, here we present a DTC scheme without a trusted setup. The idea of our suggested DTC
scheme was vaguely addressed in [CDFG08] (Section 3.1, full version), we present a concrete construction and
prove the security of our suggested DTC in untrusted setup.

We also slightly generalize the definition of key-extractability such that the adversary can succeed even when
it manages to produce compromising messages that do not reveal a specified sensitive information about the
secret key (and not necessarily the full secret key).

A Groth-Sahai-based construction. As additional contribution of this paper we propose a DAPS construction
from Groth Sahai proofs [GS08] (DAPS-GS), which builds upon a construction recently proposed by Derler
et al. [DRS18a]. The scheme, which we will refer to as DAPS-DRS, supports an exponentially large address
space and is based on NIZK proofs, which the authors instantiated in the random oracle model. We modify their
construction so that the NIZK proof system can be instantiated with the Groth-Sahai proof system [GS08]. This
system provides efficient NIZK proofs in the standard model and under standard assumptions, for a restricted
class of languages.

An interesting difference between our DAPS-GS scheme and DAPS-DRS is that the latter uses a value-key-
binding PRF, which prevents the signer from changing the PRF secret key. We assign this task to a commitment
scheme and can therefore relax the requirements on the PRF to standard PRF security. The authors of DAPS-
DRS instantiate their key-value binding PRF F with the block cipher LowMC. They thus need to make the
(arguably non-standard) assumption that this block cipher is a value-key-binding PRF, as they do not present
any proof for this. The commonality of our DAPS schemes (DAPS-VC-DTC and DAPS-GS) is that they are
both in the standard model and support large address spaces. In fact, we instantiate the generic construction of
[DRS18a] by Groth-Sahai NIZK proof system (as DAPS-GS) to provide a standard-model scheme and compare
it against our main, more efficient (secure), DAPS-VC-DTC (DAPS-DTC).

As a final note, we remark that our solutions compare favorably to previous work not only in terms of security
guarantees, but also in terms of efficiency. Our most efficient construction based on vector commitments also
provides nice trade-offs between the size of its signatures and the size of its verification keys: verification keys
grow with the branching degree q of the underlying authentication tree, while signatures grow with the depth h
of the tree. A more precise comparison with previous works is given in Table 1.
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1.3 Related work

Ruffing et al. [RKS15] presented a DAPS scheme based on Merkle trees and chameleon hash functions in
the random oracle model. Their scheme can support an exponentially large address space by using a flat-tree
construction. In their construction, each leaf is associated with a unique address. Some values are assigned on
the fly to nodes from leaf to the root, and a signature is an authentication chain. This flat-tree construction and
the idea of value assignments on the fly has also been used in other constructions [CD96,CG05].

Poettering [Poe18] gave a DAPS scheme based on a three-move identification scheme in the random oracle
model. Another drawback of this scheme is that it only supports small address spaces, essentially because each
address is associated with a verification key

Bellare et al. [BPS17] proposed a similar solution but managed to avoid the restriction to small address
spaces by introducing a trapdoor-ID scheme. Their solution still relies on random oracles though, and it also
requires a trusted setup.

Poettering and Stebila [PS14] presented a DAPS based on extractable 2-to-1 trapdoor functions (2:1-TF) in
the random oracle model. A 2:1-TF is a trapdoor one-way function for which every element of the range has
precisely two preimages and holding the trapdoor allows to easily invert the function. Again, the scheme requires
a trusted setup and the ROM.

Boneh et al. [BKN17] proposed a lattice-based DAPS scheme based on the hardness of LWE and SIS problems.
Their construction is a black-box DAPS scheme based on a variant of trapdoor dual-Regev encryption system
[GPV08] resulting in non-linear-size signatures and verification keys. This construction also relies on random
oracles.

Finally, Derler et al. [DRS18a] presented a general DAPS from non-interactive zero-knowledge proof systems
that supports an exponentially large address space. While their generic construction does not rely on random
oracles, their instantiation does. Since any NIZK in the common reference string (CRS) model relies on a trusted
setup, so does any DAPS construction based on NIZK. If we do not accept non-falsifiable assumptions, then an
alternative is NIZK in ROM, e.g., using the Fiat-Shamir transformation [FS87].

In [LGW+19], a signer is behaving maliciously if it issues at least three signatures and there is a compromising
pair among them. The penalty, for the misbehaving signer, is milder as well where instead of the disclosure
of the signing-key, a forgery on his previously signed messages would be possible by other participates in the
system. More precisely, when the signer issues three signatures on (a, p1), (a, p2) and (a′, p) (two first ones as
the compromising pair), then a signature can be forged on (a′, p∗). Meaning that, each double-spending (a, p1),
(a, p2) allows other users to double-spend the fund a′ which is already spent by the malicious signer. While this
security notion still makes sense in the related applications, the scheme is proved secure in the ROM.

2 Preliminaries

Notations. We denote the security parameter by κ ∈ N and x← X means that element x is chosen uniformly
at random from set X. If A is a probabilistic algorithm, y ← A(·) denotes the process of running A on some
appropriate input and assigning its output to y. All algorithms run in probabilistic polynomial-time (p.p.t.) unless
stated otherwise. We denote concatenation by || and the set {1, . . . , n} by [n]. We say negl(κ) is a negligible
function if for every positive polynomial p(κ) there exists κ0 ∈ N such that for all κ > κ0: negl(κ) < 1/p(κ).

2.1 Digital Signatures

A digital signature (DS) scheme is defined as follows.

Definition 2.1 (Digital signature scheme). A digital signature scheme is a tuple of p.p.t. algorithms
Σ = (KeyGen,Sign,Verif) as follows:

– KeyGen(1κ): On input security parameter κ in unary, it outputs a signing key sk and a verification key vk
(which implicitly defines the message spaceM).

– Sign(sk,m): On input signing key sk and message m ∈M this outputs a signature σ.
– Verif(vk,m, σ): On input verification key vk, message m ∈M and signature σ, this algorithm outputs either
0 or 1.

Correctness. Signature scheme Σ is correct if for all κ ∈ N and for all m ∈ M, where (sk, vk)← KeyGen(1κ)
and σ ← Sign(sk,m), we have Pr [Verif(vk,m, σ) = 1] = 1, where the probability is taken over the coins of
KeyGen and Sign.
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KExtTr
DAPS,A(κ):

(sk, vk)← KeyGen(1κ)
(S1, S2)← A(sk, vk)
sk′ ← Ext(vk, S1, S2)
Return 1 iff
− (S1, S2) is compromising
− 0← Compvk(sk′)

KExtUTr
DAPS,A(κ):

(vk;S1, S2)← A(1κ)
sk′ ← Ext(vk, S1, S2)
Return 1 iff
− (S1, S2) is compromising
− 0← Compvk(sk′)

Fig. 1: Game for key-extractability of DAPS.

ForgADAPS(κ):
(sk, vk)← KeyGen(1κ)
Q← ∅
(a∗, p∗, σ∗)← ASign(sk,·)(vk)
Return 1 iff:
− Verif(vk, a∗, p∗, σ∗) = 1
− (a∗, p∗) /∈ Q

Oracle Sign(sk, (a, p)):
If ∃ p′ 6= p : (a, p′) ∈ Q then

return ⊥
σ ← Sign(sk, a, p)
Q← Q ∪ {(a, p)}
Return σ

Fig. 2: Experiment for EUF-CMA security of DAPS

2.2 Double-Authentication-Preventing Signatures

Double-authentication-preventing signature (DAPS) schemes are a subclass of digital signatures where the
message to be signed is split into two parts; an address and a payload5 (i.e., in Definition 2.1, m = (a, p) ∈ U ×P).

Informally, compromising messages are (signed) pairs of messages with the same addresses but different
payloads.

Definition 2.2 (Compromising pair of signatures [PS14]). For a fixed verification key vk, a pair (S1, S2)
where S1 = (a1, p1;σ1) and S2 = (a2, p2;σ2), is compromising if

Verif(vk, (a1, p1), σ1) = 1, Verif(vk, (a2, p2), σ2) = 1, a1 = a2 and p1 6= p2.

For a DAPS scheme, the key-extractability (KE) game is defined, where a malicious signer tries to produce
a compromising pair of signatures that does not lead to the revelation of a signing key which is compatible
with its verification key. To make our definition more general, we allow the adversary to succeed even when it
manages to produce compromising messages that do not reveal sensitive information about the secret key (and
not necessarily the full secret key).

This is captured via the Comp predicate that, informally, outputs 1 if the input is compatible with the public
verification key. The exact meaning of this “compatible” depends on the specific application, but clearly for any
(sk, vk)← KeyGen(1κ) it should be the case that 1← Compvk(sk).

Definition 2.3 (Key extractability [PS14]). A DAPS scheme is key extractable if there exists a p.p.t.
algorithm Ext, as follows:

– Ext(vk, S1, S2): On input verification key vk and a compromising pair (S1, S2), outputs a signing key sk′.

such that for all adversaries A, there is a negligible function negl(κ) such that, Pr[KExtTr/UTr
DAPS,A(κ) = 1] ≤ negl(κ)

where the experiment KExtTr/UTr
DAPS,A(κ) is as described in Fig. 1.

We say that a DAPS scheme is KE in trusted setup if this holds for experiment KExtTr
DAPS,A, and it is KE in

untrusted setup if it holds for KExtUTr
DAPS,A.

Since DAPS schemes are a subclass of digital signatures, the standard existential unforgeability (Definition A.1)
should also be satisfied for a DAPS scheme. This requires a restriction though, as the adversary could obtain the
signing key if it was allowed to query compromising pairs to its signing oracle.

Definition 2.4 (Unforgeability of DAPS). A DAPS scheme Σ is existentially unforgeable under adaptive
chosen-message attacks (EUF-CMA) if for all p.p.t. adversaries A there exists a negligible function negl such
that Pr[ForgADAPS(κ) = 1] ≤ negl(κ), where ForgADAPS(κ) is described in Fig. 2.

5 In [PS14] these two parts are referred as subject and message, and in [RKS15] as context and statement. Here we are
following the terminologies from [Poe18])
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2.3 Vector Commitments

A vector commitment (VC) is a primitive allowing to commit to an ordered sequence of q values, rather than to
single messages [CF13]. One can later open the commitment at a specific position.

Definition 2.5 (Vector commitments [CF13]). A VC scheme is a tuple of p.p.t. algorithms VC =
(Setup,Cmt,Open,Verif) as follows:

– Setup(1κ, q): On input security parameter κ and the length q of the committed vector (with q = poly(k)),
outputs public parameters pp (which are an implicit input to all algorithms and define the message spaceM).

– Cmtpp(m1, . . . ,mq): On input a sequence of q messages m1, . . . ,mq ∈M, it outputs a commitment string C.
– Openpp(m1, . . . ,mq;m, i): It produces a proof Λi that m is the i-th committed message in the sequence
m1, . . .mq.

– Verifpp(C,m, i, Λi): Outputs 1 iff Λi is a valid proof that C commits to a sequence m1, . . . ,mq with m = mi.

Definition 2.6 (Correctness of VC). A VC is correct if, for all κ ∈ N and q, and for all vectors (m1, . . . ,mq) ∈
Mq, we have

Pr

pp← Setup(1κ, q)
C ← Cmtpp(m1, . . . ,mq)
Λi ← Openpp(mi, i)

: Verifpp(C,mi, i, Λi) = 1

 = 1.

The security requirement for a VC scheme is position binding and requires that for any p.p.t. adversary holding
pp, it should be infeasible to produce a commitment C and openings to two different messages for the same
position.

Definition 2.7 (Position binding). A VC scheme VC satisfies position binding if for all i ∈ {1, . . . , q} and
p.p.t. adversary A we have Pr[PBindAVC(κ) = 1] ≤ negl(κ) where the game PBindAVC(κ) is defined as Fig. 3.

PBindAVC(κ):
pp← Setup(1κ)
(C,m,m′, i, Λ, Λ′)← A(pp)
Return 1 iff m 6= m′ and

Verifpp(C,m, i, Λ) = 1, Verifpp(C,m′, i, Λ′) = 1

Fig. 3: Game for position-binding of a VC scheme

Finally, a VC scheme is concise if the size of the commitment string C and the output of algorithm Open are
both independent of q.

2.4 Double-Trapdoor Chameleon Hash Functions

A double-trapdoor chameleon (DTC) hash function scheme has two independent trapdoors such that knowing
either of them lets one find collisions efficiently.

Definition 2.8 (DTC hash function [CDFG08]). A DTC scheme H is a tuple of p.p.t. algorithms H =
(KeyGen,TrChos,CHash,Coll) defined as follows.

– KeyGen(1κ): On input the security parameter κ, it outputs a triple of public/private keys (pk, tk0, tk1) (which
implicitly defines the message spaceM).

– TrChos(1κ, i): On input the security parameter κ and a bit i, it outputs a pair of public/private keys (pk, tki).
– CHashpk(m, r): On input the public key pk, a message m ∈M and one (or more) random nonce r ∈ R, it
outputs a hash value.

– Coll(pk, tki,m′,m, r): On input one of the two trapdoor keys tki, two messages m,m′ and a nonce r, it
outputs a nonce r′ such that CHashpk(m, r) = CHashpk(m′, r′).

In the definition of algorithm Coll, the pair (m, r) and (m′, r′) is called a collision pair where CHashpk(m, r) =
CHashpk(m′, r′). For a DTC scheme, the following security requirements were given [CDFG08].

Definition 2.9 (Security of DTC).
Distribution of keys. Let KeyGen(1κ, i) be the algorithm that executes the algorithm KeyGen(1κ) and restricts
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its output to (pk, tki). It is required that the distribution of the output of KeyGen(1κ, i) is identical to the
distribution of the output of TrChos(1κ, i). 6

Collision-resistance (CR). Let (pk, tk0, tk1)← KeyGen(1κ). For every i = 0, 1, given pk and tki it is infeasible
to find tk1−i. Formally, in the game DTCollADTC depicted in Fig. 4, for a DTC scheme and any p.p.t. adversary
A, there exists an negligible function negl such that, Pr[DTCollADTC(κ) = 1] ≤ negl(κ).

Key-extractability (KE). We say that a DTC scheme is key-extractable if there exists a p.p.t. algorithm Ext,
as follows;

– Ext(pk, S1, S2): On input the public key pk and a collision pair (S1, S2), outputs a (single) secret key tk′.

such that for all adversaries A, there is a negligible function negl(κ) such that, Pr[KExtTr\UTr
DTC,A(κ) = 1] ≤ negl(κ)

where the experiment KExtTr\UTr
DTC,A(κ) is as Fig. 5.

Distribution of collisions. For every m,m′, and a uniform-random r, the distributions of r′ = Coll(tki,m,m′, r)
for i = 0, 1, are identical (uniform), even when given CHashpk(m, r), m and m′.

DTCollADTC(κ) :
(pk, tk0, tk1)← KeyGen(1κ), b R← {0, 1}
tk′ ← A(pk, tkb)
Output 1 iff tk′ = tk1−b.

Fig. 4: Collision-resistance game for a DTC scheme

2.5 Non-interactive Zero-Knowledge proof system

Let L = {x | ∃w : R(x,w) = 1} be a language in NP. A non-interactive zero knowledge (NIZK) proof system for
L is formally defined as follows.

Definition 2.10 (NIZK proof system). A NIZK proof system Π consists of three p.p.t. algorithms (Setup,Prove,
Verif) where

– Setup(1κ) takes the security parameter κ as input and outputs a common reference string crs (which implicitly
defines the language L).

– Prove(crs, x, w), takes the crs, a statement x and a witness w as input and outputs a proof π.
– Verif(crs, x, π) takes the crs, the statement x, and a proof π as input and outputs a bit 0/1.

For a NIZK proof systemΠ = (Setup,Prove,Verif) some security requirements are defined and used in Appendix E.

6 One is running KeyGen(1κ, i) has the knowledge of both trapdoors (or there exist an algorithm KeyGen(1κ) with such
knowledge), while for TrChos is not so. Thus, the “key-distribution” property here, is simply saying that you still can
run the algorithms CHash,Coll of DTC scheme only by knowledge of one of the trapdoors and pk.

KExtTr
CHF,A(κ):

(pk; tk0, tk1)← KeyGen(1κ)
(S1, S2)← A(pk, tk0, tk1)
tk′ ← Ext(pk, S1, S2)
Outputs 1 iff
-(S1, S2) is a collision pair
- tk′ 6= tk0 and tk′ 6= tk1.

KExtUTr
CHF,A(κ):

(pk;S1, S2)← A(1κ)
tk′ ← Ext(pk, S1, S2)
Outputs 1 iff
-(S1, S2) is a collision pair
- tk′ 6= tk0 and tk′ 6= tk1.

Fig. 5: KE game for a DTC scheme. The left game is in the trusted setup and the right game is in the untrusted
setup.
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3 A DAPS Scheme From VC and DTC (DAPS-VC-DTC)

3.1 Construction

In this section we present our DAPS scheme based on vector commitments and double-trapdoor chameleon
hash function. Our scheme will make use of a “flat” q-ary tree (i.e. a tree with branching degree q) of height h,
which we call the signing tree. The root of the tree will be a public value Cε that will be part of the public key.
Recall that in DAPS, messages are tuples of the form (a, p). The a component is interpreted as an integer in the
range {0, . . . , qh − 1}. We can univocally associate each a to a path connecting the root with one leaf of the tree.
In particular, a can be viewed as a number representing the labeling of the leaf in q-ary encoding (see the toy
example in Fig. 6 for q = 3). In what follows pathu→w denotes the ordered sequence of nodes connecting node u
to node w. The root will be denoted by ε. Note that each node u has a unique position in the tree which we
denote by posu. In fact, when u is the i-th node, from left-to-right, in the j-th level of the tree, we set posu = j||i.

Overview of the scheme. We start with an informal description of the stateful version of our scheme where
the signer needs to keep track of the produced signatures. The public key contains the public parameters for a
vector commitment scheme VC and for a double-trapdoor chameleon hash function DTC. The private key is the
corresponding trapdoor information. The public key also contains a value Cε which is computed as follows. The
signer first computes CHash on q random inputs to get the output values m1, . . . ,mq. Next, she sets Cε as the
value obtained when using VC to commit to the vector m1, . . .mq. The value Cε is assigned to the root of an,
initially empty, tree.

Informally, the signature algorithm will “fill up” this tree on the fly. To sign the message (a, p), the signer
will place p as the a-th leaf and will output an authentication chain that links p to the root Cε. The verifier will
follow this authentication chain and if the end of the chain matches the value in the public key, accepts the
signature. Now we describe more in detail how the signer creates the authentication chain. Starting from the a-th
leaf the signer produces the signature by augmenting the existing tree with the new authentication path. This is
done using the following create and connect approach. First, the signer generates the possibly missing portion of
the subtree containing the a-th leaf. Next, it connects this portion to signing tree. Creating the missing portion
of the tree essentially amounts to creating all the missing nodes. Specifically, and letting a = (a0, . . . , ah) be
the q-ary encoding of a, the signer computes mah

= CHash(ph, r) where ph = p (for some randomness r) and,
for i ∈ {0, . . . , q} \ {ah}, mi = CHash($i, ri) for random $i, ri. Next the signer computes ph−1 = Cmt(m) with
m = (m0, . . . ,mq). The process is then repeated in a bottom-up fashion, until no more nodes need to be created.
This happens when the newly created pj needs to be inserted in a position already occupied by some other value
$j 6= pj (i.e. for which a value CHash($j , rj) was previously computed). This is when the connect phase begins.
The signer uses knowledge of the trapdoor key to find a “colliding” r such that CHash($j , rj) = CHash(pj , r).

In Fig. 7 we provide a pictorial representation of the key generation phase (for the toy case with branching
degree 3). Black nodes indicate values that are obtained as outputs of the (vector) commitment and will not
be altered any further in the future. The yij values are interpreted as outputs of CHash($ij , rij). Gray nodes
indicate the frontier of the tree, i.e., nodes that are either leaves or roots of subtrees not yet explored.

Similarly, Fig. 8 pictorially describes (a toy example of) the signing procedure. To sign the message (a1 =
000, p1), one first creates the missing part of the tree, as sketched above. This also requires the signer to store all
the commitments associated to each node. Once the procedure reaches a frontier node, the signer uses knowledge
of the trapdoor to find a collision for CHash. In Fig. 8 this is what happens to node 1 that, once connected
with the newly created subtree, becomes black. Notice that the collision finding procedure typically alters the
associated randomness r̂11. This change will be done once and for all at this stage, as once the node is blackened
no further modifications are allowed. To complete the procedure, the signer also produces valid openings Λ for all
the commitments encountered in the path from the leaf p1 to the root and updates the lists of data associated
to each node.
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Cε = Cmt(y11, y21, y31)

($11, r11) ($21, r21) ($31, r31)

Fig. 7

Cε, Λε

1
update: ((C11, r̂11, Λ11))

(C12, r12, Λ12)

(p1, r13) ($23, r23) ($33, r33)

($22, r22) ($32, r32)

($21, r21) ($31, r31)

Fig. 8

Formal description of the scheme. We are now ready to present a formal description of our scheme. Let VC =
(VC.Setup,Cmt,Open,VC.Verif) be a vector commitment (VC) scheme and DTC = (DTC.KeyGen,Trapdr,CHash,Coll)
a double-trapdoor chameleon (DTC) hash function such that Cmt :Mq → Ovc and CHash : (P,R)→ Odtc. Let
H1 : Ovc → P and H2 : Odtc →M be two collision-resistant hash functions. The underlying data structure will
be a tree T of branching degree q and height h. Messages are tuples of the form (a, p) with payload component
p ∈ P and where a is an element in the address space U = {0, . . . , qh − 1}. We use the label ε for the root. Also,
we say that v is a child of u in position i, when v is the i-th child of u (counting from left). A pseudo-random
function F is used to generate the random values ($ij , rij) as $ij = Fk(j||i, 0) and rij = Fk(j||i, 1) (to avoid
keeping track of used randomnesses) where k is part of the signing key. And as we defined, posu = j||i denotes
the unique position of node u in the tree. A complete description of the scheme is given in Fig. 9.

Remark 3.1. Note that intuitively for any DAPS scheme, signing is inherently stateful as the signer needs to
remember the signed addresses in order not to sign a compromising pair. This is important for unforgeability
rather than for correctness. Keeping track of the signed addresses can be efficiently done using a bloom filter
[RKS15].

3.2 Security Analysis

We prove the security of our construction via the following two theorems, first key-extractability (Definition 2.3),
then unforgeability (Definition 2.4). For the key-extractability of our DAPS scheme, we show that if a malicious
signer tries to sign a compromising pair of messages, then one of the trapdoors of DTC will be revealed. Formally,
we have the following theorem where we consider the KE property of our DAPS scheme, w.r.t the predicate
Comppk(·) where Comppk(tk′) = 1 iff tk′ = tk0 or tk′ = tk1 and tki is the trapdoor of DTC scheme.

Theorem 3.2. If VC is position-binding, DTC is key-extractable and H1, H2 are collision-resistant hash functions,
then our construction (Fig. 9) is key-extractable w.r.t. the predicate Comppk(·) (as above, and w.r.t. the trusted
setup for VC). More precisely,

Pr[KExtTr
DAPS,A(κ) = 1] ≤ Pr[HCollBH1

(κ) = 1]

+ 3(Pr[KExtTr/UTr
DTC,C (κ) = 1] + Pr[HCollB

′

H2
(κ) = 1] + Pr[PBindDVC(κ) = 1]).

Proof-sketch. The general intuition of the proof is as follows. By contradiction, we assume that a malicious signer
can produce two valid signatures for a compromising pair without leaking any of her secret keys. We note that for
any compromising pair, the authentication path to the root is the same and the end of the chain is fixed via the
verification key. This means, the only way that a malicious signer can issue two valid signatures for a compromising
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KeyGen(1κ, q, h, ):

– choose k R← KF and hash function families H1 and H2.
– run ppVC ← VC.Setup(1κ) and (pkDTC, tk0, tk1)← DTC.KeyGen(1κ)
– set $i1 = Fk(1||i, 0) and ri1 = Fk(1||i, 1), for i = 1, . . . , q
– compute the DTC-value mi = H2(CHash($i, ri)), i = 1, . . . , q
– compute the VC-value Cε = CmtppVC(m1, . . . ,mq)
– Return vk = (H1, H2, ppVC, pkDTC, Cε) and sk = (tk0, tk1, k).

Sign(vk, sk, (a, p)):

– set σ = ∅
• Frontier-node. let u∗ ∈ patha→ε be the frontier-node of the existing part of the tree (the first node on patha→ε
such that DTC-value is assigned).
• Creation Phase. (to create the subtree rooted in u∗) for u ∈ patha→u∗ (except u∗):

1. if u is a leaf: set ru = Fk(posu, 1), pu = p, mu = H2(CHash(pu, ru)) and σ := σ||ru.
if u is not a leaf: set Cu = Cmt(m1, . . . ,mq) where mi is assigned to the ith child of u, set also pu = H1(Cu),
ru = Fk(posu, 1), mu = H2(CHash(pu, ru)) and σ = σ||(ru, Cu, Λu) where Λu = Open(mv, i) such that
v ∈ patha→ε is the i-th child of u.

2. for each sibling v of u, set $v = Fk(posv, 0) and rv = Fk(posv, 1), then compute mv = H2(CHash($v, rv)).
• Connection Phase.(at node u∗)

1. if u∗ is a leaf: set pu∗ = p, run r̂u∗ ← Coll(tki, ($u∗ , ru∗), pu∗) (for i ∈ {0, 1}) and set σ||r̂u∗ .
if u∗ is not a leaf: compute Cu∗ = Cmt(m1, . . . ,mq) and set pu∗ = H1(Cu∗). Then run r̂u∗ ←
Coll(tki, ($u∗ , ru∗), pu∗) and set σ||(r̂u∗ , Cu∗ , Λu∗) where Λu∗ = Open(mv, i) such that v ∈ patha→ε is the
i-th child of u∗.

2. let w be the parent of u∗, update Λw as Λw ← Open(mu∗ , i) such that u∗ is i-th child of w. If w 6= ε,
set σ := σ||σw→ε where σw→ε is the authentication-chain from w to the root(with updated Λw). Else, set
σ := σ||Λw

– Return σ

Verif(vk, (a, p), σ):

– parse vk as (H1, H2, ppVC, pkDTC, Cε) and σ as (rh, (rh−1, Ch−1, Λh−1), . . . , (rε+1, Cε+1, Λε+1), Λε). Then set
patha→ε = {ah, ah−1, . . . , ε}.

– Set mh = H2(CHash(p, rh)) and mj = H2(CHash(H1(Cj), rj)) for j = h− 1, . . . , ε+ 1
– For j = h− 1, . . . , ε: check that VC.Verif(Cj ,mj+1, i, Λj) = 1 where node aj+1 is the i-th child of node aj .
– if all the verifications pass, return 1, otherwise return 0.

Fig. 9: Our DAPS-VC-DTC scheme.

pair is to find a “collision node” on the path. That is, the values of the authentication chains for these two
signatures should collide at some point and be equal after. Intuitively, due to the security of hash functions H1,
H2 and the position-binding property of the VC scheme (which only rely on public parameters over which the
signer has no control), the signer must find a collision node by creating a DTC-collision. Since this DTC-collision
can be extracted through the signatures, then by key-extractability of DTC, one of the DTC-trapdoors would be
revealed. We make this intuition formal in Appendix B. It remains to prove unforgeability of our DAPS scheme.

Theorem 3.3. If VC is position-binding, DTC is a secure DTC scheme (Definition 2.9), F is PRF and H1 and
H2 are collision-resistant hash functions, then our DAPS scheme is EUF-CMA secure. More precisely if h is the
height of tree,

Pr[ForgADAPS(κ) = 1] ≤ (2h− 2) · (2 Pr[DTCollBDTC(κ) = 1] + 2 Pr[PRFDFk
(κ) = 1]

+ Pr[KExtTr
DTC,A′(κ) = 1] + Pr[HCollB2

H2
(κ) = 1]

+ Pr[PBindB
′

VC(κ) = 1] + Pr[HCollB1
H1

(κ) = 1]),

Proof-Sketch. The proof goes by contradiction. We assume that the proposed scheme is not secure, this means
that there exists an adversary A that can forge signatures with non negligible probability. Then we show that if
such an A exists, we can use it to build a simulator S that can break one of the assumptions we started from.

First notice that the interaction of A with the signer should be as follows. Initially A obtains the public
key. Then she is allowed to receive signatures σi for a certain (polynomial) number of messages (ai, pi) of her
own choice. Each σi will be an authentication chain of the form (rh, (rh−1, Ch−1, Λh−1), . . . , (rε+1, Cε+1, Λε+1),
Λε) where each rj is a random element, each Cj is a (vector) commitment of q hashed values and each Λj a
corresponding opening. The main intuition underlying the proof is that a simulator knowing only one (say tkb,
where b is a bit) of the two trapdoors associated with the double trapdoor chameleon hash function will be able
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to perfectly simulate a real signer. This means that S will be able to answer all the signing queries asked by A
correctly. At the same time, if A produces a valid forgery ((a∗, p∗), σ∗), S will be able to use it to either break
the collision resistance of the underlying hash functions or to confute the position binding property of the vector
commitments or to extract the remaining trapdoor tk1−b, with non negligible probability. Slightly more in detail,
the simulator will work as follows. First it creates a public key in a way that is very similar to what prescribed by
the KeyGen algorithm of DAPS scheme. The most important difference is that now S uses a DTC hash function
for which it knows only one of the two corresponding trapdoors. Notice that by the security properties of DTC,
this will induce (public) keys whose distribution is perfectly indistinguishable with respect to correctly generated
ones. Next, whenever the adversary asks a signing query on the message (ai, pi) the simulator will generate a
corresponding signature essentially as the real signer would do. The only difference, we stress, is that collisions for
the DTC are resolved using tkb, i.e. the only trapdoor known by the simulator. Again, by the security of the DTC
this will induce collisions whose distribution is identical to that of those created by the real signer. Thus, the
signatures produced by the simulator are perfectly indistinguishable with respect to the signatures a real signer
would generate. Notice also that, exactly as for real signatures, each issued signature contributes to the creation
of an authentication tree that must be maintained by the simulator. Now assume that A manages to produce
a forgery σ∗ = (r∗h, (r∗h−1, C

∗
h−1, Λ

∗
h−1), . . . , (r∗ε+1, C

∗
ε+1, Λ

∗
ε+1), Λ∗ε ) on a (up to now) unsigned message (a∗, p∗).

We argue that the public key and the verification tests on valid signatures imply that the forged signature
must, at some point, deviate from the authentication tree created by the simulator. This means that there
exists a previously issued signature ((ai, pi), σi = (rh, (rh−1, Ch−1, Λh−1), . . . , (rε+1, Cε+1, Λε+1), Λε)) and an
index 0 ≤ j ≤ h, such that j is the smallest index for which (rj 6= r∗j ) ∨

(
C∗j 6= Cj

)
∨
(
Λj 6= Λ∗j

)
(for ease of

notation we assume here that ε is interpreted as 0). It is not too hard to see that each combination of the above
conditions allows the simulator to either break the collision resistance of (one of) the underlying hash functions,
or to confute the position binding of the vector commitment or to break the security of the double trapdoor
chameleon hash function. This latter point is the most delicate and deserves some further explanation. Recall
that the simulator is already capable of finding collisions for the DTC, as it knows one of the two trapdoors (i.e.
tkb) associated to it. Even worse, it had to compute many such collisions in order to be able to sign correctly.
The catch here is that, during the whole signing process, the bit b associated with tkb remains information
theoretically hidden to the adversary. As discussed above, this is because of the distribution of collisions property
of DTCs (and the fact that the simulation is stateful). Thus, the forgery produced by A cannot depend on b.
Concretely, this means that if σ∗ provides a collision for the DTC, Key-extractability guarantees that such a
collision will allow S to extract tk1−b with non-negligible probability. The formal proof is given in Appendix C.

3.3 Extension to Untrusted Setup (DAPS-DTC)

We discuss a simple modification of our DAPS-VC-DTC to make it secure w.r.t. untrusted setup. Since there
are not instantiations for VC scheme without a trusted setup, we remove the VC scheme and also H1 from the
construction and replace them with a collision-resistant hash function H :Mq → P such that in each node u, all
the chameleon-values associated with its children (except the child on the current path to the root) should be
stored in the authentication chain. This means we will lose a q factor of efficiency in terms of the signature-size.
We call this modification DAPS-DTC and instantiate it with our suggested DTC scheme in Appendix D. Clearly,
this change does not affect the security since the only property we expect from a VC scheme in our construction
is position binding. And replacing VC and H1 with a collision-resistant hash function, trivially satisfies the
required security-property. We emphasize that what we mean here by untrusted setup is that in practice if one
uses a standard hash function (e.g. SHA3), no trusted setup is needed to generate the PK material related to
the DTC hash function. And since standard hash functions are publicly known, the untrusted setup does not
concern them.

4 A DAPS Scheme Based on NIZK Proofs

We start with recalling the generic DAPS construction proposed by Derler et al. [DRS18a]. The scheme, which we
will refer to as DRS (or DAPS-DRS) supports an exponentially large address space and is based on NIZK proofs,
which they instantiated in RO model. Here we give an instantiation without random oracles and from standard
assumptions.This answers the question that if we can have a DAPS scheme in the standard model through the
existing works (just by a correct instantiation) and how they would be compared with our DAPS-VC-DTC. In
DAPS-DRS scheme a signature contains a value z = γ · p + skΣ where p is the payload of the message, skΣ
is the signing key for a digital signature scheme Σ, and γ is derived from the address part of the message as
γ = F (skPRF, a), where F is a pseudo-random function (PRF). If the signer cannot change the keys skΣ and
skPRF, then signing a compromising pair of messages will reveal its secret key skΣ . To force the signer to use
the same values skΣ and skPRF for all its signatures, it must commit to them during key generation. These
commitments can be done by fixing a PRF F and a one-way function f , computing c = F (skPRF, β) for a
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fixed value β and vkΣ = f(skΣ), and publishing (β, c) and vkΣ . We note that pseudorandomness property is
not sufficient to consider c as a commitment to skPRF: if the signer can find a key sk′PRF 6= skPRF such that
F (skPRF, β) = F (sk′PRF, β) then it can sign a compromising pair of messages without revealing its secret key skΣ .
A PRF for which it is hard to find such sk′PRF is called value-key binding PRF.

While after publishing (β, c), the key skPRF is fixed, the signer also needs to be forced to produce the correct
value γ; it must thus give a proof that (γ = F (skPRF, a) ∧ c = F (skPRF, β)) (the same reasoning and strategy
works for the key skΣ). The signature thus consists of z and a non-interactive zero-knowledge proof for the
following language:

L =
{

(vkΣ , β, c,m, z)| ∃ (skΣ , skPRF, γ) : ((vkΣ , β, c,m, z), (skΣ , skPRF, γ)) ∈ R
}

where the tuple is in relation R if γ = F (skPRF, a) ∧ c = F (skPRF, β) ∧ z = γ · p+ skΣ ∧ vkΣ = f(skΣ). The
full description of their scheme is given in Appendix E, Fig. 15.

We slightly modify DAPS-DRS construction [DRS18a] such that NIZK proof system can be instantiated by
Groth-Sahai proof [GS08] (which we call DAPS-GS, see Fig. 16). We emphasize that in [DRS18a], the authors
instantiate the underlying NIZK proof system through a Fiat-Shamir-transform over a interactive-ZK proof
system. And as it is well-known, the Fiat-Shamir-transform is secure in the RO model. While here we use the
Groth-Sahai proof system which provides efficient NIZK proofs in the standard model and under the standard
assumption, for a special, yet wide, class of languages. Another point is that DAPS-DRS (consequently our
DAPS-GS instantiation) is secure only against trusted setup, since it is in the CRS model.

Another difference between our DAPS-GS scheme and DAPS-DRS is that the latter uses a value-key-binding
PRF, which prevents the signer from changing the secret key of PRF. We assign this task to a commitment
scheme and can therefore relax the value-key-binding requirement on the PRF to standard PRF security. In
DAPS-DRS scheme, the authors instantiate their key-value binding PRF F with a block cipher LowMC. They
consider this block cipher as a value-key-binding PRF just based on the intuition and without presenting
any exact proof regarding key-value binding property. Thus, for our modification (Appendix E, Fig. 16) the
statements belong to a language L as follows;

L =
{

(vkΣ , ppC , z,m, CPRF) | ∃(skΣ , skPRF, γ) : (vkΣ , ppC , z,m, CPRF),
(skΣ , skPRF, γ)) ∈ R∗

}
,

where the relation R∗ is as γ = F (skPRF, a) ∧ CPRF = Commit(ppC , skPRF) ∧ z = γp · skΣ ∧ R(vkΣ , skΣ) = 1,
and relation R is such that given vkΣ it is not easy to find the witness skΣ .
In a second step, we then give instantiations of the underlying primitives, that is, the PRF, signatures and
commitments, which must be compatible with Groth-Sahai proof system. These instantiations are given in
Appendix E.2. We will see that despite our efforts to optimize the scheme, our DAPS-GS scheme is less efficient
than our DAPS-VC-DTC scheme.
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A Backgrounds

For a digital signature scheme the standard existential unforgeability is defined as follows.

Definition A.1 (Unforgeability of digital signature). Signature scheme Σ is existentially unforgeable
under adaptive chosen message attacks if, for all p.p.t. adversaries A, there exists a negligible function negl such
that Pr[ForgADS(κ) = 1] ≤ negl(κ) where the experiment ForgADS(κ) is described in Fig. 10.

Definition A.2 (Chameleon Hash Function [KR00]). A chameleon hash function (CHF), also known as
trapdoor hash function, is a tuple of p.p.t. algorithms H = (KeyGen,CHash,Coll) defined as follows:

– KeyGen(1κ): On input the security parameter κ, it outputs a pair of public/private keys (pk, tk) (where pk
implicitly defines the message spaceM and the randomness space R).

– CHashpk(m, r): On input the public key pk, a message m ∈M and a random nonce r ∈ R, it outputs a hash
value.

– Coll(tk,m′,m, r): On input the private key tk, two messages m,m′ and a nonce r, it outputs a nonce r′ such
that CHashpk(m, r) = CHashpk(m′, r′).

Definition A.3 (Security of CHF [KR00,BKK90]).
Collision-resistance. For any p.p.t. adversary A, there exists a negligible function negl such that

Pr[CHCollACHF(κ) = 1] =

Pr
[

(pk, tk)← KeyGen(1κ)
(m, r,m′, r′)← A(1κ, pk) : CHashpk(m, r) = CHashpk(m′, r′)

∧ (m, r) 6= (m′, r′)

]
≤ negl(κ).

Key-extractability. A chameleon hash function is key-extractable if there exists a p.p.t. algorithm Ext, as
follows:

– Ext(pk, S1, S2): On input a public key pk and a collision pair
(
S1 = (m1, r1), S2 = (m2, r2)

)
, outputs a secret

key tk′.

such that for all adversaries A, there is a negligible function negl(κ) such that, Pr[KExtTr/UTr
CHF,A(κ) = 1] ≤ negl(κ)

where the experiment KExtTr/UTr
CHF,A(κ) is described in Fig. 11.

Distribution of collisions. For every m,m′, and a uniformly random r, the distribution of r′ = Coll(tk,m,m′, r)
is uniform, even when given pk, m and m′.

Efficient CHF schemes have been instantiated based on the discrete-logarithm assumption [BKK90] and the
RSA (factorization) assumption [CD96,CS99].

Definition A.4 (Collision-Resistant Hash Function). H = {Hi : X → Y}i∈I is a family of collision-
resistant hash functions if:

Generation. There is a p.p.t. algorithm Gen(1κ) which outputs i ∈ I.
Efficient evaluation. Given x and i, one can compute Hi(x) in time polynomial in κ.
Collision-resistance (CR). For every p.p.t. adversary A there is a negligible function negl such that for

i← Gen(1κ)

Pr
[
HCollAH(κ) = 1

]
= Pr

[
(x, x′)← A(1κ, i) : x 6= x′ ∧

Hi(x) = Hi(x′)

]
≤ negl(κ).

ForgADS(κ):
(sk, vk)← KeyGen(1κ)
Q← ∅
(m∗, σ∗)← ASign(sk,·)

Return 1 iff:
− Verif(vk,m∗, σ∗) = 1
− m∗ /∈ Q

Oracle Sign(sk,m):
σ ← Sign(sk,m)
Q← Q ∪ {m}
Return σ

Fig. 10: Game for UEF-CMA security of DS.
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KExtTr
CHF,A(κ):

(pk, tk)← KeyGen(1κ)
(S1, S2)← A(pk, tk)
tk′ ← Ext(pk, S1, S2)
Return 1 iff
− (S1, S2) is a collision
− tk′ 6= tk

KExtUTr
CHF,A(κ):

(pk, S1, S2)← A(1κ)
tk′ ← Ext(pk, S1, S2)
Outputs 1 iff
− (S1, S2) is a collision
− tk′ 6= tk

Fig. 11: KE game for a CHF scheme. The left game is for trusted setups and the right game for untrusted setup
(maliciously generated keys).

Definition A.5 (Pseudo-Random Function (PRF)). Let F : K × X → Y be a family of functions {Fk :
X → Y}k∈K (where elements in K, X , Y are of length poly(κ)). We say F is a pseudorandom function (PRF)
if for all probabilistic p.p.t. distinguishers D, there exists a negligible function negl such that

∣∣Pr
[
DFk(·)(1κ) =

1
]
− Pr

[
Df(·)(1κ) = 1

]∣∣ ≤ negl(κ), where k R← K and f is uniformly chosen at random from the set of functions
mapping X to Y.

Security Requirements for NIZK Proof System. For a NIZK proof system the following security require-
ments are defined.

Definition A.6 (Perfect Completeness). For all adversaries A whose output (x,w) satisfies R(x,w) = 1
we have

Pr
[

crs← Setup(1κ); (x,w)← A(crs)
π ← Prove(crs, x, w) : Verif(crs, x, π) = 1

]
= 1

Definition A.7 (Soundness). For all adversaries A we have7

Pr
[
crs← Setup(1κ); (x, π)← A(crs) : Verif(crs, x, π) = 1 ∧ x /∈ L

]
≤ negl(κ).

Definition A.8 (Perfect knowledge-soundness). Π is a proof of knowledge for relation R, if there exists a
knowledge extractor E = (E1, E2) such that for all adversaries D and A we have

Pr
[
crs← Setup(1κ) : D(crs) = 1

]
= Pr

[
(crs, ξ)← E1(1κ) : D(crs) = 1

]
and Pr

 (crs, ξ)← E1(1κ)
(x, π)← A(crs)
w ← E2(crs, ξ, x, π)

: Verif(crs, x, π) = 0
∨ R(x,w) = 1

 = 1.

Definition A.9 (Composable Zero-Knowledge). Π is composable zero-knowledge if there exists a simulator
(S1,S2) such that for all adversaries D and A whose output (x,w) satisfies R(x,w) = 1:∣∣Pr

[
crs← Setup(1κ) : D(crs) = 1

]
−Pr

[
(crs, τ)← S1(1κ) : D(crs) = 1

]∣∣ ≤ negl(κ) and∣∣Pr
[
(crs, τ)← S1(1κ), (x,w)← A(crs, τ), π ← Prove(crs, x, w) : A(crs) = 1

]
−Pr

[
(crs, τ)← S1(1κ), (x,w)← A(crs, τ), π ← S2(crs, τ, x) : A(crs) = 1

]∣∣
≤ negl(κ).

Definition A.10 (Simulation-sound-extractability (SE)). Π is SE if there exists a simulator (SE1,S2, E2)
such that for all adversaries A:

Pr

 (crs, τ, ξ)← SE1(1κ)
(x, π)← AS2(crs,τ,·)(crs)
w ← E2(crs, ξ, x, π)

:
Verif(crs, x, π) = 1
∧ R(x,w) = 0
∧ (x, π) /∈ Q

 ≤ negl(κ).

B Proof of Theorem 3.2

Let A be the adversary attacking the key-extractability of our DAPS scheme, that is, trying to produce a
compromising pair (σ,m = (a, p)) and (σ′,m′ = (a, p′)), where p′ 6= p and σ, σ′ are valid signatures. In the proof,
7 If A is p.p.t., we call the system as the “Argument System", while it is called “Proof System" for an unbounded A.
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values associated with σ′ are denoted by a dash ′. Note that the validity of two signatures implies that there
exists a node u ∈ patha→ε where these two different authentication chains become the same in their Cu values.
Clearly, such an unification point must exist as the two signatures have to be verified with respect to the same
public key Cε. More precisely, there exists a collision-point u ∈ patha→ε such that Cv = C ′v for v ∈ pathu→ε. We
distinguish two cases:

1. The collision-point is a leaf-node.
2. The collision-point is an interior-node.

In case (1), for each node v in patha→ε we have Ch−1 = C ′h−1. Then, the position-binding of VC scheme,
implies that mh = H2(CHash(p, rh)) and m′h = H2(CHash(p′, r′h)) (the values to which Ch−1 and C ′h−1 are
opened) must be equal. By collision-resistance of H2, we moreover have CHash(p, rh) = CHash(p′, r′h). Since
p′ 6= p, this constitutes a collision for the DTC scheme which then a trapdoor tki, for i = 0 or 1, can be extracted
. Thus we have,

Pr[KExtTr
DAPS,A(κ) = 1 | case 1]

≤ Pr[KExtTr
DAPS,A(κ) = 1 | case 1 ∧ CHash(p′, r′h) = CHash(p, rh)]+

Pr[KExtTr
DAPS,A(κ) = 1 | case 1 ∧ CHash(p′, r′h) 6= CHash(p, rh) ∧ m′h = mh]+

Pr[KExtTr
DAPS,A(κ) = 1 | case 1 ∧ CHash(p′, r′h) 6= CHash(p, rh) ∧ m′h 6= mh]

≤ Pr[KExtTr/UTr
DTC,C (κ) = 1] + Pr[HCollB

′

H2
(κ) = 1] + Pr[PBindDVC(κ) = 1].

For case (2), lets call the child of u as node v, a similar reasoning in case (1) works for authentication chains
from node v to the root. The only difference is that here in node v – corresponding to the leaf node ah in case
(1) – instead of p, p′ we have pv = H1(Cv) and p′v = H1(C ′v). Then, since u is the first collision node, we have
Cv 6= C ′v which gives pv 6= p′v with overwhelming probability, due to the collision-resistance of H1. Thus, in node
v we have pv 6= p′v. From here the same reasoning as the case (1) works. More precisely,

Pr[KExtTr
DAPS,A(κ) = 1 | case 2]

≤ Pr[KExtTr
DAPS,A(κ) = 1 | case 2 ∧ Cv 6= C ′v ∧ pv = p′v] +

Pr[KExtTr
DAPS,A(κ) = 1 | case 2 ∧ Cv 6= C ′v ∧ pv 6= p′v]

≤ Pr[HCollBH1
(κ) = 1] + Pr[KExtTr

DAPS,A(κ) = 1 | case 1 starting from v].

≤ Pr[HCollBH1
(κ) = 1] + Pr[KExtTr/UTr

DTC,C (κ) = 1]+

Pr[HCollB
′

H2
(κ) = 1] + Pr[PBindDVC(κ) = 1].

This completes the proof.

C Proof of Theorem 3.3

Let A be the attacker to the unforgeability of our DAPS scheme trying to give a forgery ((a∗, p∗), σ∗), and u be
the first node in patha∗→ε that has already been visited during the game, that is, either during the computation
of the public key or during a signing query. Note that such node exists due to the construction of vk, and only
DTC values are assigned to this node, while its parent also contains VC value. We denote all values associated
with the forgery by an asterisk (∗). There are two cases

1: node u is an internal node.
2: node u is a leaf node.

At first we consider case (1). Let ($u, ru) be the earliest assigned DTC-value to node u (i.e., generated by PRF
F , where $u is the message and ru is the randomness for DTC). As we know at any such non-leaf node u, the
signature algorithm at first computes p∗u (as the hash of VC-value) and then m∗u (as the hash of DTC-value on
the newly computed VC-value p∗u). For such node u and a valid forgery by A, one of the following cases may
happen:

(i) The DTC-values are equal. Meaning that there is a randomness r∗u such that, CHashpkDTC($u, ru) =
CHashpkDTC(p∗u, r∗u).

(ii) The DTC-values are different butmu andm∗u (hash of TDC-values) are equal. This is,m∗u = H2(CHash(p∗u, r∗u)) =
H2(CHash($u, ru)) = mu while CHash(p∗u, r∗) 6= CHash($u, ru).
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If none of these cases happen in node u, again the valid forgery implies that in the parent node of u, lets call it
node w, two more cases may happen (note that due to the choice of u, a VC-value is already assigned to w):

(iii) The VC-values are equal. Meaning that C∗w = Cw where Cw is the previously assigned VC-value to this
node.

(iv) The VC-value are different while pu and p∗u ( hash of VC-Values) are equal. This is, p∗w = H1(C∗w) =
H1(Cw) = pw and C∗w 6= Cw.

The above reasoning would be repeated in each node from u to the root (at node u cases i and ii, at root case iii,
and at other nodes cases i-iv). And since, the forgery is verified by the public-key Cε, one of the mentioned cases
has to happen for a node in pathu→ε. Now, based on these distinctions, we have the following reductions.

Reduction of DAPS-security to collision-resistance of DTC (case (i)): For case (i), we present an
attacker B to the collision-resistance of DTC (see Definition 2.8) that can simulate the forgery-game for the
adversary A.

– B receives pkDTC, tkb from its challenger. It simulate other secret and public keys similar to the real game
and turns back vk to the adversary A while sk = (tkb, k).

– when A issues a signing query for the message (a, p), the adversary B responds the same as the real game.
I.e., it runs σ ← Sign(sk, (a, p)) and sends σ to B.

– When A outputs a forgery, B extracts values ($u, ru) and (p∗u, r∗u). Then, it runs key-extraction algorithm of
DTC scheme to get a trapdoor tk′. I.e., tk′ ← Ext(pkDTC, ($u, ru), (p∗u, r∗u)). Finally it outputs tk′.

Now we discuss why this is a correct simulation and how (much) it helps B to win its own game.
At first, we note that the signature algorithm works even if only one of the trapdoors is available, which is due
to the definition8 and the first security-property of DTC9. Thus, the simulation of signing-queries is correctly
done when sk = (tkb, k).

On the other hand, if the algorithm Ext works correctly, B can get a valid trapdoor (i.e., tk′ = tkb or tk′ = tk1−b).
Where the case tk′ = tk1−b would happen with a probability 1

2 . In fact, due to the uniform distributions of
collisions and the pseudo-random property of F , the opening values (ru, r∗u) (used as the input of the extractor)
are independent of the trapdoor tkb. Which essentially means the key-extractor outputs a trapdoor independent
of the trapdoor tkb used by the adversary B.
Slightly in detail, note that during the simulation, though the trapdoor tkb is used (polynomially) many times, it
is used only and only when it comes to a node v that the values ($v, rv) are computed by PRF F . Then the
security-property of DTC (distribution of collisions, Definition 2.9) implies that any collision generated based
on uniform rv is uniform and so does not include information about tkb. By all we discussed above, the wining
probability can be obtained as follows,

Pr[tk′ = tk1−b] = Pr[DTCollBDTC(κ) = 1]

1/2 · Pr[ForgADAPS(κ) = 1 | node u ∧ case(i) ∧ Ext works correctly ∧
uniform collisions (r∗u, ru)] ≤ Pr[tk′ = tk1−b].

Pr[non-uniform collisions (r∗u, ru)] ≤ Pr[PRFDFk
(κ) = 1].

Pr[Ext does not work correctly] ≤
Pr[PRFDFk

(κ) = 1] + Pr[KExtTr
DTC,A′(κ) = 1].

Putting together we get,

Pr[ForgADAPS(κ) = 1 | node u ∧ case(i)] ≤
+ 2 Pr[DTCollBDTC(κ) = 1] + 2 Pr[PRFDFk

(κ) = 1] + Pr[KExtTr
DTC,A′(κ) = 1].

8 Where the Coll algorithm works with the trapdoor tki generated by TrChos.
9 Saying that TrChos generate the correct trapdoors as KeyGen(1κ, i).
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KeyGen(1κ, q): select two groups G and GT of prime order p equipped with a
bilinear map e : G× G −→ GT . Let g ∈ G be a random generator.
– sample zi, . . . , zq R← Zp.
– set hi = gzi for i = 1, . . . , q and hij = gzizj for i, j = 1, . . . , q and i 6= j.
Return pp = (g, {hi}i, {hij}i,j) and defineM = Zp

Cmtpp(m1, . . . ,mq): compute C = hm1
1 hm2

2 . . . h
mq
q (where mi ∈ Zp).

Return C.
Openpp(mi, i,m): compute Λi =

∏q
j=1,j 6=i h

mj

i,j =
(∏q

j=1,j 6=i h
mj

j

)zi return Λi.
Verif(C,mi, i, Λi): Output 1 iff e(C/hmi

i , hi) = e(Λi, g)

Fig. 12: Catalano-Fiore VC scheme [CF13]

Reductions for cases (ii,iii,iv) For these cases we construct adversaries B2, B′ and B1 attacking respectively
to the CR of H2, position-binding of VC and CR of H1.

For each cases, the adversary simulates the forgery-game for A such that the signing-queries are answered
by the real algorithms and the given parameters/public-keys by the challenger. When A returns a forgery, then in:

Case ii. B2 extracts (p∗u, r∗u) and ($u, ru) from the forgery/queries and outputs (CHash(p∗u, r∗u),CHash($u, ru)).
Case iii. B′ extracts m∗u,mu from the forgery/queries and outputs (mv1 , . . . ,m

∗
u, . . . ,mvq

) and (mv1 , . . . ,mu,
. . . ,mvq

) where vi is the i child of w.
Case iv. B1 outputs C∗w and Cw which are extracted from the forgery/queries.

This complete the reduction for cases ii,iii and iv.

Similarly, the same reasoning (i),...,(iv) will apply to all other nodes in the current path to the root. Since Cε
is part of the verification key this recursive reasoning will be stopped at most in the root. This results in

Pr[ForgADAPS(κ) = 1] ≤ (2L− 2) · Pr[ForgADAPS(κ) = 1 | node v] ≤ negl(κ),

where v ∈ pathu→ε and L is the number of nodes on the path pathu→ε.10

The proof for the case (2) that u is a leaf node can be done in a similar way. Here, case (i) applies but needs
more attention. Because node u might already be used during the signing queries for a message m = (a∗, p) where
p 6= p∗. This cannot make any problem, since due to the condition p∗ 6= p (or equivalently (a∗, p∗) /∈ Q which
comes from the security definition), in case (i) $u = p, p∗u = p∗ which guarantees that $u 6= p∗u and consequently
the same reduction based on the collision-resistance of DTC applies.

D Instantiations of building-blocks for DAPS-VC-DTC

We instantiate the building blocks for our DAPS construction in Fig. 9. We use the VC scheme proposed by
Catalano and Fiore [CF13], presented in Fig. 12 and we propose an instantiation for DTC.

Theorem D.1 (Catalano-Fiore’s VC scheme [CF13]). If the CDH assumption holds in group G, then the
scheme of Catalano-Fiore in Fig. 12 is a position-binding VC scheme.

A we discussed, our DAPS-VC-DTC construction can be modified to be secure against untrusted setup, if the
underlying DTC scheme is secure in the untrusted setup setting. This fact gives a strong argument why we need
to realize a DTC scheme in an untrusted setup.
A possible candidate to instantiate the DTC scheme is the chameleon hash given in [BCG07] where CHash(m; r, s) =
gmpkr1pks2, pk1 = gx, pk2 = gy. This scheme, however, does not satisfy the security requirements of DTC in the
untrusted setup setting. The trouble is that in order to get the second trapdoor the extractor needs to know the
first one. While this fits perfectly the application considered in [BCG07], it does not cope well with our scenario
where the signer might have both trapdoors and the (KE) challenger none (in such a case a collision results in
an equation with two unknowns). A way around this would be to have one of the trapdoors chosen by a trusted
setup and the other one by the signer. To avoid the need of trusted setup, we build a DTC scheme based on two
layers CHF such that given a collision ensures that there is a collision either in the first layer or in the second
layer. This means, a collision gives enough equations to solve the system and extract unknowns.
10 Each node, except the node u and the root, gets two roles once as a child once as a parent node leading to four cases

i-iv. This is the reason for appearance of the term (2L− 2).
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The idea was implicitly given in [CDFG08] (Sect. 3.1, full version). However, since a more efficient DTC with
security under a trusted setup was enough for them, they do not detail a construction or the security property.
We note that not any arbitrary chaining may work here, and it is important to put the message in the first layer
instead of the second layer (see Fig. 13).

Let Hi = (KeyGeni,CHashi,Colli) for i = 0, 1, be two CHFs, and H : O0 −→M1 be a hash function where
O0 andM1 are respectively the image of H0 and the message space H1. The randomness space of Hi is denoted
by Ri. Our suggested DTC scheme is given in Fig. 13.

KeyGen(1κ):
– run (pki, tki)← Hi.KeyGen(1κ) for i = 0, 1
– return pk = (pk0, pk1) and tk = (tk0||0, tk1||1).

TrChos(1κ, i):
– run (pki, tki)← Hi.KeyGen(1κ) and sample pk1−i from the public-key space H1−i.
– set pk = (pk0, pk1) and return (pk, tki||i).

CHashpk(m, r, s): for m ∈M0, compute
{
w = H0.CHash(m, r) where r R← R0

C = H1.CHash(H(w), s) where s R← R1
– return C.

Coll(tk,m′,m, r, s):
pars tk as tki||i
– if i = 0, run r′ ← H0.Coll(tk0,m

′,m, r) and set s′ = s.
– if i = 1, choose r′ R← R0, compute w′ = H0.CHashpk0(m′, r′) and run
s′ ← H1.Coll(tk1, H(w′), H(w), s) where w = H0.CHashpk0(m, r)

– return (r′, s′).

Ext(pk, (m, r, s), ), (m′, r′, s′):
– if s 6= s′ or H(w) 6= H(w′), run tk′ ← Ext1(pk1;H(w), s;H(w′), s′) where
w = H0.CHash(m, r), w′ = H0.CHash(m′, r′).

– if w = w′, run tk′ ← Ext0(pk0;m, r;m′, r′)
– return tk′.

Fig. 13: Our DTC scheme

Theorem D.2. If H is a collision-resistant hash function, H0,H1 are secure chameleon hash functions, then
our proposed construction in Fig. 13 is a secure DTC scheme.

Proof. We check the required security properties for DTC.
•Distribution of the keys. Clearly, two distributions {KeyGen(1κ, i)} and {TrChos(1κ, i)} are indistinguishable.
• Collision-resistance (CR). Let A be an adversary against collision-resistance of DTC. We construct
adversaries Bi against collision-resistance of Hi for i = 0, 1. Simply, Bi runs H1−i.KeyGen(1κ) and returns
pk = (pk0, pk1) and tk1−i||1− i to A. When A outputs tki, Bi uses it to find a collision.
• Key-extractability (KE). Here we discuss the untrusted setup, i.e., the game KExtUTr

DTC,A(κ) in Fig. 11 where
the extractor algorithm Ext is given in Fig. 13. Let A be the attacker to the KE of DTC, we construct the
adversaries B0 and B1, B attacking, respectively, the KE of H0 and H1 and the CR of H.

Let (pk; (m, r, s), (m′, r′, s′)) be the output of A in the KE game, meaning that (m, r, s), (m′, r′, s′) is a
collision for the DTC scheme while tk′ 6= tk0 and tk′ 6= tk1 for a extracted tk′ through Ext algorithm.

Three following cases are possible where w,w′ are defined as w = H0.CHash(m, r) and w′ = H0.CHash(m′, r′):
case 1. (m, r) 6= (m′, r′) and w = w′

case 2. (m, r) 6= (m′, r′) and w 6= w′ and H(w) = H(w′)
case 3. rest (either (m, r) = (m′, r′) (and thus s 6= s′) or H(w) 6= H(w′) must be the case)
Which in:
Case 1. B0 outputs (pk0; (m, r), (m′, r′)).
Case 2. B outputs (w,w′).
Case 3. B1 outputs (pk1; (H(w), s), (H(w′), s′).

Clearly in case 2, the adversary B breaks the CR of H. On the other hand, tk′ 6= tk0 and tk′ 6= tk1 which
means B0 and B1 respectively break the KE of H0 and H1.
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• Distribution of collisions. One needs to show that for random r R← R0 and s R← R1,

{CHashpk(m, r, s),m,m′,Coll(pk, tk0,m
′,m, r, s)}

∼= {CHashpk(m, r, s),m,m′,Coll(pk, tk1,m
′,m, r, s)}.

where ∼= stands for the indistinguishability of distributions. Clearly, if the distributions of collisions for H0 and
H1 are uniform, the mentioned indistinguishability relation is satisfied. ut

The CHF H required for the previous theorem can be realized by Pedersen-commitment [Ped92] where
CHash(m, r) = gmpkr, pk = gx and tk = x. It is easily seen that this is a secure CHF in the untrusted
setup. The exact construction is depicted in Fig. 14 where G = (G, q, g) describe the group G of order q generated
by g and bit length q is poly(κ). The group description G is the implicit input of all algorithms.

KeyGen(1κ,G):
– sample x R← Zq

return tk = x and pk = gx.
CHashpk(m, r):
– sample r R← Zq
– compute c = gm · pkr

return c

Coll(pk, tk,m′,m, r):
return r′ = m−m′

tk + r

Ext(pk,m′,m, r, r′):
return tk′ = m−m′

r′−r

Fig. 14: Pedersen commitment as a CHF scheme [BKK90].

E DAPS-DRS Instantiation Based on Groth-Sahai Proof

In Fig. 15 we recap the DAPS-DRS construction. F : K×U → S is a value-key-binding PRF where U is the DAPS
address space and S is the space of signing keys for skΣ , that is, the image of F is a subset of the signing-key
space S. The signature scheme Σ = (KeyGenΣ ,SignΣ ,VerifΣ) is expected to have a very weak level of security i.e.,
a public key is a OWF image of the corresponding signing key: vkΣ = f(skΣ). And Π = (SetupΠ ,ProveΠ ,VerifΠ)
is a NIZK proof system.

Security analysis of DAPS-DRS. The following theorems analyze the security of DAPS-DRS scheme.

KeyGen(1κ):
– fix a signature scheme
Σ = (KeyGenΣ ,SignΣ ,VerifΣ),
run (vkΣ , skΣ)← KeyGen(1κ)

– fix a value-key-binding PRF
F : K × U → S,
sample skPRF

R← K
compute c = F (skPRF, β)
for β ∈ U

– fix a NIZK scheme
Π = (SetupΠ ,ProveΠ ,VerifΠ)
run crs← SetupΠ(1κ).

Return sk = (skΣ , skPRF)
and pk = (vkΣ , crs, (β, c)).

Sign(sk,m):
Parse sk as (skΣ , skPRF) and m as (a, p).
– set γ = F (skPRF, a), z = p · γ + skΣ
– π ← ProveΠ

(
crs, (vkΣ , (β, c), z,m),

(skΣ , skPRF, γ)
)

Return (z, π)
Verif(pk,m, σ):
Parse pk as (vkΣ , crs, (β, c)),
m as (a, p) and σ as (z, π).

Return VerifΠ(crs, (vkΣ , (β, c), z,m), π).
Ext(pk,m1,m2, σ1, σ2):
Parse σi as (zi, .), mi as (ai, pi).
– If (m1,m2) is not compromising
then return ⊥.

– Let skΣ ← z1p2−z2p1
p2−p1

Return skΣ .

Fig. 15: DAPS scheme of DRS (DAPS-DRS)
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KeyGen(1κ): fix a signature scheme
Σ = (KeyGenΣ ,SignΣ ,VerifΣ),
with secret keys in S = Gi.
run (vkΣ , skΣ)← KeyGen(1κ)

– fix PRF F : K × U → S and
sample skPRF

R← K.
– fix a commitment scheme
C = (Setup,Commit,Open)
such that Commit : K −→ Gi

run ppC ← SetupC(1κ) and
CPRF ← Commit(ppC , skPRF).

– fix Groth-Sahai proof system
Π = (Setup,Prove,Verif)
run crs← SetupGSΠ (1κ)

Return sk = (skPRF, skΣ) and
pk = (vkΣ , crs, ppC , CPRF).

Sign(pk, sk,m):
Parse sk as (skPRF, skΣ), m as (a, p) ∈ U × Zq.
– set γ = F (skPRF, a), z = γp · skΣ
– π ← ProveGSΠ (crs, (vkΣ , ppC , z,m, CPRF),

(skΣ , skPRF, γ))
Return σ = (z, π)
Verif(pk,m, σ): Parse m as (a, p), σ as (z, π)
and pk as pk = (vkΣ , crs, ppC , CPRF).

Return VerifGSΠ
(
crs, (vkΣ , ppC , z,m, CPRF), π

)
.

Ext(pk,m1,m2, σ1, σ2):
Parse σi as (zi, .), mi as (ai, pi).
– if (m1,m2) is not compromising
then return ⊥.

– let skΣ = (zp1
2 · z

−p2
1 )(p1−p2)−1

Return skΣ .

Fig. 16: a DAPS scheme based on Groth-Sahai proofs (DAPS-GS).

Theorem E.1 (Unforgeability [DRS18a]). If the NIZK proof system Π is simulation-sound extractable, F
is a PRF, and f is a OWF, then the scheme DAPS-DRS is EUF-CMA secure.

Theorem E.2 (Key-extractability [DRS18a]). If the NIZK proof system Π is simulation-sound extractable
and F is value-key-binding PRF, then the scheme DAPS-DRS is key-extractable in the trusted setup.

Fig. 16 describes our DAPS-GS. In this construction Gi ∈ {G1,G2,GT } where Gi is a cyclic group of order q
and e is a bilinear map e : G1 × G2 −→ GT . The signature scheme Σ = (KeyGenΣ ,SignΣ ,VerifΣ) is expected
to have a very weak level of security i.e., a public key is a OWF image of the corresponding signing key:
vkΣ = f(skΣ). And Π = (SetupΠ ,ProveΠ ,VerifΠ) is a NIZK proof system. The statements belong to a language
L as follows;

L =
{

(vkΣ , ppC , z,m, CPRF) | ∃(skΣ , skPRF, γ) : ((vkΣ , ppC , z,m, CPRF), (skΣ , skPRF, γ)) ∈ R∗
}
,

where the relation R∗ is as

γ = F (skPRF, a) ∧ CPRF = Commit(ppC , skPRF) ∧ z = γp · skΣ ∧ R(vkΣ , skΣ) = 1,

and relation R is such that given vkΣ it is not easy to find the witness skΣ .

E.1 An Overview of the Groth-Sahai Proof System

In this section, we consider three groups G1, G2 and GT of order p equipped with an admissible bilinear map
e : G1 × G2 −→ GT and respectively with generators g1,g2 and e(g1, g2). Groth and Sahai [GS08] presented an
efficient NIZK proof system for languages defined over such bilinear groups; In Fig. 17 we overview the types
of supported equations we require. The use of the instantiation (of GS proof) based on the SXDH assumption
results in the proofs consisting of 6 group elements for each equation in G1 (similarly for G2), and poofs of size 8
for each pairing product equation. For each variable in G1, G2 or Zp we have to add 2 group elements to the
proof (the size of a commitment to the variable). The general size of the proof can thus be derived from the
number (and type) of equations and variables.

Making Groth-Sahai simulation-extractable. In our DAPS-GS we need a NIZK proof system with
simulation-sound-extractability. There are standard techniques for making a knowledge-sound/sound NIZK
proof system (unbounded) simulation-sound [Gro06,BF14]: Let L be an NP language defined via x ∈ L iff
∃w s.t. R(x,w) = 1 and Π be a Groth-Sahai proof. Then Π can be made (weakly) simulation-sound-extractable
by proving that

R(x,w) = 1 ∨ Verif(vk, x, σ) = 1 (1)
where σ, belonging to group G1 or G2, is a EUF-CMA signature on the statements x. The verification key vk for
the signature scheme is added to the CRS. Informally, this disjunction relation helps to simulate the queries
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Variables:
X1, . . . ,Xm ∈ G1, y1, . . . , yn′ ∈ Zp.

Multi-scalar multiplication equations in G1:
n′∑
i=1

yiAi +
m∑
i=1

biXi +
m∑
i=1

n′∑
j=1

γijyjXi = T1

for constants Ai, T1 ∈ G1 and bi, γij ∈ Zp
Multi-scalar multiplication equations in G2:

n∑
i=1

aiYi +
m′∑
i=1

xiBi +
m′∑
i=1

n∑
j=1

γijxiYj = T2

for constants Bi, T2 ∈ G2 and ai, γij ∈ Zp
Pairing-product equations:

n∏
i=1

e(Ai,Yi) ·
m∏
i=1

e(Xi,Bi) ·
m∏
i=1

n∏
j=1

e(Xi,Yj)γij = tT

for constants Ai ∈ G1, Bi ∈ G2, tT ∈ GT , γij ∈ Zp.

Fig. 17: Groth-Sahai’s equations (for our language).

issued by the adversary (attacking to simulation-extractability), only based on signatures as the witnesses. When
the adversary outputs a new statement x∗ for which the related extractor fails to extract a witness, then there
are two types of failures; Or no witness for disjunction relation could have been extracted, which breaks the
knowledge-soundness of Groth-Sahai. Or, there is a witness for signature part, which gives a forgery for the
signature scheme.11

The Fig. 18 is formally describing this conversion.

SetupΠ′(1κ): run crs← SetupΠ(1κ) and (vk, sk)← KeyGen(1κ)
Return crs′ = (crs, vk)
ProveΠ′(crs′, x, w): run σ ← Sign(sk, x), run π ← ProveΠ(crs, (x, vk), (w, σ))
Return π′ = π.
VerifΠ′(crs′, x, π′): Return VerifΠ(crs, (x, vk), π)

Fig. 18: Conversion from knowledge-sound to SE.

In the following lemma, we have assumed that the equations in the language L = {x | ∃w : R(x,w) = 1},
the equation σ = Signvk(x), and their disjunction relation as Eq. (1) have the supported form by GS-proof.

Lemma E.3. Let Π be a Grosh-Sahai proof system and Σ be an EUF-CMA signature . Then, Π ′ is a simulation-
sound-extractable (SE) Groth-Sahai proof for the language L.

Proof. Assume that there is an adversary A attacking the SE-security of Π ′. When A outputs a pair (x∗, π∗),
if it is a valid pair, then one of the statements (in the statement"∨") should be correct. Meaning that, for a
potentially extractable witness W ∗, one of the following cases has happed,
case (1). Verif(vk, x∗,W ∗) = 1.
case (2). R(x∗,W ∗) = 1.
Which in the first case, it breaks the security of the signature scheme and in the second case it breaks the
knowledge-soundness of Π. The formal proof is as follows,

Reduction from SE of Π ′ to EUF-CMA of Σ. Let B be an adversary attacking the EUF-CMA security
of Σ. We show how the adversary B uses A to win its game.

– the adversary B receives the verification key vk from its challenger, it runs (crs, ξ) ←− E1(1κ) and send
crs′ = (crs, vk) to A.

11 Note that in the Groth-Sahai proof only the witnesses belonging to the groups G1, G2 can be extracted. But this is
enough for our aim in DAPS-GS since skΣ belongs in these groups.
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– when the adversary A issues a statement x, the adversary B sends x to its challenger to receive σ = Sign(sk, x).
Then it runs π ← Prove(crs, (x, vk), σ) and sends back π to A. It also adds (x, π) to the set Q.

– when A outputs a statement x∗ and a proof π∗, The adversary B runs W ∗ ← E2(crs, ξ, x∗, π∗). Then, it
outputs (x∗,W ∗).

Clearly, in the case (1), (x∗,W ∗) is a forgery for the signature scheme.
Reduction from SE of Π ′ to knowledge-soundness of Π. Let B′ be the adversary attacking to the

knowledge-soundness of Π for language L. It simulates the SE game for A as follows:

– The adversary B receives a simulated crs from its challenger, it runs (vk, sk)← KeyGen(1κ) and sends back
crs′ = (crs, vk) to A.

– whenever A issues a query for the statement x, the adversary B generate σ ← Sign(sk, x) and runs
π ← ProveΠ(crs, (x, vk), σ). Then it sends π to A.

– when A outputs (x∗, π∗), the adversary B′ returns it as its output.

Clearly, when the challenger runs W ∗ ← E2(crs, ξ, x∗, π∗), with the condition in the case (2), it verifies that
R(x∗,W ∗) = 1. ut

Regarding the knowledge-soundness of GS-proof we have the following lemma.

Lemma E.4 ([GS08]). From any valid proof, witnesses in Gi can be completely extracted, while for witness
a ∈ Zp, we can extract gai .

Note that in our DAPS scheme, we just need the extraction of elements in group Gi. Thus, it does not hurt to
assume the GS-proof is knowledge-sound.

Waters’s signatures (defined below) are defined over bilinear groups so that signatures consist of group
elements only. Thus, the scheme fits to instantiate our DAPS scheme and it also can properly instantiate the
simulation-sound-extractable transform just discussed.

To prove a disjunction relation like equation (1) in the Groth-Sahai framework, one needs to represent it as a
conjunctions of equations. Groth [Gro06] already suggested an elegant technique for this conversion by adding a
variable and equations in a special way (see also [BF14, Appendix C of the full version]). Assume that we want a
disjunction relation between some equations of the following form where P and Q are known constants:

eq(∗) :
n∏
i=1

e(Ai,Yi) ·
m∏
i=1

e(Xi,Bi) ·
m∏
i=1

n∏
j=1

e(Xi,Yi)γij = e(P,Q)

Then each of the above equations would be replaced with the following equations where Q′ and T are variables:
n∏
i=1

e(Ai,Yi) ·
m∏
i=1

e(Xi,Bi) ·
m∏
i=1

n∏
j=1

e(Xi,Yi)γij = e(P,Q′), e(T , Q−1 · Q′) = 1.

Note that if T 6= 1, then the only solution is Q′ = Q, which in turn means that eq(∗) is satisfied. Now for each
equation eq(∗) we have a separate variable T . To express a disjunction of two equations of this kind, we add
e(T1 · T2 · g−1, h) = 1, which guarantees that not both T1 and T2 are 1 and thus one of the equations eq(∗) must
be satisfied.

E.2 Instantiation of DAPS-GS

As we mentioned in the previous section, Groth-Sahai proofs work for statements over bilinear groups. Thus to
use Groth-Sahai proofs when instantiating DAPS-DRS, we need to find proper instantiations of the statements
over bilinear groups. Here are some theorems regarding such possible instantiations.

Theorem E.5 (Naor-Reingold’s PRF [NR97]). If the DDH assumption holds in the group G, then the
function F defined as follows is a PRF.

Fk(x) = Fw0 where F0 = gk0 ∈ G, k = (F0, k1, . . . , kn), xi ∈ {0, 1}, w =
n∏
i=1

kxi
i

The signature scheme Σ can be instantiated with Waters’ signature scheme since the signatures of this scheme
are elements of bilinear groups. The following gives an improvement of Waters’ scheme and its security analysis
[HK08] over asymmetric bilinear maps [BFPV11]. The need for an asymmetric variant of Waters’s signature
comes from our instantiation for PRF which needs DDH assumption.
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KeyGen(1κ): select cyclic groups Gi of prime order q with generator gi
and bilinear map e : G1 × G2 −→ GT .

– sample h, h0, h1, . . . , hl
R← G1 and α, R← Zq.

– fix a hash-function H : {0, 1}l −→ G where H(m) = h0
∏l
i=1 h

mi
i and

mi is the ith bit of m.
– set pp = (p,G1,G2,GT , e, g1, g2, (hi)i)
Return pk = (h, gα2 , gα1 ), pp and sk = hα.
Sign(pk, sk,m): sample r R← Zq and compute σ1 = sk · H(m)r, σ2 = g−r1 , σ3 = g−r2 .
Return σ = (σ1, σ2, σ3).
Verif(pk, σ,m): parse pk as (pk1, pk2, pk3) Return 1 iff

e(σ1, g2) · e(H(m), σ3) = e(pk1, pk2) and e(σ2, g2) = e(g1, σ3).

Fig. 19: Asymmetric variant of Waters’ signature scheme [BFPV11,Wat05].

Theorem E.6 (Waters’ signature scheme [Wat05,HK08,BFPV11] ). If the CDH+ assumption holds,
then the scheme in Fig. 19 is UNF-CMA secure.12

To instantiate C, we use Pedersen commitments.

Theorem E.7 (Pedersen commitments [Ped92]). The commitment scheme in Fig. 20 is perfectly hiding
and computationally binding under the discrete logarithm assumption in group G.

Setup(1κ): select a group G of prime order q with generator g.
Sample y R← G and return pp = (g, y).
Commit(pp,m): sample r R← Zq and compute c = gm · yr. Return c and d = (m, r).
Verif(pp, c, d = (m, r)): Return 1 if c = gm · yr.

Fig. 20: Pedersen’s commitment scheme [Ped92].

In Figs. 21 and 22 we show how to combine this instantiations together to get a Groth-Sahai compatible
system of statements.

12 CDH+ is a variant of CDH in asymmetric bilinear groups. The adversary is given (g1, g2, g
a
1 , g

b
1, g

a
2 ) and its goal is to

compute gab1 (see [BFPV11]).
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System Description

S1

publicly knowns: (a, p), vkΣ , ppC , CPRF and z
variables: skPRF, skΣ .
statements: γ = F (skPRF, a), CPRF = Commit(ppC , skPRF)

z = γp · skΣ , R(skΣ , vkΣ) = 1

remark instantiation with:


Naor-reingold PRF F

Waters’ signature scheme Σ
Pedersen’s commitment scheme

S2

publicly knowns: (a, p), vkΣ , ppC , CPRF and z
variables: skPRF, skΣ ,αi and α.

statements:


γ = F (skPRF, a) = gk0

∏
k

ai
i where skPRF = (k0, . . . , kn)

ci = gki
1 y

αi i = 0, . . . , n, y ∈ G1

z = γp · skΣ ∈ G1, pk3 = gα1 , pk2 = gα2 , skΣ = pkα1 ∈ G1

remark representation of the statements in quadratic forms

S4

publicly knowns: (a, p), vkΣ , ppC , CPRF and z
variables: skPRF = (k0, k1, . . . , kn), skΣ , αi, Fl and α.

statements:


Quadratic form of PRF


F0 · gk0 = 1G1

F−1
l+1 · F

kl+1
l = 1G1 al+1 = 1

F−1
l+1 · Fl = 1G1 al+1 = 0

ci = gkiyαi

z = F pn · skΣ ∈ G1 pk3 = gα1 , pk2 = gα2 , skΣ = pkα1
remark extension to simulation-soundness;

Fig. 21: Transformation of statements to a Groth-Sahai-compatible form.
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System Description
remark extension to simulation-soundness;

S5

publicly knowns: (a, p), vkΣ , ppC , CPRF and z
variables: skPRF = (k0, k1, . . . , kn), skΣ , αi, Fl, α, σ = (σ1, σ2, σ3).

statements 1:



F0 · gk0 = 1G1

F−1
l+1 · F

kl+1
l = 1G1 al+1 = 1

F−1
l+1 · Fl = 1G1 al+1 = 0
ci = gkiyαi

z = F pn · skΣ ∈ G1 pk3 = gα1 , pk2 = gα2 , skΣ = pkα1
OR
statement 2: e(σ1, g2) · e(H(ppC , vkΣ , z, a, p, CPRF), σ3) = e(pk1, pk2),

e(σ2, g2) = e(g1, σ3)
remark conversion from disjunction to conjunction

S6

publicly knowns: (a, p), vkΣ , ppC , CPRF and z
variables: skPRF = (k0, k1, . . . , kn), skΣ , αi, Fl and α, σ = (σ1, σ2, σ3).

statements:



F0 · gk0 ·Qf0 = 1, F−1
l+1 · F

kl+1
l ·Qfl = 1 al+1 = 1,

F−1
l+1 · Fl ·Q

f
l = 1 al+1 = 0

ci = Qci · gkiyαi

z = Qz · F pn · skΣ ∈ G1

gα1 ·QΣ3 = pk3, e(g1, g
α
2 ) = e(QΣ2 , pk2), sk−1

Σ · pkα1 ·QΣ1 = 1

−−−−−−−−−−−−−−−−−−−−−−−
e(σ1, g2) · e(H(ppC , vkΣ , z, a, p, CPRF), σ3) = e(Q1, pk2)
e(σ2, g2) · e(g−1

1 , σ3) = e(Q2, g2)
−−−−−−−−−−−−−−−−−−−−−−−
e(Qf0 , T ) = 1, e(Qfl , T ) = 1, e(Qci , T ) = 1 e(Qz, T ) = 1,

e(QΣ3 , T ) = 1, e(QΣ2 , T ) = 1, e(QΣ1 , T ) = 1

−−−−−−−−−−−−−−−−−−−−−−−
e(pk−1

1 ·Q1, T
′) = 1, e(Q2, T

′) = 1
−−−−−−−−−−−−−−−−−−−−−−−
e(g−1

1 , T · T ′ · g2) = 1

Fig. 22: Transformation of statements to a Groth-Sahai-compatible form.
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