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Abstract. A novel Nakamoto-like consensus was proposed by Tang et
al. (ACISP 2019) to speed up the convergence (block finality) rate by
determining a weight of a block in the blockchain by a tunable poten-
tial function of the block hash. However, the convergence of the scheme
was evaluated only in an experimental way and a sudden utilization of
another blockchain was not clearly explained. This article asymptoti-
cally analyses the convergence of Nakamoto-like consensus of Tang et
al. by proposing a general framework for formalizing consensus schemes
comprising both the classical Nakamoto consensus (bitcoin consensus)
and the consensus of Tang et al. The framework contains two categories
of schemes, namely, small-step consensus like the bitcoin consensus and
giant-step consensus of Tang et al. Furthermore, the essence of the second
chain, the even-trigger, is shown to be a necessity of realizing giant-step
consensus.
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1 Introduction

The original consensus of the bitcoin blockchain, known as Nakamoto consen-
sus has been notorious for its slow rate of convergence (block finality). Namely,
for the sake of security, a block suffers a long interval between being proposed
and being confirmed by a significant amount of newer blocks1. Tang et al. ex-
plained that the slow convergence of the classical Nakamoto consensus of bitcoin
is caused by the insufficient measurement of hash power in the existing proof-of-
work [1]. In essence, the proof-of-work in bitcoin is measuring the hash power of
a block proposer with only one bit of information. In other word, block weight is
evaluated with a binary function (0−1 function) on the hash by whether a given
hash is smaller than a target. Therefore, Tang et al. proposed a novel way of
assigning a block with a weight by a tunable potential function on the hash and
an alternative blockchain built with such functional block weights have a faster

? The only correpsonding author: Shuyang Tang (e-mail: htftsy@sjtu.edu.cn).
1 We refer to this consensus as bitcoin consensus or classical Nakamoto consensus in-

terchangeably in this paper. We strongly recommend readers not sufficiently familiar
with the Nakamoto consensus to read our brief introduction to bitcoin consensus pre-
sented in Appendix. E.
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convergence rate to attain the same level of security (see a brief description of
this scheme in Sec. 2.2).

Before the construction of Tang et al., several hybrid schemes are proposed to
provide instant transaction confirmations. For example, the lightning network [2]
or committee-based consensus [3–7] (some of them adopt a sharding)2. However,
these schemes are built on top of an existing blockchain rather than modifying
the “layer-one” blockchain itself. That is to say, the chain of Tang et al. is not a
substitution of any instant-confirmation scheme, but a plus to all of them. We
believe that the work of Tang et al. has the potential of making a difference to
proof-of-work in cryptocurrencies and changing the public view of blockchains if
issues listed below are properly fixed. This is the purpose of this article.

Indeed, few issues are not well-explained in the paper of Tang et al. Firstly,
they leveraged another existing blockchain to reach a certain synchronization
without explaining why. Secondly, the relation between their scheme and bitcoin
consensus is unclear. They claimed that bitcoin can be regarded as one special in-
stantiation of their framework. However, bitcoin consensus is obviously different
from their consensus with a binary potential function. Most importantly, they
demonstrated the improvement on the convergence rate only in an experimental
way without theoretical basis. It is not even clear what potential functions can
lead to a convergence (obviously certain functions can not).

1.1 Our Contribution

Unifying [1] with The Bitcoin Consensus. This article defines a class of
trigger functionalities and proposes a framework of functional Nakamoto
consensus that each protocol in the framework corresponds to a trigger func-
tionality (or “trigger”). The class of triggers is divided into two categories
corresponding to two classes of consensus schemes, namely, small-step trig-
gers of small-step consensus like the bitcoin consensus and giant-step triggers
of giant-step consensus of alternative chains proposed by Tang et al.

Asymptotic Convergence Results. Based on this framework, we formalize
the convergence rate by proposing two useful convergence theorems and tell
that certain potential functions can never attain a secure convergence. Af-
terwards, we introduce two useful convergence theorems. Applications of
two theorems are presented including a case where a secure convergence can
never be attained and that asymptotically any polynomial can be a secure
convergence gap for the bitcoin blockchain.

Explanation for The Second Chain in [1]. Finally, we explain the neces-
sity of the weak synchronization (reached by another blockchain) in the
construction of Tang et al. in case of power splitting attacks and selfish min-
ing [10]. There is a weak synchronization from an event-trigger acting like a
clock that clicks once for every certain time interval in our defined general
framework. We explain that giant-step consensus have to explicitly realize

2 There are also instant confirmations like Algorand [8] from committee-based proof-
of-stake [9] consensus, but this work focuses on proof-of-work only.
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such an event-trigger (hence [1] adopts an existing blockchain) but small-step
consensus do not (hence bitcoin needs no event-trigger).

1.2 Related Works

Garay et al. [11, 12] started a tend of analyzing Nakamoto chains focusing on
two key properties for consistency, namely, common prefix and chain quality.
However, its analysis on bitcoin consensus was based on the assumption of a
fully synchronous network. Pass et al. [13] proved the consistency and liveness
of bitcoin consensus in an asynchronous network. Pass and Shi [14] proposed a
novel chain of blocks and fruits to attain a better fairness. Eyal et al. [15] pro-
posed a blockchain with key-/micro- blocks for scalability. The idea of assigning
blocks with a weight (and chain forks are resolved according to block weights)
was also seen in the GHOST protocol [16] and a proof of space scheme known
as SpaceMint [17]. Delegated proof-of-space had a similar approach of electing
leaders with a “score” accumulating by time (though we found no formal proof
for it). Also, a similar idea was proposed in [18] to reduce the mining variance.

1.3 Paper Organization

Sec. 2 introduces necessary notations and preliminaries. Sec. 3 describes the
framework with formal definitions of the ledger structure, trigger functionalities
and formalizes the protocol execution. Sec. 4 provides two theorems of secure
convergence and shows applications of these theorems. Sec. 5 shows that an
event-trigger is a necessity of realizing a giant-step consensus. Apart from adopt-
ing another blockchain like the construction of Tang et al., few more approaches
are possible to realize such an event-trigger.

2 Notations and Preliminaries

2.1 Notations and Assumptions

For any M ∈ N, [M ] stands for {1, 2, . . . ,M} ([0] = ∅). A ≈κ B if A/B =
1 ± o(1/κ). For a distribution D (a set S), x ←$ D (x ←$ S) randomly selects
a x according to the distribution D (uniformly from the set S). For a mapping
f : X → Y and a subset X ′ ⊆ X , f |X ′ : X ′ → Y maps each element x of X ′
into f(x). In this work, slightly differently from the algebraic literature, we refer
to a function f(x) = Θ̃(xr) as a polynomial if r > 0 is a positive constant. To
describe the probability of happening event A conditioned on B, we adopt both
the notation Pr[A|B] more familiar to statistics and notation Pr[B : A] more
familiar to the cryptographic literature interchangeably (same to expectations).

As the first step of analyzing a consensus (especially a highly complicated
consensus) is to consider fully synchronous network channels like [11], most of
the time, we do not consider network delay issues. We assume an adversary
controlling α fraction of all hash power (α < 1

2 ). Despite the fact that we consider
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a permissionless environment, we may still assume N total participants with
equal hash power to facilitate formalizations. In this case, αN (assume that it is
an integer) of them are controlled by the adversary and we assume that the rest
of them are honest, i.e., always execute according to our determined protocols.
Notations utilized throughout this article are partially illustrated in Tab. 1. We
formulate the hash as follows.

Definition 1 (Hash Formulation). We consider one cryptographic hash func-
tion H with the range of a totally-ordered R. R is finite but large enough with a
cardinality of |R| = O(22κ). The oracle H returns the hash (by H) of a random
input for each query. We denote by Htmin the least-hash oracle that outputs the
least output among t queries to H.

A brief introduction to an abstracted Nakamoto consensus is presented in
Appendix. E.

2.2 The Consensus of [1]

From the ledger structure alone, the blockchain of Tang et al. [1] is still a chain
of blocks with the block structure (seemingly) same to that of bitcoin. However,

each block has a weight assigned by φ̂(h) where h is the block hash and φ̂ :
R → R+

0 is a predetermined monotonically non-increasing function from the

hash range to nonnegative real numbers. Each establishment of φ̂ corresponds
to a different scheme.

The growth of the chain is somewhat a generalization of the bitcoin chain
in two aspects. The first one is the threshold of block proposal. A block with
block hash h can be proposed if φ̂(h) > 03, while in bitcoin an explicit target
is determined and h must be smaller than it. Second, in case of a chain fork, a
chain branch with a total weight (i.e., the summation of all weights of blocks on
the branch) greater than the other one with a certain gap of Γ wins the fork
competition and remains always on the main chain (the branch of the greatest
total weight) with an overwhelming probability. Such a gap is the secure con-

vergence gap for φ̂4. This is the generalization of the “six-block confirmation”
principle in bitcoin.

However, the security of this scheme forces all miners to mine for a while
before being able to propose a block by adopting another blockchain like the
blockchain of bitcoin. In detail, it assumes an existing blockchain A = (A0, A1, . . .)
(each Ai is a block) with a steady chain growth rate. Each block Bi of Tang et
al.’s chain has a field pointing to a block of A denoted as Bi.btcBlock (the
same notation of [1]). To propose a new block B` to their constructed chain
B = (B0, B1, . . .), it must point to the next block of B`−1.btcBlock, i.e.,

(B`.btcBlock).preBlock = (B`.preBlock).btcBlock,

3 The hash difficulty of this scheme can be viewed as the greatest x that φ̂(x) 6= 0.
Therefore, this scheme is not actually “a consensus without a target”.

4 In this paper, we “destruct” φ̂ into two functions as φ̂(h) = ρ(h)φ(h) (see details
later).
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where Ai.preBlock := Ai−1 and Bi.preBlock := Bi−1 for each i ∈ N+. Clearly,
the other blockchain is acting as an event-trigger which can be regarded as a
clock that clicks for each block generation. Tang et al. gave no explanation for
adopting this event-trigger. To fix the gap, we have provided an explanation in
Sec. 5.

3 The Framework

3.1 Ledger Structure

We provide an abstraction of the ledger structure of blockchains. In the classical
Nakamoto blockchain, the ledger is considered as a “thin” tree of blocks, the
main chain of the ledger is the longest valid path from the root (the genesis
block) to the deepest block of the tree. Only transactions of main chain blocks
are effective. In our model, such a measurement of block depth is replaced by a
branch weight.

Definition 2 (The Ledger Structure). The ledger T is in the form of a tree,
denoted as T = (B, h, pre,w), where B is the set of all blocks, h : B → N
maps each block to its height (the number of blocks from the genesis to it) and
pre : B → B maps each block to a previous block such that

– there exists only one genesis block Bgen ∈ B that h(B) = 0
– and pre(Bgen) = Bgen,
– and that for each B ∈ B that B 6= Bgen, h(pre(B)) = h(B)− 1.

w : B → R+ maps each block to a weight.

It is easy to verify that any structure satisfying the properties above is in the form
of a tree rooted at Bgen. We denote the genesis block of a ledger T as genesis(T ).
In later descriptions, we refer to the block set of ledger T as T.B (same to h, pre
and w). A detailed list of confirmed transactions and certain metadata (known
as the block body) within each block is not crucial to our results and are not
considered to be part of our abstracted block.

Definition 3 (Chain Branch). In a ledger T = (B, h, pre,w), The chain
branch to a block B ∈ B is the sequence of blocks

branch(B) := (B0 = genesis(T ), B1, . . . , B` = B)

such that pre(Bi) = Bi−1 for each i ∈ [`]. The weight of the chain branch
branch(B) is

weight(branch(B)) :=
∑̀
i=0

w(Bi).

The main chain MC(T ) := branch(B∗) of T is the chain branch to a B∗ ∈ B
with the greatest branch weight.
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We introduce a few notations to facilitate later descriptions. To a tree ldger
T = (B, h, pre,w) and B,B′ ∈ B, T.reach(B,B′) is true iff there is a sequence of
blocks B0, B1, . . . , B` such that pre(B0) = B, pre(B′) = B` and pre(Bi) = Bi−1
for each i ∈ [`]. For a tree ledger T and any block B̂ ∈ T.B, we denote by

T |B̂ = (B̂, ĥ, p̂re, ŵ) the ledger segment with

B̂ := {B ∈ T.B : T.reach(B̂, V )}

ĥ := h
∣∣
B̂

, p̂re := pre
∣∣
B̂

, and ŵ := w
∣∣
B̂

.

3.2 The Trigger Functionality

A trigger functionality (or trigger for simplicity) FΩ,φ,ρtrigger is parameterized by a
tuple (Ω,φ, ρ) where each element of the tuple is possibly parameterized by κ.
Although we aim at a permissionless environment where consensus participants
are not predetermined and that dynamic joining and quitting are allowed, we
still assume N participants P1, P2, . . . , PN with equal hash power to facilitate
descriptions. Assuming that αN is an integer, P1, P2, . . . , PαN are controlled by
the adversary A (α < 1/2).

Initial Phase. The global ledger T0 is initially set as empty T0 := (∅, λB. , λB. , λB. ).
withhold0 := ∅. Afterwards, the execution phase is iterated.

Execution Phase. The execution proceeds by rounds. The functionality has
a confidential set of tip blocks withholdR ∈ P(TR.B) for each round. In later

descriptions, for each ledger TR, we denote by T̃R the ledger without blocks of
withholdR, i.e.,

T̃R :=
(
B′ := TR.B \ withholdR, TR.h

∣∣∣
B′
, TR.pre

∣∣∣
B′
, TR.w

∣∣∣
B′

)
.

For each round R ∈ N+, FΩ,φ,ρtrigger sequentially acts as follows.

1. It lets TR := TR−1 and withholdR := withholdR−1,

2. Sends to all participants P1, P2, . . . , PN the tuple (START, R, T̃R−1), sends to
A the tuple (START, R, TR−1),

3. Receives from PαN+1, R, PαN+2, . . . , PN tuples in the form of (MINE, R, Pi, B
pre
i )

(reject if Bpre
i /∈ T̃R−1.B). For each Pi of them,

– Gets the minimal hash among Ω
N hash attempts hi ←$ H

Ω/N
min ,

– If ρ(hi) = 1, builds the block for Pi as BRi with block hash hi, includes
BRi into TR.B ← TR.B ∪ {BRi } and updates TR such that

TR.pre(B
R
i ) = Bpre

i

∧
TR.h(BRi ) = TR.h(Bpre

i )+1
∧
TR.w(BRi ) = φ(hi),

4. Let U := αΩ, interact with A till U = 0, each time receive from A a tuple
(AD MINE, R,Bpre, t, th), if t ∈ N+ and t ≤ U ,



A Few Explanations for <Fast-to-Finalize Nakamoto-Like Consensus> 7

– Reject if Bpre /∈ TR.B or TR.h(Bpre) = R5,
– Let U ← U − t, get h← Htmin,
– If ρ(nc) = 1, builds the block B by including B into TR.B ← TR.B∪{B}

and updating TR such that

TR.pre(B) = Bpre
∧
TR.h(B) = TR.h(Bpre) + 1

∧
TR.w(B) = φ(h),

let withholdi := withholdi ∪ {B} if th = 1,

5. Issues the tree to all participants and finishes the round by sending tuples
(END, R, T̃R) to each Pi and (END, R, TR) to A.

It is easy to observe that maxB∈TR.B TR.h(B) ≤ R holds always for any
adversary and participants. Such a property is crucial to the prevention of power
splitting attacks to functionalities with ord(ρ) = 0 (see definitions later). Also,
this tells that the realization of such a trigger functionality is far from trivial.
We will introduce a way of realizing the functionality in Sec. 5.

3.3 Execution Model

As aforementioned, in this article, we consider a static-corruption, i.e., P1, P2, . . . , PN
are corrupted by the environment Z(1κ). Z directs the trigger functionality

FΩ,φ,ρtrigger
6. Due to the complication of our model, we have put certain trivial de-

tails (like the interaction with the public-key infrastructure, detailed protocol of
receiving and organizing transactions) out of consideration by leveraging the trig-
ger functionality which has already comprised the hybrid of a public-key infras-
tructure FPKI, random oracles, and the tree functionality Ftree of related works.
Z also simulates the global view of the execution outside the scope of any partici-
pant. In our defined execution model, honest participants PαN+1, PαN+2, . . . , PN
always mine blocks after the chain branch with the greatest total weight (in its
view) and will only mine on one block for a greater weight for each round via
(MINE, R, Pi, B

pre
i ). However, the adversary A is allowed to mine on more than

one blocks, but not allowed to mine too long a chain of blocks due to the re-
striction of the trigger functionality(since the functionality has guaranteed that
maxB∈TR.B TR.h(B) ≤ R).

Obviously, although the execution is randomized, the strategy of non-adversary
participants is deterministic. Therefore, the difference in execution traces comes
from only two sources: the randomness and the strategy of A. Thereby, the pro-
tocol execution is parameterized by only the trigger functionality FΩ,φ,ρtrigger and the

5 Such a restriction on the maximal height of the tree ledger is the goal of event-
triggers. Without this, gaint-step consensus schemes are vulnerable facing power
splitting attacks as shown in Sec. 5.

6 To exclude possible misunderstandings, please kindly note that although we have
adopted some universal composition(UC)-liked notations to formalize the protocol
execution, due to the high complication of our problem, our proofs are not done
under the UC model.
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adversary. The view of any moment during the protocol execution, which com-
prises all states and memory of all participants and the global ledger, is thereby

notated as view←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ). Since the protocol is randomized, the view
is defined as a random view trace by a random moment within a polynomial
amount of protocol execution steps (this slightly differs from related works).

To facilitate later proofs, we use view∗ ←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ, view) to notate a
random view trace by a random moment within a polynomial number of pro-
tocol execution steps starting from view. We denote the tree ledger of view as
tree(view).

4 Convergence Results

We also have a definition for sound trigger functionality as follows.

Definition 4 (Sound Trigger Functionality). The trigger functionality FΩ,φ,ρtrigger

is sound if and only if satisfying the following conditions.

Admissible Tuples.

φ ∈ [[R → R+]]
∧
ρ ∈ [[R → {0, 1}]]

Both φ(x) and ρ(x) are monotonically non-increasing in x. We denote φ̂(x) :=
φ(x)ρ(x) in later contents to facilitate descriptions.

Finitely-Ordered Functionality. There exists a smallest nonnegative number
d and constant c such that

Pr[x←$ HcΩ·κ
d

min : ρ(x) = 1] >
1

2
.

Such a smallest d is called the order of the functionality, denoted as ord(ρ).

In later descriptions, we denote Ω̂ := Ω · κd for simplicity. Moreover, we
partite the space of all sound trigger functionalities into two classes. The
class Fs comprises small-step triggers with ord(ρ) > 0 for any FΩ,φ,ρtrigger ∈ Fg.

Fg consists of giant-step triggers with ord(ρ) = 0 for any FΩ,φ,ρtrigger ∈ Fg.
Sound Evaluation. We denote

ΦβΩ,φ,ρ := E
[
φ(x)ρ(x)

∣∣∣x←$ HβΩ̂min

]
.

There exists a constant 0 < χ < 1−2α such that for any constant 0 < β < 1,

(1− χ)β ≤
ΦβΩ,φ,ρ
Φ1
Ω,φ,ρ

≤ (1 + χ)β

holds.
Bounded Maximum Weight. maxx∈R φ(x) ≤ ext(κ)Φ1

Ω,φ,ρ for a certain sub-
polynomial ext(·).
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FΩ,φ,ρtrigger -models corresponding to sound trigger functionalities are sound models.
We at first formally define a secure convergence.

Definition 5 (Secure Convergence Gap). Γ (a function in κ) is a secure

convergence gap in the FΩ,φ,ρtrigger -model, if for any A in the execution model, any

view trace view←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ) and any block B,B′ of MC(tree(view)) and

B̃′ ∈ tree(view).B that pre(B′) = pre(B̃′) = B, if FΩ,φ,ρtrigger is a sound trigger
functionality and

weight
(
MC

(
tree (view)

∣∣∣
B′

))
− weight

(
MC

(
tree (view)

∣∣∣
B̃′

))
≥ Γ,

then

Pr

[
B̃′ ∈ MC (tree (view∗))

∣∣∣view∗ ←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ, view)

]
= negl(κ),

where negl(·) is a negligible function.

We denote the least convergence gap in the FΩ,φ,ρtrigger -model as ΓΩ,φ,ρ. Note that
Γ (κ) is a function of κ, though we always abbreviate it into Γ to avoid redun-
dancy.

Definition 6 (Finality Time). The finality time of the FΩ,φ,ρtrigger -model is ctime(Ω,φ, ρ) :=

Ω × ΛΩ,φ,ρ where

ΛΩ,φ,ρ := Eh1,h2,...←$HΩmin

[
min
r∈N

{
r∑
i=1

φ(hi) ≥ ΓΩ,φ,ρ
}]

.

4.1 The Convergence Theorem

Definition 7 (Practical Secure Convergence Gap). A secure convergence

gap Γ in the FΩ,φ,ρtrigger -model is practical iff

Γ ≤ p(κ) · kord(ρ)Φ1
Ω,φ,ρ

is satisfied with a certain polynomial p(·).

Theorem 1 (The Sufficiency Theorem). If FΩ,φ,ρtrigger is a sound trigger func-

tionality, in the FΩ,φ,ρtrigger -model, if there exists an ε > 0 such that,

Pr

[
φ(x) >

Γ

κε

∣∣∣x←$ HαΩ̂min

]
is negligible in κ, then Γ is a secure convergence gap in the FΩ,φ,ρtrigger -model.
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Proof. We consider a view trace view←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ),B,B′ ∈ MC(tree(view))

and B′, B̃′ ∈ tree(view).B that pre(B′) = pre(B̃′) = B, such that

weight
(
MC

(
tree (view)

∣∣∣
B′

))
− weight

(
MC

(
tree (view)

∣∣∣
B̃′

))
≥ Γ.

We show that

Pr

[
B̃′ ∈ MC (tree (view∗))

∣∣∣view∗ ←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ, view)

]
(1)

is negligible for an adversary in the execution model and a polynomial ψ(κ).

For a view view∗, we denote by v̂iew∗ the first view (executing from view to

view∗) that the branch after B̃′ becomes the main chain (i.e. having a greater
branch weight than the branch after B′). To reach a branch weight greater than

the current main chain by Γ after B̃′, the worse adversary always mine on the
branch after B̃′. At the same time, honest nodes mine after the main chain, which

is the branch after B′ until v̂iew∗. Denoting r(κ) := Pr
[
φ(x) > Γ

κε

∣∣∣x←$ HαΩ̂min

]
,

at least one of κε attempts from HαΩ̂min (d = ord(ρ), Ω̂ = kd · Ω) should have a
weight over Γ

κε . Therefore,,

Pr

B̃′ ∈ MC (tree (view∗))

∣∣∣∣∣ view∗ ←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ, view)∣∣∣v̂iew∗∣∣∣− |view| ≤ κd+ε
 ≤ r(κ) · κε

which is also negligible in κ (d is the order of Ω,φ, ρ). Now we consider the case

that
∣∣∣v̂iew∗∣∣∣− |view| > κd+ε,

Pr

B̃′ ∈ MC (tree (view∗))

∣∣∣∣∣ view∗ ←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ, view)∣∣∣v̂iew∗∣∣∣− |view| > κd+ε


≤poly(κ) · Pr

[
κε∑
i=1

(φ (xi)− φ (yi)) ≥ Γ

∣∣∣∣∣x1, x2, . . .← HαtΩ̂min

y1, y2, . . .← H(1−α)tΩ̂
min

]
(2)

≤poly(κ) · Pr

[
κε∑
i=1

ξi > 0
∣∣∣ξ1, ξ2, . . .←$ D

]
(3)

where D is a certain distribution randomly selecting a x ←$ HαΩ̂min, a y ←$

H(1−α)Ω̂
min and outputting φ̂(x) − φ̂(y) for each sampling. We denote the expec-

tation of D as −ED and the variance as VD. Asymptotically, the distribution of(∑κε

i=1 ξi

)
converges to the Gaussian distribution according to the central limit

theorem as κ grows. Such a gaussian distribution has the expectation of −κεED
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and the variance of κεVD. Thereby,

Pr

[
κε∑
i=1

ξi > 0
∣∣∣ξi ←$ D

]
< (1 + τ)

∫ +∞

s=0

1√
2πκεVD

exp

(
− (s+ κεED)2

2κεVD

)
ds

(4)

for a small τ . We deform (4) into

(1 + τ)

+∞∑
L=1

∫ κεEDL

s=κεED(L−1)

1√
2πκεVD

exp

(
− (s+ κεED)2

2κεVD

)
ds

≤(1 + τ)

+∞∑
L=1

κεED(L− 1)√
2πκεVD

exp

(
− (L · κεED)2

2κεVD

)
. (5)

To show that the result of (5) is negligible in κ, it suffices to prove that VD
E2
D

is

not greater than any polynomial of κ. From the definition of a sound trigger
functionality, ξmax := maxx∈R φ(x) ≤ ext(κ)Φ1

Ω,φ,ρ for a sub-polynomial ext(·).
Thereby,

VD
E2
D
≤ ξmaxED − E2

D
E2
D

=
ξmax

Φ1−α
Ω,φ,ρ − ΦαΩ,φ,ρ

− 1

≤ ξmax
(1− χ)(1− α)Φ1

Ω,φ,ρ − (1 + χ)αΦ1
Ω,φ,ρ

− 1

≤ ext(κ)

(1− χ)(1− α)− (1 + χ)α
− 1

which is sub-polynomial.

Theorem 2 (The Necessity Theorem). If Γ is a secure convergence gap in

the FΩ,φ,ρtrigger -model, then for any function ϕ(κ) that ϕ(κ) = O(1),

Pr

[
φ(x)− φ(y) >

Γ

ϕ(κ)

∣∣∣∣∣x←$ HαΩ̂min

y ←$ H
(1−α)Ω̂
min

]
is negligible in κ.

Proof. Suppose that there exists a positive γ such that

Pr

[
φ(x)− φ(y) >

Γ

ϕ(κ)

∣∣∣∣∣x←$ HαΩ̂min

y ←$ H
(1−α)Ω̂
min

]
> κ−γ ,

we show that Γ is not a secure convergence gap in the FΩ,φ,ρtrigger -model. Consider

a view trace view←$ EXEC
FΩ,φ,ρtrigger

A,Z (1κ) with T = (B, h, pre,w) = tree(view) that

1. B = {B0, B1, . . . , B`, B̃},
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2. pre(Bi) = Bi−1 for each i ∈ [`], and pre(B̃) = B0,

3.
∑`
i=1 w(Bi)− w(B̃) = Γ .

It is easy to verify that

weight

(
MC

(
tree (view)

∣∣∣
B1

))
− weight

(
MC

(
tree (view)

∣∣∣
B̃

))
= Γ.

However, an adversary A that continuously mines after B̃ has the change of
reaching a branch with a greater weight after B̃ in κord(ρ)ϕ(κ) rounds by at least

(κ−γ)ϕ(κ)

which is asymptotically the inverse of a polynomial of κ. This contradicts the
negligible probability of having the branch after B̃ enter the main chain.

4.2 Applications of Convergence Results

Lemma 1. If φ̂ : R → R+
0 is a monotonically non-increasing function, We

define φ̂−1(y) as the maximal x ∈ R ∪ {0} that φ̂(x) ≥ y for any y ∈ R+
0 (let

φ̂(0) := +∞). If

φ̂−1(Z) = negl(κ) · |R|

for a negligible function negl(κ), then Pr
[
φ̂(x) ≥ Z

∣∣∣x←$ HαΩmin

]
is negligible in

κ.

Proof. Since x ≤ φ̂−1(Z) implies φ̂(x) ≥ Z, we need only to have

Pr
[
x ≤ φ̂−1(Z)

∣∣∣x←$ HαΩmin

]
= 1− (1− φ̂−1(Z)

|R|
)αΩ

< (1 + ε)(1− e−
αΩ
|R| φ̂

−1(Z))

negligible for a constant ε, which by Lemma. 5 (in the appendix) asks only that
αΩ
|R| φ̂

−1(Z) is a negligible function in κ. This is satisfied if φ̂−1(Z) = negl(κ) · |R|
for a negligible function negl(κ).

Theorem 3. Any sound FΩ,φ,ρtrigger -model with a polynomial 1 ≤ Φ1
Ω,φ,ρ = ϕ(κ)

and maxx∈R φ̂(x) = u(κ) for polynomials ϕ(κ), u(κ) has a practical secure con-
vergence gap.

Proof. By both Thm. 1 and Lemma. 1, we only need to show that there exists
a Γ polynomial in κ, a certain ε > 0 and a negligible function negl(·) such that

φ̂−1(
Γ

κε
+ 1) = negl(κ) · |R|
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and
Γ ≤ κord(ρ) · u(κ) · Φ1

Ω,φ,ρ

Suppose that ϕ(κ) = Θ̃(κc), let ε = ord(ρ)+c, Γ = κε ·u(κ), Obviously, φ̂−1( Γκε +
1) = 0 and 0 is a negligible function.

One intuitional implementation of the consensus of Tang et al. is to set
φ(x) := M

x with a M = Θ(|R|). Indeed, the consensus with this φ function has
no practical convergence gap.

Theorem 4. The FΩ,φ,ρtrigger -model with (Ω,φ, ρ) =
(
T (κ), λx.Mx , λx.1

)
has no

practical convergence gap for any T (κ) = Θ̃(κ) and M = Θ(|R|).

Proof. By Thm. 2, it suffices to show that any Γ , either it is not a practical gap
or

Pr

[
φ(x)− φ(y) >

Γ

ϕ(κ)

∣∣∣∣∣x←$ HαΩmin

y ←$ H
(1−α)Ω
min

]
= Pr

[
xy

y − x
<
ϕ(κ)M

Γ

∣∣∣∣∣x←$ HαΩmin

y ←$ H
(1−α)Ω
min

]
(6)

is not negligible in κ to a certain ϕ(κ)=O(1). In fact, (6) is no smaller than

Pr
[
x < x0

∣∣∣x←$ HαtΩmin

]
· Pr

[
y ≥ y0

∣∣∣y ←$ H
(1−α)tΩ
min

]
(7)

where x0 = M
Ω+ Γ

ϕ(κ)

and y0 = M
Ω since x < x0 and y ≥ y0 > x0 implies that

xy
y−x < x0 · y

y−x0
≤ x0 · y0

y0−x0
= ϕ(κ)M

Γ . Similarly to the proof for Lemma. 1, (7)
is greater than a positive constant times(

1− exp

(
−αΩ
|R|

M

Ω + Γ

))
exp

(
−αM
|R|

)
,

which is asymptotically no smaller than the inverse of a polynomial if M =
O(|R|) and Γ is polynomial in κ. Next, we show that if Γ is greater than any
polynomial, then it is not a practical convergence gap. To this end, we only need
to show that Φ1

Ω,φ,ρ is polynomial. Actually,

Φ1
Ω,φ,ρ = E

[
M

x

∣∣∣x←$ HΩmin

]
=

M

|R|
Ω ln

|R|
Ω

+O

((
Ω

|R|

)2
)

= Õ(κ2)

according to the derivations of the same formula in Sec. D.

Moreover, according to our convergence theorem, any polynomial is asymp-
totically a secure convergence gap for the bitcoin blockchain.

Theorem 5 (Convergence of the Bitcoin Case). Any Γ = κε with a con-

stant ε > 0 is a secure convergence gap of the FΩ,φ,ρtrigger -model with

(Ω,φ, ρ) =

(
c, λx.1, λx.

{
1, x < |R|

ϕ(κ)

0, o.w.

)
,

where c is a constant and ϕ(κ) = Θ(κ).
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Proof. As FΩ,φ,ρtrigger is a sound trigger functionality (proved in Lemma. 9) and

Pr

[
φ̂(x) >

κε

κε/2

∣∣∣x←$ HαΩmin

]
= 0

for κ > 1. From Thm. 1, Γ = κε is a secure convergence gap.

5 Realizing Triggers in Fg

5.1 The Necessity of Event-Trigger

In this part, we explain in principle that we have to adopt an “event-trigger”
to securely realize any giant-step functionalities in Fg. This explains why [1]
has to adopt another blockchain to attain a weak synchronization and also why
realizing functionalities in Fs (including the bitcoin case) needs no event-trigger.
This is shown from the lemma.

Lemma 2. We assume a sound trigger functionality FΩ,φ,ρtrigger . Let C ∈ N+ be a
natural number sub-polynomial in κ, let w := βΩ for a 0 < β < 1,

M1(C) := E
[
φ̂(z)

∣∣∣z ←$ HCwmin

]
,

M2(C) := C · E
[
φ̂(x)

∣∣∣x←$ Hwmin

]
.

Generally, M1(C) ≤M2(C). Specifically, if ord(ρ) 6= 0, then M1(C) ≈κ M2(C),

else M2(C)
M1(C) > 1 + r for a substantial constant r.

The proof is shown in the appendix. D. From the lemma, we can see that giant-
step consensus faces severe power-splitting attacks if the length of adversary
branches is not restricted by an explicit event-trigger. However, such an issue
is negligible to small-step consensus. That’s why such an event-trigger is never
seen in the classical Nakamoto consensus.

5.2 Methods of Realizing An Event-Trigger

We have shown that event triggers are necessary to realize any giant-step model
of our framework. There are a few ways of constructing such event triggers.

Leveraging An Existing Blockchain. One way is to adopt the construction
of Tang et al. by introducing an existing blockchain like the bitcoin blockchain.
Each growth of the bitcoin main chain corresponds to one round of the trigger
functionality. This is a fine way of realizing the trigger if we are allowed to
regard that bitcoin blockchain grows at a steady rate and the interval between
two block generations is regarded as a constant. However, the interval varies
greatly between the generation of different adjacent blocks and hence not well
corresponds to an Ω global hash assumption of the ideal framework. Therefore,
this is not the best way.
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A Global Clock. The best way is to leverage a trusted global clock. However,
such a global clock is never tolerated in the distributed consensus literature
since it does not comply with the decentralization principle. However, this can
be considered when implemented in the layer-one of consortium chain schemes.

Proofs of Sequential Work. Proofs of sequential work [19] allows universally
verifiable CPU benchmarks which cannot be cheated by parallelism (and GPU).
We may assume that miners have CPUs of roughly the same computational
power and ask that all miners should propose a proof of sequential work according
to the previous block for each block proposal. In this way, a weak synchronization
is also attained. Although it is hard to describe an event-trigger in this case, we
believe that the security of this scheme can be reduced to one protocol with an
explicit event-trigger.

5.3 Reward Issues

Intuitionally, for the sake of fairness and hence security, rewards should be sent
to the proposer of each block of the main chain with the amount proportional to
the block weight. However, we find that it is sufficient only to provide the same
reward to the proposer of each block of the main chain. In case that ρ(x) = 1
is easy to satisfy and many blocks might be proposed in one round, miners will
still devote all their hash power to attain the smallest hash to compete for the
block finally on the main chain. As long as φ(·) is monotonous, each participant
has the probability of proposing the most competitive block proportional to its
hash power. This is the basic fairness in Appendix. A.

5.4 Communication Complexity

One natural question is that in case that ρ(x) = 1 is easy to satisfy, probably
many valid blocks will be proposed for each round and cause network issues.
Tang et al. have shown in [1] that the communication complexity in this case is
still bounded by O(N logN) where N is the number of network nodes.

6 Conclusion

This article develops the consensus model of Tang et al. by introducing the
trigger-functionality-based framework comprising both the consensus of Tang
et al. (giant-step consensus) and the classical Nakamoto consensus (small-step
consensus). Useful convergence results are presented in an asymptotical level.
Also, the necessity of the event-trigger, which is another blockchain in the orig-
inal construction, is formally explained. This work opens up a great variety of
potential future works shown in Appendix. B.
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A Fairness Results

Without considering block withholding or power splitting attacks, the fairness
(and hence the security from chain quality) is already proved in [1]. Such a
fairness in the definition of their work in called one-round fairness in our work.

Theorem 6 (One-Round Fairness). If φ̂(·) : R → R+
0 is a monotonically

non-increasing function, then

Pr
[
φ̂(x) > φ̂(y)

∣∣∣x←$ HαΩmin, y ←$ H
(1−α)Ω
min

]
− α < 1/q(κ)

for a polynomial q(·).
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The definition of general fairness is more complicated. It is the least frac-
tion of total blocks of the main chain (w.h.p.) with the best adversary strategy
including any block withholding and selfish mining under the execution model.
We have a bound for fairness (suppose ρ = λx.1 for simplicity).

Theorem 7 (The General Fairness Bound for ρ = λx.1). In the FΩ,φ,ρtrigger

model, for any adversary A, its general fairness has a lower bound of

1− 1

1 + ΨΩ,φ,ρ

where

ΨΩ,φ,ρ := E

[
max
`

{∑̀
i=1

φ̂(xi)−
∑̀
i=1

φ̂(yi) ≥ 0

}∣∣∣∣∣x1, x2, . . .←$ HαΩmin

y1, y2, . . .←$ H
(1−α)Ω
min

]
.

Proof. We consider an omniscient adversary Ao with unbounded computing
power having access to all information and the randomness of all participants.
In another world, Ao is a “future teller” that knows the minimal hash of other
participants of every round anytime. Obviously, the fairness in the face of such
an adversary is a fairness bound to all bounded adversaries with any strategy
including block withholding of the selfish mining. We assume that Ao has known
the minimal hash attained by it ({xR}R∈N+) and honest participants ({yR}R∈N+)
of each round R. Clearly the optimal strategy for Ao is iterated as follows.

(i) It sets R← 0,
(ii) Let R← R+ 1,

(iii) If
∑`
i=R φ̂(xi) <

∑`
i=R φ̂(yi) for any ` ≥ R, do nothing to round R, and go

back to (ii),
(iv) Else, let

KR := max
K∈N+

{
R+K−1∑
i=R

φ̂(xi)−
R+K−1∑
i=R

φ̂(yi) ≥ 0

}
,

start a selfish mining by withholding newly mined blocks (if KR > 1) till
round R+KR − 1 and propose all withhold blocks afterwards,

(v) Go back to (ii).

Thereby, we can derive that Ao could have its blocks on the main chain with a
fraction of

ΨΩ,φ,ρ
1 + ΨΩ,φ,ρ

.

B Future Works

This work opens up a variety of future works.
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Fairness Bounds. Fairness is measured by the least fraction (w.h.p.) of total
blocks of the main chain mined by honest participants with an adversary with
the best mining strategy (including all hybrid strategies of selfish mining and
block withholdings). Actually, fairness is a crucial property to the security
basis known as chain quality. However, we did not put our existing fairness
result to the main content for the following reasons (it is moved to the
appendix). Firstly, our current fairness bound is not useful enough to qualify

a φ̂ without numerical and statistical methods. Intuitionally, a fair framework
should have ΦβΩ,φ,ρ ∝ β. However, our existing fairness result is not yet

explicitly linked to ΦβΩ,φ,ρ. Secondly, our fairness bound is not tight since a
“future-telling” omniscient adversary is too strong an assumption.

Consistency and Liveness in An Asynchronous Network. The consistency
consists of common prefix and chain quality whose analysis strongly depends
on fairness. Thereby, it is expected to formally prove the consistency after
having a better fairness bound. Also, the liveness in an asynchronous network
is worthy of further research.

Unifying the Necessity and Sufficiency Theorem. There is a gap between
necessity and sufficiency theorem of our convergence results. It is expected
to narrow the gap or even make two theorems meet, i.e., finding a necessary
and sufficient condition for secure convergence.

Applying The Functional Nakamoto Consensus to More Protocols. The
methodology of functional Nakamoto consensus is expected to be applied to
more distributed consensus schemes other than naive blockchains. For ex-
ample, the GHOST protocol [16] or other DAG-based consensus. Also, con-
sensus frameworks other than proof-of-work (like proof-of-space) may adopt
such a methodology for a fairer evaluation of the resource of participants and
potentially improve the fairness and convergence rate. Also, the methodology
might be used to improve the fairness of leader elections in committee-based
consensus schemes. Moreover, the functional Nakamoto consensus can be po-
tentially combined with blockchains with novel structures like fruitchain [14]
or bitcoin-NG [15].

Alternative Proofs. Some of our proofs have leveraged the approximation
from Gaussian distribution which is rarely considered in cryptographic proofs,
though it is asymptotically correct according to the central limit theorem.
Still, alternative proofs without approximating with Gaussian distributions
are expected.

C Analytic Search Towards Faster Convergence

Few “potential functions” (which is the way φ̂ function is referred to by Tang et
al.) with outstanding convergence rate were listed in the paper of [1]. A natural
question is whether we can try to find a potential function by linearly combining
these given functions. To this end, we write these functions as a sequence of base
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Fig. 1. The Function Space (the color of each point (u, v, w) of the graph corresponds

to the convergence rate of the potential function φ̂ = f1 + uf2 + vf3 + wf4)

functions f = (f1, f2, f3, f4) ∈ (R → R)` that

f1(x) =
π

2
− arctan

(
x−D

2D

)
,

f2(x) = min

{
Ω

x
,
Ω

D

}
,

f3(x) =2
√
D − sgn(x−D) ·

√
|x−D|,

f4(x) =[x ≤ 2D]b + [x ≤ D]b,

with D = |R|
Ω and try to search for a list of coefficients c = (c1, c2, c3, c4) ∈ R4 in

the space of R4 for a potential function corresponding to a giant-step protocol
with faster convergence rate. Clearly, each tuple of c determines a potential
function

φ̂ := rectify(
∑̀
i=1

cifi),

where rectify ∈ (R → R) → (R → R+
0 ) is a functor that “rectifies” a function

into an admissible potential function by

rectify(f)(x) := max
{

0,min
{
f(x),minx−1u=1f(u)

}}
.

An intuitional way is to search for a better tuple of c with Newton-based
approaches and random samplings. This was our first experiment. However, we
failed to find a convergence better than f1 which is the best provided function
in [1]. Inspired by failed Newton-based approaches, the following experiment tells
us that the linear combination method fails since the best linear combination
is merely sticking on f1. Simply put, we sample throughput the whole space
of c ∈ {1} × [0, 1] × [0, 1] × [0, 1] and mark on fig. 1 with a color according

to the convergence rate of φ̂ = c · f (we have neglected the rectify part in
the second experiment). As shown in the figure, the result turns out to be more
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“monotonous” than we expected and the optimum is attain around (0, 0, 0) which

corresponds to φ̂ = f1.

D Proofs

The following two lemmas are implicitly implemented for several times through-
out this paper without an explicit reference to the appendix since they are ob-
vious from the definition of limitations.

Lemma 3. For two functions p(x) and q(x) over R+
0 , if limx→0

p(x)
q(x) = 1, then

for any marginal ε > 0, there exists a x′ ∈ R+
0 such that 1 − ε < p(x)

q(x) < 1 + ε

holds for all 0 ≤ x ≤ x′.

Lemma 4. For two functions p(n) and q(n) over N, if limn→+∞
p(n)
q(n) = 1, then

for any marginal ε > 0, there exists a n′ ∈ N such that 1− ε < p(n)
q(n) < 1 + ε holds

for all n ≥ n′.

Lemma 5. For any negligible p(·) over R+
0 , the function f(x) = 1 − e−p(x) is

also a negligible function.

Proof. Suppose that f(x) is not a negligible function and hence there is a poly-
nomial q(x) such that for any small x′ there always exists a 0 ≤ x ≤ x′ that
f(x) > q(x). f(x) > q(x) is equivalent to

p(x) > ln

(
1 +

q(x)

1− q(x)

)
and thereby p(x) > (1− ε) q(x)

1−q(x) >
1
2q(x) for a marginal ε > 0. This contradicts

to the condition of a negligible p(x).

Lemma 6. For any 1 < k < n, n, k ∈ N+:

1

k

(
n

k

)
=

n∑
i=k

1

i

(
i

k

)
Proof.

1

k

(
n

k

)
=

1

k

((
n− 1

k − 1

)
+

(
n

k − 1

)
+ . . .+

(
k

k − 1

)
+ 1

)
=

1

k

(
1 +

(
k

1

)
+

(
k + 1

2

)
+ . . .+

(
n− 1

n− k

))
=

n−k∑
i=0

1

k

(
k + i− 1

i

)
=

n−k∑
i=0

1

k + i

(
k + i

k

)
=

n∑
i=k

1

i

(
i

k

)
.
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Lemma 7. For any n ∈ N+:

n∑
i=1

(−1)i−1
(
n
i

)
i

=

n∑
i=1

1

i

Proof. On the left-hand side (LHS) of this formula,

LHS =

n∑
i=1

(−1)i−1
(
n
i

)
i

=

n∑
i=1

(−1)i−1
n∑
j=i

(
j
i

)
j
,

this step is taken following lemma 6, then, on the right-hand side (RHS) of this
formula,

LHS =

n∑
i=1

∑i
j=1(−1)j−1

(
i
j

)
i

=

n∑
i=1

1

i
= RHS.

Theorem 8. For any great integer T polynomial in κ,

E

[
h← HTmin

∣∣∣ |R|
h

]
= T ln

|R|
T

+O

(
(
T

|R|
)2
)

holds.

Proof. It can be directly derived that

E

[
h← HTmin

∣∣∣ |R|
h

]
= |R| ·

|R|∑
i=1

T

|R|
(1− i

|R|
)T−1/i = T

|R|∑
i=1

(1− i

|R|
)T /i,

where

|R|∑
i=1

(1− i

|R|
)T /i

=

|R|∑
i=1

[
1

i
+

T∑
k=1

(−1)k
(
T

k

)
(
i

|R|
)k/i

]

=

 |R|∑
i=1

1/i

+

T∑
k=1

(−1)k
|R|∑
i=1

(
T

k

)
ik−1

|R|k


=

 |R|∑
i=1

1/i

+

T∑
k=1

[
(−1)k

(
T
k

)
|R|k

(∫ |R|
0

xk−1dx+
∣∣∣O(k|R|k−2)

∣∣∣)]

=

 |R|∑
i=1

1/i

+

(
T∑
k=1

(−1)k
(
T

k

)
/k

)
+

(
T∑
k=1

(−1)k
(
T

k

) ∣∣∣O(T/|R|2)
∣∣∣)

= (ln |R|+ γ)− (lnT + γ) +O(T/|R|2)

= ln
|R|
T

+O(T/|R|2).



A Few Explanations for <Fast-to-Finalize Nakamoto-Like Consensus> 23

So forth, we have proved

E

[
h← HTmin

∣∣∣ |R|
h

]
= T ln

|R|
T

+O

(
(
T

|R|
)2
)
.

Lemma 8. We assume a sound trigger functionality FΩ,φ,ρtrigger . Let C ∈ N+ be a
natural number sub-polynomial in κ, let w := βΩ for a 0 < β < 1, let

M1(C) := E
[
φ̂(z)

∣∣∣z ←$ HCwmin

]
,

M2(C) := C · E
[
φ̂(x)

∣∣∣x←$ Hwmin

]
.

Generally, M1(C) ≤M2(C). Specifically, if ord(ρ) 6= 0, then M1(C) ≈κ M2(C),

else M2(C)
M1(C) > 1 + r for a substantial constant r for sufficiently large constant C.

Proof. We first show a simple deformation.

M1(C) = E
[
max

{
φ̂(y1), φ̂(y2), . . . , φ̂(yC)

} ∣∣∣y1, y2, . . .←$ Hwmin

]
(8)

≤ E

[
C∑
i=1

φ̂(yi)
∣∣∣y1, y2, . . .←$ Hwmin

]
(9)

= M2(C).

In the ord(ρ) = 0 case, (9) equals C · ΦβΩ,φ,ρ, therefore

M2(C)

M1(C)
=

C · ΦβΩ,φ,ρ
E
[
max

{
φ̂(y1), φ̂(y2), . . . , φ̂(yC)

} ∣∣∣y1, y2, . . .←$ Hwmin

]
≥

(1− χ)βC · Φ1
Ω,φ,ρ

ext(κ) · Φ1
Ω,φ,ρ

.

Let C > 2
(1−χ)β ext(κ), M2(C)

M1(C) ≥ 2. In the ord(ρ) ≥ 1 case,

M2(C) = C · Pr [x←$ Hwmin : ρ(x) = 1] · E
[
φ(x)

∣∣∣x←$ Hwmin ∧ ρ(x) = 1
]
,

M1(C) = Pr
[
x←$ HCwmin : ρ(x) = 1

]
· E
[
φ(x)

∣∣∣x←$ HCwmin ∧ ρ(x) = 1
]
.
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In fact,

E
[
φ(x)

∣∣∣x←$ HCwmin ∧ ρ(x) = 1
]

= E

[
φ

(
min
i∈[C]
{xi}

) ∣∣∣x1, x2, . . . , xC ←$ Hwmin ∧ |{i ∈ [C] : ρ(xi) = 1}| = 1

]
× Pr

[
|{i ∈ [C] : ρ(xi) = 1}| = 1

∣∣∣x1, x2, . . . , xC ←$ Hwmin ∧ φ
(

min
i∈[C]
{xi}

)
= 1

]
+ E

[
φ

(
min
i∈[C]
{xi}

) ∣∣∣x1, x2, . . . , xC ←$ Hwmin ∧ |{i ∈ [C] : ρ(xi) = 1}| ≥ 2

]
× Pr

[
|{i ∈ [C] : ρ(xi) = 1}| ≥ 2

∣∣∣x1, x2, . . . , xC ←$ Hwmin ∧ φ
(

min
i∈[C]
{xi}

)
= 1

]
= E

[
φ(x)

∣∣∣x←$ Hwmin ∧ ρ(x) = 1
]

×
Pr
[
|{i ∈ [C] : ρ(xi) = 1}| = 1 ∧ φ

(
mini∈[C]{xi}

)
= 1
∣∣∣x1, x2, . . . , xC ←$ Hwmin

]
Pr
[
φ
(
mini∈[C]{xi}

)
= 1
∣∣∣x1, x2, . . . , xC ←$ Hwmin

]
+ E

[
φ

(
min
i∈[C]
{xi}

) ∣∣∣x1, x2, . . . , xC ←$ Hwmin ∧ |{i ∈ [C] : ρ(xi) = 1}| ≥ 2

]

×
Pr
[
|{i ∈ [C] : ρ(xi) = 1}| ≥ 2 ∧ φ

(
mini∈[C]{xi}

)
= 1
∣∣∣x1, x2, . . . , xC ←$ Hwmin

]
Pr
[
φ
(
mini∈[C]{xi}

)
= 1
∣∣∣x1, x2, . . . , xC ←$ Hwmin

]

≈κ E
[
φ(x)

∣∣∣x←$ Hwmin ∧ ρ(x) = 1
]
×
(
C
1

)
p(1− p)C−1

pC

+ E

[
φ

(
min
i∈[C]
{xi}

) ∣∣∣x1, x2, . . . , xC ←$ Hwmin ∧ |{i ∈ [C] : ρ(xi) = 1}| ≥ 2

]
×
(
C
2

)
p2(1− p)C−2

pC

≈κ E
[
φ(x)

∣∣∣x←$ Hwmin ∧ ρ(x) = 1
]

+ E

[
φ

(
min
i∈[C]
{xi}

) ∣∣∣x1, x2, . . . , xC ←$ Hwmin ∧ |{i ∈ [C] : ρ(xi) = 1}| ≥ 2

]
× (pC)2

2pC

≈κ E
[
φ(x)

∣∣∣x←$ Hwmin ∧ ρ(x) = 1
]
,

where p = Pr
[
ρ(x) = 1

∣∣∣x←$ Hwmin

]
, obviously pC = o( 1

κ ) and

Pr
[
x←$ HCwmin : ρ(x) = 1

]
≈κ C · Pr [x←$ Hwmin : ρ(x) = 1] .
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Thereby,

M2(C)

M1(C)
=
C · Pr [x←$ Hwmin : ρ(x) = 1]

Pr
[
x←$ HCwmin : ρ(x) = 1

] · E
[
φ(x)

∣∣∣x←$ Hwmin ∧ ρ(x) = 1
]

E
[
φ(x)

∣∣∣x←$ HCwmin ∧ ρ(x) = 1
] = 1± o(1/κ).

Lemma 9. FΩ,φ,ρtrigger with

(Ω,φ, ρ) =

(
c, λx.1, λx.

{
1, x < |R|

ϕ(κ)

0, o.w.

)
,

is a sound trigger functionality where c is a constant and ϕ(κ) = Θ(κ).

Proof. Since FΩ,φ,ρtrigger obviously satisfies the properties of admissible tuples, finitely-
order functionality (with order 0) and bounded maximal weight, we only show
that there exists a constant 0 < χ < 1−2α such that for any constant 0 < β < 1,

(1− χ)β ≤
ΦβΩ,φ,ρ
Φ1
Ω,φ,ρ

≤ (1 + χ)β.

In fact, let p be the probability of having a x returned from a single query to H
that ρ(x) = 1 (easy to observe that actually p = ϕ(κ)), we have

ΦβΩ,φ,ρ
Φ1
Ω,φ,ρ

=
1− (1− p)βc

1− (1− p)c
.

As p as also a function of κ approaches 0 asymptotically, according to Lemma. 3,
there exists marginal constants ε1, ε2 such that

(1− ε1)
1− eβpc

1− epc
≤ 1− (1− p)βc

1− (1− p)c
≤ (1 + ε1)

1− eβpc

1− epc
,

and

(1− ε2)
βpc

pc
≤ 1− eβpc

1− epc
≤ (1 + ε2)

βpc

pc
.

Finally, χ = ε1 + ε2 + ε1ε2 is a satisfiable constant for our proof.

E Classical Nakamoto Consensus

In this part, we briefly introduce the classical Nakamoto consensus (the ab-
stracted consensus of bitcoin). The classical Nakamoto consensus is also referred
to as bitcoin consensus in this paper since it starts from the bitcoin whitepaper
of Nakamoto in 2008 [20]. Blockchain is an append-only distributed ledger in
the form of a chain of blocks, each containing certain transactions. The ledger
of blockchain is essentially a linear log of transactions which is formed by con-
catenating all transactions of each block of the chain (the model of a linearly
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ordered log of transactions is known as state machine republica). To append
new transactions into the log and hence update the ledger, a new block is pro-
posed to be appended to the rear of the blockchain. Proposing a block requires
participants (miners) to solve a computational puzzle from “moderately hard
functions” (known as proof-of-work, [21–23]). That is to find a nonce value by
brute-force to make the hash of the nonce (concatenating the block head com-
prising the Merkle tree root of newly appended transactions and the previous
block hash along with necessary auxiliary information) as small as possible. Such
a hash value is called block hash. A block can be proposed and appended to the
blockchain if the block hash is smaller than a predetermined target (or the diffi-
culty). The procedure of finding such a nonce is mining. We describe the power
of mining of each participant with hash power, which is defined as the total
number of hash attempts done every time unit.

In case of an accident like malicious block proposal or multiple blocks pro-
posed almost simultaneous due to network delays, a chain fork happens. Namely,
two blocks are proposed with the same previous block. Honest participants al-
ways mine after the longest valid chain branch (we call it main chain). To make
sure that a newly proposed block will remain always on the main chain without
the risk of being replaced by a branch fork, it has to wait till the block is fol-
lowed by a significant amount of consecutive newer blocks such that this block
will remain on the main chain with an overwhelming probability even in case
of adversary attacks. This amount of new blocks to wait is called the secure
convergence gap or just convergence gap in this paper. For example, the secure
convergence gap to bitcoin is often regarded as 6 (it guarantees the security with
the probability of 1−10−3 from [20]). The convergence rate is measured with fi-
nality time which is defined as the expected time to meet the secure convergence
gap.
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Table 1. Notations

κ the security parameter
α the upper-bound of the adversary portion of total hash

power, open to all participants and functionalities (α < 1/2)
[M ] for an natural number M , [M ] = {1, 2, . . . ,M}
[A]b for an assertion A, [A]b equals 1 (or else 0) if A is satisfied
|S| the cardinality of the set S

[[X → Y]] the space of functions from X to Y
H a cryptographic hash function
R the range of the hash function H with |R| = O(22κ)
H the oracle that returns a hash value from H with a random

input for each query
Htmin the least-hash oracle that outputs the least output among t

queries to H
ord(ρ) the order of a trigger FΩ,φ,ρtrigger

λx.p(x) the notation for λ-calculus, can be regarded as a function
that returns p(x) for any input x

P1, P2, . . . , PN ideal participants sharing the same hash power,
P1, P2, . . . , PαN are controlled by the adversary A
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