
REFINED ANALYSIS OF THE ASYMPTOTIC COMPLEXITY OF
THE NUMBER FIELD SIEVE

AUDE LE GLUHER∗† , PIERRE-JEAN SPAENLEHAUER∗‡ , AND EMMANUEL THOMÉ∗§

Abstract. The classical heuristic complexity of the Number Field Sieve (NFS) is the solution
of an optimization problem that involves an unknown function, usually noted o(1) and called ξ(N)
throughout this paper, which tends to zero as the entry N grows. The aim of this paper is to find
optimal asymptotic choices of the parameters of NFS as N grows, in order to minimize its heuristic
asymptotic computational cost. This amounts to minimizing a function of the parameters of NFS
bound together by a non-linear constraint. We provide precise asymptotic estimates of the minimizers
of this optimization problem, which yield refined formulas for the asymptotic complexity of NFS.
One of the main outcomes of this analysis is that ξ(N) has a very slow rate of convergence: We prove
that it is equivalent to 4logloglogN/(3loglogN). Moreover, ξ(N) has an unpredictable behavior
for practical estimates of the complexity. Indeed, we provide an asymptotic series expansion of ξ
and numerical experiments indicate that this series starts converging only for N > exp(exp(25)),
far beyond the practical range of NFS. This raises doubts on the relevance of NFS running time
estimates that are based on setting ξ = 0 in the asymptotic formula.

Key words. Complexity, Asymptotic optimization, Number Field Sieve.

AMS subject classifications. 68W40 (Analysis of algorithms), 11Y05 (Factorization).

1. Introduction. Factoring integers and solving discrete logarithms in finite
fields are two fundamental problems in computational number theory, which are core
routines for a very large range of applications. Perhaps their most prominent and
critical use is the fact that the security of many currently deployed cryptosystems —
e.g. RSA, finite field Diffie-Hellman, ElGamal — relies directly on their computational
difficulty. This explains why the development of algorithms for solving these two
problems and the analysis of their complexity are central topics in computational
mathematics.

To this day, the Number Field Sieve (NFS) is the most efficient method to factor
integers and to compute discrete logarithms in prime finite fields. It is an active
research area, and implementations of NFS have led to several record computations
which give a good idea of the computational power required to factor RSA moduli
up to 2800, or to compute discrete logarithms in prime fields of the same size [4].
Existing software can also be used to form reasonable estimates of the hardness of
these problems, up to roughly 1024 bits.

Another approach to estimate the computational power needed is to use a theo-
retical cost analysis of NFS. The asymptotic complexity of the usual variant of NFS
to factor an integer N , under various heuristic assumptions, is known to be

(1.1) exp

(
3

√
64

9
(logN)1/3(log logN)2/3(1 + ξ(N))

)

where ξ(N) ∈ o(1) as N grows. This asymptotic formula is obtained by solving
an optimization problem, which involves a number-theoretic function related to the
notion of smoothness:

∗UNIVERSITÉ DE LORRAINE, CNRS, INRIA, LORIA, F-54000 NANCY, FRANCE
†aude.le-gluher@loria.fr
‡pierre-jean.spaenlehauer@inria.fr
§emmanuel.thome@inria.fr

1

mailto:aude.le-gluher@loria.fr
mailto:pierre-jean.spaenlehauer@inria.fr
mailto:emmanuel.thome@inria.fr

2 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

Definition 1.1. Let x ≥ 1 and y ≥ 1 be two real numbers. An integer in [1, x]
is y-smooth if all of its prime factors are below y. We let

Ψ(x, y) = #{integers in [1, x] that are y-smooth}.

In particular, Ψ(x, y)/x is the probability that a uniformly random integer in [1, x] is
y-smooth. For convenience, we also use the notation p(u, v) = log (Ψ(eu, ev)/eu).

Unfortunately, the complexity given by Equation (1.1) is not very satisfactory.
First, it relies on several heuristics, most notably on the fact that norms of random
ideals in a given number field have the same smoothness probability as random integers
of the same order of magnitude. But even if we consider that these assumptions hold,
the complexity given by Equation (1.1) involves a function ξ which is never spelled
out explicitly.

This inaccuracy conflicts with the fact that for the last few decades, the wide-
spread development of public-key cryptography has created a pressing need to answer
the following question: Given some computational power C, what size of RSA modu-
lus N should be considered so that the cost of NFS exceeds C? This is of interest, for
example, to regulatory bodies, see for example [17, Sec. 7.5], [1, Sec. B.2.2], or [11,
Table 3.1]. A common way to answer this is to consider the complexity formula, as-
sume that ξ = 0 since we know ξ(N) ∈ o(1) when N grows, and use a computational
record to set a proportionality ratio. Since the 2000s, the validity of this approach has
been considered differently. In [15, §2.4.4], the reader is warned that ξ should not be
neglected for large extrapolations, and omitting it probably yields biased estimations.
Later work gradually moved to considering ξ = 0 as a totally acceptable simplification
assumption, not heeding the warning. We emphasize that this method for computing
key sizes is the international standard for deployed RSA-based cryptography.

The goal of this paper is to question the relevance of neglecting ξ and to give
insights on what this function hides. In particular, assuming the standard heuristics
for the complexity of NFS, we show (Thm. 4.3) that

ξ(N) =
4logloglogN

3loglogN
+
−2 log 2 + log 3/6− 2

loglogN
(1 + o(1)).

Moreover, this asymptotic expansion of ξ can be extended to a bivariate series ex-
pansion evaluated at logloglogN/loglogN and 1/loglogN . We provide algorithms —
together with publicly available implementations in SageMath — with which we were
able to compute more than a hundred of terms of this asymptotic expansion. This
may sound like good news for practical formula-based keysize computations, as it
seems that this would provide more precise estimates. In fact, the contrary happens:
We observe experimentally that values of N that would be useful for cryptography are
far too small compared to the radius of convergence at infinity of the series involved
in the expansion of ξ. Said otherwise, this means that the exponent in the classical
formula used for estimating practical RSA key sizes is the first term of a divergent
series. In order to illustrate this phenomenon, let us consider the following example
functions:

g0 : N 7→ exp
(

(logN)1/3(loglogN)2/3
)

; g : N 7→ exp

(
(logN)1/3(loglogN)2/3

1 + 20/loglogN

)
.

While it is true that g belongs to the class exp((logN)1/3(loglogN)2/3(1 + o(1))),
the radius of convergence of 1/(1 + x) =

∑
i(−x)i is 1. This implies that if N ≤

ASYMPTOTIC COMPLEXITY OF NFS 3

exp(exp(20)) ≈ 2699945421, then equalling o(1) with 0 means estimating the expo-
nent of the function g by evaluating the first term of a divergent series. Numerical
computations show that g(22048) ≈ 216, while g0(22048) ≈ 261, so estimating o(1) by
0 in the case N = 22048 yields completely erroneous results. If one were to com-
pare “projected values” between N = 2512 and N = 22048 based on the simplifica-
tion o(1) = 0, the corresponding calculation would yield g0(22048)/g0(2512) ≈ 228,
compared to g(22048)/g(2512) ≈ 29. Carelessly neglecting the o(1) term can lead to
dramatic errors in the assessment of a complexity in the class given by Eq. (1.1), and
of its growth as N varies.

The asymptotic expansion of ξ that we obtain in the complexity of NFS exhibits
a behavior similar to the example function g. This raises questions on the relevance
of using the asymptotic formula for estimating practical cryptographic key lengths.
In particular, we obtain completely different results for the final NFS complexity
depending on how many terms we consider in our series expansion of ξ, see Figure 1.
This asks — at the very least — for strong justification when one chooses to set ξ = 0
in the complexity formula.

Beyond NFS, the complexity of several algorithms is linked to the asymptotics
of smoothness probabilities. This is the case for example of the quadratic sieve and
its variants, of class group computations in number fields, or of the elliptic curve
factoring method. In all of these cases, the methods of this article apply, and yield
similar conclusions; NFS is just an example.

Organization of the paper. In Section 2, we briefly describe NFS and we
state the optimization problem whose minimum is the complexity. Section 3 provides
a refined asymptotic expansion of Dickman–De Bruijn function at infinity, which is
used to estimate the smoothness probabilities in NFS. Then Section 4 is devoted to
the series expansion of the function ξ. Finally, Section 5 reports on experimental
results obtained by using the refined asymptotic formulas for the complexity.

Implementation. The computation of the asymptotic expansion of ξ relies on
three algorithms described in Section 4.3. Our implementation in SageMath of these
algorithms is available at the following URL

https://gitlab.inria.fr/NFS_asymptotic_complexity/simulations.
At the same location, we also detail some of the unilluminating technical calculations
that are omitted for brevity in the text.

Notations and conventions. Throughout the article, log x denotes the natural
logarithm to base e. We use the notation logm to denote the m-th iterate of the
log function, so that logm+1 = log ◦ logm. The notation u = Θ(v) denotes: (u =
O(v) and v = O(u)). Throughout the paper, we assume a RAM computation model,
where the cost of memory accesses is neglected.

2. Background on NFS. In a nutshell, NFS defines two irreducible integer
polynomials f0 and f1, and searches for integer pairs (u, v) in a search space A such
that the integers Resx(u−vx, f0(x)) and Resx(u−vx, f1(x)) are smooth with respect
to chosen smoothness bounds B0 and B1, where Resx denotes the resultant with
respect to x. The notations Ki for i = 0, 1 denote the number fields Q[x]/fi(x). The
number of smooth pairs that must be collected must be at least (πK0(B0)+πK1(B1)),
which is the number of prime ideals with norm at most B0 and B1 in the rings of
integers of K0 and K1. A linear algebra calculation follows, and its dimension is again
(πK0

(B0) + πK1
(B1)). These two steps of the algorithm are the most costly.

In order to analyze the algorithm, we consider a simplified version, which has

https://gitlab.inria.fr/NFS_asymptotic_complexity/simulations

4 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

of course little to do with computational feats that use the Number Field Sieve [4].
In particular, we consider the straightforward “base-m” polynomial selection. For a
chosen degree d, we set m = dN1/(d+1)e, f0 = x −m, and f1 of degree d such that
f1(m) = N and ||f1||∞ < m. We have K0 = Q, so that side 0 is a rational side, while
K1 is a degree d number field, called algebraic side. We assume that the smoothness
bounds B0 and B1 can be chosen equal to the same bound B without increasing
the overall asymptotic complexity. Letting B0 and B1 have distinct values would
add an extra layer of technicality to the analysis, but we acknowledge that it would
be interesting to investigate the general case in future work. In our simplified NFS
algorithm, we pick the pairs (u, v) from a set A = [−A,A]2, for some bound A. The
integers that we check for smoothness in NFS are bounded by M0 and M1, which we
define as follows

|Resx(u− vx, f0(x))| ≤M0 = (m+ 1)A,

and |Resx(u− vx, f1(x))| ≤M1 = (d+ 1)mAd.

It is important to point out the heuristic nature of the estimate given by Equa-
tion (1.1), which is related to the estimation of the probabilities of smoothness.

Heuristic assumption 2.1. In the Number Field Sieve algorithm, the probabil-
ity that the two integers Resx(u− vx, f0) and Resx(u− vx, f1) are simultaneously B-
smooth, as (u, v) are picked uniformly from the search space A, is given by the probabil-
ity that two random integers of the same size are B-smooth, which is Ψ(M0,B)

M0
·Ψ(M1,B)

M1
.

This assumption is very bold, and in fact wrong in several ways. Correcting
terms, which are actually used in practice, can be used to lessen the gap between
Resx(u − vx, f0) and integers of the same size [16, 2]. However, this heuristic is not
that wrong asymptotically, as evidenced by [12, Eq. (1.21)]. We also note that if the
number field is considered a random variable, positive results do exist [14].

Our goal is not to get rid of this heuristic assumption. The usual complexity
analysis of NFS already uses it as a base and we will do the same to improve on the
asymptotic estimate in Equation (1.1).

Our simplified version of NFS has three main parameters that we can tune, as
functions of logN , in order to optimize the asymptotic complexity: the degree d =
deg f1, and the bounds A and B. The time complexity of NFS is then the sum of the
time taken by the search for smooth pairs and the time taken by linear algebra. We
write these as

Csearch = A2 · Ctest,

Clinear algebra = (πK0
(B) + πK1

(B))2(1 + o(1)).

In the expressions above, Ctest is the time spent per pair (u, v). Several techniques
can be used to bring Ctest to an amortized cost of O(1); sieving is the most popular,
but ECM-testing also works (heuristically), and it is also possible to detect smooth
values with product trees as in [3]. Furthermore, we counted a quadratic cost for
linear algebra, as this can be carried out with sparse linear algebra algorithms such
as [18]. We wish to minimize the cost, subject to one constraint: We need enough
smooth pairs, as we mentioned in the first paragraph of this section.

A2 · Ψ(M0, B)

M0
· Ψ(M1, B)

M1
≥ πK0

(B) + πK1
(B).

ASYMPTOTIC COMPLEXITY OF NFS 5

Of course, we can assume that this is an equality, since otherwise decreasing A would
decrease the complexity.

We are looking for expressions for d, A, and B that are functions of ν = logN .
Let now a(ν) = logA(ν) and b(ν) = logB(ν). Note that all functions are expected to
tend to infinity as ν = logN tends to infinity and that log(πK0(B(ν))) = b(ν)(1+o(1))
and log(πK1

(B(ν))) = b(ν)(1 + o(1)) by Chebotarev’s density theorem. We have

logCsearch = O(1) + 2a(ν),

logClinear algebra = O(1) + log
(
(πK0(B(ν)) + πK1(B(ν)))2

)
= O(1) + 2b(ν),

log(Csearch + Clinear algebra) = O(1) + log max(Csearch, Clinear algebra)

= O(1) + 2 max(b(ν), a(ν)).

Likewise, the constraint on the probabilities can be rewritten as follows, using the
notation p(u, v) from Definition 1.1.

2a(ν) +
∑

i∈{0,1}

p(logMi, b) = log(πK0
(B(ν)) + πK1

(B(ν)))

= log (2(1 + o(1))B(ν))

= O(1) + b(ν).

Given the inaccuracy that exists in Equation (1.1), we can profit from some simplifi-
cations before we formulate our optimization problem. In light of this, it is sufficient
to minimize the function max(a(ν), b(ν)), as this would imply a cost that would be
at most within a constant factor of the optimal. Likewise, the O(1) in the constraint
can be dropped. Using this latter argument, we can also take into account only the
important parts of the bounds M0 and M1, namely mA and mAd. Our optimization
problem is therefore rewritten as the following simplified problem, which is our main
target here as well as in Section 4.

Problem 2.2 (Simplified optimization problem). Find three functions,

a(ν), b(ν), d(ν) : R>0 → R>0

which for all ν ∈ R>0 minimize max(a(ν), b(ν)) subject to the constraint

(2.1) p (a+ ν/d, b) + p (d a+ ν/d, b) + 2 a− b = 0.

To deal with the optimization problem, the usual analysis of NFS relies on the
following result.

Proposition 2.3 (Canfield-Erdős-Pomerance [6] and De Bruijn [10]). Let ε ∈
]0, 1[. If 3 ≤ x/y ≤ (1− ε)x/ log x then, as x/y → +∞:

p(x, y) = −(x/y) · log(x/y) · (1 + o(1)).

Using this low-order result, the analysis is completely classical, and yields the
following well-known expressions, see e.g. [5, §11]:

Proposition 2.4. Let (a, b, d) be a minimizer for Problem 2.2. Then

a(ν) = (8/9)1/3ν1/3(log ν)2/3(1 + o(1)),

b(ν) = (8/9)1/3ν1/3(log ν)2/3(1 + o(1)),

d(ν) = (3ν/ log ν)1/3(1 + o(1)).

6 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

Furthermore,

(a(ν) + ν/d(ν))/b(ν) =
1

2
(3ν/ log ν)1/3(1 + o(1)),

(d(ν)a(ν) + ν/d(ν))/b(ν) =
3

2
(3ν/ log ν)1/3(1 + o(1)).

3. Smoothness. In following paragraphs we will encounter multiple times two
functions, which we denote by X : η 7→ log2 η/ log η and Y : η 7→ 1/ log η. The
notation R[[X,Y]] is used for bivariate formal series with real coefficients, and for
S ∈ R[[X,Y]] and i ∈ Z≥0, the notation S(i) stands for the truncation of S to total
degree less than or equal to i.

We introduce the following class of functions, to capture the asymptotic behavior
of several functions of interest at infinity.

Definition 3.1. The class of functions C is the set of functions f defined over a
neighborhood of +∞ with values in R such that

∃F ∈ R[[X,Y]], ∀n ∈ Z≥0, f(η) = F(n)(X ,Y) + o(Yn)

where o() depends on n. We say that F is the series associated to f .

An important property of C that we will use intensively in Section 4 is that if
f ∈ C and its associated series F satisfies F(0, 0) 6= 0 then 1/f stays in C. If moreover
F(0, 0) is positive then log f is also in C.

Definition 3.1 deserves several comments. First, the map from f ∈ C to its
associated series F is clearly not injective, since for example the function 1/η is in
C, and its associated series is zero. It is also important to notice that the truncation
F(n) that appears in Definition 3.1 is necessary, as the evaluation of F at a given
value need not make sense: the series F is only intended to capture the asymptotic
behavior of the function f at infinity. In fact, an extension of Borel’s lemma shows
that the link from f ∈ C to F is surjective: Any series, regardless of any notion of
convergence, can be realized as the asymptotic expansion of some function in C.

3.1. Smoothness results. The precision of an asymptotic expansion of the
NFS complexity is tightly connected to the precision in results regarding smoothness
probabilities. Canfield, Erdős and Pomerance actually prove a better result than
Proposition 2.3.

Theorem 3.2 (Canfield, Erdős and Pomerance [6]). For all x ≥ 1 and for all
u = x/y ≥ 3, we have

p(x, y) ≥ −u log u · p(u),

where p(u) = 1 + X (u)− Y(u) + X (u)Y(u)− Y(u)2 +O
(
X (u)2Y(u)

)
.

In fact, it turns out that Theorem 3.2 is at the same time too strong and too
weak for our purposes. On the one hand, it is too bad that the asymptotic expansion
of the right-hand side of the inequality stops at some point. On the other hand it is
a really strong result since it is true for basically all x, u without any restriction. But
in the NFS context, we know the magnitudes of x, u: We do not need a smoothness
result that would be unconditionally true. A better approximation of the smoothness
probability in a narrower range would suit us. Hildebrand proves such a result.

Theorem 3.3 (Hildebrand [13]). Let ε > 0. For 1 ≤ u ≤ exp((log y)3/5−ε) and
x = yu, we have

Ψ(x, y)

x
= ρ(u)

(
1 +O

(
log(u+ 1)

log y

))
,

ASYMPTOTIC COMPLEXITY OF NFS 7

where ρ is the Dickman–de Bruijn function.

Under the Riemann hypothesis this result even holds in a wider range. In the NFS con-
text we are in the appropriate range to apply Theorem 3.3. Indeed, based on Proposi-
tion 2.4, we expect to use Theorem 3.3 in a context where log y = b = Θ(ν1/3(log ν)2/3)
and u = Θ((ν/ log ν)1/3): u is polynomial in log y, while the bound in Theorem 3.3 is
subexponential. Asymptotically, the result of Theorem 3.3 is therefore very precise.
This leads us to study more precisely the expansion of ρ.

3.2. Asymptotic expansion of the Dickman–de Bruijn function. In [9],
De Bruijn proves the following formula :

ρ(u) ∼
u→+∞

eγ√
2πu

× exp

(
−
∫ ξ

0

ses − es + 1

s
ds

)
for all u > 1 and ξ = (eu − 1)/u. Let η = (es − 1)/s, so that s = log(1 + sη). By
substitution we have: ∫ ξ

0

ses − es + 1

s
ds =

∫ u

1

sdη.

Let us study the integral on the right-hand side. First, we need to know more
about s.

Proposition 3.4. The function η → s(η)/ log η is in C.
Proof. We prove by induction on n that there exists Pn ∈ R[X,Y] such that,

as η → +∞, we have s = log η · (Pn(X ,Y) + o(Yn)). First we show that s =
(log η)(1 + o(1)) when η → +∞, which is to say P0 = 1. Indeed ϕ : s 7−→ (es− 1)/s is
bijective on R>0 and strictly increasing, and so is ϕ−1. Since ϕ(log η) = (η−1)/ log η <
η = ϕ(s), we have log η < s. Let now ε > 0. When η is large enough, we have
η1+ε > (1+ε)η log η+1. This leads to ϕ(s) < ϕ((1+ε) log η), hence to s < (1+ε) log η
and proves the base case.

We now proceed with the induction step. Since s = log(1 + sη), we may write

s = log s+ log η + log(1 + 1/(sη))

= log η · (1 + log s/ log η + o(1/η))

= log η ·
(
1 + X + Y · logPn(X ,Y) + o(Yn+1)

)
,

where the last expression omits some terms that are swallowed by o(Yn+1). Since the
constant coefficient of Pn is 1, an expansion of the inner logarithm above to n terms
gives the desired result. More precisely, it is easy to verify that Pn+1 is the truncation
to total degree at most n+ 1 of

1 +X − Y
n∑
i=1

(−1)i
(Pn − 1)i

i
.

In fact, a more explicit version of the series associated to s(η)/ log η can be com-
puted:

Proposition 3.5. Letting P denote the series associated to s(η)/ log η, we have

P(X,Y) = 1 +X + Y ·
+∞∑
i=1

i∑
j=1

S(i, i− j + 1)

j!
XjY i−j

where the S(i, j) are signed Stirling numbers of the first kind.

8 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

Proof. By [7] (see also [8, Sec. 5, Exercise 22]), the reciprocal g(y) of f : x 7→ ex/x
has the following asymptotic series expansion at the neighborhood of ∞:

log y + log2 y +

+∞∑
i=1

i∑
j=1

S(i, i− j + 1)

j!

(log2 y)j

(log y)i
.

By definition, s(y) is the reciprocal of the function h : x 7→ ex/x − 1/x. We will
show that s(y)− g(y) ∼ (y log y)−1 as y → +∞. This will conclude our proof since it
will ensure that for all n ∈ Z≥0,

s(y) = log y + log2 y +

n∑
i=1

i∑
j=1

S(i, i− j + 1)

j!

(log2 y)j

(log y)i
+ o

(
1

(log y)n

)
as y grows.

First, using the fact that h(s(y)) = es(y)y−1 − s(y)−1 = y, we get that f(s(y))−
f(g(y)) = es(y)s(y)−1 − y = s(y)−1. By the mean value theorem, there exists θy
between g(y) and s(y) such that s(y)−1 = f(s(y)) − f(g(y)) = f ′(θy)(s(y) − g(y)).
Since s(y) = log y + log2 y + o(1) and g(y) = log y + log2 y + o(1), we deduce that
θy = log y+log2 y+o(1) when y → +∞, hence f ′(θy) ∼ y. Consequently, s(y)−g(y) ∼
(ys(y))−1 ∼ (y log y)−1.

Proposition 3.6. The series

+∞∑
i=1

i∑
j=1

S(i, i− j + 1)

j!
X jYi−j

converges uniformly for η ∈ [176,+∞[.

Proof. First, for all k ∈ Z≥0 and all η > ee we have Y ≤ X , so that

k∑
i=1

i∑
j=1

s(i, i− j + 1)

j!
X jYi−j ≤

k∑
i=1

i∑
j=1

s(i, i− j + 1)

j!
X i =

k∑
i=1

ciX i

where ci =
i∑

j=1

s(i,i−j+1)
j! . Let ai = i!

i∑
j=1

∣∣∣ s(i,i−j+1)
j!

∣∣∣. According to the asymptotic

formula for the sequence A138013 of the OEIS1, we have, as i→ +∞:

ai ∼
√
−1−W (−1,−e−2)× (−W (−1,−e−2))i × ii−1/ei

where W is the Lambert W function, so that

ai/i!

ai+1/(i+ 1)!
−→
i→∞

1

−W (−1,−e−2)
.

This shows that the power series with coefficients ai/i! has a finite radius of conver-
gence equal to 1/ −W (−1,−e−2). Since |ci| ≤ ai/i!, the power series

∑
ciX

i also
has finite radius of convergence, which is at most as large as the former. Therefore
the series converges uniformly for log2 η

log η ≤ 1/ −W (−1,−e−2), and this inequality is
satisfied for η ≥ 176.

1https://oeis.org/A138013

https://oeis.org/A138013

ASYMPTOTIC COMPLEXITY OF NFS 9

We now shift gears and study the asymptotic behavior of
∫ u

1
sdη as u grows. The

first step towards this goal lies in the following proposition.

Proposition 3.7. The function u → 1
u log u ·

∫ u
e
sdη is in C, and the coefficients

of its associated series Q can be computed explicitly.

Proof. We prove that for all n ∈ Z≥0, there is a polynomial Qn such that, as
u→ +∞: ∫ u

e

sdη = u log u · (Qn (X (u),Y(u))) + o (Y(u)n)) ,

and that for all i, j ≥ 0, Qi(X,Y) ≡ Qj(X,Y) mod 〈X,Y 〉min(i,j). We emphasize that
our proof provides an explicit method to compute Qn.

Let us first notice that since we are looking for an asymptotic expansion of a
divergent integral as u → ∞, up to terms that also tend to infinity, we are free to
choose the lower bound of the integral.

Let ∆ be the R-linear operator defined on R[X,Y] by ∆1 = 0, ∆X = Y · (Y −X),
∆Y = −Y 2, and ∆(UV) = U∆V + (∆U)V . One can check that:

∀T ∈ R[X,Y],
d

dη
T (X ,Y) =

1

η
· (∆T)(X ,Y).

Notice that ∆R[X,Y] ⊂ Y R[X,Y]. We use the properties of ∆ to prove an interme-
diate result. Let T be an arbitrary bivariate polynomial in R[X,Y]. Using the above
notation, repeated integration by parts yields:∫ u

e

T (X ,Y)dη = [ηT (X ,Y)]ue −
∫ u

e

(∆T)(X ,Y)dη

=

n−1∑
i=0

(−1)i[η · (∆iT)(X ,Y)]ue + (−1)n
∫ u

e

(∆nT)(X ,Y)dη

= [η ·R(X ,Y)]ue +

∫ u

e

o(Yn−1)dη

for R =
∑n−1
i=0 (−1)i∆iT ∈ R[X,Y]. Note that R is a truncation of (1 + ∆)−1T .

This allows us to quickly conclude. Indeed, using Proposition 3.4, for all n ∈ Z≥0:∫ u

e

sdη = [(η log η − η)P(n)(X ,Y)]ue +∫ u

e

(1− log η)∆(P(n))(X ,Y)dη +

∫ u

e

o(Yn−1)dη.

Since (1 − log η)∆(P(n))(X ,Y) can be written as Tn(X ,Y) for some Tn ∈ R[X,Y],
the previous result shows that there exists Rn ∈ R[X,Y] such that∫ u

e

sdη = [η log η · (1− Y) ·P(n)(X ,Y)]ue + [η ·Rn(X ,Y)]ue +

∫ u

e

o(Yn−1)dη.

The claimed expression, with Qn = (1−Y)P(n) +Y ·Rn, follows from the verification
that

∫ u
e
o(1/(log u)n−1)dη = o(u/(log u)n−1) as u→ +∞, which is unilluminating but

easy. Finally, we notice that for all i, j ≥ 0, Ri(X,Y) ≡ Rj(X,Y) mod 〈X,Y 〉min(i,j),
which implies that Qi(X,Y) ≡ Qj(X,Y) mod 〈X,Y 〉min(i,j).

10 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

The series Q has therefore the following expression, which makes it easy to com-
pute Q from P.

Q = (1− Y)P + Y (1 + ∆)−1(1− Y −1)∆P.

Corollary 3.8. We recall that Q is the series introduced in Proposition 3.7. For
all n ∈ Z≥0 we have, as u→ +∞:

ρ(u) = exp
(
−u log u

(
Q(n)(X (u),Y(u)) + o (Y(u)n)

))
.

Proof. We use the equivalent of ρ introduced at the very beginning of the section.
Constant offsets are absorbed in the error term that comes from the expansion of∫ u

sdη, and the result is a direct consequence of Proposition 3.7.

ρ(u) ∼
u→+∞

eγ√
2πu

× exp

(
−
∫ u

1

sdη

)
= exp

(
−
∫ u

e

sdη +O(1)

)
= exp

(
−u log u ·

(
Q(n)(X (u),Y(u)) + o (Y(u)n)

))
.

Corollary 3.9. In the optimal parameter range of NFS, the asymptotic expan-
sion of the smoothness probabilities follows from the previous result. For any n ∈ Z≥0

we have, on both sides (rational and algebraic), as N → +∞:

Ψ(Mi, B)/B = exp
(
−u log u

(
Q(n)(X (u),Y(u)) + o (Y(u)n)

))
,

where u denotes logMi/ logB, which is the size ratio on side i ∈ {0, 1}.
Proof. As we argued when justifying the use of Theorem 3.3, Proposition 2.4

tells us that the optimal parameter range of NFS leads to u = Θ((ν/ log ν)1/3), with
ν = logN as in Section 2. It follows that b = Θ(u log u), so that the right-hand side
of Theorem 3.3 can be written as

ρ(u)

(
1 +O

(
1

u

))
= ρ(u) exp

(
−u log u ·O

(
1

u2 log u

))
= exp

(
−u log u

(
Q(n)(X (u),Y(u)) + o (Y(u)n)

))
.

Put otherwise, a function within O
(

1
η2 log η

)
is always in C, and its associated series

is zero.

3.3. Computation of Q. Propositions 3.4 and 3.5 are completely explicit. In
Proposition 3.7, the expression of Q is straightforward to compute as well. For ex-
ample, the terms of Q up to degree 3, are:

Q(3)(X,Y) = 1 +X − Y +XY − Y 2 − X2Y

2
+ 2XY 2 − 2Y 3.

4. Asymptotic expansion of ξ. This section is devoted to the analysis of the
asymptotic behavior of the unknown function ξ involved in the heuristic complexity
of NFS. To this end, we compute the asymptotic expansion of the unknown functions
written o(1) in Prop. 2.4.

ASYMPTOTIC COMPLEXITY OF NFS 11

4.1. Extension of the class C. In order to express conveniently our results
on the asymptotic expansion of the function ξ, we introduce a variant of the class C
defined in Section 3.

Definition 4.1. Let α, β ∈ R. The class of functions C[α,β] is the set of functions
f with values in R such that ν 7→ ν−α(log ν)−βf(ν) is in C.

In particular, C[0,0] = C. If f is in C[α,β], then we denote by F ∈ R[X,Y] the series
associated to ν 7→ ν−α(log ν)−βf(ν) and call it, by extension, the series associated
to f . Note however that this extension deserves some caution, as the association
makes sense only relative to a given (α, β).

The introduction of these classes C[α,β] is motivated by the fact that in the context
of NFS, the function u 7→ − log ρ(u), which gives the relevant smoothness probabil-
ities, is in C[1,1] (see Corollaries 3.8 and 3.9). The following proposition establishes
stability properties for elements of the classes C[α,β].

Proposition 4.2. Let f ∈ C[α,β] with associated series F ∈ R[[X,Y]] such that
α > 0 and F(0, 0) > 0. Then

1. log f ∈ C[0,1] and its associated series is α+ βX/α+ (Y logF)/α;
2. Y(f) = (log f)−1 ∈ C and its associated series is

Y/(α+ βX/α+ (Y logF)/α);

3. if α > 0, then X (f) = log2 f/ log f ∈ C and its associated series is

(X + Y log(α+ βX/α+ (Y logF)/α))/(α+ βX/α+ (Y logF)/α).

Proof. The result follows by direct computations.

4.2. Two new proven terms for the NFS complexity. In this section we
develop the functions of interest a, b, d, defined in Section 2. The end result of this
section is an asymptotic expansion of the complexity of NFS with two new terms.
We also introduce several reasonings that will be intensively used and automatized in
Section 4.3.

Theorem 4.3. The minimizers a, b, d satisfy :

a = (8/9)1/3ν1/3(log ν)2/3(1 + a10X (ν) + a01Y(ν) + o(Y(ν))),

b = (8/9)1/3ν1/3(log ν)2/3(1 + a10X (ν) + a01Y(ν) + o(Y(ν))),

d = (3ν/ log ν)1/3(1 + d10X (ν) + d01Y(ν) + o(Y(ν))),

where a10 = 4/3, a01 = −2 log 2+log 3/6−2, d10 = −2/3 and d01 = log 2−5 log 3/6+1.

Before proving Thm. 4.3, we show that there exist functions a, b, d as in Thm. 4.3
which satisfy Eq. (2.1). They will serve as a baseline for our minimization problem.
One could wonder where the constants aij and dij in the statement of Thm. 4.3,
and also in the following lemma, come from. To obtain these constants, we used
a computer algebra system to iteratively expand the constraint (2.1) and then we
minimized the coefficients of the expansions of a, b, d by hand. In the rest of the
section, we will always omit the argument ν of the functions X and Y.

Lemma 4.4. There exist functions a, b, d which satisfy Eq. (2.1) and such that

a = (8/9)1/3ν1/3(log ν)2/3(1 + a10X + a01Y + a20X 2 + a11XY + a02Y2 + o(Y2))

b = (8/9)1/3ν1/3(log ν)2/3(1 + a10X + a01Y + a20X 2 + a11XY + a02Y2 + o(Y2))

d = (3ν/ log ν)1/3(1 + d10X + d01Y + o(Y)),

12 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

where

a10 = 4/3, a01 = −2 log 2 + log 3/6− 2,
a20 = −4/9, a11 = 4 log 2/3− log 3/9 + 4,

a02 = −(log 2)2 + (log 2 · log 3)/6− 7(log 3)2/36− 6 log 2 + log 3/2− 5,
d10 = −2/3, and d01 = log 2− 5 log 3/6 + 1.

Proof. Set

a = (8/9)1/3ν1/3(log ν)2/3(1 + a10X + a01Y + a20X 2 + a11XY + a02Y2 + ãX 3)

b = (8/9)1/3ν1/3(log ν)2/3(1 + a10X + a01Y + a20X 2 + a11XY + a02Y2)

d = (3ν/ log ν)1/3(1 + d10X + d01Y),

where a10, a01, a20, a11, a02, d10, d01 are as in the lemma, and ã is an unknown function
of the variable ν.

Given these expressions, we wish to rewrite Eq. (2.1) as a function of ã. This
is particularly tedious, but straightforward. The only needed tools are formulas in
Prop. 4.2 over the function field R(ã). The code repository mentioned in the intro-
duction of this article shows how the expansion can be carried out with a computer
algebra system (and the same holds for other calculations in this section). We obtain
that Eq. (2.1) with the functions set above can be rephrased as:

(ã− 32/81) = ε(ã, ν),

for a continuous function ε such that for all t ∈ R, limν→∞ ε(t, ν) = 0. Let now
t− = 31/81 and t+ = 33/81. Since ε(t−, ν) and ε(t+, ν) both tend to zero, we can
define ν− and ν+ such that

∀ν > ν−, (t− − 32/81)− ε(t−, ν) < 0,

∀ν > ν+, (t+ − 32/81)− ε(t+, ν) > 0.

By the intermediate value theorem, we obtain that for any ν > max(ν−, ν+), there
exists t ∈ [t−, t+] such that (t− 32/81) = ε(t, ν). Let now ã be the function of ν that
returns such a number t. Then the functions a, b, and d defined above satisfy by
construction the desired property.

Proof of Theorem 4.3. The roadmap of the proof is the following:
1. We express the constraint (2.1) using a sufficiently precise asymptotic expan-

sion of the smoothness probability (given by Corollary 3.9) and the asymptotic
expansions of a, b, d known so far. Then we prove that the o(1) involved in the
asymptotic expansions of a, b, d are actually in the class O(X λYµ) for some
λ, µ ≥ 0 (not both being zero) so that we can write these o(1) as C · X λYµ
where C is a function bounded at a neighbourhood of ∞.

2. We prove that C = c + o(1) where c is a constant computed along the way
and restart the whole process using the more precise asymptotic expansions
for a, b, d that we have just obtained in order to compute the next coefficients.

Step 1 : By Proposition 2.4, minimizers can be written as

a = (8/9)1/3ν1/3(log ν)2/3(1 + ã),

b = (8/9)1/3ν1/3(log ν)2/3(1 + b̃),

d = (3ν/ log ν)1/3(1 + d̃),

ASYMPTOTIC COMPLEXITY OF NFS 13

where ã, b̃, d̃ = o(1).
Direct computations and simplifications (that involve Taylor series expansions,

Prop. 4.2, and the asymptotic expansion of the smoothness probability in Corol-
lary 3.9) that take into account the fact that ã, b̃, d̃ = o(1) rephrase Eq. (2.1) as

ã =
2

3
b̃

2
+

1

3
d̃

2
+O(X).

The last equation shows that ãX−1 is bounded below by a finite constant. More-
over, Lemma 4.4 ensures the existence of functions a0, b0, d0 that can be used as
substitutes for ã, b̃, d̃ above, that satisfy the constraint (2.1), and such that lim a0X−1

exists and is finite. Since a, b, d are minimizers of Problem 2.2, ãX−1 is also upper
bounded by a0X−1. Therefore, ã ∈ O(X), whence the same also holds for b̃ 2 and d̃ 2.

Replacing ã, b̃, d̃ respectively by aX , bX 1
2 , dX 1

2 for some functions a, b, d bounded
at a neighborhood of +∞ in Eq. (2.1), we obtain that

−a+
2

3
b
2

+
1

3
d

2
+

4

3
= o(1),

which means in particular that a ≥ 4/3 + o(1). By minimality of a we must also have
a ≤ 4/3 + o(1) so as not to contradict Lemma 4.4. So a = 4/3 + o(1) and we must
necessarily have b = d = o(1). Therefore, we obtain

a = (8/9)1/3ν1/3(log ν)2/3(1 + 4X/3 + ãX),

b = (8/9)1/3ν1/3(log ν)2/3(1 + b̃X 1
2),

d = (3ν/ log ν)1/3(1 + d̃X 1
2),

for some fresh functions ã, b̃, d̃ = o(1).

Step 2 : We use the result obtained in Step 1 and the asymptotic expansion of the
smoothness probability (Corollary 3.9) to deduce by direct computations the following
equality enforced by Eq. (2.1):(

−ã+
2

3
b̃

2
+

1

3
d̃

2

)
· X = O(Y).

Following the same reasoning as in Step 1, ãXY−1, b̃X 1
2Y− 1

2 and d̃X 1
2Y− 1

2 must be
bounded at a neighborhood of +∞. Replacing ã (resp. b̃, d̃) by aX−1Y (resp. bX− 1

2Y 1
2

and dX− 1
2Y 1

2) for some functions a, b, d bounded at a neighborhood of +∞, we obtain
the following equality:

−a+
2b

2

3
+
d

2

3
− 2 log 2 +

log 3

6
− 2 = o(1).

By minimality and using our baseline result Lemma 4.4 as we did in Step 1, the
equalities a = −2 log 2 + log 3/6− 2 + o(1), b = o(1), and d = o(1) must hold, which
means that:

a = (8/9)1/3ν1/3(log ν)2/3(1 + 4X/3 + (−2 log 2 + log 3/6− 2)Y + ãY),

b = (8/9)1/3ν1/3(log ν)2/3(1 + b̃Y 1
2),

d = (3ν/ log ν)1/3(1 + d̃Y 1
2),

14 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

for some fresh functions ã, b̃, d̃ = o(1).

Step 3 : Again we use the asymptotic expansion obtained in Step 2 to refine the
asymptotic equality from Eq. (2.1) and obtain:((

−2 log(2) +
5 log(3)

3
− 2 + o(1)

)
d̃+

(
8 log(2)− 2 log(3)

3
+ 2 + o(1)

)
b̃

)
Y 3

2

3

+

(
−ã+

d̃
2

3
+

2b̃
2

3

)
Y +

(
4d̃

9
− 16b̃

9

)
XY 1

2 = O(X 2).

where o(1) are explicit expressions in ã, b̃, d̃, which we omit for brevity.
This can be rephrased as

1

3

(
d̃Y 1

2 +
2

3
X +

(
− log(2) +

5 log(3)

6
− 1 + o(1)

)
Y
)2

︸ ︷︷ ︸
=δ(ν)

+

2

3

(
b̃Y 1

2 − 4

3
X +

(
2 log(2)− log(3)

6
+

1

2
+ o(1)

)
Y
)2

︸ ︷︷ ︸
=β(ν)

−ãY = O(X 2).

We prove now that β(ν) = O(X 2) and δ(ν) = O(X 2). Assume by contradiction
that this does not hold. Then ã(ν) is positive asymptotically and it cannot belong to
the class O(X 2). This would contradict our upper bound for the minimum given in
Lemma 4.4.

Consequently, β(ν) and δ(ν) belong to O(X 2) and then so does ãY. This means
that ã = O(X 2Y−1) and b̃, d̃ = O(XY− 1

2). As usual we call a, b, d the functions
ãX−2Y, b̃X−1Y 1

2 and d̃X−1Y 1
2 bounded at ∞, and we substitute in Eq. (2.1) to get

(4.1)
(
−a− 4

9

)
+

2

3

(
b− 4

3

)2

+
1

3

(
d+

2

3

)2

= o(1).

Lemma 4.4 ensures that we must have a ≤ −4/9 + o(1), otherwise it would
contradict the minimality of a. The equation above ensures that we must have a ≥
−4/9 + o(1) as well. So a = −4/9 + o(1), which implies that b = 4/3 + o(1) and
d = −2/3 + o(1). This third step of this proof gives:

a = (8/9)1/3ν1/3(log ν)2/3(1 + 4X/3 + (−2 log 2 + log 3/6− 2)Y − 4X 2/9 + ãX 2),

b = (8/9)1/3ν1/3(log ν)2/3(1 + 4X/3 + b̃X),

d = (3ν/ log ν)1/3(1− 2X/3 + d̃X),

for some fresh unknown functions ã, b̃, d̃ = o(1).

Step 4 : Substituting the asymptotic expansion obtained in Step 3 yields(
−ã+

2b̃
2

3
+
d̃

2

3

)
· X 2 = O(XY).

As in Step 1, ãmust belong to O(X−1Y) and b̃, d̃ to O(X− 1
2Y 1

2) so as not to contradict
Lemma 4.4. Using the notations a, b, d for the asymptotically bounded functions

ASYMPTOTIC COMPLEXITY OF NFS 15

ãXY−1, b̃X 1
2Y− 1

2 and d̃X 1
2Y− 1

2 , we find by substitution in Eq. (2.1) that b = o(1),
d = o(1) and a = 4 log 2/3− log 3/9 + 4 + o(1), i.e.,

a =(8/9)1/3ν1/3(log ν)2/3(1 + 4X/3 + (−2 log 2 + log 3/6− 2)Y
− 4X 2/9 + (4 log 2/3− log 3/9 + 4)XY + ãXY),

b =(8/9)1/3ν1/3(log ν)2/3(1 + 4X/3 + b̃X 1
2Y 1

2),

d =(3ν/ log ν)1/3(1− 2X/3 + d̃X 1
2Y 1

2),

for some fresh unknown functions ã, b̃, d̃ = o(1).

Step 5 : We expand the constraint for the last time and after a factorization that
follows the pattern of Step 3 we get:

1

3

(
d̃X 1

2 +

(
− log 2 +

5 log 3

6
− 1

)
Y 1

2

)2

Y+

2

3

(
b̃X 1

2 +

(
2 log 2− log 3

6
+

1

2

)
Y 1

2

)2

Y − ãXY = O(Y2).

Again, we must have ã = O(X−1Y) and b̃, d̃ = O(X− 1
2Y 1

2), so as not to contradict
Lemma 4.4. We also compute the associated limits for b̃ and d̃ by using the same
method as in the previous steps: we let a, b, d denote the bounded functions ãXY−1,
b̃X 1

2Y− 1
2 , d̃X 1

2Y− 1
2 . Direct computations yield[

2

3

(
b+ 2 log 2− log 3

6
+

1

2

)2

− 3

2

]
+

1

3

(
d+

5 log 3

6
− log 2− 1

)2

=(
a−

(
−(log 2)2 +

log 2 log 3

6
− 7(log 3)2

3
6− 6 log 2 +

log 3

2
− 5

))
+ o(1).

Lemma 4.4 ensures that b ≤ a01 + o(1) and a ≤ a02 + o(1). This implies that the
lefthand side of the equality is bounded below by some function in o(1) and hence
lim a = a02. Therefore we get that

lim b̃X 1
2Y− 1

2 = −2 log 2 + log 3/6− 2,

lim d̃X 1
2Y− 1

2 = log 2− 5 log 3/6 + 1,

which concludes the proof.

Corollary 4.5. Let Φ(ν) = max(a(ν), b(ν)) be the quantity minimized by Prob-
lem 2.2. The heuristic complexity C(N) = exp(2Φ(logN)) to factor an integer N
with NFS satisfies:

logC(N) =
3

√
64

9
(logN)1/3(log2N)1/3

(
1 + a10

log3N

log2N
+

a01

log2N
+ o

(
1

log2N

))
where a10 = 4/3 and a01 = −2 log 2 + log 3/6− 2.

A natural question to ask is whether the process used in the proof of Thm. 4.3
can be continued. As we will see in the next section, the answer to this question is
yes.

16 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

4.3. Further terms in the asymptotic expansion of the complexity of
NFS. In this section, we describe how the arguments of Section 4.2 can be turned
into three algorithms that allow to compute more precise asymptotic expansions for
the minimizers a, b, d. These three algorithms take as input the precision requested
for the asymptotic expansion of the complexity and they mirror the three steps used
in the proof of Theorem 4.3:

• Algorithm GuessTerms guesses the asymptotic expansion of the minimizers
of Problem 2.2.

• Algorithm ProveExistence proves the existence of functions satisfying the
constraint in Problem 2.2, and whose asymptotic expansion is the output of
Algorithm GuessTerms. This establishes an upper bound for the minimum
of the objective function in Problem 2.2.

• Algorithm ProveMinimality proves that the asymptotic expansion of the
minimizers of Problem 2.2 must be the output of Algorithm GuessTerms.

These algorithms are used in the following way. We set a degree n > 1. The three
algorithms are used to prove that ξ(N) = Q(X (logN),Y(logN)) + o(Y(logN)n)
where Q is a bivariate polynomial of total degree n, whose coefficients are computed
along the way. We emphasize that these algorithms might fail, i.e., become unable
to compute or prove new terms at some point. We were unable to prove that our
algorithms never fail, but experimentally they never did. And even if one of them
does, the terms of the complexity computed up until the failure point are guaranteed
to be correct. We also point out that all the bivariate polynomials that we consider in
these algorithms have coefficients in Q(log 2, log 3), so they can be described exactly
without having to rely on floating point computations.

We now describe more precisely the algorithms GuessTerms, ProveExistence
and ProveMinimality assuming there is no failure.

Algorithm GuessTerms assumes that a, b, d belong respectively to the classes
C[1/3,2/3], C[1/3,2/3], C[1/3,−1/3] and even that a = b. We callA,B,D the bivariate series
associated to a, b, d. First, we expand Eq. (2.1) based on the asymptotic expansions
of a, b and d (initialized thanks to the result of Theorem 4.3). Then we minimize
the leading term of the asymptotic expansion of the objective function in Problem 2.2
under the constraint that the coefficient of the main term in the asymptotic expansion
of Eq. (2.1) must vanish. This is done thanks to Taylor series expansions at infinity
and bivariate series computations at finite precision. From this, we deduce the next
coefficients of our series. The repetition of this process provides an algorithm to
iteratively compute the coefficients of the series A,B,D. These series will be our
candidates for the asymptotic expansion of the minimizers of Problem 2.2.

Algorithm ProveExistence is the counterpart of Lemma 4.4. It checks that
there exist functions α, β, δ such that:

• The asymptotic expansion of α is α = A(n+1)(X ,Y) + o(Yn+1);
• The asymptotic expansion of β is β = B(n+1)(X ,Y) + o(Yn+1);
• The asymptotic expansion of δ is δ = D(n+1)/2(X ,Y) + o(Y(n+1)/2);
• The functions α, β, δ satisfy the constraint (2.1).

Algorithm ProveExistence serves the same purpose as Lemma 4.4: Give a baseline
result that ensures the existence of functions that satisfy the constraint (2.1) and
whose asymptotic expansions are known up to a given degree. In particular, a solution
to Problem 2.2 must be smaller than α, β, δ. The algorithm works similarly to the
proof of Lemma 4.4 by setting three functions a, b, d where a depends on an unknown

ASYMPTOTIC COMPLEXITY OF NFS 17

function ã:

a = (8/9)1/3ν1/3(log ν)2/3(A(n+1)(X ,Y) + ãXn+2);

b = (8/9)1/3ν1/3(log ν)2/3B(n+1)(X ,Y);

d = (3ν/ log ν)1/3D(n+1)/2(X ,Y).

Then the algorithm checks by using Taylor series expansions that the constraint of
Problem 2.2 instantiated with these functions can be rewritten as (ã − κ) = ε(ã, ν)
for some κ ∈ R and ε a function as in the proof of Lemma 4.4.

Algorithm ProveMinimality is the counterpart of the proof of Theorem 4.3
and it follows its roadmap. We proceed iteratively with the terms of the asymptotic
expansion, computing and proving the expansions of the minimizers a, b, d up to de-
gree n. To do so, we use the current (proven) knowledge of the asymptotic expansions
of a, b, d, initialized thanks to Theorem 4.3, and expand the constraint by computing
Taylor series expansions at infinity.

To prove that the next terms of the series guessed by Algorithm GuessTerms
are correct, we proceed as follows. First, we prove that the remainder of the series
expansion, which has form o(X i

2Y
j
2), is in fact of the form O(X i′

2 Y
j′
2), where (i′, j′)

is strictly larger than (i, j) for the graded lexicographical ordering, so that O(X i′
2 Y

j′
2)

is a proper subset of o(X i
2Y

j
2). This first step works as long as the equation derived

from the constraint follows certain patterns, which are given in Proposition 4.6 below.
In a second step, we prove that this remainder has in fact the form κX i′

2 Y
j′
2 (1 +

o(1)), where κ is the corresponding coefficient in the guessed series. This verification
involves an equation that is similar to Eq. (4.1) in the proof of Theorem 4.3. Again,
the shape of the equation encountered is crucial to proceed.

Based on our experiments, we surmise that only three patterns occur in the first
step, and that the equation encountered in the second step always matches the shape
of Eq. (4.1). Algorithm ProveMinimality only consists in verifying that this holds.

Proposition 4.6. Let ã, b̃, d̃ = o(1) be three functions.
• Pattern (P1): Let i > 0, j ≥ 0. Assume that ã(ν) ≤ a0(ν), b̃(ν) ≤ b0(ν),
where a0, b0 = O(X−1Y). Assume further that(

d̃
2

3
− ã− 2b̃

)
X iYj = O(X i−1Yj+1).

Then ã, b̃ = O(X−1Y) and d̃ = O(X− 1
2Y 1

2).
• Pattern (P2): Let i > 1 and κ ∈ R. Assume that ã(ν) ≤ a0(ν), b̃(ν) ≤
b0(ν), where a0, b0 = O(X i+1Y−i). Assume further that(

d̃
2

3
− ã− 2b̃(1 + o(1))

)
Yi + κd̃X

i+1
2 Y i

2 (1 + o(1)) = O(X i+1).

Then ã = O(X i+1Y−i), b̃ ∈ O(X i+1Y−i) ⊂ O(Y 1
2), and d̃ = O(X i+1

2 Y− i
2).

• Pattern (P3): Let i > 2. Assume that ã(ν) ≤ a0(ν), b̃(ν) ≤ b0(ν), where
a0 = O(X−1Y) and b0 = O(X i−1Y−i+ 3

2). Assume further that(
d̃

2

3
− ã

)
X i − 2b̃Yi− 1

2 = O(X i−1Y).

18 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

Then ã = O(X−1Y) and b̃ = O(X i−1Y−i+ 3
2), and d̃ = O(X 1

2Y− 1
2).

Proof. The proof in all three cases is very similar. We only prove Pattern (P1)
as an example.

Dividing the equality by X iYj , we get

ã+ 2b̃ =
d̃

2

3
+O(X−1Y),

which shows that ã + 2b̃ is bounded below by a function in O(X−1Y). Since ã +

2b̃ ≤ a0 + 2b0 = O(X−1Y), we deduce that ã + 2b̃ = O(X−1Y). Writing a, b for
ãXY−1, b̃XY−1 respectively, we get that a+ 2b = O(1). Together with the fact that
a, b are bounded above by lim sup a0XY−1, lim sup b0XY−1 respectively, this implies
that a, b ∈ O(1), and hence that ã, b̃ ∈ O(X−1Y). Hence d̃ 2 must also belong to
O(X−1Y).

In fact these three patterns do not appear at random during the proof: They
appear according to the shape of the remainder o(X iYj) in the series expansion of
a we are currently considering. When i 6= 0 and j 6= 0 the equation follows pattern
(P1), when i = 0 it follows pattern (P2) and when j = 0 it follow pattern (P3).
In particular, pattern (P3) is always encountered one step after pattern (P2) has
been encountered. We want to consider that b̃ is in O(Y 1

2) instead of the tighter class
O(X i+1Y−i) at the end of pattern (P2) precisely to ensure that the next step will
yield an equation that follows pattern (P3).

The three algorithms GuessTerms, ProveExistence and ProveMinimality
are used consecutively in order to compute a proven asymptotic expansion of a, b, d at
a given precision n. We have implemented a function ComputeProvenExpansion
which performs this process: It takes as input an integer n > 1 and — if it does
not fail — it returns two bivariate polynomials A(n+1),D(n+1)/2 of respective degrees
n+ 1 and (n+ 1)/2 such that the minimizers a, b, d of Problem 2.2 satisfy

a = (8/9)1/3ν1/3(log ν)2/3(A(n+1)(X ,Y) + o(Yn+1)),

b = (8/9)1/3ν1/3(log ν)2/3(A(n)(X ,Y) + o(Yn)),

d = (3ν/ log ν)1/3(D(n+1)/2(X ,Y) + o(Y(n+1)/2)).

The expansion for b is proven up to a degree one less than the one for a. The
underlying reasons are the same as in the proof of Theorem 4.3, where this behavior
was first encountered.

This implies that the heuristic complexity of NFS is bounded above by

exp

[
3

√
64

9
(logN)1/3(log2N)2/3

(
A(n)

(
log3N

log2N
,

1

log2N

)
+ o

(
1

(log2N)n

))]
.

5. Experimental results. In this section, we report on experimental results
obtained with our implementation of the algorithms described in Section 4.3. Our
implementation is available in the code repository mentioned in the introduction of
this article.

These algorithms provide an asymptotic expansion of the heuristic complexity
C(N) of NFS. More precisely, they output coefficients of a bivariate series A ∈
Q(log 2, log 3)[[X,Y]] such that for all n ≥ 0 such as our algorithms do not fail,

ASYMPTOTIC COMPLEXITY OF NFS 19

we have:

logC(N) =
3

√
64

9
(logN)1/3(log2N)2/3

(
A(n)

(
log3N

log2N
,

1

log2N

)
+ o

(
1

(log2N)n

))
.

Here are the first coefficients of the series A(X,Y) =
∑
i,j≥0 aijX

iY j obtained
via this implementation:

a00 1
a10 4/3
a01 −2 log 2 + log 3/6− 2
a20 −4/9
a11 4 log 2/3− log 3/9 + 4
a02 −(log 2)2 + log 2 log 3/6− 7(log 3)2/36− 6 log 2 + log 3/2− 5
a30 32/81
a21 −16 log 2/9 + 4 log 3/27− 56/9
a12 8(log 2)2/3− 4 log 2 log 3/9 + 56 log 2/3 + 14(log 3)2/27− 14 log 3/9 + 64/3
a03 −4(log 2)3/3 + (log 2)2 log 3/3− 14(log 2)2 − 7 log 2(log 3)2/9

+7 log 2 log 3/3− 32 log 2 + 41(log 3)3/648− 49(log 3)2/18 + 8 log 3/3− 85/3

The function ξ in the introduction can be approximated asymptotically by eval-
uating at (log3N/ log2N, 1/ log2N) the truncations of the series A(X,Y)− 1. Using
the algorithms in Section 4.3, we were able to compute the series A,B = A, and D
up to degree 14 (more than a hundred terms). The fact that A = B has been verified
so far backs the claim that the patterns encountered while proving minimality are
always as expected. Moreover, despite the fact the algorithms ProveExistence and
ProveMinimality regularly have to consider terms X iYj with i or j in 1

2Z in the
expansions of a, b, d, the coefficients of these terms always turned out to be zero in
our experiments. These remarks allow us to formulate the following conjecture:

Conjecture 5.1. The minimizers a, b, d of Problem 2.2 belong respectively to
the classes of functions C[1/3,2/3], C[1/3,2/3], C[1/3,−1/3]. Moreover, the series A,B ∈
R[[X,Y]] associated to a, b are equal.

For i ≥ 0, we let ξi(N) denote the function A(i)(log3N/ log2N, 1/ log2N) − 1.
In particular, for all i ≥ 0, we have ξ(N) = ξi(N) + o(1/(log2N)i). Figure 1 shows
the behavior of ξi for cryptographically relevant values of N . Figure 2 focuses on the
range where we observe experimentally the convergence of the truncations ξi.

These figures raise questions on the relevance of the traditional assumption ξ = 0
for estimating the complexity of NFS in the range which is useful for cryptographic
applications, i.e., N ≤ 220000. Indeed, we only start to observe convergence for
N > exp(exp(25)) ≈ 2103881111194. Let us also notice that the convergence of ξ to
zero is very slow as N grows, since ξ(N) ∼ 4 log3N/(3 log2N) (Theorem 4.3). One
could think that adding more and more terms in the developement of ξ would yield
a more precise formula for the complexity of NFS. However, it turns out that for
practical values of N , replacing ξ by ξi for i > 0 is possibly even worse since the
asymptotic series expansion of ξ seems to diverge for N ≤ exp(exp(25)). In summary,
all the asymptotic estimations for ξ that we have at our disposal, including the brutal
approximation ξ = 0, say little to nothing about the behavior of the complexity of
NFS in the range where the algorithm can be used.

In fact, the expansion of ξ relies on the expansion of ρ, and the latter involves a
series that converges only for sufficiently large values as underlined in Proposition 3.6.

20 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

ee5 ee6 ee7 ee8 ee9 ee10 ee11
1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

degree
0
1
2
3
4
5

Fig. 1. Truncations of ξ up to total degree i for 0 ≤ i ≤ 5 in function of N for cryptographically
relevant values of N . The abscissa axis is in log log scale.

ee21 ee22 ee23 ee24 ee25 ee26 ee27
0.038

0.040

0.042

0.044

0.046

0.048

degree
0
1
2
3
4
5

Fig. 2. Converging behavior for ξi. The abscissa axis is in log log scale.

ASYMPTOTIC COMPLEXITY OF NFS 21

e4 e6 e8 e10 e12 e14
1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

i
1
2
3
4
5
6

Fig. 3. Plot of the functions u 7→ Q(i)(X (u),Y(u)) for 1 ≤ i ≤ 6, see Corollary 3.8.

We recall that ρ(u) ∼ exp
(
−u log u

(
Q(i)(X (u),Y(u)) + o

(
Y(u)i

)))
where Q is de-

fined in Proposition 3.7. To experimentally assess the convergence properties of ρ
estimations, Figure 3 plots the functions u 7→ Q(i)(X (u),Y(u)) in function of u for
1 ≤ i ≤ 6.

Experimentally, we observe in Figure 3 that the asymptotic series expansion of
ρ starts to converge around u ≈ e8. When assessing the complexity of NFS, we
evaluate ρ for values of u that have the same order of magnitude than (logN)1/3.
This is consistent with the observed convergence of the series expansion of ξ for
N > exp(exp(25)) in Figure 2 since exp(25)1/3 ≈ e8.

Conclusion. Under a few classical hypotheses and heuristics, we proved that
the function o(1) hidden in the complexity of NFS decreases as 4 log3N/(3 log2N).
We have also proposed an algorithm to compute an asymptotic expansion of the
function ξ on which the complexity of NFS rests. Unfortunately, replacing ξ by a
truncation of its asymptotic expansion, even up to a high degree, in an attempt to
have a better understanding of the NFS complexity may be irrelevant for practical
uses. Indeed, it comes down to replacing a series by its first terms in a range where
the series diverges. Consequently, we recommend prudence when using Formula (1.1)
or other truncated asymptotic expansions of the heuristic complexity of NFS in order
to extrapolate keysizes for cryptography. This stresses the importance of simulation
tools that rely on precise numerical evaluations of ρ, or possibly on actual smoothness
tests, to estimate the complexity of NFS.

REFERENCES

[1] Agence national de la sécurité des systèmes d’information, Référentiel général de
sécurité, v2.03, Annexe B1, 2014. Publicly available at https://www.ssi.gouv.fr/uploads/

https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf
https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf

22 A. LE GLUHER, P.-J. SPAENLEHAUER, E. THOMÉ

2014/11/RGS_v-2-0_B1.pdf.
[2] R. Barbulescu and A. Lachand, Some mathematical remarks on the polynomial selection

in NFS, Math. Comp., 86 (2017), pp. 397–418, https://doi.org/10.1090/mcom/3112.
[3] D. J. Bernstein, How to find small factors of integers, 2002, http://cr.yp.to/papers.html#sf.
[4] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, and P. Zimmermann,

Comparing the difficulty of factorization and discrete logarithm: a 240-digit experiment.
Cryptology ePrint Archive, Report 2020/697, 2020. https://eprint.iacr.org/2020/697.

[5] J. P. Buhler, A. K. Lenstra, and J. M. Pollard, Factoring integers with the number
field sieve, in The development of the number field sieve, A. K. Lenstra and H. W. Lenstra,
Jr., eds., vol. 1554 of Lecture Notes in Math., Springer–Verlag, 1993, p. 50–94.

[6] E. R. Canfield, P. Erdös, and C. Pomerance, On a problem of Oppenheim concerning
“factorisatio numerorum”, J. Number Theory, 17 (1983), pp. 1–28.

[7] L. Comtet, Inversion de yαey et y logα y au moyen des nombres de Stirling, C. R. Hebdo.
Acad. Sci. Paris Sér. A Math., 270 (1970), pp. 1085–1088.

[8] L. Comtet, Advanced Combinatorics: The art of finite and infinite expansions, 1974.
[9] N. G. De Bruijn, The asymptotic behaviour of a function occurring in the theory of primes,

J. Indian Math. Soc. (N.S.), 15 (1951), pp. 25–32.
[10] N. G. De Bruijn, On the number of positive integers ≤ x and free of prime factors >

y, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A:
Mathematical Sciences, 54 (1951), pp. 50–60.

[11] ENISA, Algorithms, key sizes and parameters report. European Union Agency for Network
and Information Security. Report available at https://www.enisa.europa.eu/publications/
algorithms-key-size-and-parameters-report-2014.

[12] A. Granville, Smooth numbers: Computational number theory and beyond, in Algorithmic
Number Theory: Lattices, Number Fields, Curves and Cryptography, J. P. Buhler and
P. Stevenhagen, eds., vol. 44 of Math. Sci. Res. Inst. Publ., Cambridge University Press,
Dec. 2008, pp. 267–323.

[13] A. Hildebrand, On the number of positive integers ≤ x and free of prime factors > y, J.
Number Theory, 22 (1986), pp. 289–307.

[14] J. D. Lee and R. Venkatesan, Rigorous analysis of a randomised number field sieve, J.
Number Theory, 187 (2018), pp. 92–159.

[15] A. K. Lenstra and E. R. Verheul, Selecting cryptographic key sizes, J. Cryptology, 14
(2001), pp. 255–293.

[16] B. A. Murphy, Polynomial Selection for the Number Field Sieve Integer Factorisation Algo-
rithm, PhD thesis, Australian National University, 1999, http://maths-people.anu.edu.au/
~brent/pd/Murphy-thesis.pdf.

[17] National Institute of Standards and Technology and Canadian Centre for
Cyber Security, Implementation guidance for FIPS 140-2 and the cryptographic
module validation program. Version of 2019, December 3. Available at https:
//csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/
documents/fips140-2/FIPS1402IG.pdf.

[18] D. Wiedemann, Solving sparse linear equations over finite fields, IEEE transactions on infor-
mation theory, 32 (1986), pp. 54–62.

https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf
https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf
https://doi.org/10.1090/mcom/3112
http://cr.yp.to/papers.html#sf
https://eprint.iacr.org/2020/697
https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf

	Introduction
	Background on NFS
	Smoothness
	Smoothness results
	Asymptotic expansion of the Dickman–de Bruijn function
	Computation of Q

	Asymptotic expansion of
	Extension of the class C
	Two new proven terms for the NFS complexity
	Further terms in the asymptotic expansion of the complexity of NFS

	Experimental results
	References

