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Abstract. Cloud Storage Providers (CSPs) offer solutions to relieve
users from locally storing vast amounts of data, including personal and
sensitive ones. While users may desire to retain some privacy on the data
they outsource, CSPs are interested in reducing the total storage space
by employing compression techniques such as deduplication. We propose
a new cryptographic primitive that simultaneously realizes both require-
ments: Multi-Key Revealing Encryption (MKRE). The goal of MKRE
is to disclose the result of a pre-defined function over multiple cipher-
texts, even if the ciphertexts were generated using different keys, while
revealing nothing else about the data. We present a formal model and a
security definition for MKRE and provide a construction of MKRE for
generalized deduplication that only uses symmetric key primitives in a
black-box way. Our construction allows (a) cloud providers to reduce the
storage space by using generalized deduplication to compress encrypted
data across users, and (b) each user to maintain a certain privacy level
for the outsourced information. Our scheme can be proven secure in the
random oracle model (and we argue that this is a necessary evil). We
develop a proof-of-concept implementation of our solution. For a test
data set, our MKRE construction achieves secure generalized dedupli-
cation with a compression ratio of 87% for 1KB file chunks and 82.2%
for 8KB chunks. Finally, our experiments show that, compared to gen-
eralized deduplication setup with un-encrypted files, adding privacy via
MKRE introduces a compression overhead of less than 3% and reduces
the storage throughput by at most 6.9%.

Keywords: Private Cloud Storage · Secure Deduplication · Revealing
Encryption

1 Introduction

Cloud Storage Providers (CSPs) are offering vast amounts of storage at a low
cost to users who desire to outsource their data storage. In order to provide
this service at a low cost, CSPs employ compression techniques to reduce their
storage cost. In particular, data deduplication has become a popular technique for
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compression of data across files generated by users of the system. For example,
if two users upload the same file to the server, only one copy is stored, which
both users are allowed to retrieve. Deduplication is often carried out across file
chunks (parts), which increases the potential to reduce the storage footprint of
the system, as two files that are different as a whole may have significant portions
that are equal, e.g., when different versions of the same file are stored.

Generalized deduplication [31] is a recent generalization of this principle. By
enabling deduplication of data chunks that are similar, rather than identical,
this method can achieve a better compression than classic deduplication tech-
niques. As a conceptual and oversimplified example of generalized deduplication,
consider two users that hold identical pictures of the Eiffel tower, except for a
different person in the foreground. If the CSP could see the two plaintext files,
it could easily identify the two pictures as “almost identical”, and store the
background only once, reducing the overall storage space required. As a great
number of people take pictures of the Eiffel tower, we could imagine that many
users might upload similar images to the CSP, which would allow the data to be
compressed more than is possible when only exact copies of files are deduplicated.

In order to compress the data it stores, the CSP will need to access it to
identify where (generalized) deduplication can be used. A näıve implementation
would allow CSPs to directly access all uploaded files in cleartext to determine
how the data can be compressed. Such a solution will unfortunately undermine
the privacy of the data, reducing the types of files that the CSP should be
trusted with. A privacy-conscious user could patch this weakness by encrypting
their data under a private key before uploading it, but using semantically secure
encryption schemes would prevent the CSP from performing any meaningful
deduplication. Therefore, previous work has established encryption schemes with
relaxed security guarantees that can enable the server to identify when two files
are identical and thus enable secure deduplication over encrypted data (see, e.g.,
convergent [13] or message-locked [6] encryption).

In this paper, we propose an encryption scheme that allows the server to iden-
tify when encrypted data corresponds to similar, rather than identical, data. In
particular, using such an encryption scheme, CSPs can apply generalized dedu-
plication directly on the encrypted data. Albeit the server learns whether two
ciphertexts correspond to similar plaintexts or not, nothing else is revealed about
the original plaintext data. This provides another opportunity for protecting sen-
sitive information while enabling storage compression techniques.

Overview of contributions. Our first contribution is a definitional model that
generalizes the notion of Revealing Encryption1 (RE) [15,23] to the multi-user
setting, thus the name Multi-Key Revealing Encryption (MKRE). In a nutshell,
a RE scheme is parametrized by some function f , and, given two ciphertexts
c1, c2 obtained by encrypting x1, x2 respectively (under the same key), there

1 The term “Revealing Encryption” was first introduced in an oral presentation by
Adam O’Neill.
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exist some public evaluation function g such that g(c1, c2) = f(x1, x2).2 MKRE
extends this to the case where the data is encrypted with different, potentially
independent keys.3

In this paper, we are mostly interested with the case where the function f
computes whether x1, x2 are “similar” or not, as this is the function required for
secure generalized deduplication. Note that MKRE for this f can also be seen
as a natural generalization of message-locked encryption (and indeed message-
locked encryption is a crucial component of our solution) and therefore we share
the same issues in providing a meaningful and intellegible security definition. In
a nutshell, in message-locked encryption a message is encrypted using the mes-
sage itself as the key. Thus, any user encrypting the same message will produce
the same ciphertext, allowing to check equality (and therefore perform dedu-
plication) across encryptions performed by different users. Defining security for
message-locked encryption is however quite tricky: The problem is that we can-
not prevent the adversary from encrypting messages locally and compare them
with the output of the challenge oracle, and we encountered similar challenges
when attempting to define security for MKRE. Previous work in message-locked
encryption solved this issue by parameterizing the security definition via a mes-
sage distribution. We find those definitions to be quite complex to parse and
therefore quite unfriendly to the practioneers who should decide whether such a
primitive provides the right level of security for their applications. As our work is
motivated by real-world interest in secure deduplication, we decided to provide
what we see as a simpler alternative, which instead relies on idealized primitives:
In our definition the adversary can only perform encryptions interacting with
the challenger or the random oracle. Looking ahead, this will allow the reduction
to “know everything that the adversary knows” and therefore we do not need to
worry about trivial attacks. Intuitively, our definition guarantees that the adver-
sary learns nothing about the content of a ciphertext, unless it ever requests an
encryption of a “close” message, in which case it is allowed to learn this fact and
nothing else. As a downside, our definition implies that our construction must
use idealized primitives (e.g., random oracles).

We provide a generic construction of MKRE for our use case from a black-
box combination of message-locked, deterministic, and randomized encryption
schemes. Furthermore, we show a concrete instantiation based solely on hash
functions and prove its security in the random oracle model, which we have ar-
gued is a necessary evil given our security definition. In a nutshell, our technique
splits files into two parts: one that we consider less sensitive and deduplication-
friendly (e.g., the background with the Eiffel tower) and one more sensitive, on
which no public clustering is desired (e.g., the person in the foreground). Then
a form of deterministic encryption is applied to the former part of the data
(e.g., the image backgrounds) while semantically secure encryption is applied

2 Revealing encryption can be seen as a special case of functional encryption where
a single decryption key is published together with the public parameters when the
system is initialized.

3 Similarly, MKRE can be seen as a special case of multi-input functional encryption.
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to “fully” protect the other, more sensitive part (e.g., the image foregrounds),
which thus cannot be deduplicated. While, in retrospect, our construction is re-
ally simple, we find it very fascinating that it is at all possible to perform any
kind of meaningful computation across ciphertexts encrypted independently by
different users using independent keys, and we leave as a major open problem
whether there exist “simple” MKRE schemes for other natural, useful functions.

Our findings are supported by a software implementation that allows us to
characterize the trade-off among added security, processing speed of the system,
and overall compression performance. Our experiments show that our construc-
tion is only negligibly less efficient than generalized deduplication applied to the
plaintexts directly, while achieving a greater privacy level: Adding MKRE to
generalized deduplication reduces the overall system storage throughput by no
more than 6.9%, and the compression capabilities by at most 3%.4

Limitations. As any revealing encryption scheme, MKRE for generalized dedu-
plication reveals some specific information about the uploaded data to the CSP.
This leakage is unavoidable: if one wishes to deduplicate similar data, then dedu-
plicated chunks must come from similar files. This means that a malicious CSP
can see how many ciphertexts of the same user are deduplicated and learn the
statistical distribution of the deduplications. Frequency analysis on deduplica-
tion reveals the distribution of messages which obviously impacts the security of
the system. This cannot be mitigated while targeting high-compression dedupli-
cation and thus falls outside the scope of this work.

2 Related work

The conflicting interests of CSPs employing deduplication and privacy-concerned
users have been studied from many angles. A generic framework that explains the
various constraints and allows for comparison of secure deduplication strategies
is presented in [8].

To enable privacy-aware server-side deduplication, the most common ap-
proach is to force users with the same plaintext to arrive at the same ciphertext.
The first work of this nature was convergent encryption [13], followed by the
more general Message-Locked Encryption (MLE) scheme in [6], where a hash
of the plaintext is used as the encryption key. Some recent developments seek
to optimize MLE, e.g., for deduplication of file chunks rather than the entire
files and enable efficient updates to the stored data [34]. Other proposals use an
oblivious PRF against a key-server to determine the file-derived keys [5], or have
clients determine the keys in a distributed manner using a PAKE-based proto-
col [21,22]. All of these schemes reveal that deduplicated ciphertexts correspond
to identical data. In contrast, our scheme only reveals that deduplicated cipher-
texts correspond to similar data. Deduplication of similar data is also dealt with

4 In this work, we perform generalized deduplication based on Hamming codes, how-
ever, the principles we develop are general and can be easily transferred to any
transformation function.
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in [19], albeit quite differently. They have a highly specific use case in mind and
remove perceptually similar images by comparing a ’perceptual hash’ calculated
over the plaintext images, which can lead to duplicate detection under modifica-
tions such as resizing, compression, or flipping. Thus, their compression is lossy,
not every image can be retrieved as it was uploaded, but something “similar”
might be returned. On the contrary, our method is lossless and everything can
be retrieved exactly as it was uploaded. Further, what is considered similar in
our method is more general, as the notion of similarity is tied to the chosen
transformation function for generalized deduplication.

We view our privacy-aware server-side deduplication scheme as a general-
ization to the multi-user setting of the notion of Revealing Encryption (RE)
[15]. Our approach also shares similarities with Predicate Encryption (PE) [17],
Searchable Encryption (SE) [12], Multi-Input Functional Encryption (MIFE) [14],
ad-hoc MIFE [1] and Multi-Client FE (MCFE) [11,20]. At a very abstract level,
all these primitives share a common goal, i.e., to allow to encrypt data in such
a way that it is possible to perform computation on a set of ciphertexts. How-
ever, they do so by exploiting different mechanisms and assumptions, and allow
for different degrees of freedom in choosing which function f should be com-
puted and which users should be able to compute the function. In PE, SE, and
(MK)RE the function f is determined a priori; the different flavors of functional
encryption allow f to be chosen adaptively. In contrast to other primitives, the
function computed by (MK)RE is public and can be evaluated on set of cipher-
texts without the need of a secret key (or secret state). Notably, in functional
encryption f is linked to the decryption algorithm, and thus it is intrinsically
a secret-key operation. This is a core difference to the RE setting. Moreover,
in (MK)RE data are encrypted using a secret key, which is different from what
happens in all other settings.5

As the names suggest MIFE, MCFE and MKRE are the only primitives that
consider multi-user settings. Unfortunately, it is known that MIFE and MCFE
for generic functionalities can only be realized using “heavy tools”, such as ob-
fuscation and multi linear maps [14], and is therefore not currently of practical
interest. Recent work has thus favored concrete and efficient realizations for more
restricted functionalities that rely on less demanding assumptions, e.g., MCFE
for inner product in the random oracle model from DDH [11] and MCFE for
linear functions in the standard model from LWE [20]. Following this philoso-
phy, our aim is to build MKRE from “minimalist tools”, i.e., hash functions,
and instantiate a scheme with immediate practical applications.

3 Preliminaries

Notation. For n, n1, n2 ∈ N, let [n1 : n2] be the set {n1, n1 + 1, . . . , n2} and [n]
be the set [1 : n]. For x ∈ Z, let |x| denote the absolute value of x. Let x ←$ S

5 With the exception of SE for which there exist realization both in the asymmetric
[3] and in the symmetric settings [28].
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Fig. 1. Visualizing generalized deduplication. Similar chunks map to the same base,
but different deviations

denote that x is sampled uniform random from the set S. We denote the security
parameter of cryptographic primitives as λ.

3.1 Generalized deduplication

A typical deduplication strategy is to segment files into chunks and look for
chunks that appear more than once in the file or that match a chunk from previ-
ously stored files [33]. We will use the terms “file” and “chunk” interchangeably,
since they both denote the object to be deduplicated, albeit at different granu-
larities. In many settings, this works well. However, deduplication is traditionally
limited by the fact that it requires chunks to be identical. Thus, even if just one
bit differs between two chunks, they are stored independently.

Generalized deduplication can alleviate this issue [25,31] by allowing a sys-
tematic deduplication of near-identical chunks. The idea is to employ a transfor-
mation function φ which takes as input an n-bit chunk m and decomposes it into
a k-bit base, b, and an l-bit deviation, d. Concretely, φ : {0, 1}n → {0, 1}k×{0, 1}l
with φ(m) = (b, d), and there exists a function φ−1 : {0, 1}k × {0, 1}l → {0, 1}n
that reconstructs a data chunk from a given base and a deviation, i.e., for any
chunk m ∈ {0, 1}n it holds that φ−1(φ(m)) = m. Fig. 1 visualizes the partition
induced by φ on the chunk space: two similar chunks, m1 and m2, are mapped
to the same base b, with different deviations (d1 6= d2). For usability, we require
k > l, meaning that the base contains most of the chunk’s information and the
deviation is small. In our example of portrait pictures with the Eiffel tower, the
background image corresponds to the (common) base, while the person’s figure
is the (file-dependent) deviation. The bases can then be deduplicated, so that
each base is stored only once. Finally, the deviation is stored alongside a refer-
ence to the base, which ensures that each file can be reconstructed without any
loss of information. Classic deduplication can be obtained by letting the trans-
formation function be the identity function, so bases are the original chunks and
the deviation is empty.

We follow the approach of [25,31] and set φ to be a Hamming code [16]. In this
case, the transformation function “decodes” the chunk m to obtain its base b,
and then the deviation d is derived by finding the difference between the original
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chunk and the encoding of its base. As an example, for 4 KB chunks the one-
bit error-correction capability of the Hamming means that 32768 different, but
similar, chunks will have the same base. In general, generalized deduplication can
thus match more bases than classic deduplication, as shown theoretically in [31]
and achieve a better compression, as evaluated experimentally in [25,30,32].

3.2 Revealing encryption (RE)

The first ingredient in RE schemes is an authorized function f from a set of
inputs Mn to a set of output values V. Formally, f : Mn → V. Examples of
authorized functions are f = max{· · · } and f = deduplicate(·, ·) (see Definition
7). Revealing encryption schemes are built around the chosen authorized function
and are defined as follows.6

Definition 1 (Revealing encryption (RE) [15]). Let f :Mn → V be an n-
ary authorized function. An RE scheme for the function f is a tuple of algorithms
REf = (Setup,Enc,Reveal) defined as follows:

Setup(1λ): on input security parameter λ (in unary), this randomized algorithm
outputs a secret key sk and some public parameters pp. pp are input to all
the following algorithms even when not explicitly written.

Enc(sk,m): on input the secret key sk and a message m ∈ M, this randomized
algorithm outputs a ciphertext c.

Reveal(c1, . . . , cn): on input the public parameters pp and n ciphertexts this de-
terministic algorithm outputs a value v ∈ V.

Revealing correctness essentially states that the output of Reveal evaluated on a
set of ciphertexts should equal the output of the authorized function f evaluated
on the corresponding set of plaintexts. Security is defined using a leakage function
that sizes what the adversary learns from evaluating Reveal on any collection of
n ciphertexts.

Definition 2 (Leakage function and optimal REf). A function L :M∗ →
{0, 1}∗ is a leakage function for a revealing encryption scheme REf if, given any
tuple of input values, L outputs the information leaked by REf when running
Reveal on any possible size-n subset of the corresponding ciphertexts. A REf is
said to be optimal if it leaks precisely what is required by the functionality, that
is:

L(m1, . . . ,mq) = {f(mi ; i ∈ S), S ⊆ [q], |S| = n}.

Further details on RE and its security notion can be found in [10,15].

6 To improve readability and have an homogeneous language when extending RE to
multiple users (MKRE), we use Reveal instead of Eval in [15]. Also, in Section 4 we
will split the algorithm Setup from [15] into a global set up procedure, called Setup,
and a user-dependent KeyGen.
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4 Multi-key revealing encryption

We now introduce Multi-Key Revealing Encryption (MKRE), a cryptographic
primitive that extends revealing encryption to handle functions evaluated on
data encrypted using distinct secret keys. In addition to the standard algorithms
of RE, MKRE includes KeyGen, needed to extract user specific key material from
the common parameters, and Dec, that allows users to efficiently retrieve their
data. After presenting the MKRE framework, we provide detailed discussions of
our security notions in Section 4.1 and of the need for random oracles to tolerate
user corruption in Section 4.2.

Definition 3 (Multi-key revealing encryption (MKRE)). Let f :Mn →
V be an n-ary authorized function. A multi-key revealing encryption scheme for
the function f is a tuple of algorithms MKREf = (Setup,KeyGen,Enc,Reveal,Dec)
defined as follows:

Setup(1λ): this randomized algorithm outputs a master public key mpk contain-
ing at least a description of the function f The mpk serves as public param-
eters and is implicitly input to all subsequent algorithms.

KeyGen(): this randomized algorithm outputs a user secret key sk .
Enc(sk,m): on input a secret key sk and a message m ∈ M, this randomized

algorithm outputs a ciphertext c.
Reveal(c1, . . . , cn): on input the master public key mpk and n ciphertexts this

deterministic algorithm outputs v ∈ V.
Dec(sk, c): on input a secret key sk and a ciphertext c, this deterministic algo-

rithm returns a plaintext m.

We depart from the convention of omitting the decryption algorithm in RE
schemes. This is motivated by the fact that in many practical cases, e.g., cloud
storage, it is essential for users to be able to recover the plaintext data at a later
point in time. We define two notions of correctness: one for the public revealing
method and one for the secret decryption.

Definition 4 (MKREf revealing correctness). A MKRE scheme MKREf
satisfies revealing correctness if, for any n-tuple of messages m1, . . . ,mn ∈Mn,
for any n-tuple of keys sk1, . . . , skn generated by KeyGen, and for any ci ←
Enc(ski,mi) with i ∈ [n], it holds that

Reveal (c1, . . . , cn) = f (m1, . . . ,mn)

with all but negligible probability. Note that the n ciphertexts may be encrypted
under up to n different secret keys.

Definition 5 (MKREf decryption correctness). A MKRE scheme MKREf
satisfies decryption correctness if for any message m ∈ M and for any secret
key sk generated by KeyGen it holds that

Dec(sk,Enc(sk,m)) = m.
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Next, we define security using the real versus ideal world paradigm.

Definition 6 (MKREf security). Let λ be a security parameter, f a revealing
function, MKREf a multi-key revealing encryption scheme for f with associated

leakage function L. Consider the experiments REAL
MKREf

A (λ) and IDEAL
MKREf

A,S,L (λ)
depicted below, where C denotes the corruption oracle, RO the random oracle,
E the encryption oracle, and prepending an S denotes a simulated oracle.

REAL
MKREf

A (λ)

mpk← Setup(1λ)

b← AC(·),RO(·),E(·)(mpk)

IDEAL
MKREf

A,S,L (λ)

mpk← Setup(1λ)

b← ASC(·),SRO(·),SE(·)(mpk)

We say that MKREf is a secure MKRE scheme with respect to L if, for all
adversaries A that make at most q = poly(λ) queries, there exists a simulator
S such that the output distributions of the two experiments described above are
computationally indistinguishable, i.e.:

REAL
MKREf

A (λ) ∼c IDEAL
MKREf

A,S,L (λ)

We assume that oracles and simulators are stateful. Thus, whenever we query
a new message, its leakage can be assumed to be the output of the reveal function
evaluated against every previously queried message. To keep track of relevant
information contained in the state, we use the following dictionaries:

Did : Set of pairs (identity-identifier, user secret key),
Dcorr : Set of identity-identifiers corresponding to corrupted users,
Dro : Set of (input, output) pairs generated by queries to the random oracle,
Denc : Set of tuples (identity-identifier, message, ciphertext) generated by

encryption queries.

They are all empty at the beginning of the MKREf security game and are pop-
ulated as shown in Fig. 2.

4.1 Discussion of our definitions

We now compare our security definitions for MKRE with the corresponding
notions in RE. We first highlight the similarities, then motivate our changes.

Similarities. In the ideal world, the MKREf simulated encryption oracle has to
produce ciphertexts having access only to the natural leakage inherent in the re-
vealing encryption scheme and without seeing the actual query. The structure of
our simulator for MKRE is similar to the RE simulator [15]: In order to generate
a ciphertext for a queried message m, S is not given m; instead it has access to
the leakage produced by m against all the previously encrypted messages (L(M)
in Fig. 2). This exploits the revealing feature natural to RE schemes and does not
disclose more than what the simulator can learn by applying the public Reveal
procedure to the ciphertexts. We remark that giving S access to L(M) is crucial
to ensure that real world ciphertexts only reveal the desired information about
the plaintexts and nothing else.
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KG(id)

1 : if (id, ·) /∈ Did

2 : skid ← KeyGen()

3 : Did ← Did ∪ (id, skid)

4 : return skid : (id, skid) ∈ Did

C(id)

1 : Dcorr ← Dcorr ∪ id

2 : return KG(id)

RO(x)

1 : if (x, ·) /∈ Dro

2 : h←$ {0, 1}N

3 : Dro ← Dro ∪ (x, h)

4 : return h : (x, h) ∈ Dro

E(id,m)

1 : c← EncRO(·)(KG(id),m)

2 : Denc ← Denc ∪ (id,m, c)

3 : return c

SC(id)

1 : Dcorr ← Dcorr ∪ id

2 : D(id)
enc ← {(id′,m, c) ∈ Denc : id′ = id}

3 : skid ← S(mpk, id,D(id)
enc ))

4 : return skid

SRO(x)

1 : m̃← S(mpk, x)

2 : M ←M ∪ {m̃}
3 : h← S(mpk, L(M))

4 : return h

SE(id,m)

1 : if id ∈ Dcorr

2 : return ⊥
3 : M ←M ∪ {m}
4 : c← S(mpk, id, L(M))

5 : Denc ← Denc ∪ (id,m, c)

6 : return c

Fig. 2. Real vs ideal world:KG (key generation subroutine,A cannot query directly),
C (corruption oracle), SC (simulated corruption oracle), RO (random oracle), SRO
(simulated random oracle), E (encryption oracle), SE (simulated encryption oracle).
In line 3 of SRO and in line 4 of SE , L(M) = L(m1,m2, . . . ,mn) denotes the leakage
produced from all messages encrypted so far, including the new message (m̃ or m).

Minor additions. Our system involves multiple users, and we let the adversary A
corrupt some and learn their secret keys. Our SE rejects encryption queries for
corrupted users. This limitation is done solely to simplify the model and does not
restrict the adversary, who can encrypt messages for corrupted parties without
interacting with the encryption oracle. (Yet, A needs to query the random oracle,
as we discuss in the next paragraph.)

Major changes. In our security definition for MKRE, both the adversary and the
encryption oracle have access to the random oracle. This is a drastic change from
current RE models and has been done to enable a formal handling of schemes
that adopt deterministic cryptographic primitives (handy in contexts like the
one of generalized deduplication we are interested in). Concretely, we propose
a new way to deal with the issues faced in several previous works when try-
ing to formally model deterministic encryption and related notions. The thorny
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point in the model is that MKRE cannot satisfy semantic security, essentially
for the same reason as deterministic encryption. Intuitively, the adversary can
encrypt all possible messages “locally” (i.e., without interacting with oracles)
and then compare the list of ciphertexts with the output of the encryption oracle
(resp. computing Reveal in MKRE) to distinguish between the real and the ideal
worlds. In all previous work of which we are aware, this problem is circumvented
by introducing assumptions on the distribution of the messages. For instance, [6]
and subsequent works [5,18] rely on the notion of confidentiality for unpredictable
messages only (privacy under chosen-distribution attack [4]). There, instead of
letting A query the encryption oracle directly with a chosen message m, the
common paradigm is to make A output a distribution (on the message space)
with large enough entropy. The encryption oracle receives the adversary’s distri-
bution and samples messages accordingly. We recognize that this is a meaningful
way to deal with the problem, however, we find the resulting definitions to be
artificial, less intuitive and cumbersome to work with.

This motivates us to put forth a different approach that follows the “in-
tuitive” security guarantees provided by deterministic encryption (and related
notions). Concretely, we refer to the guarantee that a ciphertext c discloses no
information about the plaintext it encloses, unless the adversary has already
seen c. In the standard model, since the adversary can perform encryptions lo-
cally, without informing any oracle, it is not possible to meaningfully reason
about which messages A has encrypted or not. In contrast, in the random oracle
model, the adversary must interact with some oracle (and thus, the simulator) to
perform encryptions. Intuitively, the random oracle model makes it possible to
“extract” from the adversary the set of messages that A is encrypting “locally”.
In MKRE, at every random oracle query we allow the simulator to guess what
A is doing and extract information from it. Concretely, at every random oracle
query, S can use x, the input to RO, to guess a message m̃, which it adds to the
set of simulated messages M and can get the leakage for. We believe that this
approach gives the simulator a “more fair” task than what is required by previ-
ous models, e.g., [6]. In particular, our model lets the simulator learn the same
information the adversary can derive locally by computing f (the authorized
function) on messages encrypted both locally and via the encryption oracle.

We stress that without the extra leakage during random oracle queries (line
3 in SRO), the definition could not be instantiated due to the following trivial
attack. First, the adversary makes one query, m1, to the encryption oracle and
receives c1. Then, A computes “local” encryptions of other message mi for i ∈
[2, n] such that f(m1, . . . ,mn) = v for a random value v ∈ V in the range of
f . In the real world, the ciphertexts satisfy Reveal(c1, . . . , cn) = v. In the ideal
world (without SRO leakage), instead, the simulator gets no leakage, since the
encryption oracle is queried only once. When simulating the random oracle, S has
no access to the global leakage L(m1, . . . ,mn) = v. As a result, no simulator can
guarantee that the “locally encrypted” ciphertexts will match the random value
v, so the adversary distinguishes the two worlds with non-negligible probability
1− 1/|V|.
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4.2 On the need for random oracles to tolerate corruptions

Any secure MKRE construction that tolerates corruption of users must rely on
adaptive primitives such as non-committing encryption [9]. To give an intuition
of why this is the case, consider the following trivial attack. First, the adversary
asks for encryptions of many random messages mi for the same identity id∗. Then
A corrupts id∗. In the real world, the secret key for id∗ is chosen at the beginning
of the game, thus each ciphertext ci received by A is indeed an encryption of mi

under the same skid∗ . On the other hand, in the ideal world the simulator does not
have access to the random messages during the encryption queries, and therefore
returns ciphertexts that are independent of the mi. Only upon corruption the
simulator learns what message mi each ciphertext should decrypt to (line 3 in
SC). At this moment, S has to come up with one secret key that “explains”
all of the previously generated ciphertexts (i.e., such that Dec(skid∗ , ci) = mi).
Due to the incompressibility of random data, such a secret key must be at least
as long as the number of encrypted messages. This means that in the standard
model there exists no secure construction of an MKRE scheme that tolerates user
corruption and has fixed sized key. Thus, efficient MKRE schemes exist only in
the random oracle model. This incompressibility issue is known for encryption
schemes with adaptive properties, e.g., [2,7,24].

5 MKRE for generalized deduplication of private data

In this section, we show how to instantiate MKRE for generalized deduplication
of private data. In Section 5.1 we propose a high-level compiler that combines
well-established cryptographic primitives in a black-box way into an MKRE
scheme for generalized deduplication. In Section 5.2 we describe how to instan-
tiate our compiler and its building blocks using solely random oracles. This
concrete construction is simulatable secure in the model introduced in Section
4. Due to space limitations, we defer to the Appendix B a discussion on how
to generically turn our compiler (and thus our explicit construction) from the
ad-hoc setting, where each user generates keys independently, to a centralized
setting. The latter setting provides an additional layer of security against nosy
servers and may be useful in systems that employ a key distribution center.

Setup assumptions. Throughout this section we assume that the function for
generalized deduplication φ is given and known to all parties involved in the
scheme (in our experiments φ is a Hamming code, see Section 6 for further
details). In detail, we require φ to be a function that maps a chunk m ∈ {0, 1}n
into a base and a deviation:

φ(m) = (φ1(m), φ2(m)) = (b, d) ∈ {0, 1}k × {0, 1}l.

For recovery purposes, φ needs to be invertible, i.e., there exists a function φ−1 :
{0, 1}k ×{0, 1}l → {0, 1}n such that φ−1(φ(m)) = m for any chunk m ∈ {0, 1}n.
Finally, in our use case the size of bases is larger than the security parameter,
i.e., k > λ. We are interested in the following authorized function.
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Definition 7 (Authorized function for generalized deduplication). We
define the authorized (revealing) function for generalized deduplication as f =
deduplicate : {0, 1}n × {0, 1}n → {0, 1} where

f(m1,m2) = deduplicate(m1,m2) =

{
1 if φ1(m1) = φ1(m2)

0 otherwise
.

We note that f returns 1 (deduplication is possible) only on similar chunks, i.e.,
chunks with the same base b, independently of the deviations.

5.1 Our MKRE compiler

Our MKRE compiler for generalized deduplication of private data uses three
building blocks: a message-locked encryption scheme, a deterministic secret key
encryption scheme, and a randomized secret key encryption scheme. The autho-
rized function is f = deduplicate (see Definition 7).

Definition 8 (An MKRE compiler for generalized deduplication). Let
f : {0, 1}n × {0, 1}n → {0, 1} be the authorized function for generalized dedu-
plication from Definition 7. Our MKRE scheme for generalized deduplication is
defined by the following algorithms:

Setup(1λ): Set up a message-locked encryption scheme ML = (mlSetup, mlKD,
mlE, mlD), a secret-key deterministic encryption scheme DetE = (detKG,
detE, detD), and a randomized (secret key) encryption scheme RandE =
(randKG, randE, randD). Publish as mpk all public parameters of the schemes.

KeyGen(): Run detkid ← detKG() and randkeyid ← randKG(). Let skid ← (detkid, randkeyid)
and return skid.

Enc(skid,m): Parse the secret key as (detkid, randkeyid) and apply the general-
ized deduplication transformation to the data record m to obtain its base and
deviation: φ(m) = (b, d). Perform the following steps:
1. mk← mlKD(b), (generate a base-derived key using ML),
2. β ← mlE(mk, b), (ML encrypt the base using the base-derived key),
3. γ ← detEdetkid(mk), (encrypt the base-derived key using DetE),
4. δ ← randErandkeyid(d), (encrypt deviation using RandE).

Return the ciphertext c = (β, γ, δ).

Reveal(c1, c2): Parse ci = (βi, γi, δi) for i ∈ {1, 2}. If the first ciphertext compo-
nents are equal, i.e., β1 = β2, output 1, otherwise, output 0.

Dec(skid, c): Parse the secret key skid as (detkid, randkeyid) and the ciphertext c
as (β, γ, δ). Perform the following steps:
1. mk← detDdetkid(γ), (DetE decrypt the base-derived key);
2. b← mlD(mk;β), (Recover the base using ML);
3. d← randDrandkeyid(δ), (RandE decrypt the deviation)

Return the plaintext record m = φ−1(b, d).

Fig. 3 visualizes the workflow of the algorithms in our high-level MKRE scheme of
Definition 8. Next, we show the correctness of the Reveal and the Dec procedures.
Security is proven after we describe a concrete instantiation of the building blocks
using a random oracle in Section 5.2.
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Fig. 3. Visual representation of the workflow of our MKRE construction for generalized
deduplication (notation according to Definition 8).

Revealing correctness. Following Definition 4 for the revealing function f of
Definition 7, we now prove that, for any pair of messages m1, m2 ∈ {0, 1}n
and for any pair of keys sk1, sk2 (potentially belonging to different users), the
output of Reveal evaluated on the ciphertexts ci ← Enc(ski,mi), i ∈ [2] equals
the output of the authorized function from Definition 7. In detail, we show that
Pr [Reveal(c1, c2) = f(m1,m2)] ≥ 1−negl(λ), where the probability is taken over
the choice of keys and the random coins of the algorithms. The functions are
defined as:

Reveal(c1, c2) =

{
1 if β1 = β2, where ci = (βi, γi, δi)

0 otherwise

f(m1,m2) =

{
1 if φ1(m1) = φ1(m2), i.e. b1 = b2

0 otherwise

We distinguish two cases according to the output of f .

f(m1,m2) = 0. By definition of f , the event f(m1,m2) = 0 corresponds to
the event b1 6= b2 (recall that φ1(mi) = bi). We prove that Reveal outputs 0 as
well (with all but negligible probability). This holds since the β component of
a ciphertext is generated deterministically from bi, and by assumption b1 6= b2.
In detail, βi = mlE(mki, bi). Now since b1 6= b2, it holds that mlKD(b1)→ mk1 6=
mk2 ← mlKD(b2) with all but negligible probability. Likewise, mlE(mk1; b1) →
β1 6= β2 ← mlE(mk2; b2) also holds with overwhelming probability.

f(m1,m2) = 1. By definition of f , the event f(m1,m2) = 1 corresponds to
the event b1 = b2. We prove that in this case Reveal always outputs 1 as well.
From the assumption that b1 = b2, it follows that mlKD(b1) = mlKD(b2) =: mk,
i.e., the two chunks lead to the same message-locked key. In addition, given that
message-locked encryption is deterministic, it holds that mlE(mk; b1) = β1 =
mlE(mk; b2) = β2 =: β.
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Decryption correctness. Decryption correctness naturally follows from the cor-
rectness of the primitives employed as building blocks.

5.2 Our MKRE instantiation with random oracles

We now describe how to implement the components of our MKRE construction
of Definition 8 in the random oracle model.

Setup & Key Generation. The Setup procedure outputs a description of four
hash functions H1, H2, H3, and H4 in mpk. Essentially, we use one hash function
per encryption step, each modeled as a random oracle: H1 : {0, 1}k → {0, 1}λ;
H2 : {0, 1}λ → {0, 1}k; H3 : {0, 1}λ×{0, 1}k → {0, 1}k; H4 : {0, 1}λ×{0, 1}λ →
{0, 1}l. All four hash functions can be instantiated with a single random oracle
by prepending the index to the input. A user’s secret key is one random string
skid = detkid = randkeyid ←$ {0, 1}λ.

Message-locked encryption. This primitive is instantiated using the two hash
functions H1 and H2. The base-derived key is generated as

mk← mlKD(b) := H1(b).

The message-locked encryption of b is then computed as

β ← mlE(mk, b) := H2(mk)⊕ b.

Finally, the ciphertext β can be decrypted with mk as

b← mlD(mk;β) := H2(mk)⊕ β.

Deterministic encryption. This primitive is instantiated using H3. Recall that in
the random oracle detkid = skid ∈ {0, 1}λ. To implement deterministic encryp-
tion of the message-locked key mk in the random oracle model (which cannot be
inverted), we must depart slightly from the abstract construction in the previous
section and use the encryption of the base β “as IV”:

γ ← detEdetkid(mk) := H3(skid, β)⊕mk.

The decryption of a deterministic ciphertext γ (using the “random IV” β) is
performed as

mk← detDdetkid(mk) := H3(skid, β)⊕ γ.

Randomized encryption. This primitive is instantiated using H4. Recall that in
the random oracle randkeyid = skid ∈ {0, 1}λ. The randomized encryption is
peformed as:

δ ← randErandkeyid(d) := (δ1, δ2),

where δ1 ←$ {0, 1}λ and δ2 := (H4(skid, δ1)⊕ d). The randomized decryption is
performed as:

d← randDrandkeyid(δ) := H4(skid, δ1)⊕ δ2.
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Analysis of construction. Correctness of the above algorithms can be easily
verified by inspection. We can now prove the security of our scheme.

Theorem 1. The MKRE construction of Section 5.2 is simulation secure in
our framework (Definition 6) in the random oracle model.

Due to space constraints, we only provide a brief overview of the core parts of
the proof, which is how to deal with random oracle and corruption queries. The
full proof is given in Appendix A. In the case of queries to H1, our model lets
the simulator S learn the adversary’s queries to the oracle. If H1(x) has not yet
been initialized, the simulator has the chance to make a guess, m̃, for the chunk
corresponding to the query (step 1 in SRO, see Fig. 2). Concretely, S asks for
m̃ = φ−1(x, 0), and therefore S learns whether any file with the same base has
been queried to SE previously (thanks to leakage received in step 3, see Fig.
2). The simulator uses the leakage to identify the list of ciphertexts “matching”
the queried base x and can set its answer consistently. In case of corruption
queries, S needs to produce a secret key which explains all of the previously
produced encryptions for the corrupted identity. To do so, S receives the list
of such ciphertexts and the corresponding plaintexts (line 2 of SC in Fig. 2).

Then S can pick a random key skid ←$ {0, 1}λ, and for all (m, c) ∈ D(id)
enc , it can

program the random oracles to match the expected output. In case H3 or H4

were initialized before the corruption query was made the simulator fails in this
task and aborts, but this happens with negligible probability.

6 Proof-of-concept Implementation and Evaluation

Having obtained an understanding of the security of our MKRE scheme in the
random oracle model, it is interesting to evaluate its practical merits. To do
this, we developed a proof-of-concept implementation of the instantiation pre-
sented in Section 5.2. Our implementation follows the software architecture of
Nielsen et al. [25] and adopts the Hamming code also used in [31] as an exam-
ple of a generalized deduplication transformation. We run our experiments with
parameter l ∈ {13, 14, 15, 16} for the Hamming code. A Hamming code has a
codeword length of n = 2l − 1 bits and a message length of k = 2l − l − 1 bits.
To ensure that the data chunks always align with the data’s byte boundaries,
we use data chunks of 2l = n+ 1 bits. The transformation function φ then oper-
ates as follows. The first n bits are decoded using the Hamming code, providing
the k bit base. Then, the last bit and the l-bit syndrome of the Hamming code
(representing the location of a single bit difference between the reencoded base
and the original chunk) are concatenated to form a deviation of l+ 1 bits. As a
result, our experiments with generalized deduplication transformation based on
the Hamming code will ingest chunks with a size between 1 KB and 8 KB.

To instantiate the cryptographic primitives, we use the OpenSSL library
[29]. In particular, we chose AES-128-CTR and HMAC-SHA-1 for encryption
and hashing, respectively. This choice is somewhat arbitrary, and another choice
may be made as desired. We use HMAC-SHA-1 to derive the message-locked keys
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Fig. 4. Compression ratio, as images are stored on the server using generalized dedu-
plication. Each image has a size of approximately 50 MB.

from bases. Deterministic encryption (and thus the message-locked encryption)
is implemented by using an all-zero IV in AES. Randomized encryption utilizes
a randomly chosen IV for AES, which is concatenated with the ciphertext. While
this choice of algorithms is not equivalent to the random oracle model, we as-
sume that this provides a “good enough” approximation to the random oracle
behavior. This choice of algorithms allows us to implement an efficient prac-
tical solution. Our evaluation is run on a publicly available dataset of images
provided by Plant Labs Inc. [27] consisting of 69 high-resolution .tiff images of
approximately 50 MB each. As a result, our experiments deal with 3.5 GB of
data. We compare the overall performance of applying MKRE for privacy-aware
deduplication across users with the unsecured case of storing the unencrypted
files directly on the server. The experiments are run on a Backblaze Storage Pod
6.0 with a 3.7 GHz Intel Xeon E5-1620 v2 Quad-Core CPU.

The first point of comparison is compression ratio = compressed size
original size . A com-

pression ratio of 1 indicates that no compression is achieved, i.e., that the com-
pressed version takes up 100% of the original size. A low compression ratio is
clearly desired. Fig. 4 compares the compression ratios achieved with encrypted
and unencrypted generalized deduplication, using chunks of 1 KB and 8 KB. We
remark that in [25], it was shown that, for the same data set, ZFS, a state-of-
the-art file system utilizing classic deduplication [26], achieved negligible com-
pression. Our experiments show that, as expected, the compression ratio of the
encrypted version follows the unencrypted ratio closely. The only difference is
that some overhead must be stored for the encrypted version, e.g., from padding
and IVs. In particular, we see that for 1 KB chunks the overhead is more sig-
nificant, increasing the average compression ratio from 84% to 87%. On the
other hand, the overhead has smaller impact on the ratio when the chunks are
longer, as seen for 8 KB chunks, where the average increase is just from 81.8%
to 82.2%. This validates that it indeed is possible to achieve similar compression
levels when operating on encrypted data, as desired.

A second, equally important, point is the impact on system throughput. This
is shown on Fig. 5. Obviously, adding an encryption step can only decrease the
system throughput. In our experiments, the drop in throughput is larger for
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Fig. 5. System-level throughput of our proof-of-concept implementation storing files
with generalized deduplication and MKRE.

larger chunks. Indeed, there is actually no significant difference in throughput
when chunks are 1 KB. The worst case is seen for 8 KB chunks, where the
throughput drops 6.9%. We note that although our system is not thoroughly op-
timized, throughputs on the order of 2−16 MB/s is observed. This is promising,
as with some optimization a throughput on the order of 100s of MB/s should be
achievable. Such a throughput will allow our method to be deployed in real-time
cloud systems, where the bottleneck then is the read/write speeds of the hard
drives or SSDs.

7 Conclusions

In this work we tackled the challenge of providing private and space-efficient
storage solutions for data outsourced by different users. Our solutions com-
bine generalized deduplication techniques with a new cryptographic primitive
called Multi-Key Revealing Encryption. As a result, our ciphertexts can be pub-
licly clustered, i.e., any third party can determine whether any two ciphertexts
(potentially generated by different users) are “close” or not. This allows us to
deduplicate similar files, thus compressing the encrypted data across users. We
tested a practical implementation of our proposal on a real world dataset. These
experiments show that, for a range of common deduplication chunk sizes, our
privacy-aware solution achieves a compression ratio that is only 3% worse (in the
worst case) than the one provided by generalized deduplication on unencrypted
data, and the maximum loss in throughput is 6.9%.

We leave the investigation of other applications which benefit from MKRE
as an interesting direction for future research.
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Appendix

A Proof of Theorem 1

Proof. We begin by observing that since our simulator S is stateful, there is no
reason for L(M) to return all the pairwise leakage every time. Therefore, wlog,
we make the simplifying assumption that L(M) returns the leakage of the last
message inserted in M against every other message already present in M . The
simulator deals with queries to the oracles in the following ways.

Random Oracle Queries SRO(x). Dealing with random oracle queries is per-
haps the most important part of our simulation strategy, since this is where the
simulator learns the messages that the adversary “encrypts locally” and has to
produce consistent replies to the different oracle queries. Note that we only use
the power of adding messages to the leakage set when replying to queries to H1.
In particular, the simulator answers to the different queries in the following way:

Queries to H1 (Used in our construction to generate base-dependent key, the
input x refers to a general base b): If H1(x) was already defined the simulator
returns a value that is consistent with the previous answers. Otherwise,H1(x)
has not yet been initalizated. In this case, the simulator first generates a guess
message m̃ using the input x as the base b = x, e.g., m̃ = φ−1(b, 0) (step 1
in SRO, Fig. 2). Then, S learns whether any message with the same base b
has been queried before to SE (thanks to leakage received in step 3, Fig. 2).
If L(M) is empty, the simulator has no additional information to initialize
H1(x) and thus returns a random value h ←$ {0, 1}λ. Otherwise, L(M) is
not empty, the simulator uses the leakage to identify the list of ciphertexts
“matching” b, and randomly selects one c = (β, γ, δ) from this list. The
simulator computes the value y = β ⊕ b and checks whether the oracle H2

ever output y. If so, S programs H1 to return the preimage of y under H2,
i.e., it sets H1(x) = h for a h ∈ {0, 1}λ satisfying H2(h) = y. In case the
oracle H2 has not yet output the value y, S picks a random h and programs
H2(h) = y.

Queries to H2 (Used in construction to encrypt base, the input x is a base-
dependent key mk): If H2(x) was already defined the simulator just provides
a consistent answer, otherwise: if x 6= H1(b) for all previous queries to the
random oracle H1, pick a random value h, program H2(x) = h and return
h. If x is a previous output of H1 e.g, if x = mk for some base b, lookup the
encryption β corresponding b and program the output of H2(x) = β ⊕ b.

Queries to H3 (Used in construction to encrypt base-dependent key): If H3(x)
was already defined the simulator just provides a consistent answer, other-
wise it returns a random h and programs H3(x) = h.

Queries to H4 (Used in construction to encrypt deviation): If H4(x) was al-
ready defined the simulator just provides a consistent answer, otherwise re-
turn a random h and program H4(x) = h.
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Corruption queries SC(id). On this type of queries the simulator gets as input

the set D(id)
enc that contains all of the message-ciphertexts pairs generated so far

by the encryption oracle as replies to the adversary’s queries for identity id. The
simulator needs to produce a secret key skid which explains all ciphertexts c
(which the simulator produced previously) as encryptions of the corresponding
messages m. To do so, S picks a random key skid ←$ {0, 1}λ. Then, for all (m, c) ∈
D(id)

enc , the simulator parses c = (β, γ, δ) and φ(m) = (b, d). Finally S programs

the random oracles as follows (repeating the steps for all (m, c) ∈ D(id)
enc :

1. If H1(b) is undefined, S picks random mk ←$ {0, 1}λ and sets H1(b) = mk;
otherwise it sets mk = H1(b).

2. If H2(mk) is undefined, the simulator programs H2(mk) = β ⊕ b.
3. If H3(skid, β) is currently undefined, S programs it to H3(skid, β) = mk⊕ γ;

otherwise the simulator aborts –this happens when H3(skid, β) had been
initializated previous to this corruption query.

4. If H4(skid, δ1) is currently undefined S programs H4(skid, δ1) = d ⊕ δ2, oth-
erwise –in case H4(skid, δ1) is already instantiated– the simulator aborts.

Note that the simulator may abort in step 3 and 4 only, and this happens
uniquely if H4 or H3 were initialized before the corruption query. We argue
that this S aborts only with negligible probability. In detail, in Step 3 the sim-
ulator aborts only if H3(skid, β) was defined prior to this corruption query (the
same user might have encrypted multiple messages with the same b which would
result in multiple, consistent definitions of the oracle on this point). Since skid
is chosen at random for each corruption query, the probability that the adver-
sary queries H3 with precisely the value (skid, β), without knowing the random
string skid ∈ {0, 1}λ, is negligible. A similar reasoning applies to H4 in step 4:
the probability that H3 was already defined on any input of the form (skid, ·) is

negligible. Thus, S only aborts if there are two distinct ciphertexts in D(id)
enc with

the same δ1, which happens with negligbile probability because (as described
below in the simulation of encryption queries), the value δ1 is chosen uniformly
at random and has length equal to the security parameter. Note also that, by
construction of the simulator, if H2 is already defined before the simulator runs
step 5 on input mk, then the output of H2 had already been defined to the ex-
act same value. Therefore, by construction, if the simulation does not abort the
ciphertexts now decrypt to the right message under the user key skid, and the
view of the adversary is therefore identical in the real and ideal world.

Encryption queries SE(id,m). We start by observing the properties of the output
of the encryption oracle in the real world. Given any two encryption queries
(id,m) and (id′,m′) the outputs c = (β, γ, δ) and c = (β′, γ′, δ′) have the following
distributions (unless δ1 = δ′1 which only happens with negligible probability in
the security parameter):

1. random and independent if φ1(m) 6= φ1(m2) (in particular, this implies the
bases be different);
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2. random and independent under the constraint β = β′ if φ1(m) = φ1(m2)
and id 6= id′;

3. random and independent under the constraint β = β′ and γ = γ′ if φ1(m) =
φ1(m2) and id = id′;

Our aim is to construct a simulator that produces ciphertexts satisfying the same
distribution, ignoring the case of repeating δ1’s (which happens with negligible
probability), thus achieving an indistinguishable view. Recall that S does not
have access to the message m during encryption queries. However, S is allowed
access to the leakage revealed by the ciphertexts themselves, i.e., the output
of the leakage function L(M) where M is the set of all messages which have
been previously queried as part of encryption oracle queries, plus the messages
“guessed” by the simulator when the adversary queries the random oracle. Re-
member that, for simplicity, our model prevents the adversary from querying
the encryption oracle on corrupted identities (the oracle returns ⊥, steps 1 and
2 in Fig. 2). Concretely, the simulator does the following. In any case, it picks a
uniformly random δ1 ←$ {0, 1}λ.

Then, if L(M) is empty, S draws β ←$ {0, 1}k and γ ←$ {0, 1}λ at random.
This happens if there were no previous encryptions with the same b. This per-
fectly simulates the distribution in case 1, since all of the entries of the ciphertexts
are distributed at random and independently.

Otherwise, the simulator learns from L(M) one (or more) previous cipher-
texts that “match” the current query. Now, let c′ = (β′, γ′, δ′) be one of these
ciphertexts, and let id′ ∈ ID and m′ denote the identity and message correspond-
ing to that query (recall that (id′,m′, c′) ∈ Denc). This means that the queried
message and m′ share the same base and therefore the simulator can set β = β′.
In addition, if id 6= id′, S picks a random γ ←$ {0, 1}λ, perfectly simulating the
distribution in case 2.

Otherwise, id = id′, the messages are equal and so are the base-derived keys
(and their ciphertext). Thus, S sets γ = γ′, fitting the expected distribution in
case 3.

To sum up, we have presented a simulator that always replies with outputs
distributed “in the same way” as the answers returned by the real world oracles.
Thus, we proved the indistinguishability of its output from an execution of the
“real” algorithms. This concludes the proof.

B Turning our MKRE constructions into centralized ones

Our instantiations of MKRE for generalized deduplication presented in Section
5 follow an ad-hoc approach were users of the system can generate their secret
keys independently one from another. However, since the way we encrypt the
base b into β is deterministic and public (no secret keys are involved in this step),
our constructions are vulnerable to dictionary attacks. In detail, the server could
encrypt data until “hitting” a ciphertext that corresponds to a target file. Once
the match is found, the server learns the plaintext corresponding to the base of
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ciphertexts stored under the target deduplication string. While this attack does
not directly imply that the server can efficiently break the confidentiality of the
data uploaded by honest users, and it is in fact mitigated by random oracle
queries in our construction, it constitutes a possible secrecy threat against the
base points used for deduplication. While näıvely re-encrypting β under a user-
specific secret key would solve the privacy issue, it destroys the deduplication
capabilities (since the same β will be encrypted to different values by different
users).

One way of addressing this problem could be to use a centralized approach,
where users receive their secret keys from a key distribution authority. The idea
is to deliver keys that are made of two parts: a global master secret key msk and
user-dependent key material (denoted with the subscript id). The user-dependent
key material is the same as in the original, ad-hoc constructions (Definition 8
and Section 5.2). The master secret key msk (shared among users) is then used
to wrap an additional (deterministic) encryption layer around the ciphertext β,
to obtain β′. In this way, since all users encrypt with the same msk and the en-
cryption scheme is deterministic, equal bases will be sent to the same ciphertext7

β′. This obviously preserves the deduplication functionality on encrypted data
and provides an extra layer of security against an adversary who has no access to
msk. Concretely, this centralized approach rules out guessing attacks from nosy
servers so long the latter does not collude with a user. If msk is revealed to the
adversary, the security of the centralized solution falls back to the security of
the ad-hoc scheme.

7 β′ is a ciphertext of the ciphertext β, thus a deterministic encryption of a determin-
istic encryption of b.
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