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Abstract. Modern cryptographic protocols, such as TLS 1.3 and QUIC, can send
cryptographically protected data in “zero round-trip times (0-RTT)”, that is, with-
out the need for a prior interactive handshake. Such protocols meet the demand
for communication with minimal latency, but those currently deployed in prac-
tice achieve only rather weak security properties, as they may not achieve forward
security for the first transmitted payload message and require additional counter-
measures against replay attacks.
Recently, 0-RTT protocols with full forward security and replay resilience have
been proposed in the academic literature. These are based on puncturable encryp-
tion, which uses rather heavy building blocks, such as cryptographic pairings.
Some constructions were claimed to have practical efficiency, but it is unclear
how they compare concretely to protocols deployed in practice, and we currently
do not have any benchmark results that new protocols can be compared with.
We provide the first concrete performance analysis of a modern 0-RTT protocol
with full forward security, by integrating the Bloom Filter Encryption scheme of
Derler et al. (EUROCRYPT 2018) in the Chromium QUIC implementation and
comparing it to Google’s original QUIC protocol. We find that for reasonable
deployment parameters, the server CPU load increases approximately by a fac-
tor of eight and the memory consumption on the server increases significantly,
but stays below 400 MB even for medium-scale deployments that handle up to
50K connections per day. The difference of the size of handshake messages is
small enough that transmission time on the network is identical, and therefore
not significant.
We conclude that while current 0-RTT protocols with full forward security come
with significant computational overhead, their use in practice is not infeasible,
and may be used in applications where the increased CPU and memory load can
be tolerated in exchange for full forward security and replay resilience on the
cryptographic protocol level. Our results also serve as a first benchmark that can
be used to assess the efficiency of 0-RTT protocols potentially developed in the
future.
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1 Introduction

0-RTT Protocols. Considerable effort has gone into reducing latency at the various net-
working layers, with the aim of reducing end-to-end latencies. This includes HTTP/2 [5]
based on Google’s SPDY protocol [6], TCP Fast Open [12] and µTP [26], as well as the
move towards decentralized content delivery networks or peer-to-peer communication.
Still, classical cryptographic key agreement protocols, such as TLS 1.2, require at least
one round-trip time (RTT) to establish a key, plus an additional RTT to establish the un-
derlying TCP session. In order to overcome this, 0-RTT protocols have been developed
and incorporated in transport layer standards. This is motivated by improved user expe-
rience, which degrades with increased latency between user actions (such as requesting
a web page) and the result (the web page being displayed), as well as the demand for
fast session establishment in applications with extreme latency requirements, such as
real-time control of industrial systems over 5G networks, for instance. Studies showed
that for large Internet companies, such as Google or Amazon, additional delays have
tangible impact on revenue [9,23]. Google has approached this latency issue with their
QUIC protocol [11], which includes a 0-RTT key exchange protocol.

Security of 0-RTT Protocols. Fundamentally, a key exchange mechanism is designed
to establish a common authenticated secret key between communication partners. One
classical security requirement is replay resilience, which essentially means that an ad-
versary should not be able to replay cryptographically protected messages in a way that
tricks the receiver into processing the replayed message again, which in turn may cause
a duplicated execution of a command, for example.

Another fundamental requirement is forward security, which is a standard security
property expected from modern cryptographic protocols. Consider a case where a server
is compromised and secret key material is leaked. Forward security essentially means
that an adversary that has recorded previous sessions is not able to retroactively decrypt
the data exchanged earlier. Hence, forward security ensures that the disclosure of a
secret key does not compromise the confidentiality of earlier communication.

Both replay resilience and forward security are difficult to achieve with 0-RTT key
exchange protocols. The fundamental challenge is the missing interactivity between the
client and the server, as the client needs to be able to encrypt data without getting any
new information (e.g., a Diffie-Hellman share with fresh randomness) from the server.
For a comprehensive discussion on forward security in non-interactive settings, we refer
the reader to [8].

The QUIC Protocol. When considering latency in the networking stack, it is appar-
ent that the minimization of the overall number of necessary round-trips must consider
multiple layers. Google has introduced SPDY, which has been standardized as HTTP/2
since, to address the application layer on the world wide web. It remains to consider
the transport layer connection establishment and the cryptographic handshake. Tradi-
tionally, each of these would take at least 1 RTT for the handshake process. The QUIC
protocol was developed by Google to address both at once. In order to avoid the la-
tency incurred by a TCP handshake, QUIC is based on the lighter UDP protocol. This
makes it necessary for QUIC to define additional protocol operations on top of UDP
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to retain some of the guarantees needed for reliable operation of higher layers, such
as improved congestion control, multiplexing without head-of-line blocking, forward
error correction and connection migration [25].

QUIC implements a custom cryptographic protocol, based on the Diffie-Hellman
key exchange, see Section 2.1 for a detailed protocol description. Essentially, the very
first connection of a client to a server over QUIC still requires a 1-RTT cryptographic
handshake. During this handshake, a SERVER CONFIGURATION message is sent from
the server to the client. This message contains a medium-lived (typically two days)
Diffie-Hellman share gs of the server, which is digitally signed with the server’s long-
term signature key, as well as information about supported cryptographic algorithms
and their parameters.

On subsequent connections the SERVER CONFIGURATION data can then be used
to perform a 0-RTT key exchange. To this end, the client selects supported parameters
and a Diffie-Hellman share gx, which yields an initial session key gxs that can then be
used immediately to encrypt the payload data m sent from the client to the server as
c = Enc(gxs,m). Note that the server re-uses the same ephemeral randomness gs for
all sessions within the lifetime of the SERVER CONFIGURATION message. Hence, an
attacker that obtains s is able to compute the key of all sessions within this time period.
Therefore only a weak form of forward security is achieved, which holds only after the
corresponding SERVER CONFIGURATION message has expired [24].

Furthermore, it is well-known that neither Google’s QUIC [11], nor the protocol
version standardized by the IETF [21], protect against replay attacks. An attacker can
replay a 0-RTT message (gx,Enc(gxs,m)) to the server over and over again. Without
additional application-layer countermeasures, this would trick the server into repeatedly
processing the payload message m.

Preventing Replay Attacks via Idempotent Requests. Due to this lack of security against
replay attacks, the TLS 1.3 standard [?] suggests to enable 0-RTT only for so-called
idempotent requests, which essentially have the same effect on the server state, regard-
less whether they are served once or several times, and hence should not be vulnerable
to replay attacks. One could argue that QUIC should only be used with such idem-
potent requests, too. However, Colm MacCárthaigh [?] describes several convincing
arguments that idempotency is not sufficient to protect against replay attacks, and even
idempotent requests may be used by an attacker, e.g., to leak information about an en-
crypted message. A simple example was also described in [14,15]. Furthermore, we
believe that a cryptographic protocol should not rely on application-layer countermea-
sures to prevent replay attacks.

Puncturable Key Encapsulation. 0-RTT protocols with full forward security and replay
resilience therefore follow a different approach than TLS 1.3 and QUIC, by using punc-
turable key encapsulation. This approach was introduced in [20], following [19], and
is also used in the more efficient Bloom Filter key encapsulation schemes from [14,15]
considered in this paper. A 0-RTT protocol essentially consists of a puncturable public
key KEM (key encapsulation mechanism), which is used to transport a random session
key from the client to the server. After the server receives the ciphertext C encapsu-
lating the session key, it decrypts the ciphertext with the corresponding secret key, and
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then immediately “punctures” the secret key. A punctured key cannot be used to decrypt
C. Even given the punctured key, the key encapsulated in C is indistinguishable from
random. It is furthermore possible to repeatedly puncture a secret key with respect to
different ciphertexts, which makes the 0-RTT protocol usable for multiple sessions.

Our Contributions. We implemented the Bloom Filter key encapsulation mechanism
based on identity-based broadcast encryption (IBBE) introduced in [15], instantiated
with the IBBE scheme by Delerablée [13]. We optimized the implementation with re-
gard to speed, utilizing parallelization and pre-computations where possible, and in-
tegrated the scheme into the QUIC protocol implementation of Chromium [2]. Our
repository can be found at https://gitlab.com/buw-itsc/fs0rtt.

We analyzed the computational performance of the new protocol, comparing it to
Google’s implementation of the QUIC key exchange in Chromium. Specifically, we
measured server and client memory consumption, handshake duration, size of the ex-
changed messages, maximum server throughput and server CPU load. This yields the
first benchmark result for recent 0-RTT protocols with full forward security and replay
resilience.

Results. We find that for reasonable deployment parameters (and despite the use of
computationally heavy building blocks, such as pairings), the server CPU load increases
approximately by a factor of eight, while the number of handshakes the server is able
to process per second is reduced by the same factor. The memory consumption on the
server increases significantly, but stays below 400 MB even for medium-scale deploy-
ments that handle up to 50K connections per day. The size of the first 1-RTT handshake
increases by 18 percent and the following 0-RTT handshakes decreases by 13 percent
when compared to the QUIC protocol. The increase of the first message is small enough
that transmission time on the network is identical, and therefore not significant. As
to handshake duration, the 0-RTT (resp. 1-RTT) handshake takes approximately eight
times (resp. 1.6 times) longer in comparison to the respective QUIC handshakes.

The increased computation time of the 0-RTT handshake is still lower than that of a
full 1-RTT handshake in the QUIC protocol. This means that even when the improve-
ments provided by the reduced number of round trips, which will vary depending on
network speed and latency, is not taken into account, the forward-secure 0-RTT mode
is still preferable over 1-RTT from a latency perspective.

Our Choice of Protocols. The only current real-world implementations of 0-RTT pro-
tocols are QUIC, implemented in the Chromium browser and the web server imple-
mentations of LiteSpeed and Nginx3 as well as the 0-RTT mode of TLS 1.3. QUIC runs
on top of the UDP transport layer protocol, which does not require a handshake and
therefore truly achieves 0-RTT session establishment. However, UDP provides only an
unreliable best-effort channel, therefore QUIC additionally implements transport-layer
algorithms that deal with package loss, perform package re-transmission, and imple-
ment congestion control. In contrast, TLS 1.3 runs on top of the TCP protocol, which

3 See https://w3techs.com/technologies/segmentation/ce-quic/web_
server.

https://gitlab.com/buw-itsc/fs0rtt
https://w3techs.com/technologies/segmentation/ce-quic/web_server
https://w3techs.com/technologies/segmentation/ce-quic/web_server
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provides a reliable channel and congestion control, but requires an initial handshake
and therefore adds another RTT latency.

Our objective is to provide the first benchmark of the real-world performance of
a forward-secure 0-RTT protocol. Therefore it makes sense to consider a protocol im-
plementation that runs on top of UDP, as otherwise the latency incurred by the TCP
handshake would blur the measurements and yield less clear results. Furthermore, we
want to consider a real-world setting where algorithms to deal with packet loss in UDP
are implemented, but we want to avoid that the particular choice of these algorithms
or the performance of their implementation impacts our measurements. Hence, in order
to obtain an as-meaningful-as-possible comparison, our new implementation should use
exactly the same transport layer protocol stack and additional transport layer algorithms
as the protocol we compare with.

Therefore we chose to base our implementation on QUIC, where we replace only
the cryptographic core with a forward-secure 0-RTT protocol, but re-use all other func-
tionality without any modification. This provides the most clear results and the most
objective comparison of the performance impact of the modified cryptographic core of
the protocol.

Furthermore, we chose to use a Bloom Filter KEM as the basis, as it allows for
significantly more efficient puncturing (by several orders of magnitude) than the tree-
based constructions from [19,20]. While one could ask for a comparison to other Bloom
Filter KEMs, we claim that these will yield less efficient protocols and thus are out
of scope of our work. Our objective is not to compare the performance of different
(theoretical) 0-RTT protocol instantiations, but to assess how a modern forward-secure
0-RTT protocol compares to the protocols currently used in practice.

Related Work. To our best knowledge, this is the first work that experimentally assesses
the computational performance and resource requirements of 0-RTT protocols with full
forward security. The QUIC protocol was introduced in [25] and formally analyzed by
Lychev et al. [24]. The idea of puncturable encryption was introduced in [19], the idea
of using it to construct fully forward-secure 0-RTT protocols in [20]. Bloom Filter En-
cryption was introduced as a more efficient variant in [14,15]. Lauer et al. [22] used
Bloom filter encryption to construct a single-pass circuit construction protocol with full
forward security, which resembles a multi-hop 0-RTT protocol. However, it was not
implemented and, to the best of our knowledge, no experimental performance assess-
ments of 0-RTT-like protocols with full forward security have been made so far. Aviram
et al. [4] have developed techniques to overcome the lack of forward security and replay
resilience in 0-RTT session resumption protocols, such as the 0-RTT mode in TLS 1.3.
Their techniques allow an efficient solution to this problem by utilizing only private-key
primitives. These techniques, however, consider a different setting, which is based on a
shared symmetric key between a client and a server, and requires secure storage on the
client. In contrast, we consider “real” 0-RTT protocols where only public information
(the server’s public key) is stored on the client.

We remark that, similar to our approach, the UDP-based transport layer of QUIC is
currently in the process of being standardized with TLS 1.3 as cryptographic core [27]
(replacing the original QUIC key exchange protocol). However, note that TLS 1.3 only
deploys a 0-RTT session resumption protocol that relies on key material, which has
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been established in a previous session. This 0-RTT mode is therefore incomparable to
our 0-RTT key exchange where we only rely on publicly available information.

2 Protocol Design

In the following, we summarize the basic functionality of the handshake protocol in
QUIC and explain why it does not provide forward security and replay resilience for 0-
RTT data. Then we introduce Bloom filter encryption and discuss our parameter choice.
Finally, we outline the handshake we implemented.

2.1 QUIC Handhsake Protocol

The QUIC protocol uses symmetric encryption to ensure the confidentiality of the data
exchanged between client and server. The necessary session key is derived using a mod-
ified Diffie-Hellman (DH) key exchange. Figure 1 shows the message flow for this key
exchange.

Client Server

INCHOATE CLIENT HELLO

verify signature
gs, σ

(
gs
)

REJECTION

initial key := (gs)x
gx

CLIENT HELLO
initial key := (gx)s

[m]initial key

0-RTT Data

final key := (gy)x
[gy]initial key

SERVER HELLO
final key := (gx)y

[m′]final key

Data

Fig. 1. Simplified QUIC handshake protocol. σ(·) denotes a signature, computed with the server’s
long-lived signing key. If the server’s gs is known, only the part below the horizontal divider is
executed.

Upon the start of a server, a SERVER CONFIGURATION is generated. This SERVER
CONFIGURATION contains a DH share gs with a freshly sampled exponent s and an
expiration date. A fresh SERVER CONFIGURATION is generated periodically, typically
every two days.
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Initially, a client does not possess any information about the SERVER CONFIGURA-
TION. Therefore, it initiates a 1-RTT connection using an INCHOATE CLIENT HELLO.
The server responds with its SERVER CONFIGURATION and a signature on the SERVER
CONFIGURATION in a REJECTION. The client stores the SERVER CONFIGURATION
for upcoming 0-RTT connections if the signature is valid. Note that the same SERVER
CONFIGURATION of a server is shared among all clients during its lifetime. In case the
client uses an out-of-date SERVER CONFIGURATION, it reinitiates a 1-RTT connection
by sending an INCHOATE CLIENT HELLO to receive a new one.

If the client is in possession of a SERVER CONFIGURATION, it initiates a 0-RTT
connection. To this end, the client establishes an initial key gsx using the DH share
gs contained in the SERVER CONFIGURATION and its own freshly sampled exponent
x. The initial key is used to encrypt and send 0-RTT data alongside with the client’s
DH share gx to the server in a CLIENT HELLO. When the server extracts the client’s
DH share from the CLIENT HELLO, it can also compute the initial key to decrypt the
encrypted 0-RTT data.

Because of the semi-static nature of the SERVER CONFIGURATION, the initial key
derived from it is not forward-secure. To address this issue, a final key gxy is derived
from a DH share gy with a freshly generated server exponent y. The server’s new DH
share is embedded in a SERVER HELLO directed to the client. The client can derive the
final key from the server’s new DH share and use it for all further communication. Note
that the final key does provide forward security.

2.2 Bloom Filter Key Encapsulation Mechanisms

In this section we give a brief intuition on the main building block of our protocol.
The implemented protocol is based on a puncturable key encapsulation mechanism
(PKEM). A PKEM is closely related to a standard key encapsulation mechanism. In
addition to the standard KeyGen, Encap and Decap algorithms for key generation, en-
capsulation and decapsulation, respectively, there is a Punc algorithm for puncturing
in a PKEM. Given a secret key sk and a ciphertext C this algorithm outputs a modi-
fied secret key sk′. This modified secret key sk′ has the property that it cannot be used
to decapsulate C again. Therefore, by repeatedly calling the Punc algorithm, the set
of ciphertexts which cannot be decapsulated, can be extended successively. Due to the
practical inefficiency of known PKEM constructions, we base our protocol on a special
variant called Bloom filter key encapsulation mechanism (BFKEM) [15]. A BFKEM
introduces a correctness error in order to achieve highly efficient puncturing when com-
pared to other known PKEM constructions. However, this error can be made arbitrarily
small.

Definition 1 (BFKEM). A Bloom filter key encapsulation scheme BFKEM with key
space K is a tuple BFKEM = (KeyGen,Encap,Punc,Decap) of PPT algorithms:

BFKEM.KeyGen
(
1λ, n, p

)
. On input of a security parameter λ, a number of expected

punctures n and a bound p on the failure probability of decapsulate outputs a secret
key and a public key (sk, pk) (where K is implicitly defined by pk).

BFKEM.Encap(pk). On input of a public key pk outputs a ciphertext C and a symmet-
ric key K.



8 Dallmeier et al.

BFKEM.Punc(sk,C). On input of a secret key sk and ciphertext C outputs a modified
secret key sk′.

BFKEM.Decap(sk,C). On input of a secret key sk and ciphertext C outputs a symmet-
ric key K or ⊥ if decapsulation fails.

For the formal correctness and security definitions, we refer the reader to [15].
Previous works [15,20] showed that a puncturable KEM can be used to construct

0-RTT protocols with full forward security, by using the Punc algorithm. A client sends
a KEM ciphertext to the server. The server receives the ciphertext, decrypts it, and then
calls Punc. After puncturing, it is impossible to decapsulate that ciphertext again, even
given the punctured secret key. Thus, even if the server is compromised at some point
in time, a previous KEM ciphertext can not be decrypted by the adversary.

Parametrization of BFKEM. A BFKEM needs two parameters for instantiation. By
choosing these parameters according to the application at hand, the secret key size as
well as the failure probability of Decap can be controlled. The first parameter is the
expected number of invocations of the Punc algorithm n over the lifetime of the public
key. The second parameter is the desired bound p on the failure probability of decapsu-
late which holds while fewer than n punctures have been executed.

A secret key of a BFKEM typically consists of a large array of subkeys. The optimal
size m for this array can be derived from the parameters n and p. More precisely, it is
given bym = −n ln p/(ln 2)2 [15]. Thus, apart from choosing the lifetime according to
the application, instantiation of a BFKEM is essentially a trade-off between the failure
probability and the secret key size.

2.3 The Implemented Handshake Protocol

The implemented handshake protocol is based on the generic 0-RTT protocol of Günther
et al. [20]. In the following, we describe a simplified version of this protocol using the
aforementioned BFKEM. A visualization of this protocol is shown in Figure 2.

Upon a server’s initialization, it uses the KeyGen algorithm to generate a BFKEM
key pair (sk, pk). Since the client initially does not possess any information about the
server’s key material, it needs to initiate a 1-RTT connection. When a client connects
for the first time, the server transmits its BFKEM public key as well as a signature of the
public key to the client. Once the client receives this message, it verifies the signature
of the server’s public key and stores it for further processing if the signature is valid.
The client can reuse the previously stored public key in subsequent connections to the
same server. If the server’s public key has been replaced, the client needs to repeat the
above steps.

The client proceeds with a 0-RTT connection. First, the client invokes the encapsu-
lation algorithm to generate both a session key and a ciphertext. The session key is used
to encrypt the 0-RTT data. Afterwards, the ciphertext and the encrypted 0-RTT data are
sent to the server. Upon receiving the ciphertext, the server invokes the decapsulation
algorithm to retrieve the session key. The server executes the puncturing algorithm to
puncture its secret key before decrypting the encrypted 0-RTT data with the session key.
Henceforth, the session key can be used for further communication.
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Client Server

(sk, pk)
$← KeyGen(1λ, n, p)

Request pk

verify signature pk, σ(pk)

(C, key) $← Encap(pk) C key := Decap(sk,C)

sk := Punc(sk,C)

[m]key

0-RTT Data

[m′]key

Data

Fig. 2. Simplified version of the implemented handshake protocol. σ(·) denotes a signature, com-
puted with the server’s long-lived signing key. If the server’s pk is known, only the part below the
horizontal divider is executed

2.4 Instantiation of the BFKEM

In [14] four different BFKEM constructions were presented. We have decided to use
the one based on identity-based broadcast encryption (IBBE). In contrast to the other
three, this one is able to achieve constant size ciphertexts while keeping public and se-
cret keys reasonably small. As suggested in [14] we instantiated the IBBE scheme with
the construction presented by Delerablée [13]. The ciphertexts in her scheme are con-
stant size and thus the BFKEM achieves constant size ciphertexts as well. Additionally,
the delegated secret keys in the scheme by Delerablée consist only of a single group
element. As the secret key in the construction of BFKEM based on IBBE consists of a
large array of secret keys from the IBBE scheme, the secret key of the BFKEM benefits
from the small secret keys from Delerablée’s scheme.

2.5 Failure Probability and Key Exhaustion of BFKEMs

In contrast to classical key encapsulation schemes, in a BFKEM the decapsulate algo-
rithm has a probability of failure. A failure is intended for ciphertexts on which the
secret key was already punctured, as this is the tool to achieve forward security. How-
ever, decapsulate may also fail on input of a ciphertext on which the secret key was not
yet previously punctured.

In Figure 3 we simulated a BFKEM for different values of the desired failure prob-
ability p while fixing the number of expected punctures n over the lifetime of the public
key. For each simulation, we consecutively generate a fresh ciphertext, decapsulate this
ciphertext, and then puncture the secret key on that same ciphertext. We do this until
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we are well above the threshold n. Each decapsulation failure is indicated by a vertical
black line in the figure. For this simulation we fixed n to an exemplary value of 1500,
however different values for n will result in a similar behaviour. It can be observed that
after n punctures the bound p on the failure probability does not hold any more. Thus,
exceeding the expected number of punctures invalidates the guarantee on the failure
probability of decapsulate. However, the bound p can be made arbitrarily small, and
n can be made large by a suitable choice of Bloom filter parameters. We explain our
choice of parameters below.

0 1000 2000 3000 4000
Number of executed punctures

10−4

10−3

10−2

10−1

B
ou

nd
on

fa
ilu

re
pr

ob
ab

ili
ty
p

Fig. 3. Trend of decapsulation failures over number of executed punctures. Consecutive decap-
sulations of fresh ciphertexts and punctures of the secret key were simulated in a BFKEM for
different values of the bound p on the failure probability valid until n punctures have been ex-
ecuted. Expected number of punctures over public key lifetime is fixed to n = 1500, which is
indicated in the figure by the dotted line. A decapsulation failure is marked by a vertical black
line.

3 Security

A security model to formally analyze a 0-RTT key exchange was introduced by Günther
et al. [20, Def. 11]. The authors additionally give a generic construction based on PKEM
to build a 0-RTT key exchange with replay resilience and server-only authentication [20,
Def. 12]. To account for the non-negligible correctness error of BFKEM the correctness
property of that model was slightly adjusted in [15], however the authors argue that the
generic construction can be instantiated with BFKEM without any changes.
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The protocol we implemented as described in Section 2.3 resembles the generic 0-
RTT protocol of Günther et al. [20] instantiated with a BFKEM as suggested in [15] and
the maximum number of timesteps fixed to τmax = 1. The only difference is that the
protocol from [20] assumes that a client knows the server’s public key before starting a
session. However, in practice this is not the case when a client connects to a server for
the first time. For that reason, we assume the existence of a public key infrastructure
which is used to transmit the server’s public key to the client in an authenticated manner.

Günther et al. prove their generic 0-RTT protocol secure in their aforementioned
security model under the assumption that the underlying BFKEM provides IND-CCA
security [20, Thm. 2]. Derler et al. prove that their construction of BFKEM based
on IBBE is IND-CCA-secure (resp. IND-CPA) if the underlying IBBE scheme is
IND-sID-CCA-secure (resp. IND-sID-CPA) [14, Thm. 5]. Delerablée proves her con-
struction of an IBBE scheme to be IND-sID-CPA-secure [13, Thm. 1], however, this is
not sufficient for the protocol from [20]. Therefore, in order to achieve IND-CCA secu-
rity for the BFKEM, Derler et al. [14] suggest to apply the Fujisaki-Okamoto transfor-
mation [16] to the BFKEM if the underlying IBBE scheme only provides IND-sID-CPA
security. This transformation requires to encapsulate again within the decapsulate algo-
rithm and thus adds significant computational overhead to decapsulation. In order to im-
prove efficiency, we instead applied the transformation by Canetti, Halevi and Katz [10]
(CHK transformation) to achieve IND-sID-CCA for the scheme by Delerablée as sug-
gested in [13]. For a formal security proof of this modified CHK transformation, we
refer the reader to [17].

During encapsulation, this requires the client to generate a fresh key pair of a
sEUF-1-CMA-secure one-time signature scheme as well as to sign the ciphertext. The
server then additionally has to verify this signature during decapsulation. Hence, the
overhead added by this transformation depends on the used signature scheme. We in-
stantiate it with the Boneh-Lynn-Shacham signature scheme [7] which is known to be
EUF-CMA-secure and provides short signatures. Since there is exactly one valid sig-
nature for every public key and message pair this also guarantees sEUF-CMA (and
thus sEUF-1-CMA) security.

4 Implementation

Our implementation is based on QUIC version 43. To be precise, we used the most up-
to-date revision present on the Chromium Projects master branch [2] when we began
implementing our changes, which was commit 2d376507075d on 31st of May 2018.
We verified that our modifications are still applicable in the current version of QUIC as
all changes since then have been of cosmetic nature only and did not change how the
handshake is executed.

Goal of our Implementation. Our goal is to implement the protocol described in Sec-
tion 2.3 into a real-world application. As our major design decision we agreed on imple-
menting this protocol without removing the possibility to perform the QUIC handshake.
As a consequence, benchmarking results are better to compare.
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Modifying the QUIC Protocol. In the following, we traverse the message flow of the
QUIC protocol while pointing out which parts we have modified.

– Initially, the server has to set up its keys for key exchange with the clients. In QUIC,
the server generates the SERVER CONFIGURATION with the public DH share. In
our implementation, the server instead uses the KeyGen algorithm to generate a
BFKEM key pair (sk, pk). Note that the Bloom filter key material is (similar to
QUIC’s SERVER CONFIGURATION) medium-lived.

– Upon a client’s first connection to a server, both parties agree on a common protocol
version consisting of the handshake protocol and the transport protocol version. To
negotiate on the newly implemented protocol, we added an entry to the supported
handshake protocols in the QUIC implementation.

– If a server receives an INCHOATE CLIENT HELLO, it responds with a REJECTION.
Instead of a DH share included in the SERVER CONFIGURATION, now the server’s
BFKEM public key is embedded within this message. We removed the SERVER
CONFIGURATION, since we do not use a DH key exchange for our implementation.

– Additionally, QUIC offers two algorithms to sign and verify a SERVER CONFIG-
URATION: ECDSA-SHA256 and RSA-PSS-SHA256. We reused this functionality
to sign the server’s public key instead of the SERVER CONFIGURATION. Note that
the signing keys of the server are long-lived.

– Once a client receives a server’s public key it verifies its signature. Then a key as
well as a ciphertext are computed by using the Encap algorithm. This key is used
as a premaster secret, which is given to QUIC’s key derivation function. A freshly
generated client nonce is included as salt. The derivation function uses HMAC
with SHA-256 to generate two pairs of session keys and initialization vectors. Con-
sequently, we do not need to manually set any session key or initialization vector.
Analogous to the server, the client does not send an additional DH share in its
CLIENT HELLO. Instead of the DH share, the ciphertext is included in the CLIENT
HELLO. The client nonce is also added to the CLIENT HELLO such that both parties
use the same salt.

– When a server receives a CLIENT HELLO, the Decap and Punc algorithms are
executed using the received ciphertext. The key computed by the Decap algorithm
is passed to QUIC’s key derivation as a premaster secret and the received client
nonce is added as salt. In contrast to the QUIC protocol, the server does not send
an additional DH share in the SERVER HELLO to establish a forward-secure key.
This step can be omitted since the key exchanged by the proposed protocol already
provides forward security.

– By default, QUIC provides two authenticated encryption with associated data algo-
rithms: Galois Counter Mode with AES128 and Poly1305 with ChaCha20. Since
we did not alter the key derivation function, but only changed its input, both of
these algorithms can be chosen.

Handshake Protocol Errors. There are cases in which the normal flow of the handshake
can be interrupted. For instance, a client may initiate a 0-RTT connection using an out-
of-date server public key or the Decap algorithm may fail, leaving the server unable
to extract the received key. In any of the above events, the server responds by sending
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a REJECTION containing an appropriate rejection reason to the client. These failures
replace corresponding errors occurring with QUIC’s DH key exchange. Any other errors
or rejection reasons remain untouched. The client restarts the 0-RTT connection based
on an up-to-date server public key.

Cryptographic Primitives. We implemented the IBBE scheme by Delerablée in the C
programming language using the RELIC toolkit [3] for arithmetic operations in bilin-
ear groups including pairings. Building upon that, we implemented the BFKEM de-
scribed in Section 2.4 in C++. We optimized both implementations for speed, using
multi-threading and precomputation tables where applicable. Additionally, our imple-
mentation offers optional point compression for the IBBE secret keys where we only
store one coordinate of an elliptic curve point. This cuts memory requirements for each
IBBE secret key in half while slowing down the decapsulation algorithm as the dis-
carded coordinate must be recomputed. To reduce the size of transmitted data, we apply
point compression to both public key and ciphertext as well.

5 Analysis

In this section, we analyze the efficiency of our implementation. To do so, we first
describe a measurement setup as well as metrics and methodologies used to conduct
performance tests. Building upon that, we evaluate the efficiency of our implementation
by comparing its performance to QUIC.

5.1 Measurement Setup

Scenario. We consider the following scenario in our analysis: Several clients connect
to a single web server several times. All of them are running the modified QUIC imple-
mentation using the BFKEM described in Section 4. For the key generation on server
side we need to parametrize the BFKEM. We parametrized the BFKEM such that over
a public key lifetime of two days one request per second can be served while guaran-
teeing a bound on the failure probability for decapsulate of p = 0.001. The two days
were chosen as this is the lifetime currently used for the SERVER CONFIGURATION
of Google’s QUIC servers. Additionally, we disabled point compression for the secret
key4.

Testbed. We execute all performance tests on a networked client-server environment
consisting of three desktop machines, connected via Gigabit Ethernet on a single switch,
without additional latency emulation between machines.5 One machine is used as a
server, the other ones as clients. For a large part of our measurements we perform stress

4 Enabling point compression leads to a decrease of 19 percent in memory consumption on
server side while increasing the computational load per decapsulation by roughly 6 percent.

5 All machines are located within the same room. Hence, the resulting network latency is sig-
nificantly lower compared to real-world latencies between clients and servers, especially com-
pared to the required computation time of the implemented protocol. Overall, the network
latency does not influence our results and is thus neglected in the following sections.
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testing on the server side, i.e. we need to be able to exhaust the computational resources
of the server. To exhaust the server, several clients need to send their requests to the
server simultaneously, whereby the exact number of required clients depends on the
performance of both the server and the client machines.

In the resulting setup, we use an Intel Core 2 Duo E6600 @ 2.40 GHz with 4 GB
RAM as a server and two Intel Core i5-6600 CPU @ 3.30 GHz with 16 GB RAM to host
several client instances in parallel. Since we noticed high fluctuations in results when
running a large number of distributed dedicated client machines simultaneously, we
purposely decided to run the server on a low-performance machine, while the clients are
running on high-performance machines. This makes it possible to reduce the number of
clients that are required to exhaust the server, resulting in much less coordination needed
between clients and less fluctuations in results. All machines run Debian 9 (stretch).
We utilize the QUIC test server and test client applications included in the Chromium
sources. Because their native capabilities did not meet our requirements for testing, we
extended the test client by the following features:

1. The client is able to perform multiple sequential requests within one and the same
execution of the performance test. This allows us to perform 1-RTT handshakes
as well as 0-RTT handshakes. Further, we eliminated any additional overhead that
comes with starting and terminating the client application over and over again.

2. The client is able to wait a given amount of time between sequential requests. The
waiting time starts as soon as the previous request has completed.

3. The client is able to run for a given amount of time. Within this time span, requests
are performed. When the timer expires, any ongoing request is finished and the
client terminates. The number of requests that could be completed within the time
span is counted at client termination.

5.2 Metrics and Methodology

For a performance comparison between our implementation and QUIC we conduct
measurements on throughput, computational cost and memory consumption. We fur-
ther analyze different handshake properties in more detail.

– Throughput. Throughput is measured in requests per second. We run two clients in
parallel on each machine, i.e. in total four clients are used to generate the requests.
All clients perform requests over a runtime of 30 seconds. After 30 seconds, we
inspect how many requests could be completed within this time span and reduce
the result to one second. In order to obtain server-sided throughput limits, we vary
the client-generated load by altering the waiting time between requests. Thus we
are able to achieve different levels of offered load without changing the number of
clients. We alter the waiting time in the range of 0 ms (no wait between requests)
to 1000 ms (one second wait after each completed request). Note that since we are
using four clients in parallel, within the frame of one waiting time a total amount
of four requests is sent to the server.
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– Computational cost. Computational costs are quantified in two ways. Firstly, we
re-enact our throughput experiment, but additionally measure the server CPU uti-
lization. To obtain measurement data on CPU utilization, we use the Linux per-
formance monitoring tool pidstat [18]. We attach pidstat to the server process as
soon as the clients start making requests and stop monitoring once all clients have
finished. Secondly, we measure the CPU instructions per request. To measure the
instruction count we utilize the Linux performance analyzing tool perf [1]. More
precisely, we use the perf stat subcommand, which gives detailed information about
the process that has been executed under perf’s supervision. Instructions per request
are calculated as an average over 1000 requests.

– Memory consumption. We measure server-sided memory consumption. Again,
we utilize pidstat to sample current memory consumption at a rate of one hertz.
We track memory from server startup until it reaches a steady state, i.e. the server’s
memory does not increase any further and the server is ready to receive requests.
From all samples we pick the maximum memory consumption.

In addition to the aforementioned metrics, we furthermore analyze the handshake re-
garding duration and size.

– Handshake time. We measure the time that is needed to complete a handshake.
Time measurement begins when the client starts building the CLIENT HELLO and
ends when the SERVER HELLO is fully processed. We use QUIC logging functions
to obtain the corresponding timestamps. The QUIC logs provide timestamps in
the precision of one microsecond. We measure both 1-RTT and 0-RTT handshake
times.

– Handshake size. We measure the bytes per handshake. The size of the handshake is
calculated as the sum of all handshake message sizes. Values for message sizes are
obtained from debug logs of the client and server application. Again, we measure
both 1-RTT and 0-RTT handshake sizes.

In order to minimize any additional transmission and computational costs, we only
transmit a small file of 100 bytes size with each request. To mitigate any bias resulting
from transient noise either on network or on operating system level, all experiment
results are averaged over ten repetitions.

5.3 Performance Comparison with QUIC

We compare our implementation with the original QUIC implementation. A summary
of this is available in Table 1.

Throughput. A throughput comparison between our implementation and QUIC is shown
in Figure 4. In our test setup, we achieve a maximum throughput of 34 requests per sec-
ond for our implementation and 261 requests per second for QUIC. When only a small
amount of requests is sent by the clients, achievable throughput between our implemen-
tation and QUIC behaves similarly. In this phase, the server can process all requests
directly without delay. Only one request has to be processed at any time.
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Handshake QUIC Our Implementation in QUIC
Forward Security After 2 days Always
Replay Resilience No Yes

Bytes per Handshake
1-RTT: 4027
0-RTT: 1358

1-RTT: 4755
0-RTT: 1188

Server CPU instructions per Request 13.57M 104.82M
Server memory usage 17.16 MB 658.28 MB

Handshake duration
1-RTT: 74.22 ms
0-RTT: 4.32 ms

1-RTT: 116.71 ms
0-RTT: 36.59 ms

Table 1. High-level comparison of Google’s QUIC implementation and our modified version
utilizing the implemented BFKEM (failure probability p = 0.001, expected number of punctures
n = 602 · 24 · 2 = 172800).

The higher the client-generated load, the more requests have to be handled in par-
allel. This has two effects: First, the processing time for each request increases, thus
the achieved throughput on the server side diverges from the offered load of the clients.
Second, when the server is computationally exhausted, the achieved throughput reaches
a stable state. At this point, any additional requests sent by the clients do not lead to an
increase in throughput on the server side. Since our implementation is considerably
more computationally heavy, the server reaches its exhaustion level about eight times
earlier compared to QUIC, resulting in an eight times lower throughput limit.

Computational Cost. In Figure 5, CPU utilization of our implementation and QUIC is
shown in comparison. We plot the CPU utilization as a function of the server throughput
in the interval of 0 to 35 requests per second. In general, the CPU utilization increases
linearly with the server throughput.

As expected from the increase in computations in our implementation, we experi-
ence a much higher CPU utilization for a given throughput in comparison to QUIC.
For the lowest throughput of four requests per second we notice a CPU utilization of
approximately ten percent for our implementation and less than one percent for QUIC.
At the upper bound, we achieve a maximum of approximately 80 percent for our imple-
mentation and 50 percent for QUIC. Note that we run the server on a dual core machine
in our experiments. Due to our multi-threading optimized implementation of the cryp-
tographic primitives, we gain a higher CPU utilization at the server’s exhaustion limit.
However, an ideal utilization of 100 percent is not achieved.

Having a look at the definite server CPU instructions executed per request, we
can confirm a correlation between throughput limit and computational demands. As
stated above, in our implementation we approximately achieve an eighth of the max-
imal throughput of QUIC. The same relation holds for the executed CPU instructions
per request, i.e. for our implementation, approximately eight times more instructions
have to be executed for each request. Measurements on executed instructions are given
in Table 1.
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Fig. 4. Achievable server throughput for a given client-generated load. The measurement of our
implementation is compared with the original QUIC implementation.

Memory Consumption. In our test scenario, the server’s memory consumption reaches
its maximum at 658 MB, resulting in almost 40 times higher memory requirements as
compared to QUIC. In our implementation, server side memory consumption is heavily
influenced by the secret key size, which in turn depends on the choice of the BFKEM
parameters.

Figure 6 shows the server’s memory consumption for a different number of expected
punctures n over the lifetime of the public key and a fixed bound on the failure proba-
bility p = 0.001. The memory consumption then scales linearly with n as a larger secret
key array size m is required to guarantee the chosen bound on the failure probability.
Note that the measurements have been done with the implementation described in Sec-
tion 4, i.e. we are using the BFKEM based on the IBBE scheme by Delerablée [13].
Therefore, the concrete measured values may differ when using another scheme than
the one by Delerablée for instantiation. However, the scaling is independent from the
scheme used for instantiation and is always linear.

Handshake Analysis. We compare size and duration of 1-RTT and 0-RTT handshakes.
In general, we notice an increase of 18 percent in size for 1-RTT handshakes and a de-
crease of 13 percent in size for 0-RTT handshakes when comparing our implementation
to QUIC. Differences in handshake sizes are emerging from two handshake messages:
the REJECTION and the SERVER HELLO. The REJECTION message increased by 898
bytes, primarily caused by replacing the SERVER CONFIGURATION with the server’s
BFKEM public key. At the same time, the SERVER HELLO in our implementation is
reduced by 170 bytes due to removed information such as the DH share.
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Fig. 5. Server CPU utilization for a given throughput. The measurement of our implementation
is compared with the original QUIC implementation. Note that we plot in the range from 0 to 35
requests per second, which encloses the throughput limit of our implementation.

Measurements of the handshake duration correlate with the results of computational
costs as described above. Due to the large increase in computational demands, both 1-
RTT and 0-RTT handshakes require more time to be completed. Most notably in 0-RTT
handshakes, added computations for encapsulation and decapsulation have remarkable
impact on the resulting handshake duration. As a consequence, a 0-RTT handshake in
our implementation takes approximately eight times longer as compared to QUIC. For
a 1-RTT handshake, a large proportion of the overall duration is expended on signature
verification. The duration of a 1-RTT handshake of our implementation therefore only
differs by a factor of 1.6 in relation to QUIC.

Definite measurements on handshake size and duration are given in Table 1.

6 Conclusion

We have compared the 0-RTT key exchange implemented in QUIC with our imple-
mentation of a fully forward-secure 0-RTT key exchange. Despite the use of compu-
tationally heavy building blocks, such as pairings, the server CPU load increased only
approximately 8 times, with a corresponding reduction in the achievable number of
handshakes per second. The sizes of the handshake messages differ only by a few hun-
dred bytes. These differences are not observable6 on the wire, which means that trans-
mission times on the network are not affected by our changes. While the size of the

6 Inspection in Wireshark revealed that messages are padded to occupy the full MTU size, can-
celing out small size differences.
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Fig. 6. Server memory consumption for different expected number n of punctures over the life-
time of the public key and fixed bound on the failure probability p = 0.001 with point com-
pression disabled. The linear increase of memory consumption in n is due to the larger secret
key array size m required to guarantee the chosen bound on the failure probability. The memory
consumption of the QUIC server is shown for reference.

secret key on the server side is significant, as it may grow to hundreds of megabytes
and more, depending on the desired lifetime of the key and the acceptable failure prob-
ability of the key exchange, we think this is tolerable for modern server deployments
with moderate resources.

The takeaways for protocol design depend on the design goal. Replay resilience and
forward security may be considered worth the reduction in performance. Most impor-
tantly, the increased computation time of the 0-RTT handshake is still lower than that of
a full 1-RTT handshake in the QUIC protocol. This means that even when the improve-
ments by the reduced number of round trips, which will vary depending on network
speed and latency, are not taken into account, the forward-secure 0-RTT mode is still
preferable over 1-RTT from a latency perspective, as it reduces latency by roughly 50
percent.

Our analysis has shown that with currently available mechanisms, forward-secure
0-RTT handshake protocols can be considered practical. The performance of such a
key exchange in real-world applications is worse than that of non-forward-secure 0-
RTT protocols, but despite the measured increased computation times and computation
load, it remains a viable alternative. Certainly, further improvements will be necessary
if such protocols are supposed to gain widespread adoption.

Since puncturable encryption is a relatively novel area of research, we hope to see
further constructions that might mitigate some drawbacks. Our work provides a bench-
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mark that new constructions can be compared with. A possible approach may be to
construct more efficient puncturable encryption schemes, which immediately yield a
more efficient 0-RTT key exchange.
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