
Interconnect-Aware Bitstream Modification
Michail Moraitis Elena Dubrova

Department of Electronics, Royal Institute of Technology (KTH)
Electrum 229, 196 40 Stockholm, Sweden

{micmor,dubrova}@kth.se

Abstract—Bitstream reverse engineering is traditionally asso-
ciated with Intellectual Property (IP) theft. Another, less known,
threat deriving from that is bitstream modification attacks. It
has been shown that the secret key can be extracted from
FPGA implementations of cryptographic algorithms by injecting
faults directly into the bitstream. Such bitstream modification
attacks rely on changing the content of Look Up Tables (LUTs).
Therefore, related countermeasures aim to make the task of
identifying a LUT more difficult (e.g. by masking its content).
However, recent advances in FPGA reverse engineering revealed
information on how interconnects are encoded in the bitstream of
Xilinx 7 series FPGAs. In this paper, we show that this knowledge
can be used to break or weaken existing countermeasures, as
well as improve existing attacks. Furthermore, a straightforward
attack that re-routes the key to an output pin becomes possible.
We demonstrate our claims on an FPGA implementation of
SNOW 3G stream cipher. The presented results show that there
is an urgent need for stronger bitstream protection methods.

Index Terms—Physical security, SNOW 3G, Stream cipher,
Reverse engineering, Bitstream modification, Routing bitstream
format

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are used in many
applications, including data centers, automotive, aerospace,
defense, medical, wired and wireless communications. Many
of these applications require cryptographic protection of data.
This brings the need for evaluating the physical security of
FPGA implementations of cryptographic algorithms.

One of the most popular types of physical attacks on
FPGAs is the reverse engineering of the bitstream. Reverse
engineering enables copying designs which cost millions of
dollars to develop [1]. The first line of defense against that
is the hidden and proprietary nature of the bitstream formats.
Unfortunately though, it is just a matter of time until these
formats are revealed.

In the past, several reverse engineering tools have been cre-
ated for older Xilinx FPGA families [2]–[6] and a full Verilog-
to-bitstream flow has been developed for Lattice iCE40 [7]. In
2018, information about the bitstream format of LUTs in the
latest Xilinx 7 series FPGAs has been presented in [8], [9].
As for today, SymbiFlow’s project X-Ray is close to fully
revealing the bitstream format of Xilinx 7 series.

Another feature that FPGA vendors offer to protect IPs is
the bitstream encryption. In the latest FPGA series, bitstream
encryption is accompanied by a Hash-based Message Authen-
tication Code (HMAC)-based authentication. Unfortunately,
this mechanism has been proven insufficient as well. It has
been shown that the encryption can be broken through a

side-channel attack [10], [11], through an optical probing
attack [12], or a thermal laser stimulation attack [13]. The
latest addition is the Starbleed vulnerability [14] that allows
an attacker to use the FPGA as a decryption oracle.

To summarize, currently available methods do not seem
to be sufficient to protect FPGA implementations against
bitstream reverse-engineering. Apart from the IP theft, another
threat deriving from bitstream reverse engineering is bitstream
modification attacks.
Previous Work. In several works [15]–[17] it has been shown
that direct bitstream manipulation is feasible in practice.
Swierczynski et al. modified LUTs implementing the AES
S-box in bitstream level to weaken the AES algorithm [18],
[19]. In [20], [21] LUTs implementing specific gates in stream
cipher implementations are modified resulting in a reversible
keystream.
Our Contributions. Previous bitstream modification attacks
relied on changing the content of selected LUTs in the
bitsteram. In this paper, we show how knowledge about the
encoding of interconnects in the bitstream can aid bitstream
modification attacks. The main contributions of our papers are:

• We show how current countermeasures against bitstream
modification attacks can be weakened or outright broken.

• We improve previous bitstream modification attacks that
rely on finding and changing the content of LUTs.

• We demonstrate a straightforward yet potentially power-
ful attack based on re-routing the key to an output pin
through interconnect manipulation.

Our analysis refers to Xilinx 7 series FPGAs.
Paper Outline. The paper is organized as follows. Section II
gives a brief description of the basic elements of a Xilinx
7 series FPGA. Section III explains how the bitstream is
structured. Section IV explains how the results from the bit-
stream format reverse-engineering efforts of Project X-Ray [9]
are documented. Section VI presents existing countermeasures
against bitstream modification attacks and shows how to
work against them. Section VII demonstrates how interconnect
knowledge can improve the existing attacks as well as propose
a new attacking approach. Section VIII concludes the paper.

II. BASIC FPGA COMPONENTS

In this section we briefly describe the Xilinx 7 series FPGAs
architecture in order to make the reader familiar with the
terminology in the paper. A bottom-up approach is used.

A. BEL

Basic Elements (BELs) are the smallest components in the
FPGA fabric. The most common ones are flip flops(FFs),
Look-Up Tables (LUTs), multiplexers (MUXes) and dedicated
fast carry logic units. There are two types of BELs, Logic BELs
(e.g. a LUT) and Routing BELs (e.g. a MUX).

B. Site

A set of BELs forms a site. A Slice is a specific type of site
that has 4 LUTs with 6 inputs and 2 outputs, 8 FFs, 3 MUXes
and one carry logic unit. There are two types of slices, the
sliceL and sliceM. Their difference is that LUTs in sliceMs
support the following two additional modes of operation. They
can be configured to implement a 32-bit shift register logic
without using any FFs. They can also be combined to create
distributed RAMs (often called LUT RAMs) of various sizes.

C. Tile

Tiles are sets of sites. Tiles are the building blocks of FPGAs
in the sense that at an abstract level of view, an FPGA is a grid
of Tiles. Tiles are accompanied by an x and y value indicating
their coordinates in the chip. There are different types of Tiles,
some of them are described below.

1) CLB Tiles: Configurable logic block (CLB) Tiles are a
set of either two sliceLs or one sliceL and one sliceM. The
slices are placed vertically on the Tile. Thus, when addressing
a slice inside a CLB the term of top and bottom slice is
used. SliceMs are always the bottom slice. CLB Tiles are also
categorized as right and left depending on their location.

2) DSP Tiles: Digital signal processing unit (DSP) Tiles
are used to perform complex/computationally heavy operations
like multiplication in a fast and lightweight manner.

3) BRAM Tiles: Block RAM (BRAM) Tiles are used to
store data. Each BRAM can store up to 36 Kbits of data and
also offers the option to be configured as two BRAMs of up
to 18 Kbits each.

4) Interconnect Tiles: Their purpose is to establish the
routing connections between the rest of the Tiles. Interconnect
Tiles are also referred to as switchboxes. There are left and
right interconnect Tiles corresponding to left and right CLB
Tiles that are tied to them.

D. Clocking Resources [22]

The global clock spine is located in the leftmost and
rightmost part of the chip and it provides 32 global clock
lines. Clock regions are located either on the left or right of
the global clock spine. They have a height of 50 units split in
half by a horizontal clock row (HROW). Tiles inside a clock
region are organized in columns. CLB Tiles have a height of 1
while BRAM and DSP Tiles have a height of 5. Thus a clock
region’s CLB column has 50 CLBs while BRAM and DSP
columns have 10 BRAM and DSP Tiles respectively. Each
HROW has 12 horizontal clock lines so it can support up to
12 global clocks. In 7 series, depending on the device size, the
number of clock regions vary from 1 to 24. The highest level
of abstraction is the distinction between two halves. The top

half contains the right global clock spine with its associated
clock regions and the bottom half the left global clock spine
with its associated clock regions.

E. PIP

Programmable Interconnect Points (PIPs) are the connecting
points between wires. By enabling or disabling PIPs the
corresponding connections are established or removed. In
relation to the bitstream, there are two types of PIPs. The
first type are PIPs that don’t appear in the bitstream. Project
X-Ray calls those PIPs fake. An example of such PIPs are
the ones inside a CLB. Those PIPs have 1:1 connections that
are always active. PIPs that do appear in the bitstream have
to be set to enable a connection. Those PIPs are referred to
as regular PIPs. Interconnect Tiles consist exclusively of PIPs
but other types of Tiles can also have PIPs as part of them.

III. BITSTREAM FORMAT

The bitstream is a binary file that has all the information
needed to configure an FPGA device with a specific design.
The configuration happens in a set of stages indicated by
the configuration state machine. The format of the bitstream
depends on the FPGA architecture it targets and is proprietary.
In this paper by reverse engineering we mean the process
of understanding this format to uncover the underlying in-
formation about the design. What is presented here serves
the purpose of making the reader familiar with the necessary
concepts to understand the rest of the paper.

We focus on the format of Xilinx bitstreams for the 7 series
FPGAs created by Vivado. There, the data are organized into
words consisting of 32 bits in big-endian order and presented
as hex symbols.

The bitstream starts with a header that has some general
information like the version of the tool that was used to
create it, the date and time of its creation and the name
of the FPGA device it targets. The header is ignored by
the configuration state machine of the device. The end of
the header is indicated by the appearance of 0xAA995566
which is called synchronization word and alerts the device
that a configuration sequence is about to commence. Every
word after the synchronization one is forming configuration
packets. Configuration packets can be of three different types
depending on their first word that acts as a header. Type 0,
used when a filling with zeros is performed between rows.
Type 1 packets are used to read or write a number of words.
The number of words is specified in their header along with
an address number. Finally, Type 2 serves the purpose of
expanding the word number of a Type 1 packet by 27 bits.
A Type 2 packet has to be preceded by a Type 1 since
it contains no address in its header. The addresses in the
packet headers map into a set of registers called configuration
registers. Two of the most important configuration registers
used during the programming of an FPGA are the frame
address register (FAR) and frame data input register (FDRI).
Frames are the basic structure of configuration data consisting
of 101 words. The data written on FAR register is addresses

TABLE I
FRAME ADDRESS REGISTER FORMAT [23]

Reserved Bus half row column minor
bit[31:26] bit[25:23] bit[22] bit[21:17] bit[16:7] bit[6:0]

Reserved: The highest bits are reserved for future purposes. Those bits are
currently set to 0.

Bus:

The bus bits have 4 possible values with the last two never appearing
under normal circumstances
(000) for CLB,IO,CLK
(001) for BRAM content
(010) for CFG CLB
(011) not used in normal bitstreams

half : One bit used to select the upper half rows when its value is 0 or bottom
half rows when its value is 1.

row : These bits are used to address the selected row with their index
increment starting point being the middle.

column : These bits are used to address the selected column with their index
incrementing from left to right.

minor : These bits specify the selected frame.

that act as starting points for the next frame read or write.
The data written on the FDRI register configure frames at the
address given by the FAR register.

Addressing: The configuration sequence will configure the
various components of the FPGA needed to implement the
design described in the bitstream. This happens in the form
of setting the initial values for each element. Those initial
values include the initialization of memories, the definition
of the truth tables of LUTs, the activation of the required
interconnects, etc. To do that, each element has to be uniquely
addressed to get the proper values. Addressing requires de-
scending in the FPGA hierarchy until a specific programable
element is defined. This is expressed through the FAR register.
FAR register’s format is presented in Table I.

IV. BITSTREAM DOCUMENTATION

SymbiFlow’s project X-Ray [9] has created an extensive
database documenting how configuration data is presented in
the bitstream. In this section we show how key components
for bitstream modification attacks are documented.

A. Segments

A segment is defined as the sum of bitstream bits referring
to a CLB and its associated Interconnect Tile. The segments
that interest us consists of 72 words partitioned into groups of
two and distributed into 36 frames consecutive frames starting
from a given address called base address. An offset value is
also given to identify which two words of a frame refer to
the given segment. So, one frame contains data of 50 CLB
segments. To define a segment in general one needs to know
the base address, the number of frames it spans, the offset,
and the amount of words in each frame. The term segment is
introduced by Project X-Ray and the documentation is based
around it.

B. CLB fake PIPS

As we mentioned earlier PIPs are responsible for routing.
Inside a slice the routing is done through MUXes. Inputs and
outputs from both slices of a CLB are led to 1:1 always active
PIPs (fake) and from there they are led to the corresponding
Interconnect Tile. Table II shows the format of the documented

TABLE II
PIP DATABASE FORMAT

< Tile type >.< destination >.< source >.< activation method >
< Tile type >

CLB Tile CLB< x1 > < x2 >
Interconnect Tile INT < x2 >

x1 = LL for a CLB with two sliceLs
M for CLB with one sliceL and one sliceM

x2 = L for a left CLB/Interconnect Tile
R for a right CLB/Interconnect Tile

< activation method >
default: PIP connections with default values

Fake PIP always: PIP is always activated
hint: two logic slice outputs drive the same value

Regular PIP < addresses of bits that have to be set/cleared >
address format: < s >< minor address > < bit number >

s = ! if the bit has to be cleared
Null if the bit has to be set

PIPs. In listing 1 we have an example of a fake and a regular
PIP from the prject X-Ray database.

C. Interconnect Tile regular PIPs

Most of the interconnect Tile PIPs are regular ones. Each
activated regular PIP will appear in the bitstream as a combi-
nation of specific bits set to 1 or 0 as shown in listing 1.

1 Fake PIP
2 CLBLL L . CLBLL L A1 . CLBLL IMUX6 always
3 Real PIP
4 INT L . IMUX L6 . BYP BOUNCE2 21 49 !22 49 !23 49 !24 49 25 49
5 CLB MUX
6 CLBLL L . SLICEL X0 .AFFMUX.CY !30 01 !30 03 30 00 30 02

Listing 1. Database examples

D. CLB BELs

1) MUXes: The internal routing in CLB slices is taken care
of by MUXes. In listing 1, an example of how to make the
AFFMUX connect the output O6 of LUTA (in the lower
slice of CLBLL L) is shown. The format is the same as the
one for PIPs shown in Table II.

2) LUT initialization: The format of initialization values
of LUTs is described in [8]. The same information can be
obtained from the database in the form of the exact position
of the bits referring to each CLB’s LUTs in the bitstream.

V. ATTACK MODEL

We assume the following attack model:
Access Level: The attacker has physical access to the target
device.
Bitstream Access: The attacker has access to the bitstream of
the target device. The bitstream can be acquired by probing the
configuration bus during power-up, or reading the bitstream
from the non-volatile memory which stores it. Encrypted
bitstreams, can be decrypted by one of the methods cited in
Section I.
Configuration Interfaces Access: The attacker has access to
JTAG or SelectMAP interface so he can load bitstreams.
Key Storage: The key used by the cryptographic algorithm im-
plemented by the device under attack is stored on chip/board.
Target Devices: Xilinx 7 series FPGAs.

VI. COUNTERMEASURES

In this section we show how the knowledge of the encoding
interconnects have in the bitstream can be used to weaken or
break existing countermeasures.

A. Camouflaging

Camouflaging is a technique that masks LUTs by manipu-
lating their truth tables. By doing that, finding a given LUT in
the bitstream becomes considerably harder. In scenarios where
an attacker’s physical access to the FPGA target is limited,
camouflaging makes a successful attack near impossible. Sev-
eral works revolve around that idea [21], [24]–[26]. Here we
focus on the approach presented in [21] because it has zero
overhead, is the easiest to implement but also is the easiest to
break if one knows the interconnect bitstream format.

The 6-input LUTs of Xilinx 7 series FPGAs are represented
in the bitstream by a truth table in the form of a 64 bit ini-
tialization vector. This truth table corresponds to the physical
inputs used in the LUT. If not all six inputs are used from the
logic implemented, some of the input combinations described
will never occur. Every unused input is assigned to the value
1 by default. To do camouflaging, don’t care entries of the
truth table (corresponding to the input combinations which
never occur) are used. Obviously, changing these entries does
not impact LUT’s functionality. However, from the attacker’s
point of view, camouflaged LUTs seem to implement different
functions than the ones they actually do, thus he is unable
to correctly identify his targets. In its essence, camouflaging
is re-purposing of a watermarking technique [27]. Instead of
aiming to confuse an attacker, watermarking’s goal is to insert
non-functional initialization values that serve as a signature,
proving the ownership of an IP.

Note that camouflaging relies on the fact that the attacker
does not know which LUT inputs are used and which are
not. If this information is available camouflaging can be easily
removed, as we show next.

a) Approach 1: Suppose the unused LUT inputs are
assigned the default value (constant-1) during camouflaging.
Since default connections are considered fake PIPs, they
do not appear in the bitstream. Every used input creates
corresponding PIP activations with IMUX source wires in the
bitstream. So all information required to remove camouflaging
can be derived by e.g. recalculating the n-variable truth table
where n is the number of used inputs and expanding it to a 6-
variable format. This procedure can be automated and repeated
for every LUT. If a LUT is not camouflaged, its content will
not change. No overhead is introduced by this approach.

b) Approach 2: Suppose the unused LUT inputs are
arbitrarily assigned with either a constant 1 or constant 0
value. The easiest and most efficient way to create a constant
0 value is to connect those inputs to the local GND WIRE.
GND WIRE can be accessed through the GFAN0 and GFAN1
wires which in turn can be connected to an IMUX wire.
Checking for the existence of those PIPs is again easy and
the procedure of removing camouflaging is the same as in
Approach 1. Some extra wiring is introduced by this approach.

The success of camouflaging depends on how well the con-
stant values can be hidden. Stronger countermeasures do that
by either adding more hardware and/or spending significantly
more effort to create customized solutions [24]–[26]. However,
given sufficient time, no constant can be effectively hidden.

B. Dummy LUTs

A countermeasure that works well in combination with
camouflaging is dummy LUT addition [21], [28]. This counter-
measure assigns some initialization values to the empty LUTs
in a design. By initializing empty LUTs to the same functions
as target LUTs, the number of false positives returned by
the search procedure is increased. It was reported to require
on board testing to identify dummy LUTs (by checking if
the output is affected when changing the LUT’s content to
const-0 and const-1 values) [21]. Obviously, knowledge of
interconnects makes dummy LUT detection trivial since none
of their inputs appear connected in the bitstream.

C. Technology mapping using smaller LUTs

A countermeasure shown to be effective for some designs is
to force technology mappers to use smaller LUTs [18], [20].
FPGA technology mapping algorithms tend to pack into a LUT
as many nodes as possible in order to reduce the depth of the
resulting k-LUT cover. In most cases, that leads to LUTs with
unique initialization vectors making it easy for an adversary
to spot them in the bitstream. In this countermeasure, one
has to identify possible target LUTs, analyze possible ways
to decompose them and select the one that create the most
identical LUTs.

Major factors affecting the efficiency of the countermeasure:
1) The number of LUTs with the same truth table.
2) The number of LUTs, M , which need to be modified

simultaneously. These LUTs are chosen out from N
possible candidates.

The first factor is self-evident since a larger number of possible
candidates makes it more difficult to detect the correct ones.
Still, it increases the complexity of the attack only linearly
with the number of candidates. The second factor increases
the difficulty of the attack by O

(
N
M

)
which is more substantial.

Using knowledge about the interconnects, this countermea-
sure can be bypassed as follows:

1) Search for possible complex expressions for target
LUTs. If this doesn’t return the expected results, go to
step 2.

2) Search for possible expressions for small LUTs. Suppose
that N candidates are found.

3) For each of N candidate LUTs L, find immediate prede-
cessors and successors of L. If the resulting expressions
match the target function (or a big part of it), then L
has a high chance of being the target LUT.

VII. BITSTREAM MODIFICATION ATTACKS

In this section, we first show how current bitstream modifi-
cation attacks can benefit from interconnect knowledge. Then,
we present a new attack that re-routes the key to an output pin

through interconnect manipulation. Finally, we demonstrate
the latter attack on the example of a SNOW 3G FPGA
implementation kindly provided by the authors of SNOW 3G.

We group bitstream modification attacks into two types:
LUT-based and interconnect-based. The groups take their
names from the elements modified in the associated attack.

A. LUT-based

To the best of our knowledge, all previous bitstream modifi-
cation attacks are LUT-based. The general idea is to modify the
logic in an implementation of a cipher in a way that weakens
the generated ciphertext/keystream. Then, cryptanalysis can
be applied to recover the secret key from the weakened
ciphertext/keystream.

Performing such an attack bares two main challenges. The
first is to find a type of modification that makes the key
recovery possible. To do that, the attacker has to know the
targeted cryptographic algorithm in detail as well as under-
stand digital logic design and technology mapping. Assuming
an educated attacker, the second challenge is finding the point
of attack in a given implementation. Below we present some
typical problems the attacker may face and show how he can
overcome them by using interconnect knowledge.

1) Elimination of false positives: To find the initialization
vector of a 6-LUT implementing a target Boolean function f
in the bitstream, one has to derive the 64-bit truth table F of
f , map F into the bitstream format, ξ(F), and then search
for ξ(F) in the bitstream. Since the order of LUT’s inputs
is unknown, all possible 6! = 720 input orders have to be
considered. For complex Boolean functions, the combination
ξ(F) has a high probability to occur once, or a few times, in
the bitstream. However, for functions with sparse initialization
vectors, many false detections may occur.

For example, in SNOW 3G attack presented at [20], one
of the target functions is f = (a1 ⊕ a2 ⊕ a3)a4a5a6. The
truth table F of this function contains only four 1s. This
leads to 81 detections of ξ(F) in the bitstream instead of
the expected 32 (SNOW 3G is 32-bit oriented cipher). The
authors eliminated the 49 false positives using the fact that the
LUTs implementing f feed primary outputs. However, such an
approach will not work for LUTs located deeper in the design.

Knowing the exact bit locations of LUT initialization vec-
tors along with their associated PIPs makes false positive
elimination easy.

2) Distinguishing between inputs of symmetric functions:
Another typical problem is distinguishing between inputs of a
symmetric function. For example, in the SNOW 3G function
mentioned above, the inputs a1, a2, a3 of an XOR have to
be distinguished. To do that, the authors of [20] make addi-
tional bitstream modifications to generate a key-independent
keystream and then analyze it.

The knowledge of interconnect encoding makes it possible
to distinguish between inputs by tracking their sources through
the observation of the related PIP activations in the bitstream.

3) Handling dual output LUTs: Dual output LUTs that use
both their outputs are more difficult to find. The bits of the

++

+

+

++

+

R1 R2 R3

S15 S11 S5 S0S2...

-1

+ zt

v

S14 S13 S12 S1S3S4

Fig. 1. SNOW 3G block diagram. During the initialization, the dashed line is
connected. During the keystrem generation, the dashed line is not connected.

truth tables of the 2 functions implemented in the LUT, F1

and F2 are scrambled when encoded in the bitstream format.
So, to search for a specific half of the initialization vector
ξ(F1||F2), where “||” is concatenation, one has to search for
all the permutations of the desired function into single bit
position patterns corresponding to one half and then repeat
the process for the pattern of the other half.

We propose the following simpler alternative: For every
LUT, first check if the corresponding OUTMUX or FFMUX
is using the O5 input. Then, verify if input A6 is unconnected
since a dual output LUT has to have A6 input stuck at
constant 1. At this point, the existence of a two output LUT is
confirmed. Undoing the LUT obfuscation gives us the actual
truth table F1||F2 from which the initialization vectors for the
two different expressions can be obtained.

Repeating these steps for every LUT in a design gives us a
list of all functions implemented by dual output LUTs. From
this list one can find the desired expressions without caring
about the LUT bitstream format and without having to deal
with false positives.

B. Interconnection-based

If we can modify the interconnects in a bitstream im-
plementing a cryptogrphic algorithm, we can find all LUTs
responsible for handling the secret key and re-route their
outputs to an I/O pin of the board. In this way, we can extract
the key during the execution of an algorithm. In this section,
we demonstrate the feasibility of such an attack on the example
of SNOW 3G stream cipher.

The block diagram of SNOW 3G is shown in Fig. 1. During
initialization, the LFSR registers S4, S5, S6, S7 are loaded
with a combination of the key and IV. During keystream gen-
eration, the LFSR shifts and updates its state. This means that
there has to be LUTs implementing some kind of multiplexer
logic to chose between shifting and loading initial values. Our
goal is to first find those LUTs and then distinguish our targets
which are the ones feeding the aforementioned registers. We
do that by taking the following steps.

1) For every MUX in the list, check the fanout of the LFSR
stage that it feeds. This is easily done by looking at the
PIP activations in the CLB’s switchbox.

2) If the fanout is 1, it leads to one of the listed MUXes.
3) If the fanout is larger than 1, then the LFSR stage is

one of S0, S2, S5, S11, S15 shown in Fig. 1. Trace their
output nets to find which one leads to a MUX of the list.

The above procedure allows us to identify the target MUXes
as well as their relative order. If the key is stored in the
bitstream, it is either stored in a LUT or in a BRAM. If it
is stored in logic LUTs, the value appears as a constant in
our target MUXes, so finding these MUXes is equivalent to
finding the key. If it is stored in BRAM or LUTRAM, then,
we can trace the source of the MUX input that corresponds to
each key bit. This leads to a BRAM/LUT that we can reverse
engineer and read its content. If the key is stored externally,
we trace the element that gives the key input to the MUX and
increase the fanout of this element by one by activating the
necessary PIPs to create a path from the key bit source to a
free output pin. Alternatively we can disconnect a used output
and connect it to the key bit. The 128-bit key can be recovered
with at most 128 modifications and algorithm executions.

In our experiments we used the Artix-7 (XC7A35T) FPGA
mounted on the Basys3 board from Digilent [29]. Our im-
plementation uses the LED connected to U16. We traced
the activated PIPs in the bitstream until we reached the
register which is driving the LED (AFF of the bottom slice
of CLBM R X30Y20 Tile). We then deactivated these PIPs.
When the key is fed into the FPGA, it is stored in registers.
By iteratively routing each bit register to U16, loading the
bitstream into the FPGA, and executing the algorithm, we are
able to read all key bits from the LED one-by-one. In listing 2
we show PIPs that have to be manipulated to read the 32nd
key bit. This key bit is stored in the register B5FF of the
bottom slice of the CLBLL L X4Y25 Tile.

1 D e a c t i v a t e
2 INT L X0Y3 . IMUX L34 . SR1BEG S0 17 21 !22 21 23 21 24 21 25 21
3 INT L . X0Y3 . SR1BEG S0 .WL1END3 11 63 13 63
4 INT R X1Y4 . WL1BEG N3 . SS6END0 08 13 12 13
5 INT R X1Y10 . SS6BEG0 . SS6END0 02 14 07 15
6 INT R X1Y16 . SS6BEG0 . SW6END0 02 14 04 15
7 INT R X3Y20 . SW6BEG0 . LOGIC OUTS4 02 13 04 14
8 A c t i v a t e
9 INT L X0Y3 . IMUX L34 .WL1END1 16 21 22 21 !23 21 24 21 25 21

10 INT L X2Y3 . WL1BEG2 . SS6END3 08 61 12 61
11 INT L X2Y9 . SS6BEG3 . SS6END3 02 62 07 63
12 INT L X2Y15 . SS6BEG3 . SW6END3 02 62 04 63
13 INT L X4Y19 . SW6BEG3 . SS6END3 03 61 06 60
14 INT L X4Y25 . SS6BEG3 . LOGIC OUTS L21 06 62 07 63
15 INT R X1Y3 . WL1BEG1 .WL1END2 11 45 13 45

Listing 2. Example of outputing key bit 32

VIII. CONCLUSION

In this paper, we demonstrated that the recently acquired
knowledge on the interconnect encoding in the bitstream of
Xilinx 7 series FPGAs helps weakening current countermea-
sures, strengthens existing attacks and enables new attacks.
This knowledge makes netlist recovery from a bitstream pos-
sible. Furthermore, netlist analysis tools such as HAL [30] can
potentially further assist in attacks. This shows that there is
an immediate need for stronger bitstream protection schemes.

REFERENCES

[1] P. Trott, “Preventing overbuilding and cloning of electronic systems
secure production programming.” Microsemi Corporation Report, 2015.

[2] J.-B. Note and É. Rannaud, “From the bitstream to the netlist.,” in FPGA,
vol. 8, pp. 264–264, 2008.

[3] Z. Ding et al., “Deriving an NCD file from an FPGA bitstream: Method-
ology, architecture and evaluation,” Microprocessors and Microsystems,
vol. 37, no. 3, pp. 299–312, 2013.

[4] T. Zhang et al., “A comprehensive FPGA RE Tool-Chain: From Bit-
stream to RTL code,” IEEE Access, vol. 7, pp. 38379–38389, 2019.

[5] F. Benz et al., “Bil: A tool-chain for bitstream reverse-engineering,” in
22nd Int. Conf. on Field Prog. Logic and App., pp. 735–738, 2012.

[6] J. Yoon et al., “A bitstream reverse engineering tool for FPGA hardware
trojan detection,” in Proc. of the 2018 ACM SIGSAC Conf. on Computer
and Communications Security, pp. 2318–2320, ACM, 2018.

[7] C. Wolf and M. Lasser, “Project IceStorm.” www.clifford.at/icestorm/.
[8] M. Jeong et al., “Extract LUT logics from a downloaded bitstream data

in FPGA,” in 2018 IEEE Int. Symp. on Circuits and Systems, pp. 1–5.
[9] SymbiFlow, “Project X-Ray.” https://prjxray.readthedocs.io/en/latest/.

[10] A. Moradi et al., “Side-channel attacks on the bitstream encryption
mechanism of Altera Stratix II: facilitating black-box analysis using
software reverse-engineering,” in Proc. of the ACM/SIGDA Int. Symp.
on FPGAs, pp. 91–100, 2013.

[11] A. Moradi and T. Schneider, “Improved side-channel analysis attacks
on Xilinx bitstream encryption of 5, 6, and 7 series,” in Int. Wksh on
Const. Side-Channel Analysis and Secure Design, pp. 71–87, 2016.

[12] S. Tajik et al., “On the power of optical contactless probing: Attacking
bitstream encryption of FPGAs,” in Proc. of the 2017 ACM SIGSAC
Conf. on Computer and Communications Security, pp. 1661–1674, 2017.

[13] H. Lohrke et al., “Key extraction using thermal laser stimulation,” IACR
Trans. on Crypto Hardware and Embedded Systems, pp. 573–595, 2018.

[14] M. Ender et al., “The unpatchable silicon: A full break of the bitstream
encryption of xilinx 7-series FPGAs,” in 29th USENIX Security Sympo-
sium (USENIX Security 20), Aug. 2020.

[15] M. Alderighi et al., “A fault injection tool for SRAM-based FPGAs,”
in 9th IEEE On-Line Testing Symp., 2003. IOLTS 2003., pp. 129–133.

[16] R. S. Chakraborty et al., “Hardware Trojan insertion by direct modifi-
cation of FPGA configuration bitstream,” IEEE Design & Test, vol. 30,
no. 2, pp. 45–54, 2013.

[17] P. Swierczynski et al., “Bitstream fault injections (BiFI) – automated
fault attacks against SRAM-based FPGAs,” IEEE Trans. on Computers,
vol. 76, pp. 1–1, 2018.

[18] P. Swierczynski et al., “FPGA trojans through detecting and weakening
of cryptographic primitives,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 34, pp. 1236–1249, Aug 2015.

[19] P. Swierczynski et al., “Interdiction in practice—hardware trojan against
a high-security USB flash drive,” Journal of Cryptographic Engineering,
vol. 7, pp. 199–211, Sep 2017.

[20] M. Moraitis and E. Dubrova, “Bitstream modification attack on SNOW
3G,” in Proc. of the 2020 Design, Automation & Test in Europe Conf.

[21] K. Ngo et al., “Bitstream modification of trivium.” Cryptology ePrint
Archive, Report 2020/597, 2020. https://eprint.iacr.org/2020/597.

[22] Xilinx, “UG472: 7 series FPGAs clocking resources,” July. 2018.
[23] Xilinx, “UG470: 7 series FPGAs configuration,” Aug. 2018.
[24] V. Sergeichikand and A. Ivaniuk, “Implementation of opaque predicates

for FPGA designs hardware obfuscation,” Journal of Information, Con-
trol and Management Systems, vol. 12, no. 2, 2014.

[25] R. Karam et al., “Robust bitstream protection in FPGA-based systems
through low-overhead obfuscation,” in 2016 Int. Conf. on ReConFig-
urable Computing and FPGAs (ReConFig), pp. 1–8, IEEE, 2016.

[26] M. Hoffmann and C. Paar, “Stealthy opaque predicates in hardware–
obfuscating constant expressions at negligible overhead,” arXiv preprint
arXiv:1910.00949, 2019.

[27] M. Schmid et al., “Netlist-level IP protection by watermarking for LUT-
based FPGAs,” in 2008 Int. Conf. on Field-Prog. Tech., pp. 209–216.

[28] B. Khaleghi et al., “FPGA-based protection scheme against hardware
trojan horse insertion using dummy logic,” IEEE Embedded Systems
Letters, vol. 7, no. 2, pp. 46–50, 2015.

[29] Digilent, “Basys 3 Artix-7 FPGA trainer board.” store.digilentinc.com/
basys-3-artix-7-fpga-trainer-board-recommended-for-introductory-users/.

[30] S. Wallat et al., “Highway to HAL: open-sourcing the first extendable
gate-level netlist reverse engineering framework,” in Proc. of the 16th
ACM Int. Conf. on Computing Frontiers, pp. 392–397, 2019.

