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Abstract—In most scenarios of Private Set Intersec-
tion (PSI) computed on a cloud server, the client has a
smaller set size and lower computation ability than that
of the cloud server, which is known as the unbalanced
setting. We use Torus Fully Homomorphic Encryption
(TFHE) for the first time instead of the leveled ones to
construct a PSI protocol. More precisely, we mainly
focus on an adaptive and dynamic setting since the
server may provide services to multiple clients at the
same time and its data set is updated in real time.

We use TFHE to construct an adaptive PSI for un-
bounded items with a lower communication complexity
of O(|Y |) than [19](CCS17), where Y is the length
of client’s sets) . TFHE support arbitrary depth of
homomorphic operations, which avoids those optimiza-
tions[19] made to reduce the depth of the circuit, re-
sulting in additional computation and communication
complexity. We propose a basic protocol that can effi-
ciently compute the intersection with small items and
then we apply a partition technique to our full protocol
in order to support unbounded items. We also achieve a
flexible dynamic protocol by adjusting our parameters
into an adaptive setting, which can further reduce the
communication cost of our PSI protocol, especially in
cloud computing scenarios mentioned above.

Index Terms—private set intersection, fully homo-
morphic encryption, cloud computing

I. Introduction
In the client-server setting in PSI with a cloud server,

client with low computation ability holds a small data
set while the server is opposite. Thus, the best strategy
is to reduce the workload of the client by giving all of
the computation tasks to could server. Since the data size
is huge regularly, most scenarios of cloud computing is
not a immediate use case and computation complexity
is seen as a considerable factor. Customers may want to
maintain the privacy of their data while getting computing
results efficiently so that cloud computing is often used as
a powerful component of protocols dealing with privacy
information.

As we discussed above, a PSI that can deal with
dynamic data sets and with low communication cost is
needed under this scenario. Further more, the cloud server
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may prefer an adaptive strategy when providing services
to the clients whose set size are quietly different.

The study of constructing a PSI with a leveled FHE has
already mentioned in [19]. We now give another feasible
approach to construct a PSI based on a boolean circuit
FHE with even less communication complexity than [19].
Our motivation of applying a boolean circuit FHE in our
PSI protocol is explained as follow:

a FHE schemes operate on the ciphertexts directly so that
only clients need to send their small encrypted data sets
to the server instead of both of them calculating the
intermediate results and interacting with each other. We
take advantage of this feature in FHE and the study in
[19] as a fundamental step to reduce our communication.

b We further reduce the communication complexity by
replacing the underlying FHE scheme from a leveled one
to a boolean circuit FHE. The leveled FHE applied in
[19] has to employ some optimizations(which will in-
crease communication) on circuit depth since the depth
in those scheme is fixed by the pre-setting parameter.
We will demonstrate that the FHE we used in our
protocol can completely avoid this problem and achieve
extra advantage in following sections. Moreover, many
optimizations can be used in our PSI, such as Cuckoo
hashing. However, it would still have a slightly effect
on computation efficiency, but the running time is still
acceptable while the scenario our protocol focused on is
computing on a cloud server and without immediacy.

c We can achieve characteristics of adaptive and dynamic
when applying the boolean circuit FHE while the lev-
eled FHE based PSI is more suitable for a static data
set. Thus our protocol perform well in the setting we
mentioned above. Furthermore, computing on arbitrary
depth of circuit and unbounded items is also can be
achieved combining with some optimizations.

We give brief introductions to private set intersec-
tion(PSI) and fully homomorphic encryption(FHE) in fol-
lowing two subsections, respectively, and summarize our
contributions in the final subsection.



A. Private Set Intersection
As the discussion above, private set intersection (PSI)

allows two parties with respective input sets X and Y to
compute the intersection of the two sets without revealing
anything else and is applicable to many scenarios with
operating privacy-sensitive information.

Over past few years, many cryptographic components
and techniques were employed to PSI, such as garbled
circuit[1], oblivious transfer (OT)[2–5], FHE[19, 20] and
oblivious polynomial evaluation (OPE)[7, 8], so as to
meet requirements of various practical scenarios. Many
protocols begin to focus on specific settings due to various
techniques supporting PSI to achieve higher efficiency. For
example, [9, 20] are designed for communication setting
especially with unequaled data set, such as mobile devices
[9], while [6, 10] pay more attention to computation effi-
ciency.

B. Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) allows to di-

rectly evaluate on ciphertext without accessing to the
decryption key instead of operating decrypted data. The
first fully homomorphic encryption scheme based on ideal
lattices was proposed by Gentry in 2009[13] while the
notion of homomorphic encryption could date back to 1978
by Rivest [14].

Several years later, many researchers proposed a list
of leveled FHE based on arithmetic circuit[15–18] which
were widely used in processing private information, such
as MPC, Neural Networks and even PSI[19, 20]. Leveled
FHE should process bootstrapping procedure before the
noise gets too big to destroy the message encoded in
the ciphertexts, but the bootstrapping has a high com-
putation cost[18]. Thus, many applications try to avoid
bootstrapping to get high efficiency by retaining enough
space and using other techniques to dealing with noise
flooding problem[11, 19, 20].

Conversely, TFHE schemes has fast bootstrapping pro-
cedure after each gate, which the cost is down to 13ms
in [23]. At a high level, more studies should be done to
develop the applications of Boolean circuit FHE since it
is a universal construction and and has a better way to
manage noise.

C. Our Contributions
In this paper, we propose an efficient PSI protocol based

on Boolean FHE scheme for the first time. More precisely,
we use torus fully homomorphic encryption(TFHE)[22–24]
and variation of its integer comparison algorithm[21] in
our work. We reduce pairwise-comparisons and achieve a
dynamic feature via Cuckoo hashing technique which is
slightly different from [19]. We also use a partition strategy
to make our protocol support to deal with unbounded
items.

According to [19], there is a limitation producing from
the pre-setting circuit depth which lead to large parameter

setting and inability of computing arbitrary depth of
circuit. Thus, several optimization need to be applied to
ensure the circuit depth is in the legal range so that leading
to additional communication even related to the size of
the larger set. We completely avoid this extra cost by
constructing our PSI based on a Boolean FHE instead of
leveled ones and achieve the ability of computing arbitrary
circuit.

We also achieve a flexible dynamic protocol by adjusting
our parameters into an adaptive setting. The communica-
tion cost from the client would dynamically depending on
its own set size which avoiding wastes from a large pre-
setting. Besides, benefiting from the underlying Boolean
circuit FHE, the hash table of the larger set(which refers to
server’s set according to above setting), can adding data
dynamically without considering the problem of overload.
While in [19], the protocol fall when the hash bin is
overload, so that a large parameter setting is needed to
reduce it to a small probability.

In summary, our contributions are as follows:
• Construct a basic protocol via the variation of integer

comparison based on TFHE, and realize faster inter-
section of small items.

• Propose a strategy of dynamic hashing to bins, which
support sender(cloud server) updating the database
in real time and serving receivers(client) of different
data set sizes at the same time.

• Construct a full protocol to support items of arbi-
trary length by using hashing to shorter strings and
partitioning technique.

• Take advantage of the efficient bootstrapping proce-
dure to achieve arbitrary depth of homomorphic op-
erations which results in communication complexity
of O(|Y |).

II. Prelimiatities

In this section, we first start by introducing necessary
knowledge about cyclotomic ring and notations used in
this paper. Then, a description of TFHE is given especially
some terms and the details of sub algorithm. Finally, we
recall the idea of constructing PSI with FHE in CLR17[19]
and explain the features of this type of PSI.

A. Cyclotomic ring and notations

For a power of 2 denoted by 2N , let Φ2N (x) = xN +
1 be the 2N -th cyclotomic polynomial. We denote ZN [x]
as cyclotomic ring Z(x)/Φ2N . For a set S and a positive
integer n, we write Sn be a n dimensional vector which
each element is belong to S.

Let [a] denotes a set {1, 2, · · · , a} when a is a positive
integer, and i← S means picking a random element from
this set S. The security parameter is denoted as λ. The
hash table from the set X is denoted by TX .



B. TFHE scheme

As in [23], Chillotti et al. use Learning with Er-
rors(LWE) and Ring Learning With Errors (RLWE) prob-
lem over torus T = R/Z (i.e., the real modulo 1) for the
construction of fully homomorphic encryption scheme.

Chillotti et al. also refer to LWE over torus as LWE.
LWE problem is hard to solve even for quantum com-
puters. The LWE assumption states that it’s hard to
distinguish between (a,as + e) ∈ Tn′+1 and the uniform
distribution over Tn′+1 without the knowledge of s, for
a ← Tn′ , s ← {0, 1}n′ , e ← χ, χ is a continuous gaussian
distributions over R.

As a variant of LWE, the RLWE problem is also ex-
tensively used for the reason of ciphertexts based on it
has a larger message space. Let RN = RN [x]/ZN [x] with
RN [x] = R[x]/(xN + 1) and ZN [x] = Z[x]/(xN + 1), N
is a power of 2. The RLWE assumption states that it’s
hard to distinguish between (a, as + e) ∈ R2

N and the
uniform distribution over R2

N without the knowledge of s,
for a←RN , s← Z2[x]/x

N +1, e← χ, χ is a distribution
over RN [x].

The TFHE scheme has an efficient bootstrapping that
enables to reduce errors after ciphertext calculation.

Like in [21], we define the encryption scheme as follow:

• TFHE.Setup(1λ): Inputs a security parameter λ to
obtain public paras including the length of secret key
n, and returns s← {0, 1}n′ .

• TFHE.Encrypt(s, m): Inputs message m and secret
key s. Sampling a ← Tn′ and e ← χ where χ is
continuous gaussian distributions over R, and return
c⃗ = (a, b) where b = as + e+ m

2B ;
• TFHE.Decrypt(s, ct): Computes c⃗(−s, 1) mod 1 in

[− 1
2 ,

1
2 [ and return ⌊2B · x⌉.

Unless special instructions in the rest of the paper, LWE
ciphertext is belong to Tn′+1 while RLWE ciphertext is
belong to R2

N . We denotes them as c⃗ and ct, respectively.

We define two subprocedure called BindRotate and
Extract as follow:

• BlindRotate: inputs an LWE ciphertext c⃗t en-
crypted with s and a bootstrapping key bk, returns
an RLWE ciphertext encryption of xb−as where b =
⌊2N · b⌉ and a = ⌊2N · a⌉.

• Extract: Inputs an RLWE ciphertext of a polynomial
p(x) and return an LWE ciphertext of p(0).

We use homomorphic AND and OR gates as follow:

• HomAND: input two LWE ciphertext c⃗1 and c⃗2,
output Bootstrap((0,− 1

8 ) + c⃗1 + c⃗2).
• HomOR: input two LWE ciphertext c⃗1 and c⃗2, out-

put Bootstrap((0, 5
8 )− c⃗1 − c⃗2).

C. Overview of private set intersection protocol via homo-
morphic encryption

In this subsection, we recall the first protocol based
on FHE proposed in [19] in order to achieve a lower
communication cost. In practical scenarios, the party who
wants to get the result often seems to be a client with
small set size and low computation ability, while the other
one can be seen as a powerful server who own a large set.
FHE seems to be a directly solution in this setting since
it only requiring the client sending its small encrypted
data set and waiting for the result from server, instead
of both sides interacting their intermediate results. Thus,
protocol introduced in [19] reduce the communication cost
significantly in such unbalanced setting.

For more detail, they invite a leveled FHE scheme
mentioned in [16] and set enough parameters to cover
the increasing noise after each homomorphic operation as
we discussed in I-B. They also adopt several optimiza-
tion, such as Batching and Cuckoo hashing to deduce
the comparison-with-pairs, windowing and partitioning to
reduce the circuit depth.

Since bootstrapping procedure of [16] is inefficient and
leading to their abjuration, only limited depth of circuit
can be compute in [19] because of the growing noise.
Later in [20], they use OPRF to resolve this problem but
leading to two more rounds of interaction. Also, due to the
concrete property of a FHE based on arithmetic circuit,
[19] and even [20] cannot dealing with a circuit deeper
than they pre-defined.

III. Basic Private set intersection protocol and
its optimization

In this section, we propose a basic PSI protocol based on
a torus fully homomorphic encryption(TFHE). A strategy
of dynamic hashing to bins which would be applied to
improve the efficiency of the protocol is proposed.

A. Basic PSI protocol based on TFHE
In many practical scenarios, there are only two parts

consists of sender and receiver，where sender’s set is signifi-
cantly larger than receiver’s as [9, 19]. The unbalanced PSI
protocols based on homomorphic encryption has the lowest
communication cost but large computational overhead. In
fact, the communication is most likely to be a limited
factor in the client-server model. As a server, sender
performs most of the operations in consideration of cloud
server has a power device.

As in [19], X denotes the sender’s set while Y denotes
receiver’s set, whose length are sx and sy with sx ≫ sy,
respectively. The length of each item in both sets is σ.
We start with a basic scheme that the parameter σ is
small. We only consider the feasibility instead of efficiency
without any optimization this subsection.

We construct our basic PSI protocol based on the study
of [21], which describes an integer comparison algorithm
for unbounded inputs based on TFHE. We reconstruct



Algorithm 1 Basic private set intersection protocol
based on TFHE homomorphic encryption
Input: Receiver inputs set Y while sender inputs set
X, and whose size is sy and sx, respectively. sy, sx, σ
and λ are public parameters.
output: Receiver outputs X ∩ Y ; sender outputs ⊥.

1) Setup: Receiver and sender run RLWE.Setup(1λ)
to obtain public paras. We suppose 2(σ−1) < n.
Receiver keeps its secret key s and s.

2) Encryption: Receiver encrypts each negative ele-
ment −yi from set Y in the exponent of X, (e.g.
run RLWE.Encrypt(s, x−9) when encrypted item
is 9), and then sends sy RLWE ciphertexts (ct1,
ct2, · · · , ctsy ) to sender.

3) Intersection: For each ctj , sender
(a) let p(x) = xx1+xx2+· · ·+xxsx (if two identical

xj , j ∈ [sx] exist, remains one of them), and
compute p⃗i = Extract(p(x) · ctj).

(b) return sy LWE ciphertexts (p⃗1, p⃗2, · · · , p⃗sy ) to
receiver.

4) Decryption: Receiver decrypts each LWE ci-
phertext and outputs X ∩ Y = {yi :
TFHE.Decrypt(s, p⃗i) = 1}.

the p(x) in Extract algorithm in order to fit our step of
interaction.

A process of PSI could be considered as a great number
of one-to-one comparisons. However, It is not clever to
run sxsy comparison algorithm on account of PSI would
be inefficient in this way. We use the idea of [21] but a
completely different strategy.

We start with an introduction of RLWE encryption in
our protocol, the ciphertext parameters are the same as
TFHE’s RLWE, which is defined as follow:

• RLWE.Encrypt(s, m): Inputs message m and secret
key s. Randomly sample a ← RN and e ← χ where
χ is a distribution over RN [X], and return ct = (a, b)
where b = as+ e+ m

2n ;
The detailed basic PSI protocol is shown in Algorithm

1. We now using the following description to explain that
Algorithm 1 is a valid protocol.

Correctness. The input of the Extract algorithm is
a RLWE ciphertext and a polynomial p(x). We define a
p(x) which contains sender items so that output of Extract
algorithm is a ciphertext of 0 if receiver’s item is the same
as one of the sender’s, which also could refer to [21].

Semi-honest Security of Basic Protocol. Our basic
scheme can security compute the intersection set in the
semi-honest security model. In this setting, a semi-honest
receiver has no additional ability to conduct analysis on
its outputs or to send a distorted message. In the view
of receiver, the TFHE scheme we based on has a security
of IND-CPA[28] so that the encrypted data under RLWE

is pseudorandom towards the sender. According to the
circuit privacy under semi-honest model mentioned in [11],
the receiver learn nothing from the output ciphertext for
each item which produced by sender’s circuit.

As the discussion in I-B, the FHE we used in our proto-
col has a efficient bootstrapping algorithm(where a leveled
FHE hasn’t) after single gate operation, which allows to
sanitize the ciphertext based on successive iterations of
bootstrapping. Sanitation for ciphertexts is a technique
first proposed by L. Ducas. et.al[11] and is designed to
replace the flooding strategy and allows to take much
smaller parameters which contributes to keep our protocol
flexible.

B. Dynamic Hashing to bins
Hashing to bins does not affect the correctness of the

protocol, but it does affect the computational overhead.
Compared with CLR17[19], the strategy we adopt empha-
sizes that the size of the sets will change in real time in
actual applications.

Suppose that receiver and sender insert their sets into
respectively two hash tables with m′ bins using an iden-
tical simple hash function. As a result, items with the
same hash value are padded into the same bin and we
only perform PSI protocol in each bin instead of whole
sets.

Cuckoo hashing[25] is a one of ways to establish a hash
table. In recent years, there are many works[26] using
Cuckoo hashing in PSI. Compared with simple hashing
mentioned above, Cuckoo hashing is proposed to solve the
problem of hash conflict by using a little computation in
exchange for better space utilization. We firstly consider
the approach of simple hashing. Supposing there is a
simple hash function h : {0, 1}α → {0, 1}log m′ , and m′

is a power of 2, the conflict probability is (m′ − a)/m′

when there are a empty bins. From the following specific
strategy, we can learn how Cuckoo hashing contributes to
dense hash table compared with simple hashing.

Permutation-based hashing[27] is suggested in [19] for
the reason of storage advantage. We briefly recall this
strategy using the notation of [19]. Receiver and sender
parse each item from their sets as xL||xR, where the length
of xR is equal to logm′. They insert (xL, i) into hash table,
where use Hashi(x) = hi(xL)⊕xR to determine which bin
to put in, i ∈ [3]. That means the lengths of each string
stored in TX and TY is reduced by σ − logm′ bits from
original stored (x, i). Arbitman et al. [19, 27] has already
confirmed that i = j and xL = yL if (xL, i) = (yL, j),
so the correctness holds when applied permutation-based
hashing.

The strategy of constructing hash table we used is
similar to [19]. There are three independent random hash
functions h1, h2, h3 : {0, 1}α → {0, 1}log m′ , m′ is a power
of 2. The receiver perform original Cuckoo hashing while
the sender perform another strategy, which is described in
TABLE 1.



Input: Receiver inputs set Y and sender inputs set
X, whose sizes are sy and sx, respectively. σ is public
parameter.
output: Receiver outputs hash table TY or ⊥ while
sender outputs hash table TX .

• Sender: Let TX be an array of m′ bins, each
bin is initialized with (⊥,⊥). For a item x ∈
X, sender selects smallest positive integer j s.t.
TX [Hashi(x)][j] = (⊥,⊥) or ∅ for all i ∈ [3],
and sets TX [Hashi(x)][j] := (xL, i). Otherwise, let
j = j + 1. Finally, sender outputs TX .

• Receiver: Let TY be an array of m bins (m =
⌈log sy⌉ ≤ m′), each bin is initialized with the value
(⊥,⊥). Receiver insert each item y in the following
steps:

(a) sets w = yL and i← [3];
(b) defines and calls the function Insert(w, j) as

follows: swap (w, i) with the entry at the first
m bits of TY [Hashi(w)]. If (w, i) ̸= (⊥,⊥),
recursively calls Insert(w, j) where j ← [3]\{i}.

If receiver recursive calls Insert exceeds T =
O(m) times for arbitrary y, let m = m + 1 and
perform hashing to bins again. Finally receiver
outputs ⊥ if m > m′, otherwise, outputs TY .

TABLE I
the strategy of dynamic hashing to bins

According to receiver’s strategy, we can infer that all
bins in receiver’s hash table are limited to at most one
item since it is the most efficient option. If the receiver
pad too many items in each bin, each item will do more
comparisons for the number of items in the sender’s bin
will also increase. What’s more, in order to ensure that
the sender does not know which bin is empty, the receiver
needs to pad dummy items in the empty bins. In fact,
simple hashing works effectively if it’s not required to
encrypt receiver’s dummy items.

The crucial difference from CLR17[19] is that we con-
sider the establishment of the hash table under practical
application. The sender’s data set changes in real time, and
m′ should be set during the system initialization phase.
Different receivers (customers) can choose the appropriate
m as number of bins according to their size. Since m
depends on the first m bits of Hash, so that the sender
perform the PSI between the ciphertext of TY [i] and
TX [(i− 1)(log(m′/m) + 1) + 1 : i(log(m′/m) + 1)].

IV. Full PSI protocol based on TFHE and
analysis

In this section, we detail the formal protocol in Algo-
rithm 2, and then we analyze the correctness, the choice
of actual parameters, efficiency and security.

A. Full PSI protocol based on TFHE
We extend our full protocol to arbitrary length of item

while only small item of length σ can be support in
the basic model and the optimization III-B is applied to
increase efficiency.

The strategy of dynamic hashing to bins in III-B allows
the receiver and the sender to set up their own hash table.
In order to support larger length of items, hashing to
shorter strings is necessary. Let H ′ : {0, 1}∗ → {0, 1}ω
(eg. ω = 128, 256) be a random hash function. Both two
parties perform H ′(X) and H ′(Y ) respectively to shorten
original sets if each item is oversize.

Since our encryption scheme encrypts the message to
the exponent, it is impossible to encrypt an η-bits(η =
ω − logm′ for the reason of permutation based hashing
in III-B) message x. We use a method called partition-
ing(different from [19]) to divide it into multiple substrings
x = x1||x2|| · · · ||x⌈η/ log n⌉, xi ∈ {0, 1}n for each of i(add
some 0 at the end of x⌈η/ log n⌉-th string when it has less
than n bits). Both receiver and sender perform partitioning
after perform their respective hashing to bins strategy.

Fig. 1. Sketch Map of Partitioning.

Recalling to basic protocol in III-A, only the dotted line
in the Fig.1 is considered. The information about Fig.1 is
interpreted as follow: The yellow box on the left represents
to one of the bins in the hash table of receiver, while the
blue one refers to the corresponding bin of sender. Each
line consists of ⌈η/n⌉ = 4 colored rectangle represents
an item, which is divided into substrings. In the basic
PSI protocol, only the dotted line is considered. In full
PSI protocol, each substrings belongs to receiver must be
compared with the corresponding column on the right. We
compute the result of comparison through a series of AND
gate.

It is worth noting that this method may cause failure.
For an item of receiver, it may be considered to be
included in the situation of that we have know from God’
s perspective that it is not equal to any of the sender’s
items. Therefore, we divide horizontally and use the OR
gate to greatly reduce the probability of failure. The final
failure probability is negligible, which is explained in detail
in IV-B.

Now we describe the full PSI protocol in Algorithm 2
based on TFHE homomorphic encryption.
B. Efficiency and Security analysis

We set the following parameters for a typical scene, just
supposing that item length is larger than 104 bits.



Algorithm 2 Full private set intersection ptotocol based on TFHE homomorphic encryption
Input: Receiver inputs set Y and sender inputs set X with size of sy and sx, respectively. sy, sx, σ and λ are
public parameters.
output: Receiver outputs X ∩ Y ; sender outputs ⊥.

1) Setup: Receiver and sender run TFHE.Setup(1λ) to obtain public paras. Receiver keeps its secret key s and
s.

2) Preprocessing: Sender and receiver hash their items to shorter strings, and then perform their respective
hashing to bins strategy.
(a) Hashing to shorter strings: If 2(σ−1) > n, then both parties hash their items to smaller representation.

For a random hash function H ′ : {0, 1}∗ → {0, 1}ω. Perform the following steps with (X,Y, σ) =
(H ′(X),H ′(Y )), ω). Otherwise, they do 2)(b) and turn to run Algorithm 1(omit some steps).

(b) Dynamic Hashing to bins: Receiver perform Cuckoo hashing to obtain TY and sender hash X into TX

according to section III-B.
(c) Partitioning: Sender and receiver perform partitioning, and then obtain {xi,j |i ∈ m, j ∈ [⌈η/ logn⌉]} and
{yi,j |i ∈ m′, j ∈ [⌈η/ logn⌉]} for η = σ − logm′. If the bin is (⊥,⊥), replace it by an illegal item.

3) Encryption: Receiver firstly encrypts each negative element −yi,j from TY in the exponent (of x, e.g run
RLWE.Encrypt(s, x−9) when encrypted item is equal to 9), and then sends the m′ RLWE ciphertexts (ct1,
ct2, · · · , ctm′) to the sender.

4) Intersection: For each ctg, sender
(a) select TX [(k−1)(log(m′/m)+1)+1 : k(log(m′/m)+1)] denoted by {(xi,j)} for i ∈ γ, j ∈ ⌈η/ logn⌉ where

γ is number of items in this sub table.
(b) partitions its set into ⌈γ/l⌉ subsets horizontally for l is the number of sender’s substrings concluded in one

p(x) (refer to Fig.1).
(c) let pk,j(x) = xx(k−1)η,j +xx(k−1)η+1,j + · · ·+xxkη−1,j , and compute c⃗k,j = Extract(pk,j(x) ·ctg) for k ∈ ⌈γ/l⌉

and j ∈ ⌈η/ logn⌉.
(d) do following procedure, and return p⃗g = c⃗⌈γ/l⌉+1,⌈η/ log n⌉+1.

for k = 1 to ⌈γ/l⌉ − 1 do
for j = 1 to ⌈η/ logn⌉ − 1 do

c⃗k,j+2 = HomAND(c⃗k,j , c⃗k,j+1)
end for
c⃗⌈γ/l⌉+1,⌈η/ log n⌉+1 = HomOR(c⃗k,⌈η/ log n⌉+1, c⃗k+1,⌈η/ log n⌉+1)

end for
Sender return m′ LWE ciphertexts that writing in (p⃗1, p⃗2, · · · , p⃗m′) to receiver.

5) Decryption: Receiver decrypts every LWE ciphertext and outputs {yi : FHE.Decrypt(s, p⃗i) = 1}.

|X| |Y | n m′ m

105 100 1024 1024 128
105 23 1024 1024 32

For |Y | = 100 in the first row of the table above, we set
other parameters as η = 118, l = 100. Sender perform
around 3|X|(⌈η/ logn⌉ − 1)/(lm) = 257 gates for each
item. Receiver sends m = 128 RLWE ciphertexts and
receive m = 128 LWE ciphertexts.

Failure Probability Recalling to Fig.1 and the inter-
pretation from IV-A, we know that there may occur a
failure that each item from receiver may be mistakenly
considered to be included in the sender’s set. Using the
notation of Algorithm 2, we can calculate the probability
of failure as around (l/n)−⌈η/ log n⌉, with a precise ex-
ample is around 2−41 for very conservative parameters
l = 100, n = 1024, η = 118.

Semi-honest Security of Full Protocol We present
the simulation-based security in the semi-honest setting.
The formal definition of the standard semi-honest simula-
tion based security refers to [12]. The definition claims that
if a party’s view during a protocol execution is simulatable
when given its input and output, then the party learns
nothing from the protocol execution beyond what they can
derive from their input and prescribed output. Readers can
find more details in [12].

We prove our security by illustrating the existence of
simulators of two parties, respectively, which are defined
in the next paragraph. We assume that the parameters
(n,N, h1, h2, h3,m

′,H ′) are declared as public input at the
beginning of the protocol and we present the simulator
of sender and receiver as SimS and SimR respectively.
Following the definition in [12], SimR holds the input of
set Y while SimS can only access to X.



The proof of the corrupt sender is straightforward de-
pending on the IND-CPA security of the FHE scheme we
based on. The sender’s simulator SimS encrypt zero using
fully homomorphic encryption. Then these ciphertexts
are indistinguishable from the sender’s view in the real
protocol.

From the perspective of the receiver, SimR replace items
belongs to X ∩ Y to zero and randomly select non-zero
elements in Zt to fill in the vacant slots in the hash
table with m bins by the strategy of Cuckoo hashing.
Then the SimR splits each bin into ⌈η/ logn⌉⌈γ/l⌉ parts
to obtain ⌈η/ logn⌉⌈γ/l⌉ subsets. We put these slots in
each subsets on the exponent to get m′⌈η/ logn⌉⌈γ/l⌉
polynomials. Homomorphically encrypt the polynomials,
then we can finally achieve a simulation of the receiver’
s view according to the circuit security of the underlying
fully homomorphic encryption.

Attempts and Barriers to Obtain Malicious se-
curity. From the receiver’s perspective, the ability that a
malicious receiver can fill some extra queries in the empty
bins to achieve additional information becomes a crucial
barrier to obtain malicious security as in [19]. Moreover,
the problem of circuit privacy described in [19] is also
occurs to our protocol but can be ignored when applied
to practical applications.

In the setting that we give almost computation workload
to the sender instead of let two parties interact their
intermediate results, the corrupt behavior of the sender
is inevitable. An obvious example is that a malicious
sender can send back encryption of constant 1, then the
receiver believes that the intersection equals to the whole
set Y . There is no efficient way to avoid such behavior
even combining with techniques such as OPRF. Although
OPRF can be used to achieve a security of privacy against
malicious sender[20], it still cause two more rounds of
interaction, which is exactly what we want to avoid in
our protocol.

V. Conclusion
We propose a PSI protocol based on TFHE homomor-

phic encryption, and the bootstrapping is also concluded
to ensure the correctness of computation. The significance
of our work lies not only in the PSI protocol itself, but
also in providing applications of FHE, especially the latest
TFHE scheme. As far as we know, it has fewer applications
compared with leveled FHE such as FV/BGV[15, 16]
scheme.

In addition, TFHE supports arbitrary depth of homo-
morphic operations, which avoids those optimizations[19]
made to reduce the depth of the circuit, resulting in
additional computation and communication complexity
increased to O(|Y |+log |X|). Our protocol communication
complexity only depends on the set size of receiver, which
is O(|Y |). Unfortunately, TFHE does not have efficient
batching technique, which can greatly increases the ef-
ficient of communication and computation. Lacking of

batching technique especially limits the practical applica-
tion when the receiver’set is relatively large. We are also
looking forward to TFHE’s batching technique and add it
to our PSI protocol.

Finally, we also look forward to further discussions
about PSI protocol based on fully homomorphic encryp-
tion, and we will implement our protocol using TFHE +�+
library and analysis its efficiency more detailed according
to the implementation in the future.
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