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Abstract. In this paper, we propose a new private set intersection (PSI)
protocol that computes the following functionality. The two parties (P1

and P2) input two sets of items (X and Y , respectively) and one of the
parties outputs a function of the intersection (f(X ∩Y )). This function-
ality is generally required when the PSI protocol is used as a part of
a larger secure two-party secure computation. Pinkas et al. presented a
PSI protocol at Eurocrypt 2019 for this functionality, which has linear
complexity only in communication. While there are PSI protocols with
linear computation and communication complexities in the classical PSI
setting where the intersection itself is revealed to one party, to the best
of our knowledge, there is no PSI protocol, which outputs a function of
the intersection and satisfies linear complexity in both communication
and computation. We present the first PSI protocol that outputs only a
function of the intersection with linear communication and computation
complexities. While creating the protocol, as a side contribution, we pro-
vide a one-time oblivious programmable pseudo-random function based
on garbled Bloom filters. We also implemented our protocol and provide
performance results.

Keywords: Private set intersection, two-party computation, Bloom filters, obliv-
ious transfer, cuckoo hashing

1 Introduction

Private set intersection (PSI) protocols are one of the commonly used two party
secure communication primitives where two parties, P1 and P2, have their own
respective private sets, X and Y , and at least one of the parties learn the in-
tersection X ∩ Y but nothing more. Although this functionality can be realized
using generic secure two-party computation protocols, the main drawback of
such realizations is the high communication complexity, which is an important
parameter when deploying such a solution for real world applications. Because of
that, in the last decade, considerable amount of custom PSI protocols have been
proposed in the literature. However, most of the proposed solutions reveal the in-
tersection to at least one of the parties, which makes the protocols not usable as



a building block in a larger secure computation protocol, because in that larger
protocol, intermediate information would leak due to the nature of the employed
PSI protocol. In this work, we focus on designing a PSI protocol which outputs
a function f of the intersection (f(X ∩ Y )) in the semi-honest security model.
Such a function can be a homomorphic encryption of the membership result of
the items under the public key of the sender party to make the result usable in a
larger homomorphic encryption based computation protocol, or it can be secret
shares of the result for each item or labels for the corresponding input wires for
circuit based secure computation protocols.

Related Work: To the best of our knowledge, the existing protocols that
output a function of the intersection result were proposed by Ciampi and Orlandi
[5], Pinkas et al. [25], and Falk et al. [11] in addition to the circuit based solu-
tions of [13, 28]. In [5], a custom private set membership protocol (PSM) (where
one of the parties has only one item instead of a set) based on oblivious naviga-
tion of a graph was introduced and this PSM protocol was converted to a PSI
protocol with O(n log n/ log log n) communication and computation complexities
using the hashing techniques proposed in [27, 24, 28]. [11] has a communication
complexity of O(n log logn) when the output of the protocol is a function of
the intersection. In [25], Pinkas et al. proposed a PSI protocol with O(n) com-
munication and ω(n(log log n)2) computation complexities using the oblivious
programmable pseudo-random function (OPPRF) introduced in [19]. That pro-
tocol is similar to the protocols introduced in [24] in terms of the usage of cuckoo
hashing, and it additionally uses OPPRF to check the private set membership
relation in the hashed bins, where the result is not output in clear text, and then
deploys a comparison circuit for the output of the membership result that can
be given to a function as the input. Also in literature, there have been special
purpose PSI protocols such as [31, 21, 6, 18, 9, 8, 32, 14, 15], which output a spe-
cific function of the intersection such as cardinality of the set, intersection-sum
or a threshold function.

In our solution, we follow the idea of Pinkas et al. [25] in that we first run a
PSM protocol for each bin in the cuckoo hash table and then execute a compar-
ison protocol. We diverge from their idea in the following ways. The first one is
that we construct a Bloom-filter (BF) based PSM protocol by modifying Dong
et al. PSI solution [10] to reduce the computation complexity. The second point
is that, instead of using a comparison circuit, we execute Ciampi-Orlandi PSM
protocol as a secure equality testing protocol such as the one used in [17], which
makes the equality testing free by using the base oblivious transfer already ex-
ecuted in the BF-based PSM protocol. Following these two methods along the
idea of Pinkas et al., we are able construct the first custom PSI protocol hav-
ing linear computation and communication complexities for the functionality we
consider (outputting not the result set, but a function of the intersection), to
the best of our knowledge. Note that there have been PSI solutions with linear
complexities such as the protocols in [7, 10] but in these protocols the intersec-
tion is revealed to at least one party while in our protocol no party learns the
intersection in cleartext. We implemented our PSM and PSI protocols and the
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Ciampi-Orlandi PSM protocol to make a fair comparison. Experimental per-
formance results, which validate our performance analysis, are given in Section
6.

We organized the paper as follows. In Section 2, we introduce the notation
used throughout the paper and mention the primitives related to our proposal.
We present our PSM and PSI protocols in Section 3 and 4, respectively. Security
definitions and proofs are given in Section 5. After presenting performance results
of our protocols in Section 6, we conclude the paper with Section 7.

2 Preliminaries and Similar Protocols

2.1 Notation

P1 and P2 are the parties who run the protocol, X and Y are the corresponding
item sets of the parties, and f is the function to be applied on the set intersection
result. P1 and P2 respectively play the sender and receiver roles, and at the end of
the PSI protocol, P2 learns f(X∩Y ). The remaining notation we use throughout
the paper is as follows:

` : The length of the items in the sets
κ : Security parameter
η : Statistical correctness parameter
n : The number of items in the sets
m : Bloom filter size
k : Number of hash functions used in Bloom filter
Hi : Set of k hash functions used in the construction of Bloom filters

for i-th bin in the cuckoo table where Hi = {hi,1, ..., hi,k}
β : The number of bins in cuckoo table

2.2 Oblivious Transfer

A 1-out-of-2 oblivious transfer (OT) [29] is a secure two-party protocol that
realizes Functionality 1. In the 1-out-of-2 random OT, the messages are chosen
by the functionality instead of P1. P1 inputs nothing, P2 inputs the choice bit
b, P1 outputs the message pair (m0 and m1) and P2 outputs only mb [1, 22].
While OT is one of the commonly used primitives in secure protocols, the main
drawback of this primitive is the need of asymmetric key operation executions.
With the help of OT extension (OTE) method introduced in [16], to execute
1-out-of-2 OT for m pairs of length ` (OTm` ) it is enough to run OTκκ, called as

Functionality 1 Oblivious Transfer
Inputs. The sender inputs a pair (x0, x1), the receiver inputs a choice bit b ∈ {0, 1}.

Outputs. The functionality returns the message xb to the receiver and returns nothing
to the sender.
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base OTs, where κ is the security parameter, which keeps the number of heavy
public key operations as a constant independent from the number of pairs m
and item lengths `.

In recent works, it was shown that the number of rounds can be 2 instead of 3
for an OT extension protocol by executing some of the computations in the offline
phase of the protocol [3, 4]. In our solution, we don’t consider the preprocessing
operations and so we don’t use these constructions in our protocols.

2.3 Cuckoo Hashing

Cuckoo hashing [23] is a hashing primitive that allows to map items of a set to
the bins, where there is at most one item in each bin. This primitive employs
two hash functions h0 and h1 and maps n items to a table T of (1+ ε)n bins. An
item xi is inserted into bin T [hb(xi)]. If this bin already accommodates a previous
item xj , then xj is relocated to bin T [h1−b(xj)]. If in that bin there is another
item, then this procedure is repeated until there is no need or a replacement
threshold is reached. If a threshold is employed, then a stash is used to store the
items that are not located into the bins.

2.4 Bloom Filter Based PSI

A Bloom filter (BF) [2] is a representation of a setX = x1, ..., xn of n elements us-
ing anm-bit string BF . BF is constructed with the help of a set of k independent
and uniform hash functions (H = h1, ..., hk) where hi : {0, 1}` → {1, 2, ...,m}
as follows: BF is first set to 0m. Then, for each item in X, BF [hi(xj)] is set to
1 where 1 ≤ i ≤ k and 1 ≤ j ≤ n. To check whether an item x is in the set
X, one checks BF [hi(x)] is equal to 1 or not for each i (1 ≤ i ≤ k). If for all i
(1 ≤ i ≤ k) the corresponding bit in BF is equal to 1, then it means that the
item is probably in the set. Otherwise (for some i the corresponding bit is 0),
the item is not in the set.

A Bloom filter based PSI was proposed by Dong et al. [10]. In that solution, a
variant of BF called as Garbled Bloom Filter (GBF) was used. A GBF of a setX,
GBF , is similar to BF except that while for each hash function hi in H we have
BF [hi(x)] = 1, GBF [hi(x)] is a secret share of x: that is,

⊕k
i=1GBF [hi(x)] = x

and other cells are random values instead of simple zeros. In the first step of the
protocol, P1 and P2 construct a GBF (GBFX) and a BF (BFY ), respectively.
Then, P1 and P2 run m-pair oblivious transfer of `-bit strings (OTm` ) where P1’s
input is (0`, GBFX [i]) and P2’s input is BFY [i] for the i-th OT, and the output of
P2 is GBFY [i]. In this way, P2 learns GBFX [i] if BFY [i] = 1. P2 checks, for each
item yj ∈ Y , whether it is in X or not, by comparing

⊕k
i=1GBFY [hi(yj)]

?
= yj .

Pinkas et al. improved the solution using random 1-out-of-2 OT [27]. In that
protocol, P1 and P2 run m times random 1-out-of-2 OT where P2’s input is the
choice bit BF [i], P2’s output is GBFY [i] = mi

BF [i], P1’s output is (mi
0,m

i
1) and

P1 sets GBFX [i] = mi
1 if there is at least one item in his set such that hl(xj) = i

for (1 ≤ l ≤ k). Then, P1 sends Kxj =
⊕k

l=1GBFB [hl(xj)] to P2 and P2 learns
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the membership result for her item y by checking
⊕k

l=1GBFY [hl(y)] equals to
one of the key strings Kxj

sent by P1. Rindal and Rosulek [30] proposed to send
the hash of concatenation of xj and Kxj (H(xj‖Kxj )) instead of Kxj because
of the collision probability of hi(x) = hi′(x).

2.5 Oblivious Pseudo-Random Function Based PSM

An oblivious pseudo-random function (OPRF), introduced in [12], is a two-party
protocol where party P1 holds a key K, party P2 holds a string x, and at the end
of the protocol P1 learns nothing, while P2 learns FK(x) where F is a pseudo-
random function family that gets a κ-bit key K and an `-bit input string x and
outputs an `-bit random-looking result. An oblivious programmable pseudo-
random function (OPPRF) [19] is similar to an OPRF except that in OPPRF,
the protocol outputs predefined values for some of the programmed inputs. In
this protocol P2 should not be able to distinguish which inputs are programmed.

The basic idea in OPRF based PSM protocols are as follows. P1 holds a key
K to compute a pseudo-random function FK , P2 learns FK(y) for his item y
obliviously, and P1 sends FK(xi) for her items xi ∈ X to P2. P2 checks if FK(y)
is in the set {FK(xi)}. An example PSI protocol can be found in [28]. In the
OPRF solution, P2 learns whether or not his item is in the set of P1. This solution
cannot be used in our setting where nobody learns the result in cleartext and the
parties only learn a function result of the intersection. Pinkas et al. [25] converted
the OPRF solution to the setting we consider using an oblivious programmable
pseudo-random function. In that solution, P1 sends the same (random) output r
for the items in her set. Otherwise, she sends some random output to P2. Then
P1 and P2 run a circuit to check the equality of r and the outputs P1 sent to P2.
At the end of this equality check circuit, one party obtains a function based on
the result of the equality, i.e, of the membership.

2.6 Usage of Ciampi-Orlandi PSM Protocol to Test Equality of
Two Strings

The private set membership (PSM) protocol proposed by Ciampi and Orlandi
[5] works on the setting that P1 and P2’s inputs are a set of items X and an item
y, respectively, and at the end of the protocol, P2 learns a function of the mem-
bership relation and P1 learns nothing. The protocol is based on oblivious graph
tracing and uses oblivious transfer. In our construction, we use that protocol for
the case that P1’s input is just one item instead of a set, as considered in [17].
In this case, the PSM protocol becomes a secure equality testing outputting
a function (we call functional equality testing - FEQT) protocol that realizes
Functionality 2. This simplification also greatly increases efficiency, helping us
achieve linear costs. The reader can refer to [5] and [17] for a full description of
the protocol and the FEQT version of the protocol, respectively.
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Functionality 2 Functional Secure Equality Testing
Parameters. A function f to be computed on the equality relation result.

Inputs. P1 inputs x, P2 inputs y. Outputs. The functionality checks the equality of x
and y and returns f(x = y) or f(x 6= y) according to the equality relation to P2.

3 Our Private Set Membership Protocol

In this section, we propose a new PSM protocol that realizes Functionality 3.
As discussed in the introduction, our protocol does not output the membership
result, but instead outputs some function of it, so that it can be directly inte-
grated into a larger secure computation protocol. After this section, we show
how to extend our protocol to set intersection as well.

In the construction of the protocol, we use the following idea of [25]: If y ∈ X,
then both parties learn the same random value. Otherwise, they learn different
random values. Then, the parties run a comparison protocol that outputs a func-
tion of the equality instead of the equality itself (Functionality 2). Our solution
diverges from the solution of [25] in two folds. To realize the first part, [25] makes
use of an OPPRF construction based on polynomials. We propose a new OPPRF
construction based on Bloom filters. The selection of Bloom filters enables us to
reduce the computation complexity of the protocol to a linear complexity. The
other difference is that we utilize Ciampi-Orlandi PSM protocol [5] for secure
equality testing as done in [17] for Functionality 2, instead of running a compar-
ison circuit. Thus, our overall construction is not a circuit-based construction.

Functionality 3 Private Set Membership
Parameters. A function f to be computed on the membership relation result.

Inputs. P1 inputs X = {x1, ..., xn}, P2 inputs y

Outputs. The functionality checks the membership of y in X and returns f(y
?
∈ X))

according to the membership relation.

3.1 Bloom Filter Based OPPRF Construction

We introduce a one-time OPPRF construction by modifying Dong et al. PSI
protocol [10]. While in their protocol secret shares of items are stored in a garbled
Bloom filter, in our construction, secret shares of a random value chosen by the
sender are stored. The OPPRF functionality we use in our PSM protocol is
given in Functionality 4 and our construction that implements the functionality
is presented in Protocol 1.

Note that we allow the programmed values (ti) to be correlated. Because of
that, the functionality is secure only if the receiver makes only one query. For
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the purposes of PSM, we notice that one query is enough. In our PSM solution
the programmed values will be the same; that is, all the ti values will be equal.

Functionality 4 (One-Time) Oblivious Programmable Pseudo Random Function
Inputs. P1 inputs predefined items X = {x1, ..., xn} and corresponding programmed
values T = {t1, ..., tn}, P2 inputs y
Outputs. The functionality checks the membership y ∈ X and returns ti to P2 if
∃xi s.t. y = xi (1 ≤ i ≤ n); returns a random value otherwise to P2, and returns
nothing to P1.

3.2 Our Full PSM Protocol

To achieve private set membership, the parties first run the one-time OPPRF
protocol that is based on garbled Bloom filters. At the end, P1 outputs r (a ran-
dom value chosen by P1), whereas P2 learns some random value that may be r
or something different. The value P2 learns is always random and indistinguish-
able; but, this random value is equal to r if and only if y ∈ X.3 Following this
part, the parties run a secure functional equality testing protocol, where at the
end of the protocol P2 learns the function result of the equality relation, which
is also the function result of the membership relation. We make use of the PSM
protocol of Ciampi-Orlandi [5] for secure functional equality testing by reducing
the number of items of the sender set to one. We present our semi-honest secure
PSM solution in Protocol 2.

4 Our Private Set Intersection Protocol

4.1 Batch One-Time OPPRF

Our PSM protocol can be used to build an efficient PSI protocol using the hash-
ing techniques introduced in [27, 24]. In this technique, one party constructs a
cuckoo table as mentioned in Section 2.3 using two hash functions and the other
party maps her items into bins in a hash table using the two hash functions that
are applied on each item. Then, a private set membership protocol is applied
on each bin where the party who constructs the cuckoo table inputs the (single)
item in the i-th bin, and the other party inputs the set of items in the i-th bin of
its hash table, for the i-th execution of the PSM protocol. If one were to directly
employ our PSM construction to obtain a PSI protocol using this hashing tech-
nique, the computation and communication complexities of the full PSI protocol
would be O(n log n/ log log n), since the number of items in each hash table bin
is O(log n/ log log n) and the number of bins is O(n). Note that with this usage,
3 With a randomly constructed garbled Bloom filter, the probability of obtaining the
same r with a different item is negligible, as shown in [10].
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Protocol 1 Our One-Time OPPRF Protocol
Parameters. A set of hash functions H = {h1, ..., hk}

Inputs. P1 inputs a set of items X = {x1, ..., xn} and corresponding programmed values
T = {t1, ..., tn}, P2 inputs an item y.
Outputs. P1 outputs nothing and P2 outputs ti if ∃xi s.t. y = xi (1 ≤ i ≤ n), otherwise
outputs a random value.
The protocol steps:

1. P1 constructs a garbled Bloom filter GBFX such that

k⊕
i=1

GBFX [hi(xj)] = tj

for 1 ≤ j ≤ n.
2. P2 constructs a (standard) Bloom filter BFy for the item y.
3. P1 and P2 runm oblivious transfers where P1’s input is (0, GBFX [i]) and P2’s input

is BFy[i] for the i-th oblivious transfer, and the output of P2 is 0 if BFy[i] = 0 or
GBFX [i] if BFy[i] = 1. Call the output of P2 as GBFy[i].

4. P1 outputs nothing and P2 outputs
⊕k

i=1GBFy[hi(y)].

Protocol 2 Our Private Set Membership Protocol
Parameters. A set of hash functions H = {h1, ..., hk}

Inputs. P1 inputs a set of items X = {x1, ..., xn}, P2 inputs an item y.

Outputs. P2 outputs f(y
?
∈ X).

The protocol steps:

1. P1 picks an η-bit random value r and sets T = {t1 = r, ..., tn = r}.
2. P1 and P2 run Protocol 1 for one-time OPPRF with the respective inputs (X,T )

and y. Denote the output of P2 as r′.
3. P1 and P2 run Ciampi-Orlandi PSM protocol for functional equality testing with

the respective inputs r and r′. The output of the PSM protocol is the output of
the FEQT protocol.

for each bin, P2 and P1 run O(n) parallel OPPRF protocols and then apply
O(n) parallel FEQT protocols. Instead of following this straightforward way, we
show that it is possible to make the communication and computation complexi-
ties linear while extending our PSM solution to a PSI solution by using a batch
OPPRF protocol. We propose a new batch one-time OPPRF construction in
Protocol 3 that implements Functionality 5.

Note that, for each set, different sets of hash functions (set Hi for the i-th set)
must be used, since we allow the items in the sets to be correlated. Otherwise,
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Functionality 5 Batch One-Time Oblivious Programmable Pseudo Random Function

Inputs. P1 inputs a predefined set of item sets X = {X1, ..., Xβ}, where Xi =
{xi,1, ..., xi,n}, and corresponding programmed value sets T = {T1, ..., Tβ}, where
Ti = {ti,1, ..., ti,n}, and P2 inputs a set of items Y = {y1, ..., yβ}
Outputs. The functionality checks the membership relations yi ∈ Xi and returns r′i =
ti,j if ∃xi,j s.t. yi = xi,j (1 ≤ j ≤ n); returns a random r′i otherwise, for each i where
1 ≤ i ≤ β.

Protocol 3 Bloom Filter Based Batch One-Time OPPRF Protocol
Parameters. A set of hash function sets H = {H1, ..., Hβ} where Hi = {hi,0, ...hi,k}

Inputs. P1 inputs a set of item sets X = {X1, ..., Xβ}, where Xi = {xi,1, ..., xi,n}, and
corresponding programmed value sets T = {T1, ..., Tβ}, where Ti = {ti,1, ..., ti,n}, and
P2 inputs a set of items Y = {y1, ...yβ}.
Outputs. P2 outputs a set of random values R′ = {r′1, ..., r′β}, where r′i = ti,j if
∃xi,j s.t. yi = xi,j (1 ≤ j ≤ n); otherwise r′i is a random value; for 1 ≤ i ≤ β.

The protocol steps:

1. P1 constructs a garbled Bloom filter GBFX such that

k⊕
j=1

GBFX [hi,j(xi,l)] = ti,l

for 1 ≤ i ≤ β and 1 ≤ j ≤ k.
2. P2 constructs a Bloom filter BFY for the items in Y .
3. P1 and P2 runm oblivious transfers where P1’s input is (0, GBFX [i]) and P2’s input

is BFY [i] for the i-th oblivious transfer, and the output of P2 is 0 if BFy[i] = 0 or
GBFX [i] if BFY [i] = 1. Call the OT output P2 obtains as GBFY [i].

4. P2 outputs R′ = {r′1, ..., r′β} where r′i =
⊕k

j=1GBFY [hi,j(yi)].

there will be collisions while constructing the garbled Bloom filter because some
items will exist in more than one set.

4.2 Our Full PSI Protocol

Our full PSI protocol that realizes Functionality 6 is introduced in Protocol
4. Note that when we use two hash functions for cuckoo hashing, then there
will be some items in Y which cannot be placed into the table and have to be
moved to a stash. For each of these items in the stash, a PSM protocol also
has to be executed. When we consider the number of these items as ω(1), then
the complexity of our PSI protocol becomes bigger than O(n). To make the
complexity linear, Pinkas et al. proposed to use dual execution or a stash-less
cuckoo hashing [25]. In dual execution, after the first run of the PSI protocol,
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P2 learns the membership result for its items except the ones in the stash. Then
the parties run the PSI protocol swapping their roles, that is, P1 constructs a
cuckoo table forX and P2 constructs a hash table for the items in the stash. Since
there may be some items of P1 which have not been placed in the cuckoo table
and moved to a stash, P1 and P2 should run the PSM protocol for their items
in the stashes. However, this usage does not realize the Functionality 6 that we
consider, since in the second run, P2 learns the function of the membership result
between its items in the stash and the set X, and in the final PSM protocols
run for the items in the stashes, P2 again learns the function of the membership
result between its items in the stash and P1’s items in the stash. That is, P2

learns two different results for its items in the stash that makes the protocol
diverge from Functionality 6. Because of these two reasons, we make use of the
second method of Pinkas et al, which is the usage of stash-less cuckoo hashing.

Functionality 6 Private Set Intersection
Parameters. A function f to be computed on the intersection. Inputs. P1 inputs
X = {x1, ..., xn}, P2 inputs Y = {y1, ..., yn} Outputs. The functionality checks the

membership of each yi in X and returns f(yi
?
∈ X) to P2.

Protocol 4 Bloom Filter Based Private Set Intersection Protocol
Parameters. A set of hash function sets H = {H1, ..., hβ} where Hi = {hi,1, ..., hi,k}
for 1 ≤ i ≤ β.
Inputs. P1 inputs a set of items X = {x1, ..., xn}, P2 inputs a set of items Y =
{y1, ..., yn}.
Outputs. P2 outputs f(yi

?
∈ X) for 1 ≤ i ≤ n.

The protocol steps:

1. P1 constructs a hash table for the set X.
2. P2 constructs a cuckoo table for the set Y .
3. P1 picks a set of β η-bit random values R = {r1, ..., rβ}.
4. P1 and P2 run Protocol 3 with their respective inputs: (hash table, R) and cuckoo

table. Let the output of P2 be R′ = {r′1, ..., r′β}.
5. P1 and P2 run β parallel Ciampi-Orlandi PSM protocols for functional equality

testing, where for the i-th run, the inputs of P1 and P2 are ri and r′i. For each
item yj in Y , P2 outputs the i-th Ciampi-Orlandi PSM protocol output where yj
is placed into i-th bin in the cuckoo table.
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5 Security

5.1 Definitions

Since there are two parties who run the protocol, it is enough to prove that the
protocol is secure when one of the parties is corrupted. There are two possible
cases: either P1 or P2 is corrupted.

We follow the simulation-based security proof paradigm. Since we only con-
sider honest-but-curious adversaries, the existence of a simulation in the “ideal
world” whose protocol transcript is computationally indistinguishable from the
adversary’s view in the protocol execution in the “real world” (together with the
parties’ outputs in both worlds) proves that the protocol is secure. The basic
idea in this proof paradigm is that if it is possible for the simulator to create
a protocol transcript indistinguishable from the real execution transcript, then
the transcript doesn’t reveal any piece of information about the private input of
the honest party. This security proof paradigm was formalized in [20] as follows.
Protocol π implements the functionality F = (F1,F2) where the output of P1

and P2 are F1(x, y) and F2(x, y), respectively, and x and y are the inputs of the
parties. The view of Pi for i ∈ {1, 2} (denoted as viewπi (x, y)) in the execution
of the protocol π is the input of Pi, the internal random number coin tosses,
the messages received from the other party in the execution of the protocol, and
the outputs. The existence of probabilistic polynomial-time (PPT) algorithms
Si (the simulators) that takes the input of Pi and the output of Pi such that

{Si(wi,Fi(x, y))}x,y ≈ {viewπi (x, y)}x,y

for i ∈ {1, 2} where w1 = x and w2 = y proves that the protocol π realizes the
functionality F securely.

As for the underlying primitives, namely OT, OPPRF, and FEQT, whose
functionalities were presented as Functionalities 1, 4, and 2, respectively, there
exists simulators who can simulate the view for both parties. These simulators
take the input and output of the corresponding party as input, and produce
indistinguishable views as output. In our proofs, we make use of these simulators
for the underlying primitives.

Lastly, in our proofs, we provide the simulators for semi-honest adversaries.
Note that the simulated view (including the outputs) must be indistinguishable
from the real view. In all our proofs, this is either obvious (directly comes from
the security of the underlying primitive, or comes from the fact that the simu-
lated values are picked from the same distribution as the original ones), or were
proven by others (in which case we also cite those papers). Thus, we do not delve
deep into the indistinguishability discussions, considering also the page limits.

5.2 Security of our One-Time OPPRF Construction

Theorem 1. Protocol 1 securely realizes Functionality 4 when P1 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.
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Proof. The input set X and the programmed values T are given to the simula-
tor S. The simulator computes a garbled Bloom filter GBFX using its random
tape such that

⊕k
i GBFX [hi(xj)] = tj for 1 ≤ j ≤ n. S runs the simulator of

OT as the sender m times, where for the i-th run, the input of the simulator
is ((0, GBFX [i]),⊥). Here, (0, GBFX [i]) is the input of the sender in the OT
protocol and there in no output of the sender. Thus, the simulated view and
output of the parties, and the view of the adversary in the real execution of the
protocol and the output of the parties are indistinguishable.

Theorem 2. Protocol 1 securely realizes Functionality 4 when P2 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The input item y and the output
⊕k

i=1GBFy[hi(y)] are given to the
simulator S. The simulator constructs the Bloom filter using y regularly, and
creates GBF ′y by running the following steps:

1. Set random values to GBF ′y[hi(y)] for 1 ≤ i < k.
2. Set GBF ′y[hk(y)] =

⊕k
i=1GBFy[hi(y)]⊕

⊕k−1
i=1 GBF

′
y[hi(y)].

3. Set GBF ′y[i] = 0 if BFy[i] = 0.

Finally, S runs the OT simulator as the receiver m times, where in the i-th, run
the receiver’s input is BFy[i] and the receiver’s output is GBF ′y[i]. The proof
concludes when we show that GBF ′y is indistinguishable from GBFy. While it
is rather obvious that they are perfectly indistinguishable, for the interested
reader, we refer to the proofs of Theorems 4 and 6 in [10] for the details.

5.3 Security of our PSM protocol

Theorem 3. Protocol 2 securely realizes Functionality 3 when P1 is corrupted
by a semi-honest adversary A, assuming that the OPPRF and FEQT protocols
are semi-honest secure.

Proof. The simulator S is given the input set X. S picks a random value r
using its random tape and sets T = {t1 = r, ..., tn = r}. The simulator S
runs the simulator of OPPRF protocol with the input ((X,T ),⊥). Then, S runs
the simulator of FEQT protocol with the input (r,⊥). This completes the whole
simulation, and indistinguishability is a direct result of the underlying simulators.

Theorem 4. Protocol 2 securely realizes Functionality 3 when P2 is corrupted
by a semi-honest adversary A, assuming that the OPPRF and FEQT protocols
are semi-honest secure.

Proof. The simulator S is given the input item y and the output f(y
?
∈ X). The

simulator picks a η-bit random value r′′. S runs the simulator of OPPRF with

the input (y, r′′) and the simulator of FEQT with the input (r′′, f(y
?
∈ X)). S

does not know the uniform random value r′ used in the real execution, but it
follows the same distribution as r′′, and therefore they are perfectly indistin-
guishable. The computational indistinguishability comes from the FEQT and
OPPRF simulations, which are based on OT simulations.
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5.4 Security of our Batch One-Time OPPRF Construction

Theorem 5. Protocol 3 securely realizes Functionality 5 when P1 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The simulator S is given the input set of sets X and the programmed
values set T . The simulator computes a garbled Bloom filter using its random
tape such that

⊕k
j=1GBFX [hi,j(xi,l)] = ti,l. S runs the simulator of the OT

protocol as the sender with the input (GBFX ,⊥). This concludes the simulation.
Indistinguishability directly comes from the garbled Bloom filter construction
following the protocol, and the OT simulator.

Theorem 6. Protocol 3 securely realizes Functionality 5 when P2 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The input set Y and the output R′ iare given to the simulator S. The
simulator constructs a Bloom filter for Y and a garbled Bloom filter GBF ′Y
following the steps:

1. Sets random values to GBF ′Y [hi,j(yi)] for 1 ≤ i ≤ β and 1 ≤ j < k.
2. Sets GBF ′Y [hi,k(yi)] =

⊕k−1
j=1 GBF

′
Y [hi,j(yi)]⊕ r′i for 1 ≤ i ≤ β.

3. Sets GBF ′Y [i] = 0 if BFY [i] = 0.
4. Sets random values to the empty cells in GBF ′Y .

Then, S runs the simulator of the OT protocol as the receiver with the input
(BFY , GBF

′
Y ). Note that the garbled bloom filters GBF ′Y and GBFY are indis-

tinguishable from the real ones (see also Theorems 4 and 6 in [10]).

5.5 Security of our PSI protocol

Theorem 7. Protocol 4 securely realizes Functionality 6 when P1 is corrupted by
a semi-honest adversary A, assuming that the batch OPPRF and FEQT protocols
are semi-honest secure.

Proof. The input set X is given to the simulator S. The simulator computes the
hash table for X and picks β η-bit random values R′′ = {r′′1 , ..., r′′β} using its ran-
dom tape. Then S runs the simulator of batch OPPRF protocol with the input
((hash table, R),⊥). Finally, S runs the simulator of FEQT protocol β times,
where the input in the i-th run is (ri,⊥). Since r′′i and ri are random numbers
from a uniform distribution, they are indistinguishable. Hence, indistinguisha-
bility of S follows the indistinguishability of the underlying batch OPPRF and
FEQT simulators.

Theorem 8. Protocol 4 securely realizes Functionality 6 when P2 is corrupted by
a semi-honest adversary A, assuming that the batch OPPRF and FEQT protocols
are semi-honest secure.
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Proof. The simulator S is given the input set Y and the output F (yi
?
∈ X) for

1 ≤ i ≤ n. S computes a cuckoo table for the set Y and picks β η-bit random
values R′′ = {r′′1 , ..., r′′β}. S runs the simulator of batch OPPRF protocol with
the input (cuckoo table, R′′) and the simulator of FEQT protocol β times, where

the input in the i-th run is (r′′i , F (yj
?
∈ X)) where yj is assigned to the i-th bin.

Since R′ in the real execution and R′′ in the ideal world are uniformly selected
sets of random numbers, they are indistinguishable. Hence, indistinguishability
of S follows the indistinguishability of the underlying batch OPPRF and FEQT
simulators.

6 Performance Evaluation

6.1 Complexity Analysis

Parameter Choices. We take the number of hash functions used in the construc-
tion of Bloom filters as k = η and follow the choice of [10] to set the size of the
Bloom filter as taking m = 1.44kn. Note that taking k = η doesn’t reduce the
security level to statistical correctness parameter because the result of BF-based
OPPRF protocol are random numbers which then be inputs of the equality test-
ing protocol. Following the parameters in [25], we choose the number of bins as
1.27n and the number of cuckoo hashes as 3, which makes the probability of hav-
ing at least one item in the stash 2−40, consistent with our preferred statistical
correctness parameter η.

Asymptotic Complexity of our PSM protocol. Protocol 1 requiresO(n) hash func-
tion computations for the Bloom filters and O(n) hash function computations to
perform the oblivious transfer extension. FEQT employs O(η) operations for η
oblivious transfers in the Ciampi-Orlandi PSM protocol. Thus, the asymptotic
computation complexity of our PSM protocol becomes O(n). The communica-
tion complexity comes from the oblivious transfers. Considering the oblivious
transfer extension communication complexity as linear in the number of OTs,
the communication complexity of Protocol 2 is O(n).

Concrete Complexity of our PSM protocol. The concrete complexity can be com-
puted as follows. For the Bloom filters, P1 and P2 compute nk and k hash
functions, respectively. For the OT-extension in the OPPRF part, they run m
oblivious transfer whose total computation complexity is approximately equal
to 3m symmetric key operations thanks to the oblivious transfer extension [16].
Finally, the parties execute Ciampi-Orlandi PSM protocol where the number
of items in the set of P1 is one, which makes the computation complexity 6η
symmetric key operations at P1 and 5η symmetric key operations at P2 (the
reader can refer to [17] for the complexity calculation for the FEQT protocol).
Thus the computation complexity of the protocol at the party where major-
ity of workload is done is nk + 3m + 6η. Since we choose m = 1.44kn and
k = η then the complexity becomes 5.32nη + 6η. For the parameter η = 40 the
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complexity will be 212.8n+ 240 symmetric key operations. The communication
complexity comes from the oblivious transfers. In the OPPRF step, the mes-
sage lengths in the oblivious transfer is η bits, while for the FEQT part, it is
2(κ + η) bits. Considering that the total number of bits transferred in the OT
extension equals to 2 times the items’ length times number of pairs, the commu-
nication complexity of the protocol becomes 2×m× η + 2× η × 2× (κ+ η) =
2× (1.44× n× η)× η + 2η × 2× (κ+ η) = 2.88nη2 + 4κη + 4η2.

Asymptotic Complexity of our PSI protocol. While it seems that there are
O(n log n/ log log n) items in the hash table of P1, which makes the length of the
Bloom filters O(n log n/ log log n), the actual number of items is O(3n) = O(n)
since the other items are random values padded to the bins to make the num-
ber of items in the bins O(log n/ log log n). Thus, the length of the bloom filters
can be O(m) = O(1.44 × (3n) × k) = O(4.32nη) = O(n), which requires O(n)
computation and communication for O(4.32nη) = O(n) oblivious transfer and
O(1.27n) = O(n) equality testing protocol executions, where each equality test
protocol run requires O(1) computation and communication.

Concrete Complexity of our PSI protocol. The concrete complexities can be
computed as follows. To construct the cuckoo hash table, P2 and P1 perform
at most 3n hash operations. Then, they construct BF performing kn and 3kn
hash computations, respectively. They execute 4.32nη OTs using OT extension,
which costs 3× 4.32nη hash computations. In the last step, P1 and P2 perform
1.27n × (5η) and 1.27n × (6η) hash computations, respectively. Thus the total
computation cost on the party who has the maximum overhead is 3n + 3nk +
3× 4.32nη+ 1.27n× (6η) = 26.58nη+ 3n. The communication cost comes from
the OT executions for Bloom filter and equality test. Since for the Bloom filter,
4.32nη η-bit message pairs are obliviously sent, the dominant cost is 2×4.32nη×
η = 8.64nη2. For the equality test, the length of the pairs is 2× (κ+ η) and the
number of pairs is 1.27n; hence, the dominant part is 2×1.27n×2(κ+η). Thus,
the total communication cost is approximately is 8.64nη2 + 5.08n(κ+ η).

6.2 Experimental Verification

Setup. We implemented Ciampi-Orlandi and our PSM protocol using C pro-
gramming language and GMP library. In our experiment setup, P1 and P2 run
on the same machine as different processes and communicate with each other
over a TCP channel. We run the protocols for different size of sets and item
lengths on a single CPU core of a computer that has 2.1 Ghz 16-core Intel Xeon
CPU with 64 GB RAM. In the experiments, we chose RSA 2048 as asymmetric
encryption algorithm in base OT, the statistical correctness parameter η as 40
bits, AES as the encryption algorithm, SHA-256 with different initialization vec-
tors as the hash functions. We take the f function such that it outputs 128-bit
wire labels. We take the number of hash functions in the construction of Bloom
filters in our protocols as k = 40. The results are the averages over 10 executions
of the protocols.
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PSM. Table 1 shows the total amount of data transmitted between P1 and
P2 during the execution of the protocols and the run-times in LAN and WAN
setting. As can be seen from the table, our BF-based semi-honest PSM protocol
has linear complexity both on computation and communication, and we provide
comparable performance. Our asymptotic advantage becomes visible with larger
` values.

Table 1. Performance results of Ciampi-Orlandi and our PSM protocols. Run-time
estimates are done for LAN and WAN under the assumption that the bandwidth in
LAN (respectively in WAN) is 1 Gbps (100 Mbps) and RTT is 1 ms (100 ms).

Protocol Ciampi-Orlandi PSM Our PSM
Set size n n = 212 n = 214 n = 216 n = 212 n = 214 n = 216

Comm. [MB] ` = 32 5.4 21.3 84.5 6.0 23.6 93.8
` = 48 8.1 31.8 126.5 6.5 25.4 101.0
` = 64 10.7 42.3 168.5 7.4 29.0 115.4

LAN [ms] ` = 32 2045 4195 11717 2583 6508 22031
` = 48 2444 5759 18115 2655 6564 22337
` = 64 2793 7361 24396 2656 6599 22542

WAN [ms] ` = 32 10207 36389 139436 11651 42118 163745
` = 48 14686 53824 209315 12419 44895 174973
` = 64 18966 71296 279050 13781 50371 196904

PSI. We also implemented our PSI protocol to validate our performance analysis
and compare the efficiency of our protocol with the existing solutions. We choose
the number of hash functions in cuckoo hashing as 3, the number of bins as 1.27n,
and the size of the BF as n×1.44×3×k where k is the number of hash functions
used in BF and 3 comes from the number of hash functions in cuckoo hashing.
We evaluated the effect of k on the performance of our PSI protocol running the
protocol for different k values which is related to the correctness of our protocol.
The results are given in Table 2.

Table 2. Effect of number of hash functions in Bloom filter on the performance of our
PSI protocol.

Comm [MB] LAN [ms] WAN [ms]
n = 210 n = 212 n = 214 n = 210 n = 212 n = 214 n = 210 n = 212 n = 214

k = 40 9.4 36.9 147.4 2604 6804 22488 16812 62577 245277
k = 60 11.5 45.7 182.5 3018 8586 28725 20400 77660 304566
k = 80 13.8 54.5 217.6 3545 10278 35086 24403 92652 363980

We run our PSI protocol for different item bit lengths and set sizes choosing
k = 40, which satisfies enough correctness in practical applications, and obtained
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the results in Table 3. The table verifies our complexity claims and shows that
our PSI protocol has linear communication and computation complexities. We
also present the linear trend in computation complexity of our protocol in Figure
1 where the numbers are taken from Table 3 for ` = 32 and LAN setting.

Table 3. Performance results of our PSI protocol.

Comm [MB] LAN [ms] WAN [ms]
` = 32 ` = 48 ` = 64 ` = 32 ` = 48 ` = 64 ` = 32 ` = 48 ` = 64

n = 28 2.4 2.8 3.5 1407 1498 1556 5034 5730 6847
n = 210 9.4 10.6 13.2 2604 2710 3024 16812 18731 22976
n = 212 36.9 42.1 52.4 6804 7323 7891 62577 70956 87091
n = 214 147.4 168.0 209.3 22488 24486 27757 245277 278412 344105
n = 216 589.0 671.5 836.6 85134 92271 106268 975384 1107216 1370755
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Fig. 1. Computation complexity of our PSI protocol for different set sizes and item bit
lengths in the LAN setting.

Table 3 shows that for n = 212 and ` = 32 our protocol’s communication and
computation complexity is (36.9 MB, 6804 ms in LAN) while the numbers for
other circuit based PSI protocols of [25], [26] and [24] respectively are (9 MB,
1199 ms), (51 MB, 5031 ms) and (130 MB, 7825 ms) as given in [25].

With Figure 2, we compare our concrete computation complexity of our PSI
protocol with the complexity of no-stash PSI solution of [25] for the case that
` = 32 and the setting is LAN. In practice, circuit-based solutions like [25]
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enjoy the benefits of recent advances in the two-party computation techniques.
Therefore, we conclude that Bloom filter based solutions and oblivious transfer
extension techniques should be investigated further in practice to improve their
concrete complexity. It may be that our advantage becomes visible for different
parameters, but we could not obtain the implementation of [25], and thus could
only compare with the values provided in their paper.
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Fig. 2. Comparison of our protocol with no-stash PSI solution of [25].

7 Conclusion

We proposed the first private set intersection (PSI) protocol that outputs a
function of the intersection, with linear communication and computation com-
plexities, to the best of our knowledge. To construct such a protocol, we first
designed a one-time oblivious programmable pseduo-random function (OPPRF)
and then proposed a private set membership (PSM) protocol. To reduce the
complexity while converting the PSM solution to a PSI protocol using hashing
techniques, we constructed another primitive that is called a batch one-time
OPPRF. Finally, using these new constructions, we introduced our PSI protocol
with linear communication and computation complexities. We also implemented
our protocols to validate our performance analysis and show concrete efficiency
of our protocols.
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