
Linear-Complexity Private Function Evaluation
is Practical (Full Version)?

Marco Holz1, Ágnes Kiss1, Deevashwer Rathee2, Thomas Schneider1

1 ENCRYPTO, Technische Universität Darmstadt, Germany
{holz, kiss, schneider}@encrypto.cs.tu-darmstadt.de

2 Department of Computer Science, IIT (BHU) Varanasi, India
deevashwer.student.cse15@iitbhu.ac.in

Abstract. Private function evaluation (PFE) allows to obliviously eval-
uate a private function on private inputs. PFE has several applications
such as privacy-preserving credit checking and user-specific insurance
tariffs. Recently, PFE protocols based on universal circuits (UCs), that
have an inevitable superlinear overhead, have been investigated thor-
oughly. Specialized public key-based protocols with linear complexity
were believed to be less efficient than UC-based approaches.
In this paper, we take another look at the linear-complexity PFE proto-
col by Katz and Malka (ASIACRYPT’11): We propose several optimiza-
tions and split the protocol in different phases that depend on the func-
tion and inputs respectively. We show that HE-based PFE is practical
when instantiated with state-of-the-art ECC and RLWE-based homo-
morphic encryption. Our most efficient implementation outperforms the
most recent UC-based PFE implementation of Alhassan et al. (JoC’20)
in communication for all circuit sizes and in computation starting from
circuits of a few thousand gates already.

Keywords: Private function evaluation · Homomorphic encryption · Se-
cure computation.

1 Introduction

While computations on a local machine can be secured against malicious eaves-
dropping, computations that are performed collaboratively on two or more de-
vices typically rely on the trustworthiness of remote systems. This poses a risk to
the sensitive data supplied by the participants. Privacy-preserving protocols aim
to mitigate these risks by protecting the data using cryptographic approaches
such that there is no need for a trusted remote party anymore.

Secure two-party computation (STPC) or secure function evaluation (SFE)
protocols allow two parties to jointly compute a function on private data without
learning the other party’s inputs. Private function evaluation (PFE) extends this
setting by also hiding the evaluated function from one of the parties: P1 inputs

? Please cite the conference version of this work published at ESORICS’20 [Hol+20].

mailto:holz@encrypto.cs.tu-darmstadt.de
mailto:kiss@encrypto.cs.tu-darmstadt.de
mailto:schneider@encrypto.cs.tu-darmstadt.de
mailto:deevashwer.student.cse15@iitbhu.ac.in

2 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

a private function f , typically represented by a circuit Cf , and P2 inputs private
data x and learns only f(x) but no additional information on f (except its size).

PFE has diverse applications that require to keep the participants’ inputs
private and hide the operations applied to these inputs from one of the partici-
pants. We describe a few example applications. In a privacy-preserving intrusion
detection system (IDS) [Nik+14], a server holds a set of zero-day signatures (in-
cluding regular expressions matching the payload) and is able to check whether
sensitive data uploaded to the IDS matches those signatures such that the server
learns nothing about the data and the client learns nothing about the signatures.
Using PFE, attribute-based access control can be enhanced to protect both sen-
sitive credentials and sensitive policies [FAL06]. PFE can be used for privacy-
preserving credit worthiness checking [FAZ05], disclosing neither the customer’s
private financial data nor the private criteria of the loaner. In privacy-preserving
car insurance rate calculation [Gün+19] the privacy-critical customer data, as
well as the tariff calculation details remain private.

The most common approach for PFE is to reduce it to classical SFE by se-
curely evaluating a public universal circuit (UC) [Val76; KS08a; KS16; LMS16;
GKS17; Alh+20; Zha+19; Liu+20]. This series of works on optimizations and im-
plementations of UCs has shown that UC-based PFE can be practical, but UCs
introduce an inevitable logarithmic overhead [Val76]. Katz and Malka [KM11]
propose a linear-complexity PFE scheme based on homomorphic encryption (HE)
and Yao’s garbled circuit protocol. They expect their scheme to be “easier to
implement and more efficient (for larger circuits) than approaches relying on
universal circuits”. However, their scheme has not been implemented yet.

Our Contributions. Our paper takes another look at the linear-complexity
PFE protocol by Katz and Malka [KM11]. We split the protocol into several
phases so that parts of the protocol can be precomputed knowing, e.g., only
the size of the private function or the private function itself. For instance, for a
privacy-preserving IDS it is reasonable to precompute any function-dependent
part so that the online phase where the client provides its input is fast. We
optimize, instantiate, and implement their scheme using three state-of-the-art
homomorphic encryption (HE) schemes: Elliptic curve (EC) ElGamal [Elg85],
the Brakerski/Fan-Vercauteren (BFV) scheme [FV12], and the cryptosystem
by Damg̊ard/Jurik/Nielsen (DJN) [DJN10]. We implement our protocols using
the ABY framework [DSZ15] and thereby provide the first implementation of
a linear-complexity PFE scheme. Our experiments show that HE-based PFE
outperforms today’s most efficient UC-based PFE implementation [Alh+20] on
the same platform already starting from circuits with only a few thousand gates.

2 Related Work

In this paper, we focus on PFE protocols that provide security against semi-
honest adversaries. These can be categorized as follows:

UC-based PFE. A universal circuit (UC) is a circuit that can be pro-
grammed to evaluate any Boolean circuit up to size n by specifying a set of

Linear-Complexity Private Function Evaluation is Practical (Full Version) 3

program bits as its input. In recent years, a lot of research was put into op-
timizing and implementing UC-based PFE, which reduces the task of PFE to
standard SFE that relies mostly on symmetric cryptography where the function
is the publicly known UC. Valiant [Val76] proposed two recursive UCs with sizes
∼5n log2 n and ∼4.75n log2 n in the size of the simulated circuit n, which are op-
timal up to a constant factor because any UC must have size at least Ω(n log n).
Zhao et al. [Zha+19] present a UC with size ∼4.5n log2 n. A hybrid UC with size
∼4.5n log2 n, combining optimizations from [KS16; GKS17; Zha+19] was imple-
mented in [Alh+20]. The most recent UC from [Liu+20] has size ∼3n log2 n.
These constructions have reached lower bounds for the most common ways UCs
are constructed [Zha+19; Liu+20], so no significant improvements are expected.

OT-based PFE. Mohassel and Sadeghian introduce an oblivious trans-
fer (OT)-based approach based on the oblivious evaluation of a switching net-
work of size Θ(n log n) that hides the topology of the Boolean circuit [MS13].
Bingöl at al. [Bin+18] adapt the half gates optimization [ZRE15] to the OT-
based approach of [MS13] and reduce the number of OTs by half. As shown
in [Alh+20], the communication of both [MS13] and [Bin+18] is worse than that
of UC-based PFE. PFE schemes based on both UCs and switching networks
have an inevitable logarithmic overhead.

TEE-based PFE. Felsen et al. [Fel+19] propose private function evaluation
with a different trust assumption and implement PFE using Intel SGX as trusted
execution environment (TEE), by evaluating a UC within the SGX enclave.

HE-based PFE. The protocol by Katz and Malka [KM11] has linear com-
plexity O(n), but its concrete practicality has not yet been explored. The authors
use homomorphic encryption to hide the topology of the circuit Cf from the party
that obliviously garbles the circuit (cf. §4.1). Mohassel and Sadeghian [MS13]
include a linear-complexity protocol in their generic framework for PFE. They
optimize the baseline protocol of [KM11], but their protocol is not more efficient
than the improved protocol of [KM11] which we use. Mohassel et al. [MSS14]
extend the protocol from [KM11; MS13] to security against malicious adver-
saries using zero-knowledge proofs while maintaining linear complexity. Biçer
at al. present a reusable linear-complexity PFE scheme [Biç+18] based on the
protocol of [KM11] which is efficient if the same private function f is evaluated
multiple times. Their protocol in the first execution has slightly lower total com-
munication, but around a factor four higher online computation than [KM11]
(cf. [Biç+18, Table 1]). Later runs of the protocol with the same function are
more efficient both in communication and computation than [KM11]. We leave
investigating the concrete efficiency of the protocol of [Biç+18] for applications
where the same function can be reused as future work.

In our paper, we resurrect the neglected line of research on linear-complexity
HE-based PFE protocols and show that the protocol of [KM11] is practical.

4 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

3 Preliminaries

In this section, we describe preliminaries to our work from the fields of secure
function evaluation (SFE) in §3.1 and private function evaluation (PFE) in §3.2,
and recapitulate the homomorphic encryption (HE) schemes we use in §3.3.

3.1 Circuit-based Secure Function Evaluation

We focus on security against semi-honest (passive) adversaries where all parties
are assumed to follow the protocol. This allows for highly efficient protocols and
is a starting point for constructing protocols with stronger security guarantees.

In the past, several SFE protocols have been proposed that rely on a cir-
cuit representation of the function f which is known to both parties, e.g.,
Yao’s garbled circuit (GC) protocol [Yao82; Yao86; LP09] and the GMW pro-
tocol [GMW87]. In Yao’s protocol, party P1, the garbler, prepares an encrypted
version of the circuit in the form of garbled tables, which are then sent to P2.
The other party P2, the evaluator, evaluates the garbled circuit after receiving
the keys corresponding to his input wires using oblivious transfers.3 Oblivious
transfer (OT) allows the receiver P2 to retrieve one of two messages obliviously
from the sender P1 without the receiver learning the other message or the sender
learning which message was retrieved. Though OTs require expensive public-key
cryptography [IR89], OT extension [Ish+03; Ash+13] allows to perform a large
number of OTs more efficiently by extending a few base OTs and obtain many
oblivious transfers using only symmetric cryptographic operations. Recent opti-
mizations to Yao’s GC protocol include point-and-permute [BMR90], free-XOR
[KS08b], fixed-key AES garbling [Bel+13], and half gates [ZRE15].

3.2 Private Function Evaluation

Private function evaluation (PFE) extends SFE to the case where only one
party P1 inputs a private function f represented by circuit Cf . The protocol
must guarantee that P2 on private input x learns the output f(x) but no other
information about the function f whereas P1 learns nothing.4 Generally, PFE
protocols reveal the size of the circuit Cf to the participants. If needed, the actual
number of gates and wires can be hidden by adding dummy gates and dummy
input/output wires to the circuit. One notable characteristic of PFE protocols
is that P1 typically must not be able to learn the output of the function f . The
reason for this is that an adversarial party P1 could reveal the inputs of party P2

by defining f to leak information about x, e.g., f(x) = x.

3 Even though the gates are encrypted and thus the gates’ types can easily be hidden
from P2, P2 must know the topology of the circuit for evaluating the garbled circuit.

4 This can be extended to the case were P1 also holds an input value in addition to the
circuit Cf . Our 2-party PFE implementation supports input values for both parties.

Linear-Complexity Private Function Evaluation is Practical (Full Version) 5

3.3 Homomorphic Encryption

Homomorphic encryption (HE) schemes allow for computations on encrypted
data, i.e., operations performed on the ciphertexts are reflected in the output of
decryption as if they were applied directly on the plaintexts.

The protocol of Katz and Malka [KM11] is based on additively homomorphic
encryption, i.e., a HE scheme that supports only homomorphic addition. The
authors of [KM11] suggest to instantiate their protocol with Paillier [Pai99] or
ElGamal [Elg85] HE and mention that their protocol can be improved by using
elliptic-curve cryptography (ECC). Since then, several significant improvements
on additively HE were published that we consider in our implementation:

DJN. The DJN cryptosystem [DJN10], a generalization of Paillier’s scheme
[Pai99], has since then been optimized using CRT-based decryption [HMS12].
Our implementation is based on libpailler5 and uses this optimization.

EC ElGamal. EC ElGamal encryption offers exceptionally small cipher-
texts, practical computation and an additive homomorphism over the under-
lying elliptic curve group. The use of elliptic curves over finite fields as a ba-
sis for a cryptosystem was suggested independently from each other by both
Koblitz [Kob87] and Miller [Mil86]. In our implementation, we use the RELIC
Toolkit [AG09] for ECC.

BFV. Significant improvements have been made in the area of RLWE-based
HE [Reg05; LPR10; Bra12; FV12]. The RLWE-based BFV scheme [FV12; Lai17]
is implemented in the Microsoft SEAL library [Sea19], which is among the fastest
HE libraries available today. We present a high level overview of the BFV scheme
restricted to only the part of its functionality which is relevant for our applica-
tion. For additional details, see [Lai17]. We note that our discussion also applies
to other popular Ring-LWE-based HE schemes such as BGV [BGV12].

The BFV scheme operates on polynomial rings of the form R = Z[x]/(xn+1),
where the polynomial modulus degree n is a power of 2. For a plaintext modulus t,
the plaintext space is defined as Rt = R/tR = Zt[x]/(xn + 1), which consists
of polynomials of degree n− 1 with coefficients in Zt. Similarly, the ciphertext
space is defined as (Rq)

2, where q is called the coefficient modulus and Rq =
R/qR. The encryption function Enc is probabilistic, takes a public key pk and a
message m ∈ Rt as inputs, and outputs a ciphertext c ∈ (Rq)

2. The ciphertext
output by Enc has a noise component associated with it which is necessary for
maintaining security. The decryption function Dec takes the secret key sk and a
ciphertext c ∈ (Rq)

2 as inputs, and outputs a message m ∈ Rt. Decryption m =
Dec(sk,Enc(pk,m)) works if the ciphertext noise is below a certain threshold
defined by the scheme parameters. For ease of exposition, we omit the keys from
the invocation of the encryption and decryption functions, and assume a single
key-pair throughout the paper, which makes the functions compatible.

Enc is a homomorphic map from (Rt,+) to ((Rq)
2,+), which provides the

scheme with its additive homomorphic properties. Given ciphertexts c1 = Enc(m1)
and c2 = Enc(m2), we have Dec(c1 + c2) = Dec(c1) + Dec(c2). The noise com-
ponent grows as we perform homomorphic operations on the ciphertext until it

5 http://hms.isi.jhu.edu/acsc/libpaillier/

http://hms.isi.jhu.edu/acsc/libpaillier/

6 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

reaches a threshold, beyond which decryption is not possible and the ciphertext
is rendered useless. This is not a problem since addition does not grow the noise
by much. The scheme described so far only provides IND-CPA security against
parties other than the key owner. To hide the operations applied to the ciphertext
from the key owner, which may include some private inputs from other parties,
and only reveal the result of decryption, the ciphertext needs to be flooded with
extra noise (cf. [Lai17], § 9.4). This requires larger parameters to accommodate
the extra noise, and has been taken into account in our parameter selection.

4 Linear-Complexity Private Function Evaluation

In this section, we recapitulate the private function evaluation (PFE) protocol
of Katz and Malka [KM11] in §4.1, introduce further improvements in §4.2,
and propose efficient instantiations using EC ElGamal in §4.3 and the BFV
homomorphic encryption scheme in §4.4.

4.1 The [KM11] Protocol

The PFE protocol proposed by Katz and Malka [KM11] combines homomorphic
encryption (HE) with Yao’s garbled circuit (GC) protocol to hide the topology
of the circuit Cf in addition to the parties’ inputs. They give a baseline protocol
and a roughly twice as efficient improved protocol. We describe the improved
protocol shown in Figure 1 and refer to the original paper for the baseline version.

The Boolean circuit to be evaluated privately has g gates, u inputs and o
outputs and has size N = u + g. The circuit is assumed to be built of only
two-input NAND gates so that their functionality does not need to be hidden.
There exist established highly optimized hardware synthesis tools that optimize
for a small number of NAND gates when translating the function to a circuit.
Moreover, it is assumed that “the output wires of the circuit do not connect to
any other gates” [KM11] which is achieved by adding at most o gates to the
circuit. [KM11] define the wiring among the gates as follows: Incoming wires are
the inputs of the g gates. Outgoing wires are the output wires of the g gates and
the u input wires of the circuit. Each incoming wire must be connected to exactly
one outgoing wire, but an outgoing wire may be connected to more incoming
wires, enabling gates with arbitrary fan-out. In contrast, UC-based PFE requires
the fan-out to be at most two which requires additional copy-gates [Val76] that
increase the circuit size.

Party P2 inputs private data x of length |x| = u and acts as the circuit
garbler from Yao’s protocol. P1 inputs the private circuit Cf of g gates and acts
as the circuit evaluator. Since P2 must remain unaware of the circuit wiring,
P2 cannot directly garble the gates. Instead, P1 creates a so-called encrypted
garbled gate encGGi for each gate i of the circuit and P2 decrypts these to learn
the keys required to create the garbled tables as in Yao’s protocol (cf. §3.1
and [LP09]). By creating the encrypted garbled gates under HE, P1 obliviously
connects two outgoing wires to each gate of the circuit (the wire keys for the

Linear-Complexity Private Function Evaluation is Practical (Full Version) 7

outgoing wires are provided by P2 beforehand). Thereby, the circuit topology
remains hidden from P2.

Four Phases of PFE Protocols. We split the protocol of [KM11] and UC-
based PFE into four phases: 1) a precomputation phase which is run only once,
2) a setupN phase dependent on the size N of the function, 3) a setupf phase
dependent on the function f , and 4) an onlinex phase dependent on the input x.

In most applications, e.g., when a server provides a service with a pre-defined
function (such as privacy-preserving IDS, cf. §1), the precomputation and both
setup phases can be precomputed before the client provides its input, allowing
for a very fast onlinex phase. In other applications, the function may not be
known beforehand, in which case the precomputation and setupN phases can be
precomputed, and the setupf and onlinex phases are run online.

1) precomputation phase. We first determine all operations that have
to be done once, independently of the protocol run: For [KM11], this includes
generating and sending the public key of the HE scheme, and for UC-based
PFE, the construction of the UC itself. We do not include this phase in our
performance evaluation in §5.

2) setupN phase. This phase precomputes all operations that depend only
on the size N of the circuit. In [KM11], P2 creates two wire keys representing
the bit values 0 and 1 for each of the N = g+u outgoing wires. The wire keys of
all g + u outgoing wires except the o output wires of the circuit are essential to
define the mapping representing the topology of the circuit. We denote the wire
key corresponding to the bit value b ∈ {0, 1} on outgoing wire i ∈ {1, . . . , N}
by sbi . The security of the protocol depends on the indistinguishability of the
two keys. P2 chooses the wire key s0i at random and, similar to the free-XOR
technique [KS08b], defines a global random shift r of the same size as the wire
keys. P2 then sets s1i = s0i + r for i ∈ {1, . . . , N} and sends the homomorphically
encrypted wire keys Enc(s01), . . . , Enc(s0N−o) to P1. As a preparation for the
setupf phase, P1 already creates and encrypts two random blinding values, bi
and b′i, for each gate Gi. This phase has complexity O(N).

In the UC-based PFE protocols, the UC is garbled and sent to the evaluator,
which has complexity Θ(N logN).

3) setupf phase. This depends on the specific function f . In [KM11],
party P1 creates the encrypted garbled gates. In order to hide the wiring of
the circuit from P2, each wire key is blinded. If outgoing wires j and k are con-
nected to the incoming wires of gate Gi, P1 constructs the encrypted garbled
gate encGGi by making use of the additively homomorphic property of Enc as

encGGi =
(
Enc(s0j + bi),Enc(s

0
k + b′i)

)
. (1)

P1 then sends encGG1, . . . , encGGg to P2. P2 is now able to create the garbled
tables and thereby acts as the circuit garbler from Yao’s protocol. For each
gate Gi, P2 decrypts the corresponding encrypted garbled gate and retrieves the
blinded wire keys for the left and the right incoming wire of the gate:

L0
i = Dec(Enc(s0j + bi)), R0

i = Dec(Enc(s0k + b′i)). (2)

8 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

P1 (inputs private circuit Cf) P2 (inputs private data
x ∈ {0, 1}u)

1) precomputation phase

pk (pk, sk)←$KGen(1n)

r←$ {0, 1}κ

2) setupN phase

∀i ∈ {1, . . . , g} : ∀i ∈ {1, . . . , N} :

bi, b
′
i ←$ {0, 1}κ, compute (s0i)←$ {0, 1}κ

Encpk(bi),Encpk(b′i) ∀i ∈ {1, . . . , N − o} :
Encpk(s01), . . . ,Encpk(s0N−o) compute Encpk(s0i)

3) setupf phase

∀i ∈ {1, . . . , g} : gate i has

left input j, right input k

viL = Encpk(s0j + bi)

viR = Encpk(s0k + b′i)

encGGi = (viL, viR) encGG1, . . . , encGGg ∀i ∈ {1, . . . , g} :

gate i has output wire u+i

L0
i = Dec(viL), L1

i = L0
i + r

R0
i = Dec(viR), R1

i = R0
i + r

GTi = encYao(L0
i , L

1
i , R

0
i , R

1
i ,

GT 1, . . . , GT g i, s0u+i, s
1
u+i)

4) onlinex phase

∀i ∈ {1, . . . , g} : sx11 , . . . , sxuu

Li = sj + bi, Ri = sk + b′i

su+i = decYao(Li, Ri, i, GTi)
sN−o+1, . . . , sN compare sN−o+1, . . . , sN to

(s0N−o+1, s
1
N−o+1), . . . , (s0N , s1N)

to determine output f(x)

Fig. 1: The [KM11] protocol. The circuit Cf has u input wires, o output wires, g
gates, and size N = u+ g. The symmetric security parameter is κ = 128.

Linear-Complexity Private Function Evaluation is Practical (Full Version) 9

truth table

j k j ∧ k

0 0 1

0 1 1

1 0 1

1 1 0

→

randomly permuted truth table

j k j ∧ k

1 0 1

0 0 1

1 1 0

0 1 1

→

garbled table GTi

sEncL1
i ||R

0
i ||i||00

(s1u+i)

sEncL0
i ||R

0
i ||i||01

(s1u+i)

sEncL1
i ||R

1
i ||i||10

(s0u+i)

sEncL0
i ||R

1
i ||i||11

(s1u+i)

Fig. 2: encYao: Creation of a garbled table [LP09]

P2 is now able to obtain the blinded wire keys s1j + bi and s1k + b′i by defining

L1
i = L0

i +r and R1
i = R0

i +r. Note that the blinded wire keys L0
i , L

1
i and R0

i , R
1
i

are independent of the keys assigned to the outgoing wires of gates j and k. This
hides the circuit topology from P2 while still enabling P2 to create the garbled
tables. The garbled table GTi is generated using function encYao, instantiated as
shown in Figure 2 [LP09]: The truth table of the NAND gate is randomly per-
muted and then for each combination of the left (L0

i , L
1
i) and right (R0

i , R
1
i) input

key these keys are used to symmetrically encrypt the output key s0u+i or s1u+i
using function sEnc which is instantiated using AES-128 (cf. §5.1 for details).
We emphasize that the gates’ output keys are pre-determined and the protocol
of [KM11] applies additively homomorphic operations on input keys. Therefore,
we cannot use GC optimizations like point-and-permute [BMR90], garbled row
reduction [NPS99; Pin+09], or half-gates [ZRE15]. Instead, we have to use the
classical GC from [LP09] with four entries per garbled table (GT), so each GT
has size 4 · (|su+i| + σ) bits, where σ = 40 is the statistical security parameter.
Finally, P2 sends GT1, . . . ,GTg to P1. This phase has complexity O(N).

In the UC-based PFE protocols, the wire keys specifying the values of the
UC’s programming bits are sent which yields Θ(N logN) communication.

4) onlinex phase. In this final phase, the private data x is input by P2.
In [KM11], the wire keys sx1

1 , . . . , s
xu
u of the circuit input wires corresponding

to P2’s input bits x1, . . . , xu are sent to P1.6 P1 can now evaluate the garbled
tables and determine the wire keys of the output wires as follows: To evaluate
gate i, P1 has to reconstruct the keys used to encrypt one entry of the garbled
table. Starting with the first gate in topological order, P1 uses for gate Gi with
left input j and right input k the keys sj ∈ {s0j , s1j} and sk ∈ {s0k, s1k} and
the blinding values bi, b

′
i from the setupN phase to calculate Li = sj + bi and

Ri = sk + b′i. P1 now decrypts the garbled table GTi to learn the wire key
su+i = decYao(Li, Ri, i,GTi) as in Yao’s garbled circuit protocol and continues
with the next gate in topological order. Once all gates have been evaluated,

6 The protocol can naturally be extended to the setting where also P1 has private
input data y. Either y is encoded in the private function f [PSS09], or the keys
corresponding to the bits of y are obliviously sent to P1 using oblivious transfer
[Ish+03; LP09; Ash+13] as describe in [KM11].

10 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

P1 has obtained the wire keys sN−o+1, . . . , sN of the output wires. These can
be mapped to plaintext outputs as in Yao’s protocol. However, as mentioned
in §3.2, the function holder P1 should not learn the output of f , so the output
is determined by party P2. This phase has complexity O(N).

In the UC-based PFE protocols, the wire keys corresponding to the private
input x are sent, the garbled UC is evaluated, which requires Θ(N logN) com-
putation, and the output bits of the UC are decoded.

4.2 Optimizations of the [KM11] Protocol

In this section, we describe our optimizations to the protocol of [KM11].

Precomputation of all Homomorphic Encryptions. As described in
§4.1, all homomorphic encryptions can be precomputed in the setupN phase
where only the size N is known but neither Cf nor x. Since encryption is a rela-
tively expensive operation, this drastically reduces the protocol runtime (see §5.2).

The wire keys are sampled randomly so depend neither on the inputs nor on
the circuit Cf , and are encrypted using the HE public key generated by P2.

P2 can sample and homomorphically encrypt the encrypted wire keys Enc(s0i),
where 1 ≤ i ≤ N . Similarly, P1 can sample and encrypt the blinding values bi, b

′
i,

where 1 ≤ i ≤ g, using P1’s public key. Here, it is necessary to exchange the
public key of the HE scheme first. We argue that this is feasible in practice by
P2 publishing the public key beforehand.

Pipelining. The creation and evaluation of the garbled circuit (GC) is done
in topological order which makes this process eligible for pipelining. When trans-
mitting the garbled gates directly after creation, they can be ungarbled by the
evaluator while subsequent gates are still being garbled by the garbler. This GC
pipelining was proposed and implemented in [Hen+10; Hua+11].

In addition to the GC pipelining, we also implemented pipelining of the
creation and evaluation of the encrypted garbled gates. The process of retrieving
the wire keys from the encrypted garbled gates can then seamlessly be combined
with the pipelined creation and evaluation of the GC. Since decryption of the
encrypted garbled gates is the most expensive operations in the setupf phase,
this significantly speeds up the protocol and reduces the time spent solely on
network communication. In our experiments, we saw that pipelining improves
the runtime in the setupf phase by about 25%.

Parallelization. The [KM11] protocol is very suitable for parallelization. We
provide a fully parallelized implementation of 1) the creation of the encrypted
wire keys by P2 and the encrypted blinding values by P1 in the setupN phase,
2) the creation of the encrypted garbled gates by P1 in the setupf phase, 3)
the decryption of the encrypted garbled gates and the creation of the garbled
tables by P2 in the setupf phase. Only the evaluation of the garbled tables by
P1 depends on the wire keys obtained from previous garbled tables and therefore
cannot be fully parallelized.

Linear-Complexity Private Function Evaluation is Practical (Full Version) 11

4.3 Instantiating [KM11] with EC ElGamal

Katz and Malka suggest to use ElGamal encryption to instantiate their proto-
col [KM11], and briefly mention the possibility of using elliptic curve cryptogra-
phy (ECC) in their protocol. In the following, we denote integers by lowercase
letters and points on the elliptic curve by capital letters. The equivalent of choos-
ing a random element of the residue field as the private key in standard ElGamal
encryption is choosing a random integer a from the Galois field GF (p) as the
private key in the elliptic curve version. The public key A is then computed as
A = a ∗ P where P is the base point of the elliptic curve.

In standard additively homomorphic lifted EC ElGamal, a message m ∈
GF (p) is mapped to a curve point M as M = m ∗ P . The reverse mapping
used during decryption then requires solving the discrete logarithm of M which
requires that m is from a small domain whereas we need to operate on κ = 128
bit keys. Instead, we observe that the only requirement for the choice of the wire
keys and the blinding values in the [KM11] protocol is indistinguishability, so
we can simply define curve points M as our plaintext values for wire keys and
blinding values. Then, we perform plaintext additions using the ECC arithmetic
on the elliptic curve when P1 needs to apply the blinding value to a plaintext
wire key in order to determine the values Li and Ri. These points are then
mapped to keys for AES using a KDF (cf. §5.1).

Analogous to standard ElGamal, we define encryption of a message M with
a public key A = a ∗ P as follows:

Enc(M) = (K,C) = (k ∗ P, k ∗A+M). (3)

Decryption of the ciphertext (K,C) can now be done as follows:

Dec(K,C) = C−a∗K = k∗A+M−a∗k∗P = k∗a∗P+M−a∗k∗P = M. (4)

EC ElGamal is additively homomorphic in the underlying elliptic curve
group. We define the homomorphic addition of two ciphertexts as

Enc(M1)⊕ Enc(M2) = (K1, C1)⊕ (K2, C2) = (K1 +K2, C1 + C2). (5)

This satisfies the additively homomorphic property over the EC group:

Dec(Enc(M1)⊕ Enc(M2)) = Dec((k1 ∗P, k1 ∗A+M1)⊕ (k2 ∗P, k2 ∗A+M2))

= Dec((k1 ∗ P + k2 ∗ P, k1 ∗A+M1 + k2 ∗A+M2))

= Dec((k1 + k2) ∗ P, (k1 + k2) ∗A+M1 +M2))

= (k1 + k2) ∗A+M1 +M2 − a ∗ (k1 + k2) ∗ P = M1 +M2. (6)

Semantic security naturally follows from that of ElGamal based in the DDH
assumption in the EC group.

4.4 Instantiating [KM11] with BFV Homomorphic Encryption

Since the linear-complexity protocol of [KM11] was proposed in 2011, significant
progress has been made in the area of Ring-LWE (RLWE) based homomorphic
encryption. Thus, we revise the protocol of [KM11] with an HE instantiation
based on these efficient Ring-LWE HE schemes. We specifically use the BFV

12 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

scheme (cf. §3.3) as implemented in Microsoft’s SEAL library [Sea19]. We take
the plaintext modulus as t = 2, which results in the smallest possible polynomial
modulus degree and thus ciphertext size in our scenario. The coefficient modu-
lus q is chosen as a product of primes q1 = 12,289 and q2 = 1,099,510,054,913. q1
is the smallest prime that is large enough to allow homomorphic blinding of the
key values and satisfies q1 ≡ 1 mod 2n, where n is polynomial modulus degree (cf.
[Sea19] for details). For function privacy, which is necessary to prevent P2 from
learning the permutation of the keys employed by P1, we flood the ciphertext
with noise (cf. [Lai17, §9.4]) that is 40-bits larger than the noise of the output
ciphertext, ensuring a statistical security of 40-bits against P2. Thus, we require
an additional 40-bits (in the form of q2) in the coefficient modulus to contain
the extra noise. Consequently, we choose p = 2048 as the polynomial modulus
degree, which is the smallest n that maintains computational security of 128-bits
for a q of 54-bits (cf. [Lai17], Table 3).

Encoding of the Wire Keys. When choosing a plaintext modulus of t = 2,
each bit of the plaintext value is encoded as one coefficient of the polynomial. As-
sume we have a wire key v with a binary representation of v = v127||v126|| . . . ||v0,
we define our plaintext polynomial as v127x

127 + . . .+ v1x+ v0. Since homomor-
phic addition is done coefficient-wise in the BFV scheme and we use t = 2,
addition becomes equivalent to a homomorphic XOR operation.

Due to the requirement that each wire key has to be utilized separately
when creating the encrypted garbled gates, Chinese Remainder Theorem (CRT)
batching, as provided by SEAL, becomes inefficient for our use case. Using batch-
ing, one can pack n integers modulo t into one plaintext polynomial and apply
SIMD (Single Instruction, Multiple Data) operations on those values. However,
this would require a much larger value for t. A multiplication operation (by a
one-hot encoded vector), that is needed to extract one wire key from the cipher-
text containing n wire keys, is less efficient than encrypting and decrypting a
smaller ciphertext on its own. We therefore decided against CRT batching.

Efficient Packing of the Ciphertexts. The encoding of the wire keys uses
exactly 128 coefficients of the BFV ciphertext. Since the degree of the polynomial
modulus (poly modulus degree) is set to 2048, we only use 1

16 of the coefficients
of each ciphertext. Even though we decided not to use CRT batching, utilizing
the unused coefficients for packing additional 15 wire keys in a ciphertext seems
desirable in order to reduce the communication of the protocol by a factor of 16.

Unfortunately, without access to the secret key, it is not possible for P1 to
homomorphically extract a subset of coefficients of the underlying plaintext, and
thus a wire key. Therefore, multiple wire keys can only be packed in a response
to P2 holding the secret key.

Traditionally, each of the encrypted garbled gates consists of two ciphertexts,
holding the blinded wire keys for the two incoming wires of that gate. First, we
describe a way to combine the encrypted wire keys, Enc(sj) and Enc(sk), into one
ciphertext Enc(sj ||sk). Since in the plaintexts the wire keys of length 128-bits are
followed by 15×128 coefficients set to zero, we can use these coefficients to encode
further wire keys. We achieve this by applying a “homomorphic (right) bit shift”

Linear-Complexity Private Function Evaluation is Practical (Full Version) 13

of 128-bits (respectively coefficients) to one of the wire keys (by multiplying a
ciphertext by the plaintext constant 2128) and adding both wire keys afterwards.

These wire keys still have to be blinded to form the encrypted garbled gate
encGGi, which can now be achieved by only one homomorphic addition. There-
fore, we concatenate the blinding values bi and b′i and homomorphically add
them to Enc(sj ||sk) to receive the encrypted garbled gate encGGi = Enc(sj ||sk)+
Enc(bi||b′i) = Enc((sj+bi)||(sk+b′i)). Since P2 is in charge of telling the wire keys
apart, “unpacking” is simply done by decrypting the ciphertext and assigning
128-bits to both wire keys.

Analogously, we can pack additional encrypted garbled gates into the same
ciphertext and thereby use all 2048 coefficients to pack 8 encrypted garbled
gates. This can be done efficiently using Horner’s method as described in [KSS13].
Blinding of the wire keys can now be applied by concatenating 16 blinding values
and add them to the ciphertext in a single homomorphic addition.

Compared to not using this packing technique, we require the same number
of homomorphic additions (15 additions to pack the 16 wire keys + 1 addition
for the combined blinding value instead of one addition of a blinding value per
wire key) and 15 multiplications by 2256, but we also eliminated 15 decryptions
since P2 only receives one ciphertext instead of 16. Since for our instantiation
of the BFV protocol decryption is more expensive than homomorphic scalar
multiplication, this also improves computation.

Wire Key Generation using Seed Expansion. The wire keys are en-
crypted by the private key owner P2 and can be homomorphically encrypted
using the secret key to have smaller noise and smaller ciphertext size. When
encrypting with the secret key, half of the ciphertext coefficients are chosen uni-
formly at random from Rq. Using a pseudo-random function, one can sample
these coefficients by expanding a seed sent to P1 instead. This nearly halves
the ciphertext size of the encrypted wire keys and significantly improves com-
munication in this step of the protocol which is the major bottleneck of the
scheme.7

5 Evaluation

In this section, we describe our implementation of the different instantiations
of the [KM11] protocol and point out bottlenecks and advantages. We exper-
imentally compare our implementations with the best existing UC-based PFE
implementation of [Alh+20]. We also give estimates on the efficiency of the re-
cent UC improvements of [Liu+20] that results in 33% smaller UCs and hence
would improve UC-based PFE of [Alh+20] by around 33% in both runtime and
communication (cf. dashed lines in Figure 4 and 3). The results of our perfor-
mance tests show that HE-based linear-complexity PFE supersedes UC-based
PFE in runtime starting from a few thousand gates already and in communica-

7 Since January 2020 (version 3.4.0) the SEAL library [Sea19] supports seed expansion
and encryption with the secret key. Our implementation uses this optimization.

14 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

tion for all circuit sizes. Hence, linear-complexity PFE is a viable alternative for
improving the performance of private function evaluation.

5.1 Implementation

We implemented our optimized and fully parallelized version of the [KM11] pro-
tocol described in §4 using the ABY SFE framework [DSZ15]. Our implemen-
tation is available as open-source at https://encrypto.de/code/linearPFE.
This is the first implementation of a linear-complexity PFE protocol. We pro-
vide a fair comparison with today’s most efficient UC-based PFE implementa-
tion of [Alh+20] with complexity Θ(N logN) which is based on the same STPC
framework ABY.

We instantiate sEnc as sEnck′(m) = (AESk′(0)||AESk′(1)|| . . . ||
AESk′(d(|m|+ σ)/128e − 1)) ⊕ (m||0σ), where AES is AES-128 and σ = 40 is
the statistical security parameter. The arbitrary-length key k is mapped to a
128-bit key k′ = KDF(k) where the KDF is instantiated with PBKDF2.

We instantiate the DJN cryptosystem with modulus size of 3,072 bits.
In our EC ElGamal-based implementation we use the eBATS B-251 binary

elliptic curve. RELIC encodes each point on the elliptic curve in 33 bytes.
SEAL serializes ciphertexts as 64-bit values using a compression function. For

our specific choice of parameters, this compression did not achieve ideal results.
For all ciphertexts except the encrypted wire keys where a seed is used to reduce
their size, we implemented our own serialization where we eliminate unnecessary
zeroes and thereby reduce the ciphertext size compared to the SEAL encoding.

5.2 Experimental Evaluation

We use two identical machines with a physical connection of 10 Gbit/s bandwidth
and a round-trip time of 1 ms. We refer to this as the LAN setting and also
simulated a WAN setting with 100 Mbit/s bandwidth and a round-trip time of
100 ms. Each machine is equipped with an Intel Core i9-7960X CPU (32 Cores,
2.8 GHz) and 128 GB RAM. All measurements are averaged over 10 executions.
Because in all PFE protocols the costs for the input x is substantially lower
than for the gates, we fix the number of input bits to u = |x| = 64. The exact
performance measures used to plot the figures are given in Appendix B.

Communication. In Figure 3, we depict the communication of the PFE
protocols. The EC ElGamal instantiation clearly outperforms all other imple-
mentations, including UC-based PFE [Alh+20] and thereby offers the best PFE
scheme in terms of communication known so far. Its communication is lower
than UC-based PFE of [Alh+20] by a factor of ∼11× for circuit size N = 106.

We observe that the communication complexity of DJN-based PFE is on
par with UC-based approaches. Due to its large ciphertext size, BFV-based
encryption has the worst communication of our instantiations but it is only a
factor of about 1.8× higher for N = 106 than that of UC-based PFE [Alh+20].
Its communication is significantly reduced by the seed expansion technique to

https://encrypto.de/code/linearPFE

Linear-Complexity Private Function Evaluation is Practical (Full Version) 15

10
2

10
3

10
4

10
5

10
6

10−6

10−1

104

Input circuit size N

C
o
m

m
u
n
ic

a
ti

o
n

(M
B

)

Function-independent setupN

10
2

10
3

10
4

10
5

10
6

10−6

10−1

104

Input circuit size N

C
o
m

m
u
n
ic

a
ti

o
n

(M
B

)

Function-dependent setupf

10
2

10
3

10
4

10
5

10
6

10−6

10−1

104

Input circuit size N

C
o
m

m
u
n
ic

a
ti

o
n

(M
B

)

Input-dependent onlinex

10
2

10
3

10
4

10
5

10
6

10−6

10−1

104

Input circuit size N

C
o
m

m
u
n
ic

a
ti

o
n

(M
B

)

Total communication

UC [Alh+20] UC [Liu+20] DJN BFV EC ElGamal

Fig. 3: Communication of PFE protocols (in MB).

reduce the size of the encrypted wire keys in the BFV scheme (cf. §3.3). In the
onlinex phase, the communication of all protocols only depends on the size of
the input x and is nearly negligible (only a few KB).

Runtime. In Figure 4, we depict the runtime of our implementation com-
pared to the most recent UC-based PFE implementation of [Alh+20].

ECC-based PFE is our fastest implementation: Compared to the state-of-the-
art UC-based PFE implementation of [Alh+20], the total runtime for N = 106

gates is faster by a factor ∼3.3× in LAN and ∼7.0× in WAN.

BFV-based PFE offers promising total runtimes even though it is less effi-
cient than ECC-based PFE of [Alh+20] by a factor of ∼1.4× in LAN and ∼1.8×
in WAN for N = 106. The larger factor in the WAN setting results from its larger
communication overhead compared to ECC-based PFE. These findings underline
that though computational complexity is still relevant, communication complex-
ity becomes the bottleneck for these PFE protocols. Therefore, the computa-
tional advances of BFV cannot compensate its larger ciphertext sizes any more.
Still, our implementation instantiated with the BFV scheme beats [Alh+20] for
circuits of about N ≥ 250,000 gates when function- and input-independent pre-
computations from the setupN phase are excluded (cf. Appendix A).

16 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

10
2

10
3

10
4

10
5

10
6

10−4

100

104

Input circuit size N

R
u
n
ti

m
e

(s
)

Function-independent setupN , LAN

10
2

10
3

10
4

10
5

10
6

10−4

100

104

Input circuit size N

R
u
n
ti

m
e

(s
)

Function-independent setupN , WAN

10
2

10
3

10
4

10
5

10
6

10−4

100

104

Input circuit size N

R
u
n
ti

m
e

(s
)

Function-dependent setupf , LAN

10
2

10
3

10
4

10
5

10
6

10−4

100

104

Input circuit size N

R
u
n
ti

m
e

(s
)

Function-dependent setupf , WAN

10
2

10
3

10
4

10
5

10
6

10−4

100

104

Input circuit size N

R
u
n
ti

m
e

(s
)

Input-dependent onlinex, LAN

10
2

10
3

10
4

10
5

10
6

10−4

100

104

Input circuit size N

R
u
n
ti

m
e

(s
)

Input-dependent onlinex, WAN

10
2

10
3

10
4

10
5

10
6

10−4

100

104

Input circuit size N

R
u
n
ti

m
e

(s
)

Total runtime, LAN

10
2

10
3

10
4

10
5

10
6

10−4

100

104

Input circuit size N

R
u
n
ti

m
e

(s
)

Total runtime, WAN

UC [Alh+20] UC [Liu+20] DJN BFV EC ElGamal

Fig. 4: Runtime of PFE protocols (in seconds).

Linear-Complexity Private Function Evaluation is Practical (Full Version) 17

DJN-based PFE has impractical computational overhead, i.e., about 53 min-
utes of runtime for N = 106 gates in LAN (compared to 24 seconds of the
ECC-based instantiation), even with the optimizations described in §3.3. Its
runtime in WAN is similar to WAN as it is dominated by computation.

Per-phase comparison. In the setupN phase, computation and communi-
cation are independent of the function f and input x and only depend on the
(maximum) size of f . This yields significant large precomputation capabilities
of HE-based PFE, especially for our BFV-based instantiation.

In the setupf phase, the logarithmic overhead of UC-based PFE of [Alh+20]
has a large performance impact. In contrast, HE-based protocols scale linearly
and outperform UC-based PFE for N ≥ 106 in LAN and N ≥ 250,000 in WAN.

In the onlinex phase, HE-based PFE outperforms UC-based PFE of [Alh+20]
for about N ≥ 1,000 gates in LAN and N ≥ 10,000 gates in WAN. Here,
the computation is dominated by GC evaluation. The logarithmic overhead of
the UC size compared to the actual circuit leads to a noticeable performance
drawback. Since our ECC-based implementation uses points on the elliptic curve
as wire keys (encoded as 264 bit values), the GC is larger by a factor of about
two compared to the BFV- and DJN-based instantiations where wire keys have
size 128 bits. This impacts GC evaluation runtime and BFV-based PFE becomes
the fastest instantiation in the onlinex phase.

When excluding precomputation of the setupN phase from the total runtime,
BFV-based PFE outperforms UC-based PFE of [Alh+20] for about N ≥ 250,000
in LAN and WAN, and ECC-based PFE outperforms [Alh+20] for about N ≥
10,000 in LAN and about N ≥ 25,000 in WAN (cf. Figure 5 in Appendix A).

Summary. In this paper, we optimize and implement the linear-complexity
PFE protocol of [KM11]. Our elliptic curve ElGamal-based implementation
outperforms the state-of-the-art UC-based PFE implementation of [Alh+20]
not only in communication, but also in total runtime: For private circuits of
size N = 106, our implementation is ∼3.3× faster in a LAN and ∼7.0× faster
in a WAN setting and scales with O(N) instead of Θ(N logN).

Acknowledgements

This project received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded by the Deutsche Forschungsge-
meinschaft (DFG) — SFB 1119 CROSSING/236615297 and GRK 2050 Privacy
& Trust/251805230, and by the German Federal Ministry of Education and Re-
search and the Hessen State Ministry for Higher Education, Research and the
Arts within ATHENE.

References

[AG09] D. F. Aranha and C. Gouvêa. RELIC Cryptographic Toolkit. https:
//github.com/relic-toolkit. 2009.

https://github.com/relic-toolkit
https://github.com/relic-toolkit

18 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

[Alh+20] M. Y. Alhassan, D. Günther, Á. Kiss, and T. Schneider. “Efficient
and Scalable Universal Circuits.” In: Journal of Cryptology 33.3
(2020), pp. 1216–1271.

[Ash+13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. “More Effi-
cient Oblivious Transfer and Extensions for Faster Secure Compu-
tation”. In: CCS’13. ACM, 2013, pp. 535–548.

[Bel+13] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. “Efficient
Garbling from a Fixed-Key Blockcipher”. In: S&P’13. IEEE, 2013,
pp. 478–492.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) Fully
Homomorphic Encryption without Bootstrapping”. In: Innovations
in Theoretical Computer Science (ITCS’12). ACM, 2012, 309–325.

[Biç+18] O. Biçer, M. A. Bingöl, M. S. Kiraz, and A. Levi. Highly Efficient
and Reusable Private Function Evaluation with Linear Complexity.
Cryptology ePrint Archive, Report 2018/515. 2018. url: https:

//ia.cr/2018/515.
[Bin+18] M. A. Bingöl, O. Biçer, M. S. Kiraz, and A. Levi. “An Efficient 2-

Party Private Function Evaluation Protocol Based on Half Gates”.
In: The Computer Journal 62.4 (2018), pp. 598–613.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. “The Round Complexity of
Secure Protocols”. In: STOC’90. ACM, 1990, pp. 503–513.

[Bra12] Z. Brakerski. “Fully Homomorphic Encryption without Modulus
Switching from Classical GapSVP”. In: CRYPTO’12. Vol. 7417.
LNCS. Springer, 2012, pp. 868–886.

[DJN10] I. Damg̊ard, M. Jurik, and J. B. Nielsen. “A Generalization of Pail-
lier’s Public-Key System with Applications to Electronic Voting”.
In: International Journal of Information Security 9.6 (2010), 371–385.

[DSZ15] D. Demmler, T. Schneider, and M. Zohner. “ABY – A Framework
for Efficient Mixed-Protocol Secure Two-Party Computation”. In:
NDSS’15. The Internet Society, 2015.

[Elg85] T. Elgamal. “A Public Key Cryptosystem and a Signature Scheme
based on Discrete Logarithms”. In: Transactions on Information
Theory 31.4 (1985), pp. 469–472.

[FAL06] K. B. Frikken, M. J. Atallah, and J. Li. “Attribute-Based Access
Control with Hidden Policies and Hidden Credentials”. In: IEEE
Transactions on Computers 55.10 (2006), pp. 1259–1270.

[FAZ05] K. B. Frikken, M. J. Atallah, and C. Zhang. “Privacy-Preserving
Credit Checking”. In: ACM Conference on Electronic Commerce
(EC’05). ACM, 2005, pp. 147–154.

[Fel+19] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert. “Secure and Private
Function Evaluation with Intel SGX”. In: CCSW’19. ACM, 2019,
pp. 165–181.

[FV12] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomor-
phic Encryption. Cryptology ePrint Archive, Report 2012/144. 2012.
url: https://ia.cr.org/2012/144.

https://ia.cr/2018/515
https://ia.cr/2018/515
https://ia.cr.org/2012/144

Linear-Complexity Private Function Evaluation is Practical (Full Version) 19

[GKS17] D. Günther, Á. Kiss, and T. Schneider. “More Efficient Univer-
sal Circuit Constructions”. In: ASIACRYPT’17. Vol. 10625. LNCS.
Springer, 2017, pp. 443–470.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play ANY
Mental Game”. In: STOC’87. ACM, 1987, pp. 218–229.

[Gün+19] D. Günther, Á. Kiss, L. Scheidel, and T. Schneider. Framework for
Semi-Private Function Evaluation with Application to Secure Insur-
ance Rate Calculation. CCS’19 Posters/Demos. 2019.

[Hen+10] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehren-
berg. “TASTY: Tool for Automating Secure Two-Party Computa-
tions”. In: CCS’10. ACM, 2010, pp. 451–462.

[HMS12] Y. Hu, W. J. Martin, and B. Sunar. Enhanced Flexibility for Homo-
morphic Encryption Schemes via CRT. ACNS’12 (Industrial Track).
2012.

[Hol+20] M. Holz, Á. Kiss, D. Rathee, and T. Schneider. “Linear-Complexity
Private Function Evaluation is Practical”. In: ESORICS’20. LNCS.
Springer, 2020.

[Hua+11] Y. Huang, D. Evans, J. Katz, and L. Malka. “Faster Secure Two-
Party Computation Using Garbled Circuits”. In: USENIX Secu-
rity’11. USENIX, 2011.

[IR89] R. Impagliazzo and S. Rudich. “Limits on the Provable Consequences
of One-Way Permutations”. In: STOC’89. ACM, 1989, pp. 44–61.

[Ish+03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. “Extending Oblivious
Transfers Efficiently”. In: CRYPTO’03. Vol. 2729. LNCS. Springer,
2003, pp. 145–161.

[KM11] J. Katz and L. Malka. “Constant-Round Private Function Eval-
uation with Linear Complexity”. In: ASIACRYPT’11. Vol. 7073.
LNCS. Springer, 2011, pp. 556–571.

[Kob87] N. Koblitz. “Elliptic Curve Cryptosystems”. In: Mathematics of
computation 48.177 (1987), pp. 203–209.

[KS08a] V. Kolesnikov and T. Schneider. “A Practical Universal Circuit Con-
struction and Secure Evaluation of Private Functions”. In: FC’08.
Vol. 5143. LNCS. Springer, 2008, pp. 83–97.

[KS08b] V. Kolesnikov and T. Schneider. “Improved Garbled Circuit: Free
XOR Gates and Applications”. In: ICALP’08. Vol. 5126. LNCS.
Springer, 2008, pp. 486–498.

[KS16] Á. Kiss and T. Schneider. “Valiant’s Universal Circuit is Practical”.
In: EUROCRYPT’16. Vol. 9665. LNCS. Springer, 2016, pp. 699–728.

[KSS13] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. “A Systematic Ap-
proach to Practically Efficient General Two-Party Secure Function
Evaluation Protocols and their Modular Design”. In: Journal of
Computer Security 21.2 (2013), pp. 283–315.

[Lai17] K. Laine. Simple Encrypted Arithmetic Library 2.3.1. Microsoft Re-
search. 2017. url: https://www.microsoft.com/en-us/research/
uploads/prod/2017/11/sealmanual-2-3-1.pdf.

https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf

20 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

[Liu+20] H. Liu, Y. Yu, S. Zhao, J. Zhang, and W. Liu. Pushing the Limits of
Valiant’s Universal Circuits: Simpler, Tighter and More Compact.
Cryptology ePrint Archive, Report 2020/161. 2020. url: https:

//ia.cr/2020/161.
[LMS16] H. Lipmaa, P. Mohassel, and S. S. Sadeghian. Valiant’s Universal

Circuit: Improvements, Implementation, and Applications. Cryptol-
ogy ePrint Archive, Report 2016/17. 2016. url: https://ia.cr/
2016/017.

[LP09] Y. Lindell and B. Pinkas. “A Proof of Security of Yao’s Protocol for
Two-Party Computation”. In: Journal of Cryptology 22.2 (2009),
pp. 161–188.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: EUROCRYPT’10. Vol. 6110.
LNCS. Springer, 2010, pp. 1–23.

[Mil86] V. S. Miller. “Use of Elliptic Curves in Cryptography”. In: CRYPTO’85.
Vol. 218. LNCS. Springer, 1986, pp. 417–426.

[MS13] P. Mohassel and S. Sadeghian. “How to Hide Circuits in MPC an
Efficient Framework for Private Function Evaluation”. In: EURO-
CRYPT’13. Vol. 7881. LNCS. Springer, 2013, pp. 557–574.

[MSS14] P. Mohassel, S. Sadeghian, and N. P. Smart. “Actively Secure Pri-
vate Function Evaluation”. In: ASIACRYPT’14. Vol. 8874. LNCS.
Springer, 2014, pp. 486–505.

[Nik+14] S. Niksefat, B. Sadeghiyan, P. Mohassel, and S. Sadeghian. “ZIDS:
A Privacy-Preserving Intrusion Detection System Using Secure Two-
Party Computation Protocols”. In: The Computer Journal 57.4 (2014),
pp. 494–509.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. “Privacy Preserving Auctions
and Mechanism Design”. In: ACM Conference on Electronic Com-
merce (EC’99). ACM. 1999, pp. 129–139.

[Pai99] P. Paillier. “Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes”. In: EUROCRYPT’99. Vol. 1592. LNCS.
Springer, 1999, pp. 223–238.

[Pin+09] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. “Secure
two-party computation is practical”. In: ASIACRYPT’09. Vol. 5912.
LNCS. Springer, 2009, pp. 250–267.

[PSS09] A. Paus, A.-R. Sadeghi, and T. Schneider. “Practical Secure Eval-
uation of Semi-Private Functions”. In: ACNS’09. Vol. 5536. LNCS.
Springer, 2009, pp. 89–106.

[Reg05] O. Regev. “On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography”. In: STOC’05. ACM, 2005, pp. 84–93.

[Sea19] Microsoft SEAL (release 3.3). https://github.com/Microsoft/
SEAL. 2019.

[Val76] L. G. Valiant. “Universal Circuits (Preliminary Report)”. In: STOC’76.
ACM, 1976, pp. 196–203.

https://ia.cr/2020/161
https://ia.cr/2020/161
https://ia.cr/2016/017
https://ia.cr/2016/017
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

Linear-Complexity Private Function Evaluation is Practical (Full Version) 21

[Yao82] A. C. Yao. “Protocols for Secure Computations (Extended Abstract)”.
In: FOCS’82. IEEE, 1982, pp. 160–164.

[Yao86] A. C.-C. Yao. “How to Generate and Exchange Secrets”. In: FOCS’86.
IEEE, 1986, pp. 162–167.

[Zha+19] S. Zhao, Y. Yu, J. Zhang, and H. Liu. “Valiant’s Universal Circuits
Revisited: an Overall Improvement and a Lower Bound”. In: ASI-
ACRYPT’19. Vol. 11921. LNCS. Springer, 2019, pp. 401–425.

[ZRE15] S. Zahur, M. Rosulek, and D. Evans. “Two Halves Make a Whole -
Reducing Data Transfer in Garbled Circuits Using Half Gates”. In:
EUROCRYPT’15. Vol. 9057. LNCS. Springer, 2015, pp. 220–250.

A Runtime Excluding Precomputable setupN Phase

In some application scenarios, P1’s private function f is not predefined (it may
depend on inputs of P1, or may change periodically). In this case, the onlinex
and the setupf phases need to be computed when the parties provide their
inputs to the protocol. Even in these scenarios, often the size N of the func-
tion (or an upper bound for it) is publicly known. Thus, the setupN phase can
be precomputed before knowing the function f or the input x and the online
phase consists of the setupf and onlinex phases. We depict in Figure 5 the total
runtime excluding setupN to visualize the online runtime of the different PFE
protocols in these scenarios. We observe that in this case both our EC ElGamal-
and our BFV-based PFE implementations outperform UC-based PFE [Alh+20]
for N = 106.

10
2

10
3

10
4

10
5

10
6

10−3

100

103

Input circuit size N

C
o
m

m
u
n
ic

a
ti

o
n

(M
B

)

LAN

10
2

10
3

10
4

10
5

10
6

10−3

100

103

Input circuit size N

C
o
m

m
u
n
ic

a
ti

o
n

(M
B

)

WAN

UC [Alh+20] UC [Liu+20] DJN BFV EC ElGamal

Fig. 5: Total runtime of PFE protocols excluding the size-dependent setupN
phase (in seconds).

22 Marco Holz, Ágnes Kiss, Deevashwer Rathee, Thomas Schneider

B Performance Measurement Tables

To falcilitate comparison for future works, we give the communication measure-
ments used to plot Figure 3 in Table 1, and the runtime measurements used to
plot Figure 4 in Tables 2 and 3.

Phase Protocol
Input circuit size N

102 103 104 105 106

setupN

UC [Alh+20] 0.06 1.01 14.58 192.18 2,379.89
UC [Liu+20] 0.04 0.67 9.72 128.12 1,586.59
DJN 0.14 0.80 7.39 73.39 733.42
BFV 1.08 5.82 53.44 529.88 5,295.20
EC ElGamal 0.01 0.07 0.64 6.30 62.95

setupf

UC [Alh+20] 0.03 0.50 7.21 95.33 1,182.32
UC [Liu+20] 0.02 0.33 4.81 63.55 788.21
DJN 0.20 1.58 15.49 154.69 1,546.86
BFV 0.14 1.08 10.58 105.67 1,056.67
EC ElGamal 0.03 0.28 2.71 27.08 270.84

onlinex

UC [Alh+20] 1.5 · 10−5 1.5 · 10−5 1.5 · 10−5 1.5 · 10−5 1.5 · 10−5

UC [Liu+20] 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5

DJN 1.5 · 10−3 1.5 · 10−3 1.5 · 10−3 1.5 · 10−3 1.5 · 10−3

BFV 1.5 · 10−3 1.5 · 10−3 1.5 · 10−3 1.5 · 10−3 1.5 · 10−3

EC ElGamal 3.0 · 10−3 3.0 · 10−3 3.0 · 10−3 3.0 · 10−3 3.0 · 10−3

total

UC [Alh+20] 0.09 1.51 21.79 287.51 3,562.21
UC [Liu+20] 0.06 1.01 14.53 191.67 2,374.81
DJN 0.34 2.39 22.89 228.08 2,280.29
BFV 1.22 6.91 64.02 635.55 6,351.88
EC ElGamal 0.05 0.35 3.35 33.39 333.80

Table 1: Communication of PFE protocols (in MB).

Linear-Complexity Private Function Evaluation is Practical (Full Version) 23

Phase Protocol
Input circuit size N

102 103 104 105 106

setupN

UC [Alh+20] 0.006 0.041 0.253 3.267 41.084
UC [Liu+20] 0.004 0.027 0.169 2.178 27.389
DJN 0.237 1.086 9.868 95.587 958.076
BFV 0.061 0.205 0.953 7.711 75.603
EC ElGamal 0.008 0.024 0.112 0.928 9.185

setupf

UC [Alh+20] 0.001 0.005 0.053 0.705 7.462
UC [Liu+20] 0.000 0.003 0.036 0.470 4.975
DJN 0.315 2.330 22.240 221.104 2,209.473
BFV 0.042 0.107 0.436 3.383 31.773
EC ElGamal 0.006 0.036 0.167 1.012 8.942

onlinex

UC [Alh+20] 0.002 0.016 0.164 2.098 28.578
UC [Liu+20] 0.001 0.011 0.109 1.399 19.052
DJN 0.005 0.008 0.033 0.223 1.510
BFV 0.003 0.007 0.026 0.135 1.148
EC ElGamal 0.004 0.015 0.082 0.645 6.266

total

UC [Alh+20] 0.010 0.066 0.501 6.358 79.681
UC [Liu+20] 0.007 0.044 0.334 4.239 53.121
DJN 1.101 4.092 33.100 317.506 3,169.486
BFV 0.126 0.338 1.445 11.404 110.139
EC ElGamal 0.021 0.077 0.363 2.592 24.412

Table 2: Runtime of PFE protocols in the LAN setting (in seconds).

Phase Protocol
Input circuit size N

102 103 104 105 106

setupN

UC [Alh+20] 0.198 0.517 1.809 18.292 217.333
UC [Liu+20] 0.132 0.345 1.206 12.195 144.888
DJN 0.350 1.124 9.832 96.024 955.987
BFV 0.388 1.024 5.945 54.397 536.059
EC ElGamal 0.025 0.114 0.471 1.634 10.929

setupf

UC [Alh+20] 0.009 0.040 0.644 8.940 111.698
UC [Liu+20] 0.006 0.026 0.430 5.960 74.465
DJN 0.730 3.221 24.693 235.682 2,344.182
BFV 0.442 0.863 2.410 13.702 124.933
EC ElGamal 0.207 0.514 1.641 4.522 33.642

onlinex

UC [Alh+20] 0.002 0.020 0.210 2.100 28.580
UC [Liu+20] 0.001 0.014 0.140 1.400 19.054
DJN 0.212 0.216 0.246 0.454 1.745
BFV 0.213 0.214 0.233 0.392 1.426
EC ElGamal 0.215 0.228 0.297 0.881 6.546

total

UC [Alh+20] 0.412 0.746 2.803 29.683 360.276
UC [Liu+20] 0.275 0.498 1.869 19.789 240.184
DJN 2.165 5.511 35.404 332.895 3,302.949
BFV 1.259 2.309 8.774 68.758 664.105
EC ElGamal 0.554 0.967 2.518 7.149 51.241

Table 3: Runtime of PFE protocols in the WAN setting (in seconds).

	Linear-Complexity Private Function Evaluation is Practical (Full Version)

