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Abstract. Deterministic ECC-based signatures including deterministic
ECDSA and EdDSA are becoming popular to be applied to blockchain
and Internet of Things. Their security has received a considerable atten-
tion, and there have existed some differential fault attacks against them.
However, the attacks have some problems such as high computational
complexity and strict requirement of fault injection. In this paper eight
efficient lattice-based fault attacks(and one differential fault attack) a-
gainst deterministic ECDSA and two ones against EdDSA are proposed.
All the fault models of such attacks are the random storage faults of
intermediate values during signature, by which some faulty and one cor-
rect signatures are obtained to construct the models of lattice attacks(or
the equations with two unknown) and thereby recover the private key.
Unlike the previous differential fault attacks based on storage faults, our
attacks do not need to guess the number and location of the faulty bit-
s, and are still effective while the previous attacks are computationally
infeasible. Moreover, compared with the previous lattice-based fault at-
tacks against the non-deterministic signatures with random nonces, our
attacks have more fault models besides the faulty nonce k, and only need
random fault injection. We demonstrate the effectiveness of the attacks
by simulations, which shows our attacks pose real threats to determin-
istic signature. The upper bound of the number of the faulty bits is
just slightly less than the key length. We also discuss the corresponding
countermeasures against our attacks.

Keywords: ECC, Fault Attack, Lattice Attack, Deterministic ECDSA,
EdDSA

1 Introduction

Elliptic curve cryptosystem(ECC) [1] is one kind of the most popular public
key cryptosystems. Compared with RSA, ECC is more suitable for embedded



device due to its shorter key length and faster execution, especially for Internet
of Things(IoT). As a popular ECC algorithm, ECDSA signature scheme [2] is
a variant of El-Gamal signature [3], in which there exists a random nonce k
so as to generate random signature. However, not all the cryptographic devices
have a good random number generator(RNG), such as IoT, RFID tags, and
the softwares without RNG. If the nonces are reused in some signatures, the
attacker can employ the signatures to recover the private key [4,5]. Hence, as the
alternatives, the deterministic ECC-based signature schemes(DESS for short) are
deployed in many cryptographic devices, especially in the devices without a good
RNG, in which the nonces can be determined uniquely by the hash function of
inputting message and private key.

Deterministic ECDSA(DECDSA) [6] on Weierstrass curve and EdDSA on
Edwards curve are two types of typical DESS. DECDSA as a variant of ECDSA
has been specified in RFC 6979 [6] by Internet Engineering Task Force (IETF),
and used to ensure the security of the application of blockchain. EdDSA is pro-
posed by Bernstein et al. [7], and is also specified in RFC 8032 [8]. It has been
proved that the speed of EdDSA on Curve25519 [9] is two times faster than the
ECDSA recommended in NIST P-256 [10]. Therefore, EdDSA is becoming more
popular in the application of protocols including OpenSSH, Tor, TLS, Apple
AirPlay, DNS protocols etc [11].

Standard DESS can resist the theoretical analysis, but their implementa-
tion faces the threat from physical attack, in which fault attack(FA) is one
of the most frequently used physical attacks. FA exploits the faulty signatures
caused by fault injection(FI) such as laser injection, strong electromagnetic ra-
diation and glitches to deduce the secret key. At present, there are three typical
fault attacks against ECC: weak curve fault attack(WCA) [12,13,14], differen-
tial fault attack(DFA) [12,15] and lattice-based fault attack(LFA) [4,5,15,16,17].
However, to our knowledge, only DFA is effective for DESS. Two kinds of D-
FAs against DESS are first proposed in IWSEC’2016 [11], including the faulty
scalar multiplication(SM)-based DFA and the storage faults-based of interme-
diate values DFA. The first DFA assumes that some faults are induced during
the calculation of SM, to get a faulty signature (r′, s′). Meanwhile, the same
message m can generate a correct signature (r, s). Thereby, the private key d0
or d can be recovered by solving the equation s − s′ = d0(r − r′)(EdDSA) or
s − s′ = (s′r − r′s) e−1d(DECDSA), where e is the hash value of message m.
Unlike the first one, the second DFA assumes that a single bit or byte of the
intermediate value(mv) is randomly tampered before the calculation of s, where
mv can be the nonce k, the signature result r and so on. Consequently, mv is
changed into mv′ = mv+ε, where ε = β2l, β is a small random number, and l is
the lowest location of FI in mv. By constructing a differential distinguisher with
mv and mv′ the private key d0 or d can be recovered. After that, the two types
of DFAs are summarized in CT-RSA’2018 [18], and the second DFA is extended
with more feasible targets of FI. Meanwhile, a practical DFA against the EdDSA
signature between two virtual machines is introduced in Euros S&P’2018 [19], in
which FI employs the rowhammer attack. The result has also been specified in
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FIPS 186-5 (Draft). In addition, more DFAs within the first type are introduced
in FDTC’2017 [20] and AFRICACRYPT’2018 [21]. In conclusion, the first type
of DFA can be implemented in practice. Nevertheless, the attack only has one
available target of FI, and is infeasible when checking whether the input and
output points (or the scalar) during the calculation of SM in DESS are on the
original curve (or is same with the nonce k). For the second DFA, although there
are more available targets of FI than the first DFA, the consequent requirement
for FI becomes more strict due to a small amount of faulty bits of mv needed
for the attack. Otherwise, the attack is computationally infeasible.

To overcome the above problems of DFAs and expand more FAs against
DESS, we research whether LFA can be applied to analyze DESS. LFA which
combines FA and lattice attack(LA) is usually used for analyzing non-deterministic
signature schemes with random nonces, and there have been many LFAs pro-
posed in [4,5,15,16,17]. However, there seems no LFA against DESS in the cur-
rent literature. To our knowledge, only one LFA against deterministic lattice
signatures in lattice-based cryptography is proposed in [22], but it cannot be ap-
plied to analyze DESS because of the totally different structure of lattice-based
cryptography with ECC.

Our contributions. In this paper, we found LFA still can be applied to
DESS and even causes more enormous threats to DESS than to non-deterministic
signatures. It is assumed that some random storage faults are induced into the
intermediate values mv’s in DESS. Thereby, we can build some models of LA,
and propose eight new LFAs(and one DFA) against DECDSA and two ones
against EdDSA.

1. Compared with the previous DFAs based on the storage faults(the second
type of DFA) against DESS, our attacks have more targets of FI, and recover
the private key not by guess-determine analysis but by solving shortest vector
problem(SVP) or closest vector problem(CVP). This reduces the requirement
for FI and time complexity sharply so that it is feasible for our attacks to be
implemented in practice. Even if the random faulty bits of mv’s are slightly less
than the key length, our attacks are still effective.

2. Different with the previous LFAs against non-deterministic signatures with
random nonce k, the faulty bits induced in our attacks are random, while the
ones induced in the previous LFAs are controlled to be fixed or same. Moreover,
our attacks are not only limited to construct CVP based on faulty nonce k as
in the previous LFAs, but also construct more totally new SVPs based on other
targets of FI.

3. The vulnerabilities of different algebraic structures of s in DECDSA and
EdDSA for our attacks are analyzed, and it is concluded that the number of the
coefficients multiplied by the secrets in the structure of s is proportional to the
number of vulnerabilities.

4. The corresponding countermeasures in implementation are discussed, in
which adding random number and double signatures are the optimal selections.

The remainder of the paper is organized as follows: Sect. 2 introduces the de-
terministic signature schemes DECDSA and EdDSA, and some theoretical basis
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about lattices, respectively. In Sect. 3, two representative kinds of LFAs against
DECDSA and EdDSA are presented in detail, and the other FAs are listed in
Appendix A. Sect. 4 verifies the feasibility of the proposed attacks by simulation-
s. The discussion about the corresponding countermeasures is deployed in Sect.
5. Finally, the conclusion is given in Sect. 6. Appendix B lists the verification
algorithms of DECDSA and EdDSA.

2 Preliminaries

In this section, we first introduce the deterministic signature schemes, including
the deterministic ECDSA signature on Weierstrass curve in prime field Fp(p > 3)
and the EdDSA signature on Edwards curve. Next, we give some theoretical basis
about lattices.

2.1 Deterministic ECDSA Signature Scheme

The elliptic curve E(a, b) is defined by Weierstrass equation in prime field Fp as
follow

E(a, b) : y2 = x3 + ax+ b mod p, (1)

where a, b ∈ Fp, and 4a3 + 27b2 ̸= 0 mod p.
The additive group E(Fp) consists of the set of points on E(a, b) and the

infinity point O.

E(Fp) =
{
(x, y)|x, y ∈ Fp, y

2 = x3 + ax+ b mod p
}
∪ {O} . (2)

Scalar multiplication(SM) is the most elementary operation on E(Fp) and is
composed of some point doublings and additions. Given a basic point G ∈ E(Fp)
with order n and a scalar k ∈ [0, n − 1], the SM kG is defined as the sum of
k G’s. The security of ECC is based on the elliptic curve discrete logarithm
problem(ECDLP): given the basic point G ∈ E(Fp) and a point Q ∈ E(Fp), it
is hard to find the scalar k ∈ [0, n− 1] such that Q = kG.

Deterministic ECDSA(DECDSA) as an alternative of ECDSA [2], is also
based on the above additive group E(Fp) and has a similar procedure with
ECDSA as shown in Algorithm 1. The only difference is that the nonce k is
generated not by random number generator(RNG) but by a HMAC function
F (.) described in [23]. Since the hash value e of message m and private key d
are the initial inputs of HMAC to generate k, the fixed message m in signatures
can generate same nonces k’s.

2.2 Deterministic EdDSA Signature Scheme

EdDSA signature scheme is similar to DECDSA. It is proposed by Bernstein
et al. [7] in view of high efficiency. The twisted Edwards curve E(a, d) in finite
field Fq(q = 2255 − 19 for curve25519) is defined as follow

E(a, d) : ax2 + y2 = 1 + dx2y2, (3)
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Algorithm 1 Deterministic ECDSA Signature

Require: message m, private key d.
Ensure: signature results r, s.
1: e = SHA (m);
2: Generate k ∈ [1, n− 1] = F (e, d) with HMAC PRNG(Difference: randomly gener-

ate k in ECDSA);
3: Q(x1, y1) = kG;
4: r = x1 mod n;
5: if r = 0 then goto step 2;
6: s = k−1(e+ dr) mod n;
7: if s = 0 then goto step 2;
8: return (r, s)

where a, d ∈ Fq.

Before signature, the b-bit private key d first derives two b-bit subkeys d0 and
d1 by the hash functionH(d) with 2b-bit output, whereH(d) = (h0, h1, ..., h2b−1),

d0 = 2b−2+
b−3∑
i=3

2ihi, and d1 = (hb, ..., h2b−1). The public key P satisfies P = d0G,

where G is the basis point with order n. The detailed signature procedure is
described in Algorithm 2. Signer calculates the signature results m, (R, s) and
outputs them for verification(see Appendix B for details).

Algorithm 2 Deterministic EdDSA Signature

Require: message m, subkeys (d0, d1).
Ensure: signature results R, s.
1: k = H(d1,m) mod n;
2: R(x1, y1) = kG ∈ Ea,d(Fq);
3: r = H(R,P,m) mod n;
4: s = k + rd0 mod n;
5: return (R, s)

2.3 Lattices

In this section, we will give some theoretical basis about lattices. If the row
vectors b1, b2, ..., bN ∈ Rm of a matrix M ∈ Rm×N are linearly independent,
then the vector space L spanned by the vectors bi’s is the so-called lattice,
where Rm is the m dimensional space in real number field R. The lattice L is
defined as

L = L(b1, b2, ..., bN ) = {z =
N∑
i=1

xi · bi|xi ∈ Z}, (4)
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where bi’s is a basis of L, M is the basis matrix and N is the dimension of L.
For any z ∈ L, there exists x ∈ ZN such that z = xM . If m equals to N , then
L is full rank. If bi belongs to Zm for any i = 1, ..., N , L is an integer lattice.

Shortest vector problem(SVP) and closest vector problem(CVP) are two fa-
mous hard problems in lattice. In order to weaken the hardness of SVP and
CVP, approximate SVP(aSVP) and approximate CVP(aCVP) are introduced.

aSVP: given a basis bi’s of L, find a nonzero vector v ∈ L satisfying

∥v∥ ≤ f(N)λ1(L). (5)

Where λ1(L) is the length of the shortest vector and f(N) is an approximate
factor related to N . The norm ||v|| is defined as

√
v12 + ...+ vm2, i.e., ||v|| is

the length of v, where v = (v1, ..., vm), vi ∈ R. If f(N) is the exponential form
of N , then the aSVP with factor f(N) can be solved using LLL algorithm [24]
in polynomial time or LLL-based BKZ algorithms [25].

In addition, it has been proved [26] that a random lattice L ∈ Rm with
dimension N satisfies with overwhelming probability

λ1 (L) ≈
√

N

2πe
vol(L)

1
N , (6)

where vol(L) is the determinant of L.
aCVP: given a basis bi’s of L and a target vector u ∈ Rm, find a nonzero

vector v ∈ L satisfying

∥v − u∥ = f(N)λ (L,u) . (7)

Where λ (L,u) is the closest distance from vector u to lattice L.
Similarly, if f(N) is the exponential form of N , the aCVP can be solved

by using LLL-based Babai’s nearest plane algorithm [27] in polynomial time.
Furthermore, Babai has proved [27] that given a target vector u, the lattice
vector v can be determined in polynomial time when satisfying the inequation

∥v − u∥ ≤ c1||b∗N ||2 ≤
√

N

2πe
vol(L)

1
N . (8)

Moreover, CVP is usually reduced into SVP by the embedding technique in
practice [28] and SVP also can be transformed into a set of CVP oracle [29].

3 LFAs against Deterministic Signature Schemes

In this section, we will introduce the proposed lattice-based fault attacks.
In our attacks, all the fault models are the storage faults of intermediate

values mv’s in signatures, by which some faulty signatures can be obtained to
construct the models of lattice attack(LA). Finally, the private key d or d0 can be
recovered by solving aCVP or aSVP in lattice. How to select the proper targets of
FI for constructing the models of LA is the difficult point in our attacks. Through
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the above analysis, we found that the coefficients multiplied by the secrets d, d0
and k are the key points of constructing the models of LA. Once some faults are
introduced into these coefficients, a LA can be carried on to reveal the private
key. Hence, the final purpose of inducing faults into the targets of FI is to make
the coefficients faulty, and the number of the coefficients decides the number of
the targets of FI.

3.1 Targets of Fault Injection

Because EdDSA and DECDSA have different algebraic structures, they have
different secrets, the corresponding coefficients and targets of FI. We compare
the algebraic structures in DECDSA and EdDSA as follow, respectively.

s = k + rd0 mod n (EdDSA)
s = k−1 (e+ rd) mod n (DECDSA).

(9)

From the equations, only the secret d0 in EdDSA has one coefficient r, while
the two secrets d and k−1 in DECDSA have more coefficients besides r. Table
1 summarizes the secrets, the corresponding coefficients, the targets of FI, and
the solved problems for our attacks in DECDSA and EdDSA, respectively. For
instance, the secret d in DECDSA has two coefficients r and k−1. If the two
targets r, k (or k, k−1) corresponding to the coefficient r(or k−1) are partially
tampered by FI, r will be changed into r′ by which the model of lattice attack can
be constructed. Thereby, the secret can be recovered by solving aSVP or aCVP.
Nevertheless, it is worth noting that the secret is recovered not by solving aSVP
but by solving the bivariate equations when the target x1 are tampered as shown
in Table 1. This is because the faulty r′ is known and the nonce k is fixed, and
thereby the secret can be directly recovered by solving the equations as the
previous DFAs. Analogously, the coefficient e+ rd multiplied by the secret k−1

in DECDSA corresponds to four targets, while the coefficient r multiplied by
the secret d0 in EdDSA only corresponds to two targets. To sum up, there are
nine targets of FI in DECDSA and two ones in EdDSA. Moreover, except the
attacks targeting k before the calculation of SM kG(aCVP) and xi before the
calculation of r(bivariate equations), the other attacks recover the private key
by solving aSVP.

As a result, EdDSA has less targets of FI than DECDSA. Although the alge-
braic structure of s in EdDSA is simpler and has no modulo inverse operation,
it shows more better performance to resist our LFAs than the general algebraic
structures on the contrary.

Based on the above target of FI, the following sections introduce two typical
kinds of LFAs in our attacks, and the others are detailed in the Appendix A.

All our LFAs consist of two steps. First, FA is carried out to change the
intermediate value mv into mv′ = mv + ε, where ε is a random number so that
the low w(w > 0) bits of mv are disturbed. Hence, ε satisfies −2w < ε < 2w

(w > 0). That is, ε mod n ∈ (−2w + n, n) ∪ [0, 2w). Next, a model of LA based
on the random ε is built to reveal d in DECDSA or d0 in EdDSA.
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Table 1. The secrets, coefficients, targets and solved problem in our attacks against
DECDSA/EdDSA.

Algorithms
Item

secrets coefficients targets of FI solved problem

DECDSA

d
r

r during the calculation of s aSVP
k before the calculation of SM kG aCVP

xi before the calculation of r bivariate equations

k−1 k−1 during the calculation of s aSVP
k during the calculation of s aSVP

k−1 e+ rd

d during the calculation of s aSVP
e during the calculation of s aSVP
rd during the calculation of s aSVP

e+ rd during the calculation of s aSVP

EdDSA d0 r
r during the calculation of s aSVP

k before the calculation of SM kG aCVP

3.2 LFA on r before the calculation of s by solving aSVP

DECDSA. Step 1: r → ri = r + εi by fault attack.
When r is loaded to calculate the signature result s(line 6 in Algorithm 2),

some faults are induced into r in N − 1 signatures. r is rewritten into ri = r+ εi
for i = 1, ..., N − 1, where εi satisfying −2w < εi < 2w is a random number so
that the low w(w > 0) bits of r are disturbed. The valid signature value (r, s0)
and N − 1 invalid ones (ri, si) for the same input message m can be represented
as {

s0 = k−1 (e+ rd) mod n
si = k−1 (e+ (r + εi)d) mod n(i = 1, ..., N − 1).

(10)

Step 2: recover the private key d by lattice attack.
After reduction, the equations (10) can be transformed as

εi = (si − s0) d
−1k mod n (11)

Assuming that Ai = si − s0 mod n, D = d−1k mod n , there must exist
hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin, (12)

where D is a fixed value due to the same message m.
Since −2w < εi < 2w, we have

|AiD + hin| < 2w. (13)

For i = 1, . . . , N − 1, let the basis matrix M ∈ ZN×N of lattice L satifying

M =


n 0 · · · 0

0
. . .

...
... n 0
A1 · · · AN−1 2w/n

 ,

8



and x = (h1, . . . , hN−1, D) ∈ ZN , then the nonzero lattice vector v = xM =
(A1D + h1n, . . . , AN−1D + hN−1n,D2w/n).

From the inequations (13), if w < f − log
√
2πe and N > 1 + f+log

√
2πe

f−w−log
√
2πe

,

then the vector v satisfies

∥v∥ <
√
N2w <

√
N

2πe
vol(L) 1

N , (14)

where vol(L) = det(M) = nN−22w and f = ⌈logn⌉.
As mentioned in Sect. 2.3, L behaves like a random lattice, so the inequality

(14) can be viewed as a SVP in L. Hence, we can obtain the short vector v by
LLL reduction, and thereby get the value of D. Consequently, the private key
d = (Ds0 − r)−1e mod n can be deduced by substituting D into equations (10).

EdDSA. In all the DFAs against EdDSA proposed in [18,19,20,21,30], the
recovered key is not the private key d but the sub-keys d0 or d1. Similarly, only
the sub-key d0 is recovered in our attacks, but the forged signatures with the
derived d0 still can successfully pass verification, in which k is not the value
derived by message and d0 but an arbitrary value.

Similar with the attack against DECDSA, FA is first carried on to obtain{
s0 = k + rd0 mod n
si = k + (r + εi)d0 mod n(i = 1, ..., N − 1).

(15)

After reduction, the equations (15) can be transformed as

εi = AiD + hin, (16)

where Ai = si − s0 mod n, D = d−1
0 mod n, hi ∈ Z.

Since −2w < εi < 2w, we have

|AiD + hin| < 2w. (17)

Analogously, from the inequations (17), a SVP in a L can be constructed.

If w < f − log
√
2πe and N > 1 + f+log

√
2πe

f−w−log
√
2πe

, d0 can be recovered by solving

aSVP.

3.3 LFA on k before the calculation of SM kG by solving aCVP

DECDSA. Step 1: disturb k into ki = k + εi by fault attack.
During DECDSA signature, the nonce k is generated by F (d,m)(line 2 in

Algorithm 2), and is loaded to calculate SM kG with the base point G. If some
faults are induced during the loading in N − 1 signatures, then k is rewritten
into ki = k+ εi for i = 1, ..., N − 1, , where −2w < εi < 2w. Finally, we obtain a
valid signature result (r0, s0) and N − 1 invalid (ri, si) for the same message m.
The final equations are as follow{

k = s0
−1 (e+ r0d) mod n

k + εi = si
−1 (e+ rid) mod n(i = 1, ..., N − 1).

(18)
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Step 2: recover the private key d by lattice attack.
After reduction, the equations (18) can be transformed as

εi =
(
si

−1ri − s0
−1r0

)
d−

(
s0

−1 − si
−1

)
e mod n. (19)

Let Ai =
(
si

−1ri − s0
−1r0

)
mod n, Bi = (s0

−1 − si
−1)e mod n, then there must

exist hi ∈ Z satisfying
εi = Aid+ hin−Bi. (20)

Since −2w < εi < 2w, we have

|Aid+ hin−Bi| < 2w. (21)

A model of LA can be built by the inequations (21). For i = 1, . . . , N − 1, a
lattice L can be spanned by the row vectors b1, . . . , bN of matrix

M =


n 0 · · · 0

0
. . .

...
... n 0
A1 · · · AN−1 2w/n

 .

Let x = (h1, . . . , hN−1, d) ∈ ZN , then the nonzero lattice vector v = xM
equals to (A1d + h1n, . . . , AN−1d + hN−1n, d2

w/n). In addition, we define the
non-lattice vector u = (B1, . . . , BN−1, 0) ∈ ZN . Naturally, from the inequations
(21), we have

∥v − u∥ <
√
N2w. (22)

If w < f − log
√
2πe and N > 1 + f+log

√
2πe

f−w−log
√
2πe

, then

∥v − u∥ <
√
N2w <

√
N

2πe
vol(L) 1

N , (23)

where vol(L) = det(M) = nN−22w, and f = ⌈log n⌉.
According to the equation (8) mentioned in Sect. 2.3, the inequality (23) can

be view as a CVP in L. We can obtain v by LLL-based BaBai algorithm, and
deduce the private key d from v.

EdDSA. It is assumed that k derived from the same m is changed into
ki = k + εi( i = 1, ..., N − 1)by FA before the calculation of SM kG. The valid
signature results (R0, s0) and the invalid ones (Ri, si) are represented as{

s0 = k + r0d0 mod n
si = k + εi + rid0 mod n(i = 1, ..., N − 1),

(24)

where ri = H(Ri, P,m) and −2w < εi < 2w for i = 0, ..., N − 1.
After several iterations, the equations (24) can be transformed into

εi = Aid0 −Bi + hin, (25)
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where hi ∈ Z, Ai = (r0 − ri) mod n, Bi = (s0 − si) mod n for i = 1, ..., N − 1.
Since −2w < εi < 2w, we have

|Aid0 −Bi + hin| < 2w. (26)

By the same way, a model of LA can be built. If w < f − log
√
2πe and

N > 1 + f+log
√
2πe

f−w−log
√
2πe

, the subkey d0 can be recovered by solving aCVP in

lattice.
In conclusion, regardless of solving aSVP or aCVP, the number w of faulty

bits and the numberN of signatures needed in all the attacks satisfy w < f − log
√
2πe

and N > 1+ f+log
√
2πe

f−w−log
√
2πe

. The smaller w, the smaller needed number N . More-

over, the upper bound of w can be even up to f − ⌈log
√
2πe⌉ − 1.

4 Attack Simulations and Complexity Comparisons

In this section we do some simulations to demonstrate the proposed LFAs. Be-
cause the attack targeting xi employs the method of solving equations directly,
it will not be simulated here.

First, we take 256-bit DECDSA and EdDSA to simulate the fault attacks.
We randomly select a message m and a private key d to generate a correct
DECDSA/EdDSA signature. Next, based the proposed fault models, forge N−1
faulty signatures for the fixed m and d. In every forged signature, the lower
w bits of intermediate value(mv) are randomized by a w-bit random number
ζi(i = 1, ..., N − 1). That is, vi = v ⊕ ζi = v + εi, where εi is derived by ζi and
−2w < εi < 2w. w and N can be set to different values. Finally, we carry on the
proposed lattice attacks with the forged and correct signatures to recover the
private key d(or d0) in DECDSA(or EdDSA). If the derived d(or d0) satisfies
that dG(or d0G) equals to the public key P or a new signature with inputting
d(or d0) can pass the verification in DECDSA/EdDSA, the attack is successful.

In experiments, we employ LLL algorithm and LLL-based BaBai algorithm
implemented in NTL library [31] to solve aSVP and aCVP, respectively. As

stated above, when w < f − log
√
2πe and N > 1 + f+log

√
2πe

f−w−log
√
2πe

, the correct

d(or d0) can be recovered by LA. If f = 256, then w can be up to 253 and
N > 271 in theory. However, the upper bound of w is slightly smaller than the
theoretical value in our experiments, because the dimension N > 271 needed
in the constructed lattice when w = 253 is too big to make the attack feasible
computationally. In addition, as introduced in Sect. 2.3, the reduced vectors
by LLL algorithm are just approximate to the shortest(or closest) vector with
exponential factor 2(N−1)/2, when the parameter δ equals to 3/4. If N exceeds
a certain bound, there is a big gap between the LLL-reduced short vectors and
the shortest vector. Hence, there exists a success rate γ for LLL reduction to
recover the correct secret key.

Table 2 and Table 3 list the number N of signature and the corresponding
success rate γ of the lattice attacks against DECDSA and EdDSA when w is
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Table 2. The number of signatures and success rate for the lattice attacks against
DECDSA based on different w.

fault target
data wmax = 251 w = 245 w = 190 w = 128 w = 124

N γ N γ N γ N γ N γ

r during the calculation of s 90 87% 29 96% 6 79% 3 42% 3 66%

k before the calculation of SM kG 200 6% 29 96% 6 100% 3 55% 3 100%

k−1 during the calculation of s 90 60% 29 97% 6 52% 3 45% 3 62%

k during the calculation of s 90 33% 29 97% 6 82% 3 62% 3 44%

e, rd, e+ rd during
90 25% 29 97% 6 66% 3 43% 3 52%

the calculation of s

d during the calculation of s 90 100% 29 98% 6 60% 3 42% 3 49%

Table 3. The number of signatures and success rate for the lattice attacks against
EdDSA based on different w.

fault target
data wmax = 251 w = 245 w = 190 w = 128 w = 124

N γ N γ N γ N γ N γ

r before calculating s 90 100% 29 100% 5 87% 3 46% 3 57%

k before ECSM kG 100 70% 29 96% 5 100% 3 20% 3 100%

different values, respectively. Because the faulty targets e, rd, e + rd of FI lead
to the same model of LA, we just implement the simulation of LFA based on
faulty e. The experiments show that γ is greater than 0 only when w ≤ 251,
i.e, the upper bound of w is 251 which is slightly smaller than the key length
f(f = 256). When w = 251, the success rate γ of solving aCVP is less than
that of solving aSVP. Moreover, when w = 128, only three signatures(N = 3,
two faulty and one correct signatures) are needed to recover the private key d
or d0 successfully, which is just 1 greater than the ones in the previous DFAs.
Nevertheless, it is impossible for the previous attacks based on storage faults to
recover the private key when w = 128.

Some comparisons between our LFAs and the previous DFAs based on storage
faults are listed in Table 4. LLL reduction takes up the main time consumption in

our LFAs, and its time complexity C in the worst case is equal toO
(
N5(logA)

2
)
,

i.e., C ≈ O

((
2 + f+log

√
2πe

f−w−log
√
2πe

)5

(logA)
2

)
, where A is the maximum length in

the original lattice vectors. C is proportional to w and is polynomial time. By
contrast, the time complexity of previous DFAs in the worst case is equal to
O (2w), which is exponential time and infeasible computationally when w > 64.

Obviously, our attacks have more advantages at time complexity, and reduce
the requirement of FI sharply due to the sufficiently big w-bit random faults.
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Table 4. Our attacks VS the previous DFAs based on storage faults.

Item
Fault attack

Our attacks The previous attacks

Method solving aSVP/aCVP guess-determine

Upper bound of w 251 ≈ 64

Time complexity(C) O

((
2 + f+log

√
2πe

f−w−log
√
2πe

)5

(logA)2
)

O(2w)

Attack time(w = 251) ≈ 64 s ≈ O(2251)(unfeasible)

Attack time(w = 128) 1 ∼ 2 ms O(2128)(unfeasible)

N(w = 128) 3 2

5 Countermeasures

In this section, we discuss the effectiveness of the general countermeasures a-
gainst our attacks.

-Using random number. It has been implemented in EdDSA and XEdDSA
signature schemes [32,33]. When adding a random number α as the input of the
function of calculating k, each signature is different for the same message m
and can pass the verification without any modification. This kind of signature
adding random number is so-called hedged signature, whose security against
the arbitrary faults on r and 1-bit flipped fault on several other mv’s has been
proved in [34] when the added random number is not repeated. Since our attacks
require many repeated signatures with the fixedm, the randomness of the hedged
signature breaks this condition to make our attacks infeasible. Hence, adding
random number in DESS can prevent all our attacks. However, if the generated
nonce k has some bits leaked by FI, this returns to the same problem faced by
non-deterministic signature with random nonce again.

-Check code. If an odd-even check or CRC check is deployed when writ-
ing/reading the storages, our attacks are still effective. We can implement the
fault injection just after the check, which is feasible in practice.

-Verification before outputting the signature results. If the verifica-
tion before output is passed, then output the signature results, otherwise return
error. In our LFAs, only the attack whose target of FI is the nonce k before the
calculation of SM kG can resist this countermeasure. Nevertheless, the calcula-
tion of verification takes more time than signature, which is inefficient.

-Double computation and comparison. Calculate two times signatures
with same message and compare whether the two signature results are consistent
before output. If the results are inconsistent, return error. This is effective for
resisting all our attacks. It seems the most practical countermeasure when there
is no good RNG in the cryptographic devices and only one target of FI can
be induced. However, it also has the same inefficient problem with the above
verification countermeasure.

-Infective computation. [20] introduces a fault infective computation,
in which the hash function of generating r in EdDSA is processed two times.
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Consequently, there are two results r1 and r2 which all equal to r. If there exist
some faults during the calculation of r, the result s is also diffused by a random
number t. That is, s = k+ r1+(d− t)r1+(t−1)r2 mod n, where t is changed in
each signature. If r1 ̸= r2, the output s is not the correct one and can not be used
for attack. Similarly, the attack targeting k(k → k′) before the calculation of SM
still effective against this countermeasure. Because the two computations of hash
functions obtain two same faulty r′, then s = k′+r′+(d−t)r′+(t−1)r′ = k′+r′d
mod n. Hence, s is still available for the attack.

To sum up, if there exists a good RNG in the implementation of DESS
or make sure that the introduced random number as the input of generating
nonce k is not repeated, adding random number(i.e., hedged signature) seems
the most effective method to protect the deterministic signature from all our
LFAs. In addition, without regard to the efficiency of implementation, double
computation and comparison for signature is another priority selection.

6 Conclusion

In this paper, we present eight new LFAs (and one DFA) against deterministic
ECDSA and two ones against EdDSA, respectively. All the fault models are
the random storage faults of the intermediate values mv’s during signature.
Some random faults are first introduced into mv by fault attack, and then the
private key d or d0 can be recovered by lattice attack or solving equations.
Consequently, we find that DECDSA has more vulnerabilities over EdDSA due
to the algebraic structure of s in signature. The simulations and the complexity
comparisons confirm the effectiveness of our attacks. For a 256-bit standard
DECDSA or EdDSA, the upper bound w of the random faulty bits in our LFAs
is up to 251. Moreover, two faulty signatures are sufficient to recover the private
key when w = 128. Finally, we discuss the general countermeasures against our
attacks. Double computation and comparison for signature and adding random
number are the priority selections. This is the first time that the LFAs based on
random storage faults are used to further enrich the fault attacks against DESS.
The LFAs reduce the time complexity and the requirements of FI by adding
signature data.

Further Work. For the other types of signature schemes, whether there are
more vulnerable points due to their algebraic structures is needed to be further
studied. In addition, if the nonce or the random number generating nonce is
misused in the hedged signature between non-deterministic and deterministic
signatures, whether our attacks are still effective requires further analysis. Fi-
nally, in view of the excellent feasibility of our attacks, our future work will also
focus on the practical LFAs against DESS.
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A Appendix A

This appendix lists the remaining proposed attacks against DECDSA, including
the LFAs on k, k−1, e, rd, e+ rd and d during the calculation of s and the DFA
on xi before the calculation of r. EdDSA has not these vulnerabilities due to its
algebraic structure.

A.1 LFA on k during the calculation of s by solving aSVP

DECDSA. Step 1: k → ki = k + εi by fault attack.
When k is loaded to calculate the signature result s in Line 6 of Algorithm

2, a fault is induced into k in N − 1 signatures. k is rewritten into ki = k + εi
for i = 1, ..., N − 1, where −2w < εi < 2w(w > 0) is a random number such that
the lower w bits of k are disturbed. The valid signature value (r, s0) and N − 1
invalid ones (r, si) for the same input message m are represented as{

k = s0
−1 (e+ rd) mod n

k + εi = si
−1 (e+ rd) mod n(i = 1, ..., N − 1)

. (27)

Step 2: recover the private key d by lattice attack.
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After reduction, the equations (27) can be transformed as

εi =
(
si

−1 − s0
−1

)
(e+ rd) mod n. (28)

Assuming that Ai = si
−1 − s0

−1 mod n, D = e + rd mod n, there must exist
hi ∈ Z for i = 1, ..., N − 1 such as

|AiD + hin| < 2w, (29)

where D is a fixed value due to the same message m.
For i = 1, . . . , N − 1, let the basis matrix of lattice L

M =


n 0 · · · 0

0
. . .

...
... n 0
A1 · · · AN−1 2w/n

 ,

x = (h1, . . . , hN−1, D) ∈ ZN , then the nonzero lattice vector v = xM = (A1D+
h1n, . . . , AN−1D + hN−1n,D2w/n).

If w < f − log
√
2πe and N > 1 + f+log

√
2πe

f−w−log
√
2πe

, we have

∥v∥ <
√
N2w <

√
N

2πe
vol(L) 1

N , (30)

where vol(L) = det(M) = nN−22w.
As mentioned in Sect. 2, L behaves like a random lattice, so the inequation

(30) can be viewed as a SVP in L. Hence, we can recover D by solving aSVP,
and deduce the private key d.

A.2 LFA on k−1 during the calculation of s by solving aSVP

DECDSA. Step 1: K = k−1 mod n → Ki = k−1 mod n+εi by fault attack.
When K derived from k−1 mod n is loaded to calculate the signature result

s in Line 6 of Algorithm 2, a fault is induced into K in N − 1 signatures. K is
rewritten into Ki = K + εi for i = 1, ..., N − 1, where −2w < εi < 2w(w > 0)
is a random number such that the lower w bits of k are disturbed. The valid
signature value (r, s0) and N − 1 invalid ones (r, si) for the same input message
m are represented as{

s0 = K (e+ rd) mod n
si = (K + εi) (e+ rd) mod n(i = 1, ..., N − 1).

(31)

Step 2: recover the private key d by lattice attack.
After reduction, the equations (31) can be transformed as

εi = AiD + hin, (32)
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where Ai = si − s0 mod n, D = (e+ rd)
−1

mod n(fixed value), hi ∈ Z.
Since −2w < εi < 2w, we have

|AiD + hin| < 2w. (33)

Similarly, from the inequations (33), a SVP in a L can be constructed. If

w < f − log
√
2πe and N > 1+ f+log

√
2πe

f−w−log
√
2πe

, we can recover D by solving aSVP

and deduce the private key d.

A.3 LFA on d during the calculation of s by solving aSVP

DECDSA. Step 1: d → di = d+ εi by fault attack.
When d is loaded to calculate the signature result s, a fault is induced into

d in N − 1 signatures. d is rewritten into di = d+ εi for i = 1, ..., N − 1, where
−2w < εi < 2w(w > 0) is a random number such that the lower w bits of k are
disturbed. The valid signature value (r, s0) and N − 1 invalid ones (r, si) for the
same input message m are represented{

s0 = k−1 (e+ rd) mod n
si = k−1 (e+ r(d+ εi)) mod n(i = 1, ..., N − 1).

(34)

Step 2: recover the private key d by lattice attack.
After reduction, the equations (34) can be transformed as

εi = Aik + hin, (35)

where Ai = r−1(si − s0) mod n, hi ∈ Z.
Since −2w < εi < 2w, we have

|Aik + hin| < 2w. (36)

Similarly, from the inequations (36), a SVP in a L can be constructed. If

w < f − log
√
2πe and N > 1+ f+log

√
2πe

f−w−log
√
2πe

, we can recover k by solving aSVP

and deduce the private key d.

A.4 LFA on e, rd and e + rd during the calculation of s by solving
aSVP

All the targets e, rd and e+ rd correspond to the same coefficient e+ rd. If the
lower w bits of the three targets are disturbed by FI, then a same model of LA can
be built. Therefore, we just definemv as any one of the three targets(intermediate
value), that is, mv can be e, rd or e+ rd.

DECDSA. Step 1: mv → mvi = mv + εi by fault attack.
Whenmv is loaded to calculate the signature result s in Line 6 of Algorithm 2,

a fault is induced into mv in N−1 signatures. mv is rewritten into mvi = mv+εi
for i = 1, ..., N − 1, where −2w < εi < 2w(w > 0) is a random number such that
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the lower w bits of mv are disturbed. The valid signature value (r, s0) and N −1
invalid ones (r, si) for the same input message m represent{

s0 = k−1 (e+ rd) mod n
si = k−1 (e+ rd+ εi) mod n(i = 1, ..., N − 1).

(37)

Step 2: recover the private key d by lattice attack.
After reduction, the equations (37) can be transformed as

εi = Aik + hin, (38)

where Ai = si − s0 mod n, hi ∈ Z.
Since −2w < εi < 2w, we have

|Aik + hin| < 2w. (39)

Similarly, from the inequations (39), a SVP in a L can be constructed. If

w < f − log
√
2πe and N > 1+ f+log

√
2πe

f−w−log
√
2πe

, we can recover k by solving aSVP

and deduce the private key d.

A.5 DFA on xi before the calculation of r by solving equations

After the calculation of SM kG, xi will be reduced into r by r = xi mod n. If
some random faults are induced into xi in signature, then xi and r are changed
into x′

i and r′, respectively. There is no need to control the number of faulty bits.
Consequently, we can obtain the correct signature (r, s) and the faulty signature
(r′, s′) for a fixed message m. The signatures are represented as{

s = k−1(e+ rd) mod n
s′ = k−1(e+ r′d) mod n,

(40)

where r′ is known and k is fixed.
Obviously, we can solve the equations with two unknown and recover the

private key d.

B Appendix B

In order to analyze the countermeasures, this appendix introduces the corre-
sponding the verifications of DECDSA and EdDSA, respectively.

B.1 Verification of Deterministic ECDSA

The verification procedure of DECDSA described in Algorithm 3 is same with
that of ECDSA.

B.2 Verification of EdDSA

The verification is shown in Algorithm 4. If some countermeasures are introduced
into the calculation of k = H(d1,m) mod n during signature, the verification
can be successfully passed without any modification.

19



Algorithm 3 ECDSA Verification

Require: signature results m, (r, s), public key PA.
Ensure: whether verification succeeds.
1: if r xor s /∈ [1, n− 1] then return false;
2: e = SHA(m);
3: u1 = s−1e mod n, u2 = s−1r mod n;
4: Ω = u1G+ u2PA;
5: if Ω ̸= O and r = xΩ mod n then return true;
6: return false

Algorithm 4 Deterministic EdDSA Verification

Require: message m, signature results (R, s), public key P .
Ensure: Whether the verification succeeds.
1: r = H(R,P,m) mod n;
2: if 8sG = 8R+ 8rP ∈ Ea,d(Fq), return true;
3: return false;
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