
Trace-Σ: a privacy-preserving contact tracing app
Jean-François Biasse∗, Sriram Chelleppan†, Sherzod Kariev, Noyem Khan
Lynette Menezes§, Efe Seyitoglu, Charurut Somboonwit§, Attila Yavuz‡

University of South Florida §USF Health
4202 E Fowler Ave, 1 Tampa General Cir
Tampa, FL 33620 Tampa, FL 33606

Corresponding authors: ∗biasse@usf.edu, †sriramc@usf.edu, ‡attilaayavuz@usf.edu

Abstract—We present a privacy-preserving protocol to anony-
mously collect information about a social graph. The typical
application of our protocol is Bluetooth-enabled “contact-tracing
apps” which record information about proximity between users
to infer the risk of propagation of COVID-19 among them. The
main contribution of this work is to enable a central server
to construct an anonymous graph of interactions between users.
This graph gives the central authority insight on the propagation
of the virus, and allows it to run predictive models on it while
protecting the privacy of users. The main technical tool we use is
an accumulator scheme due to Camenisch and Lysyanskaya [1]
to keep track of the credentials of users, and prove accumulated
credentials in Zero-Knowledge.

Index Terms—Exposure notification, contact tracing, Zero-
Knowledge proofs, Σ-protocols, Accumulators, Signatures of
Knowledge, COVID-19.

I. INTRODUCTION

Since the beginning of the SARS-Cov-2 epidemic, contact
tracing has been a major stake to protect populations. Early on,
the idea of leveraging mobile devices to automate certain tasks
(quarantine, monitoring, contact tracing ...) became popular. In
most of the proposed system, authorities had to strike a bal-
ance between users’ privacy and efficacy. So-called “contact-
tracing apps” emerged after Singapore piloted the system
TraceTogether [2] to leverage Bluetooth signals. The model of
TraceTogether was adopted by Alberta’s ABTraceTogether [3]
and Australia’s COVIDSafe [4]. The basic idea consists in
having the phone of each user constantly broadcast identifiers
provided by a central server. These identifiers are collected
by the phones of other users who are within reach of the
Bluetooth signal. When a user tests positive for COVID-19,
they are invited by the central server to upload the identifiers
they recently received. The corresponding users may have been
infected. Once the server receives their identifiers, it contacts
them to inform them they should get tested. Many systems
relying on phone apps were subsequently described. The two
major drives for technical improvements were privacy and
reliability of the signal. Note that the efficacy of contact tracing
apps is also ruled by a major non-technical aspect: the adoption
rate. As of now, no contact tracing app has been adopted by
the majority of a given population. The highest rate was in
Iceland with around 40% of the population, followed by early

This work was supported by a USF COVID-19 Rapid Response Grant.

adopters such as Singapore and Australia where the adoption
rate is around 25%. These rates are too low to guarantee that
a significant proportion of interactions get recorded (a 25%
adoption rate means that no more than 6.25% of interactions
will be recorded on average). This paper does not deal with
the issues of adoption and reliability of the signal. We consider
the case of the exchange of Bluetooth signal, but our system
might be compatible with WiFi and ultrasonic signals. GPS
information has also been considered in the context of contact-
tracing apps.

Privacy has been a major drive in the development of new
protocols for contact tracing apps. Indeed, the collection of
information on proximity, localization, and health have a lot of
legal ramifications. Additionally, it is possible (but conjectural)
that a higher privacy protection results in a higher adoption
rate. TraceTogether (and its successors) use a server that needs
to be trusted with information on contacts and positive tests.
This highly centralized design has lead to criticisms that this
information could be misused (through mass surveillance), or
hacked. To counter that risk, decentralized approaches were
proposed. A consortium of European researchers lead by the
EPFL described a decentralized approach called DP-3T [5]
which inspired Apple and Google in the design of an API [6]
available to health authorities to facilitate the development
of Bluetooth-based contact tracing apps. In a decentralized
approach, phones broadcast random tokens that are collected
by other phones in close proximity. Unlike in the centralized
TraceTogether system, these tokens do not tie to the identity
of the users. Once a user tests positive for COVID-19, they
upload the tokens they have been recently broadcasting. Then
the server makes these tokens available to the other users who
can learn whether they have been in contact with a positive
user by comparing the tokens sent by the server with the tokens
they have recently received. It is clear that a the privacy of a
user that does not notify the server of a positive test cannot
be compromised in this setting. However, it has been pointed
out by several authors, including Vaudenay [7] that the action
of uploading the tokens recently used (and their subsequent
broadcast by the central server) can lead to de-anonymisations
of positive users. The typical scenario in which this could
happen is when an entity records Bluetooth tokens together
with information on individuals around (pictures, name, etc



...). Then they can query the server to learn whether the people
they collected information about declare a positive test within
the time frame of validity of the tokens (typically 14 days). For
example, such a setup can easily be implemented in a hotel
lobby where clients’ tokens are collected during check in. Then
the hotel can learn whether its clients test positive and take
appropriate measures (disinfection, reaching out to the client,
etc ...). We believe that realistic de-anonymisation scenarios
will be business-driven (businesses wanting to analyze whether
their clients carry COVID-19, or employers wanting to know
whether their employees test positive for COVID-19 to isolate
them), however, more creative possibilities involving extortion
schemes have also been described (see for example [7, Sec.
4]. While there is no established consensus on the superiority
of centralized or decentralized approaches for contact tracing
apps, it clearly seems to be a trade-off. The decentralized
approaches minimize the liability of the entity running the
system (at the cost of facilitating de-anonymizations carried by
third parties), which could explain why this has been favored
by Apple and Google.

Our contribution: We propose a protocol for contact
tracing apps that preserves users’ privacy while enabling
the central server to learn useful information such as the
anonymized graph of interaction between users. Our proto-
col relies on authentication of incoming information through
ZK Signatures of Knowledge [8] (ZKSoK) of accumulated
credentials in the RSA-based Camenisch and Lysyanskaya [1]
accumulator. The main functionalities of our protocols are the
following.

• Users are authenticated at enrollment (for ex: SMS code).
• The server learns a social graph with anonymous labels.
• Users report interactions anonymously.
• Users report positive tests anonymously.
• Health care providers provide certificates for the positive

tests.

The main feature of our protocol is to allow a central server
to draw an anonymous graph of interaction. This is in sharp
contrast with many privacy-preserving contact-tracing app
protocols (especially the decentralized ones) which strive to
prevent the server from learning anything at all from the
social graph. On the other hand, centralized methods such
as TraceTogether learn the social graph with the personal
information of users (at least their phone numbers). Our
protocol proposes an in-between solution where in addition
to providing an exposure-notification service to the users,
the server is also able to monitor the progression of the
pandemic with the anonymous graph of interactions. This
information can be used to run predictive models to stay
ahead of outbreaks. Note that in order to provide the central
server with reliable information, users are authenticated during
the enrollment phase. This means that the central server has
information about users enrolled in the system (typically their
phone number – or a hash thereof). Subsequent reports of
interaction or positive tests are made under an anonymous ID,
meaning that the server is convinced that the user presenting

the ID is legitimately enrolled, and that they are always using
the same anonymous ID, but it cannot learn who they are
among their registered users. We assume that communications
between users and the server occur through an anonymous
network. We propose to use existing solutions such as the Tor
onion network [9]. Mitigation measures against network traffic
analysis are a necessary condition to ensure privacy. Other
solutions include the use of mixers. In the rest of the paper,
we disregard privacy concerns over network traffic analysis.

II. PRELIMINARIES

In this section, we introduce the prior work on which we
rely to define our protocol. We set the notations, and insist
on the notions of accumulator schemes and of ZK proofs of
accumulated values.

A. Notations

Our notations are displayed in the table below.

TABLE I: Notation Table

p Prime number
q Prime number
N RSA integer
PK Public key
sk Secret key
α Generator (subgroup of order q)
M Message
{0, 1}∗ Binary values (desired length)
str* A string of arbitrary length
H : {0, 1}κ → {0, 1}κ A hash function (random oracle).
Sig Signature generation algorithm
Kg Key generation
Ver Signature verification
Z∗
q Integers modulo q

SA Anonymous ID of the user A
rA Private key the user A
u Quadratic residue 6= 1 mod N
cA Public credential of the user A
KA,B Exchanged token of users A & B
G User Graph
Server Centralized server (database)
ZKSok() Signature of knowledge
Enc Encryption
σx Signature with the secret key x

B. Digital Signature

We use a generic digital signature when reporting positive
cases. A digital signature scheme has three algorithms defined
as SGN = (Kg,Sig,Ver).

– (sk ,PK )← SGN.Kg(1κ): The key generation algorithm
generates the private and public keys and the requires the
security parameter as input.

– σ ← SGN.Sig(m, sk): The signature generation algo-
rithm generates a signature σ with respect to the given
message and the secret key.

– (0, 1)← SGN.Ver(m,σ,PK ): The signature verification
algorithm, verifies a given signature given the message
and the public key.



C. Accumulator Scheme

We use teh accumulator scheme originally presented in [1].
The public credentials of the users are accumulated in an
accumulator, and we make use of the available Zero Kowledge
proof protocol of an accumulated value (see Section II-E). The
public credentials of the users are denoted by c1, c2, . . . , cn.
The accumulator value is is A := uc1,c2,...,cn mod N , where
u is a samplable input domain [1]. Given an accumulator
A = uc1,c2,...,cn mod N , one can efficiently add or delete
credentials from it.

Accumulator: uc1 ,c2 ,...,cn mod N

D. Pederson Commitment

We use the Pedersen commitment [10] to the private key of a
user as their public credential. We follow a similar approach to
the Zerocoin cryptocurrency [8] for our choice of parameters.
We chose public primes p, q with p = 2wq + 1 for w ≥ 1
and g, h such that 〈g〉 = 〈h〉 ⊆ Z∗

q . Then a given user has an
anonymous identity S ∈ Z∗

q and private key r ∈ Z∗
q such that

their public credential is c = gShr mod p. Note that Pederson
commitments were used in the ConTra Corona [11] digital
contact tracing protocol for a different purpose as ours. In [11],
a user commits to a “warning identity” that they prove in
Zero Knowledge (see Section II-E) when interacting with a
medical doctor to argue they should get tested without having
to disclose their credentials.

E. Zero-Knowledge Proofs

Our proposed scheme uses zero-knowledge proofs so that
the users can interact with the server without revealing their
public credentials. Some popular zero-knowledge proofs can
be found in: [12]–[15]. A zero-knowledge (ZK) proof is a
mechanism for the user A to prove the user B that she know a
secret without revealing any information about anything else
[16]. A main ingredient of ZK proofs are Σ-protocols, which
give our system its name.

To authenticate a message from a user the the server, we
use the Zero Knowledge Signature of Knowledge (ZKSoK)
presented in [8]. We assume that the accumulator A contains
public credentials of users, and that a user presents the
anonymous ID S. The ZKSoK of the message guarantees that
the signer knows two values: (i) a credential c accumulated in
A, (ii) A private key r such that c = gShr mod p.

ZKSoK(c.r)[c in A, c = gS · hr mod p ]

III. PROPOSED SCHEME

The main technical point of our paper is to authenticate
communications from the users to the server with similar
ZKSoK as in the Zercoin protocol [8]. This allows the users
to be identified by an anonymous ID on the network while
offering guarantees to the server that users are real and
committed to one anonymous ID. The main motivation for our
scheme is the study of the social graph between anonymous
IDs that can help the server run predictive models to stay ahead
of outbreaks.

A. High Level Description

In our protocol, proximity between two users is recorded
via an exchange of digital tokens through Bluetooth LE signal.
When the phones of two users are paired, they create a shared
secret token with the Diffie-Hellman protocol [17]. The idea of
using the DH protocol was already present in the DESIRE [18]
and the Pronto-C2 [19] digital tracing protocols. Then, pe-
riodically, users (under their static anonymous ID) upload
all of their tokens to the central server using a ZKSoK to
authenticate the information. The server searches for matching
tokens between the anonymous IDs. Whenever it finds one,
it updates the relevant information on the anonymous social
graph. To report a positive test, a user must obtain a signature
of their ZKSoK and time stamp from a medical doctor who
is registered with the system. Then the user uploads this
information. The server accepts it if they can verify both the
ZKSoK and the doctor’s digital signature. Then, the server
report that information on the corresponding node of the
social graph and notifies the users that are connected to it
by interactions within the relevant time frame (typically 14
days). The main actors of the protocol are:

• Server: The central server is “honest but curious”. It is
assumed to run the protocol honestly, but it might try
to exploit any information it receives to learn something
about the users (typically their identity).

• Users: The users are potentially dishonest. They might
run modified versions of the app to alter the protocol.
They might also collude with other users and non-user
adversaries, but we do not assume they collude with
the server or the doctors. Malicious users try to de-
anonymize other users, learn private medical information
of other users, learn information about the social graph,
and disturb the system by feeding it incorrect information
(false tokens, or false positive COVID-19 tests).

• Medical doctors: Certain doctors are enrolled by the sys-
tem, and their public credentials are known to the server.
These doctors are honest and will sign the credentials of
a user that tests positive for COVID-19.

• General population: Since the Bluetooth LE signal
can be recorded and broadcast by anyone, we consider
the entire population as potential adversaries. Malicious
entities have the same goals as malicious users. If an
entity needs to register with the system to mount an
attack, they are considered a user.

B. Main phases of the protocol

Phase I: Enrollment of a User.: The first phase of
the protocol is the registration of a user. It is summarized
in Figure 1. The goal of this phase is to check that the user is
a legitimately entity, to agree on a private/public key pair with
the user, and to agree on an anonymous ID for the user. If user
A downloads the app. the protocol requires a one-time code
exchange to make sure the user A is actually a real person
(Step 1). Then the user and the server want to create a public
credential c, a private key r, and an anonymous ID S such



that c = gShr mod p. The issue here is that while S cannot
be chosen (or even known) by the server, we also do not want
the user to choose it. Indeed, colluding users could all decide to
choose the same anonymous ID to mount Sybil attacks which
would cause the server to believe that one user under this ID
is connected to many others. Then if one of the malicious
users using this ID tests positive for COVID-19, this would
cause the system to believe many users have been exposed.
To force randomness in the creation of public and private
credentials, the protocol requires users to choose k different
(Si)i≤k, and (ri)i≤k uniformly at random in [1,Ordp(g)− 1]
(resp. [1,Ordq(h) − 1], and to send c1, · · · , ck to the server,
where ci := gSi · hri mod p. The server then checks that all
ci are different, and draws (xi)i≤k uniformly at random in
[1, p − 1]k and sends this vector to the user. Then the public
credential of the user is c :=

∏
i c
xi
i and S :=

∑
i xiSi,

r :=
∑
i xiri, thus ensuring that c = gShr mod p without

allowing a dishonest user to induce any significant bias in the
choice of S, while also preventing the server from knowing
S.

Proposition 1. If the enrollment protocol of Figure 1 termi-
nates without the server raising an error, then the probability
that a user obtains a given S as anonymous ID is 1/Ordp(g)
and the probability that they obtain a given r as private key is
1/Ordp(h). Under the assumption that the discrete logarithm
problem is difficult, the server does not learn any information
about S, r from c.

Fig. 1: Enrollment of a User

Phase II: Exchange of Tokens: When the user A meets
the user B, they create a shared secret token K over the
Bluetooth LE signal. This token is only known by them
and will be used to identify that they have been in contact
with each other. We recommend the use of elliptic curve
digital signatures as they are more compact than their RSA
counterparts. To increase security, we recommend regular
change of ephemeral public keys. We also recommend that
the resulting token K be hashed by each user with a rounding
of the GPS coordinates and of the time. The precision of such
rounding is not specified in this document, but it needs to be
precise enough so that users that are far apart and/or computing
the token at significantly different time would end up with
different tokens. On the other hand, we do not want that the
imprecisions of the GPS coordinates or slight differences in

time prevent legitimate interactions to result in the same token.
This procedure is summarized in Figure 2.

Fig. 2: Exchange of Tokens

Sends  𝑁𝐵 .𝑃

Sends  𝑁𝐴 .𝑃

Shared Token  𝑁𝐴𝑁𝐵 .𝑃

Public curve 𝐸 over a finite fieldChooses random 𝑁𝐴 Chooses random 𝑁𝐵

Phase III: Reporting an Interaction: After the two
people establish a shared token K, they need to send this token
along with their respective anonymous identities. To convince
the server that their anonymous identities are legitimate, each
user signs this information with a ZK-SoK of the fact that
they know c accumulated in the accumulator A, and that they
know r such that c = gShr mod p where S is the anonymous
identity they present to the server. Upon acceptance of this
signature, the server saves the token, and it periodically checks
for matching tokens between anonymous IDs. Note that the
users also upload time information during this process to
allow the server to set an expiration date on each edge of
the social graph (typically 14 days). This reporting procedure
is summarized in Figure 3. Note that the authors of Contra
Corona [11, Sec. 4.9] briefly suggested using related methods
to bridge the gap between anonymity and the need to bind
accounts to phone numbers. They mentioned the possibility
of using the anonymous e-token dispenser of [20] to report
information to the central server anonymously. No precise
protocol is described, but it seems that the main difference
with our protocol is that our users are committed to a static
anonymous ID under which they report information. This
creates unique challenges for the creation of the ID that are
solved in Phase I.

Fig. 3: Reporting an Interaction

ZKSoK 𝑐𝐴, 𝑟𝐴 [𝑐𝐴 ∈ 𝐴 and 𝑐𝐴 = 𝑔𝑆𝐴 .ℎ𝑟𝐴 mod 𝑞]

of the token [𝐾], together with 𝑆𝐴

ZKSoK 𝑐𝐵 , 𝑟𝐵 [𝑐𝐵 ∈ 𝐴 and 𝑐𝐵 = 𝑔𝑆𝐵 . ℎ𝑟𝐵 mod 𝑞]

of the token [𝐾], together with 𝑆𝐵

There is unfortunately a significant hurdle to smooth es-
tablishment/revocation of privileges. Indeed, assume that the
system has k users known to the system by their anonymous
IDs S1, . . . , Sk. If a k + 1-th user goes through the Phase I
(enrollment) after the previous k users have been reporting
information under their anonymous IDs, then it will be clear



to the server that the newest anonymous ID Sk+1 they receive
corresponds to the newest public credential ck+1 that was
established. This is a de-anonymization since the public cre-
dential is established during a session when the user’s contact
information is used. The first remedy would be to consider
that we do not add or revoke privileges during the course
of the use of the protocol. While this might be possible for
use within a private organization where all members enroll
during a short time frame, it is certainly not practical at the
scale of a region or a nation where enrollment is assumed
to happen continuously. The other workaround is to consider
anonymity among batches of users of fixed size B that register
around the same time frame. Each batch of index i has its own
accumulator Ai of the B public credentials accumulated after
batch number i − 1 was complete. Note that this framework
includes the case of a fixed list of users (in this case, there
is a unique batch whose size is the entire list of users). The
drawback of such a protocol is that the users of the i-th batch
need to hold off using the system until it is complete with
B members. Around the release date of the app, many users
typically register, but late additions to the system might have
to wait longer before being able to use it.

Proposition 2. Assuming the hardness of the discrete loga-
rithm problem and of the strong RSA problem, the probability
of the server identifying a user in a given batch is close to
1/B.

Lastly, we would like to point out that in the “honest but
curious” model, the server is not allowed to deviate from the
protocol in order to learn the identity of the users. However,
there is an obvious active attack scenario that we can thwart.
Indeed, to increase performances, it is tempting to have the
server compute the accumulators of each batch of users and
to send them. However, in such a scenario, a malicious
server actively attacking its users could send the user with
public credential c and accumulator containing only the public
credential c (or c and other irrelevant values). Then the ZKSoK
of that user would reveal c to the server. Hence, it is preferable
to have the server display the list of public credentials of each
batch in order to have accountability (or to let paranoid users
compute their own accumulator).

Phase IV: Reporting a Positive Test: To report a positive
test, a user needs to secure a certificate from the medical doctor
that performed the test. This assumes that a network or pre-
approved medical doctors is available, and that each doctor has
communicated a public key to the system. Users do not want
to reveal their anonymous ID to the medical doctors since the
latter have their real life identification available (even if they
are honest, they could be hacked, so having the anonymous ID
and the real ID of a user is too much of a liability). Instead,
they encrypt their anonymous ID with the server’s public key
and give the encryption X to the medical doctor. The doctor
signs it, along with basic information about the test (the result,
and a time stamp). Then the positive user sends out this
data, along with the ZKSoK to authenticate themselves on the
network. After the server checks the signature of the doctor,

decrypts X , and checks the ZKSoK. If everything checks out,
the server updates the graph and notifies the corresponding
users. This process is illustrated by Figure 4.

Whenever an app user interacts with a positive tested
patient, they exchange keys as can discussed in the contact
section of our paper. To check if an individual has gotten
into contact with someone tested positive, we go through the
patients that the individual has exchanged keys with. In the
future, our proposed scheme will aim to create a graph out
of the individuals that have registered to the system. Every
node in the graph will be denoted by a corresponding S value.
Whenever one of these S values is marked as being infected,
our app sends notification to every individual that may have
been exposed to COVID-19.

Fig. 4: Reporting of Postive Tests

ZKSoK 𝑐𝐴, 𝑟𝐴 [𝑐𝐴 ∈ 𝐴 and 𝑐𝐴 = 𝑔𝑆𝐴 .ℎ𝑟𝐴 mod 𝑞]

𝑋 = Enc(𝑆𝐴) with the server‘s public key

𝑚,𝜎(𝑋,𝑚) where𝑚 contains info on time and hospital

of the values [𝑚,𝑋,𝜎 𝑋,𝑚 ] together with 𝑆𝐴

Notification to potentially exposed user

IV. ATTACK SCENARIOS

Contact tracing apps and exposure notification systems
in general have received a lot of scrutiny from the pri-
vacy/security scientific community in a very short time span
since several countries decided to roll out such tools to fight
the COVID-19 pandemic. There is no clear consensus on
which risks are acceptable, and which are not. In particular,
privacy standards vary from one region of the world to the
other. One thing that most security experts agree on is that no
currently available system is perfectly private. On the other
hand, not every attack scenarios are realistic, and eventually,
these risks have to be weighted against the potential benefits
of better monitoring pandemics.

A. De-anonymization

One of the most concerning aspects of contact tracing apps
is the potential de-anonymizations that can occur. Truly anony-
mous system want to prevent all entities from de-anonymizing
users (i.e. other users, central server, hospitals, and general
population). When studying this risk, one might want to keep
in mind the privacy standards of manual contact tracing where
doctors and central health authorities request that positive
individuals reveal all their interactions. In this situation, the
only concern is to avoid revealing information about the
identity of the index case to the new patients who are being
tested. De-anonymization between users of a contact tracing
system (manual or digital) is always possible. Namely, each



user that is notified of a potential exposure has a probability
1/N of guessing the identity of the index case, where N is the
number of different individuals they have been in contact with
during the designated time frame (typically 14 days). To keep
the de-anonymization chances of a user low, we only allow
them to report one batch of tokens per day. This way they
cannot single out each token individually to query the server
about their status. Additionally, our server has a 1/B chance
of de-anonymizing a user (i.e. linking an anonymous ID with a
public credential – and whatever information was used during
enrollment). As information signed by the medical doctors is
encrypted, they cannot de-anonymize the users. Finally, as in
most of the centralized systems, other users and the general
population are unable to de-anonymize users either.

B. Sybil attacks

Sybil attacks are the obtention of many different anonymous
IDs by the same user, while the “inverse Sybil” attacks are
the situation when many users are using the same anonymous
ID. The former dilutes the information about a positive test
(because fewer nodes in the graph are marked at risk), while
the latter artificially increase the perceived risk of a positive
test (because more nodes are marked at risk than need be).
Preventing (inverse-)Sybil attacks is a challenge for privacy-
preserving systems. Our system thwarts Sybil attacks by re-
questing an SMS code during enrollment. Note that a user with
multiple phone can still obtain multiple IDs, but this definitely
limits the impact of Sybil attacks. Inverse Sybil attacks, on
the other hand, are prevented by the randomization procedure
during enrollment. In this scenario, under the assumption that
the DLP is hard, the probability that colluding users obtain
the same anonymous ID is 1/Ordp(g) where g is the base of
the DLP.

C. False positives

False positives (in conjunction with inverse-Sybil attacks
or not) are a threat to digital contact tracing systems, espe-
cially the ones that preserve anonymity, since there is little
accountability for sending false information to the server. Our
system requires the medical doctor performing a positive test
on a user to digitally sign this information. This drastically
limit the potential for false declarations of positive tests by
users, but it does not completely prevents it in the context of
key leakage. The simplest such scenario is the collusion of
two users. If Alice gets tested and brings Bob’s phone to the
doctor’s office, then if the test is positive, the doctor will sign
Bob’s credentials in the network, thus allowing him to report
the positive test. This attack is not completely straightforward
to mount and definitely not scalable.

D. Relay attacks

The concept of relay and replay attacks is to bring the
Bluetooth signal of a user to another user outside of the normal
range (and vice-versa). This could be mounted by having
sensors record Bluetooth signal in one place, and communicate
them to devices in another place which broadcast them. The

result is to artificially densify the graph of interactions between
users, and to unnecessarily increase the response of the system
to a positive test from a user. Our strategy of exchanging a
secret token via the Diffie-Hellman protocol forces a relay
attack to work both ways (each location must both record
signals and re-emit them). Then, the fact that users hash
their tokens with GPS and time information prevents such
an attack between honest users (at the end of the creation
of tokens, if they were either in different locations, or in the
same location at a different time, they will end up with a
different token). However, it does not prevent such an attack
where one of the users is malicious and uses the GPS/time
coordinates of the target user. This means that with the right
equipment, a malicious user can artificially increase the arity
of their node in the social graph. Then, if they test positive,
this will notify artificially many users. This attack needs many
malicious users to be effective since each individual has only
a limited probability of testing positive for COVID-19 (we
assume users cannot collude with medical doctors to get false
certificates). To the best of our knowledge, no other digital
contact tracing app can prevent this particular scenario.

V. CONCLUSION

We have presented a contact tracing app protocol that
preserves the anonymity of its users, and that provide the
central server with an anonymous social graph showing the
progression of the virus among the population of users. Such
a graph can be a very useful tool to make decisions regarding
the population of users based on the outcome of predictive
methods based on machine learning and other quantitative
measures.

Acknowledgment: The authors are grateful to Luca Defeo
for providing insightful comments on this draft.

REFERENCES

[1] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials,” in Annual
International Cryptology Conference. Springer, 2002, pp. 61–76.

[2] G. of Singapore, “Tracetogether,” Online, 2020. [Online]. Available:
www.tracetogether.gov.sg

[3] G. of Alberta, “ABTracetogether,” Online, 2020. [Online]. Available:
https://www.alberta.ca/ab-trace-together.aspx

[4] G. of Australia, “COVIDsafe,” Online, 2020. [Online]. Available:
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app

[5] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,
W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, L. Barman, S. Chatel,
K. Paterson, S. Čapkun, D. Basin, J. Beutel, D. Jackson, M. Roeschlin,
P. Leu, B. Preneel, N. Smart, A. Abidin, S. Gürses, M. Veale, C. Cre-
mers, M. Backes, N. O. Tippenhauer, R. Binns, C. Cattuto, A. Barrat,
D. Fiore, M. Barbosa, R. Oliveira, and J. Pereira, “Decentralized privacy-
preserving proximity tracing,” 2020.

[6] Apple-Google, “Privacy-preserving contact tracing,” Online, 2020.
[Online]. Available: www.apple.com/covid19/contacttracing

[7] S. Vaudenay, “Centralized or decentralized? the contact tracing
dilemma,” Cryptology ePrint Archive, Report 2020/531, 2020, https:
//eprint.iacr.org/2020/531.

[8] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin:
Anonymous distributed e-cash from bitcoin,” in Proceedings of the
2013 IEEE Symposium on Security and Privacy, ser. SP ’13. USA:
IEEE Computer Society, 2013, p. 397–411. [Online]. Available:
https://doi.org/10.1109/SP.2013.34



[9] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA, M. Blaze, Ed.
USENIX, 2004, pp. 303–320. [Online]. Available: http://www.usenix.
org/publications/library/proceedings/sec04/tech/dingledine.html

[10] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129–140.

[11] W. Beskorovajnov, F. Dörre, G. Hartung, A. Koch, J. Müller-Quade,
and T. Strufe, “Contra corona: Contact tracing against the coronavirus
by bridging the centralized–decentralized divide for stronger privacy,”
Cryptology ePrint Archive, Report 2020/505, 2020, https://eprint.iacr.
org/2020/505.

[12] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack,” in Annual International
Cryptology Conference. Springer, 1991, pp. 433–444.

[13] A. De Santis and G. Persiano, “Zero-knowledge proofs of knowledge
without interaction,” in Proceedings., 33rd Annual Symposium on Foun-
dations of Computer Science. IEEE, 1992, pp. 427–436.

[14] D. Beaver, “Secure multiparty protocols and zero-knowledge proof
systems tolerating a faulty minority,” Journal of Cryptology, vol. 4, no. 2,
pp. 75–122, 1991.

[15] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge
and its applications,” in Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali, 2019, pp. 329–349.

[16] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,”
Journal of cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[17] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. IT-22, pp. 644–654, November
1976.

[18] N. Bielova, A. Boutet, C. Castelluccia, M. Cunche, C. Lauradoux,
D. Le Métayer, and V. Roca, “DESIRE: A Third Way for a European
Exposure Notification System (SUMMARY - EN),” Inria, Research
Report, May 2020. [Online]. Available: https://hal.inria.fr/hal-02570172

[19] G. Avitabile, V. Botta, V. Iovino, and I. Visconti, “Towards defeating
mass surveillance and sars-cov-2: The pronto-c2 fully decentralized
automatic contact tracing system,” Cryptology ePrint Archive, Report
2020/493, 2020, https://eprint.iacr.org/2020/493.

[20] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich, “How to win the clonewars: efficient periodic n-times
anonymous authentication,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, Ioctober 30 - November 3, 2006, A. Juels, R. N. Wright,
and S. D. C. di Vimercati, Eds. ACM, 2006, pp. 201–210. [Online].
Available: https://doi.org/10.1145/1180405.1180431


