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Abstract

Understanding the communication complexity of Byzantine agreement (BA) is a fundamental
problem in distributed computing. In particular, as protocols are run with a large number of
parties (as, e.g., in the context of blockchain protocols), it is important to understand the
dependence of the communication on the number of parties n. Although adaptively secure BA
protocols with o(n2) communication are known in the synchronous and partially synchronous
settings, no such protocols are known in the fully asynchronous case.

We show asynchronous BA protocols with (expected) subquadratic communication complex-
ity tolerating an adaptive adversary who can corrupt f ≤ (1−ε)n/3 of the parties (for any ε > 0).
One protocol assumes initial setup done by a trusted dealer, after which an unbounded number
of BA executions can be run; alternately, we can achieve subquadratic amortized communica-
tion with no prior setup. We also show that some form of setup is needed for (non-amortized)
subquadratic BA tolerating Θ(n) corrupted parties.

As a contribution of independent interest, we show a secure-computation protocol in the
same threat model that has o(n2) communication when computing no-input functionalities with
short output (e.g., coin tossing).

1 Introduction

Byzantine agreement (BA) [28] is a fundamental problem in distributed computing. In this context,
n parties wish to agree on a common output even when f of those parties might be adaptively cor-
rupted. Although BA is a well-studied problem, it has recently received increased attention due to
its application to blockchain (aka state machine replication) protocols. Such applications typically
involve a large number of parties, and it is therefore critical to understand how the communication
complexity of BA scales with n. While protocols with adaptive security and o(n2) communication
complexity have been obtained in both the synchronous [26] and partially synchronous [1] settings,
there are currently no such solutions for the asynchronous model.1 This leads us to ask:

Is it possible to design an asynchronous BA protocol with subquadratic communication complexity
that tolerates Θ(n) adaptive corruptions?

1Tolerating f < n/3 static corruptions is easy; see Section 1.1.
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We give both positive and negative answers to this question.

Positive results. We show asynchronous BA protocols with (expected) subquadratic communi-
cation complexity that can tolerate adaptive corruption of any f ≤ (1 − ε)n/3 of the parties, for
arbitrary ε > 0. (This corruption threshold is almost optimal, as it is known [6] that asynchronous
BA is impossible altogether for f ≥ n/3, even assuming prior setup and static corruptions.) Our
solutions rely on two building blocks, each of independent interest:

1. We show a BA protocol ΠBA with subquadratic communication, assuming prior setup by a
trusted dealer for each execution. Importantly, the total size of the setup is independent of n.
(In particular, only a small committee is given anything by the dealer.)

2. We also construct an secure-computation protocol ΠMPC assuming subquadratic BA available
as a subroutine. ΠMPC has subquadratic communication complexity when computing no-input
functionalities whose output length is independent of n, regardless of the size of the circuit
being computed. Moreover, the number of BA executions needed is independent of n as well
as the output length.

We can combine these results to give an affirmative answer to the original question. Specifically,
using a trusted dealer, we can achieve an unbounded number of BA executions with o(n2) commu-
nication per execution. The idea is as follows. Let L be the number of BA executions required
by ΠMPC for computing a no-input functionality. The dealer provides the parties with the setup
needed for L+ 1 executions of ΠBA; the total size of this setup is linear in L but independent of n.
Then, each time the parties wish to carry out Byzantine agreement, they will use one instance of
their setup to run ΠBA, and use the remaining L instances to refresh their initial setup by running
ΠMPC to simulate the dealer. The total communication complexity is subquadratic in n.

Alternately, we can avoid a trusted dealer by having the parties run an arbitrary adaptively
secure MPC protocol to generate the initial setup. This protocol may not have subquadratic
communication complexity; however, once it is finished the parties can revert to the solution above
which has subquadratic communication per BA execution. Overall, this gives BA with amortized
subquadratic communication.

Impossibility result. We justify our reliance on a trusted dealer by showing that some form of
setup is necessary for (non-amortized) subquadratic BA tolerating Θ(n) corrupted parties. More-
over, this holds even when secret channels and erasures are available. Our bound extends ideas of
Abraham et al. [1], who showed a similar result but in a different adversarial model (see further
discussion in the next section).

1.1 Related Work

The problem of BA was introduced by Lamport, Shostak and Pease [28]. Without some form of
setup, BA is impossible (even in a synchronous network) when f ≥ n/3. Fischer, Lynch, and
Patterson [29] ruled out deterministic protocols for asynchronous BA even when f = 1. Starting
with the work of Rabin [36], randomized protocols for asynchronous BA have been studied in both
the setup-free setting [13, 32] as well as the setting with a PKI and a trusted dealer [10].

Dolev and Reischuk [19] show that any BA protocol achieving subquadratic communication
complexity (even in the synchronous setting) must be randomized. BA with subquadratic commu-
nication complexity was first studied in the synchronous model by King et al., who gave setup-free
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protocols with polylogarithmic communication complexity for the case of f ≤ (1 − ε)n/3 static
corruptions [27] and O(n1.5) communication complexity for the same number of adaptive corrup-
tions [26]. Subsequently, several works [30, 31, 33, 1, 23] gave improved protocols with subquadratic
communication complexity (in the synchronous model with an adaptive adversary) using the “player
replaceability paradigm,” which requires setup in the form of verifiable random functions.

Abraham et al. [1] show a BA protocol with adaptive security and subquadratic communication
complexity in the partially synchronous model. They also give a version of the Dolev-Reischuk
bound that rules out subquadratic BA (even with setup, and even in the synchronous communica-
tion model) against a strong adversary who is allowed to remove messages sent by honest parties
from the network after those parties have been adaptively corrupted. Our lower bound adapts
their ideas to the standard asynchronous model where honest parties’ messages can be arbitrarily
delayed, but cannot deleted once they are sent. (We refer to the work of Garay et al. [21] for further
discussion of these two models.) In concurrent work [37], Rambaud proves an impossibility result
similar to our own; we refer to Section 8 for further discussion.

Cohen et al. [17] show an adaptively secure asynchronous BA protocol with o(n2) communica-
tion, using trusted setup. However, they consider a non-standard asynchronous model in which the
adversary is not allowed to reorder messages from honest parties (and is restricted in further ways
as well). We work in the standard asynchronous model.

We remark for completeness that asynchronous BA with subquadratic communication com-
plexity for a static adversary corrupting f < n/3 of the parties is trivial using a committee-based
approach, assuming a trusted dealer. Roughly, the dealer chooses a random committee of Θ(κ)
parties (where κ is a security parameter) who then run BA on behalf of everyone. Achieving
subquadratic BA without a dealer in the static-corruption model is an interesting open question.

Asynchronous secure multi-party computation (MPC) was first studied by Ben-Or, Canetti and
Goldreich [3]. Since then, improved protocols have been proposed with both unconditional [38, 35,
34] and computational [24, 25, 14, 15] security. These protocols achieve optimal output quality, and
incur a total communication complexity of at least Θ(n3κ) assuming the output has length κ. Our
MPC protocol gives a trade-off between the communication complexity and the output quality. In
particular, we achieve subquadratic communication complexity when the desired output quality is
sublinear (as in the case of no-input, randomized functions).

1.2 Overview of the Paper

In Section 2 we discuss our model and recall some standard definitions. We show how to achieve
asynchronous reliable consensus and reliable broadcast with subquadratic communication in Sec-
tion 3. In Section 4 we present an asynchronous BA protocol with subquadratic communication
complexity, assuming prior setup by a trusted dealer for each execution. In Section 6 we show
a communication-efficient asynchronous protocol for secure multi-party computation (MPC). We
describe how these components can be combined to give our main results in Section 7. We conclude
with our lower bound in Section 8.

2 Preliminaries and Definitions

We denote the security parameter by κ, and assume 2κ > n ≥ κ. In all our distributed protocols,
we implicitly assume parties take 1κ as input; in our definitions, we implicitly allow properties to
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fail with probability negligible in κ. We let ppt stand for probabilistic polynomial time. We use
standard digital signatures, where a signature on a message m using secret key sk is computed as
σ ← Signsk(m); a signature is verified relative to public key pk by calling Vrfypk(m,σ). We treat
signatures as idealized objects with perfect unforgeability and correctness.

Model. We consider a setting where n parties P1, . . . , Pn run a distributed protocol over a network
in which all parties are connected via pairwise authenticated channels. We work in the asynchronous
model, meaning the adversary can arbitrarily schedule the delivery of all messages, so long as
all messages are eventually delivered. We consider an adaptive adversary that can corrupt some
bounded number f of the parties at any point during the execution of some protocol, and cause them
to deviate arbitrarily from the protocol specification. However, we assume the standard “atomic
send” model, which means that (1) if at some point in the protocol an honest party is instructed to
send several messages (possibly to different parties) simultaneously, then the adversary can corrupt
that party either before or after it sends all those messages, but not in the midst of sending those
messages; and (2) once an honest party sends a message, that message is guaranteed to be delivered
eventually even if that party is later corrupted. In addition, we assume secure erasure.

In many cases we assume a incorruptible dealer who can initialize the parties with setup infor-
mation in advance of any protocol execution. Such setup may include both public information given
to all parties, as well as private information given to specific parties; when we refer to the size of a
setup, we include the total private information given to all parties but count the public information
only once. Weaker forms of setup are also possible; for example, a public key infrastructure (PKI)
means that all parties hold the same vector of public keys (pk1, . . . , pkn) and each honest party Pi
holds the honestly generated secret key ski corresponding to pki. When the PKI includes keys for
a digital signature scheme, we sometimes let 〈m〉i denote a signature on a message m computed
using Pi’s secret key ski.

Byzantine agreement. We include here the standard definition of Byzantine agreement. Defini-
tions of other primitives are given in the relevant sections.

Definition 1 (Byzantine agreement) Let Π be a protocol executed by parties P1, . . . , Pn, where
each party Pi holds an input vi and parties terminate upon generating output. Π is an f -secure
Byzantine agreement protocol if the following hold if at most f parties are corrupted:

• Validity: if every honest party has the same input value v, then every honest party outputs v.

• Consistency: all honest parties output the same value.

3 Reliable Consensus/Broadcast with o(n2) Communication

In this section we consider the problems of reliable consensus and reliable broadcast, and show
asynchronous protocols for these tasks with subquadratic communication.

3.1 Reliable Consensus

Reliable consensus is a weaker version of Byzantine agreement where termination is not required.
The definition follows.
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Definition 2 (Reliable consensus) Let Π be a protocol executed by parties P1, . . . , Pn, where
each party Pi holds an input vi and parties terminate upon generating output. Π is an f -secure
reliable consensus protocol if the following hold if at most f parties are corrupted:

• Validity: if every honest party has the same input value v, then every honest party outputs v.

• Consistency: either no honest party terminates, or all honest parties output the same value.

We show a reliable consensus protocol ΠRC with subquadratic communication. The protocol
can be viewed as a variant of Bracha’s reliable broadcast protocol [6, 7] for the case where every
party has input.

ΠRC assumes prior setup initialized by a trusted dealer. The trusted setup has expected
size O(κ2) and takes the following form. First, the dealer selects two secret committees C1, C2

by independently placing each party in C1 (resp., C2) with probability κ/n. Then, for each party
Pi in C1 (resp., C2), the dealer generates a public/private key pair (pk1,i, sk1,i) (resp., (pk2,i, sk2,i))
for a digital signature scheme and gives the associated private key to Pi; the public keys (but not
the identities of the members of the committees) are given to all parties.

The protocol itself is described in Figure 1. It begins by having each party in C1 send its signed
input to all the parties. The parties in C2 then send a signed ready message on a value v the first
time they either (1) receive v from κ− t parties in C1 or (2) receive ready messages on v from t+ 1
parties in C2. All parties terminate upon receiving ready messages on the same value from κ − t
parties in C2. Each committee has expected size O(κ), and each member of a committee sends a
single message to all parties; thus, O(κn) messages are sent (in expectation) during the protocol.

Security relies on the fact that an adversary cannot corrupt too many members of C1 (resp., C2)
“until it is too late,” except with negligible probability. For a static adversary this is immediate.
For an adaptive adversary this follows from the fact that each member of a committee sends only a
single message and erases its signing key after sending that message; thus, once the attacker learns
that some party is in a committee, adaptively corrupting that party is useless.

Protocol ΠRC

We describe the protocol from the point of view of a party Pi with input vi, assuming the setup
described in the text. Set t = (1− ε) · κ/3.

1. If Pi ∈ C1: Compute σi ← Signsk1,i(vi), erase sk1,i, and send (echo, (i, vi, σi)) to all parties.

2. If Pi ∈ C2: As long as no ready message has yet been sent, do: upon receiving (echo, (j, v, σj))
with Vrfypk1,j (v, σj) = 1 on the same value v from κ − t distinct parties, or receiving

(ready, (j, v, σj)) with Vrfypk2,j (v, σj) = 1 on the same value v from t+1 distinct parties, compute

σi ← Signsk2,i(v), erase sk2,i, and send (ready, (i, v, σi)) to all parties.

3. Upon receiving (ready, (j, v, σj)) with Vrfypk2,j (v, σj) = 1 on the same value v from κ− t distinct

parties and, output v and terminate.

Figure 1: A reliable consensus protocol, parameterized by ε.

Theorem 3 Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then ΠRC is an f -secure reliable consensus
protocol with expected communication complexity O((κ+ I)κn), where I is the size of each party’s
input. The expected size of the setup is O(κ2).
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Proof Recall that t = (1 − ε) · κ/3. Say a party is 1-honest if it is in C1 and is not corrupted
when executing step 1 of the protocol, and 1-corrupted if it is in C1 but corrupted when executing
step 1 of the protocol. Define 2-honest and 2-corrupted analogously. Lemma 23 shows that with
overwhelming probability C1 (resp., C2) contains less than (1 + ε) · κ parties, there are at least
κ− t parties who are 1-honest (resp., 2-honest), and there are less than t < κ− t parties who are
1-corrupted (resp., 2-corrupted). For the rest of the proof we assume these hold. We also use the
fact that once a 1-honest (resp., 2-honest) party P sends a message, it is guaranteed to be the
only such message that will be accepted by honest parties on behalf of P (even if P is adaptively
corrupted after sending the message).

We first prove that ΠRC is f -valid. Assume all honest parties start with the same input v. Each
of the at least κ− t parties that is 1-honest sends an echo message on v to all other parties, and so
every honest party eventually receives valid echo messages on v from at least κ− t distinct parties.
Since there are strictly fewer than κ− t parties that are 1-corrupted, no honest party receives valid
echo messages on v′ 6= v from κ − t or more distinct parties. It follows that every 2-honest party
sends a ready message on v to all other parties. A similar argument shows that all honest parties
output v and terminate.

Toward showing consistency, we first argue that if honest Pi, Pj send ready messages on vi, vj ,
respectively, then vi = vj . Assume this is not the case, and let Pi, Pj be the first honest parties to
send ready messages on distinct values vi, vj . Then Pi (resp., Pj) must have received at least κ− t
valid ready messages on vi (resp., vj). But then at least

(κ− t) + (κ− t) = (1 + ε) · κ+ t

valid ready messages were received by Pi, Pj overall. But this is impossible, since the maximum
number of such messages is at most |C2| plus the number of 2-corrupted parties (because 2-honest
parties send at most one ready message).

Now, assume an honest party Pi outputs v. Then Pi must have received valid ready messages
on v from at least κ− t distinct parties in C2, at least κ− 2t ≥ t+ 1 of whom are 2-honest. As a
consequence, all 2-honest parties eventually receive valid ready messages on v from at least t + 1
parties, and so all 2-honest parties eventually send a ready message on v. It follows that all honest
parties eventually receive valid ready messages on v from at least κ− t parties, and so output v as
well.

3.2 Reliable Broadcast

Reliable broadcast allows a sender to consistently distribute a message to a set of parties. In
contrast to full-fledged broadcast, reliable broadcast does not require termination.

Definition 4 (Reliable broadcast) Let Π be a protocol executed by parties P1, . . . , Pn, where a
designated sender P ∗ initially holds input v∗, and parties terminate upon generating output. Π is
an f -secure reliable broadcast protocol if the following hold if at most f parties are corrupted:

• Validity: if P ∗ is honest at the start of the protocol, then every honest party outputs v∗.

• Consistency: either no honest party terminates, or all honest parties output the same value.
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It is easy to obtain reliable broadcast ΠRBC from reliable consensus: the sender simply signs its
message and sends it to all parties, who then run reliable consensus on what they received. The
communication complexity is O(κn), the same as for reliable consensus. We formally describe a
reliable broadcast protocol ΠRBC in Figure 2.

Protocol ΠRBC

The sender is P ∗ with secret key sk∗.

1. P ∗ does: compute σ = Signsk∗(v), erase sk∗, and send (v, σ) to all parties.

2. Upon receiving a pair (v, σ) such that Vrfypk∗(v, σ) = 1, input v to the reliable consensus protocol
ΠRC.

3. Upon receiving output v from ΠRC, output v and terminate.

Figure 2: A reliable broadcast protocol.

Theorem 5 Let 0 < ε < 1/3 and f ≤ (1 − 2ε)n/3. Then ΠRBC is a f -secure reliable broadcast
protocol with expected communication complexity O(Iκn), where I is the size of the sender’s input.
The expected size of the setup is O(κ2).

We prove Theorem 5 by separately considering validity and consistency.

Lemma 6 ΠRBC is f -valid.

Proof Assume that the sender Ps is honest at the start of the execution and sends the messages
at Step 1. Then, all honest parties eventually receive a pair (v, σ) with a valid signature from the
sender. Note that no other valid pair is received even if Ps is adaptively corrupted, due to the fact
that Ps erases its secret key before sending.

As a result, every honest party starts a reliable consensus protocol with input v and by validity
of reliable consensus, every honest party outputs v and terminates.

Lemma 7 ΠRBC is f -consistent.

Proof This follows trivially by consistency of the underlying reliable consensus protocol.

4 BA with Subquadratic Communication

In this section we describe a BA protocol with subquadratic communication complexity assuming
initial setup provided by a trusted dealer. Our protocol, based on ideas by Mostéfaoui et al. [32],
consists of a sequence of iterations, where each iteration invokes a graded consensus subprotocol
and a coin-flip subprotocol. In each iteration there is a constant probability that honest parties
reach agreement; once agreement is reached, it cannot be lost in later iterations. The coin-flip
protocol allows parties to adopt the value of a common coin if agreement has not yet been reached
(or, at least, if parties are unaware that it has been reached). Reliable consensus is used so parties
know when to terminate the protocol. We set t = (1− ε)κ/3 throughout this section.
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4.1 Graded Consensus

Graded consensus [20] can be viewed as a weaker form of Byzantine agreement where parties output
a grade along with a value, and agreement is required to hold only if some honest party outputs a
grade of 1. Our definition does not require termination.

Definition 8 (Graded consensus) Let Π be a protocol executed by parties P1, . . . , Pn, where each
party Pi holds an input vi and is supposed to output a value wi along with a grade gi ∈ {0, 1}. Π is
an f -secure graded consensus protocol if the following hold if at most f parties are corrupted:

• Graded validity: if every honest party has the same input value v, then every honest party
outputs (v, 1).

• Graded consistency: if some honest party outputs (w, 1), then every honest party Pi outputs
(w, gi).

Our graded consensus protocol is an adaptation of Canetti-Rabin graded consensus [13], but
with subquadratic communication complexity. The protocol assumes a setup which defines three
secretly chosen committees C1, C2, C3, each of expected size κ. Each party in a committee will
act as a sender in ΠRBC; independent setup is used for each of these. The graded consensus
protocol consists of three phases. In phase i, each party in committee Ci uses ΠRBC to send a
phase-specific message to all parties. Since each set Ci has expected size κ, and the expected
communication complexity of ΠRBC is O(κ2n) (since the messages are of size O(κ)), the graded
consensus protocol has expected communication complexity O(κ3n). We formally describe the
graded consensus protocol and prove the following theorem in Appendix C.

Theorem 9 Let 0 < ε < 1/3 and f ≤ (1 − 2ε)n/3. Then ΠGC is an f -secure graded consensus
protocol with expected communication complexity O(κ3n). The expected size of the setup is O(κ3).

5 A Coin-Flip Protocol

We describe a protocol to generate a sequence of coins. We denote the sub-protocol to generate
the i-th instance of the coin by CoinFlip(i).

The coin-flip subroutine ensures that, in each instance i, (1) all honest parties output the same
coin and (2) until the first honest party calls CoinFlip(i), the output of CoinFlip(i) is uniform.

The coin-flip protocol uses as setup a committee of κ parties, where each party holds a signed
coin share (see Appendix B.1 for a definition of secret-sharing). Parties then simply send the
coin-share to all parties, and reconstruct the uniquely determined coin value.

Lemma 10 Coin properties. Let 0 < ε < 1/3 and f ≤ (1−2ε)n/3. With overwhelming probability,
CoinFlip(i) satisfies the following for every input i:

1. all honest parties obtain the same value Coini,

2. until the first honest party invokes CoinFlip(i), the distribution of Coini appears uniformly
random to the adversary,

3. the expected setup size is O(κ2), and
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Coin-Flip Setup

We describe the protocol from the view of the dealer D. Generate a pair (sk, pk) of secret and public
key of a signature scheme. Send pk to all parties.
For each i ∈ [κ] do:

• For each P ∈ [n], choose P with probability κ/n. Let Ei denote the set of chosen parties.

• Let TSS = (Share,Rec) be a (dκ/3e, |Ei|)-threshold secret sharing scheme.

• Sample b′ ← {0, 1}.

• Generate shares (s1, . . . , s|Ei|)← Share(b′).

• Send (sj ,Signsk(sj , i)) to the j-th member of Ei.

• Send |Ei| to all parties.

Figure 3: A Setup Protocol for T Coins

Protocol CoinFlip(i)

We describe the protocol from the point of view of a party Pj , assuming setup as described in Figure 3:

Let sj denote the share held by Pj (where possibly sj = ⊥).

1. Set S = ∅.

2. If Pj ∈ Ei: send sj to all parties.

3. Upon receiving a share s, set S = S ∪ {s}.

4. Upon receiving at least dκ/3e shares:
Return Coini := Rec({s}s∈S).

Figure 4: A coin flip protocol.

4. the expected communication complexity is O(κ2n).

Proof It immediately follows from Lemma 23 that with probability at least 1 − p3, for any i
corresponding to a round in which CoinFlip(i) is evaluated, there are at most κ(1 − ε)/3 < dκ/3e
dishonest parties that are selected for the ith coin committee Ei. Furthermore, with probability at
least 1 − p1, there are more than κ(2 + ε)/3 that are selected for Ei in any such round who are
honest when they begin running CoinFlip(i), and accordingly send their share of the coin. Thus, by
the secrecy property of TSS, with probability at least 1 − p1 − p3, every invocation of CoinFlip(i)
yields a coin which looks random to the adversary upon the first honest party sending its share.
Moreover, by the reconstruction property of TSS, all honest parties obtain the same value for Coini.

5.1 Byzantine Agreement

We present our BA protocol in Figure 5. The total setup for ΠBA corresponds to κ setups of graded
consensus, a setup for κ coin-flips, and one setup for reliable consensus.

The following theorem is proven in Appendix D.

9



Protocol ΠBA

We describe the protocol from the point of view of a party with input v ∈ {0, 1}.
Set b := v, ready := false, and k := 1. Then do:

1. Run ΠGC on input b, and let (b, g) denote the output.

2. Coink ← CoinFlip(k).

3. If g = 0 then set b := Coink.

4. Run ΠGC on input b, and let (b, g) denote the output.

5. If g = 1 and ready := false: set ready := true and input b to ΠRC.

6. Set k := k + 1 and repeat from (1.).

Termination: When ΠRC terminates with output b′, output b′ and terminate.

Figure 5: A subquadratic Byzantine agreement protocol.

Theorem 11 Let 0 < ε < 1/3 and f ≤ (1 − 2ε)n/3. Then ΠBA is an f -secure BA protocol with
expected communication complexity O(κ4n). The expected size of the setup is O(κ4).

6 MPC with Subquadratic Communication Complexity

Definition of Asynchronous MPC. We recap the definition of Canetti [12] for asynchronous
MPC. Let g denote a function, possibly randomized, where if the inputs of the parties are x1, . . . , xn
and (y1, . . . , yn) ← g(x1, . . . , xn), then Pi is supposed to learn yi. In the real-world execution of
a protocol Π computing g, parties initially hold inputs x = (x1, . . . , xn) and 1κ, and an adversary
A takes as input 1κ and auxiliary input z. The parties execute Π, and A may adaptively corrupt
parties during execution of the protocol. At the end of the execution, each honest party outputs
its final result, and A outputs its view. We let realΠ,A(κ,x, z) denote the distribution over the
resulting vector of outputs as well as the set of corrupted parties.

The security of Π is defined relative to an ideal-world evaluation of g by a trusted party. Here,
the parties begin holding inputs x = (x1, . . . , xn), and an adversary S is given 1κ and auxiliary
input z. The ideal execution then proceeds as follows:

• Initial corruption. S may adaptively corrupt parties and learn their inputs.

• Computation with `-output quality. S chooses a set CoreSet ⊆ {P1, . . . , Pn} of size at
least `. For Pi 6∈ CoreSet, let x′i =⊥; if Pi ∈ CoreSet is honest, let x′i = xi; and if Pi ∈ CoreSet
is corrupted, then S can set x′i arbitrarily.

The trusted party then computes (y1, . . . , yn)← g(x′1, . . . , x
′
n) and sends yi to each party Pi.

• Additional corruption. S can corrupt additional parties and learn their outputs.2

• Output stage. Each honest party Pi outputs yi, and S outputs an arbitrary function of its
view.

2This assumes erasure. Otherwise, S is given the inputs and outputs of corrupted parties.
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We let ideal`g,S(κ,x, z) be the distribution over the vector of outputs and the set of corrupted
parties following an ideal-world execution as above.

Definition 12 Π f -securely computes g with `-output quality if for any ppt adversary A corrupting
up to f parties, there is a ppt adversary S such that:

{ideal`g,S}κ∈N;x,z∈{0,1}∗ ≈c {realΠ,A}κ∈N;x,z∈{0,1}∗ .

Our protocol follows the homomorphic encryption approach [24, 25, 15] but using threshold
fully homomorphic encryption (FHE); see Appendix B.2 for appropriate definitions. Our protocol
achieves a trade-off between the communication complexity and the output quality. It has sub-
quadratic communication complexity when the output quality, as well as the input and output
lengths of the functionality being computed, are sublinear in the number of parties.

Our MPC protocol invokes a validated asynchronous common subset (VACS) protocol as a
subroutine; we give a definition of VACS, and a VACS protocol with subquadratic communication
complexity, in the next section.

6.1 VACS with Subquadratic Communication Complexity

A protocol for the asynchronous common subset (ACS) problem [4, 11] allows n parties to agree
on a subset of their initial inputs. We consider a validated version of ACS, where it is additionally
ensured that all values in the output multiset satisfy a given predicate Q. This notion is inspired
by the standard notion of validated asynchronous Byzantine agreement [9].

Definition 13 Let Q be a predicate, and let Π be a protocol executed by parties P1, . . . , Pn, where
each party Pi initially holds an input vi, outputs a multiset of size at most n, and terminates upon
generating output. Π is an f-secure Q-validated ACS protocol with `-output quality if the
following hold if at most f parties are corrupted:

• Correctness: If an honest party outputs S, each value v ∈ S satisfies Q(v) = 1.

• Consistency: every honest party outputs the same multiset.

• `-Output quality: if every honest party’s input vi satisfies Q(vi) = 1, then all honest parties
output a multiset of size at least `.

We describe a common-subset protocol with subquadratic communication complexity. Let Q
be a predicate. The protocol allows n parties, P1, . . . , Pn, to agree on a common subset of inputs
values satisfying the predicate Q. The protocol follows the structure of [4].

The protocol Π`,Q
VACS uses as setup a secret randomly chosen committee of parties C, where each

party is independently added to the committee with probability p := s/n, where s := 3
2+ε` and `

is the output-quality. The idea is that parties run a number of instances RBC1, . . . ,RBC|C| of the
reliable broadcast protocol introduced in Section 3, where each party Pi ∈ C acts as the sender in
one instance of reliable broadcast, and then run |C| instances of asynchronous byzantine agreement
BA1, . . . ,BA|C| to agree on the set of reliable broadcast instances which terminated and satisfy the

predicate Q. A formal description of the protocol Π`,Q
VACS and a proof of the following theorem can

be found in Appendix E.
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Theorem 14 Let 0 < ε < 1/3, f ≤ (1− 2ε)n/3, and ` ≤ (2 + ε)n/3. For Q an arbitrary predicate,

Π`,Q
VACS is an f -secure Q-validated ACS protocol with `-output quality. The expected communication

complexity is O(` · (Iκn+ κ4n)), where I is the size of each party’s input. The expected size of the
setup is O(`κ4).

6.2 An MPC Protocol

Let t = κ(1− ε)/3. The protocol uses the following setup:

• A randomly chosen committee C, where each party is chosen with probability κ/n.

• A threshold fully-homomorphic encryption scheme TFHE = (KGen,Enc,Dec,Eval) [22] (de-
fined in Appendix B.2) with threshold t. The public key is ek and the secret key dk =
(dk1, . . . , dk|C|), where each party in C holds a secret key share, and all parties know ek and
|C|. Each party in C also has a setup as sender for an instance of the protocol ΠRBC, whereas
all other parties have a recipient-setup.

• A common reference string CRS used for universally composable non-interactive zero-knowledge
proofs [18].

Fix a (possibly randomized) functionality g the parties wish to compute. We assume without
loss of generality that g uses exactly κ random bits (one can always use a PRG to ensure this). Very
roughly, the protocol asks each party Pi to encrypt its input ci = Encek(xi) and execute the VACS
protocol. The VACS allows parties to agree on a common subset of input providers. After that,
parties homomorphically evaluate the function over the encrypted inputs to obtain an encrypted
output. Finally, parties in C jointly decrypt the output.

We deal with adaptive security by using secure-erasures: Parties will erase the relevant in-
formation prior to sending the messages in each of the steps, avoiding in this way the so-called
commitment problem (and also avoiding the need for an equivocal FHE scheme [16]), where the
simulator needs to explain previously sent messages in a consistent manner.

In the protocol, parties prove (in zero-knowledge) the correctness of values sent during the
protocol execution. For this purpose we use universally composable non-interactive zero-knowledge
(NIZK) proofs [18] based on a common reference string (CRS) provided by the dealer. We are
interested in NIZK proofs for two relations, parameterized by a threshold FHE scheme with public
encryption key ek:

1. Proof of plaintext knowledge: The statement consists of ek, and a ciphertext c. The witness
consists of a plaintext m and randomness r such that c = Encek(m; r).

2. Proof of correct decryption: The statement consists of ek, a ciphertext c, and a decryption
share d. The witness consists of a decryption key share dki, such that d = Decdki(c).

The following theorem is proven in Appendix F.

Theorem 15 Let 0 < ε < 1/3, f ≤ (1− 2ε)n/3, and ` ≤ 2+ε
3 n. Assuming the NIZK proof system

is universally composable, and TFHE is a threshold FHE scheme, Π`
MPC f -securely computes g with

`-output quality. The expected communication complexity is O(`(Iκn+κ4n) +κ5n+Oκ2n), where
I is the size of each party’s input and O is the size of the output. The expected size of the setup is
O(`κ4 + κ5). The expected number of invocations of BA is O(`+ κ).
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Protocol Π`
MPC

Let t = κ(1 − ε)/3. We describe the protocol from the point of view of a party Pi with input xi,
assuming the setup described above that defines a committee C. Let g be the circuit to be computed,
and let R be the number of random bits used by g.

1. Compute ci ← Encek(xi) along with a non-interactive zero-knowledge proof of plaintext knowl-
edge πpopki . Erase the local randomness used to generate the ciphertext and the proof. Then,

execute the VACS protocol Π
`,Qpopk

VACS using input (i, Signski(i), ci, π
popk
i ) for the predicate Qpopk that

checks that the signature is correct and πpopki is a correct proof for ci. Let S be the output of
the VACS containing ciphertexts with valid proofs from at least ` parties.

2. Choose uniform r ∈ {0, 1}R and compute ui ← Encek(r) along with a non-interactive zero-
knowledge proof of plaintext knowledge τ popkk for ui. Erase the plaintext and the local randomness

used to generate the ciphertext and the proof. Then, run Π
t+1,Qpopk

VACS using input (ui, τ
popk
i ) for the

predicate that checks that τ
popk
i is a correct proof for ui. Let T denote the output of the VACS.

Let v be denote the ciphertext computed by adding homomorphically all ciphertexts in T .

3. Let Circ(S) be the circuit g where for each party Pj such that there is no correct tuple (j, σj , ·, ·) ∈
S (S defined at Step 1), a default value ⊥ is hard-wired into the circuit, and (the plaintext
corresponding to) ciphertext v is used as the random wires in the circuit.

Let cj denote the input ciphertext obtained of party Pj such that (j, σj , cj , π
popk
j ) ∈ S in Step 1.

Each party uses the homomorphism to locally compute c := Evalek(Circ(S), cj1 , . . . , cj|S|).

4. If Pi ∈ C: compute di = Decdki(c) and a non-interactive zero-knowledge proof of correct decryp-
tion πpocdi . Erase the local randomness to generate the proof and the decryption-key-share dki.

Then, execute a reliable broadcast protocol ΠRBC with input (di, π
pocd
i ) as the sender.

5. Upon receiving t+ 1 correct messages (di, π
pocd), compute output yi = Rec({dj}).

6. Execute a reliable consensus protocol ΠRC with input yi. On output y from ΠRC, output y and
terminate.

Figure 6: An MPC protocol with `-output quality, for ` ≤ 2+ε
3 n.

7 Putting it All Together

The BA protocol ΠBA from Section 4 requires prior setup by a trusted dealer. Unfortunately, a
given instance of the setup can be used for only a single BA execution. Using multiple, independent
instances of the setup it is, of course, possible to support any bounded number of BA executions.
But a new idea is needed to support an unbounded number of executions.

In this section we discuss how to use the MPC protocol from Section 6 to achieve this goal.
The key idea is to use that protocol to refresh the setup each time a BA execution is done. We first
describe how to modify our MPC protocol to make it suitable for our setting, and then discuss how
to put everything together to obtain the desired result.

7.1 Securely Simulating the Dealer

As just noted, we would like to use the MPC protocol from Section 6 to simulate a dealer. Note that
in this case we are evaluating a no-input (randomized) functionality, and so do not need any output
quality; let ΠMPC = Π0

MPC. Using ΠMPC to simulate a dealer, however, is not straightforward. As
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described, ΠMPC evaluates a functionality where all parties receive the same output, but to simulate
a dealer we need to compute a functionality where parties receive different outputs. The standard
approach for adapting MPC protocols to provide parties with different outputs cannot be used in
our context: Specifically, using symmetric-key encryption to encrypt the output of each party Pi
using a key that Pi provides as part of its input does not work, since ΠMPC has no output quality
(and even Π`

MPC only guarantees `-output quality for ` < n) and so not all parties’ inputs will be
included. Assuming a PKI, we can fix this by using public-key encryption instead (in the same
way); this works since the public keys of all parties can be incorporated into the functionality being
computed—since they are common knowledge—rather than being provided as inputs.

Even when using public-key encryption as just described, additional issues remain. ΠMPC has
expected subquadratic communication only when the output length of the functionality being
computed is sublinear in the number of parties. Even if the dealer algorithm generates output
whose length is independent of n, naively encrypting output for every party (encrypting a “null”
value of the appropriate length for parties whose output is empty) would result in output of total
length linear in n. Encrypting the output only for parties with non-empty output does not work
either since, in general, this might reveal which parties get output—defeating the purpose of the
setup altogether!

We can address this difficulty by using anonymous public-key encryption [2] (cf. Appendix B.3).
Roughly, an anonymous public-key encryption (APKE) scheme has the property that a ciphertext
leaks no information about the public key pk used for encryption, except to the party holding the
corresponding secret key sk (who is able to decrypt the ciphertext using that key). Using APKE
to encrypt the output (using the corresponding public key) only for parties who obtain non-empty
output, and then randomly permuting the resulting ciphertexts, allows us to compute a functionality
with sublinear output length while hiding which parties receive output. This incurs—at worst—an
additional multiplicative factor of κ in the output length.

Summarizing, we can simulate an arbitrary dealer algorithm in the following way. View the
output of the dealer algorithm as pub, {(i, si)}, where pub represents the public output that all
parties should learn, and each si is a private output that only Pi should learn. Assume the existence
of a PKI, and let pki denote a public key for an APKE scheme that is held by Pi. Then use ΠMPC

to compute pub, {Encpki(si)}, where the ciphertexts are randomly permuted. As long as the length
of the dealers output is independent of n, the output of this functionality is also independent of n.

7.2 Unbounded Subquadratic BA

We now show how to achieve an unbounded number of subquadratic BA executions. We describe
two solutions: one involving a trusted dealer who initializes the parties with a one-time setup, and
the other a dealer-free solution that achieves expected subquadratic communication in an amortized
sense.

A trusted dealer can initially distribute a PKI (this is done only once and for all) and in addition
initialize the parties with the setup for one instance of ΠBA and one instance of ΠMPC. Importantly,
the setup for ΠMPC can be used to compute any no-input functionality; in particular, the size of
the setup is fixed, independent of the size of the circuit for the functionality being computed, or
its output length. For a BA execution, the parties run ΠBA and then use ΠMPC to refresh their
setup by simulating the dealer algorithm. (We stress that they refresh the setup for both ΠBA and
ΠMPC.) The expected communication complexity per BA execution is the sum of the communication
complexities of ΠBA and ΠMPC. The former is subquadratic; the latter is subquadratic if we follow
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the approach described in the previous section. By proceeding in this way, the parties can run an
unbounded number of BA executions while only involving a trusted dealer once.

Alternately, we can avoid a trusted dealer altogether by having the parties simulate the dealer
using an arbitrary (setup-free) MPC protocol. The communication complexity of the initial MPC
protocol may be high, but all subsequent BA executions will have subquadratic (expected) com-
munication complexity as above. In this way we achieve an unbounded number of BA executions
with amortized (expected) subquadratic communication complexity.

8 Lower Bound

We show that some form of setup is necessary for adaptively ecure asynchronous BA with (non-
amortized) subquadratic communication complexity. Our bound holds even if we allow secure
erasure, and even if we allow secret channels between all the parties. (However, we assume an
attacker can tell when a message is sent from one party to another.)

An analogous bound was shown by Abraham et al. [1, Theorem 4]; their bound holds even with
prior setup and in the synchronous model of communication. However, their result relies strongly
on an adversary who can delete messages sent by honest parties after those parties have been
adaptively corrupted. In contrast, our bound applies to the standard communication model where
honest parties’ messages cannot be deleted once they are sent. In concurrent work [37], Rambaud
also shows a similar bound. He considers protocols in the partially synchronous model, and rules
out subquadratic communication complexity even if the parties have a PKI. His bound, however,
is restricted to protocols that treat signatures in an idealized manner, and thus it does not apply,
e.g., to protocols using unique signatures for coin flipping. His bound also does not account for
secret channels or erasures.

A BA protocol is (f, δ)-secure if the properties of Definition 1 simultaneously hold with proba-
bility at least δ when f parties are corrupted.

Theorem 16 Let 2
3 < δ < 1 and f ≥ 2. Let Π be a setup-free BA protocol that is (f, δ)-secure in

an asynchronous network. Then the expected number of messages that honest parties send in Π is
at least (3δ−2

8δ )2 · (f − 1)2.

We first provide an outline of the proof Let Π be a setup-free protocol for asynchronous BA
with subquadratic communication complexity. We show an efficient attacker A who succeeds in
violating the security of Π. The attacker exploits the fact that with high probability, a uniform
(honest) party P will communicate with only o(n) other parties during an execution of Π. The
adversary A can use this to “isolate” P from the remaining honest parties in the network and
cause an inconsistency. In more detail, consider an execution in which P holds input 1, and the
remaining honest parties S′ all hold input 0. A tricks P into thinking that it is running in an
alternate (simulated) execution of Π in which all parties are honest and hold input 1, while fooling
the parties in S′ into believing they are running an execution in which all honest parties hold 0
and at most f (corrupted) parties abort. By validity, P will output 1 and the honest parties in S′

will output 0, but this contradicts consistency.
To “isolate” P as described, A runs two simulated executions of Π alongside the real execution of

the protocol. (Here, it is crucial that Π is setup-free, soA can run the simulated executions on behalf
of all parties.) A delays messages sent by honest parties to P in the real execution indefinitely;
this is easy to do in the asynchronous setting. When a party Q ∈ S′ sends a message to P in
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the simulated execution, A corrupts Q in the real execution and then sends that message on Q’s
behalf. Analogously, when P sends a message to some honest party Q ∈ S′ in the real execution, A
“intercepts” that message and forwards it to the corresponding party in the simulation. (A subtlety
here is that messages sent between two honest parties cannot be observed via eavesdropping, because
we allow secret channels, and can not necessarily be observed by adaptively corrupting the recipient
Q after it receives the message, since we allow erasure. Instead, A must corrupt Q before it receives
the message sent by P .) It only remains to argue that, in carrying out this strategy, A does not
exceed the corruption bound.

The above omits several technical details, but conveys the main ideas.
Proof [Theorem 16] If f ≥ n/3 the theorem is trivially true (as asynchronous BA is impossible);
thus, we assume f < n/3 in what follows. We present the proof assuming f is even and show that
in this case, the expected number of messages is at least c2f2. The case of odd f can be reduced
to the case of even f since any (f, δ)-secure protocol is also an (f − 1, δ)-secure protocol.

Let c = 3δ−2
8δ . Fix an (f, δ)-secure protocol Π whose expected number of messages is less

than c2f2. Fix a subset S ⊂ [n] with |S| = f
2 . Let S′ denote the remaining parties. Consider an

execution (Ex1) of Π that proceeds as follows: At the start of the execution, an adversary corrupts
all parties in S and they immediately abort. The parties in S′ remain honest and run Π using
input 0. By δ-security of Π we have:

Lemma 17 In Ex1 all parties in S′ output 0 with probability at least δ.

Now consider an execution (Ex2) of Π involving an adversary A. (As explained in the proof
intuition, A’s goal is to make P believe it is running in an execution in which all parties are honest
and have input 1, and to make the honest parties in S′ believe they are running in Ex1.) At the
start of the execution, A chooses a uniform P ∈ S and corrupts all parties in S except for P .
All parties in S′ are initially honest and hold input 0, while P holds input 1. A maintains two
simulated executions that we label red and blue. (See Figure 7.) In the blue execution, A plays the
role of all parties other than P ; all these virtual parties run Π honestly with input 1. In the red
execution, A simulates an execution in which all parties in S immediately abort, and all parties in
S′ run Π honestly with input 0. A uses these two simulations to determine how to interact with
the honest parties in the real execution. Specifically, it schedules delivery of messages as follows:

• S′ to P , real execution. Messages sent by honest parties in S′ to P in the real execution
are delayed, and delivered only after all honest parties have generated output.

• P to S′, real execution. When P sends a message to an honest party Q ∈ S′ in the real
execution, A delays the message and then corrupts Q. Once Q is corrupted, A delivers the
message to Q in the real execution (and can then read the message). A also delivers that
same message to Q in the blue simulation.

• S′ to P , blue execution. When a party Q ∈ S′ sends a message m to P in the blue
execution, A corrupts Q in the real execution (if Q was not already corrupted), and then
sends m to P (on behalf of Q) in the real execution. (Messages that Q may have sent
previously to P in the real execution continue to be delayed.)

• S to P , blue execution. When a party Q ∈ S sends a message m to P in the blue execution,
Q sends m to P in the real execution (recall that parties in S \ {P} are corrupted in Ex2).
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• S′ to S′, real execution. Messages sent by honest parties in S′ to other parties in S′ in the
real execution are delivered normally. If the receiver is corrupted, the message is relayed to
A, who simulates this same message in the red execution.

• S′ to S \ {P}, real execution. Messages sent by honest parties in S′ to the (corrupted)
parties in S \ {P} in the real execution are ignored.

• S′ to S′, red execution. If a party Q ∈ S′ is corrupted in the real execution, then whenever
a message m is sent by a party Q to another party in S′ in the red execution, Q sends m in
the real execution.

If A would ever need to corrupt more than f parties in total, then it simply aborts. (However,
the real execution continues without any further interference from A.)

Ex 1
(Input 0)

delivered normally

relayed to/from A

delayed

Key

honest

corrupt

S′

S

Ex 3
(Input 1)

S′

S

S′

S

P

Adversary Real Execution

P

Figure 7: Adversarial strategy in Ex2. In the real execution (shown at right) corrupted parties in
S interact with P as if they are honest with input 1, and ignore honest parties in S′. Corrupted
parties in S′ interact with P as if they are honest with input 1, and interact with S′ as if they
are honest with input 0. All messages between P and honest parties in S′ are delayed indefinitely.
The adversary maintains two simulated executions (shown at left) to determine which messages
corrupted parties will send in the real execution.
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Lemma 18 In Ex2, the distribution of the joint view of all parties in S′ who remain uncorrupted
is identical to the distribution of their joint view in Ex1. In particular, with probability at least δ
in Ex2 all parties in S′ who remain uncorrupted output 0.

Proof The only messages received by the parties in S′ in either Ex1 or Ex2 are those that arise
from an honest execution of Π among the parties in S′, all of whom hold input 0. Moreover, in
Ex2 the decision as to whether or not a party in S′ is corrupted is independent of the joint view of
all uncorrupted parties in S′. The final statement follows from Lemma 17.

We also show that with positive probability, A does not abort.

Lemma 19 In Ex2, A does not abort with probability at least 1− 4c.

Proof A aborts if it would exceed the corruption bound. Initially, only the f/2 parties in S are
corrupted. Let M denote the total number of messages sent either by the parties in S′ to the parties
in S or by parties in S to parties in S′ in the blue execution. By assumption, Exp[M ] < c2f2. Let
X be the event that M ≤ c

2f
2. Lemma 21 implies that

Pr[X] ≥ Pr

[
M ≤ Exp[M ]

2c

]
≥ 1− 2c.

Let Y be the event that, among the first cf2/2 messages sent by parties in S′ to parties in S or
vice versa, a uniformly chosen P ∈ S sends and/or receives at most f/2 of those messages. By
the pigeonhole principle, at most cf parties in S can receive and/or send f/2 or more of those
messages, and so Pr[Y ] ≥ 1− cf/|S| = 1− 2c.3 Thus, Pr[X ∧ Y ] = Pr[X] + Pr[Y ]− Pr[X ∪ Y ] ≥
(1 − 2c) + (1 − 2c) − 1 = 1 − 4c. The lemma follows by observing that when X and Y occur, at
most f/2 parties in S′ are corrupted.

Finally, consider an execution (Ex3) in which a uniform P ∈ S is chosen and then Π is run
honestly with all parties holding input 1.

Lemma 20 In Ex2, conditioned on the event that A does not abort, the view of P is distributed
identically to the view of P in Ex3. In particular, with probability at least δ in Ex2, P outputs 1.

Proof In Ex2, the view of P is determined by the virtual execution in which all parties run Π
honestly using input 1. The final statement follows because in Ex3, (f, δ)-security of Π implies that
P outputs 1 with probability at least δ.

We now complete the proof of the theorem. In execution Ex2, let Z1 be the event that A does
not abort; by Lemma 19, Pr[Z1] ≥ 1 − 4c. Let Z2 be the event that P does not output 0 in Ex2;
using Lemma 20 we have

Pr[Z2] ≥ Pr[Z2 | Z1] · Pr[Z1] ≥ δ · (1− 4c).

3It is convenient to view the communication between S and S′ as an undirected, bipartite multi-graph in which
each node represents a party and an edge (U, V ) represents a message sent between parties U ∈ S and V ∈ S′. As
the number of edges in this graph is at most cf2/2, there can not be more than cf nodes in S whose total degree is
at least f/2.
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Let Z3 be the event that all uncorrupted parties in S′ output 0 in Ex2. By Lemma 18, Pr[Z3] ≥ δ.
Recalling that 2/3 < δ < 1, we see that

Pr[Z2 ∧ Z3] = Pr[Z2] + Pr[Z3]− Pr[Z2 ∪ Z3] ≥ 2δ − 4cδ − 1 =
δ

2
>

1

3
> 1− δ,

contradicting (f, δ)-security of Π.
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Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008,
Part II, volume 5126 of LNCS, pages 473–485. Springer, Heidelberg, July 2008.

20



[26] Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement
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A Concentration Inequalities

We briefly recall the following standard concentration bounds.

Lemma 21 (Markov bound) Let X be a non-negative random variable. Then for a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Lemma 22 (Chernoff bound) Let X1, ..., Xn be independent Bernoulli random variables with
parameter p. Let X :=

∑
iXi, so µ := E[X] = p · n. Then, for δ ∈ [0, 1]

• Pr[X ≤ (1− δ) · µ] ≤ e−δ2µ/2.

• Pr[X ≥ (1 + δ) · µ] ≤ e−δ2µ/(2+δ).

Let χs,n denote the distribution that samples a subset of the n parties, where each party is
included independently with probability s/n. The following lemma will be useful in our analysis.

Lemma 23 Fix s ≤ n and 0 < ε < 1/3, and let f ≤ (1 − 2ε) · n/3 be a bound on the number of
corrupted parties. If C ← χs,n, then:

1. C contains fewer than (1 + ε) · s parties except with probability e−
ε2s
2+ε .

2. C contains more than (1+ε/2)·2s/3 honest parties except with probability at most e−ε
2s/12·(1+ε).

3. C contains fewer than (1−ε)·s/3 corrupted parties except with probability at most e−ε
2s/(6−9ε).

Proof Let H ⊆ [n] be the indices of the honest parties. Let Xj be the Bernoulli random
variable indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define Z1 =

∑
j Pj , Z2 :=

∑
j∈H Xj , and

Z3 :=
∑

j 6∈H Xj . Then:

1. Since E[Z1] = s, setting δ = ε in Lemma 22 yields

Pr [Z1 ≥ (1 + ε) · s] ≤ e−ε2s/(2+ε).

2. Since E[Z2] ≥ (n− f) · s/n ≥ (1 + ε) · 2s/3, setting δ = ε
2+2ε in Lemma 22 yields

Pr

[
Z2 ≤

(1 + ε/2) · 2s
3

]
≤ e−ε2s/12·(1+ε).

3. Since E[Z3] ≤ f · s/n ≤ (1− 2ε) · s/3, setting δ = ε
1−2ε in Lemma 22 yields

Pr

[
Z3 ≥

(1− ε) · s
3

]
≤ e−ε2s/(6−9ε).
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B Additional Definitions

B.1 Secret Sharing

We recall the standard notion of perfect secret sharing.

Definition 24 A (t, n)-threshold secret sharing scheme TSS is a tuple of algorithms (Share,Rec)
such that:

• On input a message s, the randomized secret sharing algorithm Share outputs shares s1, . . . , sn.

• On input shares si1 , . . . , sit+1, the deterministic reconstruction algorithm Rec outputs a re-
constructed value s or ⊥.

We require that TSS satisfy:

Perfect secrecy: For any I ⊂ [n] with |I| = t, the distribution

{s1, . . . , sn ← Share(s) : {si}i∈I}

is independent of s. (Note that because we require perfect secrecy, this holds even if I is
chosen adaptively.)

Reconstruction: For any s, and any I ⊂ [n] with |I| = t+ 1

Pr[s1, . . . , sn ← Share(s) : Rec({(i, si)}i∈I) = s] = 1.

B.2 Threshold Fully Homomorphic Encryption

The following definitions are adapted from Gentry’s thesis [22].

Definition 25 A fully homomorphic encryption scheme (FHE) consists of four algorithms:

• Key generation: (ek, dk) = KGen(1κ), where ek is the public encryption key and dk is the
decryption key.

• Encryption: c = Encek(m; r) denotes an encryption with key ek of a plaintext m with ran-
domness r, to obtain ciphertext c.

• Decryption: m = Decdk(c) denotes a decryption of ciphertext c with key dk to obtain plaintext
m.

• Homomorphic evaluation: c = Evalek(C, c1, . . . , cn) denotes the evaluation of a circuit C over
a tuple of ciphertexts (c1, . . . , cn) to obtain c.

As usual, we require that the FHE is correct when evaluating a circuit C, and compact, meaning
intuitively that the ciphertext size should not grow through homomorphic operations [8, 39].

Definition 26 A FHE scheme is correct and compact if it satisfies the following properties:
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• Correctness: For any circuit C and ciphertexts ci, where mi = Decdk(ci):

Pr[Decdk(Evalek(C, c1, . . . , cn)) = C(m1, . . . ,mn)] = 1− neg(κ),

where (ek, dk) = KGen(1κ).

• Compactness: There is a polynomial p, such that for any key pair (ek, dk) = KGen(1κ), any
circuit C and all ciphertexts ci, the size of the output Evalek(C, c1, . . . , cn) is not more than
p(κ) bits, independent of the depth and the size of the circuit.

In our protocol we require in addition that the FHE scheme to have threshold decryption (e.g.
[5]), meaning that KGen generates a public key ek as well as a threshold secret sharing of the secret
key (dk1, . . . , dkn) such that decrypting c using dki outputs a share of the message.

Definition 27 A threshold FHE scheme is an FHE scheme with the following two additional prop-
erties:

• The key generation algorithm is parameterized by (t, n) and outputs (ek, dk) = KGen(t,n)(1
κ),

where dk is a (t, n)-threshold secret sharing of the secret key (dk1, . . . , dkn).

• Given a ciphertext c and a share dki, there is a share-decryption algorithm di = DecSharedki(c),
such that (d1, . . . , dn) is a (t, n)-threshold secret sharing of the plaintext m = Decdk(c). We
denote the reconstruction algorithm that receives t+ 1 decryption shares by m = Rec({di}).

B.3 Anonymous Public-Key Encryption

We recall the definition of anonymous public-key encryption from [2].

Definition 28 A public-key encryption scheme PE = (G,K, E ,D) consists of four algorithms:

• Common-key generation: I = G(1κ), where I is a common key, which might be just the
security parameter κ or include some additional information.

• Key generation: (pk, sk) = K(I), takes as input the common key I and returns a pair of keys,
where pk is the public key and sk is the secret key.

• Encryption: c = Epk(m; r) denotes an encryption with key pk of a plaintext m with randomness
r, to obtain ciphertext c.

• Decryption: m = Dsk(c) denotes a decryption of ciphertext c with key sk to obtain plaintext m.

Definition 29 Let PE = (G,K, E ,D) be an encryption scheme. Let b ∈ {0, 1}, and let Acpa be an
adversary that runs in the experiment described in Figure 8. The scheme PE is IK-CPA secure if:

Pr[Exp1
PE,Acpa

(κ) = 1]− Pr[Exp0
PE,Acpa

(κ) = 1] ≤ neg(κ).
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Experiment ExpbPE,Acpa
(κ)

1. I = G(κ)

2. (pk0, sk0) = K(I); (pk1, sk1) = K(I)

3. (x, s) = Acpa(find, pk0, pk1)

4. y = Epkb(x)

5. d = Acpa(guess, y, s)

6. Return d

Figure 8: Security game for IK-CPA.

C Graded Consensus

Our graded consensus protocol is described in Figure 10. The protocol is based on the graded
consensus protocol by Canetti and Rabin [13]. In the first phase, parties in C1 reliably broadcast
their input value. All parties wait to complete κ − t broadcasts, and then set their prepare2 value
as the majority value among these outputs. In the second phase, parties in C2 reliably broadcast
their prepare2 value. All parties wait for κ − t broadcasts that output consistent values with the
broadcasted inputs from the first phase to terminate, and sets the prepare3 value as the majority
of such outputs. In the third phase, parties in C3 reliably broadcast their prepare3 value. Then,
parties wait for κ− t broadcasts that are consistent with the received prepare2 values to terminate.
The idea is that if all prepare2 values received by a party are the same value b (this party outputs
(b, 1)), then it is guaranteed that every other honest party eventually receives the same prepare2

values (and so outputs (b, 1)) as well, or eventually receives the same prepare3 values (and outputs
(b, 0)).

Graded Consensus Setup

The dealer does, for i ∈ 1, 2, 3:

• For each P ∈ [n], choose P with probability κ/n. Let Ci denote the set of chosen parties.

• Each party in C has available a setup for ΠRBC as sender.

Figure 9: A Setup Protocol for GC

Lemma 30 Let Pi and Pj be honest parties, and denote as S1,j , S1,i the respective sets S1 of those
parties in an execution of ΠGC. Then with overwhelming probability, eventually S1,j ⊆ S1,i.

Proof Suppose that (b`, `) ∈ S1,j . With overwhelming probability, this implies that Pj output
(prepare1, `, b`) in RBC` where P` in C1. By the consistency property of RBC, Pi either eventually
outputs (prepare1, `, b`) in RBC` and hence adds (b`, `) to S1,i or terminates ΠGC (with overwhelming
probability). Thus, every value in S1,j is eventually added to S1,i (and hence S1,j ⊆ S1,i), with
overwhelming probability.

Lemma 31 Let Pi and Pj be honest parties, and denote as sets S2,j , S2,i the respective sets S2 of
those parties in an execution of ΠGC. Then with overwhelming probability, eventually S2,j ⊆ S2,i.
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Protocol ΠGC

We describe the protocol from the point of view of a party with input v ∈ {0, 1}.

1. Initialize Ŝ1 = Ŝ2 = S1 = S2 = S3 := ∅, b1 := v, b2 = b3 := ⊥

2. If Pi ∈ C1: participate in RBCi as the sender with input (prepare1, i, b1). Participate in each
protocol RBCj , j 6= i, j ∈ C1, as the receiver.

3. Upon receiving output (prepare1, j, bj) in RBCj where j ∈ C1, add (bj , j) to S1.

4. When |S1| = κ−t, do: Set Ŝ1 = S1 and set b2 to the majority bit among values in Ŝ1. Participate
in RBCi as the sender with input (prepare2, i, Ŝ1, b2) if Pi ∈ C2. Participate in each protocol RBCj ,
j 6= i, j ∈ C2, as the receiver.

5. Upon receiving output (prepare2, j, Ŝ1,j , bj) in RBCj do: if j ∈ C2, Ŝ1,j ⊆ S1, and bj is the

majority bit among Ŝ1,j , add (bj , j) to S2.

6. When |S2| = κ−t, do: Set Ŝ2 = S2 and set b3 to the majority bit among values in Ŝ2. Participate
in RBCi as the sender with input (prepare3, i, Ŝ2, b3) if Pi ∈ C3. Participate in each protocol RBCj ,
j 6= i, j ∈ C3, as the receiver.

7. Upon receiving output (prepare3, j, Ŝ2,j , bj) in RBCj do: if j ∈ C3, Ŝ2,j ⊆ S2, and bj is the

majority bit among Ŝ2,j , add (bj , j) to S3.

8. When |S3| = κ− t, do:

• If there exists b ∈ {0, 1} s.t. for all (bj , j) ∈ Ŝ2 it holds that bj = b, then output (b, 1).

• Else if there exists b ∈ {0, 1} s.t. for all (bj , j) ∈ S3 it holds that bj = b, then output (b, 0).

• Else output (0, 0).

Figure 10: A protocol for graded consensus.

Proof Denote as S1,j , S1,i the respective sets S1 of parties Pi and Pj and suppose that (b`, `) ∈
S2,j . With overwhelming probability, this implies that Pj output (prepare2, `, Ŝ1,`, b`) in RBC` where

P` in C2, Ŝ1,` ⊆ S1,j , and b` is the majority bit among values in Ŝ1,`. By the consistency property

of RBC and the previous lemma, Pi either eventually outputs (prepare2, `, b`) in RBC` and Ŝ1,` ⊆
S1,j ⊆ S1,i or or terminates ΠGC (with overwhelming probability). Once the former happens, Pi
adds (b`, `) to S2,i. Thus, every value in S2,j is eventually added to S2,i (and hence S2,j ⊆ S2,i),
with overwhelming probability.

Lemma 32 With overwhelming probability, for every honest party Pi, S1, S2, and S3 eventually
are of size κ− t.

Proof Let Pi be an honest party. We analyze the size of the sets in sequence.

• S1: By validity, Pi outputs in all RBC instances corresponding to honest parties in C1

with overwhelming probability and adds a corresponding tuple to S1 as a result. Since by
Lemma 23, at least κ− t parties in C1 are honest, the claim for S1 follows.

• S2: Since all honest parties S1 sets eventually become of size κ − t, all honest parties Pj in
C2 eventually send a message (prepare2, `, Ŝ1,j , bj) in RBCj . By Lemma 30, Ŝ1,j ⊆ Si, with
overwhelming probability, eventually. This implies that all checks for the instance RBCj are
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satisfied in Step 5 with overwhelming probability at some point. By validity of RBC and
Lemma 23, Pi eventually adds at least κ − t tuples of the form (bj , j) to S2 in this manner,
with overwhelming probability.

• S3: The claim on S3 follows in an analogous fashion as the previous one.

Lemma 33 If all honest parties Pi in C1 send (prepare1, i, b) in RBCi, then no honest party adds
a tuple (1− b, j) to S2, with overwhelming probability.

Proof Assume toward a contradiction that all honest parties Pi in C1 send (prepare1, i, b) in RBCi
and there is an honest party P that adds a tuple (1 − b, j) to S2. This implies that it received
(prepare2, j, Ŝ1,j , 1 − b) in RBCj , where j ∈ C2 and 1 − b is the majority value among values in
Ŝ1,j , and |Ŝ1,j | ≥ κ − t. By assumption, Ŝ1,j ⊆ S1, and so P outputs in all instances of RBC that
correspond to Ŝ1,j . By validity and since all honest parties in C1 send (prepare1, i, b) in RBCi, at
least κ− 2t > t of the tuples in Ŝ1,j are of the form (b, j) and at most most t tuples in Ŝ1,j are of
the form (1 − b, j), with overwhelming probability. This contradicts that b is the majority value
among values in Ŝ1,j .

Lemma 34 If an honest party Pi has Ŝ2 such that all (bj , j) ∈ Ŝ2, bj = b for some b ∈ {0, 1}, then
each honest party Pj has for all (bj , j) ∈ S3, bj = b, with overwhelming probability.

Proof
Let Ŝ2 be the set of Pi at Step 6 that contains consistently the same value, i.e., such that all

(bj , j) ∈ Ŝ2, bj = b.
We argue that the set S3 of Pj consistently contains b as well, since any set Ŝ2,k that Pj accepts

in Step 7 has the majority bit b.
Assume that there exists a set Ŝ2,k that has a different majority bit than b. Then, the sets Ŝ2 of

Pi and Ŝ2,k both have size at least κ− t. Since there are at most t dishonest parties by Lemma 23,
and by validity of the reliable broadcast, at least κ− 2t values came from prepare2 messages from
honest parties.

Since honest parties only send one prepare value, this implies that there are 2κ − 4t = 2κ/3 ·
(1 + 2ε) distinct honest parties, which is in contradiction with Lemma 23. Hence, the majority bits

in all accepted sets Ŝ2,k
2 is the same and the statement follows.

Lemma 35 ΠGC satisfies graded-validity.

Proof By Lemma 32, every honest party accumulates a set S3 of size κ− t and hence outputs a
value and a grade.

Assume all honest parties have input v. This implies that all honest parties Pi in C1 send
(prepare1, i, v). By Lemma 33, no honest parties add (1 − v, j) to S2. Hence, every honest party
outputs (v, 1).

Lemma 36 All honest parties generate output in ΠGC.
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Proof This follows from the fact that every honest party eventually accumulates S3 with size
κ− t by Lemma 32.

Lemma 37 ΠGC satisfies graded consistency.

Proof Termination is argued in Lemma 36. Let Pi and Pj be two honest parties. Assume that
Pi outputs (v, 1).

Let Ŝi2 denote the set Ŝ2 that Pi accumulates in Step 6. Then Ŝi2 contains consistently the same
bit. By Lemma 31, Pj cannot output (1 − v, 1). Moreover, by Lemma 34, the set Ŝj3 consistently
contains v, and hence Pj outputs (v, 1) or (v, 0).

D Proof of Theorem 11

Security of ΠBA follows immediately from the following lemmas. In the following, we say that
parties input a value when they decide on their input, even though parties may not actually send a
message upon inputting (if they are not on the appropriate committee). For example, we consider
Pi to have input b to ΠRC upon reaching step 5 of ΠBA, because that is the point when Pi’s input
value for ΠRC is determined (even if Pi does not actually send a message in ΠRC until later).

Lemma 38 If at most f parties are corrupted during an execution of ΠBA, then some honest
party sets ready = true after an expected constant number of iterations, and some honest party sets
ready = true with overwhelming probability after at most κ iterations.

Proof Assume at most f parties are corrupted, and consider an iteration k of ΠBA such that no
honest party set ready = true in any round k′ < k. (This is trivially true of the first iteration).
We begin by showing that in such an iteration, all honest parties input the same value v to the
second execution of ΠGC with probability at least 1/2. Call this event E1. We consider two cases.
In the first case, suppose that some honest party outputs (b, 1) in the first execution of ΠGC during
iteration k. (Call this event E2.) Graded consistency of ΠGC guarantees that each other honest
party outputs (b, 1) or (b, 0) during that execution. We can see that b is chosen independently
of Coink with overwhelming probability, because b is determined prior to the first honest party
invoking CoinFlip(i). Therefore, with probability 1/2, Coink = b. Hence, all parties (regardless of
output grade) input b to the second execution of ΠGC. Thus, the probability that E1 occurs given
that E2 occurs is at least 1/2. For the second case, suppose that no honest party outputs with
grade 1 in the first execution ΠGC. (Call this event E3.) Then all honest parties input Coink to
the second execution of ΠGC, and by Lemma 10, Coink is the same for all honest parties. Thus, the
probability that E1 occurs given that E3 occurs is 1. Because either E2 or E3 must occur and the
two events are disjoint, we can see that E1 occurs in this round with probability at least 1/2.

If E1 does occur in iteration k and no party has yet set ready = true, then by graded validity,
certainly at least one honest party will output (g, 1) from the second execution of ΠGC, and that
party will then set ready = true. Even if E1 does not occur in round k, it is still possible that some
honest party will output (g, 1), and thus set ready = true. Thus, in any iteration k of ΠBA such that
no honest party set ready = true in any round k′ < k, the probability that some honest party sets
ready = true is at least Pr[E1] = 1/2. Therefore, after an expected constant number of iterations,
some honest party sets ready = true, and some honest party sets ready = true with overwhelming
probability after at most κ iterations.
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Lemma 39 If at most f parties are corrupted during an execution of ΠBA, and if some honest
party inputs b to ΠRC in iteration k, then (1) all honest parties who input a value to an execution
of ΠGC in iteration k′ ≥ k+ 1 must input b, and (2) all honest parties who input a value to ΠRC in
iteration k′ ≥ k must input b.

Proof Assume at most f parties are corrupted during an execution of ΠBA. Consider the first
iteration k in which some honest party Pi sets ready = true, and let b be Pi’s input to ΠRC. Pi
must have received (g, 1) from the second execution of ΠGC during round k. By graded consistency,
all other honest parties who receive output from this execution of ΠGC must receive (b, g), with
g = 0 or g = 1. Thus, any parties who input to ΠRC in this iteration must input b. Moreover, any
honest parties who decide on an input to the first execution of ΠGC in iteration k + 1 must input
b. Graded validity thus ensures that a party who receives output from that execution of ΠGC will
receive (b, 1), causing them to input b to the next execution, and so on for as long as they continue
to receive output and provide input; thus, we see that an honest party who provides input to ΠRC

in any future iteration must also input b.4

Lemma 40 If at most f parties are corrupted during an execution of ΠBA, and if some honest
party sets ready = true and inputs a bit b to ΠRC, then all honest parties terminate with output b.

Proof Let k be the first iteration in which some honest party sets ready = true and inputs a bit
b to ΠRC. By Lemma 39, we see that any honest party who inputs a value to ΠRC must input b,
and furthermore, all honest parties who input a value to an execution of ΠGC in iteration k′ ≥ k+1
must input b. We consider two cases: either no honest party terminates before all honest parties
receive output from the second execution of ΠGC in iteration k+1, or some honest party terminates
before then.

In the first case, graded validity of ΠGC ensures that all honest parties eventually receive (b, 1)
as output, and thus all parties either input b to ΠRC at this point, or they have already done so.
By validity of ΠRC, all honest parties eventually output b and terminate.5

In the second case, some honest party Pi terminates before all honest parties have received
output from ΠGC in iteration k + 1. By validity of ΠRC, Pi must have output b. It is possible
that ΠGC will lose liveness; however, consistency of ΠRC guarantees that all parties will eventually
output b.

Lemma 41 ΠBA is an f -secure BA protocol.

Proof Assume at most f parties are corrupted during an execution of ΠBA. By Lemma 38, some
honest party eventually sets ready = true and inputs a bit b to ΠRC. It immediately follows from
Lemma 40 that all honest parties terminate. Furthermore, they terminate with output b, proving
f -consistency.

Next, at most f parties are corrupted during an execution of ΠBA, and assume all honest parties
input v. By graded validity of ΠGC, all honest parties receive (v, 1) as output from the first execution

4Note that since ΠGC is an asynchronous protocol, even if some parties terminate, security of ΠGC ensures that
parties will only ever input b in future rounds. However, if some parties terminate, it is possible for ΠGC to lose
liveness for the remaining parties, in which case they may not input anything.

5In this case, we have assumed that no honest parties terminate before the second execution ΠGC, and therefore
we do not have to worry about ΠGC losing liveness.
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of ΠGC in iteration 1, ignore the coin, and input v to the second execution of ΠGC. Again, graded
validity implies that if a party receives output (b, g) from the second execution of ΠGC, we must
have (b, g) = (v, 1). Consider the first honest party Pi to receive output from the second execution
ΠGC in iteration 1. Pi will set ready = true and input v to ΠRC. By Lemma 40, we see that all
honest parties will output v. This proves f -validity.

E VACS Protocol and Analysis

We formally describe the protocol Π`,Q
VACS sketched in Section 6.1, and prove it secure.

Protocol Π`,Q
VACS

We describe the protocol from the point of view of a party Pi with input vi. Given as set up the secret
random committee C where each party is independently added to the committee with probability

3
(2+ε)n`:

1. If Pi ∈ C: participate in RBCi as the sender. Otherwise, participate in each protocol RBCj ,
j 6= i, as the receiver.

2. On output v from RBCj , if Q(v) = 1 and an input has not yet been provided to BAj , then input
1 to BAj .

3. When ` of the protocols BA have output 1, input 0 to each instance BAj if it has not yet been
provided input.

4. Once all instances of BA have been completed, let CoreSet be the indices of each BA that delivered
1. Wait for the output vj for each RBCj , j ∈ CoreSet. Finally output ∪j∈CoreSet{vj}.

Figure 11: A VACS protocol with `-output quality and predicate Q.

Lemma 42 Π`,Q
VACS is f -correct.

Proof This trivially follows from the fact that validity of BA implies that any instance BAj
outputs 1 only if an honest party inputs 1 to that instance. Since honest parties only input 1 to
BAj if the corresponding value from RBCj satisfies Q, the statement follows.

Lemma 43 Π`,Q
VACS is f -consistent.

Proof Since each instance of BA satisfies consistency, all parties obtain the same set of indices
CoreSet. Now we argue that all parties output the same set of values. First, an instance BAj
outputs 1 only if there is an honest party that inputs 1 to BAj (by validity, if all honest parties
input 0, the output of BA is 0). Moreover, an honest party inputs 1 only if RBCj terminated for
that party. Due to consistency of RBCj , all honest parties eventually output and terminate with
the same value. Hence, all parties obtain the same set of values.

Lemma 44 Π`,Q
VACS has `-output quality.

30



Proof We prove that there are at least ` instances of BA that output 1. Due to Lemma 23,
there are at least 2+ε

3 ·
3

2+ε` = ` honest parties in C at Step 1 of the protocol with overwhelming
probability. All these parties give input to an instance of RBC. By validity of RBC, all these
instances eventually terminate.

F Proof of Theorem 15

The claims regarding the communication complexity and setup follow from the fact that the MPC
protocol runs κ reliable broadcast protocols (in expectation) in Step 3 on the output size O, and
two VACS protocols: the first one with `-output quality and input size I, and the second one with
(t+ 1)-output quality and input size R = O(κ).

We sketch the simulator in each of the protocol steps:

• Setup: Generate the setup as in the real protocol, send the keys corresponding to dishonest
parties to the adversary.

• Input: Set ci = Encek(0), for each honest party Pi. Compute a correct proof of plaintext
knowledge π

popk
i for the ciphertext ci. Then, emulate the messages of the VACS protocol

with input (ci, π
popk
i ). Let S be the output of the VACS.

• Random input wires R = O(κ): For each honest party Pi, sample uniformly at random
ri ∈ {0, 1}R, set ui = Encek(ri) and compute a correct proof of plaintext knowledge τ

popk
i .

Then, emulate the messages of the VACS protocol with input (ui, τ
popk
i ). Let T be the output

of the VACS. Let v be the homomorphic addition of the ciphertexts in T .

• Computation: Let Circ(S) be the circuit g where for each party Pj that did not contribute
a ciphertext into S (S defined at Step 1), a default value ⊥ is hard-wired into the circuit,
and ciphertext v is hard-wired as the input random wires in the circuit. Let cj denote
the input ciphertext obtained for party Pj ∈ S in Step 1. The simulator locally computes
ci := Evalek(Circ(S), cj1 , . . . , cj|S|).

• Threshold decryption: emulate the messages of the reliable broadcast, where the decryption
shares (and non-interactive proofs of correct decryption) from honest parties are set such that
(any t+ 1 shares in) (d1, . . . , d|C|) forms a secret sharing of the output value y.

• Termination: emulate the messages of the reliable consensus protocol with input y.

• Emulation of VACS with input provider size s and output-quality `. Before the emulation of
the protocol, the simulator emulates the messages of its setup. That is, the committee C and
notification to each dishonest party about membership on the committee. Then, on behalf of
each honest party Pi, emulate the party. Let vi be the input with which the party is emulated
(in the MPC protocol, it is vi = (ci, π

popk
i )), where ci is an encryption of 0.

– If Pi ∈ C: Emulate a reliable broadcast protocol RBCi where Pi is the sender with input
vi. Emulate the messages of the other protocols RBCj as the receiver.

– On output v from RBCj , if Q(v) = 1 and an input has not yet been provided to BAj ,
then emulate the party Pi with input 1 to BAj .

31



– When ` of the protocols BA have output 1, emulate Pi with input 0 to each instance
BAj if it has not yet been provided input.

– Once all instances of BA have been completed, let CoreSet be the indices of each BA
that delivered 1. Wait for the output vj for each RBCj , j ∈ CoreSet. Finally output
∪j∈CoreSet{vj}.

• Emulation of reliable consensus. The simulator first simulates the setup fo reliable consensus,
i.e., the public keys for the sender and for the committees C1 and C2. Then:

– On behalf of each honest party Pi with input vi, do as follows:

∗ If Pi ∈ C1: send (vi, σ), where σ = Signsk1,i(vi), and send (echo, (vi, σ)) to all parties.

∗ If Pi ∈ C2: Upon receiving (echo, (vj , σj)) on the same value v from κ − t distinct
parties with correct signatures, compute σ = Signsk2,i(v) and send (ready, (v, σj))
to all parties.

∗ If Pi ∈ C2: Upon receiving (ready, (v, σj)) on the same value v from t + 1 dis-
tinct parties, if no ready message was sent, compute σ = Signsk2,i(v) and send
(ready, (v, σj)) to all parties.

∗ Upon receiving (ready, (v, σj)) on the same value v from κ − t distinct parties,
output v and terminate.

• Emulation of reliable broadcast. Before the emulation of the protocol, the simulator emulates
the messages of its setup, consisting of the public key setup for the sender (sks, pks).

– If the sender is honest at the start of the execution, let v denote the input with which
the sender is emulated. Then, compute σ = Signsks(v) and send (v, σ) to all parties.

– On behalf of each honest party Pi, do as follows:

∗ Upon receiving a pair (v, σ) such that Vrfypks(v, σ) = 1, emulate the messages of a
reliable consensus protocol.

• Emulation of BA. Before the emulation of the protocol, the simulator emulates the messages
of its setup. That is, for each invocation to the sub-protocol ΠGC, the public keys for the
committees C1, C2 and C3. Moreover, for each coin-flip sub-protocol invocation, emulate the
setup for the secret sharing scheme, which includes a committee and shares for random bits
distributed among the members of the committee. Then, on behalf of each honest party Pi,
emulate the party with the input chosen by the simulator vi. We describe the emulation for
an iteration k of the BA protocol.

– Emulate the messages of the graded consensus protocol ΠGC on input vi. Let (b, g)
denote the output.

– Emulate the messages of the k-th coin-flip protocol. For that, if the party is in Ck, send
the share. Once the party collects enough shares, it reconstructs the output. Let Coink
be the output.

– If g < 1 then set b := Coink.

– Emulate ΠGC on input b, and let (b, g) denote the output.

– If g = 1 emulate Πrc with input b, and when it terminates with output b′, output b′ and
terminate.
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• Corruption Requests. Upon a corruption request of a party Pi, corrupt the party in the ideal
world, learn its input xi and deliver it with the corresponding values from all setups that have
not been erased so far (according to the protocol description) to the adversary.

Security proof. We define a series of hybrid experiments, starting from the real-world execution
and ending with the ideal-world execution, and argue that each is computationally indistinguishable
from the next.

Hybrid 1. This corresponds to the real world execution. Here, the simulator knows the inputs
and keys of all honest parties.

Hybrid 2. We modify the previous hybrid, so that whenever the simulator has to compute a
non-interactive zero-knowledge proof on behalf of an honest party, it computes a simulated proof
without using the witness.

Hybrid 3. Here the computation of the decryption shares is different. In this case, the simulator
obtains the output y, computes the decryption shares of corrupted parties, and then adjusts the
decryption shares of honest parties in C such that any subset of t+1 decryption shares (d1, . . . , d|C|)
form a secret sharing of the output value y. That is, here the simulator does not need to know the
secret key share of honest parties to compute the decryption shares.

Hybrid 4. We modify the previous hybrid in the Input Stage. Here, the honest parties, instead
of sending an encryption of the actual input, they send an encryption of 0.

Hybrid 5. This corresponds to the ideal world execution.
In order to prove that no environment can distinguish between the real world and the ideal

world, we prove that no environment can distinguish between any two consecutive hybrids.

Claim 1. No efficient environment can distinguish between Hybrid 1 and Hybrid 2.
Proof This follows from the security of the non-interactive zero-knowledge proof, the fact that
honest parties always send valid proofs and the fact that honest parties erase the randomness to
generate any proof. This last point ensures that the adversary cannot distinguish between both
hybrids even if he adaptively corrupts a party from Hybrid 1 after it sent a proof.

Claim 2. No efficient environment can distinguish between Hybrid 2 and Hybrid 3.
Proof This follows from properties of a secret sharing scheme and the security of the threshold
encryption scheme. Given that the threshold is t, any number of corrupted decryption shares up to
t does not reveal anything about the output y. By Lemma 23, there are no more than t corrupted
parties in C. Moreover, one can find shares for honest parties such that (d1, . . . , d|C|) is a sharing of
y. Further note that, since each honest party erases its decryption key-share as soon as it sends the
decryption share, an adaptive adversary cannot collect more than t decryption key-shares either.

33



Claim 3. No efficient environment can distinguish between Hybrid 3 and Hybrid 4.
Proof This follows from the semantic security of the encryption scheme, and the fact that
honest parties erase the randomness to compute the ciphertext, prior to sending the ciphertext.
In particular, note that even an adaptive adversary cannot distinguish between both hybrids by
corrupting a party that sent a ciphertext.

Claim 4. No efficient environment can distinguish between Hybrid 4 and Hybrid 5.
Proof This follows, because the simulator in the ideal world and the simulator in Hybrid 5
emulate internally the joint behavior of the ideal assumed functionalities, exactly the same way.

We conclude that the real world and the ideal world are indistinguishable.
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