
On (expected polynomial) runtime in
cryptography

Michael Klooß∗

We revisit the definition of efficient algorithms and argue, that the standard runtime
classes, strict probabilistic polynomial time (PPT) and expected probabilistic polynomial
time (EPT) are “unnatural” from a cryptographic perspective. They are not closed under
indistinguishability.

Applied to EPT, this suggests computationally expected polynomial time (CEPT), the
class of runtimes which are (computationally) indistinguishable from EPT. We analyse the
behaviour of CEPT for zero-knowledge proofs and designated adversaries in the setting of
uniform complexity (following Goldreich (JC’93)). A designated adversary is (only) efficient
in the protocol it is designed to attack. This security notion, first proposed in Feige’s
thesis [Fei90], is very natural, but there are obstructions to achieving it.

Prior work on handling (designated) EPT adversaries by Katz and Lindell (TCC’05)
requires superpolynomial hardness assumptions, whereas the work of Goldreich (TCC’07)
requires “nice” adversarial behaviour under rewinding. We provide easy-to-check criteria
for zero-knowledge protocols with black-box simulation in the plain model, which show
that many (all known?) such protocols handle designated CEPT adversaries in CEPT.

1. Introduction
Interactive proof systems allow a prover P to convince a verifier V of the “truth” of a statement x,
i.e. that x ∈ L for some language L. Soundness of the protocol ensures that if the verifier accepts,
then x ∈ L with high probability. Zero-knowledge proof systems allow P to convince V of x ∈ L

without revealing anything else. For example,P can convince V that a (deterministic) program F outputs
x = F (w) for some witness w, without revealing anything about w. Thus, zero-knowledge proofs can
guarantee honest behaviour (soundness) while preserving privacy (zero-knowledge), making them a
foundational tool in cryptography.

The formulation of zero-knowledge relies on the simulation paradigm: It stipulates that, for every
(malicious) verifier V∗, there is a simulator Sim which, given only the inputs x, aux of V∗, can pro-
duce a simulated output (or view 1) out = Sim(x, aux), which is indistinguishable from the output
outV∗〈P(x,w),V∗(x, aux)〉 of a real interaction. Thus, anything V∗ learns in the interaction, it could
simulate itself — if Sim and V∗ lie in the same complexity class.

There are two widespread notions of zero-knowledge: PPT simulation for PPT adversaries, and EPT
simulation for PPT adversaries. The former satisfies the “promise of zero-knowledge”, but comes at a
price. Barak and Lindell [BL04] show that it is impossible to construct constant round proof system with
black-box simulation (and negligible soundness error in the plain model). Since constant round black-box
∗
Karlsruhe Institute of Technology, michael.klooss@kit.edu

1We use view and output synonymous in the introduction. The standard definition of a view consists of input, randomness,
and received messages. With EPT, this choice is debatable, see Remark 5.7.

1

mailto:michael.klooss@kit.edu

zero-knowledge is attractive for many reasons, the relaxation of zero-knowledge to EPT simulation
for PPT adversaries is used. However, this asymmetry breaks the “promise of zero-knowledge”. The
adversary cannot execute Sim, hence it cannot simulate the interaction. More concretely, this setting
does not compose well. If we incorporate an EPT simulator into a (previously PPT) adversary, the new
adversary is EPT. This common approach to modularly construct simulators for more complex systems
from simulators of building blocks therefore fails due to the asymmetry.

To remedy the asymmetry, we need to handle EPT adversaries. There several sensible definitions
of EPT adversaries, but the arguably most natural choice are designated EPT adversaries. That is,
adversaries which need (only) be EPT when interacting with the protocol they are designed to attack.
Feige [Fei90] first considered this setting, and demonstrates significant technical obstacles.

The problems of EPT (and designated adversaries) are not limited to zero-knowledge, and extend
to the simulation paradigm and multi-party computation in general. However, in this work, we focus
solely on zero-knowledge as a proxy.

Preliminary conventions. Throughout this work, κ denotes the security parameter, and we generally
consider objects which are families (of objects) parameterised by κ. We abbreviate systems of (interactive)
machines (or algorithms) by system. A system is closed, if κ is its only “input”, i.e. if there are no “open
interfaces” (except the output interface). For example, a prover P does not constitute a closed system,
nor does the interaction 〈P,V〉, since it still lacks the inputs toP and V. Our primary setting is uniform
complexity [Gol93], where inputs to an (almost closed) system are generated efficiently by so-called
input generating machines. Interaction of algorithms A, B is denoted 〈A,B〉, the time spent in A is
denoted timeA(〈A,B〉), and similarly for time spent in B or A + B. Oracle access to O is written AO .

1.1. Obstacles
Before diving into our approach, we recall some obstacles regarding expected runtime and designated
adversaries which we have to keep in mind. For more discussions and details, we refer to the excellent
introductions of [KL08; Gol10] and to [Fei90, Section 3].

Runtime squaring. Consider (a family of) random variables Tκ over N, where P(Tκ = 2κ) = 2−κ

and T is 0 otherwise. Then Tκ has polynomially bounded expectation E(Tκ) = 1, but E(T 2
κ) = 2κ.

That is Sκ = T 2
κ is not expected polynomial time anymore. This behaviour breaks the non-black-box

simulation of Barak [Bar01] (which suffers from a quadratic growth in runtime), but also machine model
independence of EPT as an efficiency notion.

Composition and rewinding. Consider an oracle algorithm AO with access to a PPT oracleO. Then
to check if the total time timeA+O(AO) is PPT, we can count an oracle call as a single step. Moreover,
it makes no difference if A has “straightline” or “rewinding” access to O. For EPT, even a standalone
definition of “O is EPT” is non-trivial and possibly fragile. For example, there are oracles, where any
PPT A with “straightline” access to O results in an EPT interaction, yet access “with rewinding” to O

allows an explosion of expected runtime. See [KL08] for a concrete example.

Designated EPT adversaries. For a designated adversary A against zero-knowledge of a proof
system (P,V), we require (only) that A is efficient when interacting with that protocol. Since a zero-
knowledge simulator deviates from the real protocol, the runtime guarantees of A are void.

1.2. Motivation: Reproving zero-knowledge of graph 3-colouring
We demonstrate the problems and the develop the idea underlying our approach on a concrete example,
the constant-round black-box zero-knowledge proof of Goldreich and Kahan [GK96].

2

Recall that (non-interactive) commitment schemes allow a committer to commit to a value in a way
which is hiding and binding, i.e. the commitment does not reveal the value to the receiver, yet it can
be unveiled to at most one value. A commitment scheme consists of algorithms (Gen,Com,VfyOpen).
The commitment key is generated via ck← Gen(κ). For details, see Appendix D.1.

1.2.1. The constant round protocol of Goldreich–Kahan

The protocol of [GK96] uses two different commitments, Com(H) is perfectly hiding, Com(B) is perfectly
binding. The idea of protocol G3CGK is a parallel, N -fold, repetition of the standard zero-knowledge
proof for G3C, with the twist that the verifier commits to all of its challenges beforehand. LetG = (V,E)
be the graph and let ψ be a 3-colouring of G. The prover is given G,ψ and the verifier is given G.

(P0) The prover sends ckhide ← Gen(H)(κ). (ckbind ← Gen(B)(κ) is deterministic.)
(V0) V picks N = κ · card(E) challenge edges ei ← E, and commits to them using Com(H).
(P1) P picks randomised colourings for each of the N parallel repetitions of the standard graph

3-colouring proof system, and sends the Com(H)-committed randomised node colours to V.
(V1) V opens all commitments (to ei).
(P2) P aborts if any opening is invalid. Otherwise, P proceeds in the parallel repetition using these

challenges, i.e. in the i-th repetition P opens the committed colours for ei.
(V2) V aborts iff any opening is invalid, any edge not correctly coloured, or if ckhide is “bad”.

The soundness of this protocol follows from Com(H) being statistically hiding. Therefore, each of the
N parallel repetitions is essentially an independent repetition of the usual graph 3-colouring proof. For
N = κ · card(E) parallel rounds, the probability to successfully cheat is negligible (in κ), see [GK96].

1.2.2. Proving zero-knowledge: A (failed?) attempt

Now, we prove black-box zero-knowledge for designated adversaries. That is, we describe a simulator
which uses the adversary V∗ only as a black-box, which can be queried and rewound to a (previous)
state. We proceed in three game hops, gradually replacing the view of a real interaction with a simulated
view. Successive games are constructed so that their change in output (which is a purported view) is
indistinguishable.

G0 This is the real G3C protocol. The output is the real view.
G1 The prover rewinds a verifier which completes (V1) successfully (i.e. sends valid openings on

the first try) to (V0) and repeats (P1) until a second run where V validly opens all commitments.
The output is the view of this second succesful run. The prover uses fresh randomness in each
reiteration of (P1) (wheres the black-box has fixed randomness).

G2 If the two openings in (V1) differ, return ambig, indicating ambiguity of the commitment. Other-
wise, proceed unchanged.

G3 The initial commitments (in (P1)) to a 3-colouring are replaced with commitments to 0. These
commitments are never opened. In successive iterations, the commitments to a 3-colouring are
replaced by commitments to a pseudo-colouring. These commitments, when opened, simulate a
valid 3-colouring at the challenge edges ei.

Evidently, Game G3 outputs purported view independent of the witness. Thus, the simulator is defined
as in G3: In a first try, it commits to garbage instead of a 3-colouring in (P1), in order to obtain the
verifier’s challenge (in (V1)). If the verifier does not successfully open the commitments (in (V1)), Sim
aborts (as an honest prover would) and outputs the respective view. Otherwise, Sim rewinds the verifier
to Step 2 and sends a pseudo-colouring (w.r.t. the previously revealed challenge) instead. Sim retries
until the verifier succesfully unveils (in (V1)) again. (If the verifier opens to a different challenge, return
view = ambig.)

3

Now, we sketch a security proof for Sim. We argue by game hopping.
G0 to G1. The expected number of rewinds is at most 1. Namely, ifV∗ opens in (V1) with probability ε,

then an expected number of 1
ε rewinds are required. Consequently, the expected runtime is polynomial

(and G1 is EPT). The output distribution of the games is identical.
G1 to G2. It is easy to obtain an adversary against the binding property of Com(H) which succeeds

with the same probability that G2 outputs ambig. Thus, this probability is negligible.
G2 to G3. Embedding a (multi-)hiding game for Com(B) in this step is straightforward. Namely, using

the left-or-right indistinguishability formulation, where the commitment oracle either commits the first
or second challenge message (in all challenges). Thus, by security of the commitment scheme, G2 and
G3 are indistinguishable.2

A closer look. The above proof is clear and simple. But the described simulator is not EPT! While
G2 and G3 are (computationally) indistinguishable, the transition does not necessarily preserve expected
polynomial runtime [Fei90; KL08]. Feige [Fei90] points out a simple attack, where V∗ brute-forces the
commitments with some tiny probability p, and runs for a very long time if the contents are not valid
3-colourings. This is EPT in the real protocol, but our simulator as well as the simulator in [GK96] do
not handle V∗ in EPT. The problem lies with designated adversaries as following example shows.
Example 1.1. Let V∗ sample in step (V0) a garbage commitment c to random a random colouring, just
like Sim, and a challenge edge e which reveals that c is not a 3-colouring. Now V∗ unveils e in (V1) if
and only if it receives c. (c is a “proof of simulation”.) The honest prover always aborts in (P2) because
V∗ will never unveil. But if Sim queried c as its garbage commitment, the simulation runs forever,
because V∗ unveils its challenge only for c, but in that case the challenge edge e exposes the simulation.

As described, V∗ is a priori PPT, and indeed, the simulator in [GK96] uses a “normalisation technique”
which prevents this attack. However, exploiting designated PPT, V∗ may instead run for a very long
time, when it receives c.

Obstructions to simple fixes. Let us recall a few simple, but insufficient fixes. A first idea is to
truncate the execution of A at some point. Indeed, this approach shows that designated PPT A are as
simple to handle as a priori PPT adversaries.3 However, there are EPT adversaries, or more concretely
runtime distributions, where any strict polynomial truncation affects the output in the real protocol
noticeably.4 So we cannot expect that such a truncation works well for Sim. See [Fei90, Section 3] for a
more convincing argument against truncation.

Being unable to truncate, we could enforce better behaviour on the adversary. Intuitively, it seems
enough to require that V∗ runs in expected polynomial time in any interaction [KL08; Gol10]. However,
even this is not enough. Katz and Lindell [KL08] exploit the soundness error of the proof system to
construct an adversary which runs in expected polynomial time in any interaction, but still makes the
expected runtime of the simulator superpolynomial. The problem is that these runtime guarantees are
void in the presence of rewinding.

(Modifications of these fixes work: Katz and Lindell [KL08] use superpolynomial truncation; Goldreich
[Gol10] uses a restriction so that runtime does not explode under rewinding. See Section 1.6.)

Our fix: There is no problem. Our starting point is the conviction that the given “proof” of zero-
knowledge should evidently establish the security of the scheme for any cryptographically sensible notion

2The commitments which are to be opened are known beforehand (since V committed to the challenge), or we abort by
outputting ambig. Also, we rely on security of binding and hiding against expected time adversaries, which easily follows
from PPT-security.

3However, such a simulator is not fully black-box anymore, as it depends on A.
4 There exist distributions T over N0 such that E(T) < ∞, but E(T 2) = ∞: The sum

∑
n n−c is finite if and only if

c > 1. Thus, we obtain a random variable X with P(X = n) ∝ n−c. For γ > 0 we have E(Xγ) ∝
∑

n n−c+γ . If
c− γ ≤ 1, then E(Xγ) = ∞. Moreover, P(X ≥ k) ≥ k−c, i.e. X has fat tails. In particular, for c = 3, E(X) < ∞ but
E(X2) =

∑
n n−1 = ∞, and P(X ≥ poly) ≥ 1

poly3 for any poly.

4

of runtime. If one could distinguish the runtime of G2 and G3, then this would break the hiding property
of the commitment scheme! Thus, the runtimes are indistinguishable. Following, in computational spirit,
Leibniz’ “identity of indiscernibles”, we declare runtimes which are indistinguishable from efficient by
efficient distinguishers as efficient per definition. With this, the proof works and the simulator, while
not expected polynomial time, is computationally expected polynomial time (CEPT), which means its
runtime distribution is indistinguishable from EPT.

We glossed over an important detail: We solved the problem with the very strategy we claim to fix —
different runtime classes for Sim and V∗! Fortunately, Sim also handles CEPT adversaries in CEPT.

1.3. Computationally expected polynomial time
With sufficient motivation, we turn to a basic treatment of CEPT.
Definition (Oversimplified Definition 3.5). A runtime Sκ (i.e. a family of random variables with values
in N0) is computationally expected polynomial time (CEPT), if there exists a runtime Tκ which
is (perfectly) expected polynomial time (i.e. EPT), such that T

c
≈ S, i.e. any a priori PPT distinguisher

has negligible distinguishing advantage for the distributions T and S. The class of CEPT runtimes is
denoted CEPT. An analogous definition for PPT yields CPPT.

Characterising CEPT. At a first glimpse, CEPT looks like a hideous monster. It mixes computational
assumptions into its very definition, mingling efficiency and indistinguishability; it seems far removed
from typical settings. Fortunately, this is a mirage. We have following characterisation of CEPT.

Proposition (Informal Corollary 3.8). Let T be a runtime. Then T ∈ CEPT if following equivalent
conditions hold:

(1) ∃S ∈ EPT which is computationally PPT-indistinguishable from T .
(2) ∃S ∈ EPT which is statistically PPT-indistinguishable from T .
(3) There is a family of sets of good events Gκ with P(G) ≥ 1 − ε such that E(Tκ | Gκ) = t (for the

conditional expectation), where ε is negligible and t polynomially bounded.

Let T be a runtime. Item (3) defines virtually expected time (t, ε) with virtual expectation t and
virtuality ε. Thus, the characterisation says that computational, statistical and virtual EPT coincide.

Thanks to this characterisation, working with CEPT is feasible. One uses item (1) to justify that
indistinguishability transitions preserve CEPT. And one relies on item (3) to simplify to the case of EPT,
usually in unconditional transitions, such as efficiency of rewinding.

A beauty in disguise? The characterisation reveals that CEPT is rather tame after all. However, it gets
better (for some notion of better): CEPT distinguishers are no more powerful than PPT distinguishers,
hence we could define CEPT using CEPT-indistinguishability instead! Thus, the runtime class CEPT

is “closed under indistinguishability”: Any runtime S which is CEPT-indistinguishable from some
T ∈ CEPT lies in CEPT. Thus, CEPT has a nice intrinsic property, which PPT and EPT do not share.
Example 1.2 (Perfect and statistical properties). Let A be an algorithm which outputs 42 in 1010 steps.
Modify it to A′ which acts identical to A, except with probability 2−κ, in which case it runs 22κ steps.
Then A′ is neither PPT nor EPT. Yet, no matter how much a (polynomially bounded) distinguisher tries,
it will not succeed in distinguishing A and A′ when given timed black-box access. That is, by observing
the output and runtime of the black-box O, it is not possible to tell A and A′ apart. This holds even
when O may be called repeatedly and adaptively! Thus, it is rather unexpected that A′ is considered
inefficient.

Indeed, a variation of the example w.r.t. correctness would lead to calling A′ statistically correct. Our
relaxation of EPT and PPT is such a relaxation from perfect to statistical properties. Viewing PPT and
EPT as perfect notions of runtime, corresponding to perfect correctness, perfect hiding, perfect binding,
perfect zero-knowledge, perfect soundness, etc., CPPT resp. CEPT are their statistical counterparts.

5

1.4. Technical overview and results
We give a short overview of our techniques, definitions, and results. Recall that we restrict our attention
to runtimes of closed systems. W.r.t. uniform complexity and designated adversaries, i.e. adversaries
which only need to be efficient in the real protocol [Fei90], closed systems are the default situation
anyway. A runtime class T is a set of runtime distributions. A runtime (distribution) is a family
(Tκ)κ of distributions Tκ over N0. We use runtime and runtime distribution synonymously.

1.4.1. The basic tools

In Appendix C we give an abstract treatment of runtime which is meant for the inclined reader. Even
though we tried to give general definitions, the most important results are only proven for “algebra-
tailed runtime classes”; this is a straightforward generalisation of the polynomial runtime setting.
Therefore, we restrict to the polynomial setting in the following. For completeness, we sketch one
general definition.

Definition (Informal). Let T be a runtime class. Then T is (distinguishing-)closed, if any runtime S
which is indistinguishable from a runtime T ∈ T by T-time distinguishers lies in T.

Note that, a priori, computational and statistical closedness need not coincide.

Statistical vs. computational indistinguishability. The equivalence of statistical and computational
indistinguishability for distributions with “small” support is a simple, but central, tool in Appendix C. For
polynomial time, the setting and proof is as follows: For any distribution with a polynomial support, say
{0, . . . , poly1(κ)}, one can compute the empirical probabilities of all elements with precision 1/poly.5
From this, it is easy to see that computational and statistical indistinguishability coincide for such
distributions. By truncation arguments, we can maneuver into this setting. Indeed, let (Tκ) be a runtime
distribution (a sequence of distributions on N0). Since (by assumption) for any poly0 there is a poly1
such that P(Tκ > poly1(κ)) ≤ 1

poly0(κ)
, we can reduce distinguishability to the strictly polynomial

support while preserving non-negligible statistical distance. For expected polynomial time, this assumed
property follows from Markov bounds.

Standard cutoff argument. Another simple, yet central, tool is the standard cutoff argument (Sec-
tion 4.2). It is the core tool to obtain efficiency from indistinguishability.

Lemma 1.3 (Standard reduction to PPT). LetD be a distinguisher for two oracles O0, O1 (which may be
distributions, or model an IND-CPA game, or …). Suppose D has advantage at least ε ≥ 1

poly0
(infinitely

often). Suppose furthermore that DO0 is CEPT with virtually expected time (poly1, δ). Then there is an a
priori PPT distinguisher A with advantage at least ε4 − δ (infinitely often).

We stress that there are no runtime guarantees for DO1 — it may never halt for all we know. For the
proof, define N = 4poly0 · poly1 and let A be the runtime cutoff of D at N . The outputs of AO0 and
DO0 are ε

4 + δ close. For AO1 and DO1 this may be false. However, if the runtime for DO1 exceeds N
with probability higher than 2ε

4 , then the runtime is a distinguishing statistic with advantage ε
4 . Thus,

we can assume the outputs of AO1 and DO1 are 2ε
4 close. Consequently, A has advantage ε

4 − δ.

Working with CEPT. The characterisation of CEPT now follows essentially from the computational-
to-statistical reduction and a variant of Lemma 1.3. As is, the characterisation is not that useful, because
the randomness of different parties, say the adversary and prover (resp. simulator) are “entangled”. As
an example, consider a prover which sends a random string r, and an adversaryA which picks a random
s runs forever if r = s. Now, the “bad behaviour” cannot easily be attributed to A. Unsurprisingly,

5Here, repeated sampling is central, which is for example satisfied if one can efficiently sample.

6

one can “disentangle” in the sense that bad behaviour only depends on messages exchanged, and not
internal coin tosses of honest parties.

Lemma 4.21 essentially formalises the “disentanglement”, and roughly states that for interacting algo-
rithms 〈A,B〉, there is an “imaginary” modification B′ (which need not be efficiently computable), which
aborts “bad executions” by sending timeout. If the closed system 〈A,B〉 is CEPT, i.e. timeA+B(〈A,B〉)
is CEPT, the probability for timeout is negligible. Moreover, the time spent in B′, i.e. timeB′(〈A,B′〉),
is EPT. We stress that B′ is “imaginary” and will be used via oracle-access only. It is merely a convenient
tool to track the evolution of virtuality under actions such as rewinding.

1.4.2. Definitions and tools for zero-knowledge

We define auxiliary input zero-knowledge for efficiently generated input (x,w, aux)← G(κ), and desig-
nated adversaries. That is, for an adversary (G,V∗), timeG+P+V∗(〈P(x,w),V∗(x, aux)〉(x,w,aux)←G(κ))
must be efficient, e.g. CEPT. We make no restrictions on (G,V∗) beyond that.

Concrete example. Recall that in Section 1.2, we showed zero-knowledge of the graph 3-colouring
protocol G3CGK of Goldreich and Kahan [GK96] as follows:

Step 1: We introduce all rewinding steps as in G1. Here, virtually expected runtime and virtuality at
most doubles. To show this, we use Lemma 4.21 to replace V∗ with an “imaginary” V′ which yields an
EPT execution and outputs timeout for “bad” queries. Since Game G1 at most doubles the probability
that some query query is asked, bad queries are only twice as likely, i.e. virtuality at most doubles. It is
easy to see that the expected runtime also (at most) doubles.

Step 2: We apply an indistinguishability transition, which reduces to hiding and binding properties
of the commitment. From this, we obtain output quality of Sim, as well as efficiency of Sim. Concretely,
this follows by an application of the standard reduction (to PPT).

We abstract this proof strategy to cover a large class of zero-knowledge proofs. We split a simulator
into two phases, a rewinding phase and an indistinguishability phase. Intuitively, we apply the ideas
of [Gol10] (“normality”) and [KL08] (“query indistinguishability”), but separate the unconditional part
(namely, that rewinding preserves efficiency), and the computational part (namely, that simulated
queries preserve efficiency).6

Abstracting Step 1 (Rewinding strategies). A rewinding strategy RWS has black-box rewind-
ing (bb-rw) access to a malicious verifier V∗, and abstracts a simulator’s rewinding behaviour. Unlike
the simulator, RWS has access to the witness. To be useful, we require three properties of RWS, and
call such rewinding strategies normal.

Firstly, a normal rewinding strategy outputs an adversarial view which is identically distributed to
the real execution. Secondly, there is some poly so that for any adversary

E(timeRWS+V∗(RWSV∗
)) ≤ poly(κ) · E(timeP+V∗(〈P,V∗〉)).

We denote this (polynomial) runtime tightness of RWS. Thirdly, RWS has (polynomial) probability
tightness, which is defined as follows: Let prrws(query) be the probability that RWS asks V∗ a query
query. Let prreal(query) be the probability that the prover P asks query. Then RWS has probability
tightness poly if for all queries query

prrws(query) ≤ poly(κ) · prreal(query).

Intuitively, runtime tightness ensures that RWS preserves EPT, whereas probability tightness bounds
the growth of virtuality. Indeed, the virtuality δ in 〈P,V∗〉 increases to at most poly · δ in RWSV∗

.

6We significantly deviate from [KL08], to obtain easier to quantify and generally simpler reductions. For completeness, we
demonstrate in Appendix E that an approach based on “query indistinguishability” is feasible.

7

This follows because a bad query in the interaction 〈P,V∗〉 (a timeout of the “imaginary” V′ from
Lemma 4.21) is asked by RWSV∗

with probability at most poly-fold higher.

Lemma (Informal). Fix and suppress some input distribution (generated by an input generating machine).
Let RWS be a normal rewinding strategy for (P,V) with runtime and probability tightness poly. If
〈P,V∗〉 is CEPT with virtually expected time (t, ε), then RWS(V∗) is CEPT with virtually expected time
(poly · t, poly · ε). Moreover, outV∗〈P,V∗〉 ≡ RWS(V∗), i.e. the output is identically distributed.

A hidden requirement (Relative efficiency). A property which is hardly visible in the concrete
setting, but necessary for our abstract results, is relative efficiency of (oracle) algorithms. Roughly
an oracle algorithm B is efficient relative to A with runtime tightness (polytime, polyvirt) if for all
oracles O: If timeA+O(AO) is virtually expected (t, ε)-time, then timeB+O(BO) is virtually expected
(polytime · t, polyvirt · ε)-time. Note the similarities with the lemma for normal rewinding strategies.
Indeed, runtime tightness of RWS corresponds to polytime and probability tightness to polyvirt.

Abstracting Step 2 (Simple assumptions). To move from a rewinding strategy RWS to a bb-rw
simulator Sim, we argue by a reduction to a simple assumption. Roughly, a simple assumption is
a pair of efficiently computable oracles C0 and C1, and the assumption that C0

c
≈ C1, i.e. C0 and C1

cannot be distinguished in PPT. For example, hiding resp. binding for a commitment scheme are simple
assumptions. In fact, a merge of hiding and binding (as used in Step 2) is also a simple assumption.

The indistinguishability of RWSV∗
and SimV∗

is reduced to a simple assumption. That is, there
is some algorithm R such that RWSV∗

≡ RC0(V∗), and RC1(V∗) ≡ SimV∗
. Moreover, we assume

that RC0(V∗) is efficient relative to RWSV∗
, and SimV∗

is efficient relative to RC1(V∗). The proof
for outV∗〈P,V∗〉

c
≈ SimV∗

is as follows: By relative efficiency RC0(V∗) is CEPT if RWSV∗
is CEPT.

Since C0
c
≈ C1, by a standard reduction, if RC0(V∗) is CEPT, so is RC1(V∗), and their outputs are

indistinguishable. Finally, since SimV∗
is efficient relative to RC1(V∗), SimV∗

is CEPT and the output is
indistinguishable from RWSV∗

, which is distributed as outV∗〈P,V∗〉 by normality of RWS.

Putting it together (Benign simulators). Black-box simulators whose security proof follows the
above outline are called benign. See Fig. 1 for an overview of properties and their relation.

Lemma (Informal Lemma 5.35). Proof systems with benign simulators are auxiliary-input zero-knowl-
edge against CEPT adversaries. In particular, benign simulators handle CEPT adversaries in CEPT.

Proof summary. The outlined strategy above can be summarised symbolically:

outV∗〈P,V∗〉 ≡ RWS(V∗) ≡ RC0(V∗)
c
≈ RC1(V∗) ≡ Sim(V∗)

An important point is that the right algorithm in any “≡” above is efficient relative to the left one, and
that RCb(V∗) are both CEPT if one is, since CEPT is preserved under indistinguishability transitions.

Sequential zero-knowledge. The observant reader may wonder why we require polynomial tight-
ness bounds all over the place. Indeed, they are not necessary for auxiliary input zero-knowledge.
However, due to a posteriori runtime and designated adversaries, we were unable to prove sequential
composition results without having some means to bound the runtime over multiple invocations of a
simulator. Consider a sequential repetition of a zero-knowledge proof. Suppose we only know that
SimV∗

is CEPT if the real execution 〈P,V∗〉 is. Then we do not know how to prove (or disprove) that
the runtime does not explode under sequential repetition of Sim. More concretely, suppose poly-fold
repetition is not CEPT for some adversary. We would like to derive a contradiction (to output quality
or efficiency of CEPT without repetition). Since we see no other means, we try a hybrid argument.
Intuitively, at some point, there should be a “transition from efficiency to inefficiency” which we could

8

CEPT characterisation
Corollary 3.8

standard reduction
Section 4.2

comp. ind. to stat. ind.
Section 3.3 & Appendix C.6

aux. input ZK
Definition 5.2

benign
Definition 5.32

query-benign
Definition E.13

normal RWS
Definition 5.19

eff. rel. to
Section 4.4

simple ass.
Section 4.3

normal RWS
Definition 5.19

“efficiency notion”
Appendix E.4

query ind.
Appendix E.1

sequential ZK
Definition 6.1

?

Figure 1: A rough overview of dependencies of results and definitions. The top line is implicitly present
almost everywhere. Many intermediate non-core results are left out, e.g. Lemma 4.21 and
size-guarding. The greyed out approach follows [KL08] more closely.

catch and distinguish. However, there are two big problems: We do not know when such a transition
happens (or if there is a boundary at all); a naive hybrid distinguisher may thus be inefficient. Perhaps
worse, while the CEPT characterisation ensures that indistinguishable from CEPT remains CEPT, but
distinguishable from some CEPT runtime does not imply a runtime is not CEPT! (Case in point: Constant
runtimes are easily distinguished, yet CEPT.)

The above shows that arguing efficiency of Sim under sequential composition is surprisingly non-
trivial. Thus, we provide an explicit definition of sequential zero-knowledge, and prove that benign
simulators do compose sequentially. This follows because, normal RWS and relative efficiency compose
sequentially. Moreover, simple assumptions satisfy indistinguishability under “repeated trials” which
translates to sequential composition of benign.

Lemma (Informal Lemma 6.4). Proof systems with benign simulators are sequential zero-knowledge
against CEPT adversaries.

Size-guarded security. Lastly, we mention a possible relaxation. In our definition of zero-knowledge,
a simulator’s runtime must be closely related to the prover’s and adversary’s runtime. In particular,
Sim is allowed almost no overhead in |x| (compared with P), because fat tailed input distributions
would render it inefficient. This can relaxed by size-guarding the protocol. This means that prover (and
verifier) reject inputs which exceed the length of a (polynomial) size-guard gd. Size-guards “decouple”
efficiency of simulator and prover w.r.t. |x|, simplify efficiency arguments, but slightly weaken security.

1.5. Contribution
Our main contribution is the reexamination of the notion of runtime in cryptography. We offer a novel,
and arguably natural, solution for a problem that was never fully resolved. Our contribution is therefore
primarily of explorational and definitional nature. More concretely:

• We define CEPT, a small relaxation of EPT, and give a convenient characterisation.

9

• To the best of our knowledge, this is the first work which embraces uniform7 complexity, a
posteriori efficiency, expected time, and designated adversaries and consequently develops tools
for zero-knowledge in this setting. Our tools include, normal rewinding strategies, relative
efficiency, simple assumptions,8 and benign simulators.

• Easy-to-check criteria show that many (all known?) black-box zero-knowledge proof systems
from standard assumptions in the plain model9 have CEPT simulators which handle designated
CEPT adversaries. Consequently, security against designated adversaries is natural.

• We impose no (non-essential) restrictions on the adversary, nor do we need additional (hardness)
assumptions. See Section 1.6 for a comparison with prior work.

All of this comes at a price. Our notions and proofs are not complicated, yet somewhat technical. This
is, in part, because of a posteriori runtime.

Overall, this work proposes a new notion of efficiency and demonstrates its viability for zero-
knowledge. It stops short of covering the full real-ideal paradigm, let alone environmental security. It
also leaves open important compatibility questions with superpolynomial hardness assumptions. See
Section 7, where we discuss some open problems. Tackling these (more complex) settings now seems
premature and detrimental for comprehensibility, which already suffers from the technical issues we
face.

A complexity theoretic perspective. This work is only concerned with the complexity class of
feasible attacks, and does not assume or impose complexity requirements on protocols.10 Due to
designated adversaries, the complexity class of adversaries is (implicitly) defined per protocol, similar
to [KL08]. We bootstrap feasibility from complexity classes for (standalone) sampling algorithms, i.e.
algorithms with no inputs except κ. Hence a (designated) adversary is feasible if the completed system
of protocol and adversary (including input generation) is CEPT (or more generally, in some complexity
class of feasible sampling algorithms).

The complexity class of simulators is relative to the adversary, and thus depends both on the protocol
and the ideal functionality. Namely, feasibility of a simulator Sim means that if an adversary A is
feasible (w.r.t. the protocol), then “Sim(A)” is feasible (w.r.t. the ideal functionality).

Due to our focus, we give no (general) definitions of these complexity classes in the real-ideal setting,
but only their specialisations to zero-knowledge, Definitions 5.2 and 6.1.

1.6. Related work
We are aware of three (lines of) related works: The results by Katz and Lindell [KL08] and those of
Goldreich [Gol10], both focused on cryptography. And the relaxation of EPT for average-case complexity
by Levin [Lev86]. A general difference of our approach is, that we treat the security parameter separate
from input sizes, whereas [KL08; Gol10] assume κ = |x|. Our notion of size-guarding mirrors this
weakened security (as it prevents problems of expected polynomial size inputs).

Comparison with [KL08]. The work of Katz and Lindell [KL08] attacks the problem of expected
polynomial time by using a superpolynomial runtime cutoff. They show that this cutoff guarantees a
(strict) EPT adversary. However, for the superpolynomial cutoff, they need to fix one superpolynomial

7Our results are applicable to a minor generalisation of the non-uniform setting as well, namely non-uniformly generated
input distributions, see Appendix F.7.

8Simple assumptions are essentially falsifiable assumptions in the sense of [GW10]. However, our setting is not an
impossibility setting, and one can allow broader classes of assumptions. We do not pursue that, since all of our examples
only rely on simple assumptions.

9 Unfortunately, problems might arise with superpolynomial hardness assumptions, see Section 7.
10A sensible complexity class for protocols should compose well in any situation, hence be far more restrictive than the class

of feasible attacks. Indeed, even the machine model may be different. Protocols should be uniform (classical) computations,
even when assuming non-uniform hardness (or quantum adversaries).

10

function α and have to assume security of primitives w.r.t. (strict) α-time adversaries. Squinting hard
enough, their approach as dual to ours. Instead of assuming superpolynomial security and doing a
cutoff, we “ignore negligible events” in runtime statistics, thus doing a “cutoff in the probability space”.

Interestingly, their first result [KL08, Theorem 5] holds for “adversaries which are EPT w.r.t. the real
protocol”. Their notion is minimally weaker than ours, as it requires efficiency of the adversary for all
inputs instead of a sequence of input distributions.11 [KL08, Section 3.5] claims that other scenarios, e.g.
sequential composition, fall within [KL08, Theorem 5]. Their modular sequential composition theorem,
however, requires that subprotocol simulators are “expected polynomial time in any interaction”, which
is not implied by [KL08,Theorem 5]. Our approach of sequential security may close this gap, as protocols
can be replaced by simulation en bloc, which gives a new CEPT adversary per protocol replacement.

Comparison with [Gol10]. Goldreich [Gol10] strengthens the notion of expected polynomial time
to obtain a complexity class which is stand-alone and suitable for rewinding based proofs. He requires
expected polynomial time w.r.t. any reset attack, hence restricts to “nice” adversaries. With this, normal (in
the sense of [Gol10]) black-box simulators run in expected polynomial time, essentially by assumption.
This way of dealing with designated adversaries is far from the spirit of our work.

Comparison with [Lev86]. The relaxation of expected polynomial time adopted by Levin [Lev86]
and variations [Gol11b; Gol10; BT06] are very strong. Let T be a runtime distribution. One definition
requires that for some poly and γ > 0, P(Tκ > C) ≤ poly(κ)

Cγ for all κ and all C ≥ 0. Equivalently,
E(T γκ) is polynomially bounded (in κ) for some γ > 0. Introducing negligible “errors” relaxes the notion
further. This definition fixes the composition problems of expected polynomial time. But arguably, this
stretches what is considered efficient far beyond what one may be willing to accept. Indeed, runtimes
whose expectation is “very infinite” are considered efficient.12 The goals of average case complexity
theory and cryptography do not align here. We stress that our approach, while relaxing expected
polynomial time, is far from being so generous.

(For completeness, we note that we are not aware of work on designated adversaries in this setting.)

More related work. Hofheinz, Unruh, and Müller-Quade [HUM13] define PPT with overwhelming
probability (w.o.p.) — essentially CPPT — but treat good compositional properties in the setting of
universal composability. Goldreich [Gol11a] defines typical efficiency similar to CPPT (resp. PPT w.o.p.),
although in the setting of complexity theory. As the relaxations for strict bounds is very straightforward,
we suspect more works using CPPT variations for a variety of reasons.

Halevi and Micali [HM98] define a notion of efficiency for extractors, which may be viewed as a
(special case of) relative efficiency.

1.7. Structure of the paper
In Section 2, we clarify preliminaries, such as (non-)standard (notational) conventions and terminology.
We also state some basic concepts and results. The definition of CEPT and its characterisation is in
Section 3. In Section 4, we build some first tools for working with CEPT. In Section 5, we finally apply
CEPT to zero-knowledge. We define (uniform complexity auxiliary input) zero-knowledge, rewinding
strategies, query indistinguishability, benign simulation. Lastly, in Section 6, we define sequential zero-
knowledge and prove that benign simulators satisfy it as well. We conclude in Section 7.

In Appendix A, we give a detailed discussion on the effect of machine models and their (in)com-
patibility with expected time. Appendix B merely contains some simple but useful results for our

11Their definitions are a consequence of their non-uniform security definition and complexity setting. The proof of [KL08,
Theorem 5] never changes adversarial inputs, so there is no obstruction to handling designated adversaries in our sense.

12For example, the distribution X = Xκ in Footnote 4 with c = 2 and γ = 3 has expectation
∑

n n, but is considered
efficient. (The limit − 1

12
is not applicable here.)

11

general discussion of runtime classes in Appendix C. Appendix D contains supplementary definitions
for commitment schemes. For completeness, we show in Appendix E that our approach is applicable
even if we follow the work of Katz and Lindell [KL08] much more closely, although at the expense
of more convoluted proofs. Lastly, in Appendix F, we discuss many points of lesser importance, give
examples or fill in some details.

See page 78 for the table of contents.

2. Preliminaries
In this section, we state some basic definitions and (non-)standard conventions.

2.1. Notation and basic definitions
We denote the security parameter by κ; it is often suppressed. Similarly, we often speak of an object
X , instead of a family of objects (Xκ)κ parameterised by κ. By Dists(X) we denote the space of
probability distributions on X .13 We write X ∼ Y if a random variable X is distributed as Y . For
random variablesX , Y over a (partially) ordered set (A,≤) we writeX ≤ Y if P(X ≤ a) ≥ P(Y ≤ a)
for all a ∈ A and say Y dominates X (or is greater than X in distribution). We use the same notation
for families of random variables, i.e. we write X ≤ Y and mean Xκ ≤ Yκ for all κ. We write X|a7→b
(resp. X|S 7→b, resp. X|pred7→b) for the random variable where a (resp. any a satisfying a ∈ S resp.
pred(a) = 1) is mapped to b, and everything else unchanged, e.g. X|⊥7→0 or X|S 7→0 or X|≥N 7→N .

We define statistical distances ∆p(ρ, σ) of distributions (i.e. measures) ρ, σ over a countable set Ω
as ∆p(ρ, σ) =

1
2(
∑

x∈Ω|ρ(x)− σ(x)|p)1/p, where ρ(x) := ρ({x}) is the probability for x under ρ and
likewise for σ. For p =∞ this is 1

2 supx∈Ω|ρ(x)−σ(x)|. Recall that∆1(ρ, σ) = supX⊆Ω|ρ(X)−σ(X)|.
We refer to the variational distance∆(·, ·) := ∆1(·, ·) as the statistical distance. We call Drat(ρ/σ) :=

supx
ρ(x)
σ(x) (where 0

0 = 0) the sup-ratio of ρ over σ; ρ and σ may be arbitrary non-negative functions.
With poly, polylog, and negl we denote polynomial, polylogarithmic and negligible functions (in κ)

respectively. Usually, we (implicitly) assume that poly, polylog, and negl are monontone. A function
negl is (polynomially) negligible if limκ→∞ poly(κ)negl(κ) = 0 for every polynomial poly. In many
definitions, we assume the existence of a negligible bound negl on some advantage ε = ε(κ). We
generally use “strict pointwise ≤” for bounds, e.g. ε ≤ negl denotes ∀κ : ε(κ) ≤ negl(κ). We avoid
“eventually ≤”, denoted ε ≤ev negl (defined via ∃C∀κ > C : ε(κ) ≤ negl(κ)). If ε ≤ev negl, then
max{ε(κ), negl(κ)} =: ν(κ) is negligible and ε ≤ ν, hence this makes no difference in most situations.
However, “≤” behaves “more intuitively” than “≤ev” in some sense.14

2.2. Systems, algorithms, interaction and machine models
More detailed discussion of (unexplained) terms in this section are in Appendix A.

Machine models. We fix some admissible machine model; this ensures that emulating a system of
interacting machines has small overhead. The reader may assume a RAM model without much loss. In
particular, polylogarithmic (emulation) overhead is acceptable in our setting, see. Appendix A.4. More
precisely, EPT also needs a suitable strict runtime bound, e.g. 2κ, but CEPT not (due to virtuality).

13We assume that X has some (obvious) associated σ-algebra and consider only probability distributions w.r.t. this σ-algebra.
14When infinitely many functions are considered, ≤ and ≤ev behave differently. For ≤ev, any countable set of negligible

functions is ≤ev-dominated by some negl, c.f. [Bel02]. This is false for ≤. Indeed, ≤ev behaves unintuitive. Consider
a sum of a growing number (in κ) of negligible functions νi. It is well-known that µ(κ) :=

∑κ
i=1 νi(κ) need not be

negligible, even if all νi are negligible. But if all νi are “strictly dominated” by some ν, i.e. νi ≤ ν, then µ(κ) ≤ κν(κ)
hence µ is negligible. However, if all νi are only “eventually dominated”, i.e. νi ≤ev ν, then the standard counterexample
(νi(j) = 1 if i = j and 0 else) shows that µ need not be negligible. Concretely, ν = 0 eventually dominates all νi, yet
µ(n) = 1 > 0 = nν(n). In conclusion, ≤ev has a rather counterintuitive behaviour, and should be used with care.

12

Systems, algorithms and oracles. We always consider (induced) systems, which offer interfaces
for (message-based) communication. Input and output are modelled as interfaces as well, the security
parameter is an implicit input interface of (almost) every system. A system is a “mathematical” object,
which defines (probabilistic) behaviour of the offered interfaces. An algorithm is given by code, a
finite 15 string describing the behaviour and interfaces, and has a notion of runtime and randomness
interface (e.g. random tape) which are imparted on it by the machine model. Oracles or parties are,
unless stated otherwise, algorithms, which are only used via their interface. To emphasise availability of
a certain oracle to some algorithm, we speak of oracle algorithms. A timed oracle offers an extended
interface to its caller, which allows to bound the maximum time spent in an invocation (and return
timeout if the allotted time is exceeded), and also returns the elapsed time of any invocation. Oracles
also serve as a means to make subroutine calls explicit. A timeful oracle is a system, for which some
notion of purported elapsed runtime is defined. For consistency, the purported elapsed runtime is
always at least the answer length of an invocation, and this is usually also the runtime notion of interest.
Timeful oracles (or systems) are used primarily as a convenient abstraction for defining unconditional
properties, e.g. EPT in any interaction. Timeful oracles can also be timed in the obvious manner.

Interaction. It will always be clear from the context how interfaces are used or connected. Interactiv-
ity is implicit, and implied by open interfaces. Let A1,A2 be a algorithms (or more generally, systems).
For connecting A1 and A2, i.e. interaction, with (fixed) inputs x, y, z, we write 〈A1(x, z),A2(y, z)〉. The
result is another algorithm (or system), where we write outAi〈A1,A2〉 for the output (interface) of Ai
for i = 1, 2. We write AO for an algorithm (or system) A, with access to an oracleO (whereO may be a
subroutine, e.g. a commitment scheme). This notation emphasises, that the output of the system is that of
A. Otherwise, the system is equivalent to 〈A,O〉, or even OA. In particular, we view interaction, oracle,
and subroutine calls as essentially identical and use the notation interchangeably if no confusion arises.
Black-box rewinding (bb-rw) access to an algorithm A (or timeful system) means access to an oracle
emulating A with fresh but fixed randomness, which allows to feed A messages and rewind it to any
visited state. For simplicity, we model this as a NextMsgA function, which upon a query (m1, . . . ,mn)
returns the result of A when givenmi as its i-th message.16 A timed bb-rw oracle truncates and returns
the runtime of its emulated program.

2.3. Preliminary remarks on runtime
The full discussion of runtime is in Appendix C, and meant for the inclined reader. This section contains
all essential definitions for Section 3 and later sections, which only deal with polynomial times, namely
PPT, EPT, CPPT and CEPT.

For an oracle algorithm A, we write timeA(AO) for the time spent in A (called oracle-excluded
time), timeO(AO) for the time spent in O, and timeA+O(AO) for the time spent in both (called oracle-
included time). This notation extends naturally to interaction and other systems built from interacting
machines. If not all randomness is fixed, a runtime T , such as T = timeA(AO), is a random variable, or
more precisely, a sequence of random variables Tκ parameterised by κ. We assume that an oracle call is
a single step and that runtimes sum up, i.e. timeA(AO) + timeO(AO) = timeA+O(AO), as dependent
random variables.

Definition 2.1 (Preliminary definitions). A runtime (distribution) T is a family of random variables
(resp. distributions) over N0 parameterised by the security parameter κ. We (only) view a runtime as a
random variable Tκ : Ωκ → N0, when stochastic dependency is relevant.

A runtime class T is a set of runtime distributions. An algorithm A is T-time if timeA(A) ∈ T.

15Non-uniform notions deviate here and allow infinite descriptions.
16There are technical problems with the efficiency of this approach, which we ignore here. They can be solved in a

straightforward way, see Appendix A.

13

The default notion of runtime for an oracle algorithm AO is oracle-excluded-time, but we usually
specify exactly what is considered.

Our definition of runtime does not take inputs into account. Thus, efficiency depends only on κ.
In particular, we do not assign a stand-alone runtime to a non-closed system, e.g. an algorithm A
which needs inputs (resp. oracle access, resp. communication partners). The exception to the rule are a
priori PPT resp. EPT algorithms A, for which there is a bound poly such that timeA(. . .) ≤ poly resp.
E(timeA(. . .)) ≤ poly for any choice of inputs (resp. oracles, parties).

Remark 2.2. Since our notion of efficiency is asymptotic in the security parameter alone, we do not
pass around 1κ as “fuel” for algorithms. Still every algorithm is given κ as (implicit) input.

Our central tool for dealing with expected time is truncation. Also recall that timed oracles abstract
the ability to truncate executions.

Definition 2.3 (Runtime truncation). Let A be an algorithm. We define A≤N as the algorithm which
executes A up to N steps, and then returns A’s output. If A did not finish in time, return timeout.

Lastly, we offer a warning.

Remark 2.4. We warn the reader to be wary about the interaction of machine models and runtime
notions. Technical problems pop up easily, yet seem to be just that — technical. The most prominent
example is the failure of the “next-message” definition of black-box rewinding access. In Appendix A,
such problems are discussed in more detail.

2.4. Probability theoretic conventions
The underlying probability space is usually denoted by Ω. We neglect measurability questions because
they do not pose any problems and are merely trivial technical overhead, see Appendix F.9 for a brief
discussion.

We allow product extension of Ω to suit our needs, say extending to Ω′ = Ω × Σ with Bernoulli
distribution Ber(13) on Σ = {0, 1}. Random variables over Ω are lifted implicitly and we again write Ω
instead of Ω′. Let N0 ∪ {∞, timeout} be totally ordered via n <∞ < timeout for all n ∈ N0.

Definition 2.5 (ν-quantile cutoff). Let T be a distribution on N0 ∪ {∞} and ν > 0. Suppose that
P(T =∞) ≤ ν.17 The (exact) ν-quantile (cutoff) T ν is following distribution on N0 ∪ timeout. Let
CDFT (·) : N0 ∪ {∞} → [0, 1] be the CDF of T . Then CDFT ν(·) : N0 ∪ timeout→ [0, 1] is defined
by CDFT ν(n) = max{1− ν,CDFT (n)} for n ∈ N, and CDFT ν(∞) = limn→∞max{1− ν,CDFT (n)},
hence P(T ν =∞) = 0, and CDFT ν(timeout) = 1,

An exact ν-quantile cutoff for a random variable T : Ω → N0 ∪ {∞} can be constructed by: First
pick N = inf{n | P(T > n) ≤ ν}. If P(T > N) =: ν ′ equals ν, let T ν := T |·>N 7→timeout. Else, pick a
(measurable) subset of A = {ω ∈ Ω | T (ω) = N} of probability ν − ν ′, and let T ν := T |A 7→timeout. If
necessary, modify Ω. So we assume w.l.o.g. that there is such a set of events. An approximate ν-quantile
cutoff with error δ is an exact ν ′-quantile cutoff, where ν ≤ ν ′ ≤ ν + δ.

In case of discrete distributions, one can find a unique maximal (measurable) subset A (e.g. minimal
by lexicographic order), and a unique atomic event which may have to be split betweenN and timeout.
By modifying Ω to Ω × {0, 1}n, an approximate cutoff with error at most to 2−n is possible. Using
Ω× Ber(ν − ν ′), exact cutoffs are possible.

Remark 2.6 (Equal-unless). If X,Y : Ω→ S are random variables over Ω and coincide (as functions),
except for an event E ⊆ Ω, then X and Y are (pointwise) equal unless E. Typically, E = {ω |
Y (ω) = bad (for some symbol bad)), and we say X equals Y unless bad happens. We also say X and
Y coincide unless (or agree except) if bad happens. The definition extends to oracles in the obvious
manner.
17It is straightforward to deal general ν ≥ 0. But distributions S over N0 ∪ {∞} ∪ timeout with P(S = ∞) > 0 are not

particularly useful for us.

14

The relaxed notion of (distributionally) equal unless is defined as follows: Let X and Y be two
random variables and let bad be a symbol that only Y outputs. We say X and Y are equal unless bad,
if ∆(X,Y) ≤ P(Y = bad). That is, Y can be changed into X by modifying the distribution only on
bad. In other words: We can view X and Y as generated by a random variables Z , ZX , ZY , as follows:
With probability 1− ε = P(Y 6= bad) output Z , else output ZX ; this is distributed like X . If instead
we output ZY , it is distributed like Y .

LetO andO′ be two oracles and let bad be a symbol that onlyO′ outputs. Suppose that, ifO′ output
bad, it halts (and the answer to any follow-up query is bad by definition). Denote by X(~m) the k-th
output ofO givenm0, …,mk as queries. Denote by Y (~m) the same forO′. We sayO andO′ are equal
unless bad, if for all query sequences ~m, X(~m) and Y (~m) are equal unless bad.

2.4.1. Tail bounds

Tail bounds for distributions are the core tool for (runtime) cutoffs. For example, they allow to estimate
how much the adversarial advantage suffers if we truncate.

Definition 2.7 (Tail bounds). Let X be some distribution on R≥0. We call a continuous decreasing
function tail : R≥0 → R≥0 a tail bound of X if ∀x ∈ R≥0 : P(X > n) ≤ tail(n).

Moreover, we write tail† : R≥0 → R≥0 ∪ {∞} for tail†(α) = inf{n | tail(n) ≤ α}, which satisfies
tail(tail†(α)) ≤ α. More generally, we call an upper bound bnd of some sequence (xn)n a tail bound,
i.e. xn ≤ bnd(n) for all n.

Tail bounds generalise to distributions over R≥0 ∪ {∞, timeout}, etc.
The optimal tail bound is tail(n) = 1 − CDFX(n), where CDFX is the cumulative distribution

function of X . We use tail†(α) to conveniently denote the minimal nα with tail(nα) ≤ α, which exists
due to continuity of tail.

For strict runtimes, e.g. strict polynomial time, the time bound is an admissible tail bound. More
generally, we recall following lemma:

Lemma 2.8 (Markov bound). Let X be a distribution on R0 and suppose E(X) ≤ t. Then tail(n) = 1
n t

is an admissible tail bound and tail†(α) = 1
α t. For Lp-norms, i.e. ‖X‖p = (E(Xp))1/p ≤ t, we have

tail(n) = (tn)
p, and hence tail(n) ≤ t

n if n ≥ t.

For simple corollaries concerning runtime truncation and bounds, see Appendix B.2.

2.5. Oracle-indistinguishability
The (in)distinguishability of oracles (or systems) is a folklore abstraction. “Bit-guessing” experiments,
or more generally game-based security notions can be straightforwardly rephrased as an oracle pair,
see Appendix F.2. Depending on the oracles (or systems) and their interfaces, distinguishing can
encompass (adversarial) input generation, protocol runs, and more. For example, an oracle present
an IND-CPA game for public key encryption, or it may present the distinguisher with a concurrent
zero-knowledge setting.

Definition 2.9 (Oracle-indistinguishability). Let O0 and O1 be (not necessarily computable) oracles with
identical interfaces. A distinguisher D is a system which connects to all interfaces or O0, O1, resulting
in a closed systems DOb . The (one-shot) distinguishing advantage of D is defined by

AdvdistD,O0,O1
(κ) = |P(DO1(κ) = 1)− P(DO0(κ) = 1)|.

By abuse of notation, we sometimes abbreviate AdvdistD,O0,O1
by AdvdistD,O .

Let T ∈ {PPT,CPPT,EPT,CEPT}. Then O0 and O1 are computationally (one-shot) indis-
tinguishable inT-time, writtenO0

c
≈T O1 if for anyT-time distinguisherDwith timeD(DOb(κ)(κ)) ∈

15

T (for b = 0, 1)18 there is some negligible negl such that AdvdistD,O(κ) ≤ negl. We define statistical
indistinguishability by counting only oracle-queries as runtime.

Perfect indistinguishability is special, and we reserve the notation “≡” for it.
Definition 2.10. Oracles O0, O1 (or systems, or algorithms), for which any (statistical unbounded)
distinguisher has advantage 0 are called perfectly indistinguishable. We also write O0 ≡ O1 to
emphasise this.

2.6. Query-sequences
We use following definition and notation to denote the sequence of queries made by an algorithm to its
oracle.

Definition 2.11 (Query-sequence). Let AO be an oracle algorithm. The query-sequence qseqO(AO(x))
is the (distribution of the) sequence of queries made by A to O. We view qseqO(AO(x)) as an oracle,
which grants lazy (tape-like) access to the queries.

3. Computationally expected polynomial time
In this section, we define computationally expected polynomial time (CEPT), briefly recap the general
results of Appendix C for polynomial runtime classes, and have a first glimpse of the behaviour of
CEPT. The inclined reader may wish to continue with Appendix C instead; it deals with runtime classes
in more generality.

Before defining CEPT, we take a brief look at a handy formalisation.

3.1. Virtually expected time
We are interested in properties, which need not hold in any event. It is sufficient that these properties
hold with overwhelming probability. We formalise this for the expectation of non-negative random
variables as follows.

Definition 3.1 (Virtual expectation). Let X : Ω → R≥0 ∪ {∞} Let ε > 0. We say X has ε-virtual
expectation (bounded by) t if

∃G ⊆ Ω: P(G) ≥ 1− ε ∧ E(X |G) ≤ t

We extend this to families by requiring it to hold component-wise. Moreover, we say a runtime T
is ε-virtually t-time if T has ε-virtual expectation bounded by t. We abbreviate this as virtually
expected (t, ε)-time and call ε the virtuality of time (t, ε). Finally, if we do not specify ε, then ε is a
negligible function, that is, virtually expected t-time means negl-virtually t-time for some negl.

The definition of virtual properties has a “probably approximately” flavour. It is closely related to
“ε-smooth properties”, such as ε-smooth min-entropy, which smudge over statistically close random
variables (instead of conditioning).19 Virtual properties must behave well under restriction (up to a
certain extent).

Lemma 3.2. Let X : Ω → R≥0 be a random variable and E(X) = t. Then any restriction of X to an
event G of measure 1− ε implies E(X |G) ≤ (1− ε)−1t.

The upshot of Lemma 3.2 is that, as long as we condition on overwhelming events G, polynomially
bounded expectation E(X) is preserved. In fact, it suffices that G is noticeable. Thus, consecutive
restrictions of Ω are unproblematic.
18This is equivalent to being efficient in the respective distinguishing experiment, see Definition C.13 or Appendix F.2.
19We borrowed the terminology of virtual properties from group theory.

16

Remark 3.3 (Virtual properties of distributions). A distribution ν with density ρ ≤ α−1 w.r.t. t is a
subdistribution of t of weight α. (This abstracts conditional probability distributions.) A distribution
t on R≥0 has ε-virtual expectation (bounded by) t if there is a subdistribution t′ of weight 1 − ε
with expectation bounded by t.

3.2. A brief recap
We briefly recap the essentials of Appendix C. There, we rely on triple-oracle indistinguishability, instead
of one-shot indistinguishability of runtime distributions. This abstracts technical details and prevents
technical problems.

Definition 3.4 (Informal). A triple-oracle distinguisher D for distributions X0, X1, receives access
to three oracles O0, O1 resp. O∗b , which sample according to some distributions X0, X1, resp. Xb. The
distinguishing advantage is Adv3-distD,O0,O1

= |P(DO0,O1,O∗
1 (κ))− P(DO0,O1,O∗

0 (κ))|.
Two runtime distributions T, S are computationally T-time triple-oracle indistinguishable,

if any T-time distinguisher has advantage o(1). If T contains PPT, then (by amplification) any

distinguisher has negligible advantage. We write T
c

∼∼∼T S for computationally triple-oracleT-time
indistinguishable runtimes. For statistical triple-oracle indistinguishability, we only count oracle
queries as a step.

A runtime class T is computationally closed if for all runtimes S, if there exists some T ∈ T such

that T
c

∼∼∼T S, then S ∈ T.

In the definition, we sketched our approach for general runtime classes (namely requiring o(1)
advantage bound). From now on, we specialise to the polynomial setting, where amplification enforces
negligible advantage.

Triple-oracle distinguishing should be interpreted as distinguishing with repeated samples, plus
sampling access to the distributions X0, X1. From a PPT distinguisher D′ with non-negligible advan-
tage, one can construct, by a standard hybrid argument, a PPT distinguisher D which needs only a
single challenge sample. If the distributions X0 and X1 are efficiently samplable, then, since D can
sample X0, X1 itsself, we see that triple-oracle indistinguishability is equivalent to standard one-shot
indistinguishability (where the distinguisher is given one sample of X0 or X1 as input, see Section 2.5).

Applying the above reduction concretely to runtimes T0, T1 which are induced by (emulation of) an
algorithm, reveals a problem: If T0 or T1 were not efficient, e.g. superpolynomial, then they cannot be
efficiently sampled by emulation! Thus, the reduction from triple-oracle to one-shot indistinguishability
does not work trivially.

Fortunately, given an algorithm A, its induced runtime T = timeA(A) can be sampled “continuously”,
i.e. emulation of N steps incurs only N steps plus emulation overhead. By an appropriate runtime
truncation, we can preserve efficiency. We detail this below for CEPT.

3.3. Characterising CEPT
We begin with the fundamental definition of this section.

Definition 3.5 (CEPT and CPPT). The runtime classCEPT of computationally expected polynomial
time contains all runtimes which are (triple-oracle) PPT-indistinguishable from expected polynomial
time. In other words: A runtime T is CEPT if there is an EPT T̃ , such that T and T̃ are triple-oracle
PPT-indistinguishable.

The runtime class CPPT of computationally (strict) probabilistic polynomial time is defined
analogously.

The use of triple-oracle indistinguishability in Definition 3.5 is required for consistency with our
general treatment of runtime, see Appendix C. For concrete applications, we want to get rid of it. We
do this in a sequence of lemmata.

17

Lemma 3.6. Suppose S and T are runtimes and T ∈ CEPT. Then statistical and computational triple-
oracle indistinguishability coincide. Moreover, a priori PPT distinguishers are sufficient.

Proof sketch. For T ∈ CEPT there exists, by definition, some T̃ ∈ EPT such that T
c

∼∼∼ T̃ (triple-
oracle computational indistinguishability). Hence, for any (efficiently computable) N = N(κ), we have
|P(T > N)− P(T̃ > N)| ≤ negl.

We show that T and T̃ are statistically indistinguishable as well. Assume the statistical distance
∆(T, T̃) is at least δ = 1

poly0
infinitely often. Note that P(T̃ > N) ≤ poly1

N , where E(T̃) ≤ poly1. Thus,
by truncating T , T̃ after, say N = 4poly0poly1, we know that T≤N and T̃≤N are distributions with
polynomial support in {0, . . . , N} and non-negligible statistical distance δ

4 infinitely often. Since we have
(repeated) sample access to T , T̃ and the challenge runtime, we can approximate the probability distri-
butions (by the empirical probabilities) up to any 1

poly precision in polynomial time, see Appendix B.3.
Consequently, we can construct a (computational) PPT distinguisher if T and T̃ are not statistically
indistinguishable.

The described statistical-to-computational distinguisher works for T and S as well. Let δ = ∆(T, S).
Since T ∈ CEPT, there is a suitable tail bound N with ∆(T, T≤N) ≤ δ

4 . It is easy to see that
∆(T≤N , S≤N) ≥ δ

4 .
20 If δ ≥ 1

poly infinitely often, then there is a suitable polynomial N , such
∆(T≤N , S≤N) ≥ δ

4 infinitely often. Thus, we are in the same setting as before, and can distinguish by
approximation. Lastly, note that the distinguisher we constructed is a priori PPT.

We say that PPT is distinguishing-dense (d-dense) in CEPT for runtime distributions, which means
that if (runtime) distributions can be (one-shot) distinguished in CEPT then they can be (one-shot)
distinguished in PPT.

Lemma 3.7. Suppose T and S are runtimes induced by algorithms A, B. Moreover, suppose T ∈ CEPT.
Then triple-oracle and one-shot PPT-indistinguishability coincide.

Proof sketch. Suppose T and S are triple-oracle distinguishable with advantage at least δ = 1
poly0

infinitely often. The distinguisher D′ from the proof of Lemma 3.6 is a priori PPT with advantage δ
4

infinitely often. Moreover, D′ truncates all samples at polynomial N , i.e. D actually distinguishes T≤N
and S≤N . These truncated runtime distributions can be sampled via emulation in strict polynomial
time. By sampling via emulation and a hybrid argument, we find an a priori PPT distinguisher D with
advantage at least δ

4N infinitely often.

We stress that to efficiently distinguish two induced runtimes, it is sufficient that one of the two
algorithms is efficient.21

Putting things together yields following convenient characterisation of CEPT and CPPT:

Corollary 3.8 (Characterisation of CEPT). Let T be a runtime. The following conditions are equivalent:

(0) T is in CEPT.
(1) T is (PPT-time) computationally indistinguishable from some T̃ ∈ EPT.
(2) T is (PPT-time) statistically indistinguishable from some T̃ ∈ EPT.
(3) T is virtually expected polynomial time. Explicitly: There is a negligible function negl, an event G

with P(G) ≥ 1− negl, and a polynomial poly, such that E(Tκ |G) ≤ poly(κ).

20Intuitively, either timeout accumulates a difference in probability of δ
4
, or a difference of δ

4
in probability is present on

{0, . . . , N}, see Corollary B.3.
21If neither runtime is efficient, we are in a setting where the truncation argument does not work. Indeed, strings can be

encoded as numbers, hence runtimes. Thus, this is indistinguishability of general distributions.

18

Furthermore, T ∈ CEPT satisfies the following tail bound

tailTκ(N) ≤ poly(κ)
N

+ negl(κ)

for poly and negl as in (3). Consequently, PPT is d-dense in CEPT and one can use CEPT-time
distinguishers in the above. Thus, CEPT is a closed runtime class and in fact the closure of EPT. For
induced runtimes T = timeA(A), S = timeB(B), where T ∈ CEPT, and S is arbitrary, triple-oracle
indistinguishability and standard one-shot indistinguishability coincide.
The analogous characterisation and properties hold for CPPT.

The essence of Corollary 3.8 is the equivalence of items (1) and (3). The former is easy to prove, as it
is follows by reductions to indistinguishability assumptions. The latter is easy to use, as it guarantees
that, after ignoring a negligible set of bad events, one can work with perfect EPT.

Proof sketch of Corollary 3.8. Equivalence of items (1) and (2) follows from Lemma 3.6. Now, we show
that (2) implies (3). For our triple-oracle notion, being statistically indistinguishable implies being
statistically close. Say the statistical distance is δ. Let T ν be the respective ν-quantile of T . Clearly,
T ε|timeout 7→0 minimises the value ofE(S) under the constraint that S is a non-negative random variable
with ∆(T, S) ≤ ε. By assumption, there is some δ-close EPT S. Hence, we have E(T δ

∣∣
timeout7→0

) ≤
poly. Consequently E(T δ | ¬timeout) ≤ 1

(1−δ)poly, and the claim follows.
The converse is trivial: If E(T |G) ≤ poly for an event G of overwhelming probability 1− negl, then

T̃ = T |G 7→0 is evidently EPT and has statistical distance at most negl. This finishes the equivalence of
items (1), (2) and (3).

To see the tail-bound, note that for T ∈ CEPT there is a “good” runtime T̃ ∈ EPT with∆(T, T̃) ≤
negl. Thus, the tail bound follows immediately from Markov’s bound (Lemma 2.8) applied to T̃ and
statistical distance of negl. That PPT is d-dense in CEPT is straightforward given the tail bound.
Item (1) and d-density of PPT imply that CEPT is closed.

Finally, Lemma 3.7 demonstrates the equivalence of triple-oracle and one-shot distinguishing.

4. Towards applications
Before applying CEPT, we make some global conventions, clarify our setting of uniform complexity
with input generating machines, point out some (ir)relevant choices and standard techniques, and
develop some basic tools to deal with CEPT and interactive algorithms in general.

We recommend reading Sections 4.1 and 4.2, and skipping the remaining sections until they are used
in Section 5 or later.

4.1. Conventions in our setting
In the rest of this work, T always denotes a runtime class T ∈ {PPT,CPPT,EPT,CEPT}.

4.1.1. Input generation and (non-)uniformity

For protocols, such as zero-knowledge, specification of inputs (in security definitions) is usually done via
universal quantification over inputs. In the uniform complexity setting [Gol93], we specify an efficiently
samplable input distribution instead. The machine sampling the input distribution is usually denoted
G and called the input-generating machine. For non-uniform security, we use the same definition,
but give G (and only G) an interface for tape-like access to an (unbounded) non-uniform advice string
advcκ. All other algorithms are uniform algorithms. This deviates from standard definitions [Gol01]

19

only by allowing input distributions. Non-uniformity is typically, but not always, unrelated to runtime
problems.22 See also Appendix A.5.

Notation 4.1. Let (P,V) be a two-party protocol and let G be an input generation machine (or distri-
bution). We use the shorthand notation 〈P,V〉G for the system resp. interaction of 〈P,V〉 completed
with G, e.g. 〈P(x),V(y)〉 with inputs distributed as (x, y)← G.

Remark 4.2 (Environmental distinguishing light). Having an input-generating machine G in real-ideal
settings begs the question whether it can “cooperate” with a distinguisher D in some way, e.g. whether
G and D should be considered as one machine (with shared state), a distinguishing “environment”. For
sequential zero-knowledge (Definition 6.1) we use a similar approach, see also Remark 6.2.

4.1.2. A posteriori time, a priori time, and designated adversaries

Our view on runtime of algorithms, or rather systems of machines, is mostly a posteriori. Let A be an
algorithm and E be an environment such that 〈E,A〉 is a closed system. We say A is (a posteriori) PPT
(resp. EPT, …) w.r.t. E, if timeA(〈E,A〉) is PPT (resp. EPT, …). Applying this to security notions leads
to designated adversaries, which need only be efficient for the protocol they are designed to attack,
see [Fei90] or [KL08; Gol10].

An algorithm A is a priori PPT if there is some poly, so that timeA(〈E,A〉) is strictly bounded by
poly, for any system E so that 〈E,A〉 is closed. We define a priori EPT analogously. Note that, by
definition, a priori PPT is the essentially same as a priori PPT in any interaction of [KL08; Gol10], but in
our setting where only the security parameter grants runtime. Also note that “classical” PPT algorithms
are not a priori PPT in our sense, since their runtime bound depends on the input size. We can mitigate
this by size-guarding (see Definition 5.2).

For PPT (and CPPT), the distinction of a priori PPT and (a posteriori) PPT is often insignificant. For
example, any CPPT algorithm A with virtual runtime bound poly can be truncated to poly steps, giving
an statistically indistinguishable a priori PPT algorithm A′. Thus, we can usually assume a priori PPT
for PPT adversaries.23

4.1.3. Linearity of expectation (and subadditivity)

We often consider the runtime of a subsystem, and not the whole system. We illustrate some choices
and their (ir)relevance in following example.

Suppose (P,V) is a protocol, for sake of concreteness a zero-knowledge proof system. As our
example, we consider D(outV∗〈P,V∗〉G), and think of (G,V∗,D) as the adversary. The total system
time is Ttotal := timeG+P+V∗+D(. . .). The time spent in the protocol is Tproto := timeP+V∗(. . .). The
time spent pre- and post-protocol (i.e. in the distinguishing environment) is Tenv := timeG+D(. . .)

Generally, we consider adversariesT-time if the total system time isT-time. In particular, we include
the runtime of honest parties.24 Fortunately, we can usually apply the following rules of thumb: If Ttotal is
efficient, say CEPT, then by truncation argument, there is an a priori PPT D′ with advantage at least half
that ofD′. Thus, we may assume a priori PPT D, making its runtime contribution “irrelevant”. Moreover,
by linearity of expectation, E(timeG+P+V∗(. . .)) = E(timeG(. . .)) + E(timeP+V∗(. . .)). Hence, we
can consider efficiency of E(timeG(. . .)) and E(timeP+V∗(. . .)) in isolation as well. (Virtualities
interfere mildly, see Sections 4.2 and 4.5.) For indistinguishability purposes, we can typically (by

22For example, this fails if non-uniformity breaks hardness assumptions: Suppose there exists an unkeyed collision-resistant
hash function. An algorithm’s runtime might explode when given colliding inputs. Thus, in the uniform setting, the
probability for runtime explosion is negligible, but with non-uniform advice, collisions are trivial. Hence efficiency and
security may very well depend on (non-)uniformity. On the other hand, since our results and proofs make only timed
black-box use of (adversarial) algorithms, they work in both computational models (with suitable adaptions).

23The argumentation relies on the possibilistic nature of PPT. It does not apply to other runtime classes, such as EPT
24This is a tradeoff, and has some consequences. In particular, we do not require honest parties to be “robust”; they may never

halt upon receiving an ill-formed message. Of course, from actual protocols, we want strong(er) robustness guarantees.

20

truncation arguments) assume G to be a priori PPT as well. For efficiency questions, G can usually not
be truncated (except in the presence of size-guards).

Instead of expectation, any subadditive “measure of efficiency” may be used, e.g. sup instead of E.
The total runtime is then at most the sum of its parts, i.e. we have an inequality.

4.2. Standard reductions and truncation techniques
In this section, we give some semi-abstract reduction and truncation techniques, which are a central
work-horse for dealing with designated CEPT adversaries.

Lemma 4.3 (Reduction to a priori runtime). Let O0 and O1 be two oracles. Suppose D is a distinguisher
with advantage ε := AdvdistD,O0,O1

and suppose timeD(DO0) is bounded by (t0, ν0) (with expectation t0
and virtuality ν0). Then there is a (one-shot) distinguisherA with runtime strictly bounded by t = 4t0 (up
to emulation overhead), and advantage at least ε4 − ν0. More concretely, A is a runtime truncation of D
after t steps, hence the runtime distribution ofA and D are closely related. Indeed, E(timeA(AO0)) /
(1− ν0)t0 + 4ν0ε t0 (up to emulation overhead).

Proof sketch. By assumption, there is a set of good events G so that E(timeD(DO0) | G) ≤ t0 and
P(¬G) ≤ ν0. Let A be D truncated to 4ε−1t0 steps. Let A return a random guess on timeout. The
outputs of DO0 and AO0 have statistical distance at most ε4 + ν0.

Suppose the output of AO1 has statistical distance δ of DO1 . If δ > 2ε
4 (infinitely often), then

necessarily, the probability that AO1 exceeds 4ε−1t0 steps is greater than 2ε
4 (infinitely often). Thus,

this runtime statistic can be used as a distinguishing property, with advantage at least ε4 infinitely often.
(The distinguisher A′ obtained from this returns 1 on timeout and guesses otherwise.)

Now suppose δ ≤ 2ε
4 . Then the advantage of A is at least ε

4 − ν0 (by statistical distance of the
outputs). The promised runtime bounds for A and A′ follow immediately.

In the setting of polynomial runtime, we get the following.

Corollary 4.4 (Standard reduction to PPT). Let O0 and O1 be two oracles. Suppose D a distinguisher
with advantage AdvdistD,O0,O1

at least ε := 1
poly infinitely often, and timeD(DO0) ∈ CEPT. Then there is

an a priori PPT (one-shot) distinguisher A with advantage ≥ ε
4 − negl infinitely often. More concretely,

A is a truncation of D with roughly the same runtime.

Note that D need only be efficient for O0. Corollary 4.4 follows immediately from Lemma 4.3 using
1
ε ≤ poly.
Remark 4.5 (Standard cutoff argument). The strategy in the proof of Lemma 4.3 and Corollary 4.4 is the
standard cutoff argument. It works with minor variations in many situations.

Notation 4.6. We often sloppy write
c
≈ instead of

c
≈T when specifying indistinguishability. Corollary 4.4

justifies this (for the runtime classes of interest).
Caution 4.7. A posteriori efficiency and hybrid arguments can behave unexpectedly. Even if the first
and last hybrids are efficient, that does not trivially imply the intermediate hybrids are! In particular,
the hybrid distinguisher need not be efficient. As a matter of fact, we run into such a problem for
sequential composition of zero-knowledge proofs, and require “benign” simulators to work around it.

Sometimes, one needs to truncate oracle executions, and argue about the statistical distance of output
distributions.

Lemma 4.8 (Truncation of timed oracles). Let G be an input generating machine, A be an oracle-
algorithm and O be a (probabilistic) timed oracle. Let T = timeO(AO(y)(x)), where (x, y)← G. Suppose
bnd is a bound for T , and let ε be such that P(Tκ > bnd(κ)) ≤ ε(κ). Let O′ be the truncation of O after
bnd steps. Then

P(O′ returns timeout in 〈A,O′〉G) ≤ ε.
In particular, executions using (G,O) resp. (G,O′) with A have statistical distance ε.

21

Applications of Lemma 4.8 need efficienctly computable cutoffs, in our case bnd = poly. Typically, ε
(and bnd) is found via standard tail bounds (e.g. Corollary 3.8), and we additionally truncate G in order
to get an priori PPT setting.

Proof. In the setting of Lemma 4.8, O′ and O only differ if a timeout occurs. Thus, the claim follows,
if we prove the bound ε on the timeout probability. This follows immediately from the definition of
bnd and ε.

4.3. Simple assumptions and repeated trials
To obtain nice results, we want nice “base assumptions” to reduce security to. We call these simple
assumptions. For simplicity, we do not allow (shared) setups, such as a common random string, and are
very restrictive w.r.t. the runtime of such oracles.

Definition 4.9 (PPTpa). A timeful oracle O is a priori PPT per activation (PPTpa), if there is a
polynomial poly such that if every invocation of O has runtime bounded by poly(κ).

Weaker relative notions of efficiency exists, and are sufficient for most purposes. The relevant
property for is that, if a distinguisher yields an inefficient system, then the oracle is never to blame.

Definition 4.10 (Simple assumption). Let C0 and C1 be two oracles, induced by algorithms which are a
priori PPT per activation. The assumption that C0 and C1 are indistinguishable (w.r.t. PPT adversaries) is
a simple assumption. We also say C0 and C1 form a simple assumption.

Example 4.11. Many assumptions are simple, for example one-way functions, trap-door one-way
permutations, pseudorandom functions, hiding and binding properties of commitments, IND-CPA and
IND-CCA security of public key encryption, and so on. Counterexamples are 1-more assumptions, e.g.
the one-more RSA assumption. Knowledge assumptions are not simple as well. Note that assumptions
which can be reduced to simple assumptions need not be simple.25

By definition, simple assumptions are essentially falsifiable assumptions as defined by Gentry and
Wichs [GW10]. However, the (invisible) intent of simple assumptions is that they have a simple notion
of repeated trials, and behave well in this setting.26 Since our primary setting is the plain model,
simple assumptions are a natural, but we stress that our techniques work for a much broader class of
game-based assumptions.

Definition 4.12 (Repeated oracle access). Let O be an oracle. We denote by rep(O) an oracle which
offers repeated access to independent instances of O. For example, rep(O) may implement this by
expecting message tuples (i,m) of oracle index i and querym, and a special message which starts a
new independent copy of O, increasing the maximal admissible index i by 1. We denote by repq(O) an
oracle which limits access to a total of at most q instances of O. (Effectively, the admissible indices are
1, . . . , q.)

Note that rep(O) = rep∞(O).

Definition 4.13 (Indistinguishability under repeated trials). Let O0 and O1 be two oracles. Let D be a
distinguisher. The distinguishing advantage under q-repeated trials is

Advq-rt-distD,O0,O1
(κ) = AdvdistD,repq(O0),repq(O1)

(κ),

25For example, “soundness” of smooth projective hash functions [CS02] and derived non-interactive zero-knowledge argument
systems [KW15] are no simple assumptions. (Without extractability, i.e. proof of knowledge, it is hard to check whether a
“proof” was simulated, i.e. the experiment is inefficient.)

26Indeed, typical 1-more assumptions have a meaningful notion of security under repeated trials as well, but Definition 4.12
is too coarse to capture this, as it postulates independent instances. For example, given two 1-more-dlog oracles for a
deterministic group generator, it is easy to win in one of the 1-more dlog instances; but by correlating the repeated oracles,
one can also embed a 1-more-dlog challenge.

22

where repq(O) is the q-fold repeated access oracle of Definition 4.12. In other words, the distinguisher
has access to (at most) q independent instances of Ob (for b = 0, 1).

Let T ∈ {PPT,CPPT,EPT,CEPT}. We say O0 and O1 are T-time indistinguishable under q
(repeated) trials, if Advq-rt-distD,O (κ) = negl for anyT-time distinguisherD which creates at most q queries
instances ofOb. We sayO0 andO1 areT-time indistinguishable under (unbounded many) repeated trials,
if they are T-time indistinguishable for q =∞ repeated trials.

As usual, we define statistical indistinguishability by counting only oracle-queries as runtime.
Simple assumptions are under repeated trials against PPT (or CEPT) adversaries.

Lemma 4.14 (Hybrid lemma for simple assumptions). Let C0 and C1 be two oracles forming a simple
assumption. Suppose D is a CEPT distinguisher with q trials and advantage |AdvdistD,C| ≥ ε = 1/poly
infinitely often. Suppose timeD(DC0) is bounded by (t0, ν0) (with expectation t0 and virtuality ν0 not
necessarily polynomial). LetM(κ) ≥ min(q(κ), 4ε−1t0) be an (efficiently computable) polynomial upper
bound. Then there is an a priori PPT one-shot distinguisherA with advantage at least 1

M (ε4 −ν0) infinitely
often. More concretely,A is the hybrid distinguisher which is truncated according to Lemma 4.3.

We remark that ε = 1
poly and t0 polynomial implies thatM is polynomial and 1

M (ε4 − ν0) ≥
1

poly′ for
some poly′.

Corollary 4.15. Let C0 and C1 form a simple assumption, in particular, C0
c
≈ C1. Then rep(C0) and

rep(C1) form a simple assumption, in particular, rep(C0)
c
≈ rep(C1).

Proof of Lemma 4.14. First apply Corollary 4.4 to get an a priori PPT distinguisher A′. Note that we
treat distinguishing under repeated trials as one-shot distinguishing O∗0 = rep(C0) and O∗1 = rep(C1).
Thus, we end up with advantage ε

4 − ν0 and runtime bound roughly 4ε−1t0, where (t0, ν0) is virtually
expected time of D as in Lemma 4.3. In particular, A′ can make at mostM(κ) queries.

Now, we rely on the efficient implementation of C0, C1 to implement the hybrid distinguisher. That
is, A simulates all but one of theM instances, and embeds the challenge oracle Cb into the randomly
chosen instance. The claim follows.

The loss of advantage in Lemma 4.14 is very coarse, and can be refined if better bounds on the
distribution of the number of queries made by the distinguisher are available, see Corollary B.8. Also,
Definition 4.13 and Lemma 4.14 generalise to any algebra-tailed runtime class, and one can give a triple-
oracle variation of Definition 4.13 and Lemma 4.14, but we have no use for this.

4.4. Relative efficiency
By considering a posteriori runtime and designated adversaries, we lack a notion of “absolute” efficiency
of an algorithm (or timeful system). We make up for this by using a relative notion of efficiency, which
becomes a definitional cornerstone in our setting.
Definition 4.16 (Relative efficiency). Let A and B be two (interactive) algorithms (or timeful systems) with
identical interfaces. We say that B is weakly (T,S)-efficient relative to A w.r.t. (implicit) runtime
classes T, S, if for all (algorithmic) distinguishing environments E (which yield closed systems 〈E,A〉,
〈E,B〉)

timeE+A(〈E,A〉) ∈ T =⇒ timeE+A(〈E,B〉) ∈ S

We say B is weakly efficient relative to A w.r.t. an (implicit) runtime class T, if it is weakly (T,T)-
efficient relative to A.

Efficiency relative to a “base” algorithm is the notion of efficiency we need in security definitions
and reductions. Indeed, if an adversary is not efficient in the real protocol, the simulator (or reduction)
need not be efficient either. However, whenever the adversary is efficient, so should the simulation (or
reduction) be. It is irrelevant if the simulation is efficient, even when the real protocol is not.

23

There are two problems with Definition 4.16. First, it is not stringent enough for our proof techniques.
We fix that later. Second, it does not capture our actual application. Indeed, a simulator takes as input
an adversary, i.e. a system/oracle (or an algorithm/code), and acts as (or outputs) a new system. Hence,
(the existence of) a simulator is actually a mapping from admissible adversaries to simulators. This
is quite obvious for universal (resp. bb-rw) simulation, where the code (resp. bb-rw access) are clear
“inputs”. Since the simulator is independent of the input generation or the distinguisher, i.e. of the
“distinguishing environment”, it is also evident that Sim(code(V∗)) has an input and output interface.
The input is (x,w, aux), the output is the output of V∗. While Sim discards w, it is necessary so that
Sim(V∗) and 〈P,V∗〉 offer the same interface to the environment.

We sketch a general definition of the above. To reassure the sceptical reader: All sketchiness can be
removed in our use cases by syntactically inserting the definitions instead. (The main imprecision is our
sketchiness w.r.t. to systems, algorithms, and interfaces. Nevertheless, we believe that this improves the
presentation.)

Definition 4.17. A mapping of system (or algorithms) to systems (or algorithm) is a function F : CI →
DJ with maps system (or algorithms) with interface I to systems (or algorithms) with interface J .

With this, we can define when amapping G is weakly efficient relative to a mapping F. This generalises
Definition 4.16; it can be recovered from the constant mappings F = A, G = B.

Definition 4.18. Let F,G : CI → DJ be mappings. We say G is weakly (T,S)-efficient relative to F
w.r.t. (implicit) runtime classes T, S, if for all distinguishing environments E,

∀A ∈ CI : timeE+F(A)(〈E, F(A)〉) ∈ T =⇒ timeE+G(A)(〈E,G(A)〉) ∈ S

Unfortunately, Definition 4.18 is not strong enough to be used in reductions, which is why we
reserved the specification “weakly” for Definitions 4.16 and 4.18 (More precisely, we cannot prove or
refute that it is (not) strong enough.) Therefore, we rely on following strengthening:

Definition 4.19. Let F, G, etc. be as in Definition 4.18. We say that G is (T,S)-efficient relative to
F with runtime tightness (polytime, polyvirt), if: For all timeful environments E and all A ∈ CI , if
timeF(A)(〈E, F(A)〉) is virtually strict/expected (t0, ε0)-time, then timeF(A)(〈E,G(A)〉) is virtually
strict/expected (t1, ε1)-time, with t1(κ) ≤ polytime(κ)t0(κ) with ε1(κ) ≤ polyvirt(κ)ε0(κ) (for all κ).

We stress that Definition 4.19 is unconditional w.r.t. the environment, i.e. uses timeful environments,
and that the tightness bounds depend only on κ. Mixing strict and expected time (i.e. ‖·‖∞ and ‖·‖1)
in Definition 4.19 is possible and useful. For example when strict PPT protocols and adversaries are
handled by EPT simulators.

Relative efficiency is transitive in the obvious sense. Lastly, we mention that there are obvious
variations of relative efficiency, e.g. relative efficiency w.r.t. environments in a class E of admissible
environments with restriction beyond runtime.

4.5. From CEPT to EPT
The characterisation of CEPT ensures that, conditioning on “good” events yields a strict EPT algorithm.
For interacting parties, this is not yet very useful, because it “entangles” their probability spaces.

Example 4.20. Let 〈P,V〉 be an interactive protocol. Suppose P sends a random message r. Suppose V
picks a random number s, and if r = s, it loops forever. Otherwise the protocol finishes. Now, the bad
events are (r, r) (or some (ugly) superset).

This “entanglement” of probability spaces prevents one core separation, namely the random coins
of honest and adversarial parties. Fortunately, they can be “disentangled” as far as possible. Namely,
only the (distribution of) messages of (honest) parties are of relevance, but no internal coin tosses. This
essentially follows from the fact, that the interacting systems have “independent” randomness spaces,
and the interaction is mediated solely by messages between the systems.

24

Lemma 4.21 (Timeout oracles). Let A be an interactive algorithm andO be a (probablistic) timeful oracle.
Suppose timeO(〈A,O〉) is CEPT with virtual runtime (t, ε). Then there exists an oracle O′, modelled as
a timeful oracle, such that: O and O′ behave identically except when O′ sends timeout (and halts) to
signal bad executions. If A aborts upon receiving timeout, then27 timeO(〈A,O′〉) is EPT with expected
runtime t+O(1) (with small hidden constant).28 The probability for a timeout message in 〈A,O′〉 is ε.29

We stress that O′ is a timeful oracle. While the construction shows that O′ is “computable from
timed bb-rw access to O”, it is generally far from efficiently computable. The usage of Lemma 4.21
is roughly as follows: Replace O with the “imaginary” O′. Now, the runtime problems are is easier
to analyse, since we have guaranteed EPT runtime. In the analysis, track the effects on runtime and
timeout messages of O′. Finally, replace O′ with O again, noting that only if timeout occurs, there is
a difference. Of course, such arguments can be made directly, without introducing O′ at all. However,
the explicit “imaginary” modification simplifies the presentation.

The construction of O′ is straightforward, one defines O′ by a runtime truncation at N , i.e. O′ acts
exactly as O until the total elapsed time exceeds N . Then, O′ aborts with timeout. Exact ν-quantile
cutoffs are achieved by extension of ΩO , as usual.

Proof of Lemma 4.21. A runtime truncation of O at N is defined in the obvious way, i.e. O≤N returns
timeout if, after an invocation, the purported elapsed runtime exceeds N . An exact ν-quantile cutoff
is constructed as usual, i.e. let N be the minimal such that

ν ′ := P(〈A,O≤N 〉 has timeout) ≤ ν.

If this is an equality, let Oν be defined as O≤N . Else, extend ΩO via b ∼ Ber(ν − ν ′), so that there is an
exact cutoff if one truncates at time t for t > N and for t = N if additionally b = 1.

Let TO = timeO(〈A,O〉). Then
T νO = timeO(〈A,Oν〉),

assuming the execution of 〈A,Oν〉 stops with timeout (and the purported runtime is N = N(ν).) In
other words, truncating the runtime distributions and truncating the oracle have the “same” effect.

Our timeout oracle O′ is defined as the ν-quantile truncated oracle, except that O′ additionally
pays a small constant time overhead for sending timeout. (Recall that due to consistency rea-
sons, sending messages sets lower bounds for purported runtime for timeful oracles.) Note that
P(〈A,O≤N 〉 has timeout) = ν by construction. Moreover

timeO(〈A,O′〉) ≤ timeO(〈A,Oν〉) +O(1),

hence the claims follow (as in Corollary 3.8).

In our setting, we usually deal with “multi-oracle” adversaries. For example, zero-knowledge needs
input generation G and a malicious verifier V∗ (and a distinguisher D which of lesser concern). Clearly,
we can view G and V∗ as a single oracle (or party), by merging everything except the prover P into
one entity. The new entity first runs G to produce inputs, and then continues as V∗.

Lemma 4.22 (Sequential timeout oracles). LetA be an interactive algorithm andO1,O2 be a (probablistic)
timeful oracles. Suppose O is the sequential composition of O1 and O2. That is, O first runs O1. At some
point, O1 terminates with input y for O2, which is passed to O2 as initial input. Now, O continues to run
O2(y). The results of Lemma 4.21 hold for O, where ΩO = ΩO1 × ΩO2 .

27More formally, one should lift A to an algorithm which aborts upon receiving timeout, since timeout is a special symbol
which A cannot receive. Using A unchanged, forces it to interpret (an encoding of) timeout. It may then continue to call
O′, even though O′ does not respond anymore. In some machine models, an invocation of O increases O’s runtime. Due
to such models, we require A to explicitly abort.

28The constant O(1) merely accounts for O′ and outputting timeout.
29The probability space may be enlarged to achieve an exact cutoff, see Section 2.4.

25

Moreover the probability ε for timeout decomposes as follows: Let event Etimeout,1 be the event for
timeout while running O1. Let event Etimeout,2(y, t1) be the event for timeout while running O2 where
O1 took t1 steps to output y. Let Y and T1 be the random variables for the output and number of steps of
O1. Let ε1 = P(Etimeout,1) and let ε2(y, t1) = P(Etimeout,2(y, t1) | (Y, T1) = (y, t)). Then

ε = P(Etimeout)

= P(Etimeout,1) +
∑
(y,t1)

P(Etimeout,2(y, t1) ∧ (Y, T1) = (y, t1))

= ε1 +
∑
(y,t1)

ε2(y, t1)P((Y, T1) = (y, t1))

Lemma 4.22 follows essentially from Lemma 4.21 and the fact that the runtimes of O1 and O2 sum
up. For the decomposition, one argues as in the proof of Lemma 4.21, and uses that knowledge of (y, t1)
is good enough for the truncation construction, i.e. O′2 only needs to know the elapsed time in O′1 to
“continue” the truncation exactly by incorporating the steps of O′1. The proof is left to the reader.

In particular, we obtain following special case.

Corollary 4.23. Let A be an interactive algorithm and let G be an input generating machine. Suppose
timeO+G(〈A,O〉G) is CEPTwith virtual runtime (t, ε). Then there exists an environment (G′,O′), modelled
as timeful oracles (with stochastically dependent randomness and not necessarily efficiently computable),
such that: (G,O) and (G′,O′) behave identically except that (G′,O′) sends timeout to signal bad
executions. If A aborts upon receiving timeout, then timeO+G(〈A,O′〉G′) is EPT with expected runtime
t+O(1) (with small hidden constant). Moreover, the probability for a timeout message in 〈A,O′〉G′ is ε.
(The probability space may be extended.)

An analogous result holds if a distinguisher D is applied, i.e. for timeG+O+D(D(〈A,O〉G)).
The precise form of Lemma 4.22 shows that, if we manipulate only interaction with O2 (which is

O in Corollary 4.23), then only that portion of virtuality is relevant. For simplicity, do not use this
precision in later results; indeed, this does not seem to help much.
Remark 4.24. In the setting of Lemma 4.22, it is also possible to separate O1 and O2 instead of treating
them as one entity. That is, one can modify them separately, without telling O2 the runtime t1 spent in
O1. (Implicit access to t1 is the only additional knowledge used in Lemma 4.22.) Concretely, assuming
total virtuality ε, one can apply Lemma 4.21 for an ε-quantile cutoff to T1 = timeO1(AO1,O2) to obtain
O′1, and then to T2 = timeO2(AO′

1,O2) to obtain O′2. (For this, note that the virtualities of T1 and T2
are certainly bounded by ε.) Together, (O′1,O′2) have overall timeout probability of (at most) 2ε and
the expected runtime is t+O(1). Unfortunately, the timeout probability of this construction is larger
than ε.

Lastly, we note that if y fixes t1, i.e. if there is a function f such that f(y) = t1, then O′1 and O′2 are
separated by construction (in Lemma 4.22).

5. Application to zero-knowledge proofs
Our flavour of zero-knowledge follows Goldreich’s treatment of uniform complexity [Gol93], combined
with Feige’s designated adversaries [Fei90]. We only define efficient proof system for NP-languages.
Definition 5.1 (Interactive proof system). Let R be an NP-relation, with corresponding language L. A
proof system for L (with efficient prover) consists of two interactive algorithms (P,V) such that:

Efficiency: There is a polynomial poly so that for all (κ, x, w) the runtime timeP+V(〈P(x,w),V(x)〉)
is bounded by poly(κ, |x|).

Completeness: ∀κ, (x,w) ∈ R : outV〈P(x,w),V(x)〉 = 1.

Definition 5.1 essentially assumes “classic” PPT algorithms, but it will be evident that our techniques
do not require this. We do not define (computational) soundness, since we do not need it.

26

5.1. Zero-knowledge
Our main interest is the zero-knowledge property of proof systems. Completeness and soundness hold
unconditionally anyway.
Definition 5.2. LetT,S ∈ {PPT,CPPT,EPT,CEPT}. Let (P,V) be a proof system (with efficient
prover). A universal simulator Sim takes as input (code(V∗), x, aux) and simulates V∗’s output. Let
(G,V∗,D) be an adversary.

RealG,V∗(κ) := outV∗〈P(x,w),V∗(x, aux)〉

and IdealSim
G,V∗(κ) := Sim(code(V∗), x, aux)

where (x,w, aux)← G and (x,w) ∈ R or Real resp. Ideal return a failure symbol.
The distinguishing advantage of (G,V∗,D)

AdvzkG,V∗,D(κ) := |P(D(RealG,V∗(κ)))− P(D(IdealSim
G,V∗(κ)))|.

A (designated) adversary (G,V∗,D) is T-time if timeG+P+V∗+D(RealG,V∗) ∈ T.
The proof system is (uniform) (auxiliary input) zero-knowledge againstT-time adversaries w.r.t.

S-time Sim, if for any T-time adversary (G,V∗,D):

• timeSim(IdealSim
G,V∗) ∈ S, i.e. Sim is weakly (T,S)-efficient relative to P, see Section 4.4. (Note

that the runtime of Sim includes whatever time is spent to emulate V∗, i.e. V∗ is not viewed as a
(bb-rw) oracle.)

• AdvzkG,V∗,D(κ) is negligible

We define (uniform) zero-knowledge w.r.t. (input) size-guarded security as follows: For any
(monotone) polynomial bound gd (called size-guard), the derived protocol, where prover and verifier
abort with gderr on inputs (x,w) if |x| > gd(κ), is zero-knowledge (in the above sense).

The definition of non-uniform (size-guarded) zero-knowledge is analogous to the above, but G(κ)
has access to an advice via an additional input interface, see Section 4.1.1.

In light of Definition 4.17, one should interpret Sim as a mapping of malicious verifier V∗ to simulator
Sim(V∗), so that Sim(V∗) and 〈P,V∗〉 have the same interface (i.e. expect x,w, aux and give outputs),
and Sim (by definition) ignores w. Some more remarks are in order.
Remark 5.3 (Size-guards). The use of (input) size-guarded security is meant to address certain situation,
which we may want to consider secure, but cannot due to runtime artifacts. Namely, suppose the
simulator has quadratic runtime in the instance size |x|, whereas the prover’s runtime is linear. Then,
a problematic fat-tailed input distribution renders simulation inefficient. Consequently, without size-
guarding, simulation must be “tight” in |x|. One technical artifact, partially mitigated by size-guards, is
that very efficient provers make simulation harder. That is, by making a prover slower, e.g. adding a
quadratic overhead, simulation becomes easier.

There are other means than size-guarding for solving the above problem. For example, one may
quantify only over admissible adversaries. Indeed, adversaries which only send strictly polynomial size
inputs are equivalent to size-guarded security. See Appendix F.4 for more on size-guards.
Remark 5.4 (Efficiency of the simulation). Keep in mind that Definition 5.2 only ensures that Sim is
weakly efficient relative to the prover. This is a source of trouble. Yet, (strong) relative efficiency is an
unconditional property, and hence usually not possible (except if simulation is perfect).

One may expect that, by a standard reduction to PPT, w.l.o.g. G and D are a priori PPT. This is true
when verifying the output quality of Sim. However, it is false when verifying the efficiency of Sim
(recall the size-guarding problem).
Remark 5.5. We seldom mention non-uniform zero-knowledge formulations in the rest of this work.
Our definitions, constructions and proofs make timed bb-rw use of the adversary, and therefore apply
in the non-uniform setting without change.

27

Remark 5.6. By a standard reduction to PPT (Corollary 4.4), we can assume that D is a priori PPT in
Definition 5.2. Thus, the usual formulation of indistinguishable ensembles,

{(x, aux, out) | (x,w, aux)← G(κ); out ← outV∗〈P(w),V∗(aux)〉(x)}κ
c
≈ {(x, aux, out) | (x,w, aux)← G(κ); out ← Sim(code(V∗), x, aux)}κ

is an equivalent definition of (size-guarded) zero-knowledge (Definition 5.2).

Remark 5.7 (The adversary’s view). We did not use the view of the adversary to define zero-knowledge
for a reason. The usual definition of a view consists of input, randomness, and received messages.
This conflates different complexities, e.g. randomness and space, and prevents strict polynomial space
simulation, see Remark A.5.30 We stress that we work in a setting where expected polynomial space
and randomness are allowed, but we find it questionable to stipulate this generally.

Remark 5.8 (Inefficient provers and simulation tightness). In Definition 5.2, we compare the runtime of
a simulator with the runtime of V∗ and P. We do so, because efficiency (and tightness) of a simulation
should be related to efficiency of the real execution.31

By viewing P as timeful and setting its runtime to its message length, Definition 5.2 extends to
inefficient provers. Our results can be suitably adapted, however size-guarding is may be necessary,
since the simulator’s runtime is too limited.32 Indeed, even efficient provers “become inefficient” in this
setting, e.g. if V∗ is linear in |x|, but P is quadratic, then problematic input distributions exist. Thus, in
general, we cannot hope for efficient simulation without size-guarding or similar restrictions.

Remark 5.9. There are other formulations of zero-knowledge, which can be obtained by swapping the
order of the quantifiers. To recover the “usual notions” (that is universal quantification over the inputs),
G should be instantiated by a non-uniform machine which regurgitates its advice.

(Timed) Black-box simulator: Timed bb-rw access to V∗. Most common form of simulation.
Universal simulator: ∃Sim∀V∗∀G∀D. Typical form of non-black-box simulation, e.g. in [Bar01].
Existential simulator: ∀V∗∃Sim∀G∀D. Typical definition of zero-knowledge, e.g. in [Gol01].

We see in Section 5.2 below that existential simulation and universal simulation are equivalent for
auxiliary input zero-knowledge for a posteriori time.

There are also less common, weaker notions, such as distributional simulation (roughly “∀V∗∀G∃Sim∀D”),
weak simulation (roughly “∀V∗∀D∃Sim∀G”),weak distributional simulation (roughly “∀V∗∀D∀G∃Sim”),
see [Dwo+03; CLP15]. We have not pursued an adaption to CEPT for these notions.

5.2. The universal adversary Vuniv

The universal adversary Vuniv is basically a virtual machine emulating some adversary, i.e. the input
of Vuniv is of the form (code, state, aux), and Vuniv continues execution of the code code in state state.
The universal adversary is well-behaved (and may try to “cooperate” with Sim). Despite “attempted
cooperation” of Vuniv and Sim, Vuniv contains the core hardness of simulation. An existential simulator
is a simulator which may depend arbitrarily V∗. The universal adversary shows that this arbitrary
“existential” depedency on V∗ does not weaken the notion of zero-knowledge. Thus, in Definition 5.2,
we do not give up any power.

Lemma 5.10 (Equivalence of existential and universal simulation). Let T be a runtime class and let
(P,V) be an interactive proof system. If this proof system is zero-knowledge w.r.t. to existential simulation,
then it is zero-knowledge w.r.t. the universal simulator Sim defined as follows.

30Our notion of bb-rw access is problematic in that aspect as well, but that may be salavageable, see Remark A.5.
31This entails some technical artifacts, e.g. a prover may be badly behaved for invalid inputs, e.g. not halting when given

invalid. The complexity class for “good protocols” should be robust and prevent such behaviour.
32This may be “fixed” in a stupid way by preventing too efficient verifiers, e.g. using timelock puzzles.

28

Let Vuniv be the universal adversary and Simuniv be the existential simulator for Vuniv. The Sim is defined
by Sim(code(V∗), x, aux) emulating Simuniv(code(Vuniv), x, (code(V∗), state, aux)), where state is the
initial state of V∗. This also holds for (non-)uniform (size-guarded) zero-knowledge.

Proof. First we define GV∗ , which samples (x,w, aux)← G, and returns (x,w, (code(V∗)), state, aux),
where state is the initial state of V∗. Recall that for (G,V∗), the simulator Sim(code(V∗), x, aux) runs
Simuniv(code(Vuniv), x, (code(V∗), state, aux)), which corresponds to (GV∗,Vuniv). Moreover the real
executions RealG,V∗ , and RealGV∗,Vuniv are identical. Thus

IdealSim
G,V∗

D≡ IdealSimuniv
G,Vuniv

c
≈ RealGV∗,Vuniv

D≡ RealG,V∗.

Size-guarding makes no difference in the proof. Neither does non-uniform advice (and by assumption,
only G is non-uniform).

The upshot of the proof is, that an existential simulator cannot truly leverage its arbitrary dependency
on V∗. All the hardness of V∗ might be in the auxiliary input, which Sim cannot depend upon.

Caution 5.11. We crucially relied on our a posteriori runtime notion. For other notions of runtime,
Lemma 5.10 may not hold! For example, if we assume a priori PPT algorithms, then Vuniv cannot emulate
every adversary V∗, since Vuniv must not exceed poly steps, for some fixed poly, whereas V∗ may run
(much) longer, say poly + 1 steps. (There is a family Vnuniv with runtime bounds polyn(κ) = nκn, so a
morally equivalent result does hold.)

5.3. Application to graph 3-colouring
To exemplify the setting, the technical challenges, and our techniques, we use the constant-round zero-
knowledge proof of Goldreich and Kahan [GK96] as a worked example, providing motivation for the
definitions to come. We only prove zero-knowledge, as completeness and soundness are unconditional.
Formal definitions of commitment schemes are in Appendix D.1. We assume left-or-right oracles in
the hiding experiment for commitment schemes. Intuitively, we assume a built-in hybrid argument.
(Commitments are secure against CEPT adversaries if they are against PPT adversaries, by a simple
truncation argument.)

5.3.1. The protocol

We recall G3CGK from Section 1.2. It requires two different commitments schemes; Com(H) is perfectly
hiding, Com(B) is perfectly binding. See [GK96] for the exact requirements. We assume non-interactive
commitments for simplicity.

(P0) The prover sends ckhide ← Com(H).Setup(κ). (ckbind ← Gen(B)(κ) is deterministic.)
(V0) V randomly picks challenge edges ei ← E for i = 1, . . . , N = κ · card(E), commits to them as

cei = Com(H)(ckhide, ei), and sends all cei .
(P1) P picks randomised colourings ψi for all i = 1, . . . , N and commits to all node colours for all

graphs in (sets of) commitments {{cψi,j}j∈V }i=1,...,N using Com(B). P sends all cψi,j to V.
(V1) V opens the commitments cei to ei for all i.
(P2) P aborts any opening is invalid (ei 6∈ E). Otherwise, for all iterations i = 1, . . . , n, P opens the

commitments cψi,a, c
ψ
i,b for the colours of the nodes of edge ei = (a, b) in repetition i.

(V2) V aborts iff opening is invalid, any edge not correctly coloured, or if ckhide is bad.

Testing ckhide only at the end of the weakens the requirements of VfyCK, namely it can use the setup
randomness as additional input. We follow [GK96] in this matter, but the reader may assume a check in
step (V0) without loss.

29

5.3.2. Proof of zero-knowledge

Our goal is to show the following lemma.

Lemma 5.12. Suppose Com(H) and Com(B) are a priori PPT algorithms. Then protocol G3CGK in Sec-
tion 5.3.1 is unguarded zero-knowledge with a bb-rw CEPT simulator against CEPT adversaries. Let (G,V∗)
be an adversary and suppose T := timeP+V∗(RealG,V∗) is (t, ε)-time. Then Sim handles (G,V∗) in
virtually expected runtime (t′, 2ε+ ε′). Here ε′ stems from an advantage against the hiding property of
Com(B), hence ε′ negligible. If the time to compute a commitment depends only on the message length,
then t′ is roughly 2t.

Our proof differs from that in [GK96] on two accounts: First, we do not use the runtime normalisation
procedure in [GK96]. This is because a negligible failure is absorbed into the CEPT virtuality, namely ε′.
Second, we handle designated CEPT adversaries. In particular, the runtime classes of simulator and
adversary coincide. We first prove the result for perfect EPT adversaries.

Lemma 5.13. The claims in Lemma 5.12 hold if T ∈ EPT, i.e. ε = 0.

Proof sketch. We proceed in game hops. The initial game has perfect outputs, while the final game
describes our simulator. We consider bb-rw simulation.

Game G0 is the real protocol. The output is the verifier’s output.
Game G1: If the verifier opens the commitments in (V1) correctly, the game repeatedly rewinds

it to (P1) and using fresh prover randomness, until it obtains a second run where V∗ unveils the
commitments correctly (in (V1)). The output is the V∗’s output in this second successful run. If the
verifier failed in the first run, the protocol proceeds as usual. The outputs of G1 and G0 are identically
distributed. It can be shown that this modification preserves (perfect) EPT of the overall game, i.e. G1 is
perfect EPT. More precisely, the virtually expected time is about 2t (plus emulation overhead). To see
this, use that each iteration executes P’s code with fresh randomness.

Game G2: We assume that both (valid) openings of V∗’s commitments in (P1) open to the same value.
Otherwise, we output ambig, indicating equivocation of the commitment. The probability for ambig
is negligible, since one can (trivially) reduce to an adversary against the binding property of Com(B).
(This modification preserves perfect EPT.)

In Game G3, the initial commitments (in (P1)) to 3-colourings are replaced with commitments to
random colours. These commitments are never opened. Thus, we can reduce distinguishing Games 2
and 3 to breaking the hiding property of Com(H) modelled as left-or-right indistinguishability. More
precisely, the reduction constructs real and random colouring, and uses a commitment oracle Ob which
receives two messages and commits to one of them. Suppose O0 commits to the real colouring (left),
whereas O1 commits to the random colouring (right). The modification of G2 to “oracle committing”
yields an EPT Game G2′ (instantiated with O0). The modification of G3 to G3′ (with O1) is virtually
EPT. This follows immediately from the standard reduction to PPT, because Games G2′ and G3′ differ
only in their oracle, and the case of O0 is EPT.

Consequently, Game G3′ is efficient with (oracle) runtime T3′
c
≈ T2′ , and the output distributions of

Games G2′ and G3′ are indistinguishable. Finally, note that Game G3 and G3′ only differ by (not) using
oracle calls. Incorporating these oracles does not affect CEPT (as O1 is an priori PPT oracle). Thus,
the reduction is in fact efficient. Assuming the time to compute a commitment depends only on the
message length, a precise analysis shows, that the virtually expected runtime is affected negligibly.

InGame G4, the commitments in the second round (Step 3) are replaced by commitments to a pseudo-
colouring (such that the commitments revealed to V∗ have different (random) colours). The argument
for efficiency and indistinguishability of outputs is analogous to the one before. It relies on the built-in
hybrid of the LR-hiding setting.

The simulator is defined as in G4: It makes a first test-run with a random colouring. If the verifier
does not open its challenge, it aborts (like the real prover). Otherwise, it rewinds V∗ (and uses pseudo-

30

colourings) until V∗ opens the challenge commitment again, and outputs the verifier’s final output of
this run (or ambig). (To prevent non-halting executions, we may abort after 2κ unsuccessful rewinds.
But this is not necessary for our results.)

We point out some important parts: First, in Game G1, rewinding and its preservation of EPT is
unconditional. That is, rewinding is separated from the computational steps happening after it. Second,
since the simulator’s time per iteration is roughly that of the prover, the total simulation time is CEPT
(and roughly virtually expected 2t). Third, with size-guarded security, we could have argued efficiency
much simpler and coarser. It would suffice if the runtime per rewind is polynomial in the input size
(not counting V∗).

There is only one obstacle to extend our result to CEPT adversaries. It is not clear, whether the
introduction of rewinding in G1 preserves CEPT. Fortunately, this is quite simple to see: The probability
that a certain commitment is sent in (P1) increases, since the verifier is rewound and many commitments
may be tried. However, the probability only increases by at factor of 2. Thus, “bad” queries are only
twice as likely as before. (We leave the verification to the reader.)

More concretely, using Lemma 4.21, we obtain a G′ and O′ which output timeout in case of “bad”
queries. By the above claim, the probability for timeout at most doubles. Thus, the virtuality of G1 is
at most twice that of G0, (and the virtually expected runtime is roughly doubled as well). Hence, G1 is
CEPT. We formalise this “rewind-then-simulate” approach in Sections 5.4 and 5.5.

Remark 5.14. The simulator in [GK96] is also a CEPT simulator. For a proof, proceed as in Lemma 5.13.
The advantage of simulator in [GK96] is, that it handles adversaries which are a priori PPT, as well as
EPT w.r.t. any reset attack [Gol10], without introducing any “virtuality”, i.e. the simulation is EPT. On
the other hand, it increases virtuality by a larger factor.

5.4. Rewinding strategies
Rewinding strategies encapsulate the rewinding schedule of a simulator. Unlike simulators, their
properties are unconditional.

Terminology 5.15. For the sake of simplicity, we treat a bb-rw oracle as though it were a NextMsg
oracle.33 Let O be an oracle and define bbrw(O) to be the oracle which gives bb-rw access to O. A
query to O is somemi, and depends on the state of O. Queries to bb-rw oracles need to specify the
“history” from where to continue, i.e. a query to bbrw(O) is are a sequence of messages (m1, . . . ,m`);
one may view bbrw(O) as essentially deterministic and stateless.

By abuse of notation, we typically write AO instead of Abbrw(O) if it is understood that A has bb-rw
access to O. To emphasise this difference, we sometimes speak of a fully qualified query (fq-query)
query to a bb-rw oracle. Even with this, should always be clear from the type of oracle access A has.

5.4.1. Definitions and basic results

Our definition of rewinding strategies is specialised for zero-knowledge, but it generalises to other
settings easily.

Definition 5.16. A rewinding strategy RWS for a proof system (P,V) is an oracle algorithm with
timed bb-rw access to the (malicious deterministic) verifier V∗. The output of RWS is an fq-query which
RWS queried before (or abort).34

A rewinding strategy RWS has runtime tightness poly, if the following holds: Let be (G,V∗) any ad-
versary (modelled as a timeful oracle). LetT := timeP+V∗(〈P,V∗〉G), and letS := timeRWS+V∗(RWSV∗(x,aux)(x,w))
with input distribution G. Then E(S) ≤ poly · E(T) for all (G,V∗).35

33 This technically violates compatibility requirements for EPT, but there are straightforward fixes, see Appendix A.3.
34More correctly, RWS “outputs” the oracle bbrw(V∗) in its “final” state, and perhaps an abort message to indicate failure.
35We define that ∞ ≤ ∞.

31

Equivalently, for deterministic timeful G, i.e. any sequence (xκ, wκ, auxκ) ∈ R and any deterministic
timeful V∗, the analogous claim holds.

The notion of runtime tightness of RWS is strong and unconditional. The equivalence of using
probabilistic and deterministic adversaries follows easily: Certainly, probabilistic covers deterministic.
For the converse, one uses the tightness bound poly and linearity of expectation.

Remark 5.17 (Preservation of EPT). It follows trivially that a rewinding strategy RWS with polynomial
runtime tightness preserves EPT, i.e. in the setting of Definition 5.16, if timeP+V∗(〈P,V∗〉G) ∈ EPT,
then timeRWS+V∗(RWSV∗(x,aux)) ∈ EPT.

Before we tackle preservation of CEPT, we introduce more parameters of rewinding strategies.

Definition 5.18 (Properties of rewinding strategies.). Let (P,V) be a proof system and RWS a rewinding
strategy. Let FQ be the set of all possible fq-queries (i.e. tuples of messages, recall Terminology 5.15).
Suppose V∗ is some (malicious) deterministic verifier (as a timeful oracle). Let κ, (x,w), aux be inputs.
Let query ∈ FQ be a (possible) fq-query to V∗. Let prreal(query) be the probability that, in a real
interaction 〈P(x,w),V∗(x, aux)〉, the prover queries query , that is36

prreal(query) = P(query ∈ qseqP(〈P(x,w),V∗(x, aux)〉)).

Let prrws(query) be the probability, that RWSV∗
(x,w) queries query, that is

prrws(query) = P(query ∈ qseqRWS(RWSV∗(x,aux)(x,w))).

We say a rewinding strategy RWS has probability tightness polypr(κ) if

prrws(query) ≤ polypr(κ) · prreal(query)

for all queries query ∈ FQ. (In other words: Drat(prrws/prreal) ≤ polypr.)
RWS has output skew δ = δ(κ), if for every (deterministic) (G,V∗), (x,w, aux)← G(κ) is similarly

defined by the sup-ratio being at most 1 + δ(κ), now of the output RWSV∗(aux)(x,w) over the real fq-
query qseqP(〈P(x,w),V∗(x, aux)〉).37 We say RWS has perfect output (distribution) if the output
skew is 0.

We note that the properties in Definition 5.18 are unconditional. Finally, we define our notion of
normality. The definition is closely related to Goldreich’s definition of normality in [Gol10].38

Definition 5.19 (Normal RWS). A rewinding strategy RWS is normal if it has polynomial runtime
tightness, polynomial probability tightness, and perfect output distribution.

Perfect output distribution is vital for later use of RWS, e.g. as a stepping stone for zero-knowledge.
Negligible output skew would suffice, but natural rewinding strategies seem to satisfy perfect output
skew, so we require that for simplicity.

5.4.2. Basic results

Now, we state our main result for normal rewinding strategies.

Lemma 5.20 (Normal rewinding strategies preserve CEPT). Let RWS be a normal rewinding strategy for
(P,V). Let (G,V∗) be a CEPT adversary for zero-knowledge, that is timeG+P+V∗(〈P,V∗〉G) ∈ CEPT.
Then timeG+RWS+V∗(RWSV∗(x,aux)(x,w)) ∈ CEPT, where (x,w, aux)← G(κ).

36By abuse of notation, we write qseqP(〈P(x,w),V∗(x, aux)〉), but mean fully qualified queries, i.e. the set of prefixes of
the query sequence.

37More correctly, the distribution of the state of the timed bb-rw V∗ must satisfy this.
38Goldreich notes in [Gol10, Footnote 24] that his notion of normality of a simulator is probably satisfied if the running time

analysis is unconditional. Rewinding strategies make this explicit. Indeed, since our notion of runtime and efficiency of
simulators is not unconditional, we deem this separation necessary.

32

More precisely, suppose polytime is a runtime tightness and polyvirt a probability tightness of RWS
(against EPT adversaries). If timeP+V∗(〈P,V∗〉G) is virtually (t, ε)-time, then timeRWS+V∗(RWSV∗

) is
virtually (polytime · t, polyvirt · ε)-time. In other words, RWS is efficient relative to 〈P, ·〉 with runtime
tightness (polytime, polyvirt).

The proof exploits that “bad queries”, which result in overly long runs of 〈P,V∗〉G happen at most
polynomially more often with RWS, due to normality. Since bad queries happen with probability ε, the
claim follows. A detailed proof follows.

Proof. By Lemma 4.21, we know that there is a modification (G′,V′) of (G,V∗), which runs in EPT (as
timeful oracles). We call a fq-query query = (m1, . . . ,mn) toV′ which returns timeout a timeout query.
The probability that such a timeout query happens in a real execution with P is ε (by construction). By
assumption, RWS runs in EPT for (G′,V′). (For this, note that RWS treats V∗ as a (timed) black-box.)

The only case where RWS encounters a difference between (G,V∗) and (G′,V′) is if RWS asks
a timeout query, i.e. if (G or) V′ return timeout. By normality of RWS, the probability of asking
a timeout query is only polynomially higher than the probability that P asks a timeout query. The
latter is ε (essentially by definition), hence the former is bounded by polyvirt · ε. Thus, the runtime
timeRWS+V∗(RWSV∗

) is CEPT with virtually expected time (polytimet, polyvirtε). The claim for the total
runtime follows analogously.

We will see in Remark 5.29, that runtime tightness already implies probability tightness. However,
the actual bound is far from optimal. Following lemma is a simple way to get a tight(er) bound on
probability tightness.

Lemma 5.21. Let RWS be a rewinding strategy for (P,V) and (G,V∗) deterministic timeful adversaries.
Write (x,w, aux) ← G(κ) Let Qi ⊆ qseqRWS(RWSV∗

) be the list of queries of length i from RWS to
bbrw(V∗); that is Qi consists of queries (m1, . . . ,mi). Let Qi = card(Qi). Note that Qi and Qi are
random variables. Let Q =

∑∞
i=0Qi be the total number of queries. Suppose that for all adversaries,

E(Qi) ≤Mi for someMi.
Let prrws(query) resp. prreal(query) be the probability that RWS resp. P queries query, as in Defini-

tion 5.18. Write Qi[j] for the j-th query in Qi. Suppose that for all i and all fq-queries query of length i

∀j ∈ N0 : P(query = Qi[j] |Qi ≥ j) = prreal(query),

where the probability is over the randomness of RWS and P. Then

prrws(query) ≤Mi · prreal(query).

In particular, the probability tightness of RWS is bounded byM =
∑

iMi.

The basic idea behind Lemma 5.21 is that for any (i− 1)-length historym′ = (m1, . . . ,mi−1), the
probability that the prover queries mi (conditioned on m′) is identical to the probability that RWS
queries mi “conditioned on m′”. The “conditioning RWS on m′” part needs a suitable definition. In
special cases, e.g. “tree-based” rewinding strategies, this can be done hands on. Lemma 5.21 gives a
general formalisation of this idea (without needing to condition on somem′).

It is often (almost) trivial to verify the conditions of Lemma 5.21. Moreover, we are not aware
of (natural) rewinding strategies which do not satisfy normality, even outside the context of zero-
knowledge.39

39If the “query space” (in some round) is small, e.g. if there are only two different queries, then one may deterministically query
both without affecting runtime too much. In particular, it does not break probability tightness. Due to the deterministic
choice, Lemma 5.21 is not applicable. However, randomising the order of the choices (assuming that is possible) yields a
compatible RWS′.

33

Proof of Lemma 5.21. The proof is almost trivial. Consider the setting and notation of Lemma 5.21. Let
query be a fq-query of length i. We have

P(∃j : query = Qi[j]) ≤
∞∑
j=0

P(query = Qi[j]) =
∞∑
j=0

P(query = Qi[j] |Qi ≥ j)P(Qi ≥ j),

by a union bound, and we have
∞∑
j=0

P(query = Qi[j] |Qi ≥ j)P(Qi ≥ j) =
∞∑
j=0

prreal(query)P(Qi ≥ j) = prreal(query) · E(Qi).

by assumption (and by E(Qi) =
∑∞

j=0 P(Qi ≥ j)).

The criterion in Lemma 5.21 is “global” and not “local”, making it somewhat inconvenient. Instead of
applying Lemma 5.21, it is often simple(r) to derive more precise bounds and directly prove normality.
Remark 5.22 (Partial RWS). A typical proof strategy for normality is to view RWS as a composition of
(partial) strategies. For example, many rewinding strategies are “tree-based” and each layer corresponds
to a (partial) rewinding strategy, which calls lower layers as substrategies. This approach lends itself
to a simple and precise analysis of runtime tightness, probability tightness and “query tightness”. For
example, if calls to substrategies not skewed, probability tightness behaves multiplicatively. Checking
normality like this relies on “local” properties, which by composition yield the “global” properties.
Remark 5.23. Halevi and Micali [HM98] define “valid distributions” [of transcripts] for extraction
in the context of proofs of knowledge. Their definition requires, that a polynomial number of total
execution are made (with the extractor in the role of the verifier), and each execution has a transcript (i.e.
queries) which is distributed like for an honest verifier. Separate runs may be stochastically dependent.
Lemma 5.21 deals with partial transcripts, expected polynomially many executions, and probability
tightness (not runtime), but is otherwise similar to [HM98].

5.4.3. Examples of normal rewinding strategies

We give some examples for rewinding strategies which are normal. Most claims follows easily from
Lemma 5.21.
Example 5.24 (The classic cut-and-choose protocols). The classic protocols for graph 3-colouring, graph
hamiltonicity, as well as graph-(non)-isomorphpism [GMW86; Blu86] use normal rewinding strategies.
Example 5.25 (Constant round zero-knowledge). Our motivating example [GK96] and the simplification
of Rosen [Ros04] have a normal rewinding strategies.
Example 5.26 (Concurrent zero-knowledge). The concurrent zero-knowledge proof systems of Kilian
and Petrank [KP01] and its variation [PTV14] also rely on normal rewinding strategies. Indeed, their
strategy is strictly PPT (in oracle-excluded time).
Example 5.27 (Blum coin-toss). The simulator for the coin-toss protocol [Blu81; Lin17] also gives rise to
normal rewinding strategies. It is strictly PPT (in oracle-excluded time).

5.4.4. Connection between runtime and probability tightness

Following example illustrates, that normality is not automatic.
Example 5.28 (Bad RWS). Consider a proof system with a (useless) preamble, where the prover sends a
random string s← {0, 1}κ, the verifier acknowledges it, and the actual protocol begins. A rewinding
strategy RWS could always as 0κ as its first query, against PPT adversaries, this is no problem at all.
However, this essentially notifies the adversary of being in a simulation. Indeed, the probability tightness
of RWS is 2κ. Similarly, a rewinding strategy RWS, which “prefers” to output lexicographically smaller
transcripts, typically has (very) noticeable output skew.

34

For EPT adversaries, runtime tightness implies probability tightness asymptotically.
Remark 5.29 (Necessity of probability tightness). Let RWS be a rewinding strategy for (P,V). Let V∗
be a deterministic malicious verifier. Suppose there is a (sequence of) fq-queries query = query(κ) such
that prrws(query) >

1
negl ·prreal(query) infinitely often. By modifying V∗ to run an extra 1

prreal(query)
steps

if queried with query, we obtain a new deterministic verifier V∗∗ whose expected runtime increases
by 1. But RWS incurs a superpolynomial runtime growth, as it cannot see the “trap”. Thus, runtime
tightness implies probability tightness.

The “attack idea” on RWS in Remark 5.29 may also be viewed as an indication that almost(?) all used
rewinding strategies are normal. More generally, even an apriori PPT adversary can exploit a deviation
a large probability tightness and give “bad” answers in such cases. So, even for a priori PPT adversaries
which cannot cause runtime explosion, there is no incentive to have large probability tightness, because
it is completely unclear how that could be usefully exploited.
Remark 5.30 (Probability tightness does not imply runtime tightness due to stupid reasons). Let RWS be
some normal rewinding strategy. Construct RWS′ from RWS by running for 2κ steps and then emulate
RWS. Clearly, RWS′ and RWS are equivalent systems, but runtime tightness of RWS′ is exponential.

Nevertheless, for typical classes of well-behaved protocols and rewinding strategies, runtime tightness,
“query tightness”, and probability tightness are closely related.

5.5. Benign simulators
Our definition of a benign simulator abstracts the proof strategy for G3CGK. Before we give the definition,
we demonstrate the idea.
Example 5.31 (Structure of the security reduction for G3CGK). Consider the protocol G3CGK in Sec-
tion 5.3.1 and the security proof in Section 5.3.2. Let (G,V∗,D) be an adversary. Since the simulator
cannot depend on G and D, they are of no importance in the following. Indeed, they should be viewed
as one entity, the “distinguisher”, whereas V∗ is the actual “attacker”. We suppress the inputs x,w, aux
for prover and simulator.

Let A0 denote the algorithm outV∗〈P,V∗〉. Let Ã0 denote the algorithm which introduces all rewind-
ings, as in Section 5.3.2, G1. Moreover, Ã0 makes any commitment computations into explicit calls to
subroutines. (We call this boxing, and the act of “forgetting” subroutine calls unboxing.)

We note the following: For any V∗, A0 ≡ Ã1 (i.e. they are perfectly indistinguishable), and if A0(V
∗)

is efficient, so is Ã0(V
∗). This is follows from Example 5.25. Here, efficient means CEPT, in the sense

that for everyG,D, if the completed system for A0(V
∗) is CEPT, so is the completed system for Ã0(V

∗).
(PPT, CPPT and EPT efficiency can be defined analogously.)

Similarly, let A1 := Sim and let Ã1 be the simulator with boxed calls to Com. Clearly, for any V∗,
Ã1(V

∗) ≡ A1(V
∗), and if Ã1(V

∗) is efficient (i.e. CEPT), so is A1(V
∗).

Consider the two indistinguishable oraclesO0,O1, which represent the (repeated) binding and hiding
experiments in the security proof, squeezed into one oracle. It is straightforward to define an (oracle)
algorithm R, which encapsulates the reduction given in the games following G1 in Section 5.3.2, such
that for R, it holds that Ã0(V

∗) ≡ RO0(V∗) and RO1(V∗) ≡ Ã1(V
∗). Moreover, RO0(V∗) is efficient

if Ã0(V
∗) is. Furthermore, since O0 and O1 are indistinguishable, if RO0(V∗) is CEPT, so is RO1(V∗).

(This step relies on CEPT and fails for EPT.)
Consequently, Sim(V∗) is CEPT whenever 〈P,V∗〉 is CEPT, and Sim(V∗) and 〈P,V∗〉 are computa-

tionally indistinguishable. Pictorially, the security proof worked as follows:

A0
≡−−→
e

Ã1
≡−−→
e

RO0
c
≈ RO1 ≡−−→

e
Ã1

≡−−→
e

A1,

where A ≡−−→
e

B denotes that A and B are perfectly indistinguishable and that if B is efficient (given V∗),
so is A. More precisely, we have

〈P, ·〉 ≡−−→
e

RWS(·) ≡−−→
e

RO0(·)
c
≈ RO1(·) ≡−−→

e
S̃im(·) ≡−−→

e
Sim(·),

35

where we made explicit, that this construction is functional in the adversary (the missing argument
denoted “·”). We also note that the intermediate steps (Ã0, Ã1, resp. RWS, S̃im) can be omitted.

Our definition of benign simulation requires a security proof as sketched in Example 5.31, and is
basically an abstract formalisation of that proof strategy. For completeness, we give a more traditional
approach in Appendix E, which relies on indistinguishability of queries similar to [KL08]. We view
both approaches as complementary: Our definition of benign simulation is easily applicable to typical
protocols (and all of our examples), whereas the query-indistinguishability condition is something
one can arguably expect from almost any simulator, which broadens the class of simulators which
handle CEPT adversaries in CEPT. In any case, a bb-rw simulation with a normal rewinding strategy is
necessary.
Definition 5.32 (Benign simulation). Let (P,V) be a proof system. Let Sim be a (timed) bb-rw simu-
lator with associated rewinding strategy RWS and associated simple reduction R under simple
assumption (C0,C1). A simple reduction under an (implicit) simple assumption (C0,C1) is an oracle
algorithm R which expects access to an oracle Cb and the code of the adversary (usually bb-rw access
suffices), i.e. RCb(A).

Suppose that:

(1) RWS is a normal rewinding strategy.
(2) RWSV∗

≡ RC0(V∗) and RC0 is efficient relative toRWSwith runtime tightness (polyRWS
time , polyRWS

virt).
(3) RC1(V∗) ≡ Sim(V∗) and Sim is efficient relative to RC1 with runtime tightness (polySim

time, polySim
virt).

(4) C0 and C1 form a simple assumption, and are indistinguishable, i.e. C0
c
≈ C1.

Then Sim is benign (under the assumption C0
c
≈ C1).

Moreover, Sim is benign under size-guarding, if it is benign whenever a polynomial size-guard is
imposed on the protocol.

To summarise, Definition 5.32 abstracts simulators whose security is proved in following steps: First,
exhibit a normal rewinding strategy RWS. Second, find an reduction between RWS and Sim which
proves their outputs (and implicitly, also their queries) indistinguishable. By assuming C0, C1 are
indistinguishable, we get the desired output quality and preserve CEPT. Third, we have to take care of
runtime. This is done by requiring almost every step in the chain from 〈P, ·〉 to RWS to RC0 and from
RC1 to Sim to be relatively efficient with runtime tightness. (Normality of RWS implies this for the first
step.) The exceptional step from RC0 to RC1 follows by indistinguishability of C0 and C1. Indeed, since
(strong) relative efficiency is unconditional, we cannot expect Sim to be efficient relative to P. Hence,
it is necessary to break the chain at some point.

The use of simple assumptions will only become clear once we turn to sequential composition.

5.5.1. Iterated benign reductions

Our definition of benign allows only one “reduction step” using C0
c
≈ C1. Many security proofs can be

squeezed into this setting. However, a simple relaxation is possible.
Definition 5.33 (Iterated benign). In the setting of Definition 5.32, we call Sim iterated benign, if there
is a constant k and a sequence of “intermediate simulators” Sim0, . . . , Simk, with the same interface as
Sim, so that

(1) Sim0 = 〈P, ·〉 and Simk = Sim.
(2) Simi and Simi+1 are related by a benign reduction (as in Definition 5.32, with oracles Ci,b,

i = 1, . . . , k, b = 0, 1.).

We stress that iterated benign only allows a constant number of “hops”. The reason is that runtime
may double for each hop, so superconstantly many “hops” could make the runtime explode, but see
Remark 5.36. Thus, hybrid arguments must be fitted into the (simple) assumptions. Indeed, a general
abstract way to cope with hybrid arguments in our a posteriori efficiency setting is an open problem.

36

5.5.2. Examples of (iterated) benign simulators

All of our examples can be easily expressed via (iterated) benign simulators, and we are not aware
of any counterexamples (in the case of zero-knowledge). We stress that hybrid arguments must be
incorporated into the (simple) assumptions Ci,0

c
≈ Ci,1.

Example 5.34. The classic, the constant round, and the concurrent zero-knowledge protocol exam-
ples [GMW86; Blu86; GK96; Ros04; KP01; PTV14] from Section 5.4.3 have benign simulation.

5.5.3. Zero-knowledge and benign simulation

We only give results for benign simulation. Extending these to iterated benign is straightforward and
left to the reader.

Lemma 5.35. Suppose (P,V) is a proof system. Let Sim be a benign simulator (under size-guarding).
Then Sim is a zero-knowledge simulator (under size-guarding) which handles CEPT adversaries (in CEPT).

Proof. Suppose (G,V∗,D) is any adversary which is CEPT in the real protocol. Recall that the output
of a normal rewinding strategy RWS is distributed like the real protocols output. By our assumption,
the “reduction” RC0 has output which is also distributed exactly like RWS. By normality of RWS and
relative efficiency R, RC0(V∗) is CEPT. By indistinguishability of C0 and C1 and the standard reduction,
RC1(V∗) is CEPT and the output of RC1(V∗) is (computationally) indistinguishable from RC0(V∗) (and
hence the real protocol). By relative efficiency of Sim, Sim(V∗) is CEPT (with environmentG,D). Since
RC1 is distributed exactly as Sim, the output of Sim(V∗) and 〈P,V∗〉 is indistinguishable. Thus Sim
handles CEPT adversaries in CEPT. The argument applies without change in the case of size-guarded
zero-knowledge simulation.

By Lemma 5.35, all of our examples in Example 5.34 are not only secure against a priori PPT adversaries,
but have CEPT simulation against designated CEPT adversaries.

Remark 5.36 (More precise runtime bounds). We saw for G3CGK, that the runtime of the simulator Sim
and the rewinding strategy RWS are very closely related. For this, we used “boxing” and “unboxing”
(and timing of commitment computations). Such a close relation of runtime is typical, since in most
security proofs only rewinding and bookkeeping introduces (significant) changes in the runtime. Hence,
our extendability results are relatively crude feasibility results, assuring that zero-knowledge extends to
CEPT adversaries.

6. Sequential composition of zero-knowledge
We define and prove sequential composition for benign simulators. Trouble with the efficiency of
hybrid arguments affects sequential composition of general zero-knowledge. Thus, it is unclear whether
auxiliary input zero-knowledge as in Definition 5.2 composes sequentially in the usual sense. As a
remedy, we define sequential zero-knowledge, which comes with a builtin hybrid argument. Moreover,
we show that benign simulation composes sequentially and consequently satisfies sequential zero-
knowledge.

6.1. Security definition
To have a somewhat liberal notion of sequential composition, we upgrade the input-generating machine
G to an (interactive) environment E. We also merge it with the distinguisher. The environment E
provides all inputs for the protocol, but does not execute the protocol itself. (This would take us too far
into environmental security and concurrent composition.) Instead, there still is an adversary V∗. One
should think of V∗ as a universal adversary, which is told how to act by E, but V∗ can only communicate

37

its output after the protocol execution back to E. In other words, our definition of sequential composition
assumes adaptive sequential executions.

Ignoring efficiency issues, our definition of sequential zero-knowledge can be summarised as follows:
Instead of indistinguishability of 〈P,V∗〉 and Sim(V∗), we assume indistinguishability of rep(〈P,V∗〉)
and rep(Sim(V∗)). The formal definition follows.
Definition 6.1 (Sequential zero-knowledge). Let T,S ∈ {PPT,CPPT,EPT,CEPT}. Let (P,V) be
a proof system (with efficient prover). A universal simulator Sim takes as input (x, code(V∗), aux)
and simulates V∗’s output. Let (E,V∗) be an adversarial environment E and an adversarial verifier V∗.
The environment is given access one of two oracles OP, OSim, which take as input (x,w, aux) and

• OP(x,w, aux) returns outV∗〈P(x,w),V∗(aux)〉. (OP =̂ rep(〈P(·), ·〉))
• OSim(x,w, aux) returns Sim(x, code(V∗), aux). (OSim =̂ rep(Sim(·)))

W.l.o.g., the output of E is a bit.40 We assume that both oracles reject (say with ⊥) if (x,w) 6∈ R. We
consider two executions, a real and an ideal one, defined by:

RealE,V∗(κ) := outE〈E,OP〉
and IdealSim

G,V∗(κ) := outE〈E,OSim〉

We define RealE,V∗(κ) to be the execution of (E,V∗) with OP, and IdealSim
E,V∗(κ) the execution with

OSim. The distinguishing advantage of (E,V∗)

AdvzkE,V∗(κ) := |P(RealE,V∗(κ) = 1)− P(IdealSim
E,V∗(κ) = 1)|.

A (designated) adversary (E,V∗) is T-time if timeE+P+V∗(RealE,V∗) ∈ T.
The proof system is (uniform) sequential zero-knowledge against T-time adversaries w.r.t. S-

time Sim, if for any T-time adversary (E,V∗):

• timeSim(IdealSim
E,V∗) ∈ S, i.e. Sim is weakly (T,S)-efficient relative to P.

• AdvzkE,V∗(κ) is negligible

We define (uniform) sequential zero-knowledge w.r.t. (input) size-guarded security as follows:
For any polynomial size-guard gd, the derived protocol, where prover and verifier abort with gderr on
inputs (x,w) where |x| > gd(κ), is sequential zero-knowledge (in the above sense).

The definition of non-uniform (size-guarded) sequential zero-knowledge is analogous to the above,
but E(κ) has access to an advice via an additional input interface, see Section 4.1.1.

We also say that protocols with sequential zero-knowledge simulators compose sequentially. We
dropped the input generatingmachineG, since its complexity class is the same as that of the environment
E; to model precomputation, one may want to re-introduce it, see Appendix A.5.
Remark 6.2 (Auxiliary input and one-query sequential zero-knowledge). The definitions of auxiliary
input zero-knowledge in Definition 5.2 does not (formally) coincide with sequential zero-knowledge
restricted to one query, and is minimally weaker (Remark 4.2). However, we know of no example where
a difference manifests.41
40More generally, the output of real and ideal executions must be indistinguishable. Since we require PPT (or equivalently

CEPT) indistinguishability, such a distinguisher can be incorporated into E.
41 A bb-rw simulator has no access to aux . So aux can be used to pass messages toD. Roughly, any simulator which does not

“reverse-engineer” V∗ and aux should satisfy this slight strengthening of auxiliary input zero-knowledge , i.e. we know
of no counterexamples even for non-black-box simulators. Intuitively, G and D may share a “key” (e.g. as non-uniform
advice or hardwired), and use a one-time pad to “encrypt” messages which are passed. It is easy to see that, if Sim is not
one-query secure, then there is a (sequence of) “keys”, such that the advantage of (G,D) is at least that of E, if the “key” is
long enough to one-time pad “encrypt” the state of E passed between input generation and distinguishing. (Summing the
advantage over hardwired or non-uniform key k for (Gk,Dk) over all possible poly(κ)-bit keys, weighted by 2−poly(κ) is
exactly the advantage of E. The claim follows.) Thus, in a uniform model, constant size messages can be passed to D

without affecting security, and in a non-uniform model, polynomial size messages can be passed.

38

6.2. Sequential zero-knowledge from benign simulation
Sequential composition does not follow from auxiliary input zero-knowledge in our setting.42 Sequential
composition of “standard” zero-knowledge crucially relies on a priori efficiency. The problem when
adapting the standard proof of sequential composition can be summarised as follows: Either the hybrid
argument’s “pre-processing phase” (to embed the simulator) or “post-processing phase” (to produce the
output the distinguisher expects) are not obviously efficient. So the core problem is efficiency of repeated
applications of Sim, or more generally hybrid arguments in an a posteriori settings (which is further
complictated by virtualities). The weak relative efficiency guarantee in Definition 5.2 is just insufficient.
Thus, we failed to lift the standard proof to the designated adversary setting. In Appendix F.5, we
discuss this problem in more detail.

In order to prove efficiency, we need some kind of “uniformity” for the runtime bounds (independent of
the adversary), which a posteriori efficiency does not give. Relative efficiencywith runtime tightness does
provide a uniform (tightness) bound. But as noted in Remark 5.8, we cannot hope for an unconditional
property to hold for a (computational zero-knowledge) simulator. The main culprit is therefore the
accumulation of virtualities. To “uniformly” bound virtuality changes, we face the same problem as the
(classic) hybrid argument: We need a common “anchor”, a constant number of assumptions to reduce to.
Moreover, due to sequential composition, these respective assumptions are used repeatedly. This brings
us to simple assumptions: They are secure under repeated trials, and an (iterated) benign reduction
relies only on (a constant number of) simple assumptions.

Following the idea sketched above, we show that benign simulators sequentially compose. Conceptu-
ally we do this by:

• Using that rewinding strategies “compose sequentially”.
• Using that relative efficiency with runtime tightness “composes sequentially”.
• Using that simple assumptions “compose sequentially”, which is a very fancy way to say that we
rely on “repeated trials”.

• Hence, benign “composes sequentially”.

By “composes sequentially”, we mean that there are (a priori) known universal bounds or constructions
which can be used, so there is no “uncontrolled” growth of runtime or advantage.

Remark 6.3 (Lifting normality and relative efficiency). For brevity’s sake, we do not explicitly lift
rewinding strategies and relative efficiency to the sequential composition setting, i.e. we do not explicitly
define what “composes sequentially” means in that setting. It is straightforward to define by using
an (environmental) adversary and replacing access to the objects O0, O1 of interested (e.g. RWS and
〈P, ·〉 for normality) by repeated access, i.e. rep(O0), rep(O1). We note that the tightness parameters
are unaffected (since the notions were already “perfect”).

Lemma 6.4 (Sequential zero-knowledge from benign simulation). Let (P,V) be a proof system. Suppose
Sim is a benign simulator (for auxiliary input zero-knowledge). Then (P,V) is sequential zero-knowledge.
The analogous claim holds for size-guarded sequential zero-knowledge.

Proof sketch. Let (E,V∗) be the adversary trying to distinguish OP and OSim. Let RWS be the normal
rewinding strategy of Sim. Let R be reduction and C0, C1 be the simple assumption.

Step 1 (Sequential composition of RWS): Let polytime and polyvirt be the runtime and probability
tightness of RWS. Let ORWS =̂ rep(RWS) denote the oracle which replaces 〈P, ·〉 with RWS(·).
We know that for any input, the state of V∗ after RWS is identically distributed to the state after
interaction with P (by normality). Hence, replacing OP with ORWS only affects the runtime. Now, we
lift Lemma 5.20 to the sequential setting.

42More precisely, we cannot prove or disprove that it does.

39

Define TRWS,i resp. TP,i as the time spent in the i-th invocation of ORWS resp. OP. Note that

E(timeRWS+V∗(〈E,ORWS〉)) =
∑
i

E(TRWS,i)

≤ polytime
∑
i

E(TP,i)

= polytime · E(timeP+V∗(〈E,OP〉))

where normality is applied for each i.
Suppose (E′,V′) are timeout-modifications according to Lemma 4.21. By probability tightness,

the probability that the i-th iteration of RWS runs into a timeout event is at most polyvirt-fold the
probability for P to run into a timeout event. Consequently, the virtuality is increased by at most a
factor of polyvirt.

All in all, we have shown that ORWS is a “sequential rewinding strategy” with runtime tightness
polytime, probability tightness polyvirt, and perfect output distribution; and we lifted Lemma 5.20.

Step 2 (Relative efficiency composes sequentially): Suppose Sim is efficient relative to RC1 with
runtime tightness (polytime, polyvirt). Then the oracle OSim is efficient relative to ORC1 with runtime
tightness poly. Namely, for any (E,V∗),

E(timeSim+V∗(〈E,OSim〉)) =
∑
i

E(TSim,i)

≤ polytime
∑
i

E(TRC1,i)

= polytime · E(timeRC1(〈E,OP〉))

where TSim,i resp. TRC1 denotes the time for the i-th invocation of the respective oracle. This again
follows by looking comparing i-th invocations, and using that output distributions are identical by
assumption. And as for RWS, we can lift the runtime guarantees to the sequential setting, including
virtualities. That is, if the virtually expected time is (t, ε) with ORC1 , then it is (polytime · t, polyvirt · ε)
with OSim. The same holds for ORWS and ORC0 .

Step 3 (Indistinguishability of ORC0 and ORC1): It is obvious that indistinguishability of ORC0 and
ORC1 reduces to indistinguishability of C0 and C1 under repeated trials. (Each invocation of ORC0 (resp.
ORC1) is another trial.) By Corollary 4.15, simple assumptions are indistinguishable under repeated
trials. (It is vital that RC0 is CEPT. That follows from Steps 1 and 2.)

Step 4 (Benign composes sequentially): From Steps 1 to 3, it follows immediately that benign
“composes sequentially”. More concretely, it follows that (E,V∗) cannot distinguish OP and OSim, and
in particular, an execution with OSim again CEPT.

7. Conclusion and open problems
At the example of zero-knowledge, we demonstrated that the notion of computationally expected
polynomial time is a useful and viable alternative to EPT. We also gave a “philosophical” motivation
why EPT should be enlarged to CEPT, namely distinguishing-closedness. However, we leave open
many minor and major questions and directions.

Beyond negligible advantage. The most important question may well be the (in)compatibility of
CEPT and superpolynomial hardness assumptions. The problem is the runtime-advantage trade-off which
is possible for expected time. Concretely, consider one-way function where we assume that no PPT
adversary can invert with probability better thanO(2−κ/2). W.r.t. CEPT, such assumptions cannot exist,
since with probability O(2−κ/4), a CEPT adversary may brute-force a preimage. One may consider a

40

CEPT-variation, where instead of negligible distinguishing advantage from EPT, advantage at most
O(2−κ/2) is required. However, if we do this, then all indistinguishability assumptions must be so
strong. Mixing in a primitive with negligible advantage would allow a deviation from EPT which is too
far.

It is a critical question, whether this is a fundamental problem, or just another technical artifact. If
CEPT is incompatible with subexponential hardness assumption, then protocols which rely on such are
very likely incompatible with CEPT. We expect a suitable redefinition of advantage to fix this problem
in a natural way — but which definition is the “right” one?

Broader applications. For cryptographic applicability, the treatment of zero-knowledge gives hope
that other simulation-based settings, e.g. multi-party computation or environmental security, are compat-
ible with CEPT, or can be made compatible.

Basic insights and quantifiability. For a more quantifiable notion of security, we need to tackle
the question of tightness of reductions, simulations, etc. The treatment of the virtuality error for a
good notion of tightness is non-trivial. Moreover, any application of the statistical-to-computational
reduction obliterates tightness.

Furthermore, a more insightful interpretation of (or solution to) the problem of hybrid arguments
and (sequential) composition are of particular interest.

More abstract questions. Our “general” treatment of runtime provides the central results only for
algebra-tailed runtime classes. Indeed, we even lack a definition of well-behaved runtime classes, for
which we can expect such results to hold. Such a definition and extensions, as well as incorporating
different advantage classes, are open. This may also lead to insights regarding superpolynomial hardness
and CEPT, or vice versa.

Acknowledgements. I am grateful to Alexander Koch and Jörn Müller-Quade for feedback on an
entirely different approach on EPT, and to Dennis Hofheinz for essentially breaking said approach. I
also extend my gratitude to the reviewers of CRYPTO’20, and to Marcel Tiepelt, whose suggestions
helped to improve the overall presentation.

References
[Bar01] Boaz Barak. “How to Go Beyond the Black-Box Simulation Barrier”. In: 42nd Annual Symposium

on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. IEEE
Computer Society, 2001, pp. 106–115. doi: 10.1109/SFCS.2001.959885. url: https://doi.
org/10.1109/SFCS.2001.959885.

[Bel02] Mihir Bellare. “A Note on Negligible Functions”. In: J. Cryptology 15.4 (2002), pp. 271–284.

[BG11] Mihir Bellare and Oded Goldreich. “On Probabilistic versus Deterministic Provers in the Definition
of Proofs of Knowledge”. In: Studies in Complexity and Cryptography. Vol. 6650. Lecture Notes in
Computer Science. Springer, 2011, pp. 114–123.

[BL04] Boaz Barak and Yehuda Lindell. “Strict Polynomial-Time in Simulation and Extraction”. In: SIAM J.
Comput. 33.4 (2004), pp. 738–818.

[Blu81] Manuel Blum. “Coin Flipping by Telephone”. In: CRYPTO. U. C. Santa Barbara, Dept. of Elec. and
Computer Eng., ECE Report No 82-04, 1981, pp. 11–15.

[Blu86] Manuel Blum. “How to prove a theorem so no one else can claim it”. In: Proceedings of the Interna-
tional Congress of Mathematicians. Vol. 1. 1986, p. 2.

[BT06] Andrej Bogdanov and Luca Trevisan. “Average-Case Complexity”. In: Foundations and Trends in
Theoretical Computer Science 2.1 (2006). doi: 10.1561/0400000004. url: https://doi.org/10.
1561/0400000004.

41

https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1561/0400000004
https://doi.org/10.1561/0400000004
https://doi.org/10.1561/0400000004

[Cha+14] Siu-on Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. “Optimal Algorithms for Testing
Closeness of Discrete Distributions”. In: SODA. SIAM, 2014, pp. 1193–1203.

[CLP15] Kai-Min Chung, Edward Lui, and Rafael Pass. “From Weak to Strong Zero-Knowledge and Ap-
plications”. In: TCC (1). Vol. 9014. Lecture Notes in Computer Science. Springer, 2015, pp. 66–
92.

[CS02] Ronald Cramer and Victor Shoup. “Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption”. In: EUROCRYPT. Vol. 2332. Lecture Notes in Computer
Science. Springer, 2002, pp. 45–64.

[Dwo+03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. “Magic Functions”. In: J. ACM
50.6 (2003), pp. 852–921. doi: 10.1145/950620.950623. url: https://doi.org/10.1145/
950620.950623.

[Fei90] Uriel Feige. “Alternative models for zero-knowledge interactive proofs”. PhD thesis. Weizmann
Institute of Science, 1990.

[FW93] Michael L. Fredman and Dan E. Willard. “Surpassing the Information Theoretic Bound with Fusion
Trees”. In: J. Comput. Syst. Sci. 47.3 (1993), pp. 424–436.

[GK96] Oded Goldreich and Ariel Kahan. “How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP”. In: J. Cryptology 9.3 (1996), pp. 167–190.

[GM98] Oded Goldreich and Bernd Meyer. “Computational Indistinguishability: Algorithms vs. Circuits”.
In: Theor. Comput. Sci. 191.1-2 (1998), pp. 215–218. doi: 10.1016/S0304-3975(97)00162-X. url:
https://doi.org/10.1016/S0304-3975(97)00162-X.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing But their Validity and
a Methodology of Cryptographic Protocol Design (Extended Abstract)”. In: FOCS. IEEE Computer
Society, 1986, pp. 174–187.

[Gol01] Oded Goldreich.The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University
Press, 2001. isbn: 0-521-79172-3. doi: 10.1017/CBO9780511546891. url: http://www.wisdom.
weizmann.ac.il/\%7Eoded/foc-vol1.html.

[Gol10] Oded Goldreich. “On Expected Probabilistic Polynomial-Time Adversaries: A Suggestion for Re-
stricted Definitions and Their Benefits”. In: J. Cryptology 23.1 (2010), pp. 1–36.

[Gol11a] Oded Goldreich. “Average Case Complexity, Revisited”. In: Studies in Complexity and Cryptography.
Vol. 6650. Lecture Notes in Computer Science. Springer, 2011, pp. 422–450.

[Gol11b] Oded Goldreich. “Notes on Levin’s Theory of Average-Case Complexity”. In: Studies in Complexity
and Cryptography. Vol. 6650. Lecture Notes in Computer Science. Springer, 2011, pp. 233–247.

[Gol93] Oded Goldreich. “A Uniform-Complexity Treatment of Encryption and Zero-Knowledge”. In: J.
Cryptology 6.1 (1993), pp. 21–53. doi: 10.1007/BF02620230. url: https://doi.org/10.1007/
BF02620230.

[GS98] Oded Goldreich and Madhu Sudan. “Computational Indistinguishability: A Sample Hierarchy”. In:
Proceedings of the 13th Annual IEEE Conference on Computational Complexity, Buffalo, New York,
USA, June 15-18, 1998. IEEE Computer Society, 1998, pp. 24–33. doi: 10.1109/CCC.1998.694588.
url: https://doi.org/10.1109/CCC.1998.694588.

[GW10] Craig Gentry and Daniel Wichs. “Separating Succinct Non-Interactive Arguments From All Falsifi-
able Assumptions”. In: IACR Cryptol. ePrint Arch. 2010 (2010), p. 610.

[HM98] Shai Halevi and Silvio Micali. “More on Proofs of Knowledge”. In: IACR Cryptol. ePrint Arch. 1998
(1998), p. 15. url: http://eprint.iacr.org/1998/015.

[HUM13] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. “Polynomial Runtime and Compos-
ability”. In: J. Cryptology 26.3 (2013), pp. 375–441. doi: 10.1007/s00145-012-9127-4. url:
https://doi.org/10.1007/s00145-012-9127-4.

[KL08] Jonathan Katz and Yehuda Lindell. “Handling Expected Polynomial-Time Strategies in Simulation-
Based Security Proofs”. In: J. Cryptology 21.3 (2008), pp. 303–349.

[KM13] Neal Koblitz and Alfred Menezes. “Another look at non-uniformity”. In: Groups Complexity Cryptol-
ogy 5.2 (2013), pp. 117–139. doi: 10.1515/gcc-2013-0008. url: https://doi.org/10.1515/
gcc-2013-0008.

42

https://doi.org/10.1145/950620.950623
https://doi.org/10.1145/950620.950623
https://doi.org/10.1145/950620.950623
https://doi.org/10.1016/S0304-3975(97)00162-X
https://doi.org/10.1016/S0304-3975(97)00162-X
https://doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/\%7Eoded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/\%7Eoded/foc-vol1.html
https://doi.org/10.1007/BF02620230
https://doi.org/10.1007/BF02620230
https://doi.org/10.1007/BF02620230
https://doi.org/10.1109/CCC.1998.694588
https://doi.org/10.1109/CCC.1998.694588
http://eprint.iacr.org/1998/015
https://doi.org/10.1007/s00145-012-9127-4
https://doi.org/10.1007/s00145-012-9127-4
https://doi.org/10.1515/gcc-2013-0008
https://doi.org/10.1515/gcc-2013-0008
https://doi.org/10.1515/gcc-2013-0008

[KP01] Joe Kilian and Erez Petrank. “Concurrent and resettable zero-knowledge in poly-loalgorithm rounds”.
In: STOC. ACM, 2001, pp. 560–569.

[KW15] Eike Kiltz and HoeteckWee. “Quasi-Adaptive NIZK for Linear Subspaces Revisited”. In: EUROCRYPT
(2). Vol. 9057. Lecture Notes in Computer Science. Springer, 2015, pp. 101–128.

[Lev86] Leonid A. Levin. “Average Case Complete Problems”. In: SIAM J. Comput. 15.1 (1986), pp. 285–286.

[Lin17] Yehuda Lindell. “How to Simulate It - A Tutorial on the Simulation Proof Technique”. In: Tutorials
on the Foundations of Cryptography. Springer International Publishing, 2017, pp. 277–346.

[Mey94] Bernd Meyer. “Constructive Separation of Classes of Indistinguishable Ensembles”. In: Proceedings
of the Ninth Annual Structure in Complexity Theory Conference, Amsterdam, The Netherlands, June 28
- July 1, 1994. IEEE Computer Society, 1994, pp. 198–204. doi: 10.1109/SCT.1994.315804. url:
https://doi.org/10.1109/SCT.1994.315804.

[PTV14] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubramaniam. “Concurrent
Zero Knowledge, Revisited”. In: J. Cryptology 27.1 (2014), pp. 45–66.

[Ros04] Alon Rosen. “A Note on Constant-Round Zero-Knowledge Proofs for NP”. In: TCC. Vol. 2951. Lecture
Notes in Computer Science. Springer, 2004, pp. 191–202.

43

https://doi.org/10.1109/SCT.1994.315804
https://doi.org/10.1109/SCT.1994.315804

A. Machine models
We do not want to go into much detail about the machine model, and will essentially assume that it
is admissible. Admissibility carries certain explicit requirements.43 As our machine model, we have
some RAM-like model in mind. Indeed, “concrete efficiency” is relatively important when dealing with
expected time. For example, if a (runtime) distribution T over N0 has finite expected value E(T), this
need not be the case for E(T 2).44 Thus, we require that certain operations can be carried out efficiently
(e.g. with logarithmic overhead). Importantly, we require efficient arithmetic and the abilitiy to use
standard efficient construction, such as arrays or more sophisticated data structures, which allow efficient
computation in a RAM model (or multi-tape Turing machine). We also require efficient emulation of
(efficient) programs, oracles, or interactive systems in the sense that “emulating” an execution does
not affect the runtime too much. Moreover, emulation allows to truncate, suspend, resume, rewind, or
similarly affect executions based on efficiently computable events (such as the number of steps emulated,
or messages received).

A.1. Systems, oracles, algorithms
Before considering machine models and specific properties, we sketch the high level abstractions. We
view algorithms and oracles as systems, which offer (communication) interfaces. Interfaces allow to
receive and/or send messages. For example, the input (resp. output) interface typically receives (resp.
sends) exactly one message, the input. To model “laziness”, one may view the interface less strictly,
and allow the input (resp. output) interface to read symbol for symbol. Thus, a calling algorithm need
not provide the full input (resp. output) at once. This is convenient in our setting, where input (resp.
output) lengths are not a priori bounded.

We do not formalise the means of interfacing precisely, but argue in a hand-wavy manner. (In our
case, with many competing definitions of machine and communication models, we believe it is better to
be explicitly imprecise, than importing a lot of unnecessary details.)

We work with three levels of abstractions: Systems, oracles, and algorithms. A deterministic system
is defined by its interfaces and “input-output behaviour” only, i.e. it is a “mathematical object”. A
(probabilistic) system is a random variable S, such that any realisation of S is a deterministic system.
A system has no notion of “runtime”, or “random tape”. By connecting interfaces, systems may interact.
This forms a new system. Any system has an implicit input, the security parameter. A system is closed
if the only input is its security parameter, and it offers only an output interface.

An algorithm is given by code (perhaps non-uniformly) and bound to a machine model. The code
and machine model describe its behaviour as a system, and impart it with a notion of runtime and
“random tape”. (Randomness need not be modelled by a random tape.)

By oracle or party, we denote systems or algorithms to which only interface access is used. For
example, black-box rewinding access (bb-rw) to an adversary means access to an oracle (with an
underlying algorithm in this case). If not indicated otherwise, an oracle O is an algorithm (to which
only interface access is provided).

In our setting, a convenient abstraction are timed oracles, which allow execution for an a priori
bounded time, and which report the elapsed time to the callee when answering a query (or report
timeout, if it did not complete in time). See Appendix A.3 for a more precise specification. Timed
bb-rw simulators can make use of this to truncate overlong executions, and this corresponds to extended
black-box access in [KL08].

Another useful abstraction, mostly for convenience in the setting of a posteriori efficiency, are
timeful oracles (or timeful systems). Timeful oracles are systems, which provide a purported runtime.

43Most likely, we forgot some requirements. Also, our specification is far from formal. Worse, these requirements partially
depend on runtime and efficiency notions. However, polynomial time should be unproblematic,

44Consider distributions Tκ over N as follows: P(Tκ = 2κ) = 2−κ, and P(Tκ = 1) = 1 − 2κ. Then E(Tκ) = 1, but
E(T 2

κ) ≥ 2κ.

44

Importantly, timeful oracles are not bound by complexity notions or machine models, except satisfying
consistency restrictions, e.g. their purported runtime must be long enough to have written the answer
to the interface. But hardness assumptions, such as timelock puzzles are void against timeful oracles.
Thus, they are mostly a convenient way to formalise unconditional runtime guarantees for algorithms
with oracle-access, e.g. bb-rw simulators. A timeful oracle also yields a timed oracle in the obvious way.

A.2. Abstract machine model operations and interaction
From an abstract point of view, we want a machine model with following properties:45

Efficient arithmetic which does not thwart our results.
Efficient data structures such as arrays (i.e. random access), or something morally equivalent.
Abstract subroutines such as oracle calls, or a message sending function.
Abstract access to subroutine results. This is non-trivial, in particular if subroutines need not be

efficient. Thus, even for a RAM-model, accessing the result of an oracle needs some tape-like
access method.46

Interactive machines which communicate and are activated in some sensible way.
A sensible notion of runtime which is local in case of interactive machines and subroutine calls.

That is, one can separate between time spent within some machine, subroutine, or oracle, and
account accordingly.

Efficient emulation ensures that one can efficiently execute some code (e.g. of the adversary or an
interactive system) “in-the-head”, or in modern terms, efficiently run one (or many interacting)
“virtual machines”.

Let us formalise our wishes a bit. Concerning arithmetic and data structures, we want typical
algorithms to be efficient. In particular, distinguishing distributions by sampling often enough and
computing the empirical distribution should be “efficient” in the sample size n, see Appendix B.3.
For data structures, we may have to deal with excessively large inputs, thus, we may need suitable
encodings, e.g. a tuple should allow access to any of its components efficiently, even with tape-like
access. For example, representing (x, y) by concatenation only works if x is guaranteed to be short, but
is inefficient if x is very long. Interleaving always works for constant size tuples.

Now, we somewhat formalise the locality of runtime. Let AO1,...,ON be an oracle machine (with access
to N oracles).47 We write timeA(AO1,...,ON) or time(AO1,...,ON) to denote the runtime48 of A only,
where each oracle invocation costs a single unit of time. We call this notion of time oracle-excluded
time. By timeA+O1+...+ON

(AO1,...,ON), we denote the time spent by all of the machines. We call this
oracle-included-time. We define intermediate times, e.g. timeA+O2(AO1,...,ON) in the obvious way.
We generally require that

timeA+O1+O2+...(AO1,...,ON) = timeA(AO1,...,ON) + timeO1(AO1,...,ON) + timeO2(AO1,...,ON) + . . .

or something morally equivalent. (Note that our algorithm takes no input. In case of randomised
algorithms, the runtimes for A, O1, …ON are not stochastically independent.)

Finally, a sensible machine model guarantees efficient emulation. Namely, if the oracle-included time
of AO1,...,ON is efficient so is the runtime of the algorithmB which emulates the execution on the oracles.

45Another requirement, which is natural enough that we did not prominently require it, is that writing (or sending) a message
of length n incurs n steps. Otherwise, message length and runtime efficiency are “uncorrelated”.

46The problem here is: If the result of an oracle is huge, any access may exhaust the alloted runtime. This is nonsense (and
completely breaks our results). For that reason, some (trivial, efficient) encoding for such unbounded objects are necessary,
e.g. bitwise tape-like. Concretely, our runtime oracles might output gigantic runtimes, which a runtime distinguisher need
not completely read to discern them from polynomial time.

47Notations and properties for runtime of interactive machines are analogous.
48Recall that we say runtime for runtime distribution and that we consider algorithms without input (for defining runtime).

45

In other words, converting an oracle (or interactive) machine into a single machine B by incorporating
the oracle (via its code) should preserve efficiency. Furthermore, emulation should efficiently allow to
gather (and act upon) execution statistics, most importantly the elapsed runtime of the emulated code,
and the possibility to truncate an oracle emulation after a number of steps. Emulation should behave
just like one expects from a virtual machine, in particular, be possible step-for-step.

Note that preservation of efficiency depends on the machine model and the notion of efficiency itself.
For example, if emulation has a logarithmic overhead, then linear time is not preserved under emulation,
but quasi-linear time may be. Emulation overhead which is linear (or better sublinear) in the number of
emulated steps is a very convenient property of a machine model. We write emuovhdκ,N (k) for the
time steps required to emulate k steps (of a N machine/oracle system in some implicit machine model).
That is k timesteps of the oracle(s) can be emulated in at most emuovhd(k) timesteps (of emulation).
Usually, the security parameter κ and number of oracles N are suppressed.

Lastly, we define timeful oracles (or timeful systems) as oracles which also return their “elapsed
time” to the machine model (and not as regular output). This is a means to give oracles a “special”
notion of time, e.g. because the oracle is “imaginary” and not (efficiently) computable. For consistency,
their elapsed time must adhere to lower bounds, such as anm-word output requiring at leastm steps.
This “manipulation of reality” is a convenient tool.

The interaction model. We will assume an interaction model where messages of arbitrary size can
be sent, and parties have incoming messages queues. These do not count towards their space, and
they do not pay runtime for receiving a message, only for reading it. Tape-like access to messages
seems most natural, so we assume that. For technical reasons, one may wish provide the possibility
of dropping (i.e. skipping) a (partially read) message. This allows a party to ignore large messages,
keeping its runtime in check. Another possibility is to use fixed size messages (packages), and make the
transfer of longer messages an “explicit” protocol. With this approach, our simplified view of “inputs as
messages” is broken. This surfaces a technical detail, namely that reading from tapes and interacting
with an interface which provides the same information is essentially the same, but technically different.
By suitably restricting adversaries and algorithms, or introducing “unidirectional channels” (e.g. dummy
transmitter parties) for passing inputs (after termination), this can be reconciled.

There are also different strategies for dealing with messages from super-constantly many parties, e.g.
one tape-like message queue for all, one message queue per party, etc. Since our focus is (essentially) a
two-party setting, we leave technical details, problems, solutions and their relations to the reader.

A.3. Timed black-box emulation with rewinding access
Wedefine (timed) black-box emulation similar to [KL08], which differs from standard black-box emulation
essentially by making the “runtime/instruction counter” part of the visible black-box interface and by
allowing runtime truncation.
Definition A.1 (Timed black-box emulation with rewinding access (bb-rw)). A black-box emulation or-
acleO gives oracle access to a “virtual machine” running some (once and for all) specified program/code.
The code may involve multiple (abstracted) parties. Unless otherwise specified, the O is deterministic in
the sense that the randomness of the emulated programs is sampled and fixed prior to interaction.49
We do not let the oracle algorithm choose the randomness.

The black-box interface depends on the specific type.

• Fully black-box emulators take an input messagem and return their program’s answer a.
• Timed black-box emulators take a pair (m, t), where t is a maximum time bound, and return
a pair (a, s), where s is the number of steps emulated. If s would exceed the alloted time t, the

49That is, O reacts deterministically to queries in one execution, but not necessarily over different executions. When such an
oracle is implemented, the “random tape” (or the respective notion in the machine model) is sampled (and fixed) lazily. For
example, a random oracle is deterministic.

46

emulation is aborted and timeout is returned. A time bound of t =∞ is allowed. (Execution
may be resumed after timeout.)

• Black-box emulation with rewinding access (bb-rw) allow the state of the emulated program to
be stored and loaded. Typically, a state is identified by its partial transcript of (previous) queries.
Other means of identification, such as handles, are more efficient. Loading, storing, and deleting
program states is done by special types of messages.50

Note that we distinguished black-box oracles with rewinding access from “normal” oracles. The
reason is that the “next-message” approach usually used to implement black-box access is not efficient
enough in setting.

Example A.2 (Runtime squaring for NextMsg). Consider following interaction 〈A(n),B〉: First A sends
n to B. Then A pings B n times, each times B returns a secret, which A uses in the next ping. Obviously,
this interaction runs in time O(n). Consider a distributions N of inputs n on N with the property that
E(N) < ∞ but E(N2) = ∞. Then emulation with next-message-function NextMsg is not efficient.
The reason is that NextMsg always (re)computes from scratch. Thus, it requires about

∑n
i=1 i ≈

1
2n

2

steps.

Remark A.3 (Cached UID NextMsg access). Caching all visited states and using short unique identifiers
(UID) for visited states (instead of resending the history of messages leading to a state), yields a NextMsg-
like function which is a suitable bb-rw oracle implementation (in all situations we have tried). Cached
state and short UIDs prevent the quadratic computational overhead, but require expected polynomial
space. Judiciously caching only important states is typically possible, so that usually strict polynomial
space solutions exist.

Keeping track of identifiers and the rewinding tree can be done with efficient data structures. (Poly-
logarithmic overhead is admissible by Corollary A.7.)

Remark A.4. For admissible models, emulation of algorithms allows (efficient) runtime cutoffs. Cloning
a machine’s state, and resuming from a given state should also be (efficiently) possible. (Or we may add
it as an new assumption.)

Remark A.5 (Space overhead). We have only considered time overhead of emulation. This is justified,
as it bounds the space/memory overhead. However, memory overhead is an interesting quantity on its
own. For example, one might argue that expected poly-time, but strict poly-space, is a “more natural”
class of feasible computation than expected poly-time and expected poly-space.51

Unfortunately, this unveils technical artifacts. Depending on the implementation of the randomness
interface (e.g. input, read-only tape, coin-toss, …) emulation and bb-rw oracle implementations may
become inefficient, because space and randomness complexity are mixed. If read-only access to an
(infinite) random tape is given, then emulating two such tapes by “splitting” one works well. If
randomness is a coin-toss interface, which upon invocation returns a fresh random bit, then emulation
still works. However, to implement a bb-rw oracle bbrw(O), which gives access to O with fixed
randomness, requires to remember all used randomness. This can require expected polynomial space.

How this can be resolved elegantly is an interesting question. One could rely on derandomisation,
e.g. with an (a priori PPT) pseudorandom function, to simulate a long enough random string with small
space. Alternatively, one could try to work with probabilistic bb-rw oracles, which, when rewound to
a state use fresh randomness for new queries, i.e. the same query may yield different answers. Our
problem with deterministic versus probabilistic access is related to [BG11].

Similar problems apply to non-uniform advice, but their effect is worse, since non-uniform advice
cannot be “resampled” by a uniform simulator. So for general (pathological) algorithms, it is plausible,

50Note that all of the code and interfaces which are in our control, e.g. the interface of the black-box are assumed to be nice
and well-typed.

51Of course, the actual complexity class of interest allows EPT-SPS violation with negligible probability.

47

that uniform bb-rw simulation requires higher space complexity.52, 53 Viewing non-uniform advice as
part of the algorithm’s code, this is not surprising, since the algorithm had a higher space complexity to
begin with.

A.4. (Probably) Admissible machine models
To the best of our knowledge, RAM models, and also multi-tape Turing machines, are admissible if one
works with polynomial time or larger runtime classes.54 Following trivial lemma is useful to see that
efficient emulation is not hard to achieve, even for expected time.

Lemma A.6. Let f : N0 → N0 be any (monotone) strictly increasing function with (monotone) increasing
left-inverse g, i.e. g ◦f = id (but not necessarily f ◦g = id). Suppose T is a runtime and smaller than f , i.e.
P(Tκ > f(κ)) = 0 (for all κ). Let h be another monotone function. Then E(h(g(Tκ))Tκ) ≤ h(κ)E(Tκ).

Proof. Use h(g(Tκ)) ≤ h(g(f(κ))) ≤ h(κ).

Corollary A.7. Let poly be any monotone polynomial, and E(Tκ) ≤ t(κ) for a polynomial bound t, and
T ≤ 2κ. Then E(poly(log(Tκ))Tκ) is polynomially bounded (namely by ≤ poly(κ)t(κ)).
Proof. Use Lemma A.6 with f(κ) = 2κ, g(κ) = log2(κ). and h = poly,

Note that Tκ ≤ 2κ is easily achieved via a runtime cutoff after 2κ steps.55 This induces a statisti-
cally negligible change in the output of any expected polynomial time algorithm. Thus, we see that
polylogarithmic multiplicative overhead in emulation is not a problem for expected polynomial time
computations. By taking a smaller superpolynomial bound, e.g. f(κ) = κlog(κ), we get we a bit more
freedom in the emulation overhead.
Remark A.8 (Interaction of Corollary A.7 and virtuality). CEPT and CPPT ignore negligible events,
because they can be hidden in the virtuality. So, Corollary A.7 may always be applied after conditioning
on the event {Tκ ≤ 2κ}, i.e. after using the “virtuality slack”. Consequently, polylog overhead is
not a problem for CEPT. (It can be a problem for EPT, if an algorithm is not truncated to 2κ steps.
Unfortunately, such a truncation can affect perfect properties, such as perfect correctness, leading to
technical artifacts.)

We end our discussion of machine models by taking a closer look two exemplary machine models.
Example A.9 (Single-tape Turing machines are no good). Consider single-tape Turing machine as the
model of computation. It is easy to construct an interactive algorithm for computing whether a string is
a palindrome which runs in linear time (in the length of the input string). However, it is well-known
that single-tape Turing machines need quadratic time to recognise this language. Thus, the emulation
overhead is most likely quadratic. Hence, it is very unlikely that single-tape Turing machines are an
admissible model of computation.
Example A.10 (RAMmodels). Various RAMmodels seem appropriate for our cause. A transdichotomous
model of computation [FW93], in which the RAM’s word size growswith the problem, seems particularly
well-suited for cryptography; indeed security parameter κ is a natural measure for the problem size.
52Given an oracle O, it can be made deterministic by coin-fixing. Moreover, assuming (strong) problems exist which are

hard for uniform machines, but easy for non-uniform machines, one can make execution depend on solutions for such
problems. An emulation O′ of O can check for this and aborts if no solution is provided. For example, assuming suitable
(multi-)collision-resistance properties of a hash function, the i-th emulated step may check whether a collision for H(i)
is provided in the advice. A uniform bb-rw simulation needs to “compress” the collisions, or suffer from linear space
consumption in the runtime of O.

53For non-uniform existential simulators Sim, suitable non-uniform advice may exist. (E.g. it may be constructed from
the advice of O, by repeating the advice per rewind round, and perhaps suitably intermingling.) Note that, except for
existential advice of Sim, Sim may be black-box. Nevertheless, this shows that non-uniform existential simulation and
universal simulation need not coincide if access to super-polynomial advice is given, because a universal simulator’s advice
must be independent of the adversary’s advice.

54We have not carried out formal proofs.
55Technically, we have to do an earlier cutoff, since emulation and cutoff also consume runtime. But this is a minor issue.

48

A.5. Precomputation and non-uniformity
In our setting, the input generating machine, may also explicitly model (adversarial) precomputation.
For simplicity, we only deal with the simple case of non-uniform advice.

To have a definition of non-uniform expected time machines, we propose an advice interface just
like the randomness interface.56 That is, the advice string has infinite length. Alternatively, one could
restrict to strict polynomial size advice, but this conflates machine model and security model. Indeed,
an expected polynomial time input generating machine may generate an expected polynomial size
“advice” (whose size is not strictly polynomially bounded). Note that non-uniformity comes with its
own more or less subtle anomalies, see e.g. [KM13].

B. Technical lemmata
In this section, we gather some lemmata for various purposes. Appendix B.1 contain some simple facts
on statistical distance. In Appendix B.2, some cryptographic results concerning distinguishing and
general hybrid arguments are given. And Appendix B.3 contains naive closeness tests.

The reader should skip to Section 2.4.1 for the definition and notation of tail bounds, which are used
in Appendix B.2 and Appendix B.3.

B.1. Simple facts
In this section, we state some simple facts. Most are used with, or about, random variables, conditional
variables, and the behaviour of statistical distance.

Following lemma is useful to bound statistical distances of products of densities.

Lemma B.1. Let pi, qi ∈ [0, 1] for i = 1, . . . , n. Then∣∣∣ n∏
i=1

pi −
n∏
i=1

qi

∣∣∣ ≤ n∑
i=1

|pi − qi|.

In particular, ∆(X × Y,X ′ × Y ′) ≤ ∆(X,Y) + ∆(X ′, Y ′) for random variables X,Y,X ′, Y ′ (not
necessarily independent).
More precisely, let p(1,...,k) :=

∏k
i=1 pi, and let q(k,...) :=

∏n
i=k qi, and let δi := |pi − qi| then∣∣∣ n∏

i=1

pi −
n∏
i=1

qi

∣∣∣ ≤ n∑
i=1

p(1,...,i−1)δiq(i+1,...).

Assuming the products are finite, this continues to hold for n =∞.

Proof. This follows from a straightforward induction (using |pi|, |qi| ≤ 1) to simplify. The claim
regarding statistical distance follows by an application of the inequality under the integral.

Next, we note how conditional distributions and statistical distance are connected.

Remark B.2. LetX be random variable and let Y independently distributed likeX conditioned on some
event of probability ε. Then ∆(X,Y) = ε.

(This follows easily sinceY has the densityP(E)−11E as densityw.r.t.X , where1E hence 2∆(X,Y) =
‖1− P(E)−11E‖1 = P(E) + P(E) = 2ε.)

Following is a simple result of CDFs.

56The advice interface should follow the same restrictions as the “random tape’ (see Remark A.5), in particular it should not
provide memory to not conflate advice complexity with space complexity.

49

Corollary B.3. LetX and Y be two random variables over N0 ∪ {∞} and let N ∈ N0. SupposeX (resp.
Y) are truncated to X≤N (resp. Y ≤N) (i.e. they output timeout if they exceed N). Then

∆(X,Y)− P(X > N) ≤ ∆(X≤N , Y ≤N) ≤ ∆(X,Y).

Proof. We show ∆(X,Y) − ∆(X≤N , Y ≤N) ≥ P(X > N). The left-hand side is
∑∞

k=n|pX(k) −
pY (k)| − |

∑∞
k=n pX(k)− pY (k)|. This can be interpreted as `1-norms and the claim follows by general

inequalities, see Lemma B.4.

Lemma B.4. Let x, y be be two elements in a normed vector space and suppose ‖y‖ ≤ ε. Then

|‖x− y‖ − |‖x‖ − ‖y‖|| ≤ 2‖y‖ ≤ 2ε

The inequality is tight (y = −x).

Proof. We consider two cases. Suppose ‖x‖ ≤ ‖y‖. Then we find

‖x− y‖ − |‖x‖ − ‖y‖| = ‖x− y‖ − ‖x‖ + ‖y‖ ≤ ‖x− y − x‖ + ‖y‖ = 2‖y‖.

For the case ‖y‖ ≤ ‖x‖ we find by symmetry (of |a− b|) that

‖y − x‖ − |‖y‖ − ‖x‖| ≤ 2‖y‖ ≤ 2ε.

This finishes the proof.

B.2. Useful lemmata
In this section, we give some simple lemmata, which are useful tools for moving back and forth between
strict and expected time. The results given in this section are not asymptotic, and given for simple
objects. Nevertheless, it is straightforward to show that all constructions can be directly applied in the
asymptotic setting.

B.2.1. Runtime truncations

We give generic variants of runtime truncation lemmata.

Corollary B.5. Suppose A is some algorithm. Suppose A(x) takes an expected number of tx steps on input
x. Then the output distribution of A(x)≤N , has statistical distance at most txN from A(x).

Corollary B.5 bounds the quality loss when converting expected to strict time algorithms. For example,
if A is a distinguisher with advantage ε, and tx ≤ t for all inputs, then truncating runtime after 2ε−1t
steps yields a distinguisher with advantage 1

2ε. If t = poly and ε ≥ 1/poly, then this transforms an
expected polynomial time distinguisher into a strict polynomial time distinguisher.

Corollary B.6 (Non-asymptotic generic “standard reduction”). Suppose DO is a distinguisher with
advantage ε for timed oracles O0, O1. Let T0 = timeD+O(D

O0), and let N = tail†T0(
ε
4). Then there is an

A with runtime Sb = timeD+O(A
Ob) for b = 0, 1 bounded roughly by N (plus overhead for computing

N and emulating D), andA distinguishes O0 and O1 with advantage ε
4 .

More precisely, A truncates the total time of D +O to at most N steps, hence the runtime distribution
of A is close to that of D +O. Moreover, there are two possible candidates for A: One outputs the output
of D, and a random guess in case of timeout. The other outputs 1 in case of timeout and 0 else. At least
one of these algorithms has advantage ε

4 .

50

We note again, that only the runtime with O0 and its tail-bound are of importance for the runtime
cutoff. Also, one can trade-off runtime for advantage, e.g. by truncating at N = tail†T0(

ε
poly). This

cutoff argument and its variations play the role of the standard reduction to PPT (Corollary 4.4) in the
general setting. We point out, that runtime is not the only (complexity) measure of interest which can
be used in Corollary B.6. Besides elapsed runtime of D +O, the elapsed runtime of only D, consumed
memory, number of queries, query length, etc., are possible measures to which Corollary B.6 generalises
straightforwardly.

Proof sketch. Distinguisher A emulates D and truncates D’s and O’s combined steps to N . That is,
A keeps track of the steps tD and tO and relies on O being a timed oracle to allow it a time bound
of N − tO − tD when invoked. Note that A emulates an priori number bounded number of N steps.
Truncating DO0 after N steps w.r.t. oracle-included steps ensures that the output of DO0 has statistical
distance at most ε4 .

Suppose the output of AO1 has statistical distance δ of DO1 . If δ ≥ 2ε
4 . then necessarily, the

probability that T1 = timeD+O(D
O1) exceedsN steps is larger than 2ε

4 . Thus, this runtime statistic can
be used as a distinguishing property, with advantage at least ε4 infinitely often. (Concretely, A returns
1 if N steps are exceeded and 0 otherwise.)

Now suppose the probability that T1 = timeD+O(D
O1) exceeds N steps is less than 2ε

4 . Let A
guesses randomly in case of timeout. Then possible loss in advantage is bounded by ε

4 +
2ε
4 = 3ε

4 . This
leaves an advantage of ε4 and the claim follows.

Importantly, the construction of the two distinguisher candidates is uniform, and translates to the
asymptotic setting. One of them has infinitely often advantage at least ε4 .

B.2.2. Hybrid lemmata

Hybrid arguments and therefore the hybrid lemma are omnipresent in cryptography. Unfortunately,
the standard hybrid lemma for strict polynomial time does not hold without change.
Example B.7 (Expected polynomial rounds). The need to deal with a priori infinitely many hybrids
arises naturally from expected polynomial interaction: We have

∑
i≥1 2

−i = 1, so repeating some
protocol (step) with probability 1

2 implies an expected constant number of repetitions. But replacing
each call by a simulation requires an infinite number of hybrid steps. Evidently, after replacing the
first κ protocols by simulations, the remainder can be replaced in a single step, because more than κ
repetitions are necessary only with probability 2−κ.

We state in general the truncation approach from Example B.7.

Corollary B.8 (Hybrid lemma). Let O0,O1, . . . ,O∞ be oracles. Let Z0, Z1 be two more oracles, and
let Z be an algorithm as follows: Z takes as input an integer i ∈ N. Moreover, Z(i,Zb) is implements an
oracle which behaves exactly like Oi+b.
Let D be a distinguisher for O0 and O1 with advantage ε, that is

|P(DO0
= 1)− P(DO∞

= 1)| ≥ ε

and suppose that we have a (tail) bound bnd with

|P(DOi
= 1)− P(DO∞

= 1)| ≤ bnd(i).

Then for every α ≤ ε there is a distinguisher D′ which distinguishes Z0 and Z1 with advantage57

ε′ =
ε− α
Nα

where Nα := bnd†(α).

More concretely, D′ picks a random i← {0, Nα − 1}, runs D on Z(i,Zb) and returns D’s guess bit as
its own. Thus, the runtime distribution of D′ is closely related to that of D and Z.
57We note that Nα = ∞ is possible, in which case ε′ = 0.

51

Proof of Corollary B.8. We reduce the proof to the standard hybrid lemma. Note that it suffices to apply
the standard hybrid lemma (with a finite number of steps) to O0, . . . ,ONα . Because, by the very
definition Nα we know that |P(DO0

= 1)− P(DONα
= 1)| ≥ ε− α = ε′. Now, the standard hybrid

lemma yields our distinguisher and advantage.

Our statement of the hybrid lemma differs from the standard one in minor points.58 It allows an a
priori infinite number of hybrids. And it postulates a bound bnd on the closeness of the i-th and final
hybrid. Typically bnd bounds the statistical distance of the i-th and final hybrid and is derived as a tail
bound, e.g. Markov bound (Lemma 2.8) on runtime or number of oracle queries.

While one may hope for an “expected number of hybrids” loss, this is impossible in general, since an
adversary could focus its advantage on the “tail hybrids”. Any black-box-like reduction is unlikely to
achieve better bounds.
Example B.9 (Optimality of the (truncated) hybrid argument). Consider following (non-adaptive)
distinguishing game: The adversary sends a number n to the challenger. The challenger prepares n
truly random ri or n pseudo-random ri = PRG(si), and the adversary must distinguish. Consider
an adversary with distribution N of n, so that E(N) ≤ 3. The hope, that the hybrid argument may
only lose a factor of 3 in advantage, is false. Suppose A is an adversary which perfectly distinguishes
pseudo-random and random strings. Let ε be a “target advantage” and suppose N = 1 with probability
1 − ε, and N = q := dε−1e with probability ε. Construct the adversary B which draws N , guesses
randomly if N < q. Else, B runs A on all challenges. If r1, . . . , ri are pseudo-random, B outputs
the correct guess with probability i

qε (and a random guess otherwise). Thus, B has advantage ε by
construction, yet the hybrid argument achieves advantage ε

q at best.
Example B.9 shows that tails of distributions are a limiting factor, and it is non-obvious how to improve

the (truncated) hybrid argument Corollary B.8 in a black-box-like way. Nevertheless, Corollary B.8 is
useful and generally good enough, though it may have poor tightness properties.

B.3. Testing closeness of distributions
Given two distributions, we need a way to efficiently test how close they are. Again, we give a non-
asymptotic lemma. But we note that in the cryptographic setting, we will tell apart (families of)
distributions which are statistically far (in the asymptotic sense).
Problem B.10 (Closeness promise problem). Let X , Y be distributions (typically on {1, . . . , n}). The
closeness promise problem (with parameter ε > 0) is the following: Decide whether X

D≡ Y or
∆(X,Y) > ε. A tester A is an algorithm which, given sample (oracle) access to X and Y outputs a
verdict (i.e. a bit) whether X = Y or not. The error of a tester is (at most) δ, if

P(DX,X′
= same) ≥ 1− δ and P(DX,Y = different) ≥ 1− δ

We speak of testing instead of distinguishing since it is a slightly stronger notion. A distinguisher
may guess randomly if X

D≡ Y , but always decide X 6= Y correctly, but a tester may not. In particular,
a tester with error δ has distinguishing advantage 1− 2δ.

Lemma B.11. Let X , Y be distributions on {0, . . . , n} and consider the closeness promise problem. Let
ε, δ ∈ (0, 1]. Then there is an algorithm A which solves the closeness promise problem with error δ and
requires

N = d6(n+ 1)ε−2 log(2δ−1)e
samples (of both X and Y). Moreover, A is makes a linear number of arithmetic operations (in N).
58 Sometimes, the hybrid lemma is stated in a weaker form, merely ensuring the existence of an index i where distinguishing

hybrids i and i+ 1 has advantage ≥ ε/m. This does not naively extended to the asymptotic setting. Assuming that for
all i, Oi c

≈ Oi+1 (asymptotically) does not imply O0 c
≈ O∞ (asymptotically). Trivial counterexamples exist. Hence, the

reduction to a (single) fixed indistinguishability assumption is essential for asymptotic usage of Corollary B.8.

52

We note that better closeness testing algorithms are known, namely in [Cha+14] an optimal closeness
tester is given. That tester has linear runtime in the number of samples N as well.

Proof of Lemma B.11. Our tester simply uses the Kolmogorov–Smirnov test. That is, compute the
empirical CDF FX and FY (with N samples each) and test whether ‖FX − FY ‖∞ < ε. By applying a

Chernoff bound argument in caseX
D

6≡ Y , and using the sharp Dvoretzky–Kiefer–Wolfowitz inequality
by Massard in caseX

D≡ Y , we arrive at the claimed result. (Our constants are chosen so that we obtain
(ε/3, δ/2) approximations of the true CDF’s. By a standard argument using the triangle inequality, one
obtains our claims.)

As with the hybrid lemma, we have to deal with distributions with infinite support. Using tail bounds,
we stretch Lemma B.11 to this case.

Corollary B.12. Let X , Y be distributions on N0 and consider the closeness promise problem. Let
ε, δ ∈ (0, 1] and let tailX(·) be a tail bound for X . Suppose ε′ = ε− α, where α > 0, let n′ = tail†X(α).
Then there is an algorithm A which solves the closeness promise problem with error δ and requires

N ′ = d6(n′ + 1)ε′−2 log(2δ−1)e

samples (of both X and Y). Moreover, A is only requires a linear number of arithmetic operations (in N ′).

We note that N0 ∪ {∞} (and the like) are also domains for which Corollary B.12 holds.

Proof. The algorithm simply maps the distributions X , Y to new distributions by mapping any sample
s to max{s, n}.59 This changes the statistical distance by at most tailX(n), see Corollary B.3. Now,
apply Lemma B.11.

Following remark, while a triviality, points out one core tool of this work.

Important Remark B.13 (Statistical and computational indistinguishability coincide for “small” support).
From Lemma B.11 and Corollary B.12, we already observe the following: Asymptotically, any pair
of (families of) distributions X , Y , where one, say X , has (essentially) polynomial sized support
{0, . . . , poly(κ)} are computationally indistinguishable in polynomial time, if and only if, they are
statistically indistinguishable (under repeated sampling).

Remark B.14. Merely considering the domain, independently of X is a very rough point of view. After
all,X could be concentrated on a tiny subset of {0, . . . , n}. In particular, relying on supp(X) ⊆ N0 and
using a total ordering and tail bounds, is not at all necessary. We consider a more sensitive closeness
testing lemma a useful tool for more precise analysis. But the coarse (non-optimal) results stated here
are good enough for our purposes.

C. General runtime definitions
This section is (only) for the inclined reader. It contains our “general” treatment of runtime classes, that
is, our framework and the many definitions necessary to talk about runtime classes and their properties.
Unfortunately, we fall short of going beyond algebra-tailed runtime classes, hence by and large, nothing
of essence is covered that is not already visible for polynomial time, PPT, EPT and CEPT.

59Note that this mapping does not need to “read” all of s (given e.g. tape-access starting from the least significant bit). In
particular, in suitable machine models, we do not run into problems where some values s are gigantic and could not be
read without compromising efficiency.

53

C.1. Preliminaries: Bound algebras
Most of our arguments work for runtime classes related to bound algebras, for example, the algebra of
polynomials.
Definition C.1 (Bound algebras). A bound algebra B is a subset of RN0

≥0, i.e. a subset of sequences in
R≥0, which satisfies:

• B is the subset of non-negative sequences of a subalgebra of RN0 . In particular, it is closed under
multiplication and it contains the constant 0 and constant 1 sequences.60

• B is closed under domination, i.e. (xκ)κ ∈ B, then so is any (yκ)κ with yκ ≤ xκ (for all κ).
• B is “asymptotically monotone”: If (xκ)κ ∈ B, then so is (yκ)κ with yκ := maxκi=1 xi.

A subset G ⊆ B is generates B if for any (xκ) ∈ B there is a (yκ) ∈ G with (xκ) ≤ (yκ). The set
NeglB of B-negligible functions, is defined as NeglB = {f | lim supκ→∞|f(κ)bnd(κ)| = 0}.

When we work with bounds we often implicitly assume they are monotone.
Example C.2. Suitable function algebras, e.g. polynomials, or polylogarithmic functions, or f(κ) =
npolylog(κ), etc., induce a (general) bound algebra. Importantly, there typically are monotone generating
subsets (of countable size), e.g. {(cκc) | c ∈ N0}, which generate B.

C.2. Runtime distributions
Our definitions of (polynomial) runtime are such that an algorithm’s (or protocol’s) runtime is bounded
in the security parameter κ alone. The input space of an algorithm is (a family) Xκ.61 Often, our
algorithms have no (explicit) input, but receive implicit input via oracles, e.g. when distinguishing
distributions given sampling access. In any case, we focus on “a posteriori” runtime, i.e. consider
runtime timeA(A(x)) where x ← X for some input distribution (that is A(X) is a system without
inputs).
Caution C.3. Recall that we generally suppress mentioning dependencies on the security parameter, i.e.
we typically write A(x) instead of A(κ, x) if κ. The security parameter is (implicit) “input” to every
algorithm. In fact, usually, A is given no inputs (but κ). Similarly, runtime obviously depends on the
machine model even though we do not mention this.
Definition C.4 (Runtime distribution). A (input-free) runtime (distribution) T is a family (Tκ)κ
of distributions Tκ ∈ Dists(N0 ∪ {∞}) parameterised by κ; more precisely, it is a map T : N0 →
Dists(N0 ∪ {∞}) from security parameter to probability distributions over N0 ∪ {∞}. A runtime
T is induced by an algorithm A if Tκ = timeA(A(κ)). We typically suppress κ and simply write
T = timeA(A).

We allow the symbol timeout in a runtime distribution T (formally changing to Dists(N0 ∪
{timeout})).62

Remark C.5. Runtime (distributions) with input, or input-dependent runtimes are functions mapping
input x ∈ Xκ to a runtime distribution, that is Tκ : Xκ → Dists(N0 ∪ {∞}) for all κ. It is induced
by A if Tκ(x) = time(A(κ, x)). The definition of input-dependent runtime (as a random variable) is
similar.

For now, we only consider the input-free setting, i.e. X = {?}. Input is implicitly made available via
oracle access.
Caution C.6. In this and future sections, we conflate runtimes (random variables) runtime distributions.
The reason is, that we almost always care only about the runtime distribution, except in cases where we
“split” up the runtime of an algorithm into a sum of stochastically dependent runtimes (e.g. of A and O).
60The associated subalgebra of B is unique.
61Recall a well-known problem: The input space may not be (efficiently) recognisable. Thus, an algorithm may be fed with

malformed input (or oracles/interaction). In general, this voids any runtime guarantees. Thus, for protocols, we want
strong runtime guarantees, which are not restricted do well-formed input.

62We could also allow ∞ there, but generally timeouts stop overlong executions.

54

C.3. Runtime classes
To talk about “efficient” computation, we need to say which runtime distributions we consider “efficient”.
The set of all “efficient” runtimes then forms the respective runtime class. Exemplary runtime classes
are PPT and EPT.
Definition C.7. A runtime class T is a set of input-free runtime distributions so that:

Constants: The constant 0 and constant 1 runtime are in T.
Closed under domination: that is, if T ∈ T and S ≤ T then S ∈ T.63
Closed under addition , i.e. T +T ⊆ T, where T + S is viewed as a sum of distributions.

An (oracle) algorithm A runs in T-time if time(A) ∈ T.
Closure under domination says that no “inefficient” algorithm (i.e. runtime outside T) can be made

efficient by doing more steps. Additive closure roughly ensures that independent execution of any
constant number of efficient algorithms is efficient. The definition of runtime class is most likely
incomplete. We just give enough properties so that our results hold. Sensible runtime classes should
offer more guarantees, but we have not identified the “right” properties, see Appendix F.11 for more.
Example C.8. We give some exemplary polynomial runtime classes.
Strict polynomial time: The runtime class PPT contains (by definition) all runtimes T for which

there exists a polynomial poly such that T ≤ poly.
Expected polynomial time: The runtime class EPT contains (by definition) all runtimes T for which

there exists a polynomial poly such that E(T) ≤ poly, i.e. E(Tκ) ≤ poly(κ) for all κ.
Polynomial ‖ · ‖q-time: By polynomially bounding ‖T‖q (for q ∈ [1,∞]), we generalise both strict

(q =∞) and expected time (q = 1). For example q = 2 implies polynomially bounded variation
(and expectation).

Quasi-linear time: If we require Tκ ≤ κ · polylog(κ) we obtain quasi-linear runtime. This class only
satisfies weak composition properties, and is not covered by our results.

Now, we generalise polynomial time bounds to algebra bounds. For that, we need following definition.
Definition C.9. We say that a runtime class T is weakly compatible with a bound algebra B, if for
any bnd0 ∈ B, there is a bnd1 ∈ B so that bnd1 can be computed in T-time. More concretely, bnd1(κ)
can be computed in time Tκ for T ∈ T.

We call T (strongly) compatible with B if additionally strict B-time (see Example C.10 below) is
contained in T.

Compatibility ensures that T and B behave well in reduction arguments. (Strong) Compatibility
is simpler to work with than weak compatibility, since for example PPT is weakly compatible with
B = 2O(κ), but does evidently not contain all strict B algorithms.
Example C.10 (Bound algebras and runtime classes). Instead of polynomials, some (suitable) algebra B
may be used for time bounds, e.g. npolylog(n), see Definition C.1. By definition, we always require that
the defined runtime class T is compatible with the bound algebra B.

Algebra-bounded ‖ · ‖q-time: We write RTCq(B) for the runtime class containing all runtimes T
with ‖Tκ‖q ≤ bnd(κ) for some bnd ∈ B.

Algebra-tailed time: We generalise algebra-bounded time as follows: A runtime class T is B-tailed,
for a bound algebra B, if: For every T ∈ T, for every bndtail ∈ B, there is a bndT ∈ B, such that
P(Tκ > bndT (κ)) ≤ 1

bndtail(κ)
for all κ.64

We also refer to algebra-bounded times via strict (or expected) B-time.
By Lemma 2.8, any algebra-bounded runtime class is also algebra-tailed. Namely pick bndT =

t · bndtail ≥ tail†(1
bndtail

), where t = ‖T‖q . Also, Levin’s relexation of EPT is polynomially-tailed.

63More precisely, S ≤ T iff for all κ we have Sκ ≤ Tκ, i.e. Tκ dominates Sκ in distribution.
64Recall that asymptotics, should be part of B, so we use for all κ (and not for almost all).

55

We will focus on algebra-tailed runtime classes and runtime classes we derived from them. Dealing
with more general runtime classes is an interesting open problem, see Appendix F.11.

Lastly, we define “abstract” runtime cutoffs.
Definition C.11 (Runtime truncation). Let T be a runtime. We define the runtime cutoff or runtime
truncation T≤N of T afterN steps as the distribution (or random variable) given by T |(·>N)7→timeout,
i.e. by mapping any k > N to timeout (and the identity mapping otherwise). Runtime truncation is
assumed to be an efficient oracle-transformation in any suitable machine model.65

Remark C.12. We stress that an efficient implementation of runtime cutoffs is vital for any results
making use of them. We also note that this means that the truncation bounds themselves must be
efficiently computable. This is ensured by the compatibility requirement in Example C.10.

C.4. T-time triple-oracle indistinguishability
There are several notions of indistinguishability of distributions X0, X1 w.r.t. to T-time algorithms.
We choose indistinguishability under repeated sampling with additional sampling access to X0 and
X1. The decision to give oracle sampling access the distributions X0 and X1, as well as the challenge
distribution Z

D≡ Xb mirrors the fact that an algorithm can be (independently) executed many times,
and should still remain efficient.66 In particular, if X0 = time(A0) is the runtime distribution of an
efficient algorithm, and X1 = time(A1) is inefficient, then X1 is not efficiently samplable by emulating
A1. To simplify, we assume sampling access to both X0 and X1.

Another simplification is that we require constant distinguishing advantage. By standard amplification
techniques, this is equivalent to non-B-negligible success for algebra-tailed runtime classes.
Definition C.13 (Triple-oracle distinguishing). Let O0 and O1 be sampling oracles for distributions X0,
X1 (i.e. oracles which return a fresh sample distributed asXb when queried). Consider the distinguishing
experiment Exp3-dist

A,O0,O1
.

Experiment Exp3-dist
A,O0,O1

(κ)

b← {0, 1}
Instantiate an independent O∗ := Ob

b′ ←AO0,O1,O∗
(κ)

return b′ ?
= b

The distinguishing advantage of an algorithm D is defined as

Adv3-distD,O0,O1
(κ) :=2P(Exp3-dist

A,O0,O1
(κ) = 1)

=|P(DO0,O1,O∗
1 (κ) = 1)− P(DO0,O1,O∗

0 (κ) = 1)|,

where O∗b = Ob, but independent. (The second equality only holds if D always returns a bit.) The
randomness is taken over the algorithms and oracles randomness.

A distinguisher D is T-time, if timeD(Exp3-dist
A,O0,O1

) ∈ T.67 We call O0 and O1 (T-time) computa-

tionally (triple-oracle) indistinguishable, written O0

c

∼∼∼T O1, if for all T-time distinguishers D,

Adv3-distD,O (κ) ∈ o(1).
65This means that applying runtime cutoff to a runtime oracle is efficient. For example, given tape access to bit-encoded

oracle results, we can read the minimal number of bits necessary to recognise t > N and then return timeout.
66 Our notion behaves nicely in almost any aspect, and agrees with standard notions if X0 and X1 are efficiently samplable

(by a standard hybrid argument). We can amplify distinguishing advantage (as usual) and are guaranteed that statistically
indistinguishable distributions are statistically close. Neither of this holds for the usual notions of one-sample or k-sample
distinguishing, see for example [Mey94; GM98; GS98].

67Equivalently, timeD(DO0,O1,Ob) ∈ T for b = 0, 1.

56

that is, any distinguisher has asymptotically vanishing advantage. Put differently, a computational
distinguisher must have constant advantage c > 0 (for infinitely many κ). We defineT-time statistical
indistinguishability as T-query indistinguishability, that is we only count a query to an oracle as a
step (costing unit time).

We use Definition C.13 only for (runtime) distributions, and not general oracle-indistinguishability.

Remark C.14 (Why no general advantage classes?). For algebra-tailed runtime classes, using non-
constant advantage, namely non-B-negligible advantage, also works (due to amplification). We could
define general “advantage classes”, such as subexponentially negligible, polynomially negligible, or
1− 1

κ . One reason is our focus on indistinguishability of runtimes, not in general distributions. Our
techniques mostly involve truncation and repetition, and thus runtime-vs-advantage trade-offs. In
Section 7, we sketch concrete problems for CEPT in “practice”. But even in theory, there are obstructions
to a useful generalisation. We explain this in the following, but assume familiarity with CPPT, runtime
closure, etc. The reader should skip this in a first reading. In the following, we consider PPT.
The “low advantage regime”: The interaction of subexponential advantage with PPT leads to two

problems: One, if CPPT is defined by poly-negligible deviation from PPT, then there are no useful
subexponentially hard problems, since with poly-negligible probability, a CPPT algorithm can brute-
force a solution, hence has at least poly-negligible advantage. On the other hand, if we strengthen to
subexp-CPPT, i.e. subexp-negligible deviation from PPT, then our simplistic arguments, e.g. closeness
testing of Lemma B.11 fail. A treatment of this is an interesting open question.

The “high advantage regime”: High advantage classes, such as 1− 1
κ , can be reached by amplification

in the triple-oracle setting. So they are only interesting for one-shot distinguishing. However, in such
settings transitivity of indistinguishability is lost. A treatment of this is beyond this work.

Since it is a useful point of view, we slightly generalise distinguishing. Namely, instead of directly
outputting a verdict, onemay output some processed information, which is fed into another distinguisher
(perhaps repeatedly).

Remark C.15 (Generalised distinguisher). Let us call a distinguisher, which outputs not only 0 or 1, but
different or additional information, a generalised distinguisher. Clearly, if two distributions are (compu-
tationally) indistinguishable, then the output of any generalised distinguisher is also (computationally)
indistinguishable.

The upshot of this deliberation is that any efficiently computable statistic of an execution of a distin-
guisher D must be indistinguishable. Otherwise, there is a distinguisher D′ which emulates D and uses
that statistic to attack indistinguishability. In particular, runtime is such a statistic, and the number of
oracle queries is another.

Now, we apply the notion of T-time triple-oracle indistinguishability to runtimes.

Definition C.16. Suppose T is a (input-free) runtime class. Let T resp. S be (arbitrary) runtimes
and suppose O0 resp. O1 sample T resp. S. We call T and S (computationally) T-time (triple-
oracle) indistinguishable if the respective distributions are (computationally) T-time triple-oracle

indistinguishable. We also write T
c

∼∼∼T S. The definition of statistically T-time (triple-oracle)

indistinguishable runtimes is analogous, written T
s

∼∼∼T S.

In the following, we always mean triple-oracle indistinguishable, if not otherwise specified. We come
back to one-shot indistinguishability only in Appendix C.7

C.5. Closed runtime classes
Now, we come to a central definition, which applies the principle that T-time indistinguishable objects
should be considered “identical” for all cryptographic intents and purposes to T-time itself.

57

Definition C.17 (T-closed). Suppose T and S are runtime classes. We call S computationally (resp.

statistically) T-closed if following holds: For all runtimes S, if there is a runtime S̃ ∈ T and S
c

∼∼∼S S̃

(resp. S
s

∼∼∼S S̃), then S ∈ S.
We call a runtime class T computationally (resp. statistically) closed, if it is T-closed.

Example 1.2 demonstrates that neither PPT nor EPT is a closed runtime class. Before we define
the closure of a runtime class, we give some helpful definitions.

Definition C.18 (Generating set). Let U be a set of runtimes. We say U generates T if U ⊆ T and for
any runtime class T′ containing U, we have T ⊆ T′. Equivalently, T ∈ T ⇐⇒ ∃S ∈ U : T ≤ S.
Equivalently, T is the minimal runtime class containing U.68

This shows that indistinguishability w.r.t. any generating subset U ⊆ T or w.r.t. T coincides. For
example, for PPT, the set {poly(κ) = nκn | n ∈ N} is generating, since every runtime is dominated
by a runtime in this set.

Remark C.19. We can translate generating sets to the setting of bound algebras. Indeed, in Example C.10,
we require a generating set of efficiently computable bounds.

The perhaps most important relation between sets of runtimes is the following.

Definition C.20 (D-dense). A subset of runtimesU ⊆ T is called computationally (resp. statistically)
distinguishing-dense (short d-dense) in runtime class T if for any pair of distributions X , Y (over
N0 ∪ {∞}) we have

X
c/s

∼∼∼T Y =⇒ X
c/s

∼∼∼U Y

w.r.t. triple-oracle indistinguishability. In other words, if T can distinguish two distributions, so can U.
A weakening of d-dense is runtime d-dense, where X must be in T.

We note that d-density of U ⊆ T is much different from being generating. For example, PPT ⊆
EPT is d-dense, since any (successful) expected polynomial time distinguisher can be transformed into
a (still successful) strict polynomial time distinguisher, see Corollary B.5.

Lemma C.21. Let T ⊆ S be runtime classes. Suppose that S is computationally T-closed and that T is
computationally (runtime) d-dense in S. Then S is computationally closed. The same holds in the statistical
case.

Proof. Let T̃ ∈ S and let T be some runtime. Suppose T̃
c

∼∼∼S T . Then T̃
c

∼∼∼T T , since T is runtime
d-dense in S and T̃ ∈ S. Then T ∈ S, since S is computationally T-closed. The statistical case follows
analogously.

We now give a (constructive) definition of the closure of a runtime class.

Definition C.22 (Closure). Let T and S be a runtime classes. We define the computational S-closure
ClscS(T) of T as

ClscS(T) := {S : N0 → Dists(N0 ∪ {∞}) | ∃T ∈ T : S
c

∼∼∼S T}.

The statistical S-closure ClsSS(T) is defined analogously. The closure T of T is Clsc/sT (T) (whether
computational or statistical will be clear from the context).

An abstract notion of closure (e.g. minimal closed runtime class containingT) and its equivalence with
Definition C.22 would be a good justification for our definition. However, we do not even know whether
we have a proper definition of runtime classes which could support such a result, see Appendix F.11.

68It is easy to see that an arbitrary intersection of runtime classes is again a runtime class. Hence, the generated runtime
class of U is the intersection of all runtime classes containing U, in particular, it exists and is unique.

58

Lemma C.23 (Closures are closed). The closure T of a runtime class T is closed. (This holds in the
computational and the statistical case.)

Proof. Consider a runtime T ∈ T and some arbitrary runtime S and suppose that T
c

∼∼∼T S. To show

that T is closed, we need S ∈ T. Since T ⊆ T, we have T
c

∼∼∼T S. By definition of T, there is some

T̃ ∈ T such that T̃
c

∼∼∼T T . Now, we have T̃
c

∼∼∼T T
c

∼∼∼T S. This implies S ∈ T by definition of T.69 This
proves the claim. The statistical case follows analogously.

We would like a stronger result. We state this in following conjecture, which has little support for
general runtime classes.

Conjecture C.24 (Closures are small). For any “benign” runtime class T, T is runtime d-dense in T.

We expect that runtime classes where Conjecture C.24 fails behave rather strangely. While we do
not know what “benign” runtime classes are or how to prove Conjecture C.24 in general, it is simple for
algebra-tailed runtime classes.

Lemma C.25. Let B be a bound algebra and T be B-tailed. Then, strict B-time is d-dense in T. (This
holds in the computational and statistical case.)

Proof sketch. Suppose D is a T-time distinguisher of distributions X and Y with advantage ≥ ε (for

infinitely many κ and constant ε). Let T = time(D). We know that T
c

∼∼∼T T̃ for some T̃ ∈ T. Thus,
for any T-computable bound bnd, we have |P(Tκ ≤ bnd(κ))− P(T̃κ ≤ bnd(κ))| ≤ o(1). Otherwise
T and T̃ would be T-time distinguishable.

SinceT isB-tailed, there exist an (efficiently computable) bound bnd(κ) ≥ tail†
T̃κ
(23ε). Consequently,

D≤bnd is strict B-time, hence T-time, and retains a distinguishing advantage of 2
3ε− o(1) (infinitely

often), which is at least 1
2ε infinitely often.

We note an interesting step in the argument: The connection to D’s runtime T is indirect, since we
rely on T̃ instead. We only needed suitable bounds for truncation. Indeed, runtime truncation seems to
be the central (and only) tool at our disposal, and someway or another, it is what our proofs rely on.

Remark C.26 (Efficiency of truncations). Note that timeD(D≤bnd) ≤ timeD(D) (up to emulation
overhead), that is, the truncation is “as efficient as” D, and only loses advantage/output quality.

Remark C.27 (Non-negligible advantage). Lemma C.25 immediately extends to advantage ε = 1/bnd(κ)
(for infinitely many κ). Just replace o(1) by neglB and note that tail†

T̃κ
(α 1

bnd(κ)) ∈ B for any constant
α > 0 and bnd ∈ B. This direct “conversion” to the usual setting of non-negligible advantage typically
works for our results concerning algebra-tailed runtime classes.

Following lemma is useful to check if some runtime class S is the closure of T.

Lemma C.28 (Closures are minimal). Let T ⊆ S ⊆ T be runtime classes. Suppose that S is T-closed
and T is d-dense in S. Then S = T. (This holds in the computational and statistical case.)

Proof. Similar to Lemmas C.21 and C.23. (Any element in T also lies S.)

Let us consider a simple concrete example.

Example C.29 (CPPT). We denote the closure ofPPT asPPT or CPPT and call it computationally
probabilistic polynomial time (CPPT). In Appendix C.6, we find that statistical and computational
closure coincide, hence “CPPT = SPPT”. By definition, CPPT is

CPPT = {T | ∃poly, negl : P(Tκ ≥ poly(κ)) ≤ negl(κ)}.
69Triple-oracle indistinguishability is transitive for any constant number of hops.

59

In other words, CPPT relaxes PPT by allowing a negligible amount of superpolynomial executions.
Now, we check that CPPT = PPT. Clearly, CPPT contains PPT. It is easy to see that, PPT

is d-dense in CPPT and CPPT is PPT-closed. Since also CPPT ⊆ PPT, we find equality from
Lemma C.21 and Lemma C.28.

C.6. Equivalence of runtime-indistinguishability for algebra-tailed runtime classes
In this section, we establish that for an algebra-tailed runtime class T, statistical and computational
T-time indistinguishability coincide of runtime distributions. We give two such lemmata. The first one
is simple and illustrates underlying reasons using strict algebra-bounded runtime classes. The second
one extends this to algebra-tailed runtime classes. Both lemmata seem inherently limited to runtime
classes containing a large enough “strict” subclass.

Lemma C.30. Let B be a bound algebra and T = RTC∞(B) be the corresponding strict runtime class.

Let T ∈ T and let S be some runtime. Then T
s

∼∼∼T S implies T
c

∼∼∼T S. More generally, if X and Y
are distributions supported on a set S with cardinality card(S) in B, then statistical and computational
indistinguishability coincide. The (efficient) distinguisher is as in Lemma B.11 with parameters so that it
runs in strict B-time.

Let X be a distribution or a random variable. For convenience, we write X{k} for the k-fold product
distribution of stochastically independent products. That is, (x1, . . . , xk) ← X{k} is distributed as
xi ← X for k independent samples xi.

Proof. Note that computational distinguishability implies statistical distinguishability. To prove the
converse, we invoke Lemma B.11. Let bnd0 ∈ B bound the support size of the distributionsX , Y .70 The

key point is: IfX 6
s

∼∼∼T Y , then the statistical distance is lower-bounded by 1/bndstat for some efficiently
computable bndstat ∈ B. Otherwise∆(X{bnd}, Y {bnd}) ≤ bnd ·∆(X,Y) ∈ o(1) for all bnd, and hence
X{bnd}, Y {bnd} are statistically close, for any (statistical) distinguisher. A contradiction to triple-oracle
distinguishability.

We invoke Lemma B.11 with n = bnd0, ε = 1
2bndstat

, and δ small enough, say δ = 1/8. We
obtain a distinguisher D with runtime roughly 24bnd0(κ)bndstat(κ)

2 plus the overhead for evaluating
bnd0(κ), bndstat(κ). Thus, D is efficient.

As we have seen, the equivalence between statistical and computational indistinguishability of
runtimes follows because the support of a runtime distribution is “small”, compared to the allotted
runtime for distinguishers. This, of course, is by definition of runtime resp. “small”.

Now, we generalise Lemma C.30 just like we generalised Lemma B.11 to Corollary B.12.

Corollary C.31. LetB be a bound algebra and letT be aB-tailed runtime class. LetX , Y be distributions
over N0 ∪ {∞} and suppose that X is B-tailed, i.e. we have a tail bound tailX such that

∀ bnd ∈ B : tail†Xκ
(

1

bnd(κ)) ∈ B.

Then X
s

∼∼∼T Y implies X
c

∼∼∼T Y . In particular, any runtime distribution X = T ∈ T is B-tailed by
assumption. The (efficient) distinguisher is as in Corollary B.12 with parameters so that it runs in strict
B-time. In particular, RTC∞(B) is d-dense is in RTCq(B).

Proof. Step 1: We recall Corollary B.12 in our situation: Suppose ∆(Xκ, Yκ) ≥ ε(κ), and let δ > 0,
and α ∈ [0, ε]. Then there is a distinguisher with advantage at least 1− 2δ, which requires

N = d6Nα(ε− α)−2 log(2δ−1)e
70To be precise, it is lower-bounded only for infinitely many κ.

60

samples, where Nα := tail†X(α) and has runtime quasi-linear in N (in admissible machine models).
Step 2: Arguing that the statistical distance ∆(X,Y) is lower-bounded by 1/bnd infinitely often, is

not as trivial as in Lemma C.30. Indeed, we rely on the general hybrid lemma (Corollary B.8) and hence
on tail bounds. Suppose the statistical distinguisher has advantage ≥ c (infinitely often for constant c).
By a standard hybrid argument, Corollary B.8, we find a distinguisher which accesses the challenge
oracle only once, and has advantage at least

c− β
Nβ

where Nβ := tail†Dstat
(β) for any β ∈ [0, c].

Consequently, ∆(X,Y) ≥ c−β
Nβ

for any choice of β. (Note that ε and Nβ vary in κ.)
Step 3: Putting Steps 1 and 2 together by (arbitrarily) choosing β = c/2 we find ε = c

2Nβ
. and

α = ε/2 we find

N = d6Nα(
1

2
ε)−2 log(2δ−1)e = d24NαN

2
β log(2δ−1)e.

Our constructed distinguisher D needs N samples and has advantage at least 1 − 2δ for infinitely
many κ. Now, Nα = tail†X(α) ∈ B by assumption that X is B-tailed. Also, Nβ = tail†D(β) ∈ B

for any constant β, since Dstat is statistical T-time, hence the number of oracle-queries is B-tailed.
Consequently, NαN

2
β ∈ B, and we find that N ∈ B for any suitable (e.g. constant) advantage 1− 2δ.

We obtain a strict B-time distinguisher as promised.

As in Remark C.27, one can directly generalise to non-negligible advantage.

Corollary C.32. The result of Corollary C.31 extends to the closure T of any (suitable) B-time class T.
Moreover, it extends to any runtime class in which T is d-dense.

C.7. From oracles to emulation and one-shot indistinguishability
In this section, we abstract properties of runtimes induced by algorithms in what we call continuously
samplable. For such runtimes, we show the equivalence of standard one-shot indistinguishability and
triple-oracle indistinguishability, which was as introduced for specially runtimes.

Up until now, we treated runtimes as distributions which are samplable via oracle access. This helped
keep our options limited and the presentation clean. For applications, we deal with induced runtimes of
algorithms, and we pay a non-constant price for sampling them. To sample the runtime of an algorithm,
we emulate it. Fortunately, such induced runtimes have a very useful intrinsic property: They are
continuously samplable in following sense. To know whether a concrete realisation of T is larger than
k, we have to emulate at most k steps. If emulation is efficient, and T is efficient, we can therefore
sample efficiently. Similarly, if our runtime cutoff bnd is early enough to make T≤bnd efficient, then
our sampling of T≤bnd is efficient. We abstract the central property in the following definition.
Definition C.33 (Continuously samplable). A runtime T is continuously samplable with overhead
function sampovhd(k) = sampovhdκ(k), which quantifies the time for sampling T up to time k ∈
N0 ∪ {∞}; that is: T≤k can be sampled in sampovhd(k) steps for all k. More concretely, there is a sub-
routine SampleT (κ, k) with output distributed as T≤k and runtime (strictly) bounded by sampovhd(k).

Wewill not specify the overhead sampovhd(k) and assume it to be “small enough” (e.g.O(kpolylog(k))).71
In particular, for runtimes induced by algorithms, sample and emulation overhead essentially coincide if
one samples by emulation. Hence emulation overhead must be small enough to work with the runtime
class in question.

Notice that continuous samplability is not tied to any runtime classes per se. In particular, it does not
imply efficient samplability without further assumptions.
71For PPT, sampovhd(poly1(κ)) ≤ poly2(κ) would be good enough. For EPT, emulation requirements are stricter, since

runtime may explode under squaring. Interestingly, we reduce only to, and only require, strict algebra-bounded times.
Thus, the results in this section do not run into problems with expectation.

61

Example C.34. Any runtime which is induced by an algorithm is continuously samplable. Including
runtimes of inefficient algorithms.

Now, we show that for two continuously samplable runtimes T , S, where T ∈ T (i.e. T is efficient),
oracle-T-time (in)distinguishable and oracle-included T-time (in)distinguishable coincide. This, finally,
lets us relate the triple-oracle indistinguishability and standard one-shot indistinguishability (under
repeated sampling).

Lemma C.35. Suppose that B is a bound algebra and T is B-tailed. Suppose that T ∈ T. Let S be
any runtime. Furthermore, suppose that D is a T-time (triple-oracle) distinguisher with advantage ≥ c
(infinitely often).

Then there is a distinguisherA with advantage≥ c
4 (infinitely often) and (a priori) strict oracle-included

B-time. More concretely, timeA(AO0,O1,O∗
) ≤ timeD(DO0,O1,O∗

) up to overhead for emulation and
computing the strict bound bnd(κ).

Suppose A is a distinguisher with runtime strictly bounded by bnd and oracle queries strictly bounded
by bndquery Suppose T and S are continuously samplable. Then there is an A′ which emulates O0 and O1

up to bndtrunc ∈ B “steps”, i.e. emulating T≤bndtrunc , S≤bndtrunc . By construction, A is strict B-time with
runtime bound roughly bnd + 16bndquery · bndtrunc (up to overheads) and advantage at least c

16bndquery

(infinitely often).

It is vital that T ∈ T, and hence efficiently continuously samplable.

Proof. This first part of the claim is proven analogously to the “standard reduction to PPT”, Corollary B.6.
More concretely: Suppose O∗ = O0 and consider D. Since c ∈ B, there exists for some efficiently
computable bnd ∈ B becauseT isB-tailed. The truncationA ofD has output with statistical distance at
most 1

4c (infinitely often). For O∗ = O1, we either obtain a statistical distance of 1
2c, or a distinguishing

of O0 and O1 which uses the runtime statistic P(S > bnd) > 1
2c of D as distinguishing statistic, just

as in Corollary B.6. In any case, we obtain A as claimed.
The second part of the claim follows by definition of continuously samplable and efficiency of T .

Namely, let bndtrunc so that P(T > bndtrunc) ≤ c
16bndquery

, where bnd and bndquery are strict bounds
for runtime and number of queries of A. Since T is B-tailed and T ∈ T, an efficiently computable
bndtrunc ∈ B exists. Suppose that P(S > bndtrunc) ≤ c

8bndquery
. Otherwise, using this distinguishing

statistic yieldsA′ with advantage c
16bndquery

Now letA′ runA with the each oracle call toOb emulating
up to bndtrunc “steps” via continuous sampling. The probability that an oracle call returns timeout is
bounded by bnd · c

8bndquery
= c

8 . In that case, A′ returns a random guess. Thus, A′ has advantage c
8

Lemma C.35 reduces triple-oracle distinguishing to distinguishing w.r.t. repeated samples. It has no
requirements on the advantage c of the distinguisher D and preserves the number of challenge queries
in A and A′. Thus, we can first use a hybrid argument in the triple-oracle setting, reducing to a single
challenge query. Then apply Lemma C.35. This finally yields the equivalence we wanted.

Corollary C.36 (Equivalence of triple-oracle and one-shot indistinguishability). Let B be a bound
algebra and T be B-tailed. Let T ∈ T and let S be an arbitrary runtime. Then T and S are triple-oracle
distinguishable with non-B-negligible advantage, if and only if T and S are one-shot distinguishable with
non-B-negligible advantage. (There is B-factor of loss involved in the reduction.)

Finally, we stress that Corollary C.36 is a very loose reduction.

D. Supplementary definitions
This section contains supplementary definitions which are commonplace (in many variations).

62

D.1. Commitment schemes
A commitment scheme allows a committer to commit to some value. The receiver does not learn that
value until it is unveiled (the commitment is opened). Moreover, the commitment can be opened to at
most one value, ensuring that the committer cannot change the value.

Formally, a commitment scheme is a two-phase protocol. For simplicity, we assume non-interactive
commitments. Moreover, our commitment schemes consist of a priori PPT algorithms and have message
space Mκ = {0, 1}κ.

D.1.1. Non-interactive commitment schemes

Definition D.1. A (non-interactive) commitment scheme Com (with setup) with message space
Mκ = {0, 1}κ consists of following a priori PPT algorithms.

• Gen(κ; r) returns a commitment key ck.
• VfyCK(ck) verifies well-formedness of ck and accepts or rejects.
• Com(ck,m; r) returns a pair (c, d) of commitment and decommitment for message m and ran-
domness r.

• VfyOpen(ck, c,m, d) accepts or rejects an opening of a commitment c to message m and decom-
mitment d.

A commitment scheme must be perfectly correct, that is ∀ck ← Gen(κ) : VfyCK(ck) = ACC and
∀ck← Gen(κ), m ∈Mκ, (c, d)← Com(ck) : VfyOpen(ck, c,m, d) = ACC.

In the following, let T ∈ {PPT,EPT,CPPT,CEPT}. (The results and definition can be adapted
to any suitable, e.g. algebra-tailed runtime class.)
Definition D.2 (Binding). Let Com be a (non-interactive) commitment scheme and letA be an adversary
in following game BindCom,A .

• Run ck← Gen(κ). The adversary returns (c,m0, d0,m1, d1)←A(κ, ck).
• Return win iff VfyOpen(ck, c,mb, db) = ACC for b = 0, 1 and m0 6= m1.

Let AdvbindCom,A(κ) = P(BindCom,A(κ) = win). Then Com is computationally (resp. statistically, resp.
perfectly) binding for T-time (resp. unbounded) adversaries, if for any such adversary A we have
AdvbindCom,A(κ) ≤ negl (resp. “≤ negl”, resp. “= 0”).

ByT-time adversary, we mean oracle-excluded-time of the adversary in the game isT-time. Since the
commitment scheme’s algorithms are a priori PPT time, efficiency of the game boils down to efficiency
of A.
Definition D.3 (Hiding LR-version). Let Com be a (non-interactive) commitment scheme and let A be
an adversary in following game HideCom,A .

• Run (ck, state)←A(κ).
• If VfyCK(ck) = REJ, return lose. Else run b′ ← AOb(state, ck), where Ob(m0,m1) checks if
m0,m1 ∈Mκ and72 returns cb = Com(ck,mb).

• Return win if b = b′ else lose

Let AdvhideCom,A(κ) = |2P(BindCom,A(κ) = win) − 1|. Then Com is computationally (resp. statisti-
cally, resp. perfectly) hiding for any T-time (resp. unbounded) adversary, if for any such A we have
AdvbindCom,A(κ) ≤ negl (resp. “≤ negl”, resp. “= 0”).

Note that in Definition D.3, we could instead expose O0 and O1 accept and verify ck, i.e. completely
absorb the game into the oracles. The advantage of a “rewired” A′ is identical to that of A. Finally, we
note that CEPT adversaries are “no better” than a priori PPT adversaries.
72The message length is always κ in this case.

63

Lemma D.4. Suppose Com is computationally (resp. statistically, resp. perfectly) hiding (resp. binding)
against a priori PPT adversaries. Then it also is against CEPT adversaries.

Proof sketch. Use that Com consists of a priori PPT algorithms and a standard truncation to a priori
PPT to obtain an adversary A′ with advantage at least half the advantage of A infinitely often.

We recall that multi-challenge left-or-right hiding is equivalent to the single-challenge setting via a
standard hybrid argument.
Remark D.5. The graph 3-colouring protocol G3CGK of Goldreich and Kahan [GK96] relies on a weaker
“a posteriori hiding” property for the statistically hiding commitment scheme. Here, VfyCK may depend
on secrets, e.g. the randomness of Gen, allowing more candidates schemes. The verification secrets are
only revealed after the binding property is not needed anymore.

Concretely, in [GK96], the verifier commits to challenges, which must be statistically hidden during
the protocol. However, it suffices that the verifier is ensured of this statistical hiding property at the
end of the protocol. Thus, the change to VfyCK is possible there.

E. Extendability from indistinguishable queries
Our definition of benign simulators relies on structure of the proof of security for (PPT) simulation, and,
although it covers many examples, is therefore somewhat limited. In this section, we give a different
approach to benign simulation. Intuitively, we require that an “eavesdropping” environment cannot
distinguish the bb-rw interaction of a rewinding strategy or a simulator with V∗. This corresponds to
the properties of query-indistinguishability and zero-knowledge.

The upside of this approach is its apparent greater generality. The downside is, that using query-indis-
tinguishability is more technical, and requires a separate treatment of efficiency and indistinguishability.
Perhaps a better, general approach exists — yet we know none.

E.1. Query-sequences indistinguishability
Our notion of “indistinguishable queries” for simulators is similar in spirit to [KL08].
Definition E.1 (Query-indistinguishability). Let A and B be oracle algorithms. The distinguishing
advantage Advqseq(G,O,D),A,B(κ) for queries including output of A,B by an adversary (G,O,D) is defined
as the distinguishing advantage AdvdistD,X,Y (κ) for the distributions

X := {(x, y, r,AO(y;r)(x; rA), qseqO(AO(y;r)(x; rA))) | (x, y)← G(κ)}κ
Y := {(x, y, r,BO(y;r)(x; rB), qseqO(BO(y;r)(x; rB))) | (x, y)← G(κ)}κ

Here r denotes the accessed randomness of O.73 (We make explicit the randomness rA and rB only to
make it evident, that the output and query sequence refer to the same run.)

We say that A and B satisfy (T-time) query-indistinguishability (Q-IND), if for all adversaries
(G,O,D) such that timeG+O+D(AO) ∈ T and timeG+O+D(BO) ∈ T the advantage Advqseq(G,O,D),A,B(κ)

is negligible.
Size-guarded query-indistinguishability is defined by size-guarding A and B (as non-adversarial

parties), i.e. A and B reject inputs of length larger than their size-guard.
Definition E.1 requires jointly indistinguishable queries and outputs. This may not be strictly necessary,

but greatly simplifies sequential composition of Q-IND. All bb-rw zero-knowledge simulators we are
aware of satisfy this joint indistinguishability. Indeed, typically the last query induces the (purported)
view of the adversary.
73Typical machine models offer an infinite pool of (independent) randomness, e.g. a random tape. Thus, we “restrict” to

accessed randomness.

64

We stress that the distinguisherD learns the oracle randomness. This allowsD to replay the execution
of O, recover the complete transcript of the execution, and compute the runtime spent in O.

Remark E.2. For CEPT and CPPT, it suffices in Definition E.1 to require that T = timeG+O+D(AO) ∈ T.
If timeG+O+D(BO) 6∈ T, then this is a distinguishing statistic. Indeed, by a standard reduction to PPT,
any distinguisher (G,O,D) with advantage at least ε = poly−1 (infinitely often) can be truncated to
an a priori PPT distinguisher with advantage ε

4 (infinitely often). (Just interpret D′ =̂ (G,O,D) as
interacting with oracles A or B, and apply Corollary 4.4.)

Remark E.3 (“Universal” adversary, environments, sequential security). Using a universal machine for
O (and even D) gives a universal adversary similar to zero-knowledge. Moreover, one can rephrase
Definition E.1 in terms of an “environment” E which encompasses G and D; E sends inputs (x, y), and
then gets access to randomness, output and query sequence. A sequential security version of Q-IND is
defined by this approach, following the definition of sequential zero-knowledge (i.e. E is given adaptive
repeated trials).

As in Remark E.2, we may assume E is a priori PPT. Also, (one-guess) “environmental” security is
equivalent to Definition E.1, because the state of E can be encoded as part of y.

E.2. Adapting the result of Katz–Lindell
As a warm-up, we adapt the result of Katz and Lindell [KL08]. For that, we rely on bb-rw simulators
which are EPT for any adversary (not counting the adversary’s steps). In other words, we rely on
simulators which are normal in the sense of Goldreich [Gol10]. That covers most simulators in the
literature, but not our naive simulator for G3CGK. Moreover, the definition is not compatible with
expected polynomial input sizes, and thus restricted to size-guarded security.74 After this motivation,
we generalise the result to our setting.

Definition E.4 (Goldreich-normal [Gol10]). A bb-rw simulator is normal in the sense of Goldreich,
short Goldreich-normal, if for any (not necessarily computable) timeful V∗ and any input (x,w, aux)
(with (x,w) ∈ R) there is a polynomial poly such that E(timeSim(Sim(x,V∗(aux)))) ≤ polySim(|x|),

There is no requirement of x ∈ L in [Gol10, Definition 6]. Since zero-knowledge only quantifies
over such statements, we have adapted the definition to fit.

Lemma E.5 (Auxiliary input zero-knowledge). Let (P,V) be a proof system. Let Sim be a (timed) bb-rw
simulator with associated rewinding strategy RWS. Suppose that RWS is normal, Sim is Goldreich-normal,
RWS and Sim have indistinguishable queries, and Sim handles PPT adversaries in EPT.
Then Sim handles CEPT adversaries in CEPT under size-guarding, and (P,V) is size-guarded zero-

knowledge.

Proof sketch. By a standard reduction, the output quality of Sim can be tested by an a priori PPT
adversary. By assumption, such output is indistinguishable from the real protocol. Thus, we only need
to ensure efficiency of Sim under size-guarding.

Due to size-guarding, we can assume thatG outputs xwith |x| ≤ polyG(κ). Therefore, by assumption,
Sim is a priori EPT with bound polySim(polyG(κ)), excluding the time spent in the bb-rw oracleV∗. Thus,
it is sufficient to boundSV∗ = timeV∗(Sim(x,V∗(aux))), where (x,w, aux)← G. By normality ofRWS
and query-indistinguishability, recomputing the time spent inV∗ by emulation (using inputs, queries and
randomness) is possible in CEPT for any CEPT adversary. Consequently, by query-indistinguishability,
switching from RWS to Sim results in an indistinguishable distribution of t. Hence, SV∗ is CEPT and
the claim follows.

We also demonstrate that sequential composition, i.e. sequential zero-knowledge, holds for this type
of simulator.

74These problems do no surface in [KL08; Gol10] since they define κ = |x|.

65

Lemma E.6 (Sequential zero-knowledge). Let (P,V) be a size-guarded zero-knowledge proof system,
with a simulator satisfying the conditions in Lemma E.5. Then (P,V) is sequential size-guarded zero-
knowledge.

Proof sketch. Again, the main question is efficiency. Namely, if there is a distinguishing adversary for
zero-knowledge, then there is an a priori PPT adversary. This contradicts our assumptions, because
“classical” sequential composition against a priori PPT adversaries holds.

To prove efficiency, we prove, essentially, that query-indistinguishability composes sequentially. As
in Lemma E.5, this then implies that OSim is efficient because ORWS is.

Suppose the contrary, i.e. suppose query-indistinguishability does not hold for Sim. By Remarks E.2
and E.3, we know that there is an a priori PPT distinguisher (E,V∗) breaking “sequential query-
indistinguishability”. We leave the definition of sequential Q-IND, sketched in Remark E.3, to the reader.

Since Sim is Goldreich-normal,OSim = rep(Sim(·)) handles PPT adversaries in EPT. (This is “classical”
sequential composition.) Sequential Q-IND of Sim and RWS for PPT distinguishers reduces, by a hybrid
argument, to standard Q-IND. The hybrid distinguisher is efficient, because Sim is Goldreich-normal
(and RWS normal). Consequently, Sim and RWS cannot be Q-IND. A contradiction. Hence, sequential
Q-IND holds for RWS and Sim. In particular, rep(Sim) satisfies all conditions in Lemma E.5 lifted to
the sequential setting, and the proof lifts as well.

This warm-up demonstrates two things: First, with size-guarding, many arguments get simplified
and reduce to standard a priori PPT arguments. Second, the main difficulty for relaxations will be
to demonstrate efficiency. By the nature of CEPT, efficiency and indistinguishability are somewhat
entangled. We use unconditional guarantees, similar to Goldreich-normal in the above, to partially
disentangle that.

Proving a “full-fledged” CEPT simulation, i.e. getting rid of size-guarding and weakening Goldreich-
normal is surprisingly cumbersome. We do so by introducing two properties. The first property,
runtime estimators, allows us to link together the runtime of RWS and Sim, assuming Q-IND holds. The
second property ensures efficiency if one truncates after polynomially many queries. This replaces
Goldreich-normal, and enables the hybrid argumentwhich shows that Q-INDmust hold under sequential
composition. Taken together, we find that the runtime of Sim cannot be too far from RWS, and thus
Sim is efficient whenever RWS is. This generalises the proof of Lemma E.6.

E.3. Runtime estimation
In the following, we give a definition of a “runtime estimator”, which allows to lower- and upper-bound
the expected runtime of an algorithm depending on oracle queries, or more precisely, on the information
available to a Q-IND adversary. The algorithms of interest are RWS and Sim. Typically, their runtime
is closely related, since both emulate the honest prover (with minor modifications). Consequently, their
runtime per activation is easy to lower- and upper-bound (if the prover’s runtime per activation is).

Definition E.7 (Runtime estimation). Let θ : N0 × D × Ωθ → N0, be a probabilistic algorithm with
randomness space Ωθ, and whereD is the input space of a query distinguisher (as in Definition E.1).
Let A be an algorithm and O some oracle. Let z ∈ D and recall that z = (x, y, r, out, qs), where x
(resp. y) is input to A (resp. O), r is the oracle randomness, out is the output of AO(y;r)(x), and qs is the
sequence of queries. Define

• tθ(κ, z) := E(timeθ(θ(κ, z))), the expected runtime of θ given z.
• tA(κ, z) := E(timeA(AO(y;r)(x)) | AO(y;r)(x) = out ∧ qseqO(AO(y;r)(x)) = qs), the expected
runtime of A conditioned on z.

• tA+O(κ, z) like tA, but using timeA+O(. . .).

We say that θ is a runtime estimator if it satisfies efficiency, i.e. there exists some poly(κ) such that
for all z ∈ D and all κ: tθ(κ, z) ≤ poly(κ) · tA+O(κ, z). Moreover, θ is a lower bound estimator if

66

there exists some poly such that E(θ(κ, z)) ≤ poly(κ) · tA(κ, z) for all z ∈ D and κ ∈ N0. Analogously,
θ is a upper bound estimator if there exists some poly such that tA(κ, z) ≤ poly(κ) · E(θ(κ, z)) for
all z ∈ D and κ ∈ N0.

Note that estimators are “unconditional” constructions; we quantify over all z ∈ D.
Remark E.8 (Sketched application of runtime estimators). Consider a simulator Sim and its rewinding
strategy RWS. If T = timeRWS+V∗(RWSV∗

) is CEPT, then the (output of the) runtime estimate θ is
CEPT if it lower-bounds T . If θ upper-bounds S = timeSim+V∗(RWSV∗

), then S is CEPT if (the output
of) θ is. Since θ only depends on the information available to a Q-IND adversary, assuming RWS and
Sim are Q-IND, the runtime bound provided by θ only changes negligibly, hence if T is CEPT, so is S.
This provides a central link between the runtime RWS and Sim.
Remark E.9 (Convenience of size-guards). Arguing via runtime estimates requires that the algorithms
runtime per activation behave somewhat regularly (which is fortunately typical). Most convenient are
“essentially constant-time” algorithms (where runtime only depends on query/message length). With
size-guards this is usually immediate, as every round has an a priori polynomial upper bound for the
(expected) number of steps taken, both in RWS and Sim (not counting the black-box V∗). Hence θ is as
simple as the total number of queries. Without size-guards, the behaviour is more fickle.

E.4. Efficiency from query-truncation
We already saw in Lemmas E.5 and E.6 that Q-IND ensures that the time spent in V∗ only changes
negligibly between RWS and Sim. However, we cannot reuse the arguments to show that Q-IND
composes sequentially. The problem lies within efficiency of the hybrid distinguisher. As seen in
Lemma E.6, once we obtain an a priori setting, this problem “disappears”. Hence this is our solution.
We define what it means to be “Goldreich-normal for any polynomial query cutoff” of the interaction.
Intuitively, it means that any “polynomial prefix” of the interaction is Goldreich-normal.
Definition E.10. Let A be an oracle-algorithm. Let BO(x, q) be the oracle-algorithm which emulates
AO(x) until the q-th query of A to O. After that, B returns timeout (otherwise B returns whatever A
returns). We say A is Goldreich-normal for any polynomial query cutoff (and input space Xκ),
if for any polynomial poly0 there is a polynomial poly1, such that for any oracle O, and any inputs
(x, y) ∈ Xκ E(timeB(BO(y)(x, poly0(κ)))) ≤ poly1(|x|, κ). In other words, B(·, poly0) is Goldreich-
normal for any poly0. For zero-knowledge, the input space is R × {0, 1}∗.
Example E.11. Our rewinding strategy and simulator of G3CGK are Goldreich-normal for any polynomial
query cutoff. Indeed, they are even PPT for any polynomial query cutoff. As a matter of fact, we cannot
point out any (natural) bb-rw simulator which does not satisfy this property.
Remark E.12 (Goldreich-normal for any polynomial query cutoff does not imply efficiency). Similarly to
size-guarding, restricting to a polynomial number of queries makes simulations efficient which would
otherwise not be. For example, a simulator which is a a priori PPT per activation, but never halts, is
Goldreich-normal for any polynomial query cutoff.

E.5. Query-benign simulators
Now, we bring together our definitions to define an alternative of benign, which we call query-benign.
Definition E.13 (Query-benign simulator). Let (P,V) be a proof system. Let Sim be a (timed) bb-rw
simulator with associated rewinding strategy RWS. Then Sim is query-benign if

(1) RWS is a normal;
(2) for all a priori PPT adversaries (G,V∗), RWS and Sim satisfy Q-IND;
(3) Sim is Goldreich-normal for any polynomial query cutoff.

Query-benign under size-guard gd is as usual (i.e. by query-benign w.r.t. the size-guarded prover).

67

Recall that Q-IND (i.e. condition Item (2)) implies that RWS and Sim have indistinguishable outputs
by definition, i.e Q-IND implies zero-knowledge. In (2) we use a priori PPT adversaries, since the
security is equivalent to CEPT anyway.

Now, we put our definitions to use. Since our arguments are very close to Lemma E.6, we directly
show sequential zero-knowledge.

Lemma E.14 (Query-benign implies sequential zero-knowledge). Suppose (P,V) is a proof system. Let
Sim be a query-benign simulator, Then (P,V) is sequential zero-knowledge. In particular, Sim handles
CEPT adversaries in CEPT. The analogous claim holds under size-guarding.

Our proof is only a sketch and somewhat hand-wavy. in particular, we leave sequential security
definitions, like “sequential Q-IND” and “sequential runtime estimators”, and many straightforward
arguments to the reader.

Proof sketch. As usual, the proof consists of two parts. First, we prove that using Sim instead of P is
still CEPT. Then, by standard arguments, zero-knowledge follows.

Step 1 (Replacing RWS): As in Lemma 6.4, using rep(RWS(·)) instead of rep(〈P, ·〉) in the sequen-
tial zero-knowledge experiment is still CEPT.

Step 2 (Goldreich-normal for any polynomial query cutoff composes sequentially): It is
straightforward to verify that if an algorithm B is Goldreich-normal for any polynomial query cutoff, so
is its “repetition” rep(B). For this compare, the poly-query truncation of rep(B) with rep(B0), where
B0 is the poly-query truncation of B. Since B0 is Goldreich-normal, so is rep(B0). Consequently, rep(B)
is Goldreich-normal for any polynomial truncation.

Step 3 (Q-IND holds for rep(RWS) and rep(Sim)): Now, consider the “sequential Q-IND” experi-
ment, i.e. consider Q-IND of rep(RWS) and rep(Sim). More concretely, the distinguishing environment
E that can repeatedly invoke RWSV∗

resp. SimV∗
, and obtains the output of an invocation, including

the query sequence and randomness of (that invocation of) V∗, as noted in Remark E.3. Note that E can
adaptively choose inputs to RWS resp. Sim and V∗.

W.l.o.g., we may assume that E is a priori PPT, say E makes at most polyE steps. Moreover, we may
assume that E linearly reads the outputs of each invocation. In particular, E cannot skip (parts) of the
outputs, and read only the final queries.75 Importantly, E only reads a strict polynomial prefix of the
full (sequential) query sequence.

If we replace Sim by a truncation Sim0, which stops after the polyE queries, we know that Sim0 is
EPT with expected runtime bounded by some polySim0

(due to Sim being Goldreich-normal for any
polynomial query truncation, see also Step 2).

By construction, from the perspective of E, rep(Sim0) and rep(Sim) behave identically. Indeed, since
E only reads at most a prefix of length polyE of the (total) query sequence, E never encounters the
difference of Sim0 and Sim. For symmetry, let RWS0 be defined analogously to Sim0. (Formally, we
could use RWS, since there are no efficiency problems with RWS.)

Now, we can use that Sim0 is Goldreich-normal, to show via a hybrid argument as in Lemma E.6
that if E can distinguish RWS0 and Sim0 for “sequential Q-IND”, there is a Q-IND distinguisher D for
RWS0 and Sim0. And hence, there is a Q-IND distinguisher for RWS and Sim (since the constructed
hybrid distinguisher D also sees no difference between Sim0 and Sim (resp. RWS0 and RWS)). Thus,
“sequential Q-IND” holds.

Step 4 (Sim is CEPT if RWS is): Now we make use of the runtime estimator θ. More precisely, we
extend θ to the sequential setting by applying the underlying θ for each invocation separately, and

75This is a technical requirement. Depending on the machine model, E may have random access to the output. That would
make our later argumentation incomplete. To see that we can assume that E completely reads the outputs, just use the
output length as a distinguishing statistic. That is, if there is a PPT distinguisher E which skips parts of the output, then
the variation which reads all of the output is still CEPT for RWS. By standard truncation arguments, an a priori PPT
truncation of E′ retains non-negligible advantage. And E′ is a distinguisher of the kind we are interested in.

68

taking the sum of the estimates. It is easy to see that this preserves efficiency, lower-bounding and
upper-bounding.

Let (E,V∗) be a CEPT adversary. Since timeRWS(〈E, rep(RWSV∗
)〉) is CEPT, so is θ (by lower-

bounding of RWSV∗
). Since θ(zRWS) is CEPT for zRWS = qseqV∗(rep(RWSV∗

)) and since zRWS and
zSim = qseqV∗(rep(SimV∗

)) are indistinguishable w.r.t. E (by “sequential Q-IND”), also θ(zSim) is CEPT.
Since θ upper-bounds the runtime of timeSim(〈E, rep(SimV∗

)〉), timeSim(〈E, rep(SimV∗
)〉) is CEPT.

Finally, since the time spent in V∗ can be easily reconstructed from z (by emulating the execution),
timeV∗(〈E, rep(RWSV∗

)〉)
c
≈ timeV∗(〈E, rep(SimV∗

)〉) due to Q-IND.
All in all, replacing rep(〈P, ·〉) with rep(Sim(·)) preserves CEPT.
Step 5 (Output quality): Our definition of Q-IND included the outputs, so zero-knowledge follows.

(Note that, even if we know Sim is CEPT, to apply a hybrid argument to show good output quality
assuming only zero-knowledge, we have to argue that the hybrid distinguisher is CEPT.)

The proof sketch should be interpreted as follows: Step 3 shows that Q-IND for A and B composes
sequentially ifB is Goldreich-normal for any polynomial query cutoff. (It uses Step 2, although somewhat
indirectly.) Step 4 shows that runtime estimators compose sequentially. Taken together, query-benign
composes sequentially. Lastly, (sequential) query-benign implies (sequential) zero-knowledge.

We remark that to prove Q-IND, for all of our examples, one essentially proves benigness as well.

F. Additional discussions
F.1. Levin’s relaxation and CEPT
We noted in Footnote 4, that

∑∞
n=1 n

1+ε < ∞ for ε > 0 gives rise to distribution Z1+ε over N via
normalising the sum. Let X = Z3

2 . Then E(X) =
∑∞

n=1 n = ∞. Since Z2 is fat-tailed, so is X . Let
Yk = X(·≤k)7→0 = (X≤k)timeout 7→0. It follows immediately that E(Yk) = E(X(·≤k) 7→0) ≥ 1

2k
2 for any

k ∈ N. Thus, for any superpolynomial cutoffK , we find E(YK) ≥ 1
2K

2 is superpolynomial, and as a
consequence, there is no superpolynomial cutoff which makes X EPT. (Here, we interpret X (and YK)
as a constant family of runtimes, i.e. Xκ = X for all κ.)

Formally, CEPT uses ν-quantile cutoffs. But it is easy to see that any ν-quantile cutoff for negligible
ν corresponds to a superpolynomial truncation: ν corresponds to to some truncation k. If k were
polynomial, then (due to “fat tails”) ν must also be polynomial.

All in all, the runtime distribution Xκ = X is allowed by Levin’s relaxation, but is not CEPT.

F.2. Oracle indistinguishability and games
We recall a (folklore) conversion between game-based notions and oracle-indistinguishability. Many
cryptographic assumption can be cast as (efficient or inefficient) games, in which an adversary interacts
with a challenger C (specifying the experiment or game), and at the end of the interaction, the challenger
outputs a verdict win/lose (or 1/0). A hardness assumption is an upper bound for P(outC〈A,C〉 =
win), e.g. negl for one-wayness or 1

2 + negl for IND-CPA, where negl depends on A.
It is generically possible to recast such games as oracle-indistinguishability assumptions: Let Ob for

b = 0, 1 be defined as follows. The oracle acts as the game, until the verdict is output. If the verdict is
win, thenOb sends b to the adversary. If the verdict is lose, thenOb sends⊥ instead. A straightforward
calculation shows

P(outC〈A,C〉 = win) = P(DO1 = 1)− P(DO0 = 1)

where D is derived from A by emulating A until the verdict, and then outputting b (if A won) or
guessing randomly (if ⊥ was received). Conversely, given D, one defines A by acting like D (until
the experiment ends). Since information-theoretically, D obtains learns about b only when it wins the
game, A’s success probability is at least that of D. Applying the reverse conversion yields an D′ with

69

advantage equal the probability that A wins. In other words, both formalisations are equivalent (in
any setting that allows the conversion, which encompasses any sensible setting).

The reverse transformation transforms oracle-indistinguishability into a “bit-guessing” experiment.
Since the success probability in the experiment is compared to 1

2 , the advantage is defined by twice the
success probability (so as to coincide with the distinguishing advantage).

F.3. Relaxing benign
The definition of benign simulation is very restrictive and does not mirror the actual security proof for
G3CGK very well. For simplicity, we conflated all application and uses of assumptions into one single
game “hop”, the switch from RC0 to RC1 . We defined iterated benign as a relaxation, but even that does
not mirror the proof that well. There are only multiple reduction steps, but not multiple rewinding
strategies.

Fortunately, it is easy to see that one may allow constantly many “reduction hops” Ri and simple
assumptions Ci0/1. The relaxation of benign with multi-hop reduction is as follows: The reduction R is

an algorithm which gets as additional input the index i. We require that RCi
1
i ≡ RCi+1

0
i+1 and that RCi+1

0
i+1

is efficient relative to RCi
1
i (with polynomial runtime tightness). Lastly, we require RWS ≡ RC0

0
0 and

RCk
1
k ≡ Sim and the usual relative efficiency. Since each reduction step needs a relative efficiency bound,

we can only allow constantly many “hops”, i.e. k is a constant.
As a matter of fact, this relaxation brings nothing new. Since the effects of RWS can technically be

absorbed by relative efficiency, and the trivial rewinding strategy can be used in iterated benigness, this
relaxation of benign is equivalent to iterated benign.

That being said, one can prove polynomial hybrid steps secure for a (natural) class of more restricted
reductions. However, it appears incurred technical complexity is better hidden in the simple assumptions,
e.g. using the left-right hiding game instead of the usual single-challenge hiding game, so that a constant
number “game hops” suffice.

F.4. Size-guards
We recall the need for size-guards, discuss two approaches to generalising size-guarding, and mention
complexity classes for which size-guarding is superfluous, Then, we identify some problems with
size-guards, which may complicate their use. For we generality, consider a generic real-ideal setting,
and use zero-knowledge as an example. It is easy to see that both proposed notions of size-guarding are
efficient transformations (in any sensible machine model).76

A case for size-guards. Recall that adversarial input distributions, which exploit expected polyno-
mial size via fat-tailed distributions, may yield simulators which are not CEPT, because the have a,
say quadratic, dependency on input length, whereas the real protocol (e.g. the prover) has a linear
dependency, see Remark 5.3. Bounding input length, or even message length, which honest parties
accept hardly affects the usefulness of a protocol. Indeed, these bounds are fixed a posteriori, i.e. after
the full system is built from its parts. We have no good example for a setting, where there is no suitable
polynomial bound one the input (or message) length of honest parties. So we expect that such a
posteriori restrictions do not affect real applications.

Size-guarding inputs. The most natural approach to size-guarding is arguably to size-guard inputs
to ideal functionalities, i.e. messages sent to the interface of real protocol or their ideal equivalent.

76The effect of size-guarding on runtime is minor. If a lazy size-guard implementation is used, instead of eagerly checking the
size, then up to emulation overhead, the runtime doubles at most. (Eager implementations may blow up runtime if the
time for writing the message is not accounted for, e.g. because of huge messages from (inefficient) oracles.)

70

Size-guarding a functionality yields a new functionality, which aborts upon receiving inputs which
exceed the length allowed by the size-guard. (Adversarial parties should be allowed to ignore size-guard
restrictions. Also, other parties should be notified of such an abort.) As explained above, we know no
good example where a functionality cannot be replaced in such a way.

This simplistic sketch of size-guarding may be ill-defined, and lead to problems, as in pointed out in a
later paragraph.

Size-guarding communication. Instead of size-guarding only inputs, one may want to size-guard
all communication of honest parties. This may also be viewed as size-guarding all interfaces and the
communication channel. (We should not impose size-guards on adversarial communication, as there is
no justification for limiting their communication.) This kind of size-guarding is formally stronger, but
we expect that for most (all?) interesting protocols, it is equivalent with size-guarding inputs. However,
size-guarding communication affects everything, not just functionalities. Thus, we find the more local
notion of size-guarding inputs preferable, and less likely to lead to unpleasant surprises.

Strict polynomial space. An algorithm A has a priori strict (probabilistic) polynomial space (SPS)
(in analogy to PPT) if there exists a polynomial poly(κ) which bounds maximal used space/memory.
We count outgoing (but not incoming) message queues as part of an algorithms space/memory. With
this, any size-guard larger than poly does not affect the behaviour of A at all. Thus, for a priori SPS
adversaries, size-guarded security and normal security are equivalent.

For “classical” SPS, the space of A may depend on the input size, i.e. poly(κ, |x|). All protocols of
interest satisfy SPS. We find (classical, a posteriori and a priori) EPT SPS algorithms an appealing
complexity class. Of course, the “negligible slack” of CEPT and CPPT is motivated for and applies to
this setting as well. Unfortunately, deterministic bb-rw oracles for EPT adversaries are not compatible
with SPS, hence our simulators are not PPT either. This can likely be fixed, see Remark A.5.

Composability and definitional issues. One major drawback of size-guarded security, is that it
changes the ideal functionality. This may break properties, such as correctness, of protocols using such
subprotocols. As mentioned before, size-guards should be chosen after a system is composed, so that
such problems do not occur. Since a protocol may call a subprotocol with squared input length, for
composition, one needs to keep track of size-guards, and be aware that they may not be identical for
all protocols. That is, a protocol which is built from subprotocols imposes different size-guards on the
subprotocols than the size-guard which was imposed on itself.

Another problem of size-guards is, that it may be convenient or relevant to have different or more
fine-grained size-guards for different interfaces. E.g. for zero-knowledge, we left the witness unguarded.
A more flexible approach than merely limiting the input length may be useful in a larger setting.

An alternative to size-guards. The problems noted above seem to disappear if instead of size-
guarding inputs and changing protocol behaviour, one restricts to “admissible adversaries”, as mentioned
in Remark 5.3. The drawback is that now, one needs to specify admissibility variations for all notions,
e.g. rewinding strategies, relative efficiency, and so on. We also caution that, similar problems as for
size-guards may appear, just hidden deeper in security proofs.

F.5. The trouble of a posteriori runtime and composition
To further motivate our choices and definitions, it is instrumental to discuss the interaction of virtuality,
a posteriori runtime and designated adversaries at the example of sequential composition.

Our notion of (auxiliary input) zero-knowledge allows designated adversaries in the strongest sense.
Namely, we only require that (G,V∗,D) is efficient. As noted, we can equivalently reduce to (G,V∗),
since there is always an a priori PPT D if the adversary breaks zero-knowledge. The big problem for

71

sequential composition is that there is no efficiency guarantee for V∗ alone. More to the point: When
replacing G with G′, it is unclear whether (G′,V∗) is still efficient. The standard hybrid proof for
sequential composition, changes G, which spells trouble.

Consider sequential repetition of a zero-knowledge proof. Using a hybrid argument which replaces
P by Sim starting from the last repetition, there is no problem with G at the point of embedding. We
started from the back, so “Gi−1” for the i-th hybrid is distributed as in the real protocol. However, after
embedding a challenge at i, the hybrid argument needs to “post-simulate”, i.e. use Sim in the remaining
iterations. And here, “Gj” for j > i is modified. Given only weak relative efficiency guarantees for
Sim, we do not know how to prove a superconstant number of repetitions are efficient. Such Sim only
guarantees it is CEPT if (G,V∗) is, but gives no concrete relation for the runtimes. If Sim’s runtime
depends in a problematic way on G, e.g. exponentially growing constants, that would still be true.
Such behaviour is implausible, in particular since Sim itself is independent of G, so only the output
distribution of G is relevant. Nevertheless, we could not prove superconstant repetition secure.

These problems appear for PPT and EPT simulation against a priori PPT adversaries as well. However,
there simulators which are EPT when excluding the time spent in V∗, are also EPT when including it.
Thus, they are implicitly relatively efficient with runtime tightness. (See also Definition E.4.) Efficiency
of sequential repetitions thus follows easily. To emulate this, we replace weak relative efficiency with
(strong) relative efficiency with runtime tightness.

This is not yet enough for CEPT simulation. There, a core problem is that virtuality growth is not
unconditional. Different adversaries spend different effort trying to distinguish simulation from reality
(e.g. brute-force commitments), and there is always a stronger one (which runs longer). Thus, there is
no universal (tightness) bound for the virtuality of a simulation. Indeed, if the hardness assumptions
were false, then an adversary can distinguish reality from simulation, and make the runtime explode.

Our solution to this problem is to provide an explicit “common anchor”, the simple assumption
C0

c
≈ C1 in a benign simulator, to which the change in virtuality can be reduced to. Hence, the

(uniform) reduction R, independent of the adversary, is our computational analogue to the runtime
tightness bounds. (For query-benign simulators, the common anchor is the query-indistinguishability.)

One may try to escape the problems by restricting the adversary more, and giving up full-fledged
designated adversaries. However, considering that not even “expected polynomial time in any interaction”
gives runtime guarantees for rewinding simulators [KL08], this essentially leads to [Gol10].

Ultimately, it seems that composition results, such as sequential, parallel and concurrent composition,
do not follow trivially from “auxiliary input” notions in our setting. For parallel and concurrent
composition, this is well-known even for a priori PPT adversaries (but for different reasons). In our
setting, this also extends to sequential composition.

F.6. Absolute notions of relative efficiency
In Section 4.4, we work with “relative notions of (relative) efficiency”, that is, we compare the perfor-
mance of two algorithms. A scrapped approach used “absolute notions of relative efficiency”, which
have no comparison point. Absolute relative efficiency ensures, that whenever the communication
partner of A is efficient, so is A. In other words, it allow us to “blame” a party for running too long.
While this is easier to describe than relative efficiency, the need to be absolute makes the notion brittle,
as we see at the end of this section.

We use the name absolute relative efficiency mostly due to a lack of a better name.

Definition F.1 (Weak absolute relative efficiency). Let T be a runtime class and A be an algorithm.
Then A is weakly absolutely relatively efficient (ar-eff) (w.r.t. T) if: For any timeful oracle O,
timeO(〈A,O〉) ∈ T implies timeA+O(〈A,O〉) ∈ T.

The problems with weak relative efficiency apply in this absolute setting as well, i.e. weakly ar-eff
seems too weak for general use. Thus, we resort to following stronger definition.

72

Definition F.2 (Absolute relative efficiency). Let A be an algorithm andO an oracle. Then A is absolutely
relatively efficient (ar-eff) w.r.t. ‖ · ‖q with rel-eff ratio polyarr(κ) if: For any timeful oracle O, we
have ‖timeA+O(〈A,O〉)‖q ≤ polyarr(κ) · ‖timeO(〈A,O〉)‖q .

If q is not specified, we mean q = ∞, i.e. ar-eff w.r.t. to strict time. To q = 1, we say ar-eff w.r.t.
expectation.

Importantly, the notion of (weak) absolute relative efficiency is unconditional and amortised since O
is timeful and can abort at any time. Indeed, allowing a timeful O is one of the main reasons for the
brittleness of ar-eff. Alas, conditional notions of relative efficiency are much less useful.

It is usually trivial to check that an algorithm is ar-eff. Namely, one verifies the stronger claim, that it
is PPT (resp. EPT) per activation. As a rule of thumb, the non-adversarial parties should be ar-eff, so that
runtime problems can be traced back to the adversary. With this, one can exploit runtime explosions to
break hardness assumptions.
Remark F.3 (Relation to EPT in any interaction). At fist glance, ar-eff (w.r.t. expectation) seems to
be closely related to EPT in any interaction (EPTiai) [KL08; Gol10]. However, EPTiai has a different
flavour. It is a property imposed on the (ideal) adversary, so that a simulator’s runtime does not explode.
Katz and Lindell state in[KL08, Sec. 4.2] that they could not show that the simulator obtained by
modular sequential composition again satisfies EPTiai. This “prevents” further composition of this
type. Conversely, ar-eff is a property imposed “honest parties”, e.g. on a bb-rw simulator. It is entirely
independent of a given adversary.
Example F.4 (G3C is not ar-eff under size-guarding). The prover, verifier and simulator for G3CGK
(Section 1.2) are ar-eff under size-guarding, but not unguarded, assuming |(V,E)| ≈ card(V)+card(E).
The problem is that the P makes κ · card(E) · card(V) commitments, whereas the verifier only makes
card(E) commitments. The factor card(V) is not bounded by poly(κ), thus, there is no polyarr which
depends only on κ and the prover is not ar-eff.77

This problem is mitigated by size-guards. For a variation of G3CGK with graph hamiltonicity, this
problem would not occur as κ parallel repetitions suffice, independent of G. (Modulo technical compli-
cations.)

All in all, Example F.4 demonstrates how brittle unguarded ar-eff is. We see that not even the prover
of G3CGK satisfies ar-eff without size-guards. This is the core reason to replace ar-eff with the arguably
more complex notion of “efficiency relative to” another algorithm.

F.7. Standard non-uniformity
Our proposed notion of non-uniform security is still probabilistic. More concretely, we propose in
Appendix A.5 to give a probabilistic machine tape-like access to a (possibly infinite) non-uniform
advice string. Usually, non-uniform adversaries are modelled as a priori polynomial time deterministic
algorithms with advice, or equivalently, polynomial size circuit families. For indistinguishability notions,
allowing probabilistic algorithms is typically irrelevant: By standard reductions, a priori PPT adversaries
suffice, and so does a priori polynomially bounded advice. By coin-fixing, i.e. fixing the optimal advice
and optimal adversarial randomness, one achieves a deterministic a priori non-uniform polynomial
time adversary with advantage which is lower-bounded by that of the original (probabilistic) adversary.
Example F.5. For oracle-distinguishing, we saw in Corollary 4.4, that CEPT distinguishers are no better
than a priori PPT distinguishers. For an a priori PPT distinguisherD, it is easy to see that fixing optimal
coins yields a deterministic distinguisher D′ with advantage lower-bounded by the advantage of D.
77This can be seen as a technical artifact from not counting the commitments sent by the prover towards the runtime of the

verifier. An honest verifier would read the commitments, hence requiring roughly the same amount of “computation”
as the prover. A dishonest or timeful verifier is not bound by that. If we would count incoming messages towards the
runtime of the oracle, stupid problems like “message length doubling attacks” could appear. By sending a message m, A
gets polyarr(κ) · |m| more time from O. If O discards messages which are too long, then O can remain efficient, whereas
A increases its runtime exponentially. Arguably, we do not want to view such an A as efficient in any sense.

73

Unfortunately, technical details regarding preservation of efficiency still enforce the use of input
distributions. More concretely, by runtime squaring, there are simulators which are efficient for any
input distribution with strictly polynomial input size, but become inefficient for distributions with
expected polynomial input size. see Remark 5.3. Thus, an equivalence with the standard setting of non-
uniform security is only guaranteed if security with size-guarding is considered, see Remark 5.3. While
size-guarded security is a natural notion, imposing it when it is not needed is wasteful.

F.8. The necessity of ‖·‖1
One may hope that there is a notion more stringent than expected time, which still allows rewinding-
based arguments of 3-move proofs of knowledge (based on special soundness), or 4-move zero-knowl-
edge such as [GK96], with black-box proofs of security. For example, one might hope for ‖·‖2 instead of
‖·‖1, i.e. expected polynomial time and variation. Unfortunately, it is unlikely that a satisfying solution
exists, at least along this line of arguments, unless one allows a larger (constant) number of rounds.

Concretely, consider the setting of 3-move proofs of knowledge. There, one can assume an adversary
which plays honestly, but aborts with probability 1−p ∈ [0, 1]. Suppose the 3-move proof of knowledge
is special sound and has large challenge space, so that it the soundness error is negligible. Consider
the typical extractor for special soundness: If the adversarial prover convinces the verifier, it rewinds
and uses honestly sampled challenges until the adversary produces a second convincing answer. With
overwhelming probability, the first and second challenge are distinct, and by special soundness a witness
can be computed.

It is evident that the number of rewinds for this extractor follows a geometric distribution. Indeed,
with probability p, the first challenge is answered convincingly, in which case the extractor needs
k ∼ Geo(p) rewinds to obtains a second convincing answer. Let R bet the number of rewinds. Then
the expectation of R is

‖R‖1 = (1− p) · 1 + p
1− p
p
≤ 2.

If we consider ‖R‖2, then we find the

‖R‖2 ≥ p
1− p
p2
≥ 1

p
.

Thus, if p negligible, the ‖R‖2 is superpolynomial. A first attempt is to exploit virtuality: If p is
negligible, then in fact, R2 is virtually expected polynomial. Conversely, if p is bounded below by
1

poly , then R
2 is expected polynomial. However, things fall apart if p = p(κ) is not negligible, yet not

bounded below by any polynomial. For this, define p(κ) as follows: p(κ) = κ−2
f(κ) , where f(κ) = 1

for all 2 - κ, f(κ) = 2 for all 2 | κ∧ 4 - κ, f(κ) = 3 for all 4 | κ∧ 8 - κ, and so on. (Let f(0) = 0.) That
is,

(f(κ))κ = (0, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, . . .)

It is easy to see that p is not negligible. However, for any polynomial poly, we have p < 1
poly infinitely

often, i.e. p is not polynomially bounded away from 0. Thus, ‖R‖2 > poly infinitely often. In other
words, there is no polynomial which bounds ‖R‖2. Allowing negligible virtuality does not help either.
Thus, this choice of p results in an adversary which cannot be extracted in virtually expected polynomial
‖·‖2-time.

Repetitions can be used to “bring down exponents”, and hence, for any q ∈ N, there should exist a
(constant) number C of repetitions (and modified extractors) such that ‖R‖q < poly, namely C = q.
This may be interpreted as an intermediate result between proofs of knowledge with EPT extraction
(i.e. q = 1), and “strong proofs of knowledge” with PPT extraction (i.e. q =∞).

74

F.9. Measurability
In this section, we discuss questions of measurability, which we ignored elsewhere. Since all of our
constructions are simple and make no use of the axiom of choice, there is little reason to doubt that
all are measurable. Admittedly, we have not formally verified this for every construction, and merely
spot-checked some. We do note that some properties, e.g. “uniqueness” of events, were used in simplified
explanations. They are not used in actual constructions.

Stochastic processes and timeful systems. The evolution of a computation or interaction for
closed systems should be viewed as a stochastic process. The random variables of interest are the
exchanged messages, and the purported elapsed time,78 namely the sequence of random variables
(Z0, Z1, . . .) describing the progress of the computation. Concretely, Zi consists of (m0, t0, . . . ,mi, ti),
which is transcript up to the i-th message exchange, plus the elapsed runtime tj for computing mj .
One may augment this with other (purported) values, such as memory usage, etc. Obviously, we also
require proj1,...,j(Zi) = Zj for all i < j in N0. (And this implies σ(Zi) ⊆ σ(Zi+1) for the σ-algebras.)

The image of Zi lies is in a countable space, which we equip with the discrete σ-algebra. The sample
space of process Z(i, ω) = Zi(ω) is given the induced σ-algebra, but is not countable anymore. (Recall
that the σ-algebra on N∞ is constructed from the finite steps Nk, k ∈ N.)

We have ignored inputs and non-closed systems, but these are easily defined as functions, which take
a sequence of input messages and return output messages. (Technically, these may be partial functions,
since some input sequences may correspond to impossible executions. E.g. inputs for a system which
halted.) Letting two such systems A, B interact by connecting interfaces yields a new system, defined
in the obvious way. The resulting system 〈A,B〉 has an associated random process (which lives in the
product space of the random processes associated with A, B.)

An alternative description. One may alternatively describe the random process of individual
systems via “conditional transition probabilities”, roughly, pi(~y) = P(Zi = ~y | Zi−1 = proj1,...,i−1(~y)).
This approach always specifies independent processes. Dependency is (only) introduced by interaction.
While this would probably be sufficient, “extending” the probability space (as we did to achieve exact
ν-quantile cutoffs) is not immediately possible. One can introduce some “irrelevant action”, e.g. a zero-th
message, which has the desired distribution. We find this to be just as inconvenient as working with
underlying probability spaces explicitly. Moreover, for systems induced by algorithms and machine
models, the underlying probability space is usually explicit anyway.

Algorithms and machine models. Unlike (timeful) systems, algorithms and machine models have
an “explicit randomness-providing interface”. Thus, the underlying probability space for such systems
is simple to describe, usually {0, 1}N with “uniform” distribution (i.e. the “limit” of {0, 1}k, k ∈ N,
with uniform distribution). Standard definitions of machine models (via transition functions) then
evidently imply that any algorithm yields systems which are very well behaved, in particular every
typical function of interest is measurable (e.g. messages, runtime, memory trace, …).

Measurability of our constructions. Most constructions merely relied on runtime statistics, and
can be defined on the process Zi by (a consistent family of) measurable functions (for each i). Indeed,
if the domain of Zi has the discrete σ-algebra, any function is measurable. Since these statistics
are measurable by assumption, and our functions are measurable as well, we therefore find that our
constructions are measurable. (More concretely, they are measurable for every i, and hence the resulting
process is measurable.)

78In particular, a timeful system must have measurable purported runtime.

75

F.10. Infinitely-often efficiency
We comment on yet another notion of efficiency, infinitely-often efficient algorithms. The definition is
as one would expect: An algorithm A is efficient, if there is an infinite increasing sequence (κ0, κ1, . . .)
of security parameters for which A is efficient. (Recall that we consider closed systems, i.e. A has no
inputs. But this easily extends to common notions of asymptotic efficiency.)

The advantage of this approach is that constructing, or rather describing, reductions becomes simpler.
Many reduction rely on advantage ε which is bounded below by ε′ = 1/poly infinitely often, and have
runtime polynomial in ε′−1. With infinitely-often efficiency, runtimes of the form poly(ε−1) are efficient
as well, so the infinitely-often polynomial lower bound becomes superfluous.

This “simplification” has one big problem: Non-negligible advantage of infinitely-often adversaries is
meaningless. The adversary could brute-force for even κ, and immediately halt for odd, thus satisfying
infinitely-often efficiency and having non-negligible advantage. Hence, every property must now be
phrased w.r.t. to (any) infinite subsequence (κ0, . . .) for which an algorithm is efficient.

In other words: It is possible to get rid of the (repeated) specification of “infinitely often” properties
by switching to “infinitely-often” notions, which incorporate this property by definition.

We are not aware of an example, where an infinitely-often efficient reduction works, but there is
no standard efficient reduction. On the other hand, there are results, which construct “infinitely-often
objects” by reduction. All in all, it appears that being explicit about infinitely-ofteness has more upsides
than downsides.

F.11. Musings on runtime classes
Instead of dealing with runtime distributions only, a runtime class should deal with random variables.
For this, fix some (family of) universal probabilistic space(s) Ωκ and redefine runtime classes as follows:

Definition F.6. A runtime class T is a set of (families of) random variables T : Ω → N0 ∪ {∞} with
following property:79 If T and S have the same distribution, then either both or none lie in T. In other
words, membership in T only depends on the distribution.

Only the distribution matters for membership. But operations, such as sums, of distributions and
random variables differ — random variables are closer to “practical” usage of runtime, e.g. simulation
with 3-fold overhead or sums of dependent runtimes.

Given such a “better” definition, we want to impose additional constraints on what should be
considered a runtime class. We derive these from properties of bound algebras.

Example F.7. A “good” runtime class T should satisfy following properties:
Constants: The constant 0 and constant 1 runtime are in T.80
Closed under domination: For any T ∈ T, all its dominated runtimes S are contained in T as well,

i.e. ∀S ∀T ∈ T : S
D

≤ T =⇒ S ∈ T. Recall that S
D

≤ T is defined pointwise w.r.t. κ, i.e.

∀κ : Sκ
D

≤ Tκ, and recall that X ≤ Y means Y dominates X (in distribution).
Closed under addition: For any T, S ∈ T, also T + S ∈ T. Note that this is the sum of random

variables, not distributions.
Asymptotically monotone: Let T ∈ T and let Sκ := max{T1, . . . , Tκ}. Then S ∈ T. This statement

is of nonsensical if Ωi 6= Ωj . Therefore, it is a statement about distributions.

Remark F.8. The closedness under domination says that no “inefficient” algorithm (i.e. runtime outside
T) can be made efficient by doing more steps. Closedness under addition is a (weak) abstraction for

79Perhaps even further, a runtime class should be a function, mapping a probability space Ω to a runtime class T(Ω) with
suitable compatibility rules.

80We are not certain whether or not this property is absolutely necessary. However, the class of expected O(1/κ) time is
both strange and behaves badly. For example, inverting the output (which takes a constant number of steps) cannot be
done. Arguably, such pathological behaviour is best avoided.

76

saying that (finite) sequential composition of T-time algorithms is again a T-time algorithm. It also
models that constant multiples of a runtime remain efficient. In particular, any constant runtime lies in
T. Asymptotic monotonicity should ensure that increasing κ only increases admitted runtimes, e.g.
efficiency of constant runtimes can be tested for κ = 1.

Remark F.9 (Weak composition). We lack a generalisation of “composability” of runtimes, which mirrors
“oracle composition” in a weak form. For bound algebras, this was multiplicative closedness. There
is the obvious candidate of letting T ∗ S be the product of random variables. This is most likely not
what we need. Instead, considering a T -fold sum of independently drawn S’s is more plausible (but
non-commutative). Such a “weak composition” models “independent sampling access” for a runtime
distribution, which seems sufficient in our triple-oracle distinguishing setting.81

Remark F.10. The item on “asymptotic monotonicity” is the most questionable one, and we are not sure
if it is the right point of view. Many alternative approaches exist. One advantage of our choice is, that
it is easy to see that arbitrary intersections of good runtime classes are again “good” runtime classes.
This is a first step for analysing whether the intersections of all closed “good” runtime classes is again
closed, and whether it is equal to our definition of closure.

A nice property of bound algebras, which we did not add to Example F.7, is the existence of a countable
“monotone generating sets”. We do not know whether or not this is a good addition. Unlike sequences
in N0, sequences of distributions behave very differently. In particular, since domination of distributions
is not a total order.

Another interesting question is that of a canonical d-dense subclass in T, or a lack thereof. A very
large canonical subclass is that of finite runtimes (i.e. where P(Tκ ≤ Nκ) = 1). But is there a general
analogon to d-density of RTC∞(B) for B-tailed runtime classes? If T satisfies strong guarantees, we
have a plausible candidate.

Example F.11 (A candidate for RTC∞(T)). In the proof of Corollary C.31, it was central to consider
tail†Tκ(α). This leads us to our candidate definition of RTC∞(T) as Ttail ⊆ T. The runtime class Ttail

is generated by tail†Tκ(α) for every constant α > 0 and every T ∈ T. Moreover, assuming “weak
composability” then Ttail actually defines a bounds algebra. The proof of Corollary C.31 also requires
“weak composability” (in the sense of Remark F.9), and further properties such as “smallness” of runtimes.

Interestingly, Ttail equals strict RTC∞(B) for B-tailed runtime classes. The definition of Ttail also
gives rise to a bound algebra Btail. This gives some hope that, perhaps, our restricted treatment of
algebra-tailed runtime classes was not too restrictive after all. Indeed, if we could show that T is
Btail-tailed, we’re done. This property is closely related to the “smallness” condition in Corollary C.31,
and to “equivalence of statistical and computational indistinguishability”. Indeed, the relation of these
three properties appears to be of central importance. Characterising the “equivalence of statistical and
computational indistinguishability” for general runtime classes would be a core tool for working with
them. For example, can quasi-linear time be distinguished from non-quasi-linear time in quasi-linear
time? Is “weak composability” really necessary, or is it just a convenient property?

To summarise, we gave some best guesses for candidate definitions and properties for “good” runtime
classes. But we lack suitable theoretical evidence towards the usefulness of their “good” nature. Indeed,
there are many open questions of abstract interest, for which we have no answers.

81Using (effectively) a distribution S here, but not in closedness under addition seems questionable. Allowing dependent S
instances may be possible, but combining it with dependent T leads to disaster (since abstract EPT explosion examples
can now be modelled). Perhaps, closedness under addition should be weakened, and is therefore not necessary at all
(because it is subsumed by “weak composition”)? At least for the abstract theory, this may be a valid choice. In fact, that
decision would allow to define runtime classes as sets of distributions again.

77

Contents
1. Introduction 1

1.1. Obstacles . 2
1.2. Motivation: Reproving zero-knowledge of graph 3-colouring 2

1.2.1. The constant round protocol of Goldreich–Kahan 3
1.2.2. Proving zero-knowledge: A (failed?) attempt 3

1.3. Computationally expected polynomial time . 5
1.4. Technical overview and results . 6

1.4.1. The basic tools . 6
1.4.2. Definitions and tools for zero-knowledge . 7

1.5. Contribution . 9
1.6. Related work . 10
1.7. Structure of the paper . 11

2. Preliminaries 12
2.1. Notation and basic definitions . 12
2.2. Systems, algorithms, interaction and machine models 12
2.3. Preliminary remarks on runtime . 13
2.4. Probability theoretic conventions . 14

2.4.1. Tail bounds . 15
2.5. Oracle-indistinguishability . 15
2.6. Query-sequences . 16

3. Computationally expected polynomial time 16
3.1. Virtually expected time . 16
3.2. A brief recap . 17
3.3. Characterising CEPT . 17

4. Towards applications 19
4.1. Conventions in our setting . 19

4.1.1. Input generation and (non-)uniformity . 19
4.1.2. A posteriori time, a priori time, and designated adversaries 20
4.1.3. Linearity of expectation (and subadditivity) . 20

4.2. Standard reductions and truncation techniques . 21
4.3. Simple assumptions and repeated trials . 22
4.4. Relative efficiency . 23
4.5. From CEPT to EPT . 24

5. Application to zero-knowledge proofs 26
5.1. Zero-knowledge . 27
5.2. The universal adversary Vuniv . 28
5.3. Application to graph 3-colouring . 29

5.3.1. The protocol . 29
5.3.2. Proof of zero-knowledge . 30

5.4. Rewinding strategies . 31
5.4.1. Definitions and basic results . 31
5.4.2. Basic results . 32
5.4.3. Examples of normal rewinding strategies . 34
5.4.4. Connection between runtime and probability tightness 34

78

5.5. Benign simulators . 35
5.5.1. Iterated benign reductions . 36
5.5.2. Examples of (iterated) benign simulators . 37
5.5.3. Zero-knowledge and benign simulation . 37

6. Sequential composition of zero-knowledge 37
6.1. Security definition . 37
6.2. Sequential zero-knowledge from benign simulation . 39

7. Conclusion and open problems 40

A. Machine models 44
A.1. Systems, oracles, algorithms . 44
A.2. Abstract machine model operations and interaction . 45
A.3. Timed black-box emulation with rewinding access . 46
A.4. (Probably) Admissible machine models . 48
A.5. Precomputation and non-uniformity . 49

B. Technical lemmata 49
B.1. Simple facts . 49
B.2. Useful lemmata . 50

B.2.1. Runtime truncations . 50
B.2.2. Hybrid lemmata . 51

B.3. Testing closeness of distributions . 52

C. General runtime definitions 53
C.1. Preliminaries: Bound algebras . 54
C.2. Runtime distributions . 54
C.3. Runtime classes . 55
C.4. T-time triple-oracle indistinguishability . 56
C.5. Closed runtime classes . 57
C.6. Equivalence of runtime-indistinguishability for algebra-tailed runtime classes 60
C.7. From oracles to emulation and one-shot indistinguishability 61

D. Supplementary definitions 62
D.1. Commitment schemes . 63

D.1.1. Non-interactive commitment schemes . 63

E. Extendability from indistinguishable queries 64
E.1. Query-sequences indistinguishability . 64
E.2. Adapting the result of Katz–Lindell . 65
E.3. Runtime estimation . 66
E.4. Efficiency from query-truncation . 67
E.5. Query-benign simulators . 67

F. Additional discussions 69
F.1. Levin’s relaxation and CEPT . 69
F.2. Oracle indistinguishability and games . 69
F.3. Relaxing benign . 70
F.4. Size-guards . 70
F.5. The trouble of a posteriori runtime and composition . 71
F.6. Absolute notions of relative efficiency . 72

79

F.7. Standard non-uniformity . 73
F.8. The necessity of ‖·‖1 . 74
F.9. Measurability . 75
F.10. Infinitely-often efficiency . 76
F.11. Musings on runtime classes . 76

Contents 78

80

	Introduction
	Obstacles
	Motivation: Reproving zero-knowledge of graph 3-colouring
	The constant round protocol of Goldreich–Kahan
	Proving zero-knowledge: A (failed?) attempt

	Computationally expected polynomial time
	Technical overview and results
	The basic tools
	Definitions and tools for zero-knowledge

	Contribution
	Related work
	Structure of the paper

	Preliminaries
	Notation and basic definitions
	Systems, algorithms, interaction and machine models
	Preliminary remarks on runtime
	Probability theoretic conventions
	Tail bounds

	Oracle-indistinguishability
	Query-sequences

	Computationally expected polynomial time
	Virtually expected time
	A brief recap
	Characterising CEPT

	Towards applications
	Conventions in our setting
	Input generation and (non-)uniformity
	A posteriori time, a priori time, and designated adversaries
	Linearity of expectation (and subadditivity)

	Standard reductions and truncation techniques
	Simple assumptions and repeated trials
	Relative efficiency
	From CEPT to EPT

	Application to zero-knowledge proofs
	Zero-knowledge
	The universal adversary V_univ
	Application to graph 3-colouring
	The protocol
	Proof of zero-knowledge

	Rewinding strategies
	Definitions and basic results
	Basic results
	Examples of normal rewinding strategies
	Connection between runtime and probability tightness

	Benign simulators
	Iterated benign reductions
	Examples of (iterated) benign simulators
	Zero-knowledge and benign simulation

	Sequential composition of zero-knowledge
	Security definition
	Sequential zero-knowledge from benign simulation

	Conclusion and open problems
	Machine models
	Systems, oracles, algorithms
	Abstract machine model operations and interaction
	Timed black-box emulation with rewinding access
	(Probably) Admissible machine models
	Precomputation and non-uniformity

	Technical lemmata
	Simple facts
	Useful lemmata
	Runtime truncations
	Hybrid lemmata

	Testing closeness of distributions

	General runtime definitions
	Preliminaries: Bound algebras
	Runtime distributions
	Runtime classes
	T-time triple-oracle indistinguishability
	Closed runtime classes
	Equivalence of runtime-indistinguishability for algebra-tailed runtime classes
	From oracles to emulation and one-shot indistinguishability

	Supplementary definitions
	Commitment schemes
	Non-interactive commitment schemes

	Extendability from indistinguishable queries
	Query-sequences indistinguishability
	Adapting the result of Katz–Lindell
	Runtime estimation
	Efficiency from query-truncation
	Query-benign simulators

	Additional discussions
	Levin's relaxation and CEPT
	Oracle indistinguishability and games
	Relaxing benign
	Size-guards
	The trouble of a posteriori runtime and composition
	Absolute notions of relative efficiency
	Standard non-uniformity
	The necessity of 1-norm
	Measurability
	Infinitely-often efficiency
	Musings on runtime classes

	Contents

