
Efficient Multi-Client Functional Encryption for
Conjunctive Equality and Range Queries

Kwangsu Lee*

Abstract

In multi-client functional encryption (MC-FE) for predicate queries, clients generate ciphertexts
of plaintexts x1, . . . ,xn binding with a time period T and store them on a cloud server, and the cloud
server receives a function key corresponding to a predicate f from a trusted center and learns whether
f (x1, . . . ,xn) = 1 or not by running the decryption algorithm on the multiple ciphertexts of the same time
period. MC-FE for predicates can be used for a network event or medical data monitoring system based
on time series data gathered by multiple clients. In this paper, we propose efficient MC-FE schemes that
support conjunctive equality or range queries on encrypted data in the multi-client settings. First, we pro-
pose an efficient multi-client hidden vector encryption (MC-HVE) scheme in bilinear groups and prove
the selective security with static corruptions. Our MC-HVE scheme is very efficient since a function key
is composed of four group elements, a ciphertext consists of O(`) group elements where ` is the size of
a plaintext, and the decryption algorithm only requires four pairing operations. Second, we propose an
efficient multi-client range query encryption (MC-RQE) scheme and prove the selective weak security
with static corruptions. Our MC-RQE scheme which uses a binary tree is efficient since a ciphertext
consists of O(logD) group elements and a function key consists of O(n logD) group elements where D
is the maximum value of a range.

Keywords: Functional encryption, Predicate encryption, Multi-client setting, Hidden vector encryption,
Bilinear maps.

*Sejong University, Seoul, Korea. Email: kwangsu@sejong.ac.kr.

1

1 Introduction

Functional encryption (FE) for predicate queries is public key encryption that can perform queries on en-
crypted data [12]. In FE for predicates, a sender creates a ciphertext by encrypting a message x, and then
a receiver who has a function key associated with a predicate f can check whether f (x) = 1 or not with-
out revealing the plaintext of the ciphertext by running the decryption algorithm. FE for predicates can be
viewed as a special type of general functional encryption (FE) that allows a function key holder to learn the
output of a specific function f (x) on encrypted data without leaning anything else [10]. FE for predicates
can be widely used in situations where querying for encrypted data is required while preserving the privacy
of original data such as network log auditing, payment gateway, email filtering, and so on. An initial study
on FE for predicate queries began by supporting the equality query on encrypted data [8]. In addition, it
has been shown that an FE scheme that supports arbitrary circuits can be constructed by using indistin-
guishable obfuscation at the theoretical level and this FE scheme also can be an FE scheme for arbitrary
predicates [17].

In FE for predicates, many clients can generate ciphertexts by using public parameters since it is a
public-key system, but the decryption algorithm of FE for predicates can only handle one ciphertext per
each operation [12, 24]. If the decryption algorithm can process the query operation on a large number of
ciphertexts rather than a single ciphertext, it would be possible to apply FE for predicates to a wider range
of applications. One possible application is a network monitoring system that detects risks based on data
gathered from multiple network devices. In this case, the distributed network devices independently encrypt
the collected data and store the encrypted data in a cloud server. Then, the cloud server queries the abnormal
behavior based on the gathered encrypted data for monitoring. For this kind of applications, we may try
to construct a multi-client functional encryption (MC-FE) scheme for predicate queries by using previous
MC-FE schemes. However, the previous MC-FE schemes have some problems such that they are based on
inefficient indistinguishable obfuscation [20] or they only support limited number of function key queries
because of inner product operations [15].

We would like to build an efficient MC-FE scheme for predicate queries in which multiple clients gen-
erate ciphertexts independently and the decryption algorithm can proceed on these multiple ciphertexts. As
pointed out above, we may use the MC-FE scheme that supports arbitrary circuits, but this scheme is ineffi-
cient due to indistinguishable obfuscation. We may consider to extend a previous predicate encryption (PE)
scheme to an MC-FE scheme for predicate queries, but it is not easy for the decryption algorithm to process
multiple ciphertexts in a single decryption operation because of independent random values in ciphertexts.
One possible idea for designing an efficient MC-FE scheme for predicate queries is to modify a hidden
vector encryption (HVE) scheme, which is a special PE scheme that supports conjunctive equality [12], to
support multiple clients. Kamp et al. [36] proposed the first MC-HVE scheme in bilinear groups by follow-
ing this approach. However, their MC-HVE scheme is inefficient since the number of pairing operations
linearly depends on the number of clients and the number of messages, and the security of their scheme is
only proven in the generic group model. Thus, it is an interesting problem to build an efficient MC-HVE
scheme with reduction proof under reasonable assumptions or to propose an efficient MC-FE scheme for
more expressive predicate queries.

Recently, Chotard et al. [15] proposed an MC-FE for inner product (MC-FE-IP) scheme that supports
inner product operations on encrypted data. Since HVE is a special form of FE and Katz et al. [24] pro-
posed a transformation from inner product predicate encryption (IPE) scheme into an HVE scheme, one
may try to construct an MC-HVE scheme from an MC-FE-IP scheme. However, it is not easy to build
an MC-HVE scheme from an MC-FE-IP scheme since their transformation only works for IPE, not FE-

2

IP. The reason is that an MC-HVE scheme derived from an MC-FE-IP scheme exposes the inner product
results in the decryption process and an attacker can distinguish a challenge ciphertext by using the ex-
posed partial information of ciphertexts if he can obtain enough function keys. A detailed attack is de-
scribed as follows: Let x0,x1 be challenge messages and y1,y2 be function attributes of HVE such that
x0,x1 6∈ {y1,y2}. By applying the transformation of Katz et al. [24], the challenge message xb is encoded
into (rxb,−r) where r is random and the function attributes y1,y2 are encoded into (1,y1) and (1,y2) re-
spectively. An adversary can obtain gr(xb−y1) and gr(xb−y2) by decrypting the challenge ciphertext with two
function keys. Next, the adversary derives gr(y1−y2) and distinguishes the challenge ciphertext by checking
whether (gr(y1−y2))(x0−y1)/(y1−y2) = gr(xb−y1) or not. Thus the adversary can easily break the security of this
method with two function keys. Note that function key queries for y1 and y2 are allowed in HVE since
fyi(x0) = 0 = fyi(x1) by the definition fy(x) = 0 if x 6= y, but function key queries for (1,y1) and (1,y2) are
not allowed in FE-IP since f(1,yi)((rx0,−r)) = 〈(rx0,−r),(1,yi)〉 6= 〈(rx1,−r),(1,yi)〉 = f(1,yi)((rx1,−r)).
Recall that FE-IP avoid this subtle issues by limiting the number of independent function key queries in the
security model. Unlike FE-IP, FE for predicate queries only reveals 0 or 1 in the decryption process, so it
is allowed for the attacker to request many independent function keys for a predicate f with the constraint
f (X∗0) = f (X∗1) ∈ {0,1} where X∗0 ,X

∗
1 are challenge message vectors. Therefore, it is difficult to design an

MC-HVE scheme that can allow many independent function keys by using an MC-FE-IP scheme.

1.1 Our Results

In this work, we propose efficient MC-FE schemes that support conjunctive equality or range queries and
prove the selective security of the proposed schemes. Our results are summarized as follows.

Multi-Client Hidden Vector Encryption. We first propose an efficient and secure multi-client hidden vec-
tor encryption (MC-HVE) scheme that supports conjunctive equality queries in asymmetric bilinear groups.
In MC-HVE, each ciphertext is associated with a message vector~xi = (xi,1, . . . ,xi,`) with a time period T and
a function key is associated with function attributes Y = (~y1, . . . ,~yn) where~yi = (yi,1, . . . ,yi,`). A conjunctive
equality predicate for ciphertexts with the same time period and a function key outputs 1 if xi, j = yi, j for all i
and j except wildcard positions. Our MC-HVE scheme is very efficient than the previous MC-HVE scheme
since it requires only four pairing operations in the decryption algorithm and the function key consists of
just four group elements. Our MC-HVE scheme is proven to be selectively secure with static corruptions
in the random oracle model. Note that it provides the selective strong security that allows an attacker to
query any function key for a predicate f that satisfies f (X∗0) = f (X∗1) where X∗0 ,X

∗
1 are challenge message

vectors. Additionally, our MC-HVE scheme can be proven without random oracles if the maximum value of
a time period is limited to a polynomial value by increasing the size of public parameters. Furthermore, our
MC-HVE scheme also can be extended to support more expressive queries by following the HVE encoding
method of Boneh and Waters [12].

Multi-Client Range Query Encryption. Next, we propose a multi-client range query encryption (MC-
RQE) scheme that supports conjunctive range queries on multiple ciphertexts by combining a binary tree
with the simple version of our MC-HVE scheme. The simplest way to support range queries is to apply the
HVE encoding method of Boneh and Waters [12] to the MC-HVE scheme. However, this encoding method
has a problem that a ciphertext is composed of O(nD) group elements where n is the number of clients and D
is the maximum value of the range. In contrast, our MC-RQE scheme is more efficient because a ciphertext
is composed of n logD group elements and a function key is composed of O(n logD) group elements. We
prove that our MC-RQE scheme provides the selective security with static corruptions under well-known
static assumptions in the random oracle model. Our MC-RQE scheme only achieves the selective weak

3

security which allows for an attacker to query any function key satisfying f (X∗0) = f (X∗1) = 0.

1.2 Our Techniques

In order to design a private-key HVE scheme, we can consider a simple method that encrypts plaintexts
by using a pseudo-random function (PRF). However, this PRF-based construction has a problem such that
the additional information of plaintexts is leaked because the outputs of PRF on the same plaintexts are
the same. To solve this leakage problem, we introduce additional random values and combine them with a
cyclic group to form a ciphertext as (gt ,g f t) and a function key as (v f r,vr) after calculating f = PRF(z,x)
for a message x. In this case, the ciphertext is shown as random elements if the DDH assumption holds in the
cyclic group, and it can be checked whether the message of the ciphertext and the attribute of the function
key are the same if the pairing operation is used. However, when this method is extended to support multiple
clients, it is not easy to check the equality of the message in the ciphertext and the attribute in the function
key since individual clients use different random exponents t1 and t2.

To overcome the problem of extending the simple HVE scheme to support multiple clients, we use
the method of using a hash function to synchronize the random values of all clients. For example, two
clients generate ciphertexts H(T) f1 and H(T) f2 , respectively for a time period T , and a center generates
a function key (v(f1+ f2)r,vr) where f1 = PRF(z1,x1) and f2 = PRF(z2,x2). In this case, even though two
clients perform encryption independently, they are forced to use the same random element H(T) = gt .
Note that this hashing method to support multiple clients was already used in the constructions of syn-
chronized aggregate signature and privacy-preserving data aggregation [19, 33]. In addition, we mod-
ify the function key of this MC-HVE scheme to include additional random values to prove the (strong)
security under static assumptions. That is, the ciphertexts are formed as (H(T) f1 ,H(T)w′1,1 ,H(T)w′1,2),
(H(T) f2 ,H(T)w′2,1 ,H(T)w′2,2) respectively, and the function key is formed as (v(f1+ f2)r1wr2

1 wr3
2 ,v

r1 ,vr2 ,vr3)

where w1 = vw′1,1+w′2,1 , w2 = vw′1,2+w′2,2 , and r1,r2,r3 are random values.
The idea of designing an MC-RQE scheme that supports efficient range queries is to express the range

of values using a binary tree which was used in [32]. That is, the value of a range is represented by the
path of a binary tree, and a range is represented by the minimum set of internal nodes that cover all leaf
nodes corresponding to the range in the binary tree. At this time, each node of the binary tree is set to be
associated with the ciphertext and the function key elements of the simple version of our MC-HVE scheme.
In addition, we modify this scheme to apply a secret sharing scheme to prevent collusion attacks that derive
a new function key by combining different function keys.

1.3 Applications

Secure Network Event Monitoring. Hacking attacks on computer systems tend to change from simple
attacks targeting a single system to wide-scale organized attacks targeting multiple systems. Thus, it is
difficult to grasp such recent network hacking attacks by only monitoring the events of an individual network
system. It is necessary to collect information from many network devices and judge a hacking event on the
basis of the collected information [29]. One possible solution is for network devices of many companies
to collect information at each time period and entrust it to an external security surveillance cloud server.
This cloud server can then analyze the collected information to identify hacking attacks. In this case, these
companies want to maintain the privacy of the network information they gathered because they do not trust
the external surveillance cloud server. By using efficient MC-HVE or MC-RQE scheme, it is possible to
build a secure network event monitoring system which allows the cloud server to monitor the network status
while preserving the privacy of the information collected by individual devices.

4

Privacy-Preserving Medical Data Monitoring. With the development of small medical devices, it is
possible to collect medical data of a patient by using these devices that monitor various types of medical
information [30]. To diagnose the medical condition of the patient, medical devices collect specialized
medical data and store this data in a central cloud server managed by a hospital. The cloud server can then
monitor the periodic status of the patient or determine an emergency situation based on the medical data
collected by the devices of each patient. However, patients do not want their personal medical data to be
exposed for privacy reason. One method to perform health monitoring with ensuring privacy is to use an
efficient MC-HVE or MC-RQE scheme. That is, medical devices of a patient periodically store encrypted
medical data in a cloud server, and the cloud server performs a query operation on the encrypted data to
check the current status of the patient.

1.4 Related Work

Searchable Encryption. Searchable symmetric encryption (SSE) is symmetric-key encryption that allows
a data owner to outsource encrypted data to a cloud server and then allow keyword searches on the encrypted
data. A practical SSE scheme for keyword searches on encrypted data was first proposed by Song et al. [35].
Later, an extended SSE scheme that supports conjunctive keyword searches was proposed by Golle et al.
[21]. To improve the performance of search queries, Cash et al. [14] proposed a highly efficient SSE scheme
that can handle a large databases with supporting conjunctive search queries. A multi-client SSE scheme
was presented by Curtmola et al. [16] which one client outsources the encrypted data to the cloud server
and other clients can submit search queries on the encrypted data. Although the previous SSE schemes are
very efficient, most SSE schemes have additional leakage. Cash et al. [13] presented leakage-abuse attacks
on most SSE schemes and showed the danger of many SSE schemes. Recently, Lai et al. [25] proposed an
SSE scheme that combines a symmetric-key HVE scheme with Bloom filter indexing to support conjunctive
keyword searches with reduced leakage.

Functional Encryption. Functional encryption (FE) is public-key encryption that supports learning on
encrypted data by computing f (x) during decryption operations, in which a ciphertext is associated with an
input value x and a private key is associated with a function f . The concept of FE was introduced by Boneh,
Sahai, and Waters [10, 11] and it includes a variety of public-key cryptographic primitives such as identity-
based encryption (IBE) [9], attribute-based encryption (ABE) [23], and predicate encryption (PE) [12]. The
first FE scheme for general circuits was proposed by Garg et al. [17] by using indistinguishable obfuscation.
By extending the concept of FE, Goldwasser et al. [20] proposed a multi-input functional encryption (MI-
FE) scheme that handle multiple ciphertexts in a single decryption process and a multi-client functional
encryption (MC-FE) scheme that performs the decryption on multiple ciphertexts generated by multiple
clients with the same label. Recently, efficient FE schemes that support inner product operations were
proposed [2, 4, 6]. These FE schemes for inner products also can be extended to the multi-input setting and
the multi-client setting [1, 3, 5, 15, 27].

Predicate Encryption. A special type of functional encryption is a predicate encryption (PE) in which the
message m of a ciphertext is revealed if f (x) = 1 is satisfied. Predicate-only encryption (POE) is a specific
form of PE in which f (x) ∈ {0,1} is only revealed in the decryption process. PE was originally devised for
public-key searchable encryption, and anonymous IBE is one of the simplest PE [8]. Boneh and Waters [12]
introduced the concept of hidden vector encryption (HVE) that supports conjunctive equality queries with
wildcard characters and proposed an efficient HVE scheme in bilinear groups. Katz et al. [24] proposed
an inner-product predicate encryption (IPE) scheme that supports more expressive inner product queries.
After that, various PE schemes have been proposed to provide better efficiency or additional functionality

5

[7,26,31,34]. Shi et al. [32] proposed a multi-dimensional range query on encrypted data (MRQED) scheme
that supports efficient conjunctive range queries, and showed that it provides weak attribute hiding security,
named the match-revealing security. Later, Lu [28] proposed symmetric-key PE scheme for range query that
provides the strong attribute hiding security. Gay et al. [18] showed that an MRQED scheme can be built in
lattices. Gorbunov et al. [22] showed that it is possible to design a PE scheme that supports arbitrary circuits
using lattices, but it only guarantees weak attribute hiding security. Recently, Kamp et al. [36] proposed
the multi-client HVE (MC-HVE) scheme that supports conjunctive equality queries on multiple clients and
analyzed its security in the general group model.

2 Preliminaries

In this section, we first define asymmetric bilinear groups, complexity assumptions, and pseudo-random
functions. Next, we define the syntax and the security of multi-client functional encryption for predicates.

2.1 Bilinear Groups

A bilinear group generator G takes as input a security parameter λ and outputs a tuple (p,G,Ĝ,GT ,e) where
p is a random prime and G,Ĝ, and GT be three cyclic groups of prime order p. Let g and ĝ be generators of
G and Ĝ, respectively. The bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g ∈G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that G,Ĝ,GT are asymmetric bilinear groups with no efficiently computable isomorphisms if the
group operations in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are
no efficiently computable isomorphisms between G and Ĝ.

2.2 Complexity Assumptions

We introduce two complexity assumptions in asymmetric bilinear groups. The symmetric external Diffie-
Hellman (SXDH) assumption is that the decisional Diffie-Hellman (DDH) assumption holds in two cyclic
groups G, Ĝ in asymmetric bilinear groups. The asymmetric 3-party Diffie-Hellman (A3DH) assumption is
the asymmetric bilinear group version of the composite 3-party Diffie-Hellman (C3DH) assumption, which
was introduced by Boneh and Waters [12] to prove the security of their HVE scheme in composite order
bilinear groups. The generalization of this C3DH assumption was used to prove the security of predicate
encryption schemes [31, 34].

Assumption 1 (Symmetric eXternal Diffie-Hellman, SXDH). Let (p,G,Ĝ,GT ,e) be a bilinear group ran-
domly generated by G(1λ). Let g, ĝ be random generators of G,Ĝ respectively. The decisional Diffie-
Hellman (DDH) assumption in G is that if the challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g,ga,gb, ĝ

)
and Z

are given, no probabilistic polynomial-time (PPT) algorithmA can distinguish Z = Z0 = gab from Z = Z1 =
gc with more than a negligible advantage. The advantage of A is defined as AdvDDH

A (λ) =
∣∣Pr[A(D,Z0) =

0]− Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of a,b,c ∈ Zp. The SXDH

assumption is that the DDH assumption holds in both G and Ĝ.

6

Assumption 2 (Asymmetric 3-party Diffie-Hellman, A3DH). Let (p,G,Ĝ,GT ,e) be a bilinear group ran-
domly generated by G(1λ). Let g, ĝ be random generators of G,Ĝ respectively. The A3DH assumption is
that if the challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g,ga,gb,gab,gabc, ĝ, ĝa, ĝb) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = gc from Z = Z1 = gd with more than a negligible
advantage. The advantage of A is defined as AdvA3DH

A (λ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where
the probability is taken over random choices of a,b,c,d ∈ Zp.

2.3 Pseudo-Random Function

A pseudo-random function (PRF) is an efficiently computable function F : K×X →Y where K is the key
space, X is the domain, and Y is the range. Let F(k, ·) be an oracle for a uniformly chosen k ∈ K and f (·)
be an oracle for a uniformly chosen function f : X → Y . We say that a PRF is secure if for all efficient
adversaries A the advantage AdvPRF

A (λ) =
∣∣Pr[AF(k,·) = 1]−Pr[A f (·) = 1]

∣∣ is negligible.

2.4 Multi-Client Functional Encryption for Predicates

Multi-client functional encryption (MC-FE) for predicates is a symmetric-key version of multi-input func-
tional encryption (MI-FE) introduced by Goldwasser et al. [20] in which each client holds an encryption
key, a ciphertext is additionally associated with a time period, and the output of a function f is restricted to
be {0,1}. A system that uses an MC-FE scheme for predicates consists of a trusted center that generates
function keys, a number of clients that create ciphertexts on plaintexts, and a cloud server that performs
decryption operations on encrypted plaintexts. First, the trusted center performs the setup algorithm to gen-
erate a master key MK, each encryption key EKi for each client, and the public parameter PP. Each client
generates a ciphertext CTi by encrypting a message xi for a time period T and transmits the ciphertext to the
cloud server. The cloud server receives a function key SK f for a predicate f from the trusted center. If the
ciphertexts CT1, . . . ,CTn sent by the clients are generated at the same time period T , then the cloud server
can obtains f (x1, . . . ,xn) ∈ {0,1} by running the decryption algorithm. The detailed syntax of the MC-FE
scheme for predicates is described as follows.

Definition 2.1 (Multi-Client Functional Encryption for Predicates). A multi-client functional encryption
(MC-FE) scheme for predicates consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which
are defined as follows:

Setup(1λ ,n). The setup algorithm takes as input a security parameter λ and the number of clients n. It
outputs a master key MK, encryption keys EK1, . . . ,EKn for all clients, and public parameters PP.

GenKey(f ,MK,PP). The function key generation algorithm takes as input a predicate f , the master key
MK, and public parameters PP. It outputs a function key SK f .

Encrypt(xi,T,EKi,PP). The encryption algorithm takes as input a message xi, a time period T , an encryp-
tion key EKi for a client index i, and public parameters PP. It outputs a ciphertext CTi,T .

Decrypt(CT1,T , . . . ,CTn,T ,SK f ,PP). The decryption algorithm takes as input ciphertexts CT1,T , . . . ,CTn,T

for the same time period T which are associated with messages X = (x1, . . . ,xn), a function key SK f

for a predicate f , and public parameters PP. It outputs f (X) ∈ {0,1}.

7

The correctness property of MC-FE for predicates is defined as follows: For all MK,EK1, . . . ,EKn,PP
generated by Setup, any SK f generated by GenKey for any predicate f , and all CT1,T , . . . ,CTn,T generated
by Encrypt for any list of messages X = (x1, . . . ,xn) with the same time period T , it is required that

• Decrypt(CT1,T , . . . ,CTn,T ,SK f ,PP) = f (X) except with negligible probability.

We define the selective security model with static corruptions of MC-FE for predicates by following
the security model of MC-FE defined by Goldwasser et al. [20]. In this security model, an attacker first
specifies corrupted clients and all challenge ciphertext queries in which each ciphertext query is specified
by two challenge messages X0,X1 and a challenge time period T , and then it receives the encryption keys of
corrupted clients and public parameters. After that, the attacker can query a function key for a predicate f
with a constraint f (X0) = f (X1). And the attacker also query a challenge ciphertext for challenge messages
X0,X1 and a time period T that were submitted initially and receives challenge ciphertexts that are the
encryption of one of the two challenge messages. Finally, if the challenge message is correctly guessed, the
attacker wins this game. The detailed definition of this selective security is described as follows.

Definition 2.2 (Selective Security). The selective multiple-challenge IND-security with static corruptions of
an MC-FE scheme for predicates is defined in the following experiment EXPSE-IND

A (λ) between a challenger
C and a PPT adversary A:

1. Init: A initially submits the set of corrupted client indexes I ⊂ {1, . . . ,n}. Let I = {1, . . . ,n} \ I be
the set of uncorrupted client indexes. A additionally submits all challenge ciphertext queries. Each
challenge ciphertext query is specified with two challenge messages X0 = {x0,i}i∈I , X1 = {x1,i}i∈I ,
and a challenge time period T with the restriction that the time period should be distinct between each
query. C flips a random coin µ ∈ {0,1}.

2. Setup: C generates a master key MK, encryption keys EK1, . . . ,EKn, and public parameters PP by
running Setup(1λ ,n). It keeps MK, {EKi}i∈I to itself and gives PP, {EKi}i∈I to A.

3. Query & Challenge: A adaptively requests function keys or challenge ciphertexts. C handles these
queries as follows:

• If this is a function key query for a predicate f with the restriction that f (X0, ·) = f (X1, ·) for
each challenge X0,X1, then C gives a function key SK f to A by running GenKey(f ,MK,PP)
where · indicates the messages of corrupted clients.

• If this is a challenge ciphertext query for challenge messages X0,X1, and a time period T that
were already submitted in the initialization step, then C gives challenge ciphertexts {CTi,T} toA
by running Encrypt(xµ,i,T,EKi,PP) for each i.

4. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

An MC-FE scheme for predicates is selectively IND-secure with static corruptions if for all PPT adversary
A, the advantage of A defined as AdvSE-IND

A (λ) =
∣∣Pr[EXPSE-IND

A (λ) = 1]− 1
2

∣∣ is negligible in the security
parameter λ .

Handling multiple-challenge ciphertexts in the selective security proof is rather complicated. To fa-
cilitate the proof of the selective security, we define the selective single-challenge security that considers
single-challenge ciphertext. Fortunately, it is known through existing studies that the single-challenge secu-
rity and the multiple-challenge security are the same by using a simple hybrid argument [1, 20].

8

Definition 2.3 (Selective Single-challenge Security). The selective single-challenge IND-security with static
corruptions of an MC-FE scheme for predicates is defined in the following experiment EXPSE-1-IND

A (λ)
between a challenger C and a PPT adversary A:

1. Init: A initially submits the set of corrupted client indexes I ⊂ {1, . . . ,n}. Let I = {1, . . . ,n} \ I be
the set of uncorrupted client indexes. A also submits two challenge messages X∗0 = {x∗0,i}i∈I and
X∗1 = {x∗1,i}i∈I , and a challenge time period T ∗. C flips a random coin µ ∈ {0,1}.

2. Setup: C generates a master key MK, encryption keys EK1, . . . ,EKn, and public parameters PP by
running Setup(1λ ,n). It keeps MK, {EKi}i∈I to itself and gives PP, {EKi}i∈I to A.

3. Query: A adaptively requests function keys or ciphertexts. C handles these queries as follows:

• If this is a function key query for a predicate f with the restriction that f (X∗0 , ·) = f (X∗1 , ·), then
C gives a function key SK f toA by running GenKey(f ,MK,PP) where · indicates the messages
of corrupted clients.

• If this is a ciphertext query for a client index i ∈ I, a message xi, and a time period T with the
restriction that T 6= T ∗, then C gives a ciphertext CTi,T toA by running Encrypt(xi,T,EKi,PP).

4. Challenge: C gives challenge ciphertexts {CTi,T ∗}i∈I to A by running Encrypt(x∗
µ,i,T

∗,EKi,PP) for
each i ∈ I.

5. Query: A additionally requests function keys or ciphertexts. C handles these queries in a similar way
to the previous query step.

6. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

An MC-FE scheme for predicates is selectively single-challenge IND-secure with static corruptions if for
all PPT adversary A, the advantage of A defined as AdvSE-1-IND

A (λ) =
∣∣Pr[EXPSE-1-IND

A (λ) = 1]− 1
2

∣∣ is
negligible in the security parameter λ .

Remark 1. An MC-FE scheme for predicates is selectively single-challenge weak IND-secure with static
corruptions if each function key query for a predicate f is restricted to f (X∗0) = f (X∗1) = 0.

3 Multi-Client Hidden Vector Encryption

In this section, we present an efficient MC-HVE scheme in asymmetric bilinear groups and analyze the
security of our scheme under static assumptions.

3.1 Design Principle

To understand the design principle of our MC-HVE scheme, we consider a simple example in which two
clients encrypt messages x1 and x2, respectively. We first note that an MC-HVE scheme is a private-key
setting since each client uses an independent encryption key. A simple method to achieve an conjunctive
equality operation in the symmetric-key setting is to use a PRF. That is, we use PRF to encrypt messages
x1,x2 as f1 =PRF(z1,x1), f2 =PRF(z2,x2) by using the PRF with each encryption keys z1,z2, and a function
key for the list of attributes Y = (y1,y2) is generated as fY = f1+ f2 = PRF(z1,y1)+PRF(z2,y2) by a trusted
center. In this case, it is easy to check the conjunctive equality of PRF values by simply comparing the PRF

9

values. However, this method has the problem such that ciphertexts leak the partial information of messages
since the values of PRF are deterministic. In addition, it is uncertain how to bind the ciphertext with a time
period T to prevent mix-and-match attacks.

In order to solve the partial information leakage problem, the PRF value should not be directly exposed
to the attacker, and the ciphertext should be randomized by including additional random value. To do this,
we introduce a cyclic group and form ciphertexts for each client as (gt ,g f1t) and (gt ,g f2t) in which the PRF
values are placed in exponent and an additional random exponent is multiplied. If the DDH assumption holds
in the cyclic group, then these ciphertexts do not reveal the partial information since these elements are not
distinguished from random elements. A function key can also be constructed in the form of (v(f1+ f2)r,vr) us-
ing an additional random exponent to prevent partial information leakage. The problem of this method is that
the handling of conjunctival equality queries is difficult since ciphertexts and function keys are randomized.
Fortunately, when an asymmetric bilinear group is used, we can calculate e(gt ,v(f1+ f2)r) = e(g(f1+ f2)t ,vr) to
check whether the conjunctive equality is satisfied or not.

However, in the multi-client setting, two clients generate ciphertexts by using different random values t1
and t2 rather than the same random value t. Because of this different randomness, it is difficult to perform the
conjunctive equality query by using the pairing operation. That is, the exponent values f1t1 and f2t2 are not
aggregated into (f1 + f2)(t1 + t2). To overcome this problem, we adopt the method of using a hash function
which was used to build a synchronized aggregate signature scheme [19] and to design a privacy-preserving
data aggregation scheme [33]. That is, a hash value H(T) for the time period T is used to create a ciphertext
instead of using gt . In this case, client ciphertexts consist of H(T) f1 ,H(T) f2 and a function key has the same
form as before (v(f1+ f2)r,vr). Here, two clients can agree the same random by computing H(T) for the same
time period T , and the attacker can not obtain the partial information of the message without solving the
discrete logarithm of H(T) = gt .

In the above construction, if the attacker does not request function key queries, then the construction
can be secure because the structure of ciphertexts is related to the DDH assumption. However, it is not easy
to prove the security of the above construction in the selective security model since the attacker can query
not only function key queries but also ciphertext queries. In particular, in the security model, the attacker is
allowed to query on an arbitrary predicate f satisfying f (X∗0) = f (X∗1). That is, not only the non-matching
function key query of f (X∗0) = f (X∗1) = 0 but also the matching function key query of f (X∗0) = f (X∗1) = 1
should be allowed. To prove the selective security, we modify the above construction to include additional
two random exponents in a function key. That is, a function key is formed as (v(f1+ f2)r1wr2

1 wr3
2 ,v

r1 ,vr2 ,vr3)

and two ciphertexts of clients are formed as (H(T) f1 ,H(T)w′1,1 ,H(T)w′1,2) and (H(T) f2 ,H(T)w′2,1 ,H(T)w′2,2)

where w1 = vw′1,1+w′2,1 and w2 = vw′1,2+w′2,2 . This method of adding additional random exponents to the function
key is widely used in the construction of previous HVE schemes [12, 26, 34]. Specifically, we use the proof
technique of Shi and Waters [34], used for the construction of an efficient delegatable HVE scheme, by
associating two random exponents r2,r3 in a correlated way to handle the matching function key queries in
the security proof.

3.2 Predicate for Conjunctive Equality with Wildcards

Let Σ be a finite set of attributes and let ∗ be a special symbol not in Σ. We define Σ∗= Σ∪{∗}where the star
∗ plays the role of a wildcard character. Let Y = (~y1, . . . ,~yn) be a list of vectors where~yi = (yi,1, . . . ,yi,`)∈ Σ`

∗
and X = (~x1, . . . ,~xn) be a list of vectors where ~xi = (xi,1, . . . ,xi,`) ∈ Σ`. We define a predicate fY over Σn×`

10

for conjunctive equality with wildcards as

fY (X) =

{
1 if (xi, j = yi, j)∨ (yi, j = ∗) for all i ∈ [n], j ∈ [`]
0 otherwise.

3.3 Construction

Let PRF be a pseudo-random function. Our MC-HVE scheme that supports conjunctive equality queries
with wildcards is described as follows.

MC-HVE.Setup(1λ ,n): Let λ be the security parameter and n be the number of clients. It first obtains a
bilinear group (p,G,Ĝ,GT ,e) of prime order p by running G(1λ). Let g, ĝ be random generators of
G,Ĝ respectively. It chooses random PRF keys {zi}n

i=1 and a random element v̂∈ Ĝ. It selects random
exponents {ωi,1,ωi,2}n

i=1 and calculates ω1 = ∑
n
i=1 ωi,1,ω2 = ∑

n
i=1 ωi,2. It selects a hash function

H : {0,1}∗→ G from the family of hash functions. It outputs a master key MK =
(
{zi}n

i=1, v̂, ŵ1 =
v̂ω1 , ŵ2 = v̂ω2

)
, encryption keys

{
EKi = (zi,ωi,1,ωi,2)

}n
i=1 for all clients, and public parameters

PP =
(
(p,G,Ĝ,GT ,e), g, ĝ, H

)
.

MC-HVE.GenKey(Y,MK,PP): Let Y = (~y1, . . . ,~yn) where ~yi = (yi,1, . . . ,yi,`) ∈ Σ`
∗ and MK = ({zi}n

i=1, v̂,
ŵ1, ŵ2). It first derives zi, j = PRF(zi, j) for all i and j. Let S be the set of index tuples (i, j) that are
not wildcard positions in Y . It calculates fY = ∑(i, j)∈S PRF(zi, j,yi, j) by using MK. It chooses random
exponents r1,r2,r3 ∈ Zp and outputs a function key by implicitly including the wildcard positions of
Y as

SKY =
(

K0 = v̂ fY ·r1ŵr2
1 ŵr3

2 , K1 = v̂r1 , K2 = v̂r2 , K3 = v̂r3
)
.

MC-HVE.Encrypt(~xi,T,EKi,PP): Let ~xi = (xi,1, . . . ,xi,`) ∈ Σ` and EKi = (zi,ωi,1,ωi,2) for a client index
i. It first derives zi, j = PRF(zi, j) for all j ∈ [`]. It calculates fi, j = PRF(zi, j,xi, j) for all j ∈ [`]. It
outputs a ciphertext by implicitly including i and T as

CTi,T =
({

Ci, j,1 = H(T) fi, j
}`

j=1, Ci,2 = H(T)ωi,1 , Ci,3 = H(T)ωi,2
)
.

MC-HVE.Decrypt(CT1,T , . . . ,CTn,T ,SKY ,PP): Let CTi,T = ({Ci, j,1}`j=1,Ci,2,Ci,3) for a time period T and
SKY = (K0,K1,K2,K3) for a list of vectors Y = (~y1, . . . ,~yn). Let S be the set of index tuples (i, j) that
are not wildcard positions in Y . It checks the following equation

e(H(T),K0)
?
= e(∏

(i, j)∈S
Ci, j,1,K1) · e(

n

∏
i=1

Ci,2,K2) · e(
n

∏
i=1

Ci,3,K3).

If this check succeeds, it outputs 1. Otherwise, it outputs 0.

11

3.4 Correctness

We show that our MC-HVE scheme satisfies the correctness property. If the messages of client’s ciphertexts
for the same time period and the attributes of a function key are the same except for the wildcard positions,
the following equation is satisfied.

e(H(T),K0) = e(H(T), v̂ fy·r1ŵr2
1 ŵr3

2)

= e
(
H(T), v̂∑(i, j)∈S PRF(zi, j,yi, j)·r1 v̂∑

n
i=1 ωi,1r2 v̂∑

n
i=1 ωi,2r3

)
= e

(
H(T)∑(i, j)∈S PRF(zi, j,xi, j), v̂r1

)
· e
(
H(T)∑

n
i=1 ωi,1 , v̂r2

)
· e
(
H(T)∑

n
i=1 ωi,2 , v̂r3

)
= e

(
∏

(i, j)∈S
Ci, j,1,K1

)
· e
(n

∏
i=1

Ci,2,K2
)
· e
(n

∏
i=1

Ci,3,K3
)
.

In contrast, if the messages in ciphertexts and function key are different at least one position, then the
above equation is satisfied only with negligible probability since the outputs of PRF will be different when
the inputs are different.

3.5 Security Analysis

In this section, we show that our proposed MC-HVE scheme provides the selective single-challenge security.
To briefly describe the proof, we first show that our scheme is selectively single-challenge secure when all
clients are not corrupted. We next show that this scheme also provides the selective single-challenge security
even if statically fixed clients are corrupted.

The basic idea of proving the selective single-challenge security with no corruptions of our MC-HVE
scheme is to change all challenge ciphertext elements of the message positions having different challenge
message values to random elements. In this case, an attacker can not win the security game because it can
not obtain any useful information to distinguish X∗0 from X∗1 . In order to implement this idea in the proof,
it is essential to devise a method to simulate function keys for any predicate fY satisfying fY (X∗0) = fY (X∗1)
requested by the attacker without knowing the master key. Specifically, it is needed for a simulator to
generate both non-matching function keys such that fY (X∗0) = fY (X∗1) = 0 and matching function keys such
that fY (X∗0) = fY (X∗1) = 1.

In order to handle these non-matching function keys and matching function keys in the security proof,
we would like to use the proof methods of the previous HVE schemes [12, 26, 34]. One problem is that
the previous HVE schemes are defined in the public-key setting, but our MC-HVE scheme is defined in the
private-key setting. To overcome this problem, we observe that changing the pseudo-random function (PRF)
to truly-random function (TRF) in the security proof allows the simulator to program the TRF outputs of
uncorrupted clients as desired by using the lazy sampling technique. Thus, we fix a target challenge message
in the selective security game and carefully program the TRF outputs to be similar to the proof setting of
the previous HVE schemes. Additionally, we modify the proof methods of previous HVE schemes to be
suitable for the multi-client setting. The detailed security proof of our MC-HVE scheme is given as follows.

Theorem 3.1. The above MC-HVE scheme is selectively single-challenge IND-secure with no corruptions
in the random oracle model if the SXDH and A3DH assumptions hold and the PRF is secure.

Proof. Suppose there exists an adversary that breaks the selective single-challenge IND-security game
with no corruptions. The adversary initially submits two challenge messages X∗0 = (~x∗0,1, . . . ,~x

∗
0,n), X∗1 =

(~x∗1,1, . . . ,~x
∗
1,n), and challenge time T ∗ where ~xµ,i = (x∗

µ,i,1, . . . ,x
∗
µ,i,`) ∈ Σ`. Let E be the set of index tuple

12

(i, j) such that x∗0,i, j = x∗1,i, j and E be the set of index tuple (i, j) such that x∗0,i, j 6= x∗1,i, j. To argue that the
adversary cannot win this security game, we define a sequence of hybrid games which are defined as follows:

Game G0. This game G0 denotes the selective single-challenge game which is defined in Section 2.3 where
I = /0 for no corruptions.

Game G1. This game G1 is almost identical to the game G0 except the generation of function keys. Let
S be the set of index tuple (i, j) that are not wildcard positions in function attributes Y = (~y1, . . . ,~yn)
where ~yi = (yi,1, . . . ,yi,`). Any function key query requested by the adversary should be one of the
following types:

• A function key query is Type-1 if it satisfies fY (X∗0) = fY (X∗1) = 1. In this query, we have
yi, j = x∗0,i, j = x∗1,i, j for all index tuple (i, j) ∈ S since S∩E = /0.

• A function key query is Type-2 if it satisfies fY (X∗0) = fY (X∗1) = 0. In this query, we have
yi, j 6= x∗0,i, j and yi, j 6= x∗1,i, j for some index tuple (i, j) ∈ S.

In this game, a simulator initially chooses a random value π ∈ Zp. To handle a type-1 function key
query, the simulator chooses two random exponents r1,r3 and sets r2 = πr3 in a correlated way by
using the fixed π . To handle a type-2 function key query, the simulator chooses three independent
random exponents r1,r2, and r3.

Game G2. In this game G2, we replaces the pseudo-random function PRF(zi, j,x) with the truly-random
function T RF i, j(x) for all i, j. This change can be easily done by the security of PRF.

Game G3. This game G3 is similar to the game G2 except the generation of the challenge ciphertext. In
this game, the simulator slightly changes the generation of challenge ciphertext elements as Ci,2 =
H(T ∗)ωi,1gρi and Ci,3 = H(T ∗)ωi,2gφi for all client index i ∈ [n] with some exponents ρi and φi that
satisfy ∑

n
i=1 ρi ·π +∑

n
i=1 φi = 0. In more detail, we define ρi = s ·ω ′i,1 and φi = s ·ω ′i,2 for a random s ∈

Zp where ω ′i,1,ω
′
i,2 are random values related to the exponents ωi,1,ωi,2. Note that even the adversary

that has a type-1 function key cannot distinguish the changed challenge ciphertext elements since it
gets ∑

n
i=1 ρi ·π +∑

n
i=1 φi = 0 during the decryption process.

Game G4. This final game G4 differs from the game G3 in that for all index tuple (i, j) ∈ E, the challenge
ciphertext element Ci, j,1 is generated as a random element. In this game, the challenge ciphertext
gives no information about the challenge message X∗µ . Therefore, the advantage of the adversary in
this game is zero.

Let SGi
A be the event that an adversary wins in a game Gi. From the following lemmas 3.2, 3.3, 3.4, and

3.5, we obtain the following result

AdvSE-1-IND
A (λ)≤

∣∣∣Pr[SG0
A]−Pr[SG4

A]
∣∣∣+Pr[SG4

A]≤
4

∑
i=1

∣∣∣Pr[SGi−1
A]−Pr[SGi

A]
∣∣∣+Pr[SG4

A]

≤AdvSXDH
B (λ)+n` ·AdvPRF

B (λ)+(1+n`) ·AdvA3DH
B (λ)

where n` is the size of the challenge message. This completes our proof.

Lemma 3.2. If the SXDH assumption holds, then no polynomial-time adversary can distinguish between
G0 and G1 with a non-negligible advantage.

13

Proof. To prove this lemma, we introduce a new complexity assumption by extending the DDH assumption.
The multi-DDH assumption is that if the challenge tuple D =

(
(p,G,Ĝ,GT ,e),g, ĝ, ĝa, ĝb1 , . . . , ĝbn

)
and

~Z = (Z1, . . . ,Zn) are given, no PPT algorithm A can distinguish ~Z = ~Z0 = (ĝab1 , . . . , ĝabn) from ~Z = ~Z1 =
(ĝc1 , . . . , ĝcn) with more than a negligible advantage where a,b1, . . . ,bn,c1, . . . ,cn are randomly chosen in
Zp. The multi-DDH assumption holds if the DDH assumption holds from the random self reducibility of
the DDH assumption [15].

Suppose there exists an adversary A that distinguishes between G0 and G1 with a non-negligible ad-
vantage. A simulator B that solves the multi-DDH assumption using A is given: a challenge tuple D =
((p,G,Ĝ,GT ,e),g, ĝ, ĝa, ĝb1 , . . . , ĝbq) and ~Z = (Z1, . . . ,Zq) where ~Z = (ĝab1 , . . . , ĝabq) or ~Z = (ĝc1 , . . . , ĝcq)
where q is the maximum number of type-1 queries. Then B that interacts with A is described as follows:

Init: A submits challenge message lists X∗0 = (~x0,1, . . . ,~x0,n), X∗1 = (~x1,1, . . . ,~x1,n) ∈ Σn`, and a challenge
time period T ∗. B then flips a random coin µ internally to fix X∗µ as the target message list.
Setup: B first chooses random PRF keys {zi}n

i=1. It also selects random exponents v′,{ωi,1,ωi,2}n
i=1 ∈ Zp,

calculates ω1 = ∑
n
i=1 ωi,1,ω2 = ∑

n
i=1 ωi,2, and then sets v̂ = ĝv′ , ŵ1 = ĝv′ω1 , ŵ2 = ĝv′ω2 . Next, it sets MK,

{EKi}n
i=1, and PP by using these selected elements.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ for X∗µ by running Encrypt(~x∗
µ,i,T

∗,EKi,PP)
for all client index i ∈ [n] by using EKi.
Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows:
If this is a hash query for a time period T , then B proceeds as follows: If T was queried before, then it
retrieves (T,h,−) from a hash list and returns h. Otherwise, it selects a random element h ∈ G, stores
(T,h,−) to a hash list, and then returns h.
If this is a function key query for a list of vectors Y = (~y1, . . . ,~yn), then B generates a function key depending
on the type of function key queries as follows:

• Case Type-1: Let k be the index of type-1 function key queries. It calculates fy =∑(i, j)∈S PRF(zi, j,yi, j)
by using MK. Next, it chooses random exponents r1,r2,r3 ∈ Zp and creates a function key depending
on the index k as

K0 = v̂ fyr1(Zk)
v′ω1(ĝbk)v′ω2 , K1 = v̂r1 , K2 = (Zk)

v′ , K3 = (ĝbk)v′ .

If Zk = ĝabk , then B plays the game G1 since this function key is correctly distributed with setting
r2 = abk,r3 = bk,π = a as

K0 = v̂ fyr1(ĝabk)v′ω1(ĝbk)v′ω2 = v̂ fyr1ŵabk
1 ŵbk

2 = v̂ fyr1ŵπr3
1 ŵr3

2 ,

K1 = v̂r1 , K2 = (ĝabk)v′ = v̂abk = v̂πr3 , K3 = (ĝbk)v′ = v̂bk = v̂r3 .

Otherwise (Zk = ĝck), B plays the game G0 since it implicitly sets r2 = ck,r3 = bk.

• Case Type-2: It simply creates a function key by running the GenKey algorithm since it knows MK.

If this is a ciphertext query for a client index i, a message vector~xi, and a time period T , then B generate a
ciphertext by running the Encrypt algorithm since it knows EKi.
Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Lemma 3.3. If the PRF scheme is secure, then no polynomial-time adversary can distinguish between G1
and G2 with a non-negligible advantage.

14

Proof. This proof is relatively straightforward from the security of PRF. That is, we can use additional
hybrid games that change a PRF to a truly random function one by one. Note that there are at most n`
number of zi, j in the security proof. We omit the details of this proof.

Lemma 3.4. If the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G2 and G3 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between G2 and G3 with a non-negligible
advantage. A simulator B that solves the A3DH assumption using A is given: a challenge tuple D =
((p,G,Ĝ,GT ,e),g,ga,gb,gab,gabc, ĝ, ĝa, ĝb) and Z where Z = gc or Z = R. Then B that interacts with A is
described as follows.

Init: A submits challenge message lists X∗0 = (~x∗0,1, . . . ,~x
∗
0,n), X∗1 = (~x∗1,1, . . . ,~x

∗
1,n)∈Σn`, and a challenge time

period T ∗ where~x∗
µ,i = (x∗

µ,i,1, . . . ,x
∗
µ,i,`). B flips a random coin µ ∈ {0,1} to fix X∗µ as the target challenge

message list.
Setup: B proceeds the following steps:

1. It first selects random exponents ψ,{ω ′i,1,ω ′i,2}n
i=1 ∈ Zp and defines {ωi,1 := (ψ + 1/ab)ω ′i,1,ωi,2 :=

(1/ab)ω ′i,2}n
i=1. Next, it calculates ω ′1 = ∑

n
i=1 ω ′i,1,ω

′
2 = ∑

n
i=1 ω ′i,2 and implicitly sets v̂ = ĝab, ŵ1 =

(ĝabψ ĝ)ω ′1 , ŵ2 = ĝω ′2 . It also sets π = −ω ′2/ω ′1 for type-1 function key queries. At the end of this
lemma, we will show that {ωi,1,ωi,2}n

i=1, and π are also randomly distributed.

2. We now defines the value of TRF. Let xi, j be a message for a client i and x∗
µ,i, j be the challenge

message for the same client index i. If xi, j = x∗
µ,i, j, then it defines T RF i, j(xi, j) := f ′i, j by selecting a

fixed random f ′i, j for xi, j. Otherwise (xi, j 6= x∗
µ,i, j), it defines T RF i, j(xi, j) := (1+1/a) f ′i, j by selecting

a fixed random f ′i, j for xi, j. That is, it implicitly defines

v̂T RF i, j(xi, j) := (ĝab) f ′i, j if xi, j = x∗µ,i, j, v̂T RF i, j(xi, j) := (ĝabĝb) f ′i, j if xi, j 6= x∗µ,i, j.

3. For the target message list X∗µ = (~x∗
µ,1, . . . ,~x

∗
µ,n) where~x∗

µ,i = (x∗
µ,i,1, . . . ,x

∗
µ,i,`), it selects a random f ′i, j

and defines T RF i, j(x∗µ,i, j) := f ′i, j for all i ∈ [n], j ∈ [`].

4. It initializes a hash table H-list and publishes PP = ((p,G,Ĝ,GT ,e),g, ĝ,n, `,H).

Challenge: B retrieves { f ′i, j} which are defined as T RF i, j(x∗µ,i, j) := f ′i, j for the challenge messages X∗µ .
Next, it implicitly sets H(T ∗) = gabc and creates challenge ciphertexts for the time period T ∗ as({

Ci, j,1 =
(
gabc) f ′i, j

}`

j=1, Ci,2 =
(
gabcψ ·Z

)ω ′i,1 , Ci,3 = Zω ′i,2
)

for all i ∈ [n].

If Z = gc, then it plays the game G2 by the following equations

Ci,2 =(gabc)(ψ+1/ab)ω ′i,1 = (gabcψgc)ω ′i,1 , Ci,3 = (gabc)(1/ab)ω ′i,2 = (gc)ω ′i,2 .

Otherwise (Z =R= gd), it implicitly sets ρi = (−c+d)ω ′i,1, φi = (−c+d)ω ′i,2 and plays G3 by the following
equations

Ci,2 =H(T ∗)ωi,1gρi = (gabc)(ψ+1/ab)ω ′i,1g(−c+d)ω ′i,1 = (gabcψgd)ω ′i,1 ,

Ci,3 =H(T ∗)ωi,2gφi = (gabc)(1/ab)ω ′i,2g(−c+d)ω ′i,2 = (gd)ω ′i,2 .

15

Note that we have ∑
n
i=1 ρi ·π +∑

n
i=1 φi = 0 since π =−ω ′2/ω ′1 =−∑

n
i=1 ω ′i,2/∑

n
i=1 ω ′i,1.

Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows.
If this is a hash query for a time period T , then B proceeds as follows: If T was queried before, then it
retrieves (T,h,−) from a hash list and returns h. Otherwise, it performs:

• Case T = T ∗: It sets H(T ∗) = gabc and stores (T ∗,H(T ∗),−) to H-list. It then returns gabc.

• Case T 6= T ∗: It selects a random exponent h′ ∈Zp and stores (T,H(T) = (gab)h′ ,h′) to H-list. It then
returns (gab)h′ .

If this is a function key query for a list of vectors Y = (~y1, . . . ,~yn) where~yi = (yi,1, . . . ,yi,`), then B generates
a function key as follows: It first defines two index sets A and A for the list of vectors Y as A = {(i, j) :
(yi, j 6= ∗)∧(yi, j = x∗

µ,i, j)} and A = {(i, j) : (yi, j 6= ∗)∧(yi, j 6= x∗
µ,i, j)} where i∈ [n] and j ∈ [`]. It then creates

a function key depending on the type of this function key as follows:

• Case Type-1: It calculates fY =∑(i, j)∈S T RF i, j(xi, j) =∑(i, j)∈A f ′i, j by retrieving f ′i, j chosen at the setup
since A = /0. It chooses random exponents r′1,r

′
3 ∈ Zp and implicitly defines the randomness as

r1 := r′1/ab, r2 := ω
′
2r′3/b, r3 :=−ω

′
1r′3/b

where r2 and r3 are correlated as r2 = πr3 with the fixed π =−ω ′2/ω ′1. Next, it creates a function key
by using the defined randomness as

K0 = ĝ fY ·r′1(ĝa)ψω ′1ω ′2r′3 , K1 = ĝr′1 , K2 = (ĝa)ω ′2r′3 , K3 = (ĝa)−ω ′1r′3 .

This type-1 function key is correctly distributed since we can derive the following equation

K0 =
(
ĝab) fY ·r′1/ab(ĝ(abψ+1)ω ′1

)ω ′2r′3/b(ĝω ′2
)−ω ′1r′3/b

= ĝ fY ·r′1
(
ĝa)ψω ′1ω ′2r′3 .

• Case Type-2: It calculates fY = ∑(i, j)∈S T RF i, j(xi, j) = ∑(i, j)∈A f ′i, j +∑(i, j)∈A(1+ 1/a) f ′i, j which is
equal to ∑(i, j)∈S f ′i, j +∑(i, j)∈A(1/a) f ′i, j by retrieving f ′i, j for the set A and selecting a fixed random
f ′i, j for the set A since A 6= /0. It chooses random exponents r′1,r

′
2,r
′
3 ∈ Zp and implicitly defines the

randomness as

r1 := r′1/b+ω
′
2r′3/ab, r2 := ω

′
2r′2/b, r3 :=− ∑

(i, j)∈A

f ′i, jr
′
3/a−ω

′
1r′2/b

where r1,r2, and r3 are independent random values since ∑(i, j)∈A f ′i, j 6= 0 except with negligible prob-
ability. Next, it creates a function key by using the defined randomness as

K0 =(ĝa)∑(i, j)∈S f ′i, jr
′
1 ĝ∑(i, j)∈S f ′i, jω

′
2r′3 ĝ∑(i, j)∈A f ′i, jr

′
1(ĝa)ψω ′1ω ′2r′2 ,

K1 =(ĝa)r′1 ĝω ′2r′3 , K2 = (ĝa)ω ′2r′2 , K3 = (ĝb)−∑(i, j)∈A f ′i, jr
′
3(ĝa)−ω ′1r′2 .

This type-2 function key is correctly distributed since we can derive the following equation

K0 =(ĝab) fY ·(r′1/b+ω ′2r′3/ab)(ĝ(abψ+1)ω ′1
)ω ′2r′2/b(ĝω ′2

)−∑(i, j)∈A f ′i, jr
′
3/a−ω ′1r′2/b

=
(
ĝab∑(i, j)∈S f ′i, j ĝb∑(i, j)∈A f ′i, j

)r′1/b+ω ′2r′3/ab(ĝabψω ′1
)ω ′2r′2/b(ĝω ′2

)−∑(i, j)∈A f ′i, jr
′
3/a

=
(
ĝab∑(i, j)∈S f ′i, j

)r′1/b+ω ′2r′3/ab(ĝb∑(i, j)∈A f ′i, j
)r′1/b(ĝabψω ′1

)ω ′2r′2/b

=(ĝa)∑(i, j)∈S f ′i, jr
′
1 ĝ∑(i, j)∈S f ′i, jω

′
2r′3 ĝ∑(i, j)∈A f ′i, jr

′
1(ĝa)ψω ′1ω ′2r′2 .

16

If this is a ciphertext query for a client index i, a message vector ~xi = (xi,1, . . . ,xi,`), and a time period
T 6= T ∗, then B retrieves (T,H(T) = (gab)h′ ,h′) from the H-list and generates a ciphertext as follows: For
each j ∈ [`], it performs:

• If xi, j = x∗
µ,i, j, it creates Ci, j,1 = (gab)h′ f ′i, j since T RF i, j(xi, j) := f ′i, j. Otherwise (xi, j 6= x∗

µ,i, j), it creates

Ci, j,1 = (gabgb)h′ f ′i, j since T RF i, j(xi, j) := (1+1/a) f ′i, j.

Next, it generates a ciphertext as
({

Ci, j,1
}`

j=1, Ci,2 =
(
gabψg

)h′ω ′i,1 , Ci,3 = gh′ω ′i,2
)
.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

To complete this proof, we show that if {ω ′i,1,ω ′i,2}n
i=1, and ψ are randomly selected, then {ωi,1,ωi,2}n

i=1,
and π are also randomly distributed by using a one-to-one correspondence. First, it can be seen that a
one-to-one correspondence between {ω ′i,2} and {ωi,2} is easily established from the simple setting {ωi,2 =
(1/ab)ω ′i,2} of the simulator. Next, we show that there is a one-to-one correspondence between {ω ′i,1},ψ and
{ωi,1},π . To do this, we use the proof of contradiction. That is, suppose that a one-to-one correspondence
does not hold between these values. Then, there exists two different pairs ({ω ′i,1},ψ) 6= ({ω ′i,1},ψ) which
are mapped to the same ({ωi,1},π). This gives us the following n+1 equations.{

(ψ +1/ab)ω ′i,1 = ωi,1 = (ψ +1/ab)ω ′i,1
}n

i=1,

− (
n

∑
i=1

ω
′
i,2)/(

n

∑
i=1

ω
′
i,1) = π =−(

n

∑
i=1

ω
′
i,2)/(

n

∑
i=1

ω
′
i,1).

From the last equation, we get the equation ∑
n
i=1 ω ′i,1 = ∑

n
i=1 ω

′
i,1. If we apply this equation to the previous

n equations, then we can derive the following equation

n

∑
i=1

(ψ +1/ab)ω ′i,1 =
n

∑
i=1

(ψ +1/ab)ω ′i,1 ⇒ ψ = ψ.

By applying the above equality equation ψ = ψ to the previous n equations individually, we can derive the
following equalities {

(ψ +1/ab)ω ′i,1 = (ψ +1/ab)ω ′i,1
}n

i=1 ⇒
{

ω
′
i,1 = ω

′
i,1
}n

i=1.

However, these equalities contradict the assumption that there exist two different pairs of values. Therefore,
the one-to-one correspondence between {ω ′i,1,ω ′i,2},ψ and {ωi,1,ωi,2},π is established.

Lemma 3.5. If the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G3 and G4 with a non-negligible advantage.

Proof. We define a sequence of hybrid games H3,(1,0),H3,(1,1), . . . ,H3,(1,`),H3,(2,1), . . . ,H3,(iδ , jδ), . . . ,H3,(n,`)
for indexes iδ ∈ [n] and jδ ∈ [`] where H3,(1,0) = G3. For notational simplicity, we also define H3,(iδ−1,`) =
H3,(iδ ,0). Recall that two sets E,E were defined as E = {(i, j) : x∗0,i, j = x∗1,i, j} and E = {(i, j) : x∗0,i, j 6= x∗1,i, j}
where x∗0,i, j ∈ X∗0 and x∗1,i, j ∈ X∗1 . For notational simplicity, we define a comparison (i, j) ≤ (iδ , jδ) as
(i < iδ) or (i = iδ ∧ j ≤ jδ). The game H3,(iδ , jδ) is defined as follows:

Game H3,(iδ , jδ) In this game H3,(iδ , jδ), we slightly change the generation of challenge ciphertext elements
in E. The simulator generates challenge ciphertext elements {Ci, j,1} as follows:

• If (i, j) ∈ E, then it creates Ci, j,1 normally.

17

• If (i, j) ∈ E and (i, j)≤ (iδ , jδ), then it creates Ci, j,1 as a random element in G.

• If (i, j) ∈ E and (i, j)> (iδ , jδ), then it creates Ci, j,1 normally.

The simulator generates challenge ciphertext elements Ci,2,Ci,3 as the same way as G3. It is obvious
that H3,(n,`) = G4.

Suppose there exists an adversary A that distinguishes between H3,(iδ , jδ−1) and H3,(iδ , jδ) with a non-
negligible advantage. Without loss of generality, we assume that (iδ , jδ) ∈ E since H3,(iδ , jδ−1) = H3,(iδ , jδ)
if (iδ , jδ) ∈ E. A simulator B that solves the A3DH assumption using A is given: a challenge tuple D =
((p,G,Ĝ,GT ,e),g,ga,gb,gab,gabc, ĝa, ĝb) and Z where Z = gc or Z = R. Then B that interacts with A is
described as follows.

Init: A submits challenge message lists X∗0 = (~x∗0,1, . . . ,~x
∗
0,n), X∗1 = (~x∗1,1, . . . ,~x

∗
1,n) ∈ Σn`, and a challenge

time period T ∗ where~x∗
µ,i = (x∗

µ,i,1, . . . ,x
∗
µ,i,`) for µ ∈ {0,1} and i ∈ [n]. B flips a random coin µ ∈ {0,1} to

fix X∗µ as the target message list.
Setup: B proceeds the following steps:

1. It first selects random exponents ψ,{ω ′i,1,ω ′i,2}n
i=1 ∈ Zp and defines {ωi,1 := (ψ + 1/ab)ω ′i,1,ωi,2 :=

(1/ab)ω ′i,2}n
i=1. Next, it calculates ω ′1 = ∑

n
i=1 ω ′i,1,ω

′
2 = ∑

n
i=1 ω ′i,2 and implicitly sets v̂ = ĝab, ŵ1 =

(ĝabψ ĝ)ω ′1 , ŵ2 = ĝω ′2 . It also sets π =−ω ′2/ω ′1 for type-1 function key queries.

2. We defines the value of TRF. Let xi, j be a message for a client i and x∗
µ,i, j be the challenge message

for the same client index i.

• Case (i, j) 6= (iδ , jδ): If xi, j = x∗
µ,i, j, then it defines T RF i, j(xi, j) := f ′i, j by selecting a fixed

random f ′i, j for xi, j. Otherwise (xi, j 6= x∗
µ,i, j), it defines T RF i, j(xi, j) := (1+1/a) f ′i, j by selecting

a fixed random f ′i, j for xi, j. That is, it implicitly defines

v̂T RF i, j(xi, j) :=
(
ĝab) f ′i, j if xi, j = x∗µ,i, j, v̂T RF i, j(xi, j) :=

(
ĝabĝb) f ′i, j if xi, j 6= x∗µ,i, j.

• Case (i, j) = (iδ , jδ): If xi, j = x∗
µ,i, j, then it defines T RF i, j(xi, j) := (1/ab) f ′i, j by selecting a

fixed random f ′i, j for xi, j. Otherwise (xi, j 6= x∗
µ,i, j), it defines T RF i, j(xi, j) := (1/a+1/ab) f ′i, j by

selecting a fixed random f ′i, j for xi, j. That is, it implicitly defines

v̂T RF i, j(xi, j) :=
(
ĝ
) f ′i, j if xi, j = x∗µ,i, j, v̂T RF i, j(xi, j) :=

(
ĝbĝ

) f ′i, j if xi, j 6= x∗µ,i, j.

3. For the target message list X∗µ = (~x∗
µ,1, . . . ,~x

∗
µ,n) where~x∗

µ,i = (x∗
µ,i,1, . . . ,x

∗
µ,i,`), it selects a random f ′i, j

for all i∈ [n], j∈ [`], and then defines T RF i, j(x∗µ,i, j) :=(1/ab) f ′i, j if (i, j)= (iδ , jδ) and T RF i, j(x∗µ,i, j) :=
f ′i, j if (i, j) 6= (iδ , jδ).

4. It initializes a hash table H-list and publishes PP = ((p,G,Ĝ,GT ,e),g, ĝ,H).

Challenge: B sets H(T ∗) = gabc and outputs a challenge ciphertext as follows: For each (i, j) where i ∈ [n]
and j ∈ [`], it performs:

• Case (i, j)< (iδ , jδ): If (i, j) ∈ E, then it chooses a random element Pi, j,1 ∈G and sets Ci, j,1 = Pi, j,1.
Otherwise, it creates Ci, j,1 = (gabc) f ′i, j since T RF i, j(x∗µ,i, j) := f ′i, j.

• Case (i, j) = (iδ , jδ): It creates Ci, j,1 = Z f ′i, j since (iδ , jδ) ∈ E and T RF i, j(x∗µ,i, j) := (1/ab) f ′i, j.

18

• Case (i, j)> (iδ , jδ): It creates Ci, j,1 = (gabc) f ′i, j since T RF i, j(x∗µ,i, j) := f ′i, j.

Next, it chooses a random element P = gs ∈ G and generates the challenge ciphertext by implicitly setting
ρi = (−c+ s)ω ′i,1,φi = (−c+ s)ω ′i,2 as({

Ci, j,1
}`

j=1, Ci,2 = (gabcψ ·P)ω ′i,1 , Ci,3 = (P)ω ′i,2
)

for all i ∈ [n].

If Z is a valid A3DH tuple, then B plays H3,(iδ , jδ−1). Otherwise, it plays H3,(iδ , jδ).
Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows.
If this is a hash query for a time period T , then B proceeds as follows: If T was queried before, then it
retrieves (T,h,−) from a hash list and returns h. Otherwise, it performs:

• Case T = T ∗: It sets H(T ∗) = gabc and stores (T ∗,H(T ∗),−) to H-list. It then returns gabc.

• Case T 6= T ∗: It selects a random exponent h′ ∈Zp and stores (T,H(T) = (gab)h′ ,h′) to H-list. It then
returns (gab)h′ .

If this is a function key query for a list of vectors Y = (~y1, . . . ,~yn) where~yi = (yi,1, . . . ,yi,`), then B generates
a function key as follows: It first defines two index sets A and A for the list of vectors Y as A = {(i, j) :
(yi, j 6= ∗)∧(yi, j = x∗

µ,i, j)} and A = {(i, j) : (yi, j 6= ∗)∧(yi, j 6= x∗
µ,i, j)} where i∈ [n] and j ∈ [`]. It then creates

a function key depending on the type of this function key as follows:

• Case Type-1: In this case, we have (iδ , jδ) /∈ S since (iδ , jδ) ∈ E and S∩E = /0. It calculates fY =

∑(i, j)∈S T RF i, j(xi, j) = ∑(i, j)∈A f ′i, j by retrieving f ′i, j chosen at the setup since A = /0. It chooses random
exponents r′1,r

′
3 ∈ Zn and implicitly defines the randomness by using the fixed π =−ω ′2/ω ′1 as

r1 := r′1/ab, r2 := ω
′
2r′3/b, r3 :=−ω

′
1r′3/b.

Next, it creates a function key by using the defined randomness as

K0 = ĝ fY ·r′1(ĝa)ψω ′1ω ′2r′3 , K1 = ĝr′1 , K2 = (ĝa)ω ′2r′3 , K3 = (ĝa)−ω ′1r′3 .

This function key is correctly distributed since it is the same as the type-1 function key of Lemma 3.4.

• Case Type-2 and (iδ , jδ) /∈ S: It calculates fY = ∑(i, j)∈S T RF i, j(xi, j) = ∑(i, j)∈A f ′i, j + ∑(i, j)∈A(1 +
1/a) f ′i, j, which is equal to ∑(i, j)∈S f ′i, j +∑(i, j)∈A(1/a) f ′i, j, by retrieving f ′i, j for the set A and selecting
a fixed random f ′i, j for the set A since A 6= /0.

It chooses random exponents r′1,r
′
2,r
′
3 ∈ Zn and implicitly defines the randomness as

r1 := r′1/b+ω
′
2r′3/ab, r2 := ω

′
2r′2/b, r3 :=− ∑

(i, j)∈A

f ′i, jr
′
3/a−ω

′
1r′2/b

where r1,r2, and r3 are independent random values since ∑(i, j)∈A f ′i, j 6= 0 except with negligible prob-
ability. Next, it creates a function key by using the defined randomness as

K0 =(ĝa)∑(i, j)∈S f ′i, jr
′
1 ĝ∑(i, j)∈S f ′i, jω

′
2r′3 ĝ∑(i, j)∈A f ′i, jr

′
1(ĝa)ψω ′1ω ′2r′2 ,

K1 =(ĝa)r′1 ĝω ′2r′3 , K2 = (ĝa)ω ′2r′2 , K3 = (ĝb)−∑(i, j)∈A f ′i, jr
′
3(ĝa)−ω ′1r′2 .

This function key is correctly distributed since it is the same as the type-2 function key of Lemma 3.4.

19

• Case Type-2 and (iδ , jδ) ∈ S: Let Sδ = S \ {(iδ , jδ)}, Aδ = A \ {(iδ , jδ)}, and Aδ = A \ {(iδ , jδ)}.
It calculates fY = ∑(i, j)∈S T RF i, j(xi, j) = ∑(i, j)∈Aδ

f ′i, j +∑(i, j)∈Aδ
(1/a+ 1) f ′i, j +(τ · 1/a+ 1/ab) f ′iδ , jδ

where τ = 0 if xiδ , jδ = x∗
µ,iδ , jδ and τ = 1 otherwise, which is equal to ∑(i, j)∈Sδ

f ′i, j+∑(i, j)∈Aδ
(1/a) f ′i, j+

(τ ·1/a+1/ab) f ′iδ , jδ , by retrieving f ′i, j for the set A and selecting a fixed random f ′i, j for the set A since
A 6= /0.

It chooses random exponents r′1,r
′
2,r
′
3 ∈ Zn and implicitly defines the randomness as

r1 := ω
′
2r′1/b+ω

′
2r′3/ab, r2 := ω

′
2r′2/b,

r3 :=−(∑
(i, j)∈Aδ

f ′i, j + τ f ′iδ , jδ)r
′
3/a− (f ′iδ , jδ r′1 +ω

′
1r′2)/b− f ′iδ , jδ r′3/ab

where r1,r2,r3 are independent random values since ∑(i, j)∈Aδ
f ′i, j + τ f ′iδ , jδ 6= 0 except with negligible

probability. Next, it creates a function key by using the defined randomness as

K0 =(ĝa)∑(i, j)∈S
δ

f ′i, jω
′
2r′1 ĝ∑(i, j)∈S

δ
f ′i, jω

′
2r′3 ĝ∑(i, j)∈A

δ
f ′i, jω

′
2r′1(ĝa)ψω ′1ω ′2r′2 , K1 = (ĝa)ω ′2r′1 ĝω ′2r′3 ,

K2 =(ĝa)ω ′2r′2 , K3 = (ĝb)
−(∑(i, j)∈A

δ
f ′i, jr

′
3+τ f ′i

δ
, j

δ
r′3)(ĝa)

−(f ′i
δ
, j

δ
r′1+ω ′1r′2)ĝ− f ′i

δ
, j

δ
r′3 .

Therefore, the distribution of the above function key is correct as follows

K0 =(ĝab)∑(i, j)∈S
δ

fi, j·r1(ĝab) fi
δ
, j

δ
·r1(ĝ(abψ+1)ω ′1)r2(ĝω ′2)r3

=
(
ĝab∑(i, j)∈S

δ
f ′i, j ĝb∑(i, j)∈A

δ
f ′i, j
)ω ′2r′1/b+ω ′2r′3/ab(ĝbτ f ′i

δ
, j

δ ĝ f ′i
δ
, j

δ

)ω ′2r′1/b+ω ′2r′3/ab(
ĝ(abψ+1)ω ′1

)ω ′2r′2/b(ĝω ′2
)r3

=
(
ĝa∑(i, j)∈S

δ
f ′i, j
)ω ′2r′1

(
ĝ∑(i, j)∈S

δ
f ′i, j
)ω ′2r′3

(
ĝ∑(i, j)∈A

δ
f ′i, j
)ω ′2r′1

(
ĝ∑(i, j)∈A

δ
f ′i, j
)ω ′2r′3/a(

ĝτ f ′i
δ
, j

δ

)ω ′2r′1
(
ĝτ f ′i

δ
, j

δ

)ω ′2r′3/a(ĝ f ′i
δ
, j

δ

)ω ′2r′1/b(ĝ f ′i
δ
, j

δ

)ω ′2r′3/ab(
ĝaψω ′1

)ω ′2r′2
(
ĝω ′1

)ω ′2r′2/b(ĝω ′2
)−(∑(i, j)∈A

δ
f ′i, j+τ f ′i

δ
, j

δ
)r′3/a−(f ′i

δ
, j

δ
r′1+ω ′1r′2)/b− f ′i

δ
, j

δ
r′3/ab

=(ĝa)∑(i, j)∈S
δ

f ′i, jω
′
2r′1 ĝ∑(i, j)∈S

δ
f ′i, jω

′
2r′3 ĝ∑(i, j)∈A

δ
f ′i, jω

′
2r′1(ĝa)ψω ′1ω ′2r′2 .

If this is a ciphertext query for a client index i, a message vector ~xi = (xi,1, . . . ,xi,`), and a time period
T 6= T ∗, then B retrieves (T,H(T) = (gab)h′ ,h′) from the H-list and generates a ciphertext as follows: For
each j ∈ [`], it performs:

• Case (i, j) 6= (iδ , jδ): If xi, j = x∗
µ,i, j, it creates Ci, j,1 = (gab)h′ f ′i, j since T RF i, j(xi, j) := f ′i, j. Otherwise

(xi, j 6= x∗
µ,i, j), it creates Ci, j,1 = (gbgab)h′ f ′i, j since T RF i, j(xi, j) := (1/a+1) f ′i, j.

• Case (i, j)= (iδ , jδ): If xi, j = x∗
µ,i, j, it creates Ci, j,1 = gh′ f ′i, j since T RF i, j(xi, j) :=(1/ab) f ′i, j. Otherwise

(xi, j 6= x∗
µ,i, j), it creates Ci, j,1 = (gbg)h′ f ′i, j since T RF i, j(xi, j) := (1/a+1/ab) f ′i, j.

Next, it generates a ciphertext as
({

Ci, j,1
}`

j=1, Ci,2 = (gabψg)h′ω ′i,1 , Ci,3 = (g)h′ω ′i,2
)
.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

We have shown that our MC-HVE scheme provides the selective single-challenge security when all
clients are not corrupted. Now we show that our MC-HVE scheme still provides the selective single-
challenge security when corrupted clients are statically fixed. In other words, if there is an attacker A that

20

breaks the selective single-challenge security with static corruptions of the MC-HVE scheme, then another
algorithm B that uses the attacker A as a sub-algorithm can break the selective single-challenge security
with no corruptions of the MC-HVE scheme.

The basic idea of this proof is that a simulator directly selects encryption keys for corrupted clients.
In this case, the generation of function keys can be problem since function key elements composed of
secret components corresponding to corrupted clients and uncorrupted clients. Fortunately, in our MC-HVE
scheme, it is possible to convert a function key SK for uncorrupted clients to another function key SK′

associated with all clients by using the encryption keys of corrupted clients. The detailed proof of this is
described in the following theorem.

Theorem 3.6. The above MC-HVE scheme is selectively single-challenge IND-secure with static corrup-
tions in the random oracle model if the MC-HVE scheme is selectively single-challenge IND-secure with no
corruptions.

Proof. Suppose there exists an adversary A that breaks the selective single-challenge IND-security with
static corruptions. By using A, a simulator B try to break the selective single-challenge IND-security with
no corruptions played by a challenger C. The simulator B is described as follows:

Init: A submits the set of corrupted client indexes I, two challenge message lists X∗0 ,X
∗
1 , and a challenge

time period T ∗. Let I = {1, . . . ,n} \ I be the set of uncorrupted client indexes. B submits two challenge
message lists X∗0 ,X

∗
1 , the challenge time period T ∗ to C. Note that C plays the selective single-challenge

game with no corruptions for the set I.
Setup: B receives PP from C. It chooses random PRF keys {zi}i∈I and random exponents {ωi,1,ωi,2}i∈I .
Next, it gives {EKi = (zi,ωi,1,ωi,2)}i∈I and PP to A. It derives zi, j = PRF(zi, j) for all i ∈ I and j ∈ [`] for
later use.
Challenge: B receives challenge ciphertexts {CTi,T ∗}i∈I from C and gives {CTi,T ∗}i∈I to A.
Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows:
If this is a hash query for a time period T , then B relays this query to C and gives the response of C to A.
If this is a function key query for a list of vectors Y = (~y1, . . . ,~yn), then B proceeds as follows:

1. It first sets Y ′ = {yi}i∈I derived from Y . It requests a function key for Y ′ to C and receives a function
key SKY ′ = (K′0,K

′
1,K

′
2,K

′
3) for the set I.

2. Let S be the set of index tuples (i, j) that are not wildcard positions in Y = {~yi}i∈I . It calculates
fY = ∑(i, j)∈S PRF(zi, j,yi, j) and computes K0 = K′0 · (K′1) fY · (K′2)∑i∈I ωi,1 · (K′3)∑i∈I ωi,2 .

3. It gives SKY = (K0,K1 = K′1,K2 = K′2,K3 = K′3) to A.

If this is a ciphertext query for a client index i ∈ I, a message vector ~xi, and a time period T 6= T ∗, then B
relays this query to C and gives CTi,T from C to A.
Guess: A outputs a guess µ ′. B also outputs µ ′.

3.6 Discussions

Efficiency Analysis. We analyze the efficiency of our MC-HVE scheme. In our MC-HVE scheme, a
ciphertext consists of `+2 group elements per client, and n(`+2) group elements for n clients. A function
key in our scheme is very compact because it consists of just 4 group elements, regardless of the number of
clients. The encryption algorithm consists of ` PRF operations and `+2 exponentiation operations per each

21

client. The function key generation algorithm consists of n` PRF operations and 6 exponentiation operations.
The decryption algorithm consists of O(n`) multiplication operations and only 4 pairing operations, which
are independent of the number of clients and the number of messages. In the MC-HVE scheme of Kamp
et al. [36], a ciphertext consists of 2n` group elements and a function key consists of 2n` group elements.
The decryption algorithm of their scheme requires 2n` pairing operations which are linearly depend on the
number of clients and the number of messages. Therefore, our MC-HVE scheme is more efficient in terms of
ciphertext size, function key size, and the performance of the decryption algorithm compared to the previous
MC-HVE scheme.

Supporting Comparison and Range Queries. Boneh and Waters [12] presented an HVE scheme which is a
special kind of predicate encryption, and showed that it can be extended to support conjunctive comparison,
range, and subset queries by carefully encoding the messages of ciphertexts and the attributes of function
keys. Our MC-HVE scheme also can be extended to support conjunctive comparison, range, and subset
queries in the multi-client setting by using the same extension method of them. However, this extension
method only works for a small domain {1, . . . ,D} since the ciphertext of this extension method consists of
O(D) group elements. In order to overcome this problem, we propose a multi-client range query encryption
scheme which supports conjunctive range queries for a large domain in the next section.

Removing Random Oracles. To provide multi-client functionality, our MC-HVE scheme uses a hash
function which is modeled as a random oracle in the security proof. That is, because a each client generates
a ciphertext by using the same hash H(T) for the same time period T , all clients are synchronized to use
the same encryption random even if they independently perform the encryption algorithm. However, it is a
very strong assumption that the hash function works like the random oracle. Therefore, it is necessary to
design an efficient MC-HVE scheme that does not use random oracles. One way to remove random oracles
is to provide all of the group elements associated with the individual time to the public parameters. That is,
if the maximum time period Tmax is restricted to be a polynomial value, all groups elements h1, . . . ,hTmax are
provided in the public parameters and the encryption algorithm uses hT instead of H(T).

4 Multi-Client Range Query Encryption

In this section, we propose a multi-client range query encryption scheme by using a binary tree and prove
the selective security under static assumptions.

4.1 Design Principle

To support efficient range queries, we use a binary tree to represent the values. The method to effectively
represent values and ranges using a binary tree was used by Shi et al. [32] to design a multi-dimensional
range query on encrypted data (MRQED) scheme. In order to design a multi-client range query encryption
(MC-RQE) scheme, we try to combine a binary tree and a simplified MC-HVE scheme for each node in the
tree. However, the method of simply applying the MC-HVE scheme to the binary tree can lead to collusion
attacks such that different function keys can be mixed to derive new function keys. In order to prevent this
collusion attacks, we apply a secret sharing scheme so that only the function key elements contained in the
same function key can be combined for the decryption process.

22

4.2 Binary Tree

A perfect binary tree BT is a tree data structure in which all internal nodes have two child nodes and all
leaf nodes have the same depth. Let D = 2` be the number of leaf nodes in BT . The number of all nodes
in BT is 2D−1 and we denote vi as a node in BT . The depth di of a node vi is the length of the path from
a root node to the node. The root node of a tree has depth zero. The depth of BT is the length of the path
from the root node to a leaf node. A level of BT is a set of all nodes at given depth. Each node vi ∈ BT has
an identifier Li ∈ {0,1}∗ which is a fixed and unique string. A subtree Ti in BT is defined as a tree that is
rooted at a node vi ∈ BT .

Let BT be a perfect binary tree with D = 2` leaf nodes. We define the following two functions in BT .

Path(BT ,x): It takes as input a tree BT and a value x ∈ [D]. Let vx be a leaf node in BT that is assigned to
x. Let (vx,0,vx,1, . . . ,vx,`) be the path from a root node vx,0 to the leaf node vx,` = vx. It sets a path set
PVx = (vx,0, . . . ,vx,`) and outputs PVx.

Cover(BT ,y = (yL,yR)): It takes as input a tree BT and a range (yL,yR) ∈ [D]2 such that yL ≤ yR. Let vL

and vR be leaf nodes assigned to yL and yR respectively. Let S be the set of leaf nodes from vL to vR,
and R be the set of all leaf nodes excluding S. It computes the Steiner Tree ST (R) which is the subtree
of BT that connects all nodes in R with the root node. Let Ty,1, . . .Ty,m be all the subtrees of BT that
hang off ST (R), that is all subtrees whose roots vy,1, . . .vy,m are not in ST (R) but adjacent to nodes of
outdegree 1 in ST (R). It outputs a cover set CVy = (vy,1, . . . ,vy,m).

For the path set PVx and the cover set CVy defined in the above two algorithms, the following properties
are established. 1) If x∈ [yL,yR], then there is only one node in PVx∩CVy. 2) If x 6∈ [yL,yR], then PVx∩CVy =
/0. 3) The maximum size of CVy is 2 logD.

4.3 Predicate for Conjunctive Range

Let Y = (y1, . . . ,yn) be a list of ranges where yi = (yi,L,yi,R) and X = (x1, . . . ,xn) be a list of values where
xi ∈ [D]. We define a predicate fY over Dn for conjunctive range as

fY (X) =

{
1 if xi ∈ [yi,L,yi,R] for all i ∈ [n]
0 otherwise.

4.4 Construction

We propose an MC-RQE scheme that combines a simplified MC-HVE scheme with a binary tree to effi-
ciently process range queries. The detailed description of our scheme is given as follows.

MC-RQE.Setup(1λ ,n): Let n be the number of clients and ` be the depth of a perfect binary tree. It obtains
a bilinear group (p,G,Ĝ,GT ,e) of prime order p by running G(1λ). Let g, ĝ be random generators of
G,Ĝ respectively. It chooses random PRF keys {zi}n

i=1, random exponents {ωi,1,ωi,2}n
i=1, and a ran-

dom element v̂∈ Ĝ. It selects a hash function H from the family of hash functions. It outputs a master
key MK =

(
{zi}n

i=1, v̂,
{

ŵi,1 = v̂ωi,1 , ŵi,2 = v̂ωi,2
}n

i=1

)
, encryption keys

{
EKi = (zi,ωi,1,ωi,2)

}n
i=1 for

all clients, and public parameters

PP =
(
(p,G,Ĝ,GT ,e), g, ĝ, H

)
.

23

MC-RQE.GenKey(Y,MK,PP): Let BT be a perfect binary tree with depth ` and Y = (y1 = (y1,L,y1,R),
. . . ,yn = (yn,L,yn,R)) where yi,L ≤ yi,R.

1. It first selects random exponents γ1, . . . ,γn−1 ∈ Zp and sets γn =−∑
n−1
i=1 γi to satisfy ∑

n
i=1 γi = 0.

2. For each client i ∈ [n], it performs the following steps:

(a) It obtains a cover set CVi = (vi,1, . . . ,vi,m) by running Cover(BT ,(yi,L,yi,R)).
(b) For each node vi, j ∈CVi, it calculates fi, j = PRF(zi,vi, j) and computes a node key by se-

lecting random exponents ri, j,1,ri, j,2,ri, j,3 ∈ Zp as

NKi, j =
(

Ki, j,0 = ĝγi v̂ fi, j·ri, j,1ŵri, j,2
i,1 ŵri, j,3

i,2 , Ki, j,1 = v̂ri, j,1 , Ki, j,2 = v̂ri, j,2 , Ki, j,3 = v̂ri, j,3
)
.

(c) It creates a client function key SKi =
(
CVi,NKi,1, . . . ,NKi,mi

)
where mi is the size of CVi.

3. Finally, it outputs a function key SKY =
(
SK1, . . . ,SKn

)
.

MC-RQE.Encrypt(xi,T,EKi,PP): Let BT be a perfect binary tree with depth ` and EKi = (zi,ωi,1,ωi,2).
It first obtains a path set PVi = (vi,0,vi,1, . . . ,vi,`) by running Path(BT ,xi). For each node vi, j ∈ PVi,
it calculates fi, j = PRF(zi,vi, j) and computes Ci, j,1 = H(T) fi, j . It outputs a ciphertext as

CTi,T =
({

Ci, j,1
}`

j=0, Ci,2 = H(T)ωi,1 , Ci,3 = H(T)ωi,2
)
.

MC-RQE.Decrypt(CT1,T , . . . ,CTn,T ,SKY ,PP): Let CTi,T =({Ci, j,1}`j=0,Ci,2,Ci,3) and SKY =(SK1, . . . ,SKn)
where SKi = (CVi,NKi,1, . . . ,NKi,mi) and NKi, j = (Ki, j,0,Ki, j,1,Ki, j,2,Ki, j,3).

1. For each combination
{(

(Ci, ji,1,Ci,2,Ci,3),(Ki, j′i ,0,Ki, j′i ,1,Ki, j′i ,2,Ki, j′i ,3)
)}n

i=1 of CTT and SKY where
(Ci, ji,1,Ci,2,Ci,3) ∈CTi,T for some ji and (Ki, j′i ,0,Ki, j′i ,1,Ki, j′i ,2,Ki, j′i ,3) ∈ SKi for some j′i with the
restriction that the node depth of ji and the node depth of j′i are the same, it checks the following
equation

e(H(T),
n

∏
i=1

Ki, j′i ,0)
?
=

n

∏
i=1

e(Ci, ji,1,Ki, j′i ,1) ·
n

∏
i=1

e(Ci,2,Ki, j′i ,2) ·
n

∏
i=1

e(Ci,3,Ki, j′i ,3).

If this check succeeds, it outputs 1 since it found a matching combination. Otherwise, it contin-
ues to the next combination.

2. Finally, it outputs 0 since it fails to find a matching combination.

4.5 Correctness

If fX(Y) = 1 is satisfied for the message X of a ciphertext and the range Y of a function key, then one
common node exists for each client by the property of the path set in a ciphertext and the cover set in a
function key. Thus, we can derive the following equation since the PRF value fi, j of the ciphertext matches
one of the PRF values { fi, j} of the function key.

e(H(T),
n

∏
i=1

Ki, ji,0) = e
(
H(T),

n

∏
i=1

ĝγi v̂ fi, ji ·ri, ji ,1ŵ
ri, ji ,2
i,1 ŵ

ri, ji ,3
i,2

)
= e

(
H(T), ĝ∑

n
i=1 γi

n

∏
i=1

v̂ fi, ji ·ri, ji ,1
n

∏
i=1

v̂ωi,1ri, ji ,2
n

∏
i=1

v̂ωi,2ri, ji ,3
)

24

=
n

∏
i=1

e
(
H(T) fi, ji , v̂ri, ji ,1

)
·

n

∏
i=1

e
(
H(T)ωi,1 , v̂ri, ji ,2

)
·

n

∏
i=1

e
(
H(T)ωi,2 , v̂ri, ji ,3

)
=

n

∏
i=1

e
(
Ci, ji,1,Ki, ji,1

)
·

n

∏
i=1

e
(
Ci,2,Ki, ji,2

)
·

n

∏
i=1

e
(
Ci,3,Ki, ji,3

)
.

4.6 Security Analysis

In order to prove the selective single-challenge weak security of our MC-RQE scheme, we first prove this
security in the absence of corrupted clients, and then prove this security in the case where the corrupted
clients are statically fixed.

The basic idea of proving the selective single-challenge weak security of the MC-RQE scheme in the
no corrupted clients setting is similar to the proof of the MC-HVE scheme. That is, all challenge ciphertext
elements associated with different nodes among the path nodes which are associated with the challenge
messages X∗0 ,X

∗
1 are changed to random elements. The overall structure of the security proof is similar to

that of the MC-HVE scheme. However, there is a considerable difference from the proof of the MC-HVE
scheme since the proof of our MC-RQE scheme must deal with nodes in the binary tree. For further details
of this proof, please refer to the following theorem.

Theorem 4.1. The above MC-RQE scheme is selectively single-challenge weak IND-secure with no corrup-
tions in the random oracle model if the A3DH assumption holds and the PRF is secure.

Proof. Suppose there exists an adversary that breaks the selective single-challenge weak IND-security game
with no corruptions. The adversary initially submits two challenge messages X∗0 = (x∗0,1, . . . ,x

∗
0,n), X∗1 =

(x∗1,1, . . . ,x
∗
1,n), and challenge time T ∗. We obtain PV ∗

µ,i = (v∗
µ,i,0,v

∗
µ,i,1, . . . ,v

∗
µ,i,`) by running Path(BT ,x∗

µ,i)
for all µ ∈ {0,1} and i ∈ [n]. From this path set PV ∗

µ,i, we define two node sets Ei = {v∗µ,i, j : (v∗
µ,i, j ∈

PV ∗
µ,i)∧ (v∗0,i, j = v∗1,i, j)} and E i = {v∗µ,i, j : (v∗

µ,i, j ∈ PV ∗
µ,i)∧ (v∗0,i, j 6= v∗1,i, j)} which are partitions of all nodes

in the path set. To argue that the adversary cannot win this game, we define a sequence of hybrid games as
follows:

Game G0. The first game G0 denotes the selective single-challenge weak security game which is defined
in Section 2.3 where I = /0 for no corruptions.

Game G1. In this game G1, we replaces the pseudo-random functions PRF(zi,x) with the truly-random
function T RF i(x) for all i. This change can be easily done by the security of PRF.

Game G2. This game G2 is similar to the game G1 except the generation of the challenge ciphertext. In
this game, the simulator slightly changes the generation of challenge ciphertext elements as Ci,2 =
H(T ∗)ωi,1gρi and Ci,3 = H(T ∗)ωi,2gφi for all index i ∈ [n] with some exponents ρi and φi. In more
detail, we define ρi = s ·ω ′i,1 and φi = s ·ω ′i,2 for a random s ∈ Zp where ω ′i,1,ω

′
i,2 are random values

related to the exponents ωi,1,ωi,2.

Game G3. This final game G3 differs from the game G2 in that the challenge ciphertext elements {Ci, j,1}
associated with E i are generated as random elements for all i ∈ [n]. Thus the challenge ciphertext
gives no information about the challenge message X∗µ . Therefore, the advantage of the adversary in
this final game is zero.

25

Let SGi
A be the event that an adversary wins in a game Gi. From the following lemmas 4.2, 4.3, and 4.4,

we obtain the following result

AdvSE-1-IND
A (λ)≤

3

∑
i=1

∣∣∣Pr[SGi−1
A]−Pr[SGi

A]
∣∣∣+Pr[SG3

A]

≤n ·AdvPRF
B (λ)+(1+n`) ·AdvA3DH

B (λ)

where n` is the size of the challenge message. This completes our proof.

Lemma 4.2. If the PRF is secure, then no polynomial-time adversary can distinguish between G0 and G1
with a non-negligible advantage.

Proof. This proof of this is relatively straightforward from the security of PRF. That is, we can use additional
hybrid games that change a PRF to a truly random function. Note that there are at most n number of zi in
the security proof.

Lemma 4.3. If the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G1 and G2 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between G1 and G2 with a non-negligible
advantage. A simulator B that solves the A3DH assumption using A is given: a challenge tuple D =
((p,G,Ĝ,GT ,e),g,ga,gb,gab,gabc, ĝ, ĝa, ĝb) and Z where Z = gc or Z = R. Then B that interacts with A is
described as follows.

Init: A submits challenge message lists X∗0 = (x∗0,1, . . . ,x
∗
0,n), X∗1 = (x∗1,1, . . . ,x

∗
1,n), and a challenge time

period T ∗. B flips a random coin µ ∈ {0,1} to fix X∗µ as the target message list and obtains PV ∗
µ,i =

(v∗
µ,i,0, . . . ,v

∗
µ,i,`) by running Path(BT ,x∗

µ,i) for all i ∈ [n].
Setup: B proceeds the following steps:

1. It first selects random exponents ψ,{ω ′i,1,ω ′i,2}n
i=1 ∈ Zp and defines {ωi,1 := (ψ + 1/ab)ω ′i,1,ωi,2 :=

(1/ab)ω ′i,2}n
i=1. Next, it implicitly sets v̂ = ĝab,{ŵi,1 = (ĝabψ ĝ)ω ′i,1 , ŵi,2 = ĝω ′i,2}n

i=1 since ĝab is not
given in the assumption.

2. It now defines the value of TRF by using lazy sampling. Let vi, j be a node for a client i and PV ∗
µ,i be

the challenge path set for the same client i. If vi, j ∈ PV ∗
µ,i, then it defines T RF i(vi, j) := f ′i, j by selecting

a fixed random f ′i, j for vi, j. Otherwise (vi, j 6∈ PV ∗
µ,i), it defines T RF i(vi, j) := (1+1/a) f ′i, j by selecting

a fixed random f ′i, j for vi, j. That is, it implicitly defines

v̂T RF i(vi, j) := (ĝab) f ′i, j if vi, j ∈ PV ∗µ,i, v̂T RF i(vi, j) := (ĝabĝb) f ′i, j if vi, j 6∈ PV ∗µ,i.

3. For the target message list X∗µ = (x∗
µ,1, . . . ,x

∗
µ,n) with PV ∗

µ,i = (v∗
µ,i,0, . . . ,v

∗
µ,i,`) for all i, it selects a

random f ′i, j and defines T RF i(v∗µ,i, j) := f ′i, j for all i ∈ [n], j ∈ [0, `].

4. It initializes a hash table H-list and publishes PP = ((p,G,Ĝ,GT ,e),g, ĝ,n, `,H).

Challenge: B retrieves { f ′i, j} since T RF i(v∗µ,i, j) := f ′i, j for the challenge messages X∗µ . Next, it implicitly
sets H(T ∗) = gabc and creates challenge ciphertexts for the time period T ∗ as({

Ci, j,1 = (gabc) f ′i, j
}`

j=0, Ci,2 = (gabcψ ·Z)ω ′i,1 , Ci,3 = Zω ′i,2
)

for all i ∈ [n].

26

If Z = gc, then it plays G2 since ciphertext elements are well formed as

Ci,2 = (gabc)(ψ+1/ab)ω ′i,1 = (gabcψgc)ω ′i,1 , Ci,3 = (gabc)(1/ab)ω ′i,2 = (gc)ω ′i,2 .

Otherwise (Z = R = gd), it plays G3 since ciphertext elements are created with setting ρi = (−c+ d)ω ′i,1,
φi = (−c+d)ω ′i,2 as

Ci,2 = H(T ∗)ωi,1gρi = (gabc)(ψ+1/ab)ω ′i,1g(−c+d)ω ′i,1 = (gabcψgd)ω ′i,1 ,

Ci,3 = H(T ∗)ωi,2gφi = (gabc)(1/ab)ω ′i,2g(−c+d)ω ′i,2 = (gd)ω ′i,2 .

Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows.
If this is a hash query for a time period T , then B proceeds as follows: If T was queried before, then it
retrieves (T,h,−) from H-list and returns h. Otherwise, it performs:

• Case T = T ∗: It sets H(T ∗) = gabc and stores (T ∗,H(T ∗),−) to H-list. It then returns gabc.

• Case T 6= T ∗: It selects a random exponent h′ ∈Zp and stores (T,H(T) = (gab)h′ ,h′) to H-list. It then
returns (gab)h′ .

If this is a function key query for a list of ranges Y = (y1, . . . ,yn) where yi = (yi,L,yi,R), then B generates a
function key as follows:

1. It first derives cover sets CV1, . . . ,CVn from y1, . . . ,yn. For each CVi, it defines two node sets PVi and
PV i as PVi = {vi, j : vi, j ∈CVi∧ vi, j ∈ PV ∗

µ,i} and PV i = {vi, j : vi, j ∈CVi∧ vi, j 6∈ PV ∗
µ,i}.

2. It also defines three index sets I1, I2, I3 ⊆ [n] which are partitions of client indexes. It defines I1 = {i :
∃vi, j ∈ CVi such that vi, j ∈ PVi}. It next selects a random index ĩ ∈ [n] \ I1 and defines I3 = {ĩ}. It
then defines I2 = [n]\ (I1∪ I3). By using these index sets, it will define γi differently depending on the
index sets. For each client index i∈ I2, it chooses a random exponent γ ′i and implicitly defines γi := γ ′i .

3. For each client i ∈ [n], it performs the following steps:

(a) For each node vi, j such that (i∈ I1)∧(vi, j ∈ PVi), it proceeds as follows: It defines T RF i(vi, j) :=
f ′i, j by retrieving f ′i, j chosen at the setup. It chooses random exponents γ ′i ,r

′
i, j,1,r

′
i, j,2,r

′
i, j,3 ∈ Zp,

sets ∆i = ω ′i,1r′i, j,2 +ω ′i,2r′i, j,3, and implicitly defines the randomness as

γi :=−∆i/ab+ γ
′
i , ri, j,1 := r′i, j,1/ab, ri, j,2 := r′i, j,2/ab, ri, j,3 := r′i, j,3/ab.

Note that this γi is fixed for this index i since there is only one node vi, j ∈ PVi. Next, it creates a
node key by using the defined randomness as

Ki, j,0 = ĝγ ′i ĝ f ′i, j·r′i, j,1 ĝψω ′i,1r′i, j,2 , Ki, j,1 = ĝr′i, j,1 , Ki, j,2 = ĝr′i, j,2 , Ki, j,3 = ĝr′i, j,3 .

This node key is correctly distributed by the following equation

Ki, j,0 = ĝ−(ω
′
i,1r′i, j,2+ω ′i,2r′i, j,3)/ab+γ ′i

(
ĝ(ab) f ′i, j

)r′i, j,1/ab(ĝ(abψ+1)ω ′i,1
)r′i, j,2/ab(ĝω ′i,2

)r′i, j,3/ab

= ĝγ ′i ĝ f ′i, j·r′i, j,1 ĝψω ′i,1r′i, j,2 .

27

(b) For each node vi, j such that (i∈ I1)∧(vi, j ∈ PV i), it proceeds as follows: It defines T RF i(vi, j) :=
(1+1/a) f ′i, j by retrieving f ′i, j chosen at the setup. Recall that the random γi was already defined
as γi :=−∆i/ab+ γ ′i for some node vi, j′ . It chooses random exponents r′i, j,1,r

′
i, j,2,r

′
i, j,3 ∈ Zp and

implicitly defines the randomness as

ri, j,1 := r′i, j,1/b+ω
′
i,2r′i, j,3/ab, ri, j,2 := ω

′
i,2r′i, j,2/b,

ri, j,3 :=− f ′i, jr
′
i, j,3/a−ω

′
i,1r′i, j,2/b+∆i/(ω

′
i,2ab).

Next, it creates a node key by using the defined randomness as

Ki, j,0 = ĝγ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jr

′
i, j,1+ f ′i, jω

′
i,2r′i, j,3(ĝa)ψω ′i,1ω ′i,2r′i, j,2 , Ki, j,1 = (ĝa)r′i, j,1 ĝω ′i,2r′i, j,3 ,

Ki, j,2 = (ĝa)ω ′i,2r′i, j,2 , Ki, j,3 = (ĝb)− f ′i, jr
′
i, j,3(ĝa)−ω ′i,1r′i, j,2 ĝ∆i/ω ′i,2 .

This node key is correctly distributed by the following equation

Ki, j,0 =ĝ−∆i/ab+γ ′i
(
ĝ(ab+b) f ′i, j

)r′i, j,1/b+ω ′i,2r′i, j,3/ab(ĝ(abψ+1)ω ′i,1
)ω ′i,2r′i, j,2/b(

ĝω ′i,2
)− f ′i, jr

′
i, j,3/a−ω ′i,1r′i, j,2/b+∆i/(ω

′
i,2ab)

=ĝγ ′i
(
ĝ(ab+b) f ′i, j

)r′i, j,1/b+ω ′i,2r′i, j,3/ab(ĝ(abψ+1)ω ′i,1
)ω ′i,2r′i, j,2/b(ĝω ′i,2

)− f ′i, jr
′
i, j,3/a−ω ′i,1r′i, j,2/b

=ĝγ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jr

′
i, j,1+ f ′i, jω

′
i,2r′i, j,3(ĝa)ψω ′i,1ω ′i,2r′i, j,2 .

(c) For each node vi, j such that (i∈ I2)∧(vi, j ∈ PV i), it proceeds as follows: It defines T RF i(vi, j) :=
(1+ 1/a) f ′i, j by using a fixed random f ′i, j for vi, j. Recall that γi was already defined as γi := γ ′i
for the set I2. It chooses random exponents r′i, j,1,r

′
i, j,2,r

′
i, j,3 ∈ Zp and implicitly defines the

randomness as

ri, j,1 := r′i, j,1/b+ω
′
i,2r′i, j,3/ab, ri, j,2 := ω

′
i,2r′i, j,2/b, ri, j,3 :=− f ′i, jr

′
i, j,3/a−ω

′
i,1r′i, j,2/b.

Next, it creates a node key by using the defined randomness as

Ki, j,0 = ĝγ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jω

′
i,2r′i, j,3 ĝ f ′i, jr

′
i, j,1(ĝa)ψω ′i,1ω ′i,2r′i, j,2 , Ki, j,1 = (ĝa)r′i, j,1 ĝω ′i,2r′i, j,3 ,

Ki, j,2 = (ĝa)ω ′i,2r′i, j,2 , Ki, j,3 = (ĝb)− f ′i, jr
′
i, j,3(ĝa)−ω ′i,1r′i, j,2 .

This node key is correctly distributed by the following equation

Ki, j,0 =ĝγ ′i
(
ĝ(ab+b) f ′i, j

)r′i, j,1/b+ω ′i,2r′i, j,3/ab(ĝ(abψ+1)ω ′i,1
)ω ′i,2r′i, j,2/b(ĝω ′i,2

)− f ′i, jr
′
i, j,3/a−ω ′i,1r′i, j,2/b

=ĝγ ′i
(
ĝab f ′i, j

)r′i, j,1/b+ω ′i,2r′i, j,3/ab(ĝb f ′i, j
)r′i, j,1/b(ĝabψω ′i,1

)ω ′i,2r′i, j,2/b

= ĝγ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jω

′
i,2r′i, j,3 ĝ f ′i, jr

′
i, j,1(ĝa)ψω ′i,1ω ′i,2r′i, j,2 .

(d) For each node vi, j such that (i ∈ I3)∧ (vi, j ∈ PV i), it proceeds as follows: It defines T RF i(vi, j) =
(1+1/a) f ′i, j by using a fixed random f ′i, j for vi, j. It chooses random exponents r′i, j,1,r

′
i, j,2,r

′
i, j,3 ∈

Zp and implicitly defines the randomness as

γi := ∑
i∈I1

(∆i/ab− γ
′
i)−∑

i∈I2

γ
′
i , ri, j,1 := r′i, j,1/b+ω

′
i,2r′i, j,3/ab,

ri, j,2 := ω
′
i,2r′i, j,2/b, ri, j,3 :=− f ′i, jr

′
i, j,3/a−ω

′
i,1r′i, j,2/b−∑

i∈I1

∆i/ab.

28

Next, it creates a node key by using the defined randomness as

Ki, j,0 =ĝ−∑i∈I1
γ ′i−∑i∈I2

γ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jω

′
i,2r′i, j,3 ĝ f ′i, jr

′
i, j,1(ĝa)ψω ′i,1ω ′i,2r′i, j,2 ,

Ki, j,1 =(ĝa)r′1, j ĝω ′i,2r′i, j,3 , Ki, j,2 = (ĝa)ω ′i,2r′i, j,2 , Ki, j,3 = (ĝb)− f ′i, jr
′
i, j,3(ĝa)−ω ′i,1r′i, j,2 .

This node key is correctly distributed by the following equation

Ki, j,0 =ĝ∑i∈I1
(∆i/ab−γ ′i)−∑i∈I2

γ ′i (ĝ(ab+b) f ′i, j)r′i, j,1/b+ω ′i,2r′i, j,3/ab(ĝ(abψ+1)ω ′i,1
)ω ′i,2r′i, j,2/b(

ĝω ′i,2
)− f ′i, jr

′
i, j,3/a−ω ′i,1r′i, j,2/b−∑i∈I1

∆i/ab

=ĝ−∑i∈I1
γ ′i−∑i∈I2

γ ′i
(
ĝab f ′i, j

)r′i, j,1/b+ω ′i,2r′i, j,3/ab(ĝb f ′i, j
)r′i, j,1/b(ĝabψω ′i,1

)ω ′i,2r′i, j,2/b

=ĝ−∑i∈I1
γ ′i−∑i∈I2

γ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jω

′
i,2r′i, j,3 ĝ f ′i, jr

′
i, j,1(ĝa)ψω ′i,1ω ′i,2r′i, j,2 .

(e) Next, it creates a client function key SKi = (CVi,NKi,1, . . . ,NKi,mi).

4. Finally, it generates a function key SKY = (SK1, . . . ,SKn).

If this is a ciphertext query for a client index i, a message xi, and a time period T 6= T ∗, then B retrieves
(T,H(T) = (gab)h′ ,h′) from the H-list and generates a ciphertext as follows: It obtains PVi = (vi,0, . . . ,vi,`)
by running Path(BT ,xi). For each vi, j ∈ PVi, it performs:

• If vi, j ∈ PV ∗
µ,i, it creates Ci, j,1 = (gab)h′ f ′i, j since T RF i(vi, j) := f ′i, j. Otherwise (vi, j 6∈ PV ∗

µ,i), it creates

Ci, j,1 = (gabgb)h′ f ′i, j since T RF i(vi, j) := (1+1/a) f ′i, j.

Next, it generates a ciphertext as
({

Ci, j,1
}`

j=0, Ci,2 = (gabψg)h′ω ′i,1 , Ci,3 = gh′ω ′i,2
)
.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Lemma 4.4. If the A3DH assumption holds, then no polynomial-time adversary can distinguish between
G2 and G3 with a non-negligible advantage.

Proof. We define a sequence of hybrid games H2,(1,0),H2,(1,1), . . . ,H2,(1,`),H2,(2,1), . . . ,H2,(iδ , jδ), . . . ,H2,(n,`)
where H2,(1,0) = G2, (iδ , jδ) ∈ [n, `]. For notational simplicity, we also define H2,(iδ−1,`) = H2,(iδ ,0). Recall
that two node sets Ei and E i were defined for each client index i∈ [n] as Ei = {v∗µ,i, j : (v∗

µ,i, j ∈PV ∗
µ,i)∧(v∗0,i, j =

v∗1,i, j)} and E i = {v∗µ,i, j : (v∗
µ,i, j ∈ PV ∗

µ,i)∧ (v∗0,i, j 6= v∗1,i, j)}. The game H2,(iδ , jδ) is defined as follows:

Game H2,(iδ , jδ) In this game H2,(iδ , jδ), we slightly change the generation of challenge ciphertext elements
{Ci, j,1}. For each client i and node vi, j ∈ PV ∗

µ,i, a simulator creates the element Ci, j,1 as follows:

• If vi, j ∈ Ei, then it creates Ci, j,1 normally.

• If vi, j ∈ E i and (i, j)≤ (iδ , jδ), then it creates Ci, j,1 as a random element in G.

• If vi, j ∈ E i and (i, j)> (iδ , jδ), then it creates Ci, j,1 normally.

The simulator creates challenge ciphertext elements Ci,2,Ci,3, as the same way as the game G3. It is
obvious that H2,(n,`) = G3.

29

Suppose there exists an adversary A that distinguishes between H2,(iδ , jδ−1) and H2,(iδ , jδ) with a non-
negligible advantage. Without loss of generality, we assume that viδ , jδ ∈ E iδ since H2,(iδ , jδ−1) = H2,(iδ , jδ)
if viδ , jδ ∈ Eiδ . A simulator B that solves the A3DH assumption using A is given: a challenge tuple D =
((p,G,Ĝ,GT ,e),g,ga,gb,gab,gabc, ĝa, ĝb) and Z where Z = gc or Z = R. Then B that interacts with A is
described as follows.

Init: A submits challenge message lists X∗0 = (x∗0,1, . . . ,x
∗
0,n), X∗1 = (x∗1,1, . . . ,x

∗
1,n), and a challenge time

period T ∗. B flips a random coin µ ∈ {0,1} to fix X∗µ as the target message list and obtains PV ∗
µ,i =

(v∗
µ,i,0, . . . ,v

∗
µ,i,`) by running Path(BT ,x∗

µ,i) for all i ∈ [n].
Setup: B proceeds as follows:

1. It first selects random exponents ψ,{ω ′i,1,ω ′i,2}n
i=1 ∈ Zp and defines {ωi,1 := (ψ + 1/ab)ω ′i,1,ωi,2 :=

(1/ab)ω ′i,2}n
i=1. Next, it implicitly sets v̂ = ĝab,{ŵi,1 = (ĝabψ ĝ)ω ′i,1 , ŵi,2 = ĝω ′i,2}n

i=1.

2. It now defines the value of TRF by using lazy sampling. Let vi, j be a node for a client i and PV ∗
µ,i be

the challenge path set for the same client i.

• Case i 6= iδ or vi, j 6= viδ , jδ : If vi, j ∈ PV ∗
µ,i, then it defines T RF i(vi, j) := f ′i, j by selecting a fixed

random f ′i, j for vi, j. Otherwise (vi, j 6∈ PV ∗
µ,i), it defines T RF i(vi, j) := (1+1/a) f ′i, j by selecting a

fixed random f ′i, j for vi, j. That is, it implicitly defines

v̂T RF i(vi, j) := (ĝab) f ′i, j if vi, j ∈ PV ∗µ,i, v̂T RF i(vi, j) := (ĝabĝb) f ′i, j if vi, j 6∈ PV ∗µ,i.

• Case i = iδ and vi, j = viδ , jδ : It defines T RF i(vi, j) := (1/ab) f ′i, j since vi, j = viδ , jδ ∈ PV ∗
µ,i by

selecting a fixed random f ′i, j for vi, j. That is, it implicitly defines

v̂T RF i(vi, j) := (ĝ) f ′i, j since vi, j ∈ PV ∗µ,i.

3. For the target message list X∗µ = (x∗
µ,1, . . . ,x

∗
µ,n) with PV ∗

µ,i = (v∗
µ,i,0, . . . ,v

∗
µ,i,`) for all i, it selects a

random f ′i, j and defines T RF i(v∗µ,i, j) := (1/ab) f ′i, j if (i, j) = (iδ , jδ) and T RF i(v∗µ,i, j) := f ′i, j if (i, j) 6=
(iδ , jδ).

4. It initializes a hash table H-list and publishes PP = ((p,G,Ĝ,GT ,e),g, ĝ,n, `,H).

Challenge: B first sets H(T ∗) = gabc and creates each challenge ciphertext element Ci, j,1 for each client
i ∈ [n] and node vi, j ∈ PV ∗

µ,i as follows:

• Case (i, j)< (iδ , jδ): If vi, j ∈ Ei, then it creates Ci, j,1 = (gabc) f ′i, j since TRFi(v∗µ,i, j) := f ′i, j. Otherwise
(vi, j ∈ E i), it chooses a random element Pi, j,1 ∈G and sets Ci, j,1 = Pi, j,1.

• Case (i, j) = (iδ , jδ): It creates Ci, j,1 = Z f ′i, j since viδ , jδ ∈ E i and T RF i(v∗µ,i, j) := (1/ab) f ′i, j.

• Case (i, j)> (iδ , jδ): It creates Ci, j,1 = (gabc) f ′i, j since T RF i(v∗µ,i, j) := f ′i, j.

Next, it chooses a random element P ∈G and generates challenge ciphertexts for the time period T ∗ as({
Ci, j,1

}`

j=0, Ci,2 = (gabcψ ·P)ω ′i,1 , Ci,3 = (P)ω ′i,2
)

for all i ∈ [n].

If Z = gc, then B plays H3,(iδ , jδ−1). Otherwise, it plays H3,(iδ , jδ).
Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows.
If this is a hash query for a time period T , then B proceeds as follows: If T was queried before, then it
retrieves (T,h,−) from H-list and returns h. Otherwise, it performs:

30

• Case T = T ∗: It sets H(T ∗) = gabc and stores (T ∗,H(T ∗),−) to H-list. It then returns gabc.

• Case T 6= T ∗: It selects a random exponent h′ ∈Zp and stores (T,H(T) = (gab)h′ ,h′) to H-list. It then
returns (gab)h′ .

If this is a function key query for a list of vectors Y = (y1, . . . ,yn) where yi = (yi,L,yi,R), then B generates a
function key as follows:

1. It first derives cover sets CV1, . . . ,CVn from y1, . . . ,yn. For each CVi, it defines two node sets PVi and
PV i as PVi = {vi, j : vi, j ∈CVi∧ vi, j ∈ PV ∗

µ,i} and PV i = {vi, j : vi, j ∈CVi∧ vi, j 6∈ PV ∗
µ,i}.

2. It also defines three index sets I1, I2, I3 ⊆ [n] which are partitions of client indexes. It defines I1 = {i :
∃vi, j ∈CVi such that vi, j ∈ PVi}. It next selects a random index ĩ ∈ [n]\ I1 and defines I3 = {ĩ}. It then
defines I2 = [n]\ (I1∪ I3). By using these sets, it will define γi differently depending on the index sets.
For each client index i ∈ I2, it chooses a random exponent γ ′i and implicitly defines γi := γ ′i .

3. For each client i ∈ [n], it performs the following steps:

(a) For each node vi, j such that (i ∈ I1)∧ (vi, j ∈ PVi), it proceeds as follows:

• Case i 6= iδ or vi, j 6= viδ , jδ : It defines T RF i(vi, j) := f ′i, j by retrieving f ′i, j chosen at the setup.
It chooses random exponents γ ′i ,r

′
i, j,1,r

′
i, j,2,r

′
i, j,3 ∈ Zp, sets ∆i = ω ′i,1r′i, j,2 +ω ′i,2r′i, j,3, and

implicitly defines the randomness as

γi :=−∆i/ab+ γ
′
i , ri, j,1 := r′i, j,1/ab, ri, j,2 := r′i, j,2/ab, ri, j,3 := r′i, j,3/ab.

Note that this γi is fixed for this index i since there is only one tuple (i,vi, j) ∈ PV for the
index i. Next, it creates a node key by using the defined randomness as

Ki, j,0 = ĝγ ′i ĝ f ′i, j·r′i, j,1 ĝψω ′i,1r′i, j,2 , Ki, j,1 = ĝr′i, j,1 , Ki, j,2 = ĝr′i, j,2 , Ki, j,3 = ĝr′i, j,3 .

• Case i = iδ and vi, j = viδ , jδ : It defines T RF i(vi, j) := (1/ab) f ′i, j by using f ′i, j chosen at the
setup. It chooses random exponents γ ′i ,r

′
i, j,1,r

′
i, j,2,r

′
i, j,3 ∈ Zp, sets ∆i = f ′i, jr

′
i, j,1 +ω ′i,1r′i, j,2 +

ω ′i,2r′i, j,3, and implicitly defines the randomness as

γi :=−∆i/ab+ γ
′
i , ri, j,1 := r′i, j,1/ab, ri, j,2 := r′i, j,2/ab, ri, j,3 := r′i, j,3/ab.

Note that this γi is fixed for this index i since there is only one tuple (i,vi, j) ∈ PV for the
index i. Next, it creates a node key by using the defined randomness as

Ki, j,0 = ĝγ ′i ĝψω ′i,1r′i, j,2 , Ki, j,1 = ĝr′i, j,1 , Ki, j,2 = ĝr′i, j,2 , Ki, j,3 = ĝr′i, j,3 .

(b) For each node vi, j such that (i∈ I1)∧(vi, j ∈ PV i), it proceeds as follows: It defines T RF i(vi, j) :=
(1+1/a) f ′i, j by retrieving f ′i, j chosen at the setup. Recall that the random γi was already defined
as γi :=−∆i/ab+ γ ′i for some node vi, j′ . It chooses random exponents r′i, j,1,r

′
i, j,2,r

′
i, j,3 ∈ Zp and

implicitly defines the randomness as

ri, j,1 := r′i, j,1/b+ω
′
i,2r′i, j,3/ab, ri, j,2 := ω

′
i,2r′i, j,2/b,

ri, j,3 :=− f ′i, jr
′
i, j,3/a−ω

′
i,1r′i, j,2/b+∆i/(ω

′
i,2ab).

31

Next, it creates a node key by using the defined randomness as

Ki, j,0 = ĝγ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jr

′
i, j,1+ f ′i, jω

′
i,2r′i, j,3(ĝa)ψω ′i,1ω ′i,2r′i, j,2 , Ki, j,1 = (ĝa)r′i, j,1 ĝω ′i,2r′i, j,3 ,

Ki, j,2 = (ĝa)ω ′i,2r′i, j,2 , Ki, j,3 = (ĝb)− f ′i, jr
′
i, j,3(ĝa)−ω ′i,1r′i, j,2 ĝ∆i/ω ′i,2 .

This node key is correctly distributed since it is almost the same as that of Lemma 4.3.

(c) For each node vi, j such that (i∈ I2)∧(vi, j ∈ PV i), it proceeds as follows: It defines T RF i(vi, j) :=
(1+ 1/a) f ′i, j by using a fixed random f ′i, j for vi, j. Recall that γi was already defined as γi := γ ′i
for the set I2. It chooses random exponents r′i, j,1,r

′
i, j,2,r

′
i, j,3 ∈ Zp and implicitly defines the

randomness as

ri, j,1 := r′i, j,1/b+ω
′
i,2r′i, j,3/ab, ri, j,2 := ω

′
i,2r′i, j,2/b, ri, j,3 :=− f ′i, jr

′
i, j,3/a−ω

′
i,1r′i, j,2/b.

Next, it creates a node key by using the defined randomness as

Ki, j,0 = ĝγ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jω

′
i,2r′i, j,3 ĝ f ′i, jr

′
i, j,1(ĝa)ψω ′i,1ω ′i,2r′i, j,2 , Ki, j,1 = (ĝa)r′i, j,1 ĝω ′i,2r′i, j,3 ,

Ki, j,2 = (ĝa)ω ′i,2r′i, j,2 , Ki, j,3 = (ĝb)− f ′i, jr
′
i, j,3(ĝa)−ω ′i,1r′i, j,2 .

This node key is correctly distributed since it is almost the same as that of Lemma 4.3.

(d) For each node vi, j such that (i ∈ I3)∧ (vi, j ∈ PV i), it proceeds as follows: It defines T RF i(vi, j) =
(1+1/a) f ′i, j by using a fixed random f ′i, j for vi, j. It chooses random exponents r′i, j,1,r

′
i, j,2,r

′
i, j,3 ∈

Zp and implicitly defines the randomness as

γi := ∑
i∈I1

(∆i/ab− γ
′
i)−∑

i∈I2

γ
′
i , ri, j,1 := r′i, j,1/b+ω

′
i,2r′i, j,3/ab,

ri, j,2 := ω
′
i,2r′i, j,2/b, ri, j,3 :=− f ′i, jr

′
i, j,3/a−ω

′
i,1r′i, j,2/b−∑

i∈I1

∆i/ab.

Next, it creates a node key by using the defined randomness as

Ki, j,0 =ĝ−∑i∈I1
γ ′i−∑i∈I2

γ ′i (ĝa) f ′i, jr
′
i, j,1 ĝ f ′i, jω

′
i,2r′i, j,3 ĝ f ′i, jr

′
i, j,1(ĝa)ψω ′i,1ω ′i,2r′i, j,2 ,

Ki, j,1 =(ĝa)r′1, j ĝω ′i,2r′i, j,3 , Ki, j,2 = (ĝa)ω ′i,2r′i, j,2 , Ki, j,3 = (ĝb)− f ′i, jr
′
i, j,3(ĝa)−ω ′i,1r′i, j,2 .

This node key is correctly distributed since it is the same as that of Lemma 4.3.

(e) Next, it creates a client function key SKi = (CVi,NKi,1, . . . ,NKi,mi).

4. Finally, it generates a function key SKY = (SK1, . . . ,SKn).

If this is a ciphertext query for a client index i, a message vector ~xi = (xi,1, . . . ,xi,`), and a time period
T 6= T ∗, then B retrieves (T,H(T) = (gab)h′ ,h′) from the H-list and generates a ciphertext as follows: It
obtains PVi = (vi,0, . . . ,vi,`) by running Path(BT ,xi). For each vi, j ∈ PVi, it performs:

• Case i 6= iδ or vi, j 6= viδ , jδ : If vi, j ∈PV ∗
µ,i, it creates Ci, j,1 =(gab)h′ f ′i, j since T RF i(vi, j) := f ′i, j. Otherwise

(vi, j 6∈ PV ∗
µ,i), it creates Ci, j,1 = (gabgb)h′ f ′i, j since T RF i(vi, j) := (1+1/a) f ′i, j.

• Case i = iδ and vi, j = viδ , jδ : It creates Ci, j,1 = gh′ f ′i, j since T RF i(vi, j) := (1/ab) f ′i, j.

32

Next, it generates a ciphertext as
({

Ci, j,1
}`

j=0, Ci,2 = (gabψg)h′ω ′i,1 , Ci,3 = gh′ω ′i,2
)
.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Theorem 4.5. The above MC-RQE scheme is selectively single-challenge weak IND-secure with static cor-
ruptions in the random oracle model if the MC-RQE scheme is selectively single-challenge weak IND-secure
with no corruptions.

Proof. Suppose there exists an adversary A that breaks the selective single-challenge weak IND-security
with static corruptions. By using A, a simulator B try to break the selective single-challenge weak IND-
security with no corruptions played by a challenger C. The simulator B is described as follows:

Init: A submits the set of corrupted client indexes I, two challenge message lists X∗0 ,X
∗
1 , and a challenge

time period T ∗. Let I = {1, . . . ,n} \ I be the set of uncorrupted client indexes. B submits two challenge
message lists X∗0 ,X

∗
1 , the challenge time period T ∗ to C. Note that C plays the selective security game with

no corruptions for the set I.
Setup: B receives PP from C. It chooses random PRF keys {zi}i∈I and random exponents {ωi,1,ωi,2}i∈I .
Next, it gives {EKi = (zi,ωi,1,ωi,2)}i∈I and PP to A.
Challenge: B receives challenge ciphertexts {CTi,T ∗}i∈I from C and gives {CTi,T ∗}i∈I to A.
Query: A adaptively requests hash, function key, and ciphertext queries. B handles these queries as follows:
If this is a hash query for a time period T , then B relays this query to C and gives the response of C to A.
If this is a function key query for a list of vectors Y = (y1, . . . ,yn), then B proceeds as follows:

1. It first sets Y ′ = {yi}i∈I derived from Y . It requests a function key for Y ′ to C and receives a func-
tion key SKY ′ = {SK′i = (NK′i,1, . . . ,NK′i,2`)}i∈I where NK′i, j = (K′i, j,0, . . . ,K

′
i, j,3). It selects a random

exponent r ∈ Zp and sets ṽ = ĝr, which is formed as ṽ = v̂r′ for some unknown random r′.

2. It selects random exponents γ1, . . . ,γn−1 ∈ Zp and sets γn =−∑
n−1
i=1 γi to satisfy ∑

n
i=1 γi = 0.

3. For each uncorrupted client i ∈ I, it performs the following steps:

(a) Let SK′i = (NK′i,1, . . . ,NK′i,2`)}i∈I where NK′i, j = (K′i, j,0, . . . ,K
′
i, j,3).

(b) For each j ∈ [2`], it modifies a node key as NKi, j = (Ki, j,0 = K′i, j,0 · ĝγi ,Ki, j,1 = K′i, j,1,Ki, j,2 =
K′i, j,2,Ki, j,3 = K′i, j,3) by using the random γi.

(c) It sets SKi = {NKi,1, . . . ,NKi,2`}.

4. For each corrupted client i ∈ I, it performs the following steps:

(a) It obtains a cover set CVi = (vi,1, . . . ,vi,mi) by running the Cover algorithm for the range yi =
(yi,L,yi,R).

(b) For each node vi, j ∈CVi, it calculates fi, j = PRF(zi,vi, j) and compute a node key by selecting
random exponents ri, j,1,ri, j,2,ri, j,3 as

NKi, j =
(
Ki, j,0 = ĝγi ṽ fi, j·ri, j,1 ṽωi,1ri, j,2 ṽωi,2ri, j,3 ,Ki, j,1 = ṽri, j,1 ,Ki, j,2 = ṽri, j,2 ,Ki, j,3 = ṽri, j,3

)
(c) Next, it creates a client function key SKi = (CVi,NKi,1, . . . ,NKi,mi).

5. It gives a function key SKY = ({SKi}i∈I,{SKi}i∈I) to A.

If this is a ciphertext query for a client index i ∈ I, a message xi, and a time period T 6= T ∗, then B relays
this query to C and gives CTi,T from C to A.
Guess: A outputs a guess µ ′. B also outputs µ ′.

33

4.7 Discussions

Efficiency Analysis. In our MC-RQE scheme, a ciphertext consists of logD+ 3 group elements per each
client and n(logD+3) group elements for n clients. Since a function key is associated with 2logD tree nodes
per each client and each node requires 4 group elements, a function key for n clients consists of 8n logD
group elements. The encryption algorithm requires O(n logD) exponentiation operations and the function
key generation algorithm also requires O(n logD) exponentiation operations. The decryption algorithm is
the slowest algorithm and it checks whether the pairing expression is satisfied for each combination of
function key elements and ciphertext elements. In this case, the number of possible combinations is at
most 2n since the node depth of function keys is known and 3n+1 pairing operations are required for each
combination. Thus, the decryption algorithm requires approximately 3n2n pairing operations.

Allowing Matching Function Keys. We proved that our MC-RQE scheme is secure in a weak security
model where matching function keys (f (X∗0) = f (X∗1) = 1) are not allowed. In fact, we can prove that our
MC-RQE scheme is secure even in a security model where one matching function key is allowed by using
the fact that the underlying MC-HVE scheme allows many matching function keys. However, it is not easy
to prove the security of our MC-RQE scheme in a strong security model in which two or more matching
function keys are allowed. The fundamental reason of the difficulty is that the matching node of a binary tree
that succeeds in decryption is additionally exposed during the decryption process of the MC-RQE scheme.
That is, for two challenge messages X∗0 and X∗1 , an attacker first prepares two matching function keys in
which the tree node of successful decryption is the same for X∗0 , and the tree node for X∗1 is changed. Then
the attacker decrypts a challenge ciphertext by using these matching function keys. At this time, the attacker
can distinguish the challenge ciphertext by checking whether the tree node that is successfully decrypted is
the same or changed.

Comparison with MRQED Scheme. Our MC-RQE scheme can be compared with the MRQED scheme
of Shi et al. [32] in terms of effectively supporting range queries on encrypted data. As described above,
our MC-RQE scheme uses the path set and cover set of a binary tree to handle range queries in the same
way as the MRQED scheme. However, the MRQED scheme is a public-key cryptosystem that combines an
anonymous IBE scheme with a binary tree, and it handles a single ciphertext in the decryption process. In
contrast, our MC-HVE scheme is a private-key cryptosystem that combines our MC-HVE scheme and the
binary tree, and it can handle multiple ciphertexts in the decryption process.

5 Conclusion

In this paper, we presented efficient MC-FE schemes that support conjunctive equality or range queries on
encrypted data in bilinear groups. Our MC-HVE scheme is a construction that efficiently supports conjunc-
tive equality queries with wildcards for ciphertexts generated by multiple clients at the same time period.
Our MC-RQE scheme uses binary trees to efficiently support conjunctive range queries while the size of a
ciphertext and a function key is very compact. We also proved that our MC-HVE and MC-RQE schemes
are selectively secure with static corruptions under static assumption.

This work leaves some interesting problems: The first problem is to devise an efficient MC-FE scheme
that supports more expressive predicate queries than conjunctive equality or range queries. As an example,
extending an IPE scheme to the multi-client setting can be interesting. The second problem is to construct
an MC-HVE scheme that supports not only the message hiding security but also the function hiding security.
The third problem is to devise an efficient MC-RQE scheme that provides the strong security.

34

Acknowledgements

We thank anonymous reviewers of this paper for their valuable comments. We also thank Hoeteck Wee for
helpful comments.

References

[1] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-client inner-
product functional encryption. In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryp-
tology - ASIACRYPT 2019, volume 11923 of Lecture Notes in Computer Science, pages 552–582.
Springer, 2019.

[2] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryp-
tion schemes for inner products. In Jonathan Katz, editor, Public-Key Cryptography - PKC 2015,
volume 9020 of Lecture Notes in Computer Science, pages 733–751. Springer, 2015.

[3] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product func-
tional encryption from pairings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017, volume 10210 of Lecture Notes in Computer Science, pages 601–
626, 2017.

[4] Shweta Agrawal, Benoı̂t Libert, and Damien Stehlé. Fully secure functional encryption for inner
products, from standard assumptions. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology - CRYPTO 2016, volume 9816 of Lecture Notes in Computer Science, pages 333–362.
Springer, 2016.

[5] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional
encryption for quadratic functions with applications to predicate encryption. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017, volume 10401 of Lecture Notes in
Computer Science, pages 67–98. Springer, 2017.

[6] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product encryption. In
Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015, volume 9452
of Lecture Notes in Computer Science, pages 470–491. Springer, 2015.

[7] Carlo Blundo, Vincenzo Iovino, and Giuseppe Persiano. Private-key hidden vector encryption with key
confidentiality. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, Cryptology and Network
Security - CANS 2009, volume 5888 of Lecture Notes in Computer Science, pages 259–277. Springer,
2009.

[8] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 506–522. Springer,
2004.

[9] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer, 2001.

35

[10] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Yuval Ishai, editor, Theory of Cryptography - TCC 2011, volume 6597 of Lecture Notes in Computer
Science, pages 253–273. Springer, 2011.

[11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: A new vision for public-key cryp-
tography. Commun. ACM, 55(11):56–64, 2012.

[12] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In Salil P.
Vadhan, editor, Theory of Cryptography - TCC 2007, volume 4392 of Lecture Notes in Computer
Science, pages 535–554. Springer, 2007.

[13] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against search-
able encryption. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM Conference on
Computer and Communications Security, pages 668–679. ACM, 2015.

[14] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and Michael
Steiner. Highly-scalable searchable symmetric encryption with support for boolean queries. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013, volume 8042 of Lecture
Notes in Computer Science, pages 353–373. Springer, 2013.

[15] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. De-
centralized multi-client functional encryption for inner product. In Thomas Peyrin and Steven D.
Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018, volume 11273 of Lecture Notes in
Computer Science, pages 703–732. Springer, 2018.

[16] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryp-
tion: Improved definitions and efficient constructions. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, ACM Conference on Computer and Communications Security - CCS
2006, pages 79–88. ACM, 2006.

[17] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS 2013, pages 40–49.
IEEE Computer Society, 2013.

[18] Romain Gay, Pierrick Méaux, and Hoeteck Wee. Predicate encryption for multi-dimensional range
queries from lattices. In Jonathan Katz, editor, Public-Key Cryptography - PKC 2015, volume 9020 of
Lecture Notes in Computer Science, pages 752–776. Springer, 2015.

[19] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public-Key Cryptography - PKC 2006, volume 3958
of Lecture Notes in Computer Science, pages 257–273. Springer, 2006.

[20] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit
Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture
Notes in Computer Science, pages 578–602. Springer, 2014.

[21] Philippe Golle, Jessica Staddon, and Brent R. Waters. Secure conjunctive keyword search over en-
crypted data. In Markus Jakobsson, Moti Yung, and Jianying Zhou, editors, Applied Cryptography

36

and Network Security - ACNS 2004, volume 3089 of Lecture Notes in Computer Science, pages 31–45.
Springer, 2004.

[22] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from
LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015,
volume 9216 of Lecture Notes in Computer Science, pages 503–523. Springer, 2015.

[23] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM Conference on Computer and Communications Security - CCS 2006, pages
89–98. ACM, 2006.

[24] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polyno-
mial equations, and inner products. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT
2008, volume 4965 of Lecture Notes in Computer Science, pages 146–162. Springer, 2008.

[25] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep Mukhopadhyay, Ron Steinfeld,
Shifeng Sun, Dongxi Liu, and Cong Zuo. Result pattern hiding searchable encryption for conjunctive
queries. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
Conference on Computer and Communications Security - CCS 2018, pages 745–762. ACM, 2018.

[26] Kwangsu Lee and Dong Hoon Lee. Improved hidden vector encryption with short ciphertexts and
tokens. Des. Codes Cryptogr., 58(3):297–319, 2011.

[27] Kwangsu Lee and Dong Hoon Lee. Two-input functional encryption for inner products from bilinear
maps. IEICE Transactions, 101-A(6):915–928, 2018.

[28] Yanbin Lu. Privacy-preserving logarithmic-time search on encrypted data in cloud. In Network and
Distributed System Security Symposium - NDSS 2012. The Internet Society, 2012.

[29] Phillip A. Porras and Vitaly Shmatikov. Large-scale collection and sanitization of network secu-
rity data: risks and challenges. In Christian Hempelmann and Victor Raskin, editors, New Security
Paradigms Workshop 2006, pages 57–64. ACM, 2006.

[30] Michael Rushanan, Aviel D. Rubin, Denis Foo Kune, and Colleen M. Swanson. SoK: Security and
privacy in implantable medical devices and body area networks. In IEEE Symposium on Security and
Privacy, SP 2014, pages 524–539. IEEE Computer Society, 2014.

[31] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Omer Reingold,
editor, Theory of Cryptography - TCC 2009, volume 5444 of Lecture Notes in Computer Science, pages
457–473. Springer, 2009.

[32] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Perrig. Multi-dimensional
range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350–364. IEEE
Computer Society, 2007.

[33] Elaine Shi, T-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song. Privacy-preserving
aggregation of time-series data. In Network and Distributed System Security - NDSS 2011. The Internet
Society, 2011.

37

[34] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, volume 5126 of Lecture Notes in Computer Science, pages 560–
578. Springer, 2008.

[35] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on en-
crypted data. In IEEE Symposium on Security and Privacy, pages 44–55. IEEE Computer Society,
2000.

[36] Tim van de Kamp, Andreas Peter, Maarten H. Everts, and Willem Jonker. Multi-client predicate-
only encryption for conjunctive equality tests. In Srdjan Capkun and Sherman S. M. Chow, editors,
Cryptology and Network Security - CANS 2017, volume 11261 of Lecture Notes in Computer Science,
pages 135–157. Springer, 2018.

38

	Introduction
	Our Results
	Our Techniques
	Applications
	Related Work

	Preliminaries
	Bilinear Groups
	Complexity Assumptions
	Pseudo-Random Function
	Multi-Client Functional Encryption for Predicates

	Multi-Client Hidden Vector Encryption
	Design Principle
	Predicate for Conjunctive Equality with Wildcards
	Construction
	Correctness
	Security Analysis
	Discussions

	Multi-Client Range Query Encryption
	Design Principle
	Binary Tree
	Predicate for Conjunctive Range
	Construction
	Correctness
	Security Analysis
	Discussions

	Conclusion

