
Minimax Approximation of Sign Function by
Composite Polynomial for Homomorphic

Comparison

Eunsang Lee1, Joon-Woo Lee1, Jong-Seon No1, and Young-Sik Kim2

1 Seoul National University, Republic of Korea
eslee3209@ccl.snu.ac.kr, joonwoo3511@ccl.snu.ac.kr, jsno@snu.ac.kr

2 Chosun University, Republic of Korea
iamyskim@Chosun.ac.kr

Abstract. The comparison function of the two numbers is one of the
most commonly used operations in many applications including deep
learning and data processing systems. Several studies have been con-
ducted to efficiently evaluate the comparison function in homomorphic
encryption schemes which only allow addition and multiplication for the
ciphertext. Recently, new comparison methods that approximate sign
function using composite polynomial in the homomorphic encryption,
called homomorphic comparison operation, were proposed and it was
proved that the methods have optimal asymptotic complexity. In this
paper, we propose new optimal algorithms that approximate the sign
function in the homomorphic encryption by using composite polynomi-
als of the minimax approximate polynomials, which are constructed by
the modified Remez algorithm. It is proved that the number of required
non-scalar multiplications and depth consumption for the proposed al-
gorithms are less than those for any methods that use a composite poly-
nomial of component polynomials with odd degree terms approximating
the sign function, respectively. In addition, an optimal polynomial-time
algorithm for the proposed homomorphic comparison operation is pro-
posed by using dynamic programming. As a result of numerical analysis,
for the case that we want to minimize the number of non-scalar multi-
plications, the proposed algorithm reduces the required number of non-
scalar multiplications and depth consumption by about 33% and 35%,
respectively, compared to those for the previous work. In addition, for
the case that we want to minimize the depth consumption, the proposed
algorithm reduces the required number of non-scalar multiplications and
depth consumption by about 10% and 47%, respectively, compared to
those for the previous work.

Keywords: Cheon-Kim-Kim-Song (CKKS) scheme · fully homomor-
phic encryption (FHE) · homomorphic comparison operation · minimax
approximate polynomial · Remez algorithm · sign function.

1 Introduction

Homomorphic encryption (HE) is a cryptographic algorithm that allows alge-
braic operations over the encrypted data. Until Gentry’s seminal work [2] in
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2009, HE schemes were able to perform only a few specific operations for the en-
crypted data. Fully homomorphic encryption (FHE) is a cryptographic algorithm
that allows all algebraic operations on the encrypted data without restriction and
a FHE scheme was first developed in [2]. Due to the feature, FHE has attracted
significant attention in various applications and the standardization process for
FHE is in progress.

FHE schemes can be classified as bit-wise FHE and word-wise FHE. Word-
wise FHE such as Brakerski/Fan-Vercauteren (BFV) [4] and Cheon-Kim-Kim-
Song (CKKS) [6] provides the addition and multiplication of an encrypted array
over C or Zp for a positive integer p > 2. All other operations in word-wise FHE
should be performed using these two basic operations. On the other hand, the
basic operations of bit-wise FHEs such as the fast fully homomorphic encryption
over the torus (TFHE) [5] are logic gates such as NAND gates. Recently, word-
wise FHE has been widely used in many applications such as deep learning [21,
22].

The comparison function is denoted as comp(a, b), which outputs 1 if a > b,
1/2 if a = b, and 0 if a < b. The comparison function is one of the most commonly
used operations along with addition and multiplication in many applications
including machine learning algorithms [19, 20]. However, when we encrypt inputs
word-wise, it is known to be difficult to perform the comparison operation for
the ciphertexts in FHEs, called a homomorphic comparison operation, since the
comparison operation is a non-polynomial operation. Thus, it is indispensable to
find an efficient method to implement the homomorphic comparison operation.

In this paper, a new efficient method to perform the homomorphic compar-
ison operation in word-wise FHEs is proposed. Since comparison operation is a
non-polynomial operation, it is necessary to find and evaluate a polynomial that
approximates comp(a, b). Comparison operations can be implemented by sign
function, that is, comp(a, b) = 1

2 (sgn(a − b) + 1). Thus, in order to perform a
homomorphic comparison operation, it is enough to find a polynomial that well
approximates sgn(x).

It is desirable to find the approximate polynomial that requires the mini-
mum computational complexity and depth consumption while satisfying a given
approximation error bound. Addition, scalar multiplication, and non-scalar mul-
tiplication affect the computational complexity. However, non-scalar multiplica-
tion requires the largest computational complexity by far. Although the efficiency
of FHE has been improved a lot, non-scalar multiplication still requires a consid-
erable amount of computational complexity. Thus, a polynomial approximation
of sgn(x), which minimizes the number of non-scalar multiplications and depth
consumption, is proposed in this paper.

1.1 Previous Works

Some research has been done on how to find polynomials that approximate
the sign function sgn(x) or comp(a, b) in FHE. An analytic method to approx-
imate the sign function using the Fourier series was proposed in [17]. In [18],
the sign function was approximated using the approximate equation tanh(kx) =
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ekx−e−kx

ekx+e−kx ' sgn(x) for large k > 0. Recently, an iterative algorithm was pro-
posed that performs homomorphic comparison operation using the equation

limk→∞
ak

ak+bk
= comp(a, b) in [7], where the inverse operation can be performed

using Goldschmidt’s division algorithm [15]. However, the use of inverse opera-
tion causes some inefficiency in computational complexity. More recently, the ho-
momorphic comparison operation is approximated using composite polynomial
with less non-scalar multiplications and depth consumption than the previous
methods in [8]. It was also shown that the homomorphic comparison operation
by using composite polynomial has optimal asymptotic computational complex-
ity. However, the performance of the homomorphic comparison operation using
composite polynomials in [8] can be further improved since the composite poly-
nomials used in [8] do not guarantee optimality for the approximation of the sign
function by polynomials. Although there have been some improvements, the ho-
momorphic comparison operation still requires a lot of time, and thus more
research is needed to improve the performance of the homomorphic comparison
operation for practical use.

1.2 Our Contributions

In this paper, we propose that if composite polynomials of component minimax
approximate polynomials obtained by the modified Remez algorithm [11] are
used, the efficiency of the homomorphic comparison operation can be further
improved, where we have three contributions as follows.

First, we propose a method of approximating the sign function with com-
posite polynomials of component minimax approximate polynomials. Our main
idea is to find the composite polynomial which minimizes the non-scalar mul-
tiplications and depth consumption among all of the composite polynomials of
component minimax approximate polynomials.

Second, since the sign function is an odd function, it is natural to use com-
posite polynomials consisting of component polynomials with only odd degree
terms. All the component polynomials used in [8] are also polynomials with odd
degree terms. It is proved that the composite polynomials of component polyno-
mials with odd degree terms found by the proposed method is the best among all
of the composite polynomials of component polynomials with odd degree terms.
That is, the composite polynomial obtained by the proposed method requires
less number of non-scalar multiplications and depth consumption than any other
composite polynomials of component polynomials with odd degree terms.

Third, even though the optimal composite polynomials of component mini-
max approximate polynomials can be found by the brute-force search from the
candidate composite polynomials of component minimax approximate polynomi-
als, the brute-force search requires an exponential time with respect to α, which
corresponds to bit precision. Thus, polynomial-time algorithms using dynamic
programming which find the optimal composite polynomials in polynomial time
are proposed. By using the dynamic programming, the number of required non-
scalar multiplications and depth consumption for evaluation of the proposed
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composite polynomials for the homomorphic comparison operation are obtained
and compared to those for the previous method [8]. It can be seen that for the
case that we want to minimize the number of non-scalar multiplications, the
proposed algorithm reduces the required number of non-scalar multiplications
and depth consumption by about 33% and 35%, respectively, compared to those
for the previous algorithm. In addition, for the case that we want to minimize
the depth consumption, the proposed algorithm reduces the required number
of non-scalar multiplications and depth consumption by about 10% and 47%,
respectively, compared to those for the previous work.

1.3 Outline

The outline of the paper is given as follows. Section 2 presents some preliminaries
for the concept of FHE, comparison operation in FHE, approximation theory,
and the algorithms for minimax approximation. In Section 3, a new method
to approximate the sign function using composite polynomial of minimax ap-
proximate polynomials is proposed and it is proved that the proposed method
of approximating the sign function using composite polynomial of minimax ap-
proximate polynomials is optimal. In addition, a polynomial-time algorithm to
obtain the best composite polynomial for the homomorphic comparison oper-
ation is proposed by using dynamic programming. In Section 4, the numerical
results of the proposed homomorphic comparison operation are given for both
when the number of non-scalar multiplications is minimized and when the depth
consumption is minimized. Finally, the concluding remarks are given in Section
5.

2 Preliminaries

2.1 Fully Homomorphic Encryption

In the IoT era, a lot of devices communicate over the Internet. A third party
will inevitably be asked to process the data because many devices cannot process
data on their own. However, if the data to be processed is confidential and the
third party is unreliable, the data should be sent encrypted, and the third party
should perform operations on the encrypted data. HE allows operations over the
encrypted data without decryption for this case.

Until Gentry’s seminal work [2] in 2009, HE schemes were able to perform
only a few specific operations on the encrypted data. FHE is a cryptosystem
that can perform infinite number of algebraic operations on the encrypted data
with bootstrapping. A FHE scheme was first developed in [2] and many FHE
schemes have since been proposed to improve efficiency [4–6]. From now on, we
will consider only the FHE rather than the HE.

FHE schemes are classified as bit-wise FHE and word-wise FHE. The basic
operations of bit-wise FHE are logic gates, and the basic operations of word-wise
FHE are algebraic operations such as addition and multiplication. In this paper,
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we focus only on word-wise FHE and thus the FHE is used instead of word-wise
FHE. The definition of FHE is given as follows.

Definition 1. A FHE scheme E is a set of five polynomial-time algorithms that
satisfy the followings:
• KeyGen(λ) → (pk, sk); KeyGen takes security parameter λ as an input and

outputs public key pk and secret key sk.
• Enc(µ,pk) → ct; Enc takes a public key pk and a message µ as inputs, and

outputs a ciphertext ct of µ.
• Dec(ct, sk)→ µ′ or ⊥; Dec takes a ciphertext ct and a secret key sk as inputs,

and outputs a message µ′. If the decryption procedure fails, Dec outputs a
special symbol ⊥.

• Add(ct1, ct2, evk); Add takes ciphertexts ct1 and ct2 of µ1 and µ2, respec-
tively, and an evaluation key evk as inputs, and outputs a ciphertext ctadd
of µ1 + µ2.

• Mult(ct1, ct2, evk); Mult takes ciphertexts ct1 and ct2 of µ1 and µ2, respec-
tively, and an evaluation key evk as inputs, and outputs a ciphertext ctmult

of µ1 · µ2.

In CKKS scheme, there are two kinds of multiplications: scalar multiplica-
tion and non-scalar multiplication. Non-scalar multiplications require much more
computational complexity than scalar multiplications. Thus, in this paper, when
the homomorphic comparison operation is considered, we focus on reducing the
number of non-scalar multiplications rather than scalar multiplications, together
with depth consumption.

2.2 Comparison Operation in Fully Homomorphic Encryption

FHEs support addition and multiplication operations on the encrypted data,
but do not support any non-arithmetic operations such as comparison operation.
Thus, the approximation of comparison operation should be performed by using
addition and multiplication operations in FHE. The comparison function and
sign function are denoted as

comp(a, b) =


1 if a > b

1/2 if a = b

0 if a < b

, sgn(x) =


1 if x > 0

0 if x = 0 .

−1 if x < 0

Our goal is to perform approximation for comp(a, b), which is implemented
only with additions and multiplications. Note that comp(a, b) and sgn(x) func-
tions have the following relationships as

sgn(x) = 2comp(x, 0)− 1, comp(a, b) =
sgn(a− b) + 1

2
.

Thus, the approximation of comp(a, b) is equivalent to that of sgn(x). There-
fore, we only focus on the polynomial approximation for sgn(x).
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Even though the efficiency of FHEs has been improved a lot since the first
FHE was developed in 2009, it is known that the non-scalar multiplication op-
eration still takes a lot of computational complexity. In addition, since boot-
strapping requires a lot of computational complexity, minimizing the depth con-
sumption for the homomorphic comparison operation is also important, which
reduces the number of bootstrappings. Thus, it is necessary to approximate
sgn(x) by polynomials while minimizing the number of non-scalar multiplica-
tions and depth consumption.

Definition 2 ([8]). For α > 0 and 0 < ε < 1, a polynomial p is said to be
(α, ε)-close to sgn(x) over [−1, 1] if p satisfies the following:

||p(x)− sgn(x)||∞,[−1,−ε]∪[ε,1] ≤ 2−α,

where || · ||∞,D denotes the infinity norm over the domain D.

sgn(x) is discontinuous at x = 0, and thus it is impossible to exactly ap-
proximate sgn(x) near x = 0. Definition 2 means that the approximation error
is guaranteed below 2−α only for ε ≤ |x| ≤ 1. Figure 1 shows an example of a
function satisfying (α, ε)-close.

Fig. 1. An example of an approximate polynomial satisfying (α, ε)-close for sign func-
tion.

2.3 Approximation Theory

In this section, some concepts for approximation theory are introduced.
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Definition 3. Let D be a closed subset of [a, b]. Let f be a continuous function
on D. A polynomial p is said to be the minimax approximate polynomial of degree
at most n on D for f if p minimizes maxD||p(x)− f(x)||∞ among polynomials
of degree at most n.

It is known that for any continuous function f on D, the minimax approx-
imate polynomial of degree at most n on D for f uniquely exists [12]. We put
f(x) = sgn(x) since the goal in this paper is to approximate sgn(x). We also
only deal with cases where D is the union of two symmetric closed intervals,
[−b,−a] ∪ [a, b].

Definition 4 (Haar’s Condition and Generalized Polynomial [12]). A
set of functions {g1, g2, · · · , gn} satisfies the Haar’s condition if each gi is con-
tinuous function and if the determinant

D[x1, · · · , xn] =

∣∣∣∣∣∣∣
g1(x1) · · · gn(x1)

...
. . .

...
g1(xn) · · · gn(xn)

∣∣∣∣∣∣∣
is not zero for any n distinct points x1, · · · , xn. A linear combination of {g1, · · · , gn}
is referred to as a generalized polynomial.

The following theorem and lemmas are needed for some proofs in Section 3.

Theorem 1 (Chebyshev Alternation Theorem [12]). Let D be a closed
subset of [a, b]. Let {g1, g2, · · · , gn} be a set of continuous functions on [a, b]
which satisfies the Haar’s condition. A polynomial p =

∑
i cigi is the minimax

approximate polynomial on D to any given continuous function f on D if and
only if there are n+1 elements x0 < · · · < xn in D such that r(xi) = −r(xi−1) =
±||r||∞, 1 ≤ i ≤ n for the error function r = f − p.

Remark 1. Let D be [−b,−a] ∪ [a, b]. Since r(xi) = ±||r||∞ for 0 ≤ i ≤ n, r(x)
should have extreme points at xi for 0 ≤ i ≤ n. Thus, it holds that p′(xi) = 0
and xi ∈ (−b,−a) ∪ (a, b), or xi ∈ {−b,−a, a, b}.

Lemma 1 (Generalized de La Vallee Poussin Theorem [11]). Let {g1, g2,
· · · , gn} be a set of continuous functions on [a, b] that satisfies the Haar’s con-
dition. Let D be a closed subset of [a, b] and let f(x) be a continuous function
on D. Let xi, 0 ≤ i ≤ n be n + 1 consecutive points on D. Let p(x) be a gener-
alized polynomial such that p− f has alternately positive and negative values at
xi, 0 ≤ i ≤ n. Let p∗(x) be a minimax approximate polynomial on D for f and
let e(f) be the minimax approximaton error of p∗(x). Then, it holds that

e(f) ≥ min
i
|p(xi)− f(xi)|.

Lemma 2 ([16]). If f(x) is an odd function, the minimax approximate polyno-
mial of degree at most n to f(x) is also odd function.
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2.4 Algorithms for Minimax Approximation

Remez algorithm [10] obtains the minimax approximate polynomials of a con-
tinuous function on one interval. It was proved that the Remez can always find
the exact minimax approximate polynomials.

Algorithm 1: Remez algorithm [11]

Input: Polynomial basis {g1, · · · , gn}, a domain [a, b], an approximation
parameter δ, and a continuous function f on [a, b]

Output: The minimax approximate polynomial p for f
1 Choose x1, · · · , xn+1 ∈ [a, b], where x1 < · · · < xn+1;
2 Find the polynomial p(x) in terms of {g1, · · · , gn} such that

p(xi)− f(xi) = (−1)iE, 1 ≤ i ≤ n+ 1 for some E;
3 Divide the domain [a, b] into n+ 1 sections [zi−1, zi], i = 1, · · · , n+ 1.

z1, · · · , zn are zeros of p(x)− f(x), where xi < zi < xi+1, and
z0 = a, zn+1 = b;

4 Find the maximum or minimum point for each section when p(xi)− f(xi) has
positive or negative value, respectively. These points y1, · · · , yn+1 are called
extreme points;

5 εmax ← max
1≤i≤n+1

|p(yi)− f(yi)|;

6 εmin ← min
1≤i≤n+1

|p(yi)− f(yi)|;

7 if (εmax − εmin)/εmin < δ then
8 Return p(x);
9 else

10 Replace xi’s with yi’s. Go to line 2;
11 end

Recently, Lee et al. [11] proposed a modified Remez algorithm which finds
the minimax approximate polynomial on multiple intervals and proved that the
algorithm can always find the minimax approximate polynomial for any piece-
wise continuous function. This modified Remez algorithm is used in this paper
to find the minimax approximate polynomial for the sign function.

Let µ(x) be a function defined as

µ(x) =


1 p(x)− f(x) is a local maximum value at x on D

−1 p(x)− f(x) is a local minimum value at x on D

0 otherwise.

There are three criteria for choosing n+ 1 extreme points in Algorithm 2 as
follows:

(i) Local extreme value condition; min
i
µ(yi)(p(yi)− f(yi)) ≥ E.

(ii) Alternating condition; µ(yi) · µ(yi+1) = −1 for i = 1, · · · , n.
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Algorithm 2: Modified Remez algorithm [11]

Input: A polynomial basis {g1, · · · , gn}, an approximation parameter δ, an
input domain D =

⋃l
i=1[ai, bi] ⊂ R, and a continuous function f on D

Output: The minimax approximate polynomial p for f
1 Choose x1, · · · , xn+1 ∈ D, where x1 < · · · < xn+1;
2 Find the polynomial p(x) in terms of {g1, · · · , gn} such that

p(xi)− f(xi) = (−1)iE, 1 ≤ i ≤ n+ 1 for some E;
3 Collect all the extreme and boundary points such that µ(x)(p(x)− f(x)) ≥ |E|

and put them in a set B;
4 Find n+ 1 extreme points y1 < y2 < · · · < yn+1 in B which satisfy alternating

condition and maximum absolute sum condition;
5 εmax ← max

1≤i≤n+1
|p(yi)− f(yi)|;

6 εmin ← min
1≤i≤n+1

|p(yi)− f(yi)|;

7 if (εmax − εmin)/εmin < δ then
8 Return p(x);
9 else

10 Replace xi’s with yi’s. Go to line 2;
11 end

(iii) Maximum absolute sum condition;
n+1∑
i=1

|p(yi) − f(yi)| is maximum for all

candidate set of extreme points satisfying the local extreme value condition
and the alternating condition.

The modified Remez algorithm operates with n basis functions {g1, g2, · · · , gn}.
Suppose that the minimax approximate polynomial p(x) is represented with the
basis functions as p(x) =

∑n
i=1 cigi(x). The modified Remez algorithm finds

the coefficients ci’s of p(x). The simplest basis functions are a power basis,
{1, x, x2, · · · , xn−1}. However, when approximating the sign function using this
basis, the magnitudes of the coefficients ci’s are unstable such as too small val-
ues or too large values, which makes a lot of numerical errors. Therefore, the
Chebyshev polynomials are usually used as the basis functions. The Chebyshev
polynomials Ti’s on [−1, 1] are defined by the following recursion;

T0(t) = 1

T1(t) = t

Ti(t) = 2tTi−1(t)− Ti−2(t) for i ≥ 2.

If the sign function is approximated on a domain [−b, b] for some b > 1, then
T̃i(t) = Ti(t/b) should be used instead of Ti for all i.
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3 Approximation of Sign Function by Using Optimal
Composition of Minimax Approximate Polynomials

3.1 New Approximation Method for Sine Function Using
Composition of the Minimax Approximate Polynomials

In [8], the error of the approximate comparison polynomial compared to the
comp(a, b) is required to be bounded by 2−α for any a, b ∈ [0, 1] satisfying |a−b| ≥
ε. Note that comp(a, b) = sgn(a−b)+1

2 . If a polynomial p(x) approximating sgn(x)

is (α− 1, ε)-close, then the error of p(a−b)+1
2 compared to comp(a, b) is bounded

by 2−α for any a, b ∈ [0, 1] satisfying |a − b| ≥ ε. Thus, we find composite
polynomials approximating sgn(x) that satisfy (α − 1, ε)-close to compare the
performance of the proposed homomorphic comparison method fairly with that
of the previous method in [8].

In [8], sgn(x) was approximated by using a composite polynomial whose com-
ponent polynomial is fn on [−1, 1], which satisfies the following three properties:

(i) fn(−x) = −fn(x)

(ii) fn(1) = 1, fn(−1) = −1

(iii) f ′n(x) = c(1− x)n(1 + x)n for some constant c > 0.

Then, the only polynomial satisfying the above three properties is given as

fn(x) =

n∑
i=0

1

4i

(
2i

i

)
x(1− x2)i.

If n and the number of compositions sn of fn become larger, the composite

polynomial f
(sn)
n approximates sgn(x) better. In [8], it is stated that they have

the best performance when n = 4. In addition, by defining and using the other
polynomial gn together with fn for composition, the efficiency of the composite
polynomial is further improved with the smaller number of the required com-
positions. However, the polynomial fn that satisfies the above three properties
does not guarantee the optimality for approximation using a composite polyno-
mial. The other polynomial gn defined in [8] has good properties, but it does not
guarantee the optimality, too.

In this paper, we construct composite polynomials using new component
polynomials fi’s, which are different from those used in the previous paper [8]
and the repeated composition of each fi is not used, that is, si = 1 for all i. Let
fk ◦ fk−1 ◦ · · · ◦ f1 be a composite polynomial of component polynomials with
odd degree terms approximating sgn(x) on [−1,−ε] ∪ [ε, 1]. Let [a0, b0] = [ε, 1],
f1([a0, b0]) = [a1, b1], f2([a1, b1]) = [a2, b2], · · · , fk([ak−1, bk−1]) = [ak, bk]. Note
that fk ◦ fk−1 ◦ · · · ◦ f1 is (α− 1, ε)-close if and only if fk ◦ fk−1 ◦ · · · ◦ f1([ε, 1]) =
[ak, bk] ⊆ [1 − 21−α, 1 + 21−α]. Since [ak, bk] should be a very small interval,
it is desirable for each component polynomial fi on the domain [ai−1, bi−1] to
reduce the range as much as possible. Our key observation is that if the minimax
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approximate polynomials are used as component polynomials, the size of the
range [ai, bi] can be reduced quickly as i increases. Thus, we use a composite
polynomial of component minimax approximate polynomials obtained by the
modified Remez algorithm.

In this paper, the Paterson-Stockmeyer algorithm [14] is used for evaluating
the approximate polynomials. Table 1 shows the required depth consumption and
the number of non-scalar multiplications for evaluating the approximate poly-
nomials with odd degree terms using the Paterson-Stockmeyer algorithm. The
exact required number of non-scalar multiplications and the depth consumption
differ slightly depending on how the original Paterson-Stockmeyer algorithm [14]
is modified. We refer to several papers and find the minimum number of required
non-scalar multiplications and the depth consumption among them for each de-
gree. We refer to the values in [8] for polynomials of degree smaller than or equal
to 15 and the values in [11] for polynomials of degree larger than or equal to
17. The required depth consumption and the number of non-scalar multiplica-
tions for evaluating a polynomial of degree d with odd degree terms by using the
Paterson-Stockmeyer algorithm are denoted by dep(d) and mult(d).

Table 1. The required depth consumption and the number of non-scalar multipli-
cations for evaluating polynomials with odd degree terms using Paterson-Stockmeyer
algorithm [8, 11]

polynomial
dep(d) mult(d)

degree d

3 2 2

5 3 3

7 3 4

9 4 4

11 4 5

13 4 6

15 4 7

17 5 7

19 5 8

21 5 8

23 5 8

25 5 10

27 5 10

29 5 10

31 5 10

The following definitions are necessary for description of Lemma 3.

Definition 5 ([8]). For α > 0 and 0 < δ < 1, a polynomial p(x) is said to be
(α, δ)-two-sided-close to sgn(x) if p satisfies the following:

||p(x)− sgn(x)||∞,[−1−δ,−1+δ]∪[1−δ,1+δ] ≤ 2−α,
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where || · ||∞,D denotes the infinity norm over the domain D.

Definition 6. Let {fi}1≤i≤k be a set of polynomials satisfying deg(fi) = di,
1 ≤ i ≤ k. MultNum({fi}1≤i≤k) and DepNum({fi}1≤i≤k) denote the sum of
the numbers of non-scalar multiplications and the sum of depth consumptions
required to evaluate fi for 1 ≤ i ≤ k by using Paterson-Stockmeyer algorithm,
respectively. That is,

MultNum({fi}1≤i≤k) =

k∑
i=1

mult(deg(fi))

DepNum({fi}1≤i≤k) =

k∑
i=1

dep(deg(fi)).

Our goal is to find a (α− 1, ε)-close composite polynomial fk ◦ fk−1 ◦ · · · ◦ f1
while minimizing MultNum({fi}1≤i≤k) and DepNum({fi}1≤i≤k). The following
lemma implies that finding a (α − 1, ε)-close composite polynomial fk ◦ fk−1 ◦
· · · ◦ f1 is equivalent to finding a (α−1, δ)-two-sided-close composite polynomial
f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 when δ = 1−ε

1+ε .

Lemma 3. For a set of polynomials with odd degree terms {fi}1≤i≤k, let {f̃i}1≤i≤k
be a set of polynomials with odd degree terms such that f̃1(x) = f1( 1+ε

2 x) and

f̃i(x) = fi(x), 2 ≤ i ≤ k. Then, fk ◦ fk−1 ◦ · · · ◦ f1 is (α− 1, ε)-close if and only
if f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 is (α− 1, δ)-two-sided-close when δ = 1−ε

1+ε .

Proof. Let fk ◦ fk−1 ◦ · · · ◦ f1 be a (α − 1, ε)-close composite polynomial of
component polynomials with odd degree terms. Since fk ◦ fk−1 ◦ · · · ◦ f1(x)
is a polynomial with odd degree terms, it is sufficient to consider only when
x > 0. Then, fk ◦ fk−1 ◦ · · · ◦ f1(x) ∈ [1 − 2−(α−1), 1 + 2−(α−1)] for ε ≤ x ≤ 1.
Let x′ = 2

1+εx. ε ≤ x ≤ 1 corresponds to 1 − δ ≤ x′ ≤ 1 + δ. Then, f̃k ◦
f̃k−1 ◦ · · · ◦ f̃1(x′) = fk ◦ fk−1 ◦ · · · ◦ f1(x) ∈ [1 − 2−(α−1), 1 + 2−(α−1)] for
1 − δ ≤ x′ ≤ 1 + δ. Thus, f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 is (α − 1, δ)-two-sided-close.
Conversely, let f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1(x′) ∈ [1 − 2−(α−1), 1 + 2−(α−1)] for 1 − δ ≤
x′ ≤ 1 + δ. Let x = 1+ε

2 x′. 1 − δ ≤ x′ ≤ 1 + δ corresponds to ε ≤ x ≤ 1. Then,

fk ◦ fk−1 ◦ · · · ◦ f1(x) = f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1(x′) ∈ [1 − 2−(α−1), 1 + 2−(α−1)] for
ε ≤ x ≤ 1, which means that fk ◦ fk−1 ◦ · · · ◦ f1 is (α − 1, ε)-close. Thus, the
lemma is proved.

Note that since deg(fi) = deg(f̃i), 1 ≤ i ≤ k in Lemma 3, it holds that

MultNum({fi}1≤i≤k) = MultNum({f̃i}1≤i≤k)

DepNum({fi}1≤i≤k) = DepNum({f̃i}1≤i≤k).

Thus, for any m,n ∈ N, a composite polynomial of component polynomi-
als with odd degree terms fk ◦ fk−1 ◦ · · · ◦ f1 is (α − 1, ε)-close and satisfies
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MultNum({fi}1≤i≤k) = m and DepNum({fi}1≤i≤k) = n if and only if the corre-

sponding composite polynomial f̃k◦ f̃k−1◦· · ·◦ f̃1 is (α−1, δ)-two-sided-close and
satisfies MultNum({f̃i}1≤i≤k) = m and DepNum({f̃i}1≤i≤k) = n when δ = 1−ε

1+ε .
Thus, it can be seen that the following two algorithms are equivalent:

(i) An algorithm that finds the (α−1, ε)-close composite polynomial fk ◦ · · ·◦f1
which minimizes the number of non-scalar multiplications and the depth
consumption

(ii) An algorithm that finds the (α− 1, δ)-two-sided-close composite polynomial
f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 which minimizes the number of non-scalar multiplications
and the depth consumption

Thus, from now on, we focus on finding (α − 1, δ)-two-sided-close composite
polynomial f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 which minimizes the number of non-scalar multi-
plications and the depth consumption.

The minimax composite polynomial, which is the core of the proposed ho-
momorphic comparison method, is now defined as follows. The main idea of the
proposed approximation method is to use the minimax composite polynomial to
approximate the sign function. We denote [−1− s,−1 + s]∪ [1− s, 1 + s] by Rs
for s > 0.

Definition 7. Let {fi}1≤i≤k be a set of polynomials. Let D be [−b,−a] ∪ [a, b].
fk ◦ fk−1 ◦ · · · ◦ f1 is called a minimax composite polynomial on D if there exists
{di}1≤i≤k that satisfies the followings:
• f1 is the minimax approximate polynomial of degree at most d1 on D for

sgn(x) and the minimax approximation error is equal to τ1.
• For 2 ≤ i ≤ k, fi is the minimax approximate polynomial of degree at most
di on fi−1 ◦ fi−2 ◦ · · · ◦ f1(D) for sgn(x). The minimax approximation error
is τi.

Note that fi ◦ fi−1 ◦ · · · ◦ f1(D) = Rτi , 1 ≤ i ≤ k from Theorem 1. In fact,
τi becomes smaller as i increases. It can be seen that if fk ◦ fk−1 ◦ · · · ◦ f1 is a
minimax composite polynomial on D = [−b,−a] ∪ [a, b], then {fi}1≤i≤k is a set
of polynomials with odd degree terms from Lemma 2. If τk ≤ 2−(α−1), then the
minimax composite polynomial on Rδ becomes (α − 1, δ)-two-sided-close. Our
key idea is to find the minimax composite polynomial on Rδ that requires the
minimum number of non-scalar multiplications and depth consumption among
all (α − 1, δ)-two-sided-close minimax composite polynomials on Rδ. Note that
there is a tradeoff between the number of non-scalar multiplications and the
depth consumption. We deal with both cases when putting priority on mini-
mizing the number of non-scalar multiplications and on minimizing the depth
consumption.

3.2 Optimality of Approximation of the Sign Function by a
Minimax Composite Polynomial

Since sgn(x) is an odd function, it is natural to approximate sgn(x) by using a
composite polynomial of component polynomials with odd degree terms. Assume
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that we can obtain the minimax composite polynomial on Rδ that requires the
minimum number of non-scalar multiplications and depth consumption among
all minimax composite polynomials on Rδ satisfying (α − 1, δ)-two-sided-close.
In this subsection, it is proved that the obtained minimax composite polynomial
on Rδ requires less number of non-scalar multiplications and depth consumption
than any (α− 1, δ)-two-sided-close composite polynomial of component polyno-
mials with odd degree terms. That is, for any (α− 1, δ)-two-sided-close compos-
ite polynomial of component polynomials with odd degree terms, there exists a
(α − 1, δ)-two-sided-close minimax composite polynomial on Rδ such that the
number of required non-scalar multiplications and the depth consumption for the
minimax composite polynomial are less than or equal to those for the composite
polynomial of component polynomials with odd degree terms, respectively.

The following definition and lemmas are needed for the proof of optimality
of the proposed approximation method of approximating the sign function using
a minimax composite polynomial.

Definition 8. Let {fi}1≤i≤k be a set of polynomials. fk◦fk−1◦· · ·◦f1 is called a
1-centered range composite polynomial on Rδ if {fi}1≤i≤k is a set of polynomials
with odd degree terms and there exists {τi}1≤i≤k such that f1([1 − δ, 1 + δ]) =
[1− τ1, 1 + τ1] and fi([1− τi−1, 1 + τi−1]) = [1− τi, 1 + τi] for 2 ≤ i ≤ k.

Lemma 4. Let f1 be the minimax approximate polynomial of degree at most d
on [−b1,−a1]∪ [a1, b1] for sgn(x). Let f2 be the minimax approximate polynomial
of degree at most d on [−b2,−a2] ∪ [a2, b2] for sgn(x). If [a2, b2] ⊆ [a1, b1], then
the minimax approximation error e2 of f2 is less than or equal to the minimax
approximation error e1 of f1.

Proof. When f1 approximates sgn(x) on [−b1,−a1] ∪ [a1, b1], the maximum
approximation error e1 is larger than or equal to the maximum approxima-
tion error e′1 when f1 approximates sgn(x) on [−b2,−a2] ∪ [a2, b2]. According
to the definition of minimax approximate polynomial, f2 is the polynomial
with the smallest maximum approximation error when approximating sgn(x)
on [−b2,−a2] ∪ [a2, b2] among all polynomials of degree smaller than or equal
to d. Among polynomials of degree smaller than or equal to d, there is also f1.
Thus, it holds that e2 ≤ e′1 ≤ e1, and the lemma is proved.

Lemma 5. Let f̃k◦f̃k−1◦· · ·◦f̃1 be any (α−1, δ)-two-sided-close 1-centered range
composite polynomial on Rδ. Then, there is a (α−1, δ)-two-sided-close minimax

composite polynomial f̂k ◦ f̂k−1 ◦ · · · ◦ f̂1 on Rδ such that deg(f̂i) ≤ deg(f̃i) for
i, 1 ≤ i ≤ k.

Proof. Since f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 is a 1-centered range composite polynomial on
Rδ, there exists {τi}1≤i≤k such that f̃1([1 − δ, 1 + δ]) = [1 − τ1, 1 + τ1] and

f̃i([1− τi−1, 1 + τi−1) = [1− τi, 1 + τi] for all i, 2 ≤ i ≤ k. Then, f̃k ◦ f̃k−1 ◦ · · · ◦
f̃1([1 − δ, 1 + δ]) = [1 − τk, 1 + τk]. Since f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 is (α − 1, δ)-two-

sided-close, τk ≤ 2−(α−1) should hold. Let deg(f̃i) = di, 1 ≤ i ≤ k. Let f̂1 be the
minimax approximate polynomial of degree at most d1 on Rδ and let τ ′1 be the
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approximation error of f̂1. Then τ ′1 ≤ τ1. Let τ ′i be the approximation error of f̂i,
which is the minimax approximate polynomial of degree at most di on Rτ ′i−1

for

sgn(x) for i, 2 ≤ i ≤ k. Then, f̂k◦f̂k−1◦· · ·◦f̂1 is a minimax composite polynomial
on Rδ. We want to show that τ ′i ≤ τi, 2 ≤ i ≤ k by inductive method. Assume
that τ ′i−1 ≤ τi−1. Let τ ′′i be the approximation error of the minimax approximate
polynomial of degree at most di on Rτi−1 for sgn(x). From Lemma 4, it holds

that τ ′i ≤ τ ′′i . Since f̃i([1− τi−1, 1 + τi−1]) = [1− τi, 1 + τi], τ
′′
i ≤ τi holds. Thus,

τ ′i ≤ τ ′′i ≤ τi. It holds that τ ′i ≤ τi for all i, 2 ≤ i ≤ k by inductive method. Since

τ ′k ≤ τk ≤ 2−(α−1), f̂k ◦ f̂k−1 ◦ · · · ◦ f̂1 is a (α − 1, δ)-two-sided-close minimax

composite polynomial on Rδ such that deg(f̂i) ≤ deg(f̃i) for all i, 1 ≤ i ≤ k.

Lemma 6. Let fk ◦ fk−1 ◦ · · · ◦ f1 be any (α − 1, δ)-two-sided-close composite
polynomial of component polynomials with odd degree terms. Then, there is a
(α−1, δ)-two-sided-close 1-centered range composite polynomial f̃k◦f̃k−1◦· · ·◦f̃1
on Rδ such that deg(f̃i) = deg(fi) for all i, 1 ≤ i ≤ k.

Proof. Let f1([1−δ, 1+δ]) = [a1, b1], f2([a1, b1]) = [a2, b2], · · · , fk([ak−1, bk−1]) =
[ak, bk]. Since {fi}1≤i≤k is a set of polynomials with odd degree terms,
it holds that f1([−1 − δ,−1 + δ]) = [−b1,−a1], f2([−b1,−a1]) =
[−b2,−a2], · · · , fk([−bk−1,−ak−1]) = [−bk,−ak]. Satisfying (α−1, δ)-two-sided-
close means that [ak, bk] ⊆ [1 − 2−(α−1), 1 + 2−(α−1)]. Also, it is easy to see
that 0 < ai < bi for i, 1 ≤ i ≤ k from the fact that fk ◦ fk−1 ◦ · · · ◦ f1 is
a (α − 1, δ)-two-sided-close composite polynomial. Let f̃1(x) = 2

a1+b1
f1(x) and

f̃i(x) = 2
ai+bi

fi(
ai+bi

2 x), 2 ≤ i ≤ k. Then, f̃1([1−δ, 1+δ]) = [1− b1−a1
a1+b1

, 1+ b1−a1
a1+b1

]

and f̃i([1 − bi−1−ai−1

ai−1+bi−1
, 1 + bi−1−ai−1

ai−1+bi−1
]) = [1 − bi−ai

ai+bi
, 1 + bi−ai

ai+bi
], 2 ≤ i ≤ k. Then,

f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 is a 1-centered range composite polynomial on Rδ. We want
to show that [1− bk−ak

ak+bk
, 1 + bk−ak

ak+bk
] = [ 2ak

ak+bk
, 2bk
ak+bk

] ⊆ [1−2−(α−1), 1 + 2−(α−1)],

which means that f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 is (α− 1, δ)-two-sided-close. If ak + bk ≤ 2,
then 1− 2−(α−1) ≤ ak ≤ 2ak

ak+bk
and 2bk

ak+bk
= 2− 2ak

ak+bk
≤ 2− ak ≤ 1 + 2−(α−1)

hold. On the other hand, if ak + bk > 2, then 2bk
ak+bk

< bk ≤ 1 + 2−(α−1) and
2ak
ak+bk

= 2 − 2bk
ak+bk

> 2 − bk ≥ 1 − 2−(α−1) hold. Thus f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 is a

(α−1, δ)-two-sided-close 1-centered range composite polynomial on Rδ satisfying
deg(f̃i) = deg(fi) for all i, 1 ≤ i ≤ k.

The following procedure for proof of Theorem 2 is used:

(i) It is proved that for any (α−1, δ)-two-sided-close 1-centered range composite

polynomial f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 on Rδ, it holds that deg(f̂i) = deg(f̃i) for all i,
1 ≤ i ≤ k for some (α− 1, δ)-two-sided-close minimax composite polynomial

f̂k ◦ f̂k−1 ◦ · · · ◦ f̂1 on Rδ from Lemma 5.
(ii) It is proved that for any (α − 1, δ)-two-sided-close composite polynomial

of component polynomials with odd degree terms {fi}1≤i≤k, it holds that

deg(f̃i) ≤ deg(fi) for all i, 1 ≤ i ≤ k for some (α − 1, δ)-two-sided-close 1-
centered range composite polynomial f̃k ◦ f̃k−1 ◦ · · · ◦ f̃1 on Rδ from Lemma
6.
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(iii) Finally, with above lemmas, it is proved in Theorem 2 that for any (α−1, δ)-
two-sided-close composite polynomial of component polynomials with odd
degree terms {fi}1≤i≤k, it holds that deg(f̂i) ≤ deg(fi) for all i, 1 ≤ i ≤ k

for some (α−1, δ)-two-sided-close minimax composite polynomial f̂k ◦ f̂k−1 ◦
· · · ◦ f̂1 on Rδ.

Theorem 2. Let fk ◦ fk−1 ◦ · · · ◦ f1 be any (α− 1, δ)-two-sided-close composite
polynomial of component polynomials with odd degree terms. Then, there is a
(α − 1, δ)-two-sided-close minimax composite polynomial f̂k ◦ f̂k−1 ◦ · · · ◦ f̂1 on

Rδ such that deg(f̂i) ≤ deg(fi) for all i, 1 ≤ i ≤ k.

Proof. Let fk ◦fk−1 ◦ · · · ◦f1 be any (α−1, δ)-two-sided-close composite polyno-
mial of component polynomials with odd degree terms. From Lemma 6, there is a
(α−1, δ)-two-sided-close 1-centered range composite polynomial f̃k◦f̃k−1◦· · ·◦f̃1
on Rδ such that deg(f̃i) = deg(fi), 1 ≤ i ≤ k. In addition, from Lemma 5, there

is a (α− 1, δ)-two-sided-close minimax composite polynomial f̂k ◦ f̂k−1 ◦ · · · ◦ f̂1
on Rδ such that deg(f̂i) ≤ deg(f̃i), 1 ≤ i ≤ k. Thus, there is a (α − 1, δ)-two-

sided-close minimax composite polynomial f̂k ◦ f̂k−1 ◦ · · · ◦ f̂1 on Rδ such that
deg(f̂i) ≤ deg(fi) for all i, 1 ≤ i ≤ k.

Remark 2. In Theorem 2, since deg(f̂i) ≤ deg(fi) for 1 ≤ i ≤ k, it holds

that MultNum({f̂i}1≤i≤k) ≤ MultNum({fi}1≤i≤k) and DepNum({f̂i}1≤i≤k) ≤
DepNum({fi}1≤i≤k). It means that if we find the minimax composite polyno-
mial on Rδ that requires the minimum number of non-scalar multiplications
and depth consumption among all (α− 1, δ)-two-sided-close minimax composite
polynomials on Rδ, the number of required non-scalar multiplications and depth
consumption for the obtained minimax composite polynomial on Rδ are less
than or equal to those for any (α − 1, δ)-two-sided-close composite polynomial
of component polynomials with odd degree terms, respectively.

3.3 Achieving Polynomial-Time Algorithm for New Approximation
Method by Using Dynamic Programming

We can find the (α − 1, δ)-two-sided-close minimax composite polynomial on
Rδ that requires the minimum number of non-scalar multiplications and depth
consumption among all (α−1, δ)-two-sided-close minimax composite polynomials
by brute-force search. However, the brute-force search requires considerable time.
Thus, dynamic programming is used to find the minimax composite polynomial
on Rδ with the computational complexity in polynomial time. Thus, we propose
an algorithm to find the minimax composite polynomial on Rδ that requires
the minimum number of non-scalar multiplications and depth consumption in
polynomial time by using dynamic programming.

MinErr(d, t), InvMinErr(d, t), f(m,n, t), and G(m,n, t) are defined before the
description of the proposed algorithms as follows.
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Definition 9. For d ∈ N and t ∈ (0, 1), MinErr(d, t) is the minimax approxima-
tion error of the minimax approximate polynomial of degree at most d on Rt for
sgn(x).

Lemma 7. For a fixed odd d ∈ N, MinErr(d, t) is a strictly increasing continuous
function of t on (0, 1).

Proof. Let d be 2i + 1. Consider the minimax approximate polynomial p(x) of
degree at most 2i + 1 on Rt for sgn(x). Let τ0 be the minimax approximaton
error of p(x) on Rt. Since sgn(x) is an odd function, it can be seen from Lemma
2 that the minimax approximate polynomial of degree at most 2i+ 1 to sgn(x)
is equal to the minimax approximate polynomial of degree at most 2i + 2 to
sgn(x). Also, p(x) is a polynomial with odd degree terms from Lemma 2. We
want to show that there exist i+ 2 distinct points x0, x1, · · · , xi+1 ∈ [1− t, 1 + t]
that satisfy the following three properties:

Prop 1. 1− t = x0 < x1 < · · · < xi+1 = 1 + t.
Prop 2. p(xj) = 1 + (−1)j+1τ0, 0 ≤ j ≤ i+ 1.
Prop 3. p(x) is strictly increasing on (0, x1). For j, 1 ≤ j ≤ i, p(x) is strictly

increasing on (xj , xj+1) when j is even, and strictly decreasing on (xj , xj+1)
when j is odd. Also, p(x) is strictly increasing on (xi,∞) if i is even and strictly
decreasing on (xi,∞) if i is odd.

|p(x)−sgn(x)| should have maximum values at 2i+4 distinct points inRt from
Theorem 1. However, there are at most 2i distinct points x such that p′(x) = 0.
If we consider when x > 0, |p(x)− sgn(x)| should have maximum values at i+ 2
distinct points on [1 − t, 1 + t] and there are at most i distinct points x such
that p′(x) = 0. If |p(x) − sgn(x)| has maximum value at x = x0, then it holds
that p′(x0) = 0 or x = x0 is a boundary point, that is, x0 ∈ {1− t, 1 + t}. Thus,
|p(x)− sgn(x)| should have maximum values at two boundary points x = 1− t
and x = 1 + t. Let x0, · · · , xi+1 be the i + 2 distinct points on (0,∞) such
that |p(x) − sgn(x)| has maximum values at those points. Then, it holds that
x0 = 1− t, xi+1 = 1 + t and p′(x1) = p′(x2) = · · · , p′(xi) = 0. Also, considering
p(0) = 0 and p(x1) > 0, p(x) is strictly increasing on (0, x1). Since p(x0) < p(x1),
it holds that p(x0) = 1− τ0, p(x1) = 1 + τ0, p(x2) = 1− τ0, · · · from Theorem 1.
Also, it can be seen that the Prop 3 is satisfied from Theorem 1. Thus, there exist
i+2 points x0, x1, · · · , xi+1 ∈ (0,∞) that satisfy the above three properties. Now
we want to show that MinErr(d, t) is a strictly increasing continuous function of
t with domain (0, 1) as follows:

(i) Strictly increasing:
Let 0 < t1 < t2 < 1. Let p1(x) and p2(x) be the minimax approximate poly-
nomials of degree at most 2i+1 on Rt1 and Rt2 , respectively. It is trivial that
MinErr(d, t1) ≤ MinErr(d, t2). Assume that MinErr(d, t1) = MinErr(d, t2) =
τ0. Then, by the uniqueness property of the minimax approximate polyno-
mial, it should be hold that p1(x) = p2(x). Note that p1(x) is the minimax
approximate polynomial of degree at most 2i + 1 on Rt1 . Then, it can be
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seen that 0 < p1(1 − t2) < p1(1 − t1) = 1 − τ0 from Prop 3. Considering
p1(x) = p2(x), the minimax approximation error of p2(x) on Rt2 is larger
than τ0. That is, MinErr(d, t1) < MinErr(d, t2), which is a contradiction.
Thus, MinErr(d, t) is a strictly increasing function of t.

(ii) Continuous:
We want to show that MinErr(d, t) is continuous at t = t0, that is, for any
δ′ > 0, there exists ε′ > 0 such that |t − t0| ≤ ε′ implies |MinErr(d, t) −
MinErr(d, t0)| ≤ δ′. Let p(x) be the minimax approximate polynomial of
degree at most 2i+1 on Rt0 , and let τ0 be the minimax approximation error
of p(x). It is enough to consider only the case when δ′ < τ0. There exist
i + 2 distinct points x0, x1, · · · , xi+1 ∈ (0,∞) that satisfy the above three
properties. There exists a unique x ∈ (0, x0) such that p(x) = 1 − τ0 − δ′.
Let ε′1 be 1− t0−x for the unique x. Also, there exists unique x ∈ (xi+1,∞)
such that p(x) = 1 + τ0 + δ′ when i is even and unique x ∈ (xi+1,∞) such
that p(x) = 1 − τ0 − δ′ when i is odd. Let ε′2 be x − 1 − t0 for the unique
x. There exists unique x ∈ (x0, x1) such that p(x) = 1 − τ0 + δ′. Let ε′3 be
x − 1 + t0 for the unique x. Also, there exists unique x ∈ (xi, xi+1) such
that p(x) = 1 + τ0 − δ′ when i is even and unique x ∈ (xi, xi+1) such that
p(x) = 1 − τ0 + δ′. Let ε′4 be −x + 1 + t0 for the unique x. Now, let ε′ be
min(ε′1, ε

′
2, ε
′
3, ε
′
4). Then, p([1−t0−ε′, 1+t0+ε′]) ⊆ [1−τ0−δ′, 1+τ0+δ′]. Thus,

the minimax approximation error of the minimax approximate polynomial
on Rt0+ε′ is smaller than or equal to τ0+δ′. That is, MinErr(d, t0+ε′) ≤ τ0+δ′.
On the other hand, let x′0 = x0 + ε′, x′1 = x1, · · · , x′i = xi, x

′
i+1 = xi+1 − ε′.

Consider 2i+4 points −x′i+1,−x′i, · · · ,−x′0, x′0, · · · , x′i, x′i+1. From Lemma 1,
the minimax approximation error of the minimax approximate polynomial
on Rt0−ε′ is larger than or equal to τ0 − δ′. That is, MinErr(d, t0 − ε′) ≥
τ0 − δ′. Since MinErr(d, t) is an increasing function, if |t − t0| ≤ ε′, then
|MinErr(d, t)−MinErr(d, t0)| ≤ δ′. Thus, MinErr(d, t) is continuous at t = t0.

If the minimax approximate polynomial of degree at most d on Rt narrows the
domain Rt to a range Rτ , MinErr(d, t) outputs τ . Since MinErr(d, t) is strictly
increasing function of t on (0,∞), the inverse function of MinErr(d, t) exists,
which is defined as follows.

Definition 10. For d ∈ N, InvMinErr(d, t) is τ > 0 such that MinErr(d, τ) = t.

The approximate value of InvMinErr(d, t) can be obtained by binary search
using modified Remez algorithm.

Definition 11. f(m,n, t) is the maximum τ ∈ (0, 1) such that there ex-
ists a minimax composite polynomial fk ◦ fk−1 ◦ · · · ◦ f1 on Rτ satisfying
fk ◦ fk−1 ◦ · · · ◦ f1([1 − τ, 1 + τ ]) ⊆ [1 − t, 1 + t],MultNum({fi}1≤i≤k) ≤ m,
and DepNum({fi}1≤i≤k) ≤ n.

f(m,n, t) outputs the maximum τ > 0 when the range of a minimax com-
posite polynomial on Rτ becomes smaller than Rt with m or less number of
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non-scalar multiplications and with n or less depth consumption. The degrees of
k component polynomials for the corresponding minimax composite polynomial
fk ◦ fk−1 ◦ · · · ◦ f1 on Rτ in Definition 11 are stored in G(m,n, t) as an ordered
set. It is trivial that if 0 ≤ m ≤ 1 or 0 ≤ n ≤ 1, then f(m,n, t) = t. For m ≥ 2
and n ≥ 2, the following theorem for f(m,n, t) holds:

Theorem 3. For m ≥ 2 and n ≥ 2, the following recursion for f(m,n, t) holds:

f(m,n, t) =

max
1≤k

mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k + 1, f(m−mult(2k + 1), n− dep(2k + 1), t)).

Proof. Let τ = f(m,n, t). Assume that

τ > max
1≤k

mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k + 1, f(m−mult(2k + 1), n− dep(2k + 1), t)).

Then there exists a minimax composite polynomial fk ◦ fk−1 ◦ · · · ◦ f1 satisfying
fk ◦ fk−1 ◦ · · · ◦ f1([1− τ, 1 + τ ]) ⊆ [1− t, 1 + t],MultNum({fi}1≤i≤k) ≤ m, and
DepNum({fi}1≤i≤k) ≤ n. Let d1 be the degree of f1 and let f1([1− τ, 1 + τ ]) =
[1 − τ ′, 1 + τ ′]. Since the minimax composite polynomial fk ◦ fk−1 ◦ · · · ◦ f2
on [1 − τ ′, 1 + τ ′] satisfies fk ◦ fk−1 ◦ · · · ◦ f2([1 − τ ′, 1 + τ ′]) ⊆ [1 − t, 1 + t],
MultNum({fi}2≤i≤k) ≤ m−mult(d1), and DepNum({fi}2≤i≤k) ≤ n− dep(d1), it
holds that τ ′ ≤ f(m−mult(d1), n− dep(d1), t). Then,

τ = InvMinErr(d1, τ
′) ≤ InvMinErr(d1, f(m−mult(d1), n− dep(d1), t))

≤ max
1≤k

mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k + 1, f(m−mult(2k + 1), n− dep(2k + 1), t))

This leads to a contradiction because

τ > max
1≤k

mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k + 1, f(m−mult(2k + 1), n− dep(2k + 1), t)).

Assume that

τ < max
1≤k

mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k + 1, f(m−mult(2k + 1), n− dep(2k + 1), t)).

max
1≤k

mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k + 1, f(m − mult(2k + 1), n − dep(2k + 1), t)) =

InvMinErr(2i + 1, f(m − mult(2i + 1), n − dep(2i + 1), t)) for some i. Let τ ′ be



20 E. Lee et al.

InvMinErr(2i+1, f(m−mult(2i+1), n−dep(2i+1), t)). Let τ ′′ be f(m−mult(2i+
1), n−dep(2i+1), t) = MinErr(2i+1, τ ′). Then, there exists a minimax composite
polynomial fk ◦ fk−1 ◦ · · · ◦ f2 satisfying

fk ◦ fk−1 ◦ · · · ◦ f2([1− τ ′′, 1 + τ ′′]) ⊆ [1− t, 1 + t]

MultNum({fi}2≤i≤k) ≤ m−mult(2i+ 1)

DepNum({fi}2≤i≤k) ≤ n− dep(2i+ 1).

Let f1 be the minimax approximate polynomial of degree at most 2i+ 1 on
[1− InvMinErr(2i+ 1, τ ′′), 1 + InvMinErr(2i+ 1, τ ′′)]. Since f1([1− InvMinErr(2i+
1, τ ′′), 1 + InvMinErr(2i+ 1, τ ′′)]) = [1− τ ′′, 1 + τ ′′], it holds that fk ◦ fk−1 ◦ · · · ◦
f1([1− InvMinErr(2i + 1, τ ′′), 1 + InvMinErr(2i + 1, τ ′′)]) ⊆ [1− t, 1 + t]. Also, it
holds that MultNum(fk ◦fk−1◦· · ·◦f1) ≤ m and DepNum(fk ◦fk−1◦· · ·◦f1) ≤ n.
Thus, τ = f(m,n, t) < InvMinErr(2i + 1, τ ′′), which is a contradiction. Thus, it
holds that

τ = max
1≤k

mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k + 1, f(m−mult(2k + 1), n− dep(2k + 1), t)) (1)

and the theorem is proved.

f(m,n, t) and G(m,n, t) are recursively computed by the following Algorithm
3. In the 9th line of Algorithm 3, {2j+1}∪G(m−mult(2j+1), n−dep(2j+1), t)
means inserting 2j+ 1 to the ordered set G(m−mult(2j+ 1), n− dep(2j+ 1), t)
as the first component. In this paper, only minimax approximate polynomials
of degree at most 31 are used to reduce the time complexity of the proposed
algorithms. Since numerical results show that only minimax approximate poly-
nomials of degree at most 11 are used to minimize the number of non-scalar
multiplications, it seems that the minimax approximate polynomials of degree
at most 31 are sufficient when minimizing the number of non-scalar multipli-
cations. On the other hand, minimax approximate polynomials of large degree
are sometimes used when minimizing the depth consumption. Thus, if minimax
approximate polynomials of degree larger than 31 are also used, the required
depth consumption may be further reduced.

Now, DynMinMult and DynMinDep algorithms are introduced, which use the
values of f(m,n, t) and G(m,n, t) obtained from Algorithm 3. The following two
cases are considered, which correspond to DynMinMult and DynMinDep, respec-
tively.

First, DynMinMult puts more priority on minimizing the number of non-scalar
multiplications rather than minimizing the depth consumption. The minimum
number of non-scalar multiplications, Mmult is obtained. Mdep is the minimum
required depth consumption among minimax composite polynomials that have
the minimum number of non-scalar multiplications.
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Algorithm 3: Computation of f(m,n, t) and G(m,n, t) using dynamic
programming

Input: t,mmax, nmax

Output: f(m,n, t), G(m,n, t) for 0 ≤ m ≤ mmax and 0 ≤ n ≤ nmax

1 Generate 2-dimensional table G(m,n, t) for 0 ≤ m ≤ mmax and 0 ≤ n ≤ nmax,
where the components are all empty sets.

2 for m← 0 to mmax do
3 for n← 0 to nmax do
4 if m ≤ 1 or n ≤ 1 then
5 f(m,n, t)← t
6 else
7 j ←

argmax
1≤k

mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k+1, f(m−mult(2k+1), n−dep(2k+1), t))

8 f(m,n, t)← InvMinErr(2j+1, f(m−mult(2j+1), n−dep(2j+1), t))
9 G(m,n, t)← {2j + 1} ∪G(m−mult(2j + 1), n− dep(2j + 1), t)

10 end

11 end

12 end

Second, DynMinDep puts more priority on minimizing the depth consumption
rather than minimizing the number of non-scalar multiplications. The minimum
depth consumption Ddep is obtained. Dmult is the minimum number of required
non-scalar multiplications among minimax composite polynomials that have the
minimum depth consumption.

mmax and nmax should be large enough to guarantee that the proposed al-
gorithms find the minimax composite polynomial on Rδ that requires the mini-
mum number of non-scalar multiplications and depth consumption among all
(α − 1, δ)-two-sided-close minimax composite polynomials on Rδ. mmax and
nmax should satisfy f(mmax, nmax, 2

1−α) ≥ δ and we set mmax and nmax

heuristically. Note that dep(d) ≤ mult(d) ≤ 2dep(d) for odd d less than or
equal to 31. In [8], homomorphic comparison operations were proposed for
cases when ε = 2−α and δ = 1−ε

1+ε and we can use the minimum number of
non-scalar multiplications (or depth consumption) values as in Table 2 to set
mmax and nmax since we also propose homomorphic comparison operations for
the same case in this paper. Let q(α) be the minimum number of non-scalar
multiplications (or depth consumption) for the previous algorithms. We set
mmax = nmax = q(α) when minimizing the number of non-scalar multiplications
and set mmax = 2q(α), nmax = q(α) when minimizing the depth consumption.
Then, it holds that f(mmax, nmax, 2

1−α) ≥ δ.
Mdegs and Ddegs are ordered sets that store the degrees of the component

minimax approximate polynomials of corresponding optimal composite polyno-
mial when minimizing the number of non-scalar multiplications and the depth
consumption, respectively. Values of Mmult,Mdep, and Mdegs can be obtained by
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using Algorithm 4. Values of Dmult, Ddep, and Ddegs can be obtained by using
Algorithm 5. The procedure to find the optimal minimax composite polynomial
using dynamic programming is summarized as follows:

(i) f(m,n, t) and G(m,n, t) are computed recursively using dynamic program-
ming in Algorithm 3.

(ii) From the values of f(m,n, t) and G(m,n, t), find Mmult,Mdep, and Mdegs,
or Dmult, Ddep, and Ddegs in Algorithms 4 and 5, respectively.

(iii) Find the component minimax approximate polynomials fi’s using modified
Remez algorithm with Mdegs or Ddegs.

Algorithm 4: DynMinMult

Input: α, δ,mmax, nmax, f(m,n, 21−α), G(m,n, 21−α) for
0 ≤ m ≤ mmax, 0 ≤ n ≤ nmax

Output: Mmult, Mdep, Mdegs

1 for i← 0 to mmax do
2 if f(i, nmax, 2

1−α) ≥ δ then
3 Mmult ← i
4 Go to line 7

5 end

6 end
7 for j ← 0 to nmax do
8 if f(Mmult, j, 2

1−α) ≥ δ then
9 Mdep ← j

10 Go to line 13

11 end

12 end
13 Mdegs ← G(Mmult,Mdep, 2

1−α) // Mdegs: ordered set

Theorem 4. Let Mmult, Mdep, and Mdegs be the output values of the
DynMinMult algorithm in Algorithm 4 for inputs α and δ. Then, Mmult ≤
MultNum({fi}1≤i≤k) for any (α − 1, δ)-two-sided-close composite polynomial of
component polynomials with odd degree terms fk ◦ fk−1 ◦ · · · ◦ f1. In addition, if
Mmult = MultNum({fi}1≤i≤k), then it holds that Mdep ≤ DepNum({fi}1≤i≤k).

Proof. Let fk ◦ fk−1 ◦ · · · ◦ f1 be any (α − 1, δ)-two-sided-close com-
posite polynomial of component polynomials with odd degree terms. Let
MultNum({fi}1≤i≤k) = m and DepNum({fi}1≤i≤k) = n. From Theorem 2,

there is a (α − 1, δ)-two-sided-close minimax composite polynomial f̂k ◦ f̂k−1 ◦
· · · ◦ f̂1 on Rδ such that MultNum({f̂i}1≤i≤k) ≤ MultNum({fi}1≤i≤k) and

DepNum({f̂i}1≤i≤k) ≤ DepNum({fi}1≤i≤k). Assume that m < Mmult. Then,

MultNum({f̂i}) ≤ MultNum({fi}) = m < Mmult. Since m < Mmult holds
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Algorithm 5: DynMinDep

Input: α, δ,mmax, nmax, f(m,n, 21−α), G(m,n, 21−α) for
0 ≤ m ≤ mmax, 0 ≤ n ≤ nmax

Output: Dmult, Ddep, Ddegs

1 for i← 0 to nmax do
2 if f(mmax, i, 2

1−α) ≥ δ then
3 Ddep ← i
4 Go to line 7

5 end

6 end
7 for j ← 0 to mmax do
8 if f(j,Ddep, 2

1−α) ≥ δ then
9 Dmult ← j

10 Go to line 13

11 end

12 end
13 Ddegs ← G(Dmult, Ddep, 2

1−α) // Ddegs: ordered set

and Mmult is the minimum i which satisfies f(i, nmax, 2
1−α) ≥ δ, it holds

that f(m,nmax, 2
1−α) < δ. Thus, there is no minimax composite polynomial

f̄k ◦ f̄k−1 ◦ · · · ◦ f̄1 on Rδ such that f̄k ◦ f̄k−1 ◦ · · · ◦ f̄1([1 − δ, 1 + δ]) ⊆
[1−21−α, 1+21−α], MultNum({f̄i}1≤i≤k) ≤ m, and DepNum({f̄i}1≤i≤k) ≤ nmax.

This leads to a contradiction since f̂k ◦ f̂k−1◦· · ·◦ f̂1 is a (α−1, δ)-two-sided-close

minimax composite polynomial on Rδ such that MultNum({f̂i}1≤i≤k) ≤ m and

DepNum({f̂i}1≤i≤k) ≤ nmax.
In addition, assume that Mmult = m and n < Mdep. Then, f(m,n, 21−α) < δ.

Thus, there is no minimax composite polynomial f̄k◦f̄k−1◦· · ·◦f̄1 on Rδ such that
f̄k ◦ f̄k−1 ◦ · · · ◦ f̄1([1−δ, 1+δ]) ⊆ [1−21−α, 1+21−α], MultNum({f̄i}1≤i≤k) ≤ m,

and DepNum({f̄i}1≤i≤k) ≤ n. This leads to a contradiction since f̂k◦f̂k−1◦· · ·◦f̂1
is a (α − 1, δ)-two-sided-close minimax composite polynomial on Rδ such that

MultNum({f̂i}1≤i≤k) ≤ m and DepNum({f̂i}1≤i≤k) ≤ n.

Theorem 5. Let Dmult, Ddep, and Ddegs be the output values of the DynMinDep

algorithm in Algorithm 5 for inputs α and δ. Then, Ddep ≤ DepNum({fi}1≤i≤k)
any (α − 1, δ)-two-sided-close composite polynomial of component polynomi-
als with odd degree terms fk ◦ fk−1 ◦ · · · ◦ f1. In addition, if Ddep =
DepNum({fi}1≤i≤k), then it holds that Dmult ≤ MultNum({fi}1≤i≤k).

Proof. The proof is omitted because the proof of Theorem 5 is almost the same
as that of Theroem 4.

The MinimaxComp algorithm that outputs an approximate value of comp(a, b)
is now proposed as in Algorithm 6, which uses the output Mdegs of DynMinMult
or the output Ddegs of DynMinDep algorithm. E(a, b; d) and F (a, b; d) are defined
for the description of the MinimaxComp algorithm as follows.
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Definition 12. For a, b ∈ R and d ∈ N, let F (a, b; d) be the minimax approxi-
mate polynomial of degree at most d on [−b,−a]∪ [a, b] for sgn(x) and E(a, b; d)
be the minimax approximation error of the minimax approximate polynomial
F (a, b; d).

Algorithm 6: MinimaxComp

Input: a, b ∈ (0, 1), α, ε
Output: An approximate value of comp(a, b)

1 {d1, d2, · · · , dk} ←Mdegs from DynMinMult or Ddegs from DynMinDep for

α and δ = 1−ε
1+ε

2 f1 ← F (1− ε, 1; d1)
3 τ1 ← E(1− ε, 1; d1)
4 for i← 2 to k do
5 fi ← F (1− τi−1, 1 + τi−1; di)
6 τi ← E(1− τi−1, 1 + τi−1; di)

7 end

8 return fk◦fk−1◦···◦f1(a−b)+1
2

4 Numerical Results

In this section, the number of non-scalar multiplications and the depth con-
sumption of the proposed algorithms for the approximate polynomial for the
sign function are compared to those of the previous algorithm [8].

4.1 Computation of the Required Non-Scalar Multiplications and
Depth Consumption

Let sf and sg be the numbers of compositions of fn and gn, respectively.
NewCompG algorithm in [8] approximates comp(a, b) using the composite poly-

nomial f
(sf )
n ◦ g(sg)n with n = 4. According to Lemmas 1 and 3 in [8], if

sg ≥ d 1
log 0.98c2n

· log(2/ε)e and sf ≥ d 1
log(n+1) · log(α − 2)e, then the approxi-

mation error of the output of NewCompG(a, b;n, sf , sg) compared to the value of
comp(a, b) is upper bounded by 2−α, where cn = 2n+1

4n

(
2n
n

)
.

The previous approximation method for the sign function in [8] has the best
performance for n = 4, where the degrees of the component approximate poly-
nomials fn and gn are 9, and both the required numbers of non-scalar multipli-
cations and the depth consumption for each component polynomial are 4. Then,
it should hold that sg ≥ d0.3894 log(2/ε)e and sf ≥ d0.4307 log(α− 2)e.

In this paper, the performances of the previous and proposed algorithms
are analyzed when ε = 2−α, which means that the input and output of the
comparison operation are required to have the same precision bits. Then both the
total required numbers of non-scalar multiplications and the depth consumption
are at least 4(d0.3894(α+ 1)e+ d0.4307 log(α− 2)e).
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In the proposed method, the minimum number of required non-scalar multi-
plications and depth consumption are computed by using the DynMinMult and
DynMinDep algorithms.

4.2 Comparisons

Table 2. Comparison of the minimum number of non-scalar multiplications and the
corresponding depth consumption between the previous and the proposed algorithms
while minimizing the number of non-scalar multiplications.

number of non-scalar multiplications depth consumption
α the previous the proposed the previous the proposed

algorithm algorithm algorithm algorithm

5 16 8 16 8
6 16 11 16 10
7 24 12 24 12
8 24 14 24 14
9 24 16 24 15
10 28 18 28 16
11 28 19 28 19
12 32 20 32 20
13 32 22 32 22
14 32 24 32 23
15 36 25 36 25
16 36 27 36 26
17 40 28 40 28
18 40 30 40 29
19 40 31 40 31
20 44 33 44 32
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Table 3. Comparison of the minimum depth consumption and the corresponding num-
ber of non-scalar multiplications between the previous and the proposed algorithms
while minimizing the depth consumption.

number of non-scalar multiplications depth consumption
α the previous the proposed the previous the proposed

algorithm algorithm algorithm algorithm

5 16 10 16 7
6 16 14 16 8
7 24 14 24 10
8 24 18 24 11
9 24 18 24 13
10 28 21 28 14
11 28 25 28 15
12 32 28 32 16
13 32 31 32 17
14 32 31 32 19
15 36 34 36 20
16 36 37 36 21
17 40 40 40 22
18 40 43 40 23
19 40 47 40 24
20 44 50 44 25

Table 4. The ordered sets Mdegs and Ddegs that store the degrees of the optimal com-
ponent minimax approximate polynomials in DynMinMult and DynMinDep algorithms,
respectively.

α Mdegs Ddegs

5 {9, 9} {7, 13}
6 {5, 7, 9} {15, 15}
7 {9, 9, 9} {7, 7, 13}
8 {3, 9, 9, 9} {7, 15, 15}
9 {7, 9, 9, 9} {7, 7, 7, 13}
10 {3, 7, 7, 9, 9} {7, 7, 13, 15}
11 {5, 9, 9, 9, 9} {7, 7, 15, 31}
12 {9, 9, 9, 9, 9} {7, 15, 15, 31}
13 {3, 9, 9, 9, 9, 9} {15, 15, 15, 31}
14 {7, 9, 9, 9, 9, 9} {7, 7, 13, 15, 31}
15 {3, 5, 9, 9, 9, 9, 9} {13, 7, 15, 15, 31}
16 {5, 7, 9, 9, 9, 9, 9} {13, 15, 15, 15, 31}
17 {9, 9, 9, 9, 9, 9, 9} {13, 15, 15, 31, 31}
18 {7, 3, 9, 9, 9, 9, 9, 9} {13, 15, 31, 31, 31}
19 {5, 9, 9, 9, 9, 9, 9, 9} {15, 31, 31, 31, 31}
20 {9, 9, 9, 9, 9, 9, 9, 11} {31, 31, 31, 31, 31}
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Fig. 2. Comparison of the minimum number of non-scalar multiplications and the
corresponding depth consumption between the previous and the proposed algorithms
while minimizing the number of non-scalar multiplications.
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Fig. 3. Comparison of the minimum depth consumption and the corresponding number
of non-scalar multiplications between the previous and the proposed algorithms while
minimizing the depth consumption.
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Table 2 shows the comparison of the minimum number of non-scalar multi-
plications and the corresponding depth consumption between the previous al-
gorithm and the proposed algorithm DynMinMult while minimizing the number
of non-scalar multiplications. It can be seen from Table 2 that the minimum
number of the required non-scalar multiplications and the corresponding depth
consumption for the proposed algorithms are reduced by about 33% and 35% on
average, respectively, compared to those of the previous algorithm. The proposed
algorithm DynMinMult intends to minimize the number of non-scalar multiplica-
tions, however, the corresponding depth consumption is also decreased. Figure
2 describes Table 2 as a graph.

Table 3 shows the comparison of the minimum depth consumption and the
corresponding number of non-scalar multiplications between the previous algo-
rithm and the proposed algorithm DynMinDep while minimizing the depth con-
sumption. It can be seen from Table 3 that the non-scalar multiplications and
the corresponding depth consumption for the proposed algorithms are reduced
by about 10% and 47% on average, respectively, compared to those of the previ-
ous algorithm. If α ≥ 16, then the number of non-scalar multiplications for the
proposed algorithm is slightly larger than that for the previous algorithm. How-
ever, when bootstrapping is used, the proposed algorithm requires lower time
complexity than the previous algorithm since bootstrapping due to large depth
consumption requires higher time complexity than non-scalar multiplication op-
erations. Figure 3 describes Table 3 as a graph.

Table 4 shows the ordered sets Mdegs and Ddegs that store the degrees of
the optimal component minimax approximate polynomials when minimizing the
number of non-scalar multiplications and depth consumption, respectively.

5 Conclusion

We proposed a new approximation method for the homomorphic comparison
operation using minimax composite polynomials obtained by the modified Re-
mez algorithm. Our main idea is to find the minimax composite polynomial on
Rδ that requires the minimum number of non-scalar multiplications and depth
consumption among all (α− 1, δ)-two-sided-close minimax composite polynomi-
als on Rδ. It was proved that the obtained minimax composite polynomial on
Rδ requires less number of non-scalar multiplications and depth consumption
than any (α− 1, δ)-two-sided-close composite polynomial of component polyno-
mials with odd degree terms. Since the brute-force search requires considerable
time for α, we proposed polynomial-time algorithms that obtain the best min-
imax composite polynomials by using dynamic programming. It can be seen
from numerical analysis that when the number of non-scalar multiplications is
minimized, the minimum number of required non-scalar multiplications and the
corresponding depth consumption for the proposed algorithm DynMinMult are
reduced by about 33% and 35% on average, respectively, compared to those for
the previous algorithm. In addition, when the depth consumption is minimized,
the minimum number of required non-scalar multiplications and the correspond-
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ing depth consumption for the proposed algorithm DynMinDep are reduced by
about 10% and 47% on average, respectively, compared to those for the previous
algorithm.
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