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Abstract. A double-authentication preventing signature (DAPS) scheme
is a digital signature scheme equipped with a self-enforcement mechanism.
Messages consist of an address and a payload component, and a signer is
penalized if she signs two messages with the same addresses but different
payloads. The penalty is the disclosure of the signer’s signing key. Most
of the existing DAPS schemes are proved secure in the random oracle
model (ROM), while the efficient ones in the standard model only support
address spaces of polynomial size.
We present DAPS schemes that are efficient, secure in the standard model
under standard assumptions and support large address spaces. Our main
construction builds on vector commitments (VC) and double-trapdoor
chameleon hash functions (DCH).We also provide a DAPS realization
from Groth-Sahai (GS) proofs that builds on a generic construction
by Derler et al., which they instantiate in the ROM. The GS-based
construction, while less efficient than our main one, shows that a general
yet efficient instantiation of DAPS in the standard model is possible.
An interesting feature of our main construction is that it can be easily
modified to guarantee security even in the most challenging setting where
no trusted setup is provided. It seems to be the first construction achieving
this in the standard model.

Keywords: Double-spending, digital signature, cryptocurrencies, certifi-
cate subversion.

1 Introduction

Digital signatures (DS) are a cryptographic primitive that guarantees authenticity
and integrity. Its security is defined via the notion of unforgeability, which protects
the signer, and there is no notion of a signer behaving badly. There are however
applications in which the signer should be restricted; for example, a certificate
authority should not certify two different public keys for the same domain.

Double-authentication-prevention signatures (DAPS) are a natural extension
of digital signatures that prevent malicious behavior of the signer by a self-
enforcement strategy. A message for DAPS consists of two parts, called address
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and payload i.e., m = (a, p). A signer behaves maliciously if it signs two messages
with the same addresses but different payloads, that is, m1 = (a1, p1) and m2 =
(a2, p2) with a1 = a2 and p1 6= p2. Such a pair (m1,m2) is called compromising
and the signer is penalized for signing a compromising pair by having its signing
key revealed. We next discuss typical applications of DAPS.

Certificate subversion. Consider a certificate authority (CA) issuing certifi-
cates to different severs. A certificate is of the form (server.com, pks, σs), where
server.com is the domain, pks is the server’s public key and σs is a signature on
(server.com, pks) by the CA. Entities that trust the CA’s public key can now
securely communicate with server.com by using pks. Consider a national state
court that has jurisdiction over the CA and compels it to issue a rogue certificate
for server.com for a public key under the control of an intelligence agency. The
latter can then impersonate server.com without its clients detecting the attack.
Using DAPS for certification gives the CA a strong argument to deny the order,
as otherwise its key is leaked. It leads to an all-or-nothing situation where if
one certificate has been subverted then all have (as once the key is revealed,
everything can be signed).

Cryptocurrencies and non-equivocation contracts. In cryptographic e-
cash systems (a.k.a. “Chaumian” e-cash), double-spending is prevented by re-
vealing the identity of the misbehaving party [9]. This works well in systems
where some central authority (e.g. a bank) can take concrete actions to penalize
dishonest behaviors (such as blocking their accounts). In the setting of “cryptocur-
rencies”, disclosing the identity of users is much harder to implement because of
the decentralized nature of these systems, and indeed double-spending is typically
prevented by consensus. Transactions are considered effective only after a certain
amount of time. This naturally prevents double-spending but induces delays
to reach agreement. Using DAPS to sign transactions could provide a strong
deterrent to malicious behaviors. Double-spenders would disclose their secret
signing keys, which, for the case of Bitcoin, could translate to a financial loss.

Translating to the DAPS setting, the address would be the coin and the
payload the receiver when spending it. This is reminiscent to accountable asser-
tions [20] (who give a ROM instantiation). For cryptocurrencies it is natural to
implement this mechanism via DAPS, as digital signatures are already needed to
authenticate transactions.

Practically, one can make non-equivocation contracts (i.e. contracts that allow
to penalize parties that make conflicting statements to others, by the loss of
money) by combining a DAPS scheme and a deposit. To ensure that an extracted
DAPS secret key is a worthy secret, it can be associated to a deposit. Each party
is required to put aside a certain amount of currency in a deposit which can
be securely retrieved by the owner at the end of a time-locked session if the
owner has not made conflicting statements during the session. Otherwise, anyone
obtaining the extracted secret key also has access to the funds.
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1.1 Challenges in Constructing DAPS

We next discuss some general challenges in constructing DAPS regarding their
security, efficiency and functionality. Our aim is to construct a scheme that
achieves a good balance among them.

Exponentially large address space. The address part of a message for DAPS
typically refers to a user/coin identity. Only allowing a polynomial number of
predefined identities [12, 18] severely limits the possible applications, while an
exponential number of addresses practically amounts to no restrictions, as one
can use a collision-resistant hash function to map into the address space.

Security when no trusted setup is provided. DAPS schemes should satisfy two
security notions. Unforgeability ensures that signatures from an honest signer
(who does not sign compromising message pairs) are secure against an outside
attacker. Key extractability requires that issuing signatures on compromising
message pairs leaks the signer’s signing key; the notion can be defined with
respect to a trusted or untrusted setup. In the latter case, each signer generates
its own key pair, while assuming a trusted setup, which generates and distributes
key pairs to the signers, is arguably unrealistic.

The majority of existing DAPS constructions assumes a trusted setup [2,12,18,
19]. Those that do not, are in the random oracle model [20] or have polynomial-
size signatures (w.r.t. the length of the address) [4] or only support small address
spaces [12,18].

Standard assumptions. While giving reductionist security proofs is the preferred
method of gaining trust in a cryptosystem, these guarantees are only meaningful
if the underlying hardness assumptions have been well-studied. Moreover, such
analyses often rely on idealizations like assuming hash functions are random
functions (in the ROM). Our schemes are proven secure from very well-studied
assumptions (e.g. RSA, CDH) and we do not make idealizing assumptions in our
proofs, i.e., they are in the standard model.

Efficient/concrete instantiations. Some prior DAPS schemes [11] that claim short
signatures or achieve others of the above properties are black-box constructions
from building blocks whose instantiation is often left open. This can be a non-
trivial task and leaves the concrete efficiency of such schemes unclear.

1.2 Our Contribution

In this paper we present new DAPS constructions that address all of the above
challenges. Our main contributions are as follows.

Exponentially large address spaces without random oracles. Most of
the existing DAPS schemes supporting an exponentially large address space need
to rely on the RO heuristic (e.g. [2, 4, 19, 20]). For some of these constructions
such as the one based on ID-protocols, the need for the RO assumption is a
results of the transformation of an interactive protocol to an non-interactive
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version like Poettering’s scheme [18]. In the other schemes it is due to the fact
that the simulator cannot simulate the signatures in the security reduction. The
RO assumption then lets the simulator program its responses without having
access to the signing key [20]. We circumvent many of the difficulties arising
in previous works by combining vector commitments [7] and double-trapdoor
chameleon hash functions [5, 6]. Our methodology follows the authentication tree
approach also adopted in a previous work [20]: a signature is an authenticated
path from a leaf (whose position is the address part of the message) to a given
root (the public key).

In previous work, the signer either had to create the whole tree in advance
(thus forcing the address space to be polynomial-size) or use the random oracle
to be able to deal with exponentially large address spaces. In our construction
the signer creates the tree incrementally using the equivocation properties of the
chameleon hash. Moreover, we prove our schemes secure by relying on the double-
trapdoor property: the simulator will be able to issue signatures by knowing only
one of the two trapdoors. If an adversary manages to create a forgery (or if it signs
a compromising pair), our reduction uses this information to extract the other
trapdoor with non-negligible probability. We moreover use vector commitments [7]
to realize a “flat” authentication tree (i.e. a tree with branching degree q > 2).
Since both vector commitments [7] and double-trapdoor chameleon hash [5,6]
(see also our DCH scheme in the full version) can be realized under standard
assumptions, the security of our schemes relies on the same assumptions (w.r.t.
the trusted setup for the VC scheme).

Security without trusted setup. Interestingly, our construction can be easily
adapted to the setting where no trusted setup is available. This comes at the
cost of slightly longer signatures and is in contrast to previous proposals that
all rely on trusted setup (or random oracles). The basic intuition here is that
double-trapdoor chameleon hash functions can be realized in an untrusted setup
(we present one in the full version), and substituting the vector commitments
with a standard collision-resistant hash function, the construction highlighted
above still works. The downside is that the produced signatures are now longer,
as more values have to be stored in the authentication chain. Very informally this
is because, replacing Vector Commitments with collision resistant hash functions,
leads to a binary (rather than “flat”) authentication tree.

We remark that the DCH schemes originally suggested in [5, 6] implicitly
assume trusted setup. Here we present a DCH scheme that does not need a trusted
setup. While our proposed DCH scheme was informally suggested in [6] (Section
3.1 of the full version), here we present a concrete construction and prove its
security for the general setting where no trusted setup is available.

A more general definition. We also propose a slightly more general (with
respect to previous work) definition of key-extractability that, we believe, could
be useful in other contexts as well. Our definition introduces a predicate Compvk(·)
that indicates evidence that the signer misbehaved. Slightly more in detail, the
predicate aims at formalizing the fact that, from a compromising pair of signed
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messages, it may be possible to extract some sensitive information sk′ (not
necessarily the full signing key sk) that is compatible with the verification key, i.e.
Compvk(sk′) = 1. In order for this formalization to be any useful we also require
that producing an sk′ such that Compvk(sk′) = 1 is hard (without a compromising
pair of signed messages).

A Groth-Sahai-based construction. As additional contribution of this paper
we propose a DAPS construction from Groth Sahai proofs [14] (DAPS-GS), which
builds upon a construction proposed by Derler et al. [11]. The scheme, which we
will refer to as DAPS-DRS, supports an exponentially large address space and
is based on NIZK proofs, which the authors instantiated in the random oracle
model (ROM). We modify their construction so that the NIZK proof system can
be instantiated with the Groth-Sahai proof system [14]. This system provides
efficient NIZK proofs in the standard model and under standard assumptions for
a restricted class of languages.

An interesting difference between our DAPS-GS scheme and DAPS-DRS
is that the latter uses a fixed-value key-binding PRF. We assign this task to a
commitment scheme and can therefore relax the requirements on the PRF to
standard PRF security. The authors of DAPS-DRS instantiate their key-value
binding PRF F with the block cipher LowMC [1]. They thus need to make
the (arguably non-standard) assumption that this block cipher is a fixed-value
key-binding PRF. The commonality of our DAPS schemes (DAPS-VC-DCH and
DAPS-GS) is that they are both in the standard model and support large address
spaces. In fact, we instantiate the generic construction of [11] by Groth-Sahai
NIZK proof system (as DAPS-GS) to provide a standard-model scheme and
compare it against our main, more efficient, DAPS-VC-DCH (DAPS-DCH).

As a final note, we remark that our solutions compare favorably to previous
work not only in terms of security guarantees, but also in terms of efficiency.
Our most efficient construction based on vector commitments also provides
nice trade-offs between the size of its signatures and the size of its verification
keys: verification keys grow with the branching degree q of the underlying
authentication tree, while signatures grow with the depth h of the tree. A more
precise comparison with previous works is given in Table 1.

1.3 Related work

Ruffing, Kate, and Schröder [20] present a DAPS scheme based on Merkle
trees and chameleon hash functions in the random oracle model. Their scheme
supports an exponentially large address space by using a flat-tree construction.
They associate each leaf with a unique address and some values are assigned on
the fly to nodes from a leaf to the root. A signature is an authentication chain.
This flat-tree construction and the idea of assigning values on the fly has also
been used in other constructions [8, 10].

Poettering [18] gives a DAPS scheme based on a three-move identification
scheme in the ROM. The scheme only supports small address spaces, essentially
because each address is associated with a verification key.
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Table 1: Comparison to prior work. Here n is the bit length of the address,
written as n = h · log q for integers h and q; values n0 and q0 = poly(n0) are LWE
parameters, and `π(n) denotes the proof size in the underlying NIZK system for
statements of length n. Finally, |G| stands for the size of group elements, λH is
the bit length of the random oracle output, and N is an RSA modulus.

Scheme Signature vk size Address Assumption ROM No trusted
size space setup

[18] |G| O(2n) poly. DLog yes no
[20] q · h · |G| O(1) exp. DLog yes yes
[19] (λH + 1) · logN O(1) exp. Fact yes no
[2] logN O(1) exp. Fact yes no
[4] O(n2

0 log q0) O(n4
0 log3 q0) exp. LWE/SIS yes yes

[12] `π(n) O(2n) poly. DLog yes yes
[16] logN or 2 · |G| O(1) exp. Fact or CDH yes yes
[11] `π(n) O(1) exp. PRF&OWF yes yes
DAPS-GS 36n · |G| O(1) exp. SXDH no no
DAPS-VC-DCH 3h · |G| q exp. CDH no no
DAPS-DCH q · h · |G| O(1) exp. DLog no yes

Bellare, Poettering and Stebila [2] propose a similar solution but managed
to avoid the restriction to small address spaces by introducing a trapdoor-ID
scheme. Their solution still relies on random oracles and requires a trusted setup.

Poettering and Stebila [19] present a DAPS based on extractable 2-to-1
trapdoor functions (2:1-TF) in the ROM. A 2:1-TF is a trapdoor one-way
function for which every element of the range has precisely two preimages and
holding the trapdoor allows to efficiently invert the function. Again, the scheme
requires a trusted setup and the ROM.

Other schemes in the random oracle model are those of Boneh, Kim, and
Nikolaenko [4] and Gao et al. [16].

Derler, Ramacher, and Slamanig [11] present a generic DAPS construction
from non-interactive zero-knowledge (NIZK) proof systems that supports an
exponentially large address space. They instantiate the construction in the ROM
using the Fiat-Shamir transformation [13]. NIZK proofs in the common reference
string (CRS) model rely on a trusted setup, and so does any DAPS construction
based on NIZK.

2 Preliminaries

Notations. We denote the security parameter by κ ∈ N and x← X means that
element x is chosen uniformly at random from set X. If A is a probabilistic algo-
rithm, y ← A(x1, x2, . . . ) denotes running A on input x1, x2, . . . , and assigning
its output to y. All algorithms run in probabilistic polynomial-time (p.p.t.) unless
stated otherwise. We denote concatenation by || and the set {1, . . . , n} by [n]. We
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say f(κ) is negligible, and write f(κ) = negl(κ), if for every positive polynomial
p(κ) there exists κ0 ∈ N such that for all κ > κ0: f(κ) < 1/p(κ).

2.1 Digital Signatures

A digital signature (DS) scheme is defined as follows.
Definition 1 (Digital signature scheme). A digital signature scheme Σ
consists of the p.p.t. algorithms (KeyGen,Sign,Verif) where

– KeyGen(1κ), on input the security parameter κ in unary, outputs a signing key
sk and a verification key vk (which implicitly defines the message spaceM).

– Sign(sk,m), on input signing key sk and message m ∈M, outputs a signa-
ture σ.

– Verif(vk,m, σ), on input verification key vk, message m ∈M and signature σ,
outputs either 0 or 1.

Correctness. Signature scheme Σ is correct if for all κ ∈ N, for all (sk, vk)←
KeyGen(1κ), for all m ∈M, and σ ← Sign(sk,m), we have Verif(vk,m, σ) = 1.

2.2 Double-Authentication-Preventing Signatures

Double-authentication-preventing signature (DAPS) schemes are a subclass of
digital signatures where the message to be signed is split into two parts; an
address and a payload,5 i.e., in Definition 1 we have m = (a, p) ∈ U × P.

Informally, compromising messages are (signed) pairs of messages with the
same addresses but different payloads.
Definition 2 (Compromising pair of signatures [19]). For a verification
key vk, a pair (S1, S2) where S1 = (a1, p1;σ1) and S2 = (a2, p2;σ2), is compro-
mising if

Verif(vk, (a1, p1), σ1) = 1, Verif(vk, (a2, p2), σ2) = 1, a1 = a2 and p1 6= p2.

A key property of DAPS schemes is key-extractability (KE). It requires that no
malicious signer can produce a compromising pair of signatures which does not
lead to the revelation of a signing key that is compatible with its verification
key. To make the definition more general, we allow the adversary to succeed even
when it manages to produce compromising messages that do not reveal sensitive
information about the secret key (and not necessarily the whole secret key).

This is captured via the Comp predicate that, informally, outputs 1 if the input
is compatible with the public verification key. The exact meaning of this “compati-
ble” depends on the specific application, but clearly for any (sk, vk)← KeyGen(1κ)
it should be the case that 1 ← Compvk(sk). If Compvk(·) = 1 is constant, we
have nothing more than an ordinary signature without any prevention. The main
requirement here is that producing sk′ such that Compvk(sk′) = 1 must be hard
without a compromising pair of signed messages.
5 In [19] these two parts are referred as subject and message, and in [20] as context
and statement. Here we are following the terminologies from [18].
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KExtTr
DAPS,A(κ):

(sk, vk)← KeyGen(1κ)
(S1, S2)← A(sk, vk)
sk′ ← Ext(vk, S1, S2)
Return 1 iff
− (S1, S2) is compromising
− 0← Compvk(sk′)

KExtnTr
DAPS,A(κ):

(vk;S1, S2)← A(1κ)
sk′ ← Ext(vk, S1, S2)
Return 1 iff
− (S1, S2) is compromising
− 0← Compvk(sk′)

Fig. 1: Game for key-extractability of DAPS.

Definition 3 (Key-extractability [19]). A DAPS scheme is key-extractable
if there exists a p.p.t. algorithm Ext as follows:

– Ext(vk, S1, S2), on input a verification key vk and a compromising pair
(S1, S2), outputs a signing key sk′,

such that Pr[KExtTr/nTr
DAPS,A(κ) = 1] = negl(κ) for all p.p.t. adversaries A, where

experiment KExtTr/nTr
DAPS,A(κ) is as described in Fig. 1.

We say that a DAPS scheme is KE for trusted setups if this holds for experi-
ment KExtTr

DAPS,A, and it is KE without trusted setup if it holds for KExtnTr
DAPS,A.

Since DAPS schemes are a subclass of digital signatures, the standard exis-
tential unforgeability should also be satisfied for a DAPS scheme. This requires a
restriction though, as the adversary could obtain the signing key if it was allowed
to query compromising pairs to its signing oracle.

Definition 4 (Unforgeability of DAPS). A DAPS scheme Σ is existentially
unforgeable under adaptive chosen-message attacks (EUF-CMA) if for all p.p.t.
adversaries A, we have Pr[ForgADAPS(κ) = 1] = negl(κ), where ForgADAPS(κ) is as
described in Fig. 2.

ForgADAPS(κ):
(sk, vk)← KeyGen(1κ)
Q← ∅
(a∗, p∗, σ∗)← ASign(sk,·)(vk)
Return 1 iff:
− Verif(vk, a∗, p∗, σ∗) = 1
− (a∗, p∗) /∈ Q

Oracle Sign(sk, (a, p)):
If ∃ p′ 6= p : (a, p′) ∈ Q then
return ⊥

σ ← Sign(sk, a, p)
Q← Q ∪ {(a, p)}
Return σ

Fig. 2: Game for EUF-CMA security of DAPS
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PBindAVC(κ):
pp← Setup(1κ)
(C,m,m′, i, Λ, Λ′)← A(pp)
Return 1 iff m 6= m′ and Verifpp(C,m, i, Λ) = 1

and Verifpp(C,m′, i, Λ′) = 1

Fig. 3: Game for position-binding of a VC scheme

2.3 Vector Commitments

A vector commitment (VC) is a primitive allowing to commit to an ordered
sequence of q values, rather than to single messages [7]. One can later open the
commitment at a specific position.
Definition 5 (Vector commitments [7]). A VC scheme is a tuple of p.p.t.
algorithms VC = (Setup,Cmt,Open,Verif) where

– Setup(1κ, q), on input the security parameter κ and the length q of committed
vectors (with q = poly(k)), outputs public parameters pp (which defines the
message spaceM).

– Cmtpp(m0, . . . ,mq−1), on input a sequence of q messages m0, . . . ,mq−1 ∈M,
outputs a commitment string C.

– Openpp(m0, . . . ,mq−1,m, i) produces a proof Λi that m is the i-th committed
message in the sequence m0, . . . ,mq−1.

– Verifpp(C,m, i, Λi) outputs 1 if Λi is a valid proof that C commits to a
sequence m0, . . . ,mq−1 with m = mi, and 0 otherwise

Definition 6 (Correctness of VC). A VC is correct if for all κ ∈ N and
q = poly(κ), all pp ← Setup(1κ, q) and all vectors (m0, . . . ,mq−1) ∈ Mq, we
have

Pr
[
C ← Cmtpp(m0, . . . ,mq−1)
Λi ← Openpp(mi, i)

: Verifpp(C,mi, i, Λi) = 1
]

= 1.

The security notion for a VC scheme is called position-binding and requires that
for any p.p.t. adversary, given pp, it should be infeasible to produce a commitment
C and openings to two different messages for the same position.
Definition 7 (Position binding). A VC scheme VC is position-binding if
for all i ∈ {0, . . . , q − 1} and p.p.t. adversary A we have Pr[PBindAVC(κ) = 1]
= negl(κ), where game PBindAVC(κ) is as defined in Fig. 3.
Finally, a VC scheme is concise if the size of the commitment string C and the
output of algorithm Open are both independent of q.

2.4 Double-Trapdoor Chameleon Hash Functions

A chameleon hash function is a (collision-resistant) hash function, where given a
trapdoor one can find collisions efficiently. A double-trapdoor chameleon hash
(DCH) function scheme has two independent such trapdoors.
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DTCRADCH(κ) :
(pk, tk0, tk1)← KeyGen(1κ); b R← {0, 1}
tk′ ← A(pk, tkb)
Output 1 iff tk′ = tk1−b.

Fig. 4: Collision-resistance game for a DCH scheme

Definition 8 (DC hash function [6]). A DCH scheme H is a tuple of p.p.t.
algorithms H = (KeyGen,TrChos,CHash,Coll) where

– KeyGen(1κ), on input the security parameter κ, outputs a public key pk (which
implicitly defines the message spaceM) and private keys tk0 and tk1.

– TrChos(1κ, i), on input the security parameter κ and a bit i, outputs a pair
of public/private keys (pk, tki).

– CHashpk(m, r), on input the public key pk, a message m ∈ M and one (or
more) random nonce r ∈ R, outputs a hash value.

– Coll(pk, tki,m′,m, r), on input one of the two trapdoor keys tki, two mes-
sages m,m′ and a nonce r, outputs a nonce r′ such that CHashpk(m, r) =
CHashpk(m′, r′).

In the definition of algorithm Coll, the pair (m, r) and (m′, r′) is called a collision
pair where CHashpk(m, r) = CHashpk(m′, r′). For a DCH scheme, the following
security requirements were given [6].

Definition 9 (Security of DCH). We require double-trapdoor chameleon hash
functions to satisfy the following properties:

Distribution of keys. The output of TrChos(1κ, i) is distributed like a public
key pk and the i-th private key tki output by KeyGen(1κ).

Double-trapdoor collision-resistance (DTCR). Let (pk, tk0, tk1) be output
by KeyGen(1κ). For all i = 0, 1, given pk and tki it is infeasible to find tk1−i.
Formally, for all p.p.t. adversary A, we have Pr[DTCRADCH(κ) = 1] = negl(κ),
where game DTCRADCH is defined in Fig. 4.

Key-extractability (KE) (w.r.t. predicate Comp(·)). There exists a p.p.t. al-
gorithm Ext as follows:
– Ext(pk, S1, S2), on input the public key pk and a collision pair (S1, S2),
outputs a (single) secret key tk′,

such that Pr[KExtTr/nTr
DCH,A(κ) = 1] = negl(κ) for all p.p.t. adversaries A, with

game KExtTr/nTr
DCH,A(κ) as defined in Fig. 5.

Uniformity. For r chosen uniformly at random in R, all messages m in-
duce the same probability distribution on CHashpk(m, r). This implies that
CHashpk(m, r) for randomly chosen r information-theoretically hides m. As
for standard chameleon hash functions [15] this can be relaxed to computa-
tional indistinguishability of the above distributions for any two messages.
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KExtTr
DCH,A(κ):

(pk; tk0, tk1)← KeyGen(1κ)
(S1, S2)← A(pk, tk0, tk1)
tk′ ← Ext(pk, S1, S2)
Output 1 iff
− (S1, S2) is a collision pair
− tk′ 6= tk0 and tk′ 6= tk1.

KExtnTr
DCH,A(κ):

(pk;S1, S2)← A(1κ)
tk′ ← Ext(pk, S1, S2)
Output 1 iff
− (S1, S2) is a collision pair
− 0← Comppk(tk′)

Fig. 5: KE game for a DCH scheme. The left game is in the trusted setup and
the right game is in the untrusted setup.

Distribution of collisions. For every m,m′, and a uniformly random r, the
distributions of r′ = Coll(tki,m,m′, r) are identical (uniform) for i = 0, 1,
even when given CHashpk(m, r), m and m′.

Remark 1 (On defining Key Extractability). Our definitions above of Key Ex-
tractability implicitly assume that some appropriate predicate Comp is always
associated with a DCH. This might seem surprising at first as, for DCH, Comp is
formally required only for the untrusted setup setting. However, even if one only
cares about the trusted setup setting, we require the underlying DCH to have an
associated predicate Comp, which lets us define Key Extractability for DAPS.

We thus assume, unless otherwise stated, that every DCH has an efficiently
computable predicate Comp, so that for any κ ∈ N and any (pk, tk0, tk1) output
by KeyGen(1κ) we have Comppk(tk0) = Comppk(tk1) = 1 and Comppk(tk′) = 0 for
any tk′ /∈ {tk0, tk1}.

2.5 Non-interactive Zero-Knowledge Proofs

Let L = {x | ∃w : R(x,w) = 1} be a language in NP. A non-interactive zero
knowledge (NIZK) proof system for L is formally defined as follows.

Definition 10 (NIZK proof system). A NIZK proof system Π for the lan-
guage L consists of three p.p.t. algorithms (Setup,Prove, Verif) where

– Setup(1κ) takes the security parameter κ as input and outputs a common
reference string crs.

– Prove(crs, x, w), takes the crs, a statement x and a witness w as input and
outputs a proof π.

– Verif(crs, x, π) takes the crs, the statement x, and a proof π as input and
outputs either 0 or 1.

For a proof systemΠ = (Setup,Prove,Verif), in addition to completeness and zero-
knowledge we require simulation-sound extractability, which is a strengthening of
knowledge soundness: even after the adversary has seen simulated proofs, from
any valid (fresh) proof output by the adversary, a witness can be extracted.
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3 A DAPS Scheme From VC and DCH (DAPS-VC-DCH)

3.1 Construction

In this section we present our DAPS scheme based on vector commitments and
double-trapdoor chameleon hash function. Our scheme will make use of a “flat”
q-ary tree (i.e. a tree with branching degree q) of height h, which we call the
signing tree. The root of the tree will be a public value Cε that will be part of
the public key. Recall that in DAPS, messages are tuples of the form (a, p). The
first component is interpreted as an integer in the range {0, . . . , qh − 1}. We can
univocally associate each a to a path connecting the root with one leaf of the
tree. In particular, a can be viewed as a number representing the labeling of the
leaf in q-ary encoding (see the toy example in Fig. 6 for q = 3). In what follows,
pathu→w denotes the ordered sequence of nodes connecting node u to node w.
The root will be denoted by ε. Note that each node u has a unique position in
the tree which we denote by posu; when u is the i-th node, from left-to-right, in
the j-th level of the tree, we define posu = j||i.

Overview of the scheme. We start with an informal description of the stateful
version of our scheme where the signer needs to keep track of the produced
signatures. The public key contains the public parameters for a vector commitment
scheme VC and for a double-trapdoor chameleon hash function DCH. The private
key is the corresponding trapdoor information. The public key also contains a
value Cε which is computed as follows. The signer first computes CHash on q
random inputs to get the output values m0, . . . ,mq−1. Next, she sets Cε as a VC
commitment to the vector m0, . . . ,mq−1. The value Cε is assigned to the root of
an, initially empty, tree.

The signature algorithm will “fill up” this tree on the fly. To sign the message
(a, p), the signer will place p as the a-th leaf and will output an authentication
chain that links p to the root Cε. The verifier will follow this authentication
chain and if the end of the chain matches the value in the public key, accepts the
signature.

We describe more in detail how the signer creates the authentication chain.
Starting from the a-th leaf the signer produces the signature by augmenting the
existing tree with the new authentication path. This is done using the following
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Cε = Cmt(m0,m1,m2)

(ρ10, r10) (ρ11, r11) (ρ12, r12)

Fig. 7

create-and-connect approach. First, the signer generates the possibly missing
portion of the subtree containing the a-th leaf. Next, it connects this portion to
the signing tree. Creating the missing portion of the tree essentially amounts to
creating all the missing nodes. Specifically, and letting a = (a0, . . . , ah) be the
q-ary encoding of a, the signer computes mah

= CHash(ph, r) where ph = p (for
some randomness r) and, for i ∈ {0, . . . , q − 1}\{ah}, mi = CHash(ρi, ri) for ran-
dom ρi, ri. Next the signer computes ph−1 = Cmt(m) with m = (m0, . . . ,mq−1).
The process is then repeated node by node moving up the path until no more
nodes need to be created. This happens when the newly created pj needs to
be inserted in a position already occupied by some other value ρj 6= pj (i.e. for
which a value CHash(ρj , rj) was previously computed). This is when the connect
phase begins. The signer uses knowledge of the trapdoor key to find a “colliding”
r such that CHash(ρj , rj) = CHash(pj , r).

In Fig. 7 we provide a pictorial representation of the key generation phase
(for the toy case with branching degree 3). Black nodes indicate values that are
obtained as outputs of the (vector) commitment and will not be altered any
further in the future. Gray nodes indicate the frontier of the tree, i.e., nodes that
are either leaves or roots of subtrees not yet explored.

Similarly, Fig. 8 pictorially describes (a toy example of) the signing procedure.
To sign the message (a = 000, p), one first creates the missing part of the tree,
as sketched above. This also requires the signer to store all the commitments
associated to each node. Once the procedure reaches a frontier node, the signer
uses knowledge of the trapdoor to find a collision for CHash. In Fig. 8 this is
what happens to node 1 that, once connected with the newly created subtree,
becomes black. Notice that the collision finding procedure typically alters the
associated randomness r̂10. This change will be done once and for all at this
stage, as once the node is blackened no further modifications are allowed. To
complete the procedure, the signer also produces valid openings Λ for all the
commitments encountered in the path from the leaf p to the root and updates
the lists of data associated to each node.

Formal description of the scheme. We are now ready to present a formal
description of our scheme. Let VC = (VC.Setup,Cmt,Open,VC.Verif) be a vector
commitment (VC) scheme and DCH = (DCH.KeyGen,Trapdr,CHash,Coll) be a
double-trapdoor chameleon hash (DCH) function with Cmt : Mq → Ovc and
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CHash : (P,R)→ ODCH. Let H1 : Ovc → P and H2 : ODCH →M be two collision-
resistant hash functions, used to map between different data types. The underlying
data structure will be a tree T of branching degree q and height h. Messages are
tuples of the form (a, p) with payload component p ∈ P and address a ∈ U :=
{0, . . . , qh − 1}. We use the label ε for the root. Also, we say that v is a child of
u in position i, when v is the i-th child of u (counting from left).

We use a pseudo-random function F to generate the random values (ρji, rji)
as ρji = Fk(j||i, 0) and rji = Fk(j||i, 1), where k is part of the signing key. This
makes signing deterministic (but still stateful, see below) and minimizes the
information that has to be stored by the signer. Recall that posu = j||i denotes
the unique position of node u in the tree. A complete description of the scheme
is given in Fig. 9 and Fig. 10
Remark 2. For DAPS schemes, signing is inherently stateful as the signer needs
to remember the signed addresses in order not to sign a compromising pair. This
is important for unforgeability rather than for correctness. Keeping track of the
signed addresses can be efficiently done using a bloom filter [20]. In our scheme,
the signer must in addition remember the payloads that it has signed in the past
(but no further information, such as past signatures). This suffices to regenerate
the tree during the signing of a new message.

3.2 Security Analysis

We prove the security of our construction via the following two theorems, first
key-extractability (Definition 3), then unforgeability (Definition 4). Formally, we
have the following theorem where we consider the KE property of our DAPS
scheme w.r.t the same extractor of DCH scheme.
Theorem 1. If VC is position-binding, DCH is key-extractable and H1, H2 are
collision-resistant, then our construction (Fig. 9) is key-extractable (w.r.t. the
trusted setup for VC).
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KeyGen(1κ, q, h, ):

– choose k R← KF and hash functions H1 and H2
– run ppVC ← VC.Setup(1κ) and (pkDCH, tk0, tk1)← DCH.KeyGen(1κ)
– set ρ1i = Fk(1||i, 0) and r1i = Fk(1||i, 1), for i = 0, . . . , q − 1
– compute the DCH value mi = H2(CHash(ρ1i, r1i)), i = 0, . . . , q − 1
– compute the VC value Cε = CmtppVC (m0, . . . ,mq−1)
– return vk = (H1, H2, ppVC, pkDCH, Cε) and sk = (tk0, tk1, k)

Sign(vk, sk, (a, p)):

– set σ = ∅
• Frontier node. let u∗ ∈ patha→ε be the frontier-node of the existing part of the tree
(the first node on patha→ε such that a DCH value was assigned)
• Creation phase (of the subtree rooted in u∗). for u ∈ patha→u∗ (except u∗):

1. if u is a leaf: set ru = Fk(posu, 1), pu = p,mu = H2(CHash(pu, ru)) and σ := σ||ru
if u is not a leaf: set Cu = Cmt(m0, . . . ,mq−1) where mi is assigned to the ith
child of u; set pu = H1(Cu), ru = Fk(posu, 1), mu = H2(CHash(pu, ru)) and
σ = σ||(ru, Cu, Λu) where Λu = Open(mv, i) such that v ∈ patha→ε is the i-th
child of u

2. for each sibling v of u, set ρv = Fk(posv, 0) and rv = Fk(posv, 1), then compute
mv = H2(CHash(ρv, rv))

• Connection phase (at node u∗).
1. if u∗ is a leaf: set pu∗ = p, run r̂u∗ ← Coll(tk0, (ρu∗ , ru∗ ), pu∗ ) and set σ||r̂u∗

if u∗ is not a leaf: compute Cu∗ = Cmt(m0, . . . ,mq−1) and set pu∗ = H1(Cu∗ );
run r̂u∗ ← Coll(tk0, (ρu∗ , ru∗ ), pu∗ ) and set σ||(r̂u∗ , Cu∗ , Λu∗ ) where Λu∗ =
Open(mv, i) such that v ∈ patha→ε is the i-th child of u∗

2. let w be the parent of u∗, update Λw as Λw ← Open(mu∗ , i) such that u∗ is the
i-th child of w; if w 6= ε, set σ := σ||σw→ε where σw→ε is the authentication-chain
from w to the root (with updated Λw); else, set σ := σ||Λw

– return σ

Verif(vk, (a, p), σ):

– parse vk as (H1, H2, ppVC, pkDCH, Cε) and σ as (rh, (rh−1, Ch−1, Λh−1), . . . , (r1, C1, Λ1),
Λε); then consider patha→ε identified by the representation a = a0, . . . , ah.

– set mh = H2(CHash(p, rh)) and mj = H2(CHash(H1(Cj), rj)) for j = h− 1, . . . , 1
– for j = h− 1, . . . , 0: check that VC.Verif(Cj ,mj+1, aj+1, Λj) = 1
– if all the verifications pass, return 1, otherwise return 0

Fig. 9: Our DAPS-VC-DCH scheme.

Proof sketch. The general intuition of the proof is as follows. Assume that a
malicious signer can produce two valid signatures for a compromising pair without
leaking the required information on secret keys (as defined by the predicate Comp).
We show that this can be used to break one of the underlying primitives.

For any compromising pair, the authentication path passes through the same
nodes to the root and the commitment at the end of the chain is fixed by the
verification key. This means the two valid signatures for a compromising pair have
a “collision node” on the path, where at and above that node, the commitments
of the authentication chains for these two signatures must be equal. Due to the
security of hash functions H1 and H2 and the position-binding property of the
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Cε
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hu

pu = H1(Cu) ru

Cu = Cmt(m0, . . . ,mq−1)

m0

H2

CHash

H1

Fig. 10: Detailed figure for the construction and the security proof. Here dotted
edges denote operations in a single node.

VC scheme (which only rely on public parameters over which the signer has no
control), and the fact that the two payloads are different, the signer must create
a DCH collision. As this DCH collision can be obtained from the signatures, and
extraction did not work, this breaks key-extractability of DCH. We make this
intuition formal in the full version.

Theorem 2. If VC is position-binding, DCH is a secure DCH scheme (Defini-
tion 9), F is pseudo-random, and H1 and H2 are collision-resistant, then our
DAPS scheme is EUF-CMA secure.

Proof sketch. The first step in the proof is to replace all PRF outputs by uniformly
random values, which is indistinguishable by pseudo-randomness. The rest of
the proof crucially relies on various properties of the DCH scheme. First note
that instead of using tk0 as specified by the signing protocol, the game can
choose b R← {0, 1} and use tkb when answering the adversary’s signing queries.
By distribution of collisions (Definition 9), the game is distributed as the original
game (with PRF values replaced by random).

Consider a forgery σ∗ = (r∗h, (r∗h−1, C
∗
h−1, Λ

∗
h−1), . . . , (r∗1 , C∗1 , Λ∗1), Λ∗ε ) for a

message (a∗, p∗) that was not signed by the game. Let i be the signing query
whose address ai shares the longest prefix with a∗ and let ` be the length of this
prefix. Let (r`+1, (r`, C`, Λ`), . . . , (r1, C1, Λ1), Λε) be the part of the signature
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resulting from this i-th signing query (note that all signatures on addresses with
the same prefix end with the same elements). We consider two cases:

• (C∗` , . . . , C∗1 ) 6= (C`, . . . , C1): Let j be the smallest index so that C∗j 6= Cj . If
p∗j := H1(C∗j ) = H1(Cj) =: pj then we have found an H1 collision (see Fig. 10 for
the required computations/operations in this node). Else if h∗j := CHash(p∗j , r∗j ) =
CHash(pj , rj) =: hj then (since p∗j 6= pj), by key-extractability of DCH we can
extract a trapdoor tk∗. Else if m∗j := H2(h∗j ) = H2(hj) =: mj , then (since
h∗j 6= hj) we have found an H2 collision. Else we have m∗j 6= mj and since
C∗j−1 = Cj−1, this breaks position-binding of VC.

• (C∗` , . . . , C∗1 ) = (C`, . . . , C1): Let (ρ`+1, r
′
`+1) be the values chosen for the

a∗`+1-th child of the node corresponding to C` when C` was first computed. Let
ρ∗ := p∗ if ` = h− 1; else let ρ∗ := H1(C∗`+1). If ρ∗ = ρ`+1 then we abort. (∗)
If h∗j := CHash(ρ∗, r∗`+1) = CHash(ρ`+1, r

′
`+1) =: h∗j then (since ρ∗ 6= ρ`+1) by

key-extractability, we extract a trapdoor tk∗. Otherwise, since C∗` = C`, but
h∗j 6= hj , we either found a collision for H2 or we broke position-binding of VC.

By uniformity of hashes (Definition 9) of the chameleon hash function DCH, the
adversary has no information on ρ`+1, so the probability of aborting in line (∗) is
negligible. Moreover, if we did not break CR ofH1 orH2, or position-binding of VC
or key-extractability of DCH, then we have extracted a valid trapdoor tk∗. Since
the adversary obtains no information on the bit b (determining which trapdoor
was used by the game), the probability that tk∗ = tk1−b is 1

2 . The reduction can
thus return tk∗ and break double-trapdoor collision-resistance (Definition 9).

Finally, note that the restriction on the signing queries in the unforgeability
game (Fig. 2) is crucial: if the adversary could obtain signatures on compromising
pairs, then these would reveal tkb. The formal proof is given in the full version.

3.3 Extension to Untrusted Setup (DAPS-DCH)

We discuss a simple modification of DAPS-VC-DCH that makes it secure when
there is no trusted setup. What we mean by this is that, while we might trust
standardized hash functions (such as SHA3) to be collision-resistant (CR), we
might not trust a malicious signer to honestly generate its public key vk.

Under a maliciously generated key, the signer might be able to produce
signatures on a compromising pair from which no secret key can be extracted,
unless the DAPS scheme satisfies key extractability for untrusted setups (defined
via the game on the right in Fig. 2). For this to hold for our DAPS, the underlying
primitives need to be secure in untrusted setups. For DCH, a candidate satisfying
this was informally discussed in [6] and is explicitly formalized in the full version
of this paper. Unfortunately, for VC no instantiations without a trusted setup
are known.

We therefore remove the VC scheme (and H1) from the construction and
replace it with a CR hash function H : Mq → P. For each node u we include all
chameleon-hash values associated with its children (except the child on the current
path to the root) in the authentication chain. This modification, which we call
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DAPS-DCH, has q times longer signatures. Security of the scheme is immediate,
since we could view H as a VC with an opening of (m0, . . . ,mq−1,m, i) defined
as (m0, . . . ,mi−1,mi+1, . . . ,mq−1) (Definition 5), which is position-binding by
CR of H.

4 A DAPS Scheme Based on NIZK Proofs

We start with recalling the generic DAPS construction proposed by Derler
et al. [11]. Their scheme, which we will refer to as DAPS-DRS, supports an
exponentially large address space and is based on (simulation-sound) NIZK proofs
of knowledge, which they instantiated using the Fiat-Shamir transformation [13]
in the random oracle model. We will give an instantiation without random oracles
and from standard assumptions by relying on the Groth-Sahai proof system [14].
This allows us to compare a standard-model version of an existing work to our
DAPS-VC-DCH.

In DAPS-DRS scheme a signature contains a value z := γ · p + skΣ where
p is the payload of the message, skΣ is a signing key for a digital signature
scheme Σ, and γ is derived from the address part a of the message via a
pseudo-random function (PRF) F as γ := F (skPRF, a). If the values z, z′ for a
compromising pair (a, p), (a, p′) have been correctly computed then they reveal
skΣ = (zp′ − z′p)/(p′ − p).

To “commit” the signer to the values skΣ and skPRF, a one-way function
is used: the public key contains vkΣ := f(skΣ) and moreover values β and
c := F (skPRF, β). For (β, c) to fix skPRF, the PRF needs to assumed to be fixed-
value key-binding, that is, it should be hard to find another key sk′PRF with
F (skPRF, β) = F (sk′PRF, β).

A DAPS signature on a message m = (a, p) under a public key pk =
(crs, vkΣ , (β, c)) then consists of the value z together with a NIZK proof un-
der crs that (vkΣ , β, c, a, p, z) belongs to the following language:

L =
{

(vkΣ , β, c, a, p, z)
∣∣∣∣ ∃ (skΣ , skPRF) : c = F (skPRF, β)
∧ vkΣ = f(skΣ) ∧ z = F (skPRF, a) · p+ skΣ

}
.

We instantiate the NIZK proofs using the Groth-Sahai system over asymmetric
bilinear groups. While the security of this proof system relies on a standard
assumption (SXDH, that is, decisional Diffie-Hellman (DDH) holds in G1 and
G2), it only supports a restricted class of languages, so the signature scheme and
the PRF need to be compatible.

This is the case for the variant [3] of Waters’ signature scheme [21] over
asymmetric bilinear groups, which is secure under a variant of the computational
Diffie-Hellman assumption, and the Naor-Reingold PRF [17], which is pseudo-
random under DDH. Waters secret keys and Naor-Reingold PRF outputs are
in G1.

In order to avoid additional assumptions on the PRF, we slightly modify the
DAPS-DRS construction [11] (and call it DAPS-GS): to bind the signer to the
value skPRF, we simply commitment to it in the public key using a commitment
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scheme C. This lets us only rely on standard assumptions, while DRS had to
assume that LowMC [1] is a fixed-value key-binding PRF.

In our variant DAPS-GS the language for the proof system is as follows:

L =
{

(vkΣ , ppC , C, a, p, z)
∣∣∣∣ ∃ (skΣ , skPRF) : C = Cmt(ppC , skPRF)
∧ vkΣ = f(skΣ) ∧ z = F (skPRF, a)p · skΣ

}
(recall that secret keys and PRF outputs are group elements, hence the multi-
plicative notation). Despite our efforts in optimizing the scheme, DAPS-GS is less
efficient than our scheme DAPS-VC-DCH from Section 3, as shown in Table 1.
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