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Abstract. The deterministic ECDSA and EdDSA signature schemes
have found plenty of applications since their publication and standard-
ization. Their theoretical security can be guaranteed under certain well-
designed models, while their practical risks from the flaw of random
number generators can be mitigated since no randomness is required by
the algorithms anymore. But the situation is not completely optimistic,
since it has been gradually found that delicately designed fault attacks
can threaten the practical security of the schemes.
We present a lattice-based fault analysis method to the deterministic
ECDSA and EdDSA algorithms. The underlying fault injection model is
a special case of the random fault model in [14]. By noticing the algebraic
structures of the deterministic algorithms, we show that, when providing
with some valid faulty signatures and an associated correct signature
of the same input message, some instances of lattice problems can be
constructed to recover the signing key. This makes the allowed faulty bits
close to the size of the signing key, and obviously bigger than that of the
existing differential fault attacks. Moreover, the lattice-based approach
supports much more alternative targets of fault injection when comparing
with the existing approaches, which further improves its applicability.
Experiments are performed to validate the effectiveness of the key re-
covery method. It is demonstrated that, for 256-bit deterministic ECD-
SA/EdDSA, the signing key can be recovered efficiently with significant
probability even if the targets are affected by 250/247 faulty bits. This
is, however, impractical for the existing faulty pattern enumerating ap-
proaches.

Keywords: Side channel attack, Fault attack, Lattice-based attack, De-
terministic ECDSA, EdDSA

1 Introduction

As a fundamental building block of modern cryptography, digital signature has
been widely used in practice. For its efficiency and standardization in FIPS 186
and ANSI X9.62, ECDSA has found various applications since its publication.
In spite of the fact that the theoretical security of ECDSA has not been prove
finally, it is still believed to be secure and connected with some hard problems
in mathematics. However, side channel attacks on various implementations of
ECDSA have been continuously discovered during the last decades. Some of the



attacks, for example, are induced by the deficiency of the ephemeral random
numbers (denoted nonce hereinafter) required by the scheme. If the nonce is bi-
ased or has a few bits leaked, Bleichenbacher’s attack [8] and lots of lattice-based
approaches [16,23] can be employed to extract the private key by BDD [19]. This
is realistic and has been demonstrated several times in real products [6,13,15,2].
Hence, an intuition on improving security is to remove the randomness require-
ment from the algorithms. This gave birth to a study on deterministic signature
schemes. For example, in recent years deterministic ECDSA and EdDSA were
introduced and standardized in RFC 6979 and RFC 8032 respectively. They have
received plenty of attention in the research of applied cryptography, especially
in the realization of cryptographical libraries of OpenSSH, Tor, TLS and even
in the rising applications like Apple AirPlay and Blockchain. Specifically, the
deterministic version of ECDSA derives the nonce just from the private key and
the input message by means of cryptographic hash or HMAC primitive. In this
way, no randomness is required on the implementation platform, and it seems
the threat from physical attacks are mitigated.

But the situation is not improved, since new flaws in deterministic signature
algorithms have been gradually identified when considering differential fault at-
tacks (DFA) [5,28,29,30]. DFAs have been proved to be valid for different types
of cryptographic schemes [7,9] in the literature. Generally, a DFA adversary
manages to disturb the signature generation procedure (by means of voltage
clitches, laser or electro-magnetic injection and so on [17]) to make the platform
output faulty results, and exploits them to do key recovery. To have a better
view about the capability and limitation of existing attacks on deterministic
signature schemes, the following intends to review the known results.

Firstly, it is shown in [5] that if a fault is injected during the calculation of
scalar multiplication of deterministic ECDSA or EdDSA, and results a known
faulty signature (r′, s′), then with the correct signature (r, s) from the same
signing key d and input message m, the key d can be recovered by solving some
linear equations. It is noted that, though no limitation on the number of faulty
bits, the approach is limited by the possible locations (or rather targets) of fault
injection. As a relaxation, another approach was introduced in [5] by assuming
that only limited bits of the target (e.g., the nonce k) would be randomly affected
by each fault. For simplicity, the faulty value is denoted by k′ = k + ε2l (with
limited ε and known l). Then by constructing a differential distinguisher, the
private key d in deterministic ECDSA can be recovered efficiently by enumerating
ε. Both attacks have been improved later, especially by those in [28,29,30], where
different fault injection methods and targets are exploited and experimented
on specific hardware platforms. A recent extension was presented in [1], where
several fault injection targets have been identified and analyzed.

From a common point of view, the signing key of deterministic schemes can
theoretically be recovered by adjusting fault injection actions and enumerating
the possible faults. The efficiency of the existing attacks is obviously constrained
by the enumeration complexity, or specifically it is feasible only if the fault in-
jection is controlled to affect very limited bits of the targets. Another limitation
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of the existing attacks lies in the selectability of targets that can be used for
fault injection. Generally, the more targets would mean the more selectable at-
tack paths, and thus more difficult to resist the attack. The targets that were
considered in the existing attacks are very constrained. For example, the first
attack in [5] only supports one possible target (i.e., the scalar multiplication kG
in signatures), and although some more targets were considered later in [1], it is
still far away from covering all the possible attack paths.

A promising solution is to develop lattice-based approaches. It is noticed
that lattice-based attacks were used to analyze plain (EC)DSA and qDSA, in
which the main purpose of fault attack is to obtain and exploit some leaked
information of the random nonce k, such as those in [11,21,26,31,36]. Targets
of fault injection in those approaches are usually the nonce itself or the scalar
multiplication with a nonce as scalar. For those attacks to be effective, nonce
in the plain signature is supposed to be random numbers. Hence it is generally
thought that deterministic ECDSA is immune to them because of deterministic
nonce generation. However, this conception has been disproved by [10], where
a lattice-based attack to compromise deterministic signatures was presented.
That attack is specific to lattice-based cryptography, and the lattice constructed
for the attack is also specific to the signature scheme. Although it casts a new
light on the study of lattice-based fault attacks on more deterministic signature
schemes, it is still not known whether the method is effective to deterministic
ECDSA or EdDSA with different algebraic structures.

In this paper, we show lattice-based fault attacks can be applied to determin-
istic ECDSA and EdDSA schemes. We consider the attacks in a random fault
model where a continuous bits block of fault targets is disturbed randomly. It can
be equivalent to the bit-wise random fault model in [14]. Under this model, a cor-
responding lattice-based key recovery method is proposed. Essentially, by virtue
of the special algebraic structures of the signature generation algorithms, the
method reduces the key recovery problem to the approximate shortest/closest
problems in some lattice, with the instances of the approximate problems being
constructed from the collected faulty signatures. Since the approximate problems
can be solved within some scale, the signing key can be recovered subsequently
(provided that the faulty signatures are valid as per some criteria).

In comparison, the advantage of our lattice-based method over the existing
approaches [1,5,28,29] makes it more practical. This is summarized as follows.

– The proposed method allows more choices of target for fault injection. A
target of fault injection is denoted by the notation of the interest intermedi-
ate and the timing of using it in computation. Since a general representation
method of fault is adopted to remove the discrepancies of various targets, a
number of possible targets are allowed by our attacks, which relatively covers
more possibilities than the existing approaches. See Section 3.1 for detail.

– The proposed method can tolerate more faulty bits. The proposed lattice
method is not to enumerate all the faulty patterns, but rather to solve the
instances of approximate lattice problems. This makes the tolerable bits
can be close to the size of the signing key. For instance, the case of faulty
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bits up to 250(for 256-bit deterministic ECDSA)/247(for ed25519) has been
validated in experiments efficiently. As discussed above, this is infeasible for
the existing approaches. See Section 5 for detail.

The remainder of this paper is organized as follows: Section 2 describes the
specification of deterministic ECDSA and EdDSA, and gives some results about
lattices. Section 3 introduces the fault model. Section 4 illustrates two represen-
tative lattice-based attacks based on the described model. Section 5 describes
the experimental facets of the validity of the lattice-based key recovery method.
The discussion about the corresponding countermeasures is given in Section 6.
More attacks with other fault targets are introduced in Appendix A.

2 Preliminaries

2.1 Notations

We denote by Fq the finite field of prime order q, R the field of real number, and
Zn the additive group of integer modulo n. Bold lowercase letters such as v are
denoted as vectors, while bold uppercase letters such asM are denoted as matrix.

The norm of vector v = (v1, . . . , vN ) ∈ RN is denoted by ∥v∥ =
√∑N

i v2i , while

the multiplication of v and M is denoted by vM.

2.2 The deterministic signature algorithms

We recap the deterministic signature generation algorithms below by abstracting
from some less important details in the specifications of RFC 6979 and RFC 8032
respectively. As shown in Algorithms 1 and 2, the analysis focuses on Step 6 of
Algorithm 1 and Step 4 of Algorithm 2 during the signature generations, where
the order n is a prime. Moreover, in EdDSA signature, the two b-bit subkeys
d0 and d1 are derived by the hash function H(d) = (h0, h1, ..., h2b−1), where

d is the private key, d0 = 2b−2 +
b−3∑
i=3

2ihi and d1 = (hb, ..., h2b−1). The public

key P satisfies P = d0G. The hash functions employed in deterministic ECDSA
are generally SHA-1 and SHA-2(e.g., SHA-256 and SHA-512), which all belong
to the structure of message digest. For EdDSA, the default hash function(i.e.,
H(.)) is SHA-512. In addition, there still exist other hash functions belonging
to the sponge structure, such as SHAKE256(SHA-3) for Ed448. For the sake
of simplicity, we just consider the compression function of SHA-2. As shown in
Figure 1, input IV and a group of message, execute L-round compression and
output the final result of compression plus IV as the hash value or the next
group of IV .

2.3 Some Problems in Lattice

Since the proposed attacks on deterministic signature schemes are related to
the construction and computation of some problems in lattice, we give a basic
introduction on the relevant conceptions and results.
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Algorithm 1 Signature generation of deterministic ECDSA

Input: The definition of a specific elliptic curve E(Fq), a base point G of the curve
with order n, message m, private key d.

Output: Signature pair (r, s).
1: e = H (m), where H is a cryptographic hash function;
2: Generate k = F (d, e) such that k ∈ [1, n− 1], where F (d, e) denotes the

HMAC DRBG function with d as the key;
3: Q(x1, y1) = kG;
4: r = x1 mod n;
5: if r = 0 then goto step 2;
6: s = k−1(e+ dr) mod n;
7: if s = 0 then goto step 2;
8: return (r, s)

Algorithm 2 Signature generation of EdDSA

Input: The definition of a specific elliptic curve E(Fq), a base point G of the curve
with order n, message m, private key (d0, d1), and public key P (P = d0G).

Output: Signature pair (R, s).
1: k = H(d1,m) mod n, where H is SHA-512 by default;
2: R(x1, y1) = kG;
3: r = H(R,P,m) mod n;
4: s = k + rd0 mod n;
5: return (R, s)

In a nutshell, a lattice is a discrete subgroup of Rm, generally represented as
a spanned vector space of linearly independent row vectors b1, b2, . . . , bN ∈ Rm

of matrix M ∈ RN×m, in the form of

L = L (b1, b2, ..., bN ) = {z =

N∑
i=1

xi · bi|xi ∈ Z}. (1)

The vectors bis are called a basis of L, and N is the dimension of L. Ifm = N ,
then L is full rank. Moreover, if bi belongs to Zm for any i = 1, ..., N , L is called
an integer lattice. In this way, it is straightforward to find that for every z ∈ L,
there must exist x = {x1, ..., xN} ∈ ZN such that z = xM.

In lattice, a few well-known problems have been studied, such as the shortest
vector problem(SVP) and closest vector problem(CVP), which are believed to be
hard in computation theoretically.

SVP: given a basis bis of L, find a nonzero vector v ∈ L such that

∥v∥ = λ1(L), (2)

where λ1(L) means the length of the shortest vector in L.
CVP: given a basis bis of L and a target vector u ∈ Rm, find a nonzero

vector v ∈ L such that

∥v − u∥ = λ (L,u) , (3)
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Fig. 1. Compression function of SHA2

where λ (L,u) is the closest distance from vector u to lattice L.
Generally, the best algorithms for solving SVP and CVP are LLL algorith-

m [18] or BKZ algorithm [32,33,34] to find their approximate solutions, i.e., solve
approximate SVP and CVP. For an N -dimensional approximate SVP, a short
lattice vector can be output when the approximate factor is large enough. The
approximate factor of the LLL algorithm is given from Lemma 1.

Lemma 1. [20,18] Given an integer basis B of N -dimensional lattice L, there
exists a polynomial time algorithm to find a nonzero lattice vector x satisfying

∥x∥ ≤ (2/
√
3)Nλ1 (L) .

Hence, the exact SVP and CVP can be approximated within an exponetial factor
in polynomial time.

For random lattices with dimension N , Gaussian heuristic [22] expected the
shortest length could be defined to be

σ(L) =
√

N

2πe
vol(L)1/N ,

where vol denotes the volume or determinate of L.
Actually, the exact shortest vector of N -dimensional random lattices is much

easier to be found along with the increment of the gap between the shortest
length and σ(L). If it is much shorter than σ(L), it shall be founded in polynomial
time by using LLL and related algorithms. Heuristically, as introduced in [27],
assuming the lattice L behaves like random, if there exists a lattice vector whose
distance from the target is much shorter than σ(L), this lattice vector is expected
to be the closest vector from the target. Accordingly, this special instance of CVP
usually could be solved by Babai algorithm[4] or embedding-based SVP[25].
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3 Adversarial model

In regard to fault attacks on signature schemes, the adversary is allowed to query
and at the same time disturb the signing procedure to collect the correct or faulty
signatures (in the fault injection phase), then employs the collected signatures
to recover the private key (in the key recovery phase). The difference between
various fault attacks lies in the approaches used for both fault injection and key
recovery. The following describes the adversarial model for these two phases.

3.1 Fault injection model

During the fault injection phase, we assume the adversary is capable of inducing
transient faults to some specific intermediates in computation. That is, during
the invocation of signature generation, faults can be injected to the data when it
is transmitted over the physical circuit (such as buses), or stored in the memory
cells or CPU registers. Then, after the invocation, the computation device will
restore to a normal state and the faults will not be passed on to the next invo-
cation. In this way, the computation may be temporarily tampered to produce
available faulty results for the adversary.

The fault in this paper can be regarded as a bit-wise random fault as defined
in [14]. In detail, a fault induced to a specific intermediate v ∈ Zn can be
formalized as an addition with a (bounded) random value ε ∈ Z in the form of
v + ε2l mod n, where −2w < ε < 2w, l ≥ 0 is the known value and l + w is less
than the key bit length of signature. That means, there are w bits of v(starting
from l-th bit) to be disturbed randomly. It is noted that we do not use modular
2 addition as in [14](e.g., v⊕X2l mod n and X is a w-bit random number) but
rather the equivalent group addition in Zn to represent the effect of a fault to
an intermediate.

To facilitate the description, the specific intermediates which may suffer from
faults are called (potential) targets of fault injection in this paper. All the po-
tential targets that can be exploited by the proposed attacks are listed in Table
1. It is noted that a target is determined by two factors, i.e., the notation of the
variant (corresponding to the intermediate), and the timing for fault injection.
For example, the two items “k before the calculation of scalar multiplication kG”
and “k during the calculation of s” are recognized as two different targets in this
paper. In comparison, though some of the identified targets in Table 1 have also
been considered in [1], not all of them can be exploited to do key recovery in
their method, especially when the target is affected by lots of faulty bits.

On the other hand, different targets may be equivalent if considering the final
effect of fault injection. For example, the targets on hash function in deterministic
ECDSA: “registers before outputting the hash values F (d, e)”, “last modular
additions before outputting the hash values F (d, e)” and “hash value F (d, e)
during the reduction of k” are equivalent to the target “k before the calculation
of kG”, since fault injection to the four targets will produce a same type of faulty
k. Therefore, we define ‘k before the calculation of kG” as the representative
target of the four targets, and indicate it in bold type in the table. Similarly,
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Table 1. The fault targets and solved problem in our attacks on deterministic ECDSA
and EdDSA.

Algorithm Target of fault injection Related problem

r during the calculation of s SVP
Deterministic k−1 during the calculation of s SVP

ECDSA k during the calculation of s SVP
d during the calculation of s SVP

e during the calculation of s
SVP–Registers before outputting hash value H(m)

–Last modular additions before outputting H(m)
rd during the calculation of s SVP

e+ rd during the calculation of s SVP
k before the calculation of kG

CVP
–Registers before outputting hash value F (d, e)
–Last modular additions before outputting F (d, e)
–Hash value F (d, e) during the reduction of k

EdDSA

r during the calculation of s

SVP
–Registers before outputting hash value H(R,P,m)
–Last modular additions before outputting H(R,P,m)
–Hash value H(R,P,m) during the reduction of r

k before the calculation of kG

CVP
–Registers before outputting hash value H(d1,m)
–Last modular additions before outputting H(d1,m)
–Hash value H(d1,m) during the reduction of k

other representative targets are also indicated in Table 1 in the same way. Note
that, all the hash functions in the targets refer to SHA-2 hash function.

In each of the proposed attack, the adversary is required to pre-determine at
most one target and then fix the choice throughout the signature queries. Note
that we don’t consider the possibility that more than one target is chosen in a
query, since the key recovery model doesn’t support this case. Hence, there is no
guarantee that the key can be recovered successfully. A set of faulty signatures
are called valid if they are computed with the same message as input and the
same equivalent target for fault injection.

It is noted that, since the paper aims to examine the conception that some
deterministic signature schemes may be threatened by lattice-based fault attacks,
we don’t consider the so-called instruction skipping attacks (where the execution
flow is disturbed such that some instructions are skipped without being executed)
and persistent faults (i.e., permanently modifying data in the memory), though
the model may be somehow extended to cover these cases.

3.2 Key recovery by solving approximate problems in lattice

When enough valid faulty results are collected, the adversary manages to recover
the signing key. This section is devoted to describe the fundamental idea behind
the attacks, the instantiation is left to be described in Section 4.
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Intuitively, the proposed attacks in this paper exploit some special algebraic
structures of the signature generation algorithm of deterministic ECDSA and
EdDSA, which are discovered by the following observations.

a)Representation of faults. Firstly, due to the special structure of the
deterministic ECDSA and EdDSA, when gathering a correct signature and N−1
valid faulty results for a common message, the adversary can construct one of the
following two relations(corresponding to SVP and CVP) for the random faulty
values {εi}N−1

i=1 ∈ Z(corresponding to the faulty signatures):

εi = AiD + hin, (4)

εi = AiD + hin−Bi, (5)

with −2w < εi < 2w < n, where Ai, Bi, w, n are known values (with n being the
order of base point G), and D, εi, hi are unknown values.

In detail, D is a function of the private key, the input message and some
known variables. Then it is important to notice that when the input message is
known, D is reversible and subsequently the key can be recovered. This is true
when the input message is not affected by the injected faults, and by the fact
that the input message is chosen and known to the adversary before the attack.
Thus the goal of the proposed attacks is translated to recover D.

b)Key recovery using lattice. Based on the above observation, we can
construct a lattice L with a basis being the row vectors of a matrix M as

M =


n 0 · · · 0

0
. . .

...
... n 0
A1 · · · AN−1 2w/n

 .

It is noted that, under the random models of faults injection, L behave like
a random lattice. Then, a target vector v ∈ L can be constructed from the
coordinate vector x = (h1, . . . , hN−1, D) ∈ ZN as

v = xM = (A1D + h1n, . . . , AN−1D + hN−1n,D2w/n).

The given volume of L meets vol(L) = det(M) = nN−22w. Under the
condition of |εi| < 2w, supposing f = ⌈log n⌉, w < f − log

√
2πe and N ≫

1 + f+log
√
2πe

f−w−log
√
2πe

, one of the following relations will hold:

(i) when the faulty value is represented by equation (4), we have

∥v∥ <
√
N2w ≪

√
N

2πe
vol(L) 1

N ; (6)

(ii) when the faulty value is represented by equation (5), then for vector
u = (B1, . . . , BN−1, 0) ∈ ZN /∈ L, we have

∥v − u∥ <
√
N2w ≪

√
N

2πe
vol(L) 1

N . (7)
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Then, heuristically we expect that the vector v in inequalities (6) is the
shortest vector in L and the v in inequalities (7) is the closest vector to u in
L. By the discussion in Section 2.3, when N is bounded, vector v can be found
efficiently by solving the SVP or CVP with LLL or other related algorithm, and
then the value of D can be recovered, which immediately leaks the private key
d in deterministic ECDSA or d0 in EdDSA. To have a complete view about
the proposed attacks, Table 1 relates the targets with the relevant problems in
lattice.

4 Concrete lattice-based fault attacks on deterministic
ECDSA and EdDSA algorithms

In this section, we instantiate the idea of the attacks discussed in Section 3. The
key point is to show that equations (4) and (5) can be constructed when concrete
targets are selected. Then, the lattice-based approach described in Section 3.2
can be followed to do key recovery. Since most of the attacks presented in this
paper are of similar structure in description, to simplify presentation, only two
representative attacks are described in this section, while other attacks, with
targets shown in Table 1, are gathered in Appendix A.

4.1 Fault attacks with target r during the calculation of s

Suppose the adversary decides to inject a fault against r before using it to
calculate s. Then after getting a correct signature for a messagem (chosen by the
adversary in advance), the adversary manages to get N−1 valid faulty signatures
with the same message m as input, and r as the target of fault injection.

4.1.1 Attacks on deterministic ECDSA

Step 1: inject fault to r during the calculation of s
During the calculation of s, if injected with a fault, r can be represented

as ri = r + εi2
li for i = 1, ..., N − 1, where εi is a random number satisfying

−2w < εi < 2w < n (by the random fault model) and the known value li satisfies
li ≥ 0 and li + w ≤ f . The correct signature (r, s0) and N − 1 faulty results
(ri, si) for the same input message m can be represented as{

s0 = k−1 (e+ rd) mod n
si = k−1

(
e+ (r + εi2

li)d
)
mod n (for i = 1, ..., N − 1).

(8)

Step 2: recover the private key d by solving SVP
After reduction, equation (8) can be transformed as

εi = (si − s0) 2
−lid−1k mod n. (9)

Let Ai = (si − s0)2
−li mod n and D = d−1k mod n. There must exist hi ∈ Z

for i = 1, ..., N − 1 such that

εi = AiD + hin, (10)
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where D is a fixed value due to the same input message m for all the signature
queries.

It is clear that equation (10) is exactly equation (4). Then following the
strategy described in Section 3.2, D can be recovered by solving SVP and sub-
sequently the private key d can be recovered by virtue of the equation

d = (Ds0 − r)−1e mod n.

4.1.2 Attacks on EdDSA

Before we proceed, it should be noted that the existing DFAs against Ed-
DSA [1,5,28,29,30] do not recover the private key d, but rather recover the sub-
keys d0 or d1. This is still a real risk to the security of EdDSA since knowing a
partial key d0 or d1 suffices to forge signatures [29].

Just like in the case of deterministic ECDSA, if the target r during the
calculation of s is chosen, the correct and faulty signatures can be expressed as{

s0 = k + rd0 mod n
si = k + (r + εi2

li)d0 mod n(i = 1, ..., N − 1).
(11)

After reduction, there must exist hi ∈ Z for i = 1, ..., N − 1 such that equation
(11) can be transformed as

εi = AiD + hin, (12)

where Ai = (si − s0)2
−li mod n, and D = d−1

0 mod n.
Equation (12) is exactly equation (4). Analogously, by applying the general

strategy described in Section 3.2, D can be found by solving CVP and subse-
quently the signing key d0 can be obtained.

4.2 Fault attacks with target k before the calculation of kG

Suppose the adversary decides to inject a fault to k before using it to calculate
kG. Then after getting a correct signature for a message m (chosen by the
adversary also), the adversary can manage to get N − 1 valid faulty signatures
with the same message m as input, and k as the target.

4.2.1 Attacks on deterministic ECDSA

Step 1: inject fault to k before the calculation of kG
When k is injected with a fault, it has ki = k + εi2

li for i = 1, ..., N − 1,
where εi satisfying −2w < εi < 2w is a random number, li ≥ 0 and li + w ≤ f .
The correct signature (r0, s0) and N−1 faulty ones (ri, si) for the same message
m can be represented as{

k = s0
−1 (e+ r0d) mod n

k + εi2
li = si

−1 (e+ rid) mod n(i = 1, ..., N − 1).
(13)

Step 2: recover the private key d by solving CVP
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After reduction, equation (13) can be transformed as

εi =
(
si

−1ri − s0
−1r0

)
2−lid−

(
s0

−1 − si
−1

)
2−lie mod n. (14)

Let Ai =
(
si

−1ri − s0
−1r0

)
2−li mod n,Bi = (s0

−1 − si
−1)2−lie mod n and

D = d mod n. Then there must exist hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin−Bi. (15)

Equation (15) is exactly equation (5). Analogously, by applying the general
strategy described in Section 3.2, D, i.e., the private key d can be obtained in
polynomial time in N .

4.2.2 Attacks on EdDSA

Just like in the case of deterministic ECDSA, if the target k before the calculation
of kG is chosen, the correct and faulty signatures can be expressed as{

s0 = k + r0d0 mod n
si = k + εi2

li + rid0 mod n(i = 1, ..., N − 1).
(16)

After reduction, there must exist hi ∈ Z for i = 1, ..., N−1 such that equation
(16) can be transformed as

εi = AiD + hin−Bi, (17)

where Ai = (r0 − ri)2
−li mod n, D = d0 mod n and Bi = (s0 − si)2

−li mod n.
Equation (17) is exactly equation (5). Analogously, by applying the strategy

described in Section 3.2, d0 can be obtained in polynomial time in N .

5 Experiment and complexity discussion

The validity of the proposed attacks lies in two aspects, namely, the validity
of fault injection and the validity of key recovery. Section 3 presents the condi-
tions and allowed adversarial actions for fault injection, and it is reasonable to
believe that suitable faults can be induced during the signature generation pro-
cess since our adversarial model is not completely new compared to the models
in [14,28,29,30]. Thus, we do not conduct concrete experiments to demonstrate
the applicability of fault injection. On the other hand, experiments are performed
to check the validity of lattice-based key recovery algorithms. This is helpful to
understand the relations between the allowed faulty bits(w), the required number
of faulty signatures (N), and the success rate (γ) of the presented key recovery.

The experiments are conducted in a computer with 2.4GHz CPU, 8GB mem-
ory and Windows7 OS. The BKZ algorithm with block size of 20 implemented
in NTL library [35] is employed to solve SVP/CVP. The experimental results
for 256-bit deterministic ECDSA(based on NIST P-256) and EdDSA(based on
curve25519, i.e., Ed25519) under some specific elliptic curve parameterized, are
listed in Table 2 and Table 3 respectively.

12



Table 2. Success rate in attacking 256-bit deterministic ECDSA (f = 256)

target of fault injection
w = 250 w = 245 w = 192 w = 160 w = 128
N γ N γ N γ N γ N γ

r during the calculation of s 80 100% 29 100% 6 96% 4 85% 3 70%

k−1 during the calculation of s 80 100% 29 100% 6 96% 4 89% 3 65%

k during the calculation of s 80 100% 29 100% 6 97% 4 87% 3 82%

e, rd, e+ rd during
80 100% 27 100% 6 97% 4 87% 3 67%

the calculation of s

d during the calculation of s 80 100% 26 100% 6 95% 4 85% 3 67%

k before the calculation of kG 80 74% 30 100% 6 100% 4 100% 3 55%

Table 3. Success rate in attacking 256-bit EdDSA(f = 253)

target of fault injection
w = 247 w = 245 w = 192 w = 160 w = 128
N γ N γ N γ N γ N γ

r during the calculation of s 80 100% 45 98% 6 97% 4 84% 3 23%

k before the calculation of kG 110 13% 29 100% 6 100% 4 100% 3 12%

Before proceeding to describe the experiment results some points need to
be clarified. First, to simplify the experiments, we only conduct key recovery
experiments for representative targets (defined in Section 3.1). Similarly, due to
the similarity of key recovery for targets e, rd, e+ rd during the calculation of s,
we just conduct key recovery experiments with the target e.

Then, for each experiment of key recovery, we use a pseudo-random generator
to generate the input message m and N−1 groups of w-bit random numbers βis.
For simplicity, the chosen target v is set to be v⊕ βi for i = 1, . . . , N − 1, which
is equivalent to v + εi mod n (where li = 0 and −2w < εi < 2w). For li ̸= 0, the
simulations are similar. Then the simulated faulty signatures are used to do key
recovery. If the signing key can be recovered finally, the experiment is marked
successful, otherwise failed. A such-designed experiment could fail because the
approximate shortest (or closest) vector derived by LLL algorithm could be not
the shortest one if the selected N is not big enough, or the constructed lattice
basis is not nice due to the oversize w and so on. For simplicity, we record the
success rate of the experiments as γ = number of successful experiments

total number of experiments .

Third, for each selected fault target (corresponding to each row of Table 2
and Table 3), we illustrate the validity of attacks in five groups, each of them
corresponding to a specific value of parameter (w,N). Note that when n is fixed,
the range of w and N can be determined from the relations w < f−log

√
2πe and

N ≫ 1 + f+log
√
2πe

f−w−log
√
2πe

respectively. Hence, when f = ⌈log n⌉ = 256(or f = 253

in Ed25519), the tolerant bound of w can be up to 253(or 250) in theory. Then,
for each pair (w,N), a number of experiments are conducted to validate the
effectiveness of key recovery.

Regarding the experiment number of each case, when w ≤ 245, we conduct
1000 experiments to derive each success rate γ; when w = 250 or 247, only 100
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experiments is conducted since our experiment platform cannot afford the signif-
icant computational cost of BKZ algorithm. The maximal w in our experiments
is considered as 250(or 247), which is slightly less than the tolerable bound(i.e.,
253 or 250) in theory. It is hopeful that if some other improved lattice reduction
algorithms, such as BKZ 2.0 [12] with some optimum parameters, are utilized
in the experiments, the theoretical bounds (i.e., 253 and 250) could be achieved.

Moreover, the needed N is approximate to 1 + f+log
√
2πe

f−w−log
√
2πe

in experiments. In

addition, the success rate γ is tightly related to the parameters w and N . When
w is set to be closed to 245, 30 and 45 valid faulty signatures suffice to recov-
er the key with absolute success rate for deterministic ECDSA and Ed25519
respectively. However, when w is significantly less than the bound, a few valid
faulty signatures suffice to recover the key with significant success rate. For ex-
ample, when w = 128, 1 correct signature and 2 valid faulty signatures suffice to
recover the key with success rate over 12% in experimental time 2 ∼ 3ms. As a
comparison, it is impractical for the existing DFAs [1,5,28,29] to break the deter-
ministic signature when w ≥ 64, since exponential complexity O(2w) is required
to enumerate the faulty patterns. In addition, w will not be known in practice.
Thus a conservative way is to set w as the (practical) maximum tolerable bound
such that the key recovery can succeed.

Table 4. Comparison of attack complexity on 256-bit deterministic ECDSA or EdDSA

Item
Scheme

Our attacks
Previous DFAs

[1,5,28,29]

tolerable bound of faulty bits (in w) 249 ≈ 64

asymptotic time complexity O(N5(N + logA) logA) O(2w)

time cost in experiments (w = 128) 2 ∼ 3 ms (N = 3) ≈ 2128 basic operations

To have a more complete view about the computational complexity of the
proposed key recovery algorithms, we compare them with the existing attack-
s in Table 4. In our experiments, the block size of BKZ algorithm is set as
20, and thus the LLL-based reduction with asymptotic complexity O(N5(N +
logA) logA) [24] consumes the main time, where A is the maximum length in
the original lattice vectors. When N is chosen as a polynomial of (f, w), the com-
putational complexity is thus polynomial in log n and w, which is obviously less
than the exponential complexity required by the existing approaches [1,5,28,29].

As a conclusion, our approach has obvious advantages over the mentioned
existing approaches in terms of the tolerance of faulty bits (characterized by
w) and time complexity, which also means the proposed attacks are of higher
applicability when comparing with those approaches.

6 Countermeasures

In this section, we discuss the effectiveness of some possible countermeasures.
-Randomization. As introduced above, the proposed attacks take advan-

tage of the fact that k is determined by the input message and the private key,
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and remains unchanged during the process of signature queries. Intuitively the
condition can be removed by reintroducing randomness to the derivation of k.
This is the exact idea of hedged signature schemes, where the input message,
secret key and a nonce are input to generate the per-signature randomness k.
The security of hedged signature schemes against fault attacks has recently been
proved under some limited models [3]. This strategy can theoretically defeat our
attacks but it remains unclear whether it can be used to resist all fault attacks.

-Data integrity protection. Integrity protection is a natural choice for
fault attacks resistance. It is a fact that the security of data transmission and
storage can be consolidated by adopting error detection (or correction) code in
the circuit level. However, limited by the computing power and cost factors, it
is usually impossible to adopt strong integrity protection in the smart card like
products. Thus the usually implemented Parity check and Cyclic Redundancy
Code will leave rooms for fault injection. Namely, though they can be used to
resist our attacks to some extent, more considerations are required to validate
the real effectiveness of the mechanism. In addition, though the strategy that
checking whether the input and output points are on the original elliptic curve
can be used to resist the attacks in [1], our attacks are still effective in this case.

-Signature verification before outputting. Note the signature result of
the two targeted deterministic algorithms is the form of (r, s). If r is tampered
but s remains untainted, verifying the signature before outputting cannot detect
the fault. This means the attack selecting k before the calculation of kG as target
can survive, but other proposed attacks can be prevented.

-Consistency check of repeated computations. In this strategy, the
signature calculation on an input message is repeated for two or more times,
and the signature result will be output only when all the computation results
are consistent. This can be effective to resist all the proposed attacks since there
is no guarantee that the fault induced each time will be the same under the
random fault model. But this countermeasure may not be efficient, since in this
case two scalar multiplications have to be computed, which is unaffordable for
some devices (such as IoT devices) whose computing power is very limited.

-Infective computation. This strategy is graceful in that the adversary in
this case cannot distinguish whether the faulty signature is valid or not, thus
the key recovery can be defeated. We propose two infective countermeasures to
resist the proposed attacks.

(i) For EdDSA, the last modulo-2t additions in the hash function H(d1,m)
generating k are calculated twice to obtain two identical nonces k1 and k2, and
the last modulo-2t additions in the hash function H(R,P,m) generating r are
calculated twice to obtain two identical r1 and r2; moreover, an infective factor
β is introduced, which has the same bit length with k, and is regenerated per
signature. Then compute s = (1 + β)(k1 + d0r1)− β(k2 + d0r2) mod n.

(ii)For deterministic ECDSA, the last modulo-2t additions in the hash func-
tion F (d, e) generating k are calculated twice to obtain two identical nonces k1
and k2. The last modulo-2t additions in the hash function H(m) generating e
are calculated twice to obtain two identical e1 and e2. The reduction r = x1
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mod n generating r is calculated twice to obtain two identical r1 and r2. The
private key d defined as d1 and d2 is invoked twice during the calculation of s,
respectively. Hence, s = (1 + β)k1

−1(e1 + d1r1)− βk2
−1(e2 + d2r2) mod n.

7 Conclusion

We present a new fault analysis method to deterministic ECDSA and EdDSA
algorithms. The fault injection model is a random fault model as in [14]. In the
new model, the resulted intermediate of fault injection can be characterized as
an addition of the original intermediate with a random value of left-shifted l
bits. The range of the random value is determined by and close to the size of
the signing key. This makes the method much more practical than the existing
pattern enumerating approaches [1,5,28,29] in terms of tolerance of faulty bits.

The advantage is guaranteed by the lattice-based key recovery method. By
noticing the algebraic structures of the deterministic algorithms, we show that,
when providing with some valid faulty signatures and an associated correct sig-
nature of the same input message, some instances of approximate lattice prob-
lems can be constructed to recover the signing key. Moreover, the lattice-based
approach supports much more alternative targets of fault injection than the
existing approaches, which further improves the applicability of the approach.

Experiments are performed to validate the effectiveness of the key recovery
method. It is demonstrated that, for 256-bit deterministic ECDSA and EdDSA,
the signing key can be recovered efficiently with high probability even if the in-
termediates are affected by 250 and 247 faulty bits respectively. This is, however,
impractical for the existing faulty pattern enumerating approaches to achieve the
same objective.

Further Work. For signature schemes with different algebraic structure in
generating s, such as s = (1+d)−1(k− rd) mod n in SM2 signature generation,
it is worth studying whether there are more fault injection targets in them.
Moreover, if the nonce or the generated per-signature random number is misused
in the hedged signatures, the effectiveness of our approaches deserves further
analysis.
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A Appendix

This appendix will introduce the attacks with the remaining targets listed in
Table 1 to deterministic ECDSA and EdDSA, including the attacks with targets
k, k−1, e, rd, e+ rd and d during the calculation of s and the attacks taking the
hash functions generating k, e and r as fault targets.

A.1 Fault attacks with target k during the calculation of s to
deterministic ECDSA

Suppose the adversary decides to inject fault to k before using it during the
calculation of s. Then after getting a correct signature for a message m (chosen
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by the adversary in advance), the adversary can try to get N − 1 valid faulty
signatures with the same message m as input, and k as the target.

Step 1: inject fault to k during the calculation of s
When k is injected with a fault, it has ki = k + εi2

li for i = 1, ..., N − 1,
where εi satisfying −2w < εi < 2w < n is a random number and lis are the given
values satisfying li ≥ 0 and li + w ≤ f . The correct signature (r, s0) and N − 1
faulty ones (r, si) for the same input message m can be represented as{

k = s0
−1 (e+ rd) mod n

k + εi2
li = si

−1 (e+ rd) mod n(i = 1, ..., N − 1)
. (18)

Step 2: recover the private key d by solving SVP
After reduction, equation (18) can be transformed as

εi =
(
si

−1 − s0
−1

)
2−li (e+ rd) mod n. (19)

Let Ai = (si
−1 − s0

−1)2−li mod n, D = e + rd mod n. There must exist
hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin, (20)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (20) is exactly equation (4). Then following the general strategy
described in Section 3.2, D can be found by solving SVP and subsequently the
private key d can be recovered by virtue of the equation

d = r−1(D − e) mod n.

A.2 Fault attacks with target k−1 during the calculation of s to
deterministic ECDSA

Suppose the adversary decides to inject fault to k−1 (after being generated by
modular inversion of k) before using it during the calculation of s. Then after
getting a correct signature for a message m, the adversary can try to get N − 1
valid faulty signatures with the same message m as input, and k−1 as the target.

Step 1: inject fault to k−1 mod n during the calculation of s
When k−1 mod n derived by k is injected with a fault, it has k−1

i = k−1+εi2
li

for i = 1, ..., N−1, where εi satisfying −2w < εi < 2w is a random number and lis
are the given values satisfying li ≥ 0 and li+w ≤ f . The correct signature (r, s0)
and N − 1 faulty ones (r, si) for the same input message m can be represented
as {

s0 = k−1 (e+ rd) mod n
si =

(
k−1 + εi2

li
)
(e+ rd) mod n(i = 1, ..., N − 1).

(21)

Step 2: recover the private key d by solving SVP
After reduction, equation (21) can be transformed as

εi = (e+ rd)
−1

(si − s0) 2
−li mod n. (22)
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Let Ai = (si − s0)2
−li mod n, D = (e+ rd)

−1
mod n. There must exist

hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin, (23)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (23) is exactly equation (4). Then following the general strategy
described in Section 3.2, D can be found by solving SVP and subsequently the
private key d can be recovered by virtue of the equation

d = r−1(D−1 − e) mod n.

A.3 Fault attacks with target d during the calculation of s to
deterministic ECDSA

Suppose the adversary decides to inject fault to d before using it during the
calculation of s. Then after getting a correct signature for a message m, the
adversary can try to get N − 1 valid faulty signatures with the same message m
as input, and d as the target.

Step 1: inject fault to d during the calculation of s

When d is injected with a fault, it has di = d + εi2
li for i = 1, ..., N − 1,

where εi satisfying −2w < εi < 2w is a random number and lis are the given
values satisfying li ≥ 0 and li + w ≤ f . The correct signature (r, s0) and N − 1
faulty ones (r, si) for the same input message m can be represented as{

s0 = k−1 (e+ rd) mod n
si = k−1

(
e+ r(d+ εi2

li)
)
mod n(i = 1, ..., N − 1).

(24)

Step 2: recover the private key d by solving SVP

After reduction, equation (24) can be transformed as

εi = (si − s0) 2
−lir−1k mod n. (25)

Let Ai = (si − s0) r
−12−li mod n, D = k mod n, there must exist hi ∈ Z for

i = 1, ..., N − 1 such that

εi = AiD + hin, (26)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (26) is exactly equation (4). Then following the general strategy
described in Section 3.2, D can be found by solving SVP and subsequently the
private key d can be recovered by virtue of the equation

d = r−1 (Ds0 − e) mod n.
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A.4 Fault attacks with targets e, rd and e + rd during the
calculation of s to deterministic ECDSA

If the targets e, rd and e + rd targets are disturbed by fault injection, a same
model of key recovery can be constructed. Therefore, for simplicity, we define
mv as any one of the three targets, that is, mv could be e, rd or e+ rd. Suppose
the adversary decides to inject fault to mv before using it during the calculation
of s. Then after getting a correct signature for a message m, the adversary can
try to get N − 1 valid faulty signatures with the same message m as input, and
mv as the target.

Step 1: inject fault to mv during the calculation of s
When mv is injected with a fault, it has mvi = mv+εi2

li for i = 1, ..., N−1,
where εi satisfying −2w < εi < 2w is a random number and lis are the given
values satisfying li ≥ 0 and li + w ≤ f . The correct signature (r, s0) and N − 1
faulty ones (r, si) for the same input message m can be represented as{

s0 = k−1 (e+ rd) mod n
si = k−1

(
e+ rd+ εi2

li
)
mod n(i = 1, ..., N − 1).

(27)

Step 2: recover the private key d by solving SVP
After reduction, equation (27) can be transformed as

εi = (si − s0) 2
−lik mod n. (28)

Let Ai = (si − s0) 2
−li mod n, D = k mod n, there must exist hi ∈ Z for

i = 1, ..., N − 1 such that
εi = AiD + hin, (29)

whereD is a fixed value due to the same input messagem for all the signature
queries.

Equation (29) is exactly equation (4). Then following the general strategy
described in Section 3.2,D can be found by solving SVP. Naturally, as mentioned
above, the private key d can be recovered by virtue of D.

A.5 Fault attacks with the targets during the calculation of k to
deterministic ECDSA and EdDSA

As described in Section 4.2, if injecting a fault into “k before the calcula-
tion of kG” to obtain some valid kis satisfying ki = k + εi2

li(−2w < εi <
2w, w < f − log

√
2πe), then equation (5) can be constructed to recover the pri-

vate key in deterministic ECDSA or EdDSA. Then, besides the target “k before
the calculation of kG”, we found some other fault targets during the calculation
of k also can generate valid faulty kis, including “registers before outputting
hash value”, “last modular additions before outputting hash value” and “hash
value during the reduction of k”.

The following section will introduce the three targets and the fault injection
models whose final purpose is to generate some valid faulty signatures satisfying
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ki = k + εi2
li(−2w < εi < 2w), and w < f − log

√
2πe. For simplicity, we just

consider the case when li = 0 for i = 1, ..., N − 1(i.e., the w least significant bits
of k are disturbed) and the hash function is SHA-2, to which the other cases are
similar.

A.5.1 Hash Function Generating k

Although different methods are employed for generating k in deterministic ECD-
SA and EdDSA(for example, HMAC DRBG SHA256 F (d, e) is utilized in de-
terministic ECDSA and hash algorithm SHA512 H(m, d1) is utilized in EdDSA
by default), they all belong to the family of SHA2 and have the similar modular
additions before outputting the hash value to generate k. As shown in Fig-
ures 2 and 3, after all the L-round calculations of Hash function, the modular
additions(mod2t, t is bit length of register) of the registers (aL−1, ..., , gL−1) ∈
[0, 2t) and (a0, ..., , h0) ∈ [0, 2t) are calculated and the results are assigned to the
registers (aL, ..., , hL) ∈ [0, 2t) as the hash values. Hence, once a fault is injected
into these registers, the calculation of addition or the hash values during the
following reduction, k will be affected by the faulty values.

Fig. 2. Fault targets in the hash function
of determinsic ECDSA

Fig. 3. Fault targets in the hash function
of EdDSA

Table 5 gives an overview of all the fault targets before outputting the hash
values and during the reduction of k.

A.5.2 Fault Attacks with Target: Registers before Outputting Hash
Value

Attacks on deterministic ECDSA
For the HMAC DRBG SHA256 during signature generation of deterministic

ECDSA, the final output registers (aL, ..., , hL) can be reduced into a big number
k = T28t + aL2

7t + ... + gL2
t + hL mod n, where T is the concatenation of the

previous u-times HMAC values(i.e., T = HMAC0||HMAC1||...||HMACu−1)
which is equal to 0 in 256-bit deterministic ECDSA, and t is the bit length of
register.
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Table 5. The targets of fault injection during the calculation of k.

target algorithm concrete location of fault injection

registers before deterministic ECDSA
( partial bits of a0, aL), (b0, ..., h0)

(bL, ..., hL), (aL−1, ..., gL−1)

outputting hash values EdDSA
( partial bits of e0, eL), (f0, g0, h0)
(fL, gL, hL), (eL−1, fL−1, gL−1)

modular additions before deterministic ECDSA all the modulo-2t additions
outputting hash values EdDSA modulo-2t additions in the right half

hash value during deterministic ECDSA the value of F (d, e)
the reduction of k EdDSA the value of H(d1,m)

As shown in Figure 2, assuming that all or arbitrary one of the register-
s (a0, ..., h0), (aL−1, ..., gL−1) before the last additions and (aL, ..., hL) before
outputting the hash value are injected with a fault, the consequent k can be
represented as ki = T28t + (aL2

7t + bL2
6t + ... + gL2

t + hL + εi) mod n for
i = 1, ..., N − 1, with a random faulty value εi satisfying −2w < εi < 2w and
w < f − log

√
2πe ≤ 8t − log

√
2πe (8t = f for 256-bit deterministic ECDSA).

That is, ki which is derived from the faulty hash value and is to participate in
the next calculation of kG, is equals to k + εi mod n.

Similar to the key recovery with target “k before the calculation of kG”,
equation (5) can be constructed. Then following the general strategy described
in Section 3.2, the private key d can be recovered by solving the instance of CVP
in lattice.

Note that in 256-bit deterministic ECDSA, to make sure w < 8t−log
√
2πe(8t =

f), the register hL−1 can not be viewed as target, and as listed in Table 5, at
least log

√
2πe most significant bits of the registers a0 and aL can not be dis-

turbed when a fault is injected into them. Except this, all the fault injection
against the other registers are arbitrary and uncontrolled.

Attacks on EdDSA

In the hash algorithm SHA512 H(m, d1) of EdDSA, the final output 512-
bit registers (aL, ..., hL) as the hash value must be reduced into the nonce k =
aL2

7t + ...+ gL2
t +hL mod n, where t is the bit length of register and is equals

to 64 in SHA512. For 256-bit EdDSA, e.g., Ed25519, the modular reduction will
reduce the 512-bit hash value into a 253-bit nonce k. Hence, in order to obtain
valid faulty signatures, fault injection here will take the four registers in the right
half as the targets.

As shown in Figure 3, when all or arbitrary one of the registers (e0, ..., h0),
(eL−1, ..., gL−1) before the last additions and (eL, ..., hL) before outputting hash
value is injected with a fault, the consequent k can be represented as ki = aL2

7t+
...+dL2

4t+(eL2
3t+...+hL+εi) mod n for i = 1, ..., N−1, with a random faulty

value εi satisfying −2w < εi < 2w and w < f − log
√
2πe ≤ 4t−log

√
2πe (4t ≈ f

for 256-bit EdDSA). That is, ki = k + εi mod n. Similar to the key recovery
with target “k before the calculation of kG”, equation (5) can be constructed.
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Then according to the general strategy described in Section 3.2, the private key
d can be recovered by solving the instance of CVP in lattice.

Note that in 256-bit EdDSA, to make sure w < 4t− log
√
2πe(4t ≈ f), only

the right half of the registers are viewed as targets, and as listed in Table 5,
at least ⌈log

√
2πe⌉ most significant bits of the registers e0 and el can not be

disturbed when a fault is injected into them. Except this, the fault injection to
the remaining three registers is arbitrary and uncontrolled. In addition, if the
registers in the left half are disturbed, then ki = k+ εi2

4t mod n. Similarly, we
also can construct a similar CVP in lattice to recover the private key.

A.5.3 Fault Attacks with Target: Last Modular Additions before
Outputting Hash Value

As described in Sections A.5.1 and A.5.2, if the last modulo-2t additions as
targets of fault injection are injected by a fault to lead to the final hash values
aL, ..., hL faulty, then the nonce k reduced by the hash value has w disturbed
bits, by which equation (5) can be constructed to recover the private key d.

For 256-bit deterministic ECDSA, as shown in Figure 2, all or arbitrary one
of the last modulo-2t additions can be injected with a fault. Moreover, it is noted
that fault injection against the left first addition must make at least log

√
2πe

high significant bits of aL undisturbed.

Similarly, for 256-bit EdDSA, as shown in Figure 3, all or arbitrary one of the
last modulo-2t additions in the right half can be injected with a fault. Moreover,
fault injection against the first addition in the right half must make at least
⌈log

√
2πe⌉ most significant bits of eL undisturbed. In addition, similarly, if the

additions in the left half are disturbed, we also can construct a similar CVP in
lattice.

A.5.4 Fault Attacks with Target: Hash Value during the Reduction
of k

After calculating the last modular additions in the hash function, the final reg-
isters are combined into a big number E(E = F (d, e) in deterministic ECDSA
or E = H(d1,m) in EdDSA), and E is needed to be reduced into nonce k, That
is, k = E mod n. Assuming that a fault is injected into E during the reduction,
the reduction k = E mod n is changed into ki = E+εi2

li mod n. Hence, as long
as εi satisfying −2w < εi < 2w is a random number and w < f − log

√
2πe,

equation (5) can be constructed. Thereby, the private key can be recovered by
solving an instance of CVP in lattice.

To sum up, the three targets during the calculation of k for fault attacks
are equivalent to the representative target “k before the calculation of kG”,
and thereby equation (5) can be constructed to recover the private key d in
deterministic ECDSA and d0 in EdDSA.
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A.6 Fault attacks with targets during the calculation of e to
deterministic ECDSA

As introduced in Appendix A.4, if injecting a fault into e during the calcula-
tion of s to obtain some valid eis satisfying ei = e + εi2

li (−2w < εi < 2w,
w < f − log

√
2πe and li + w ≤ f), then equation (4) can be constructed to

recover the private key in deterministic ECDSA.
Similarly, besides directly injecting fault into the target “e during the calcu-

lation of s”, there still exist two other fault targets during the calculation of e
which can generate some valid faulty eis for key recovery, including “registers
before outputting the hash values H(m)” and “last modular additions before
outputting the hash values H(m)”. The models of fault injection with these two
targets are similar to the ones introduced in Appendix A.5.2 and A.5.3, and
thereby equation (4) which is similar to the one with target “e during the cal-
culation of s”, can be constructed to recover the private key in deterministic
ECDSA.

A.7 Fault attacks with targets during the calculation of r to EdDSA

As introduced in Section 4.1.2, if injecting a fault into r during the calcula-
tion of s to obtain some valid ris satisfying ri = r + εi2

li (−2w < εi < 2w,
w < f − log

√
2πe and li + w ≤ f), equation (4) can be constructed to recover

the private key in EdDSA.
Similarly, besides directly injecting fault into the target “r during the cal-

culation of s”, there still exist another two fault targets during the calculation
of r which can generate some valid faulty ris for key recovery, including “regis-
ters before outputting hash value H(R,P,m)”, “last modular additions before
outputting hash value H(R,P,m)” and “hash value H(R,P,m) during the re-
duction of r”. The models of fault injection with these three targets are similar
to the ones in Appendix A.5.2, A.5.3 and A.5.4, and thereby equation (4) which
is similar to the one of target “r during the calculation of s”, can be constructed
to recover the private key in EdDSA.
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