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Abstract

We present a generic forgery attack on signature schemes constructed from 5-
round identification schemes made non-interactive with the Fiat-Shamir transform.
The attack applies to ID schemes that use parallel repetition to decrease the sound-
ness error. The attack can be mitigated by increasing the number of parallel repe-
titions, and our analysis of the attack facilitates parameter selection.

We apply the attack to MQDSS, a post-quantum signature scheme relying on the
hardness of the MQ-problem. Concretely, forging a signature for the L1 instance of
MQDSS, which should provide 128 bits of security, can be done in ≈ 295 operations.
We verify the validity of the attack by implementing it for round-reduced versions
of MQDSS, and the designers have revised their parameter choices accordingly.

We also survey other post-quantum signature algorithms and find the attack suc-
ceeds against PKP-DSS (a signature scheme based on the hardness of the permuted
kernel problem) and list other schemes that may be affected. Finally, we use our
analysis to choose parameters and investigate the performance of a 5-round variant
of the Picnic scheme.

1 Introduction

Digital signatures are one of the fundamental cryptographic building blocks and are
widely used for authentication of data and in protocols. Recently, advances in quan-
tum computing have motivated new designs for digital signature schemes, having post-
quantum security, i.e., schemes that are implemented on classical computers but have
security against attacks by quantum computers. NIST has started a standardization
project for post-quantum cryptographic primitives [23].

A popular approach to designing signature schemes is to start with an interactive
identification (ID) scheme and use the Fiat-Shamir transformation to make it non-
interactive and transform it into a signature scheme. The most well-known example
of this is Schnorr’s ID and signature scheme. Multiple signature schemes with conjec-
tured post-quantum security also use this approach (e.g., Dilithium, MQDSS, Picnic,
PKP-DSS, and qTESLA, among others).
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However, while the Fiat-Shamir transform for 3-round (also called 3-pass) ID schemes
(where a total of three messages are exchanged between the prover and verifier) is well
understood, some signatures are built on identification schemes with five or more rounds.
One such example is MQDSS, which builds on the 5-pass identification scheme of Saku-
moto et al. [26]. Chen et al. [12] give a construction for a Fiat-Shamir transformation
for a certain class of 5-pass identification schemes, which includes the one from [26], and
use it to build MQDSS.

ID schemes are closely related to zero-knowledge proofs and arguments, and some of
the terminology is shared; we often refer to the parties as prover and verifier, the prover’s
secret is called a witness, and the public key is called a statement. The soundness error
of a proof protocol, denoted ε, is the probability that a malicious prover can get a verifier
to accept without knowing the witness. For κ-bit security, we thus require ε < 2−κ.

Some proof protocols have a large constant soundness error, such as ε = 1/2. In this
case, we can hope to amplify the soundness of the protocol by repeating the protocol r
times. In the best case, the effect is exponential, and r repetitions give soundness error
of εr. This is known to be the case for interactive protocols when the repetitions are
performed sequentially. The question for parallel repetition has been a topic of study
for many years.

Parallel repetition does decrease soundness error exponentially for 3-round, public-
coin protocols (i.e., protocols where the verifier has no secret key) [4]. For more than
three rounds there are examples of non-public coin protocols where parallel repetition is
not effective [24], but when considering only public-coin protocols parallel repetition is
effective [18].

However, these positive results only apply to interactive protocols, and only hold
asymptotically, so they do not give a concrete number of repetitions for κ bits of security.
Intuitively, soundness for non-interactive protocols can only be worse, since the verifier’s
steps can be implemented by a malicious prover and run many times during a search for
a cheating proof. Thus, choosing r to achieve κ-bit security for concrete non-interactive
proof protocols and signature schemes is not obvious, especially so for protocols with
more than three rounds. Choosing r such that εr < 2−κ seems to work for three-round
protocols (we are not aware of cases where this fails), so we name this approach the
εr-heuristic. As we will show, the εr-heuristic does not hold for five-round protocols.
Instead, the secure choice of r is a function of ε and the challenge spaces of the protocol.

Contributions. In this paper, we give a generic attack on five-round identification
schemes made non-interactive using the Fiat-Shamir transform. This shows that the
εr-heuristic fails for non-interactive 5-round protocols, and care must be taken when
choosing r. The concrete attack complexity is influenced only by the size of the challenge
spaces in the different rounds and whether the identification scheme has a property we
call capability for early abort. We give general formulas for the attack complexity and
show how this influences the parameter choices of different signature schemes, and discuss
strategies for designers using 5-round protocols to build signatures.

As an application of our result, we show an attack on the proposed parameter sets for
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MQDSSv2. We show that at the 128-bit security level, our attack finds forgeries with 295

operations. We practically verify the attack on round-reduced versions of MQDSS and
discuss ways to reduce its practical complexity. The designers of MQDSS have confirmed
our attack and changed their proposed instances according to our recommendations
during the latest round of updates in the NIST post-quantum standardization project
(MQDSSv2.1).

Even though the construction of [12] has a security proof, its non-tightness allows for
the attack to exist, i.e., the attack does not contradict the asymptotic security reduction,
and takes exponential time. This is an example of a non-tight proof reflecting the real-
world security a scheme. This is somewhat rare, and has been called the “nightmare
scenario” by Menezes [22, §5.4] since there are many examples of non-tight proofs where
security is thought to hold for the natural choice of parameters (Schnorr signatures being
a prominent example). To our knowledge this is the first such example for a public-key
signature scheme.

Our attack also applies to PKP-DSS [8], a signature scheme based on a five-round
proof protocol for the permuted kernel problem [27]. The latest proposed parameters
for PKP-DSS have also been updated to account for our attack.

We also use our analysis to select parameters for a 5-round version of the Picnic
signature scheme [11, 30], and quantify the resulting performance. The designers chose
to collapse the 5-round protocol to three rounds with only an informal justification, and
left open the question of using five rounds. Our analysis confirms that the parameters
of the underlying proof system [20] would need to increase such that both the proof size
and runtime is better when using the three-round variant.

1.1 Additional Related Work

In [21], Kiltz et al. give a tight security proof for signatures based on a Fiat-Shamir
transformation of a 5-pass identification scheme. For their proof, they require the un-
derlying identification scheme to have a property called security against non-adaptive
parallel impersonation key-only attacks (naPIMP-KOA). However, they do not consider
the case of parallel repetition, which is needed if the soundness error of a single invoca-
tion of the identification scheme is not small enough. Although their FS transformation
has slight differences to the one used in MQDSS, these differences are minor, and our
attack can also be adapted to the transformation of [21] in case parallel repetition is
used.

Five-to-Three Round Signature Schemes The Picnic signature scheme instances
based on the KKW proof system [20], have a 5-round structure, arising from the choice of
MPC protocol used to implement the MPC-in-the-head construction [19]. The protocol
has a preprocessing phase used to establish correlated randomness between the parties,
to be used in an online phase. In the KKW proof protocol, the first and second rounds
correspond to the preprocessing and online phases (resp.). By performing the online
phase for all preprocessing instances, [20] carefully collapses the 5-round protocol to
three rounds.
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In [6], Beullens generalizes KKW to design sigma protocols for the permuted kernel
problem (PKP), solutions of multivariate quadratic (MQ) equations systems and the
shortest integer solution (SIS) in lattices. These sigma protocols are named “sigma
protocols with helper”, where a trusted third party acts as a helper to set up correlated
randomness in a preprocessing step. The trusted third party is then replaced by a cut-
and-choose approach as in [20]. The overall structure of these sigma protocols is also
5-round, collapsed to three.

These five-to-three schemes then beat the εr-heuristic, by doing the cut-and-choose
step across all parallel repetitions, effectively replacing the independent parallel repeti-
tions with a single repetition.

In [3] Baum and Nof give interactive five-round protocols for proving knowledge of
a solution to the short integer solution lattice problem. Their work also generalizes [20]
but changes the cut-and-choose step to use the sacrificing technique. A direct application
of the Fiat-Shamir transform to these protocols would need to address our attack.

There are many 5-pass identification protocols for code and lattice problems that are
inspired by early three and 5-pass protocols based on syndrome decoding by Stern [28,
29]. Stern uses the εk-heuristic when discussing the signature scheme associated with
the 3-pass variant of his scheme, then presents the 5-pass variant without re-visiting the
choice of r. In [9] Cayrel et al. present a lattice-based threshold ring signature scheme
based on 5-round identification schemes with soundness error 1/2 and 1/3, and choose
the number of parallel repetitions using the εr-heuristic. Some follow-up papers in this
area [5, 14] also use the εr-heuristic.

In [10] Cayrel et al. describe an interactive 5-pass identification scheme based on the
q-ary syndrome decoding problem with ε = 1/2. Then in [16], El Yousfi Alaoui et al.
rely on previous analysis of the Fiat-Shamir transform for 5-pass schemes [2] that does
not consider parallel repetition in detail and use the εr-heuristic to choose parameters
and benchmark the resulting signature scheme. Similarly, Aguilar et al. [1] present a
new five-pass ID scheme based on the syndrome decoding, and choose parameters for
the associated signature scheme using the εr-heuristic, and these parameters were used
in the implementation and performance comparison of Dambra et al. [15].

2 Preliminaries

We give a short background on generic 5-pass ID schemes, and the MQDSS signature
scheme. We keep the notation consistent with the MQDSS specification document [13],

and denote by
$← the uniform random sampling from a set.

2.1 Canonical (2n+ 1)-pass Identification Schemes

Canonical (2n + 1)-pass identification schemes are a class of ID schemes which follow
a certain message structure. First, the prover sends an initial commitment com, then
the two parties engage in n rounds, where the verifier sends a challenge chi drawn from
the corresponding challenge set ChSi, to which the prover responds with rspi. We depict
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a 5-pass identification scheme in Figure 1. Such identification schemes can be made
non-interactive using Fiat-Shamir transformation [17], replacing the job of the verifier
by calls to random functions, usually instantiated using cryptographic hash functions.
We give details of this process in the caption of Figure 1.

Prover Verifier
com← P0(sk) com

ch1
$← ChS1(1k)ch1

rsp1 ← P1(sk , com, ch1) rsp1

ch2
$← ChS2(1k)ch2

rsp2 ← P2(sk , com, ch1, rsp1, ch2) rsp2

b← V(pk , com, ch1, rsp1, ch2, rsp2)

Figure 1: A canonical 5-pass identification scheme. To make the scheme non-interactive,
ch1 and ch2 are computed as ch1 = H1(com) and ch2 = H2(com, ch1, rsp1) for crypto-
graphic hash functions H1 and H2. The proof is π = (com, rsp1, rsp2). In a signature
scheme, the message m is included in both H1 and H2 and π is the signature on m.

2.2 Fiat-Shamir Transformation for a class of 5-pass ID schemes

In [12], Chen et al. give a Fiat-Shamir transformation for a certain class of 5-pass
identification schemes. They note that many existing 5-pass identification schemes follow
a certain structure, given in Definition 2.1.

Definition 2.1 (q2-Identification scheme [12]). Let κ ∈ N be a security parameter. A
q2-Identification scheme IDS(1κ) is a canonical 5-pass identification scheme where for the
challenge spaces C1 and C2 it holds that |C1| = q and |C2| = 2. Moreover the probability
that the commitment com takes a given value is negligible (in κ), where the probability
is taken over the random choice of the input and the prover’s randomness.

Definition 2.2 (q2-Extractor [12]). We say that a q2-Identification scheme IDS(1κ) has
a q2-extractor if there exists a PPT algorithm E , the extractor, that given a public key

pk and four transcripts trans(i) = (com, ch
(i)
1 , rsp

(i)
1 , ch

(i)
2 , rsp

(i)
2 ), i ∈ {1, 2, 3, 4}, with

ch
(1)
1 = ch

(2)
1 6= ch

(3)
1 = ch

(4)
1 ,

ch
(1)
2 = ch

(3)
2 6= ch

(2)
2 = ch

(4)
2 ,

which are valid with respect to pk , outputs a matching secret key sk for pk with non-
negligible success probability (in κ).
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The soundness error of an identification scheme, denoted ε, is the probability that the
q2-extractor fails. The soundness error can be boosted by running r parallel repetitions
of the scheme. Chen et al. [12] use a variant of the Fiat-Shamir transformation in Figure 1
to turn a q2-IDS into a signature scheme and provide analysis and a security proof for
their Construction 1 in the random oracle model (ROM), if the q2-IDS additionally has
a q2-extractor (Definition 2.2).

Construction 1 (Fiat-Shamir transform for q2-IDS [12]). Let κ ∈ N be the security
parameter, IDS = (KGen,P,V) a q2-Identification scheme that achieves soundness with
constant soundness error ε. Select r the number of (parallel) repetitions of IDS, such
that εr = negl(κ), and that the challenge spaces of the composition IDSr, Cr1 , C

r
2 have

size exponential in κ. Moreover, select cryptographic hash functions H1 : {0, 1}∗ 7→ Cr1
and H2 : {0, 1}∗ 7→ Cr2 . The q2-signature scheme q2-Dss(1κ) derived from IDS is the
triple of algorithms (KGen,Sign,Vf) with:

• (sk , pk)← KGen(1κ)

• σ = (σ0, σ1, σ2) ← Sign(sk ,m) where σ0 = com ← Pr0(sk), h1 = H1(m,σ0), σ1 =
rsp1 ← Pr1(sk , σ0, h1), h2 = H2(m,σ0, h1, σ1) and σ2 = rsp2 ← Pr2(sk , σ0, h1, σ1, h2).

• Vf(pk ,m, σ) parses σ = (σ0, σ1, σ2), computes the values h1 = H1(m,σ0), h2 =
H2(m,σ0, h1, σ1) as above and outputs Vr(pk , σ0, h1, σ1, h2, σ2).

Theorem 2.3 (EU-CMA security of q2-signature schemes [12]). Let κ ∈ N, IDS(1κ) be
a q2-IDS that is honest-verifier zero-knowledge, achieves soundness with constant sound-
ness error ε and has a q2-extractor. Then q2-Dss(1κ), the q2-signature scheme derived
applying Construction 1 is existentially unforgeable under adaptive chosen message at-
tacks.

The proof of Theorem 2.3 is given in [12]. However, the authors also note that the
proof is non-tight due to its use of the forking lemma [25]. The number of parallel
repetitions r are chosen according to the εr-heuristic, based the soundness error of the
underlying IDS, ignoring the potential loss in security that comes from the non-tightness
of the proof.

3 Forgery attacks on MQDSS

Chen et al. [12] give a concrete instantiation – called MQDSS – by applying Construc-
tion 1 to the 5-pass identification scheme from Sakumoto et al. [26]. MQDSS is a
post-quantum signature scheme submitted to the NIST post-quantum standardization
project. We first recall the details of the MQDSS signature scheme and then go into our
attack.
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3.1 Description of MQDSS

The main idea of the 5-pass identification scheme by Sakumoto et al. [26] is to prove
knowledge of a solution s of a multivariate quadratic equation system v = F(s). To
achieve this, the secret s is split into two shares s = r0 + r1 and the public key v can
be represented using the polar form of F as v = F(r0) + F(r1) + G(r0, r1). One of
the shares of the secret (with an additional masking factor α) is then split further, so
that the polar form is not dependent on both shares of the secret: αr0 = t0 + t1 and
αF(r0) = e0 + e1. Due to the properties of the polar form, we arrive at the relation

αv = (e1 + αF(r1 + G(t1, r1)) + (e0 + G(t0, r1) ,

where each of the two separate summands does not reveal any information about the se-
cret. This is used in the identification protocol where one of these summands is revealed
to the verifier and checked for consistency. For more details we refer to [26, Section 4].

The key generation of MQDSS samples a MQ relation v = F(s), but does so pseu-
dorandomly from a k-bit seed sk, by using SHAKE256 as a pseudorandom generator
(PRG) and using rejection sampling to sample field elements when necessary. The func-
tion XOFF generates a multivariate system from a seed, and H, H1, and H2 are cryp-
tographic hash functions. We recall the specification of the MQDSS signing algorithm
(with minor simplifications compared to the original design document) in Algorithm 1,
where first, as in key generation, the secret key sk is expanded into four seeds. These
seeds are used to derive theMQ relation and, in combination with a pseudorandom salt
D, the shares of the secret r, t, e and the commitment randomness ρ. We can observe
the 5-pass structure with the five messages σ0, ch1, σ1, ch2 and σ2. We also recall the
MQDSS key generation and verification in Appendix A; for more details and an algorith-
mic description of all the sub-functions, we refer to the MQDSS design document [13].

MQDSS versions. In August 2018, the MQDSS team updated their specification and
recommended parameter sets, due to the original parameters mistakenly being selected
for a higher security level. This new parameter sets were called MQDSS v1.1. Addition-
ally, in March 2019 the MQDSS team modified the scheme to include a random string
ρ of length 2κ in their commitments, resulting in MQDSS v2.0. Our attack applies
to both, MQDSS v1.1 and v2.0, but in the following, we will use MQDSS v2.0 to be
compatible with the most recent reference implementation. After disclosing our attack
to the authors, they updated their parameter sets to be resistant against our attack. At
the time of writing, this is the most recent version of MQDSS, v2.1.

3.2 Description of the Attack on MQDSS

The basic idea of the attack is to split the attacker work between two phases: we try to
guess ch1 for τ∗ repetitions, and then move on to guess ch2 for the remaining repetitions.
For many 5-pass identification schemes, including the one used in MQDSS, guessing just
one of the two challenges correctly allows the prover to cheat. In the non-interactive
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Algorithm 1 Sign(sk,Msg), from [13]

SF, Ss, Sρ, Srte ← PRGsk(sk)
F← XOFF(SF)
s← PRGs(Ss)
pk := (SF,F(s))
R← H(sk||Msg)
D ← H(pk||R||Msg)

ρ
(1)
0 , . . . , ρ

(r)
0 , ρ

(1)
1 , . . . , ρ

(r)
0 ← PRGρ(Sρ, D)

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 ← PRGrte(Srte, D)

for j ∈ {1, . . . , r} do

r
(j)
1 ← s− r

(j)
0

com
(j)
0 ← H

(
ρ
(j)
0 , r

(j)
0 , t

(j)
0 , e

(j)
0

)
com

(j)
1 ← H

(
ρ
(j)
1 , r

(j)
1 ,G(t

(j)
0 , r

(j)
1 ) + e

(j)
0

)
end for
σ0 ← H(com

(1)
0 , com

(1)
1 , . . . , com

(r)
0 , com

(r)
1 )

ch1 ← H1(D,σ0)
Parse ch1 as ch1 = {α(1), . . . , α(r)}, α(j) ∈ Fq
for j ∈ {1, . . . , r} do

t
(j)
1 ← α(j)r

(j)
0 − t

(j)
1 , e

(j)
1 ← α(j)F(r

(j)
0 )− e

(j)
0

rsp
(j)
1 ← (t

(j)
1 , e

(j)
1 )

end for
σ1 ← (rsp

(1)
1 , . . . , rsp

(r)
1 )

ch2 ← H2(D,σ0, ch1, σ1)
Parse ch2 as ch2 = {b(1), . . . , b(r)}, b(j) ∈ F2

σ2 ← (r
(1)

b(1)
, . . . , r

(r)

b(r)
, com

(1)

1−b(1) , . . . , com
(r)

1−b(r) , ρ
(1)

b(1)
, . . . , ρ

(r)

b(r)
)

return σ = (R, σ0, σ1, σ2)

version, we leverage the fact that these phases can be repeatedly and separately attacked
offline.

In [12], Chen et al. give a basic strategy for a cheating adversary, that works as
follows: The cheater chooses α∗ as guess for ch1 and uses a randomly chosen secret key
s∗. He follows the protocol as specified, but computes r1 = s∗ − r0, t1 = α∗r0 − t0 and
e1 ← α∗ ·F(r0)−e0 instead. He also computes the commitment (com0, com1) as com0 ←
H (ρ0, r0, t0, e0) and com1 ← H (ρ1, r1, α

∗ · (v − F(r1))−G(t1, r1)− α∗ · F(r0) + e0). If
ch2 is equal to 0, the recomputed check does not involve the public key v and will
therefore always pass. For ch2 = 1, the cheater set up the values in a way that the check
will still pass if ch1 was equal to α∗. For our attack, it is important that a bad guess
for α∗ (i.e., ch1) can be masked by a correct guess of ch2, without the verifier noticing.
This fact allows us to improve the basic attack strategy by trying to guess ch1 for all
parallel repetitions (and subsequently fixing any bad guesses in phase 2), not only for a
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Algorithm 2 Forge(pk,Msg)

Parse pk as SF,v
F← XOFF(SF)

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0

$← Fn×3rq

α∗
$← Fq

s∗
$← Fnq

for j ∈ {1, . . . , r} do

r
(j)
1 ← s∗ − r

(j)
0

t
(j)
1 ← α∗ · r(j)0 − t

(j)
0

e
(j)
1 ← α∗ · F(r

(j)
0 )− e

(j)
0

ρ
(j)
0 , ρ

(j)
1

$← {0, 1}2κ×2

com
(j)
0 ← H

(
ρ
(j)
0 , r

(j)
0 , t

(j)
0 , e

(j)
0

)
com

(j)
1 ← H

(
ρ
(j)
1 , r

(j)
1 , α∗ · (v − F(r

(j)
1 ))−G(t

(j)
1 , r

(j)
1 )− α∗ · F(r

(j)
0 ) + e

(j)
0

)
end for
σ0 ← H(com

(1)
0 , com

(1)
1 , . . . , com

(r)
0 , com

(r)
1 )

repeat

R
$← {0, 1}2κ

D ← H(pk ||R||Msg)
ch1 ← H1(D,σ0)
Parse ch1 as ch1 = {α(1), . . . , α(r)}, α(j) ∈ Fq

until at least τ∗ of α(j) are equal to α∗

repeat

guess
$← {0, 1}r // in practice, a counter is used to ensure unique hash inputs

for j ∈ {1, . . . , r} do
if α(j) = α∗ then

rsp
(j)
1 ← (t

(j)
1 , e

(j)
1 )

else if bit j of guess is 0 then

rsp
(j)
1 ←

(
α(j) · r(j)0 − t

(j)
0 , α(j) · F(r

(j)
0 )− e

(j)
0

)
else

rsp
(j)
1 ←

(
t
(j)
1 , (α(j) − α∗) · (v − F(r

(j)
1 )) + α∗ · F(r

(j)
0 )− e

(j)
0

)
end if

end for
σ1 ← (rsp

(1)
1 , . . . , rsp

(r)
1 )

ch2 ← H2(D,σ0, ch1, σ1)
until bits of ch2 agree with guess in positions j where α(j) 6= α∗

σ2 ← (r
(1)

b(1)
, . . . , r

(r)

b(r)
, com

(1)

1−b(1) , . . . , com
(r)

1−b(r) , ρ
(1)

b(1)
, . . . , ρ

(r)

b(r)
)

return σ = (R, σ0, σ1, σ2)

9



Parameter Set κ m = n q r τ∗ #H rnew

MQDSS-toy 38 48 31 40 11 229 53
MQDSS-L1 128 48 31 135 41 295 184
MQDSS-L3 192 64 31 202 61 2141 277
MQDSS-L5 256 88 31 268 82 2180 370

Table 1: Parameter sets for MQDSS instances. r is the number of parallel repetitions in
MQDSS v2.0, rnew is the number of repetitions required to resist our attack. (Instance
for security level L5 not officially submitted to NIST). τ∗ is the optimal number of
repetitions to attack in the first phase, while #H gives an estimate of the required hash
function calls for a single forgery.

predetermined subset of the repetitions, increasing the success probability to guess τ∗

first round challenges correctly from (1q )τ
∗

to P1(τ
∗) as given by Equation 1.

Our cheater now has the problem of how to efficiently generate different inputs (still
passing verification) to the challenge hash functions H1 and H2. For phase 1, this is
quite easy, since the signature includes a random salt value R, which is allowed to be
chosen freely by the attacker. Therefore an attacker can fix a guess of α∗ once, compute
the first message σ0, and then try different values of R until τ∗ of the first challenges
agree with α∗. For the second phase, we have already fixed R and can therefore not use
the same strategy. However, we can modify the values sent in the second message σ1
in the following way. While the values of t1 and e1 computed as given by the cheating
strategy outlined above are always correct for ch2 = 0, and fail to verify for ch2 = 1,
we can also come up with different t1 and e1 that are correct for ch2 = 1, but fail for
ch2 = 0. To achieve this we use the same t1, but compute e1 such that it corrects the
error in com1, specifically as

e1 ← (α(j) − α∗) · (v − F(r1)) + α∗ · F(r0)− e0 .

Now our attacker has 2 possible values to send in the second phase of each repetition,
enabling him to try 2r−τ

∗
different inputs to H2, and with high probability one of those

inputs results in the correct guess for all ch2 for the remaining r − τ∗ repetitions. The
full attack is given in Algorithm 2.

Alternative for Phase 2. Instead of the adversary trying all different combinations
as shown above, he can also fix all but the last repetition, and just vary the responses
for this last repetition in the following way. Choose a random t1 and then calculate e1
as e1 ← (α(j)−α∗) · (v−F(r1)) +α∗ ·F(r0) + G(t0, r1)−G(t1, r1)− e0. This response
is always valid for ch2 = 1. Due to choosing t1 at random, we have qn different possible
hash inputs. This method allows us to fix all other repetitions but requires us to always
calculate G(t1, r1) instead of being able to cache the output once as we can do for the
other variant. Additionally, this can be used in combination with the other strategy,
especially for the case when we exhaust all 2r−τ

∗
possible inputs to H2, allowing us to

continue the attack without having to repeat the first phase.
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3.3 Attack Parameters and Mitigation

For the attack, we want to achieve an optimal tradeoff between the work needed for
passing the first phase and the work needed for passing the second phase. If we guess τ∗

challenges for the first phase correctly, we can answer both possible challenges for these
correct guesses in the second phase, only needing to correctly guess the remaining r− τ∗
second round challenges.

The probability of guessing at least τ first-round challenges from a challenge space
of size |C1| = q correctly is given by Equation 1:

P1(τ, r, q) = Pr

guess at least τ
of r challenges
with size q

 =
r∑

k=τ

(
1

q

)k (q − 1

q

)r−k (r
k

)
. (1)

To achieve the best tradeoff in terms of attack efficiency, we want to minimize the
total work for completing both phases. Therefore, the optimal number of repetitions to
attack in the first phase is given by

τ∗ = arg min
0≤τ≤r

{
1

P1(τ, r, q)
+ 2r−τ

}
,

assuming that both phases are of equal cost. We give some discussion of the cost of the
two phases in Section 3.4. A slightly better choice of τ∗ might be possible by weighting
the cost of each phase, based on the concrete costs of a given attack implementation.

We give an optimal choice for τ∗ for different instances of MQDSS in Table 1, to-
gether with the estimated number of random oracle calls for a single forgery and the
number of parallel repetitions rnew that are required so that the expected number of
random oracle calls for this attack is at least 2κ. After communicating the attack to the
MQDSS designers, they have updated their specification to our recommended number
of repetitions in the most recent version of MQDSS, version 2.1.

Comparison to a 3-pass version of MQDSS In [26], Sakumoto et al. additionally
give a 3-pass variant of theirMQ-based identification scheme. Chen et al. [12] motivated
their choice of the 5-pass variant over the 3-pass variant by the lower resulting signature
size of the 5-pass variant. However, in light of our new attacks and the resulting increase
in parameters to prevent it, this conclusion is no longer as clear as it used to be. In
[12, Appendix A], Chen et al. discuss parameters for the 3-pass scheme and come to
a signature size of 54.81 KB for the L5 security level. Based on the formulas given in
[12, 13] the 3-pass signature size for the L1 security level would be approximately 27.7
KB, whereas the signature size for the updated parameters of the 5-pass signature is now
27.73 KB, almost exactly equal. The impact of our attack therefore arguably makes the
3-pass variant of MQDSS a more natural choice, since 3-pass schemes are more common,
and their security is arguably better understood.
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3.4 Practical Verification

To verify the validity of the attack, we implemented it and attacked versions of MQDSS
with reduced r. The code is based on the reference implementation of MQDSS1 and
is available at https://github.com/dkales/MQDSS-forgery. Our MQDSS-toy instance
from Table 1 has the same parameters as the instance for the L1 security level, however,
we reduced the number of parallel repetitions of the underlying identification scheme
from 135 to 40. Since the soundness error of one instance of the identification scheme
of [26] is ε = 1

2 + 1
2q , these 40 repetitions should provide about 38 bits of security based

on the analysis of Construction 1 by Chen et al. The underlying MQ problem instance
is not modified and still provides 128-bit security against attacks on the MQ problem
itself.

Based on our analysis in Section 3.3, we choose the number of repetitions to attack
in phase 1 to be τ∗ = 11. The estimated number of random oracle calls is approximately
229, while for our experiments the average over 10 runs is 227.98, all taking between 1
and 12 minutes on a standard desktop PC.

Notes on the implementation. Our implementation uses a constant amount of
memory virtually independent of the security level, making the only real cost producing
the inputs to the hash function and executing it, which is very suitable for hardware
acceleration and parallelization. We also provide a more efficient variant of the attack
using AVX2 wherever possible and using a Gray code to minimize the changes to the
hash input of the second phase. We also observed that even though the first phase has
two hash function calls per repetition compared to the single one for the second phase,
the inputs for the second phase hash are much longer, requiring multiple calls to the
Keccak permutation (about 1 permutation per 2.25 repetitions). For concrete attack
efficiency, this means that attacking 1 or 2 more repetitions than given in Table 1 in
the first phase is usually faster. We discuss an alternative way to create responses for
the second phase in Section 3.2, which can reduce the number of calls to the Keccak
permutation to one, but requires the attacker to evaluate G instead. Based on our
experiments, the cost of G is about 8 times the cost of the Keccak permutation, which
should still result in a faster attack in practice, especially for the larger parameter sets.

4 Attacks on Five Round Protocols Using the Fiat-Shamir
Transform

In this section, we generalize the attack described on MQDSS in the previous section to
a canonical five-round proof protocol and discuss choosing a secure number of parallel
repetitions. We also give guidance to protocol designers to increase the costs of our
attack, to reduce the number of parallel repetitions required for a given security level.
We end the section with a brief discussion of the more general (2n+ 1)-round protocols.

1https://github.com/joostrijneveld/MQDSS/tree/NIST

12

https://github.com/dkales/MQDSS-forgery


Recall the general structure of a 5-pass identification scheme from Figure 1. In
the attack on MQDSS in Section 3.2, we observed that an attacker could mask a bad
guess for the first challenge with a correct guess for the second challenge. However, this
is not the case in general. Some 5-pass identification schemes have the capability for
early abort. In Figure 2, we show a slightly modified version of the canonical 5-pass
identification scheme, including an additional algorithm Vearly that enables the verifier
to check the message tuple (com, ch1, rsp1) – consisting of the first three messages – for
validity. Conceptually, this can also be seen as splitting the protocol into two interleaved
3-pass protocols.

Prover Verifier
com← P0(sk) com

ch1
$← ChS1(1κ)ch1

rsp1 ← P1(sk , com, ch1) rsp1

if Vearly(pk , com, ch1, rsp1) == 0

abort

ch2
$← ChS2(1k)ch2

rsp2 ← P2(sk , com, ch1, rsp1, ch2) rsp2

b← V(pk , com, ch1, rsp1, ch2, rsp2)

Figure 2: A 5-pass identification scheme with capability for early abort.

Even if such an algorithm Vearly is not specified explicitly for a scheme, i.e., it may
be implicitly contained in V, we are interested in its theoretical existence since it would
allow the verifier to detect wrong guesses for ch1, affecting the complexity of the attack.

For identification schemes where no such algorithm exists (e.g., MQDSS), we can
employ the improved attack strategy of trying to guess all first-round challenges, subse-
quently fixing bad guesses in the second challenge. However, if Vearly exists, a malicious
prover has to select the parallel repetitions to attack beforehand, increasing the complex-
ity of the attack. Protocols that use the first challenge in a cut-and-choose construction,
where the prover commits to a large set of values, and only some of them are revealed
to the verifier, usually allow for the existence of such an early verification algorithm.
As an example, we will cover the five-round variant of the KKW [20] proof protocol in
Section 5.1.

Recall that for an identification scheme to be honest-verifier zero-knowledge (HVZK,
a requirement for security of the associated Fiat-Shamir signature), there must exist a
simulator S that, given pk, outputs simulated transcripts of protocol executions between
P and V, which are indistinguishably distributed from real protocol executions. (For a
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formal definition, see [12, Def. 2.5].)
For our attack to apply to a canonical 5-pass ID scheme, it must satisfy a stronger

type of simulation that we call piecewise simulatability. Informally, this means that S
can be refactored (in two different ways) to output the transcript in two parts, allowing
for one of the challenges to be chosen as an input. In contrast to standard simulators,
which output the whole transcript on input pk, piecewise simulators are a more limited
class of algorithms. However, since the simulator is always able to choose at least one
of the challenges by itself, it can function without knowledge of the secret. Although
piecewise simulatability is a stronger assumption, it is fulfilled by all of the schemes we
investigate in this work.

Definition 4.1. We say that a 5-round, HVZK ID scheme is piecewise simulatable if
there exists algorithms (A1, A2) and (B1, B2), defined as follows:

Simulator A Simulator B
A1(pk) outputs T1 := (com, ch1, rsp1) B1(pk) outputs T1 := (com′)
A2(pk, T1, ch

∗
2) outputs (rsp2) B2(pk, T1, ch

′∗
1 ) outputs (rsp′1, ch

′
2, rsp

′
2)

T := (com, ch1, rsp1, ch
∗
2, rsp2) T ′ := (com′, ch′∗1 , rsp

′
1, ch

′
2, rsp

′
2)

where T and T ′ are distributed as the output of the HVZK simulator S(pk) when ch∗2
and ch′∗1 are chosen uniformly at random from ChSi(1

κ).

If the ID scheme has the early abort property, then we additionally require that
Vearly(pk, T1) = 1 for simulator A and Vearly(pk, (com′, ch′∗1 , rsp

′
1)) = 1 for simulator B.

Note that A2 is given a ch∗2 and can choose rsp2 in such a way that T1 is a prefix
for a valid transcript T . Using B1 and B2, we can also produce a valid transcript T ′

for a given value of ch∗1. Together, these properties capture the ability of the attacker
to cheat by guessing either one of ch1 or ch2 correctly. In the MQDSS example, we
described the concept of “fixing bad guesses for ch1”, which is captured by the fact that
in schemes without early abort, we can use the com output of A1 as input to B2, whereas
in schemes with early abort, this might lead to situations where the first three messages
(com, ch′∗1 , rsp

′
1) of the resulting transcript do not pass Vearly.

Generic Attack The forger is given pk as input, and uses the algorithms (A1, A2,
B1, B2) to create a forgery, as follows. Let m be the message to forge; we assume it is
an input to both H1 and H2. Let τ∗ < r be the number of repetitions to guess the first
challenge.

1. Using A1, compute a triple of the form (com, chS1 , rsp1) for each of the r repetitions
(in the case of protocols with early abort, only use A1 for τ∗ repetitions and B1 for

the remaining). Then compute (ch
(1)
1 , . . . , ch

(r)
1 ) = H1(com

(1), . . . , com(r)). Repeat

this step until ch
(i)
1 = chS1 for τ∗ repetitions.

2. Fix the value of com for all repetitions so that the ch1 values do not change. Let

R be the set of indices of the τ∗ repetitions where chS1 = ch
(i)
1 . For repetitions
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i 6∈ R, compute (rsp∗1, ch
S
2 , rsp

∗
2) using B2 and set rsp∗1 = rsp1 (from the output of

A1) when i ∈ R. Now compute

(ch
(1)
2 , . . . , ch

(r)
2 ) = H2({com(i)}, {ch(i)1 }, {rsp

∗
1
(i)})

where i ∈ {1, . . . , r}. Repeat until repetitions i 6∈ R have ch
(i)
2 = chS2 .

3. For i ∈ R, use A2 to calculate a valid response rsp∗2. Output the forgery ({com(i)},
{rsp∗(i)1 }, {rsp

∗(i)
2 }) for i ∈ {1, . . . , r}.

We highlight why this attack is only possible for non-interactive proofs. First, in
the interactive setting, each try in Step 1 requires interaction with the verifier, which is
slow, and may be subject to limits by the verifier. But more importantly, the repeated
guesses for ch2 are not possible while holding the ch1 values fixed since the verifier will
force the prover to restart from the very beginning: all effort to guess the τ∗ ch1 values
correctly is lost.

4.1 Cost Analysis

The analysis differs depending on whether the scheme has the early abort property. In
both cases, the attack complexity is dependent on the size of the two challenge spaces
C1, C2. Let IDS be a 5-pass identification scheme with challenge spaces C1, C2 and |C1| =
q1, |C2| = q2 and let Dss be the signature scheme derived from r parallel repetitions of
IDS by applying a generalized Fiat-Shamir transformation like Construction 1.

Schemes without capability for early abort. Recall the probability P1(τ, r, q) of
guessing at least τ of r challenges with a challenge space of size q each correctly, as given
per Equation 1. The expected cost of our attack on Dss is given by

Costnon−abort(r) =
1

P1(τ∗, r, q1)
+ qr−τ

∗

2 ,

where τ∗ is the optimal number of repetitions to attack in the first challenge, given by

τ∗ = arg min
0≤τ≤r

1

P1(τ, r, q1)
+ qr−τ2 ,

minimizing the overall cost of the attack.

Schemes with capability for early abort. The cost of our attack on Dss is given
by

Costabort(r) = qτ
∗

1 + qr−τ
∗

2 ,

where τ∗ is the optimal number of repetitions to attack in the first challenge, given by

τ∗ = arg min
0≤τ≤r

qτ1 + qr−τ2 ,
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again minimizing the overall cost of the attack.
Following the derivation of the attack costs, the number of parallel repetitions r of

the underlying identification scheme IDS needed to achieve a security level of κ bits is
given by selecting the minimum value of r such that the corresponding cost function
Cost(r) ≥ 2κ.

4.2 Discussion

Benefit of Early Abort. We can now quantify the security benefit of protocols with
an early abort functionality in some specific examples.2 If MQDSS were instead based
on a (hypothetical) proof protocol with early abort, the number of parallel repetitions
required for 128-bit security would be 153, rather than 184. This is less than half of the
increase from 135 (the choice of r given by the εr-heuristic), motivating the design of
a 5-round proof protocol for MQ with early abort; one such protocol is MUDFISH [6],
which does result in significantly shorter signatures. Similarly, if the five-round variant
of Picnic described in Section 5.1 did not have the early abort property, the number
of required online phases for 128-bit security is 50 rather than 43, increasing signature
size by roughly 1.16x. Thus we find that having the early abort property is a desirable
goal for designers of five-round proof protocols, if it does not add additional costs to the
protocol itself.

Unbalanced Size of the Challenge Spaces. An interesting observation is the fact
that if the two challenge spaces are not of equal size, the attack complexity increases,
as an attacker cannot divide the work evenly between the two phases. MQDSS is an
example of this, as one challenge space is of size 31 and the second one of size 2, meaning
an attacker has to spend more effort guessing the first challenge. However, to get the best
attack complexity, the attacker wants to spend an equal amount of work in both phases,
meaning attacking fewer rounds in the first challenge than the second one. Again, the
five-round variant of Picnic in Section 5.1 serves as an example. Both of its challenge
spaces are of equal size, and the number of repetitions needs to be doubled to resist the
attack, compared to the ≈ 1.4x more repetitions needed for MQDSS.

Security of (2n + 1)-round protocols We can also ask about similar attacks on
proof protocols with more than five rounds. For example, a recently proposed signature
scheme that we discuss in Section 5.3 has seven rounds, and we can fully generalize the
canonical protocol to 2n + 1 rounds. Selecting the number of parallel repetitions for
these protocols is also an interesting question.

However, when considering multiple abort points, analyzing such protocols seems
challenging, as there are n − 1 places where early aborts are possible, and a specific
protocol may have 0 ≤ m ≤ n− 1 of n− 1 abort points. One could begin by analyzing
the worst-case m = 0, however, the choice of r would likely be inefficient for protocols

2Because the Cost functions do not have a nice closed form a general comparison appears to be
difficult.
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with m > 0. However, for some protocols, it might be possible to conceptually split
them into sub-protocols that have three or five passes and analyze them individually.

5 Application to other Schemes

In the area of post-quantum signatures, many recent proposals are built using 5-round
protocols, made non-interactive using the Fiat-Shamir transformation. We now investi-
gate the applicability of the attack of Section 4 on some schemes from the literature.

5.1 Five Round Picnic

Picnic [11] is a second-round candidate in the NIST post-quantum standardization
project. It is built using a non-interactive zero-knowledge proof of knowledge, prov-
ing knowledge of a secret key of a block cipher. One variant of Picnic is based on the
KKW proof system [20].

The KKW proof system is a 5-round interactive protocol based on a multi-party
computation protocol with an offline preprocessing phase. In the first round, the prover
commits to M executions of the offline phase of the MPC protocol and then gets chal-
lenged to open all but one of them. In the third round, the prover then uses the unopened
offline phase to execute an online phase for N parties and commits to all of their states
and subsequently gets challenged to open all but one of the internal states. Based on
the N − 1 privacy property of the MPC protocol, the protocol is zero-knowledge and
has a soundness error of max{ 1

M ,
1
N }. However, in Picnic, the scheme is collapsed into

a 3-round protocol, as described in Section 1.1. In [30], the authors discussed that the
5-round protocol could offer different performance tradeoffs, but also remarked that the
soundness calculation changes since “both challenges have to be sufficiently large”. In
this section we apply our analysis to choose concrete parameters for the 5-round variant
of Picnic, and find that the 3-round variant is indeed preferable.

Cheating strategy for the Picnic2 zero-knowledge proof. For the attack to
work, a cheating signer needs to be able to cheat in either of the two phases of the
zero-knowledge proof. In detail, for the KKW proof system, this means either cheating
in the pre-preprocessing phase by producing invalid multiplication triples or cheating
in the online phase by sending wrong messages. Both approaches allow the prover to
flip the output of arbitrary AND gates in the circuit, if not detected by the verifier. A
cheating prover, given a plaintext-ciphertext pair from a target public key, can therefore
select a random secret key and start the encryption with the plaintext and change AND
gates during the circuit evaluation until the output matches the ciphertext.

Based on the soundness error of the interactive version of 5-round Picnic (max{ 1
M ,

1
N },

where M is the number of preprocessing phases and N is the number of parties in the
online phase) it is optimal to set both of them to be equal. One choice used by [20] is 64,
since this fits register widths for modern CPUs, allows for a performant bit-sliced imple-
mentation, and provides a good tradeoff between proof size and runtime. To achieve a
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soundness error of < 2−128, one needs τ = 22 parallel repetitions in the interactive ver-
sion of the protocol. However, applying the straightforward Fiat-Shamir transformation
as shown in Construction 1 enables our attack.

Since the protocol in [20] is a commit-and-open style protocol, it has the property of
early abort (guessing the wrong challenge in the second message cannot be hidden later
on). Therefore we need to choose the repetitions to attack in each phase from the start.

The complexity of the attack on 5-round Picnic is

M τ∗ +N τ−τ∗ , (2)

where τ∗ repetitions are attacked in the first challenge. The optimum number of repe-
titions τ∗ to attack in the first round is given by

τ∗ = arg min
0≤τ ′≤τ

M τ ′ +N τ−τ ′ , (3)

which is equal to ≈ τ/2, since both challenge spaces are of equal size. For the specific
choice of M = N = 64, the total number of parallel repetitions required for an attack
complexity of greater than 2128 random oracle calls is therefore τ = 43.

In contrast to the collapsed 3-round variant, which needs 343 offline phases and the
same number of online phases, this 5-round variant needs 43 · 64 = 2752 offline phases
and 43 online phases. We give the performance characteristics of the 3-round (Picnic2-*)
and 5-round (Picnic2-5-*) variants in Table 2. Observe that even though the number of
online phases that need to be simulated is lower in Picnic2-5, this is only true during
signing, as during verification this number is actually higher in the 5-round variant.
Furthermore, the number of offline phases and, more importantly, the hashing costs
associated with this phase are much higher in the 5-round variant. Even tough we did
not implement the 5-round variant, we conclude based on this evidence that the 5-round
variant has slower signing and verification times. With regards to signature size, the
maximum signature size for the 5-round variant is given (in the notation of [20]) by

τ · ((dlog2(M)e+ dlog2(N)e) · κ+ 2 · |C|+ 3κ+ |ch1|+ |ch2|) .

In all cases, this leads to larger signature sizes than the three round variants, confirming
the choice made in [20] to collapse the protocol to three rounds.

5.2 PKP-based Signature Scheme

In [8], the authors proposed a digital signature scheme based on the Permuted Kernel
Problem (PKP) [27]. Since the underlying identification scheme is a 5-pass scheme and
the transformation into a signature scheme is using Construction 1 while inheriting all
security proofs from the original MQDSS paper [12], it is susceptible to the same attack.

In fact, a pre-print of [8] originally chose the number of parallel repetitions r using
the εr-heuristic, however, it was later revised to account for our attack and use larger
parameters. We shortly summarize the parameters of the scheme and show using the
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Instance
# offline phases # online phases max. signature size

sign (verify) sign (verify) [KiB]

Picnic2-L1-FS 343 (316) 343 (27) 13.47
Picnic2-5-L1-FS 2752 (2709) 43 (43) 16.46

Picnic2-L3-FS 570 (531) 570 (39) 29.05
Picnic2-5-L3-FS 4032 (3969) 63 (63) 36.17

Picnic2-L5-FS 803 (753) 803 (50) 53.45
Picnic2-5-L5-FS 5440 (5355) 85 (85) 63.75

Table 2: Comparison of Picnic2 using the 3- and 5-round variants of the underlying
proof system at the three NIST security levels. Picnic2 numbers from [30].

formulae in Section 4 that the parameters as proposed in the most recent version of [8]
are secure.

In PKP-DSS, the size of the first challenge is based on the size of the underlying
prime field (excluding 0). Like MQDSS, the second challenge is a binary choice, and the
identification scheme does not have the property of early abort. Therefore, we use the
same formula as in MQDSS and arrive at 156, 228, and 289 parallel repetitions for their
L1, L3, and L5 security levels, respectively. Note that the number of parallel repetitions
for the L1 and L3 security levels is lower than the parameters given in [8] (157 and 229,
respectively); this might be due to the authors weighting of the cost of the two phases
slightly differently.

5.3 LegRoast

LegRoast and PorcRoast [7] are two new proposals for post-quantum secure signature
schemes. Our attack is not directly applicable to these schemes, but it’s interesting to
see why, as they are based on 7-round proof protocols.

The schemes work by proving knowledge of the secret key of evaluations of the
Legendre-PRF, in a similar fashion to Picnic, which uses LowMC as a one-way function.
The Legendre-PRF is given for an odd prime p, key K ∈ Zp and input a ∈ Fp as

LK(a) =

⌊
1

2

(
1−

(
K + a

p

))⌋
∈ Z2 ,

where (ap ) ∈ {−1, 0, 1} denotes the quadratic residuosity of a mod p. The scheme has
some more differences to Picnic signatures: since the PRF only outputs a single bit, it
needs many different evaluations of the PRF to achieve the needed soundness, however
this would lead to large signatures. Therefore a relaxed notion is used, where the prover
proves that B of the total L evaluations are correct under his secret key. Additionally,
instead of using a cut-and-choose construction for the MPC-in-the-head preprocessing
step, they use a method based on sacrificing multiplication triples by Baum and Nof [3].
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The prover uses a 7-pass identification scheme, where the first challenge selects the
subset B of evaluations to prove, the second challenge is for the sacrificing step of the
MPC protocol, and the third challenge selects one of N parties to reveal for verification.
However, the challenge space of the second challenge is the size of the prime p (which in
LegRoast is set to 2127 − 1) and is therefore much bigger than the third challenge space
(which ranges from N ∈ {16, 64, 256}). As already shown in [3], this essentially means
an adversary gains a negligible advantage when trying to guess the second challenge, and
the overall attack complexity is not reduced by attacking this phase. The parameters of
LegRoast are then chosen in a way that attacks splitting the work between the first and
last phase are ruled out.

6 Conclusion

In this work, we have shown forgery attacks against a class of signature schemes built
from five-pass ID schemes and the Fiat-Shamir transform, highlighting the importance
of concrete parameter selection. Our analysis gives designers an accessible way to choose
the number of parallel repetitions to meet a given security requirement.

An interesting conclusion for the two schemes we investigated in detail, MQDSS and
Picnic, is that initially, the 5-pass variants look more attractive in terms of runtime
and signature size, but once accounting for this attack, the 3-pass variant becomes more
efficient. In addition to being more well analyzed, this is another reason to prefer 3-round
ID schemes.

We did not investigate some of the schemes mentioned in Section 1.1, this may
be interesting future work. Additionally, with some recent practical 7-round protocols
being proposed [3, 7], generalizing our attack beyond five rounds may also be interesting.
Finally, our classification of protocols that are vulnerable to this type of attack could
be improved, as the properties we used (early abort and piecewise simulatability) are
non-standard. Perhaps these properties can be related to existing and more well-studied
properties.
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A Detailed Description of MQDSS

We give the key generation algorithm for MQDSS in Algorithm 3 and the verification
algorithm in Algorithm 4.

Algorithm 3 KeyGen(1k), from [13]

sk
$← {0, 1}k

SF, Ss, Sρ, Srte ← PRGsk(sk)
F← XOFF(SF)
s← PRGs(Ss)
v← F(Ss)
pk := (SF,v)
return (pk , sk)

Algorithm 4 Verify(pk,σ,Msg), from [13]

Parse pk as SF,v
Parse σ as (R, σ0, σ1, σ2)
F← XOFF(SF)
D ← H(pk||R||Msg)
ch1 ← H1(D,σ0)
Parse ch1 as ch1 = {α(1), . . . , α(r)}, α(j) ∈ Fq
ch2 ← H2(D,σ0, ch1, σ1)
Parse ch2 as ch2 = {b(1), . . . , b(r)}, b(j) ∈ F2

Parse σ1 as (rsp
(1)
1 , . . . , rsp

(r)
1 )

Parse σ2 as (r
(1)

b(1)
, . . . , r

(r)

b(r)
, com

(1)

1−b(1) , . . . , com
(r)

1−b(r) , ρ
(1)

b(1)
, . . . , ρ

(r)

b(r)
)

for j ∈ {1, . . . , r} do

Parse rsp
(j)
1 as (t

(j)
1 , e

(j)
1 )

if b(j) == 0 then
com

(j)
0 ← H

(
ρ
(j)
0 , r

(j)
0 , α(j) · r(j)0 − t

(j)
1 , α(j) · F(r

(j)
0 )− e

(j)
1

)
else

com
(j)
1 ← H

(
ρ
(j)
1 , r

(j)
1 , α(j) · (v − F(r

(j)
1 ))−G(t

(j)
1 , r

(j)
1 )− e

(j)
1

)
end if

end for
σ′0 ← H(com

(1)
0 , com

(1)
1 , . . . , com

(r)
0 , com

(r)
1 )

return σ′0 == σ0
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