
Building a Modern TRNG:
An Entropy Source Interface for RISC-V

Markku-Juhani O. Saarinen
PQShield Ltd., UK
mjos@pqshield.com

G. Richard Newell
Microchip Technology Inc., USA
richard.newell@microchip.com

Ben Marshall
University of Bristol, UK

ben.marshall@bristol.ac.uk

ABSTRACT
The currently proposed RISC-V True Random Number Generator
(TRNG) architecture breaks with previous ISA TRNG practice by
splitting the Entropy Source (ES) component away from crypto-
graphic PRNGs into a separate interface, and in its use of polling.
We describe the interface, its use in cryptography, and offer addi-
tional discussion, background, and rationale for various aspects of it.
This design is informed by lessons learned from earlier mainstream
ISAs, recently introduced SP 800-90B and FIPS 140-3 entropy audit
requirements, AIS 31 and Common Criteria, current and emerging
cryptographic needs such as post-quantum cryptography, and the
goal of supporting a wide variety of RISC-V implementations and
applications. Many of the architectural choices are a result of quan-
titative observations about random number generators in secure
microcontrollers, the Linux kernel, and cryptographic libraries. We
further compare the architecture to some contemporary random
number generators and describe a minimalistic TRNG reference
implementation that uses the Entropy Source together with RISC-V
AES instructions.

KEYWORDS
Entropy Source; RISC-V; Random; TRNG; FIPS 140-3; SP 800-90B

1 INTRODUCTION
The security of cryptographic systems is based on secret bits and
keys. To prevent guessing, these bits need to be random, so they
come from True Random Number Generators (TRNGs).

As a fundamental security function, the generation of random
numbers is governed by numerous standards and technical require-
ments. This work describes an architecture and approach that can
be taken by RISC-V [52] implementors to address these challenges.

RISC-V (https://riscv.org/) is a popular open source Instruction
Set Architecture (ISA) that anyone can freely use. The minimalistic
base instruction sets RV32I and RV64I (for 32- and 64-bit archi-
tectures) are often amended with extensions that provide features
such as floating point arithmetic or bit manipulation.

Note: The RISC-V specifications are created by committees and
task groups within RISC-V International. The TRNG architecture
discussed in this work grew out of the efforts by individual members
of the Cryptographic Extensions Task Group [29] and represents
their personal opinions only; not their respective employers or
RISC-V International. The architecture or particular instructions
discussed have not been ratified at the time of writing; it is the
purpose of this material to support that ratification process.

1.1 Standards and Terminology
A driving design goal for our architecture was for it to be easy to
implement, yet compatible with current versions of FIPS 140-3 [38]
and NIST SP 800-90B [48], significantly updated standards that are
only coming into use in 2020. Naturally, the architecture should
also support other RNG frameworks such as German AIS 20 / 31
[24, 25] which is widely used in Common Criteria evaluations.

These standards set many of the technical requirements for the
design, and we use their terminology if possible. Note that FIPS
140-3 / SP 800-90B (our main target) imposes requirements on min-
entropy, while AIS-31 discusses Shannon entropy.

1.1.1 Entropy Source (ES). Physical sources of true randomness
are called Entropy Sources (ES) [48]. They are built by sampling
and processing data from a noise source (Section 4.1). Since these
are directly based on natural phenomena and are subject to environ-
mental conditions (which may be adversarial), they require features
and sensors that monitor the “health” and quality of those sources.
See Section 3.2 for a discussion about such security controls.

1.1.2 Conditioning. Raw physical randomness (noise) sources are
rarely statistically perfect and some generate very large amounts of
bits, which need to be “debiased” and reduced to a smaller number
of bits. This process is called conditioning. A secure hash function
is an example of a cryptographic conditioner. It is important to note
that even though hashing may make the output look more random,
it does not increase its entropy content.

Non-cryptographic conditioners and extractors such as von Neu-
mann’s “debiased coin tossing” [51] are easier to implement effi-
ciently but may reduce entropy content (in individual bits removed)
more than cryptographic hashes which mix the input entropy very
efficiently. However, they are not based on computational hardness
assumptions and are therefore inherently more future proof. See
Section 4.4 for a more detailed discussion.

1.1.3 Pseudorandom Number Generator (PRNG). Pseudorandom
Number Generators (PRNGs) use deterministic mathematical for-
mulas to create a large amount of random numbers from a smaller
amount of “seed” randomness. PRNGs are divided into crypto-
graphic and non-cryptographic ones.

Non-cryptographic PRNGs, such as the linear-congruential gen-
erators found in many programming libraries, may generate sta-
tistically satisfactory random numbers but must never be used for
cryptographic keying. This is because they are not designed to
resist cryptanalysis; it is usually possible to take some output and
mathematically derive the “seed” or the internal state of the PRNG
from it. This is a security problem since knowledge of the state
allows the attacker to compute future or past outputs.

2020-08-28 13:00. Page 1 of 1–10.

https://riscv.org/

Noise Source

“analog” shot, quantum, ..

Sampling

raw bits

Conditioning

pre-proc. Entropy(𝑋) > 8bits

Health
Tests

OK?PollEntropyISA

H
ar
dw

ar
e:

En
tr
op
y
So
ur
ce

(E
S)

So
ft
w
ar
e:

D
ri
ve
r
+
D
RB

G
(s
)

(ES16) seed
Not OK:

(BIST / WAIT / DEAD)

Entropy Pool

Processed “full entropy”

Crypto DRBG

Library API Kernel syscall

Application

Figure 1: PollEntropy is an Entropy Source (ES) only, not a
stateful random number generator. As a result, it can sup-
port arbitrary security levels; cryptographic (AES, SHA2/3)
instructions can be used to construct high-speed DRBGs.

1.1.4 Deterministic Random Bit Generator (DRBG). Cryptographic
PRNGs are also known as Deterministic Random Bit Generators
(DRBGs), a term used by SP 800-90A [7]. A strong cryptographic
algorithm such as AES [34] or SHA-2/3 [35, 36] is used to produce
random bits from a seed. The secret seed material is like a cryp-
tographic key; determining the seed from the DRBG output is as
hard as breaking AES or a strong hash function. This also illus-
trates that the seed/key needs to be long enough and come from a
trusted Entropy Source. The DRBG can be frequently refreshed or
“reseeded.”

1.2 RISC-V Target Considerations
One of the key features of RISC-V is that essentially the same in-
struction set can be used on a wide range of application platforms.
We identify two broad targets for the TRNG ISA: Secure Microcon-
trollers and Linux Profile systems.

1.2.1 Secure Microcontrollers. Some RISC-V cores are being de-
signed specifically for smart cards and other secure elements, where
a hardware-based random number generator is the only viable
source of keying material. These “security chip” targets have strin-
gent engineering requirements in relation to RNG quality and cer-
tification, physical security, energy efficiency, and unit cost.

Configuration: Embedded-style CPUs may be permanently in
machine mode [53], and therefore run only trusted firmware. They
are likely to have an RV32 single-hart configuration.

API Interface: These targets are expected to interface and imple-
ment the TRNG subsystem via a cryptographic library or security-
oriented runtime firmware.

1.2.2 General-purpose Linux. We expect Linux and BSD-style op-
erating system kernels to dominate the mobile, desktop, and server
application areas. Some of these targets also need to be hardened
against invasive physical attacks. Energy efficiency is a concern for
mobile devices. Additional entropy sources may be available.

Configuration: These higher-performance CPUs support privi-
lege separation and memory management. They are more likely to
be in RV64 multi-hart or even multiprocessor configuration.

API Interface: Generally, the TRNG interface will be via the op-
erating system kernel which runs in privileged machine mode and
has sole access to the hardware entropy source. The kernel pro-
cesses input entropy via a multi-source random pool and makes it
available to users via /dev/[u]random and getrandom(2).

2 THE ENTROPY SOURCE INTERFACE
The proposed RISC-V TRNG ISA is primarily an Entropy Source
(ES) interface. A valid implementation should satisfy properties that
allow it to be used to seed standard and nonstandard cryptographic
DRBGs of virtually any state size and security level.

The purpose of the baseline specification is to guarantee that a
simple, device-independent driver component (e.g. in Linux kernel,
embedded firmware, or a cryptographic library) can use the instruc-
tion to generate truly random bits. If an ES cannot be interfaced
or conditioned in a way that meets the baseline criteria, it can be
interfaced via regular IO interfaces and custom drivers instead. The
delineation of various components is illustrated in Figure 1.

2.1 PollEntropy
The ISA-level interface consists of a single instruction, PollEntropy
that returns a 32/64-bit value in a CPU register [29]. It is invoked
inMachine Mode (which may be the only mode) as follows:

// Get randomness. imm=0 for baseline operation
pollentropy rd, imm

// C calling convention
int PollEntropy (0);

The instruction is non-blocking and returns immediately, ei-
ther with two status bits rd[31:30]=OPST set to ES16 (01), indicat-
ing successful polling, or with no entropy and one of three polling
failure statuses BIST (00), WAIT (10), or DEAD (11), discussed below.
See Tables 1 and 2 for further information.

The sixteen bits of randomness in rd[15:0]=seed polled with
ES16 statusmust be cryptographically conditioned before they
can be used as (up to 8 bits of) keying material. See Section 2.2.

For the purposes of interoperable, baseline functionality, imm = 0.
Nonzero values of imm are reserved for future use; the behavior
described here may not apply when imm ≠ 0.

2.1.1 Polling. Figure 2 illustrates operational state (OPST) transi-
tions. The state is usually either WAIT or ES16. The baseline specifi-
cation requires no additional signaling or interrupts to be supported
by the hardware. However, the polling mechanism should be im-
plemented in a way that allows even generic non-interrupt drivers
to benefit from interrupts.

We specifically recommend against busy-loop polling on this
instruction as it may have relatively low bandwidth. Even though

2020-08-28 13:00. Page 2 of 1–10.

Table 1: PollEntropy output register contents.

Bits Name Description
63:32 sign_ext Bit 31 is sign-extended on RV64.
31:30 OPST Status: 00 BIST, 01 ES16, 10 WAIT, 11 DEAD.
29:24 reserved For future use by the RISC-V specification.
23:16 custom Reserved for custom and experimental use.
15:0 SEED 16 bits of randomness when OPST=ES16.

Table 2: The four OPST states of the entropy source.

OPST Status name and description
0 0 BIST indicates that Built-In Self-Test “on-demand”

(BIST) statistical testing is being performed. In typical
implementations, BIST will last only a few milliseconds,
up to a few hundred. If the system returns temporarily
to BIST from any other state, this signals a non-fatal
(usually non-actionable) self-test alarm.

0 1 ES16 indicates success; the low bits rd[15:0] will have
16 bits of randomness whichmust be guaranteed to have
at least 8 bits true entropy regardless of implementation.
For example, 0x4000ABCD is a valid ES16 status output
on RV32, with 0xABCD being the seed value.

1 0 WAIT means that a sufficient amount of entropy is not
yet available. This is not an error condition and may
(in fact) be more frequent than ES16, since true entropy
sources may not have very high bandwidth. If polling
in a loop, we suggest calling WFI (wait for interrupt)
before the next poll.

1 1 DEAD is an unrecoverable self-test error. This may in-
dicate a hardware fault, a security issue, or (extremely
rarely) a type-1 statistical false positive in the continu-
ous testing procedures. Implementations do not need
to implement DEAD as it may not require an end-user
notification; an immediate lock-down may be a more
appropriate response in dedicated security devices.

no specific interrupt sequence is specified, it is required that the
WFI (wait for interrupt) instruction is available and does not trap on
systems that implement PollEntropy. The RISC-V ISA allows WFI
to be implemented as a NOP. As a minimum requirement for portable
drivers, a WAIT or BIST from PollEntropy should be followed by
a WFI before another PollEntropy instruction is issued. There is
no need to poll after a DEAD state.

To guarantee that no sensitive data is read twice and that differ-
ent callers don’t get correlated output, it is suggested that hardware
implements “wipe-on-read” on the randomness pathway during
each read (successful poll). For the same reasons, only complete
and fully processed randomness words shall be made available via
PollEntropy (no half-conditioned buffers or even full buffers in
WAIT state – even if they are to be ignored by compliant callers).

reset

BIST

WAIT ES16 seed
ok!

DEAD

stays dead!

fatal
error

non-fatal
alarm

Figure 2: Normally the operational state alternates between
WAIT (no data) and ES16, which means that 16 bits of ran-
domness (seed) has been polled. BIST (Built-in Self-Test)
only occurs after reset or to signal a non-fatal self-test alarm
(if reached after WAIT or ES16). DEAD is an unrecoverable
error state.

2.1.2 Rationale andDiscussion. An entropy source does not require
a high-bandwidth interface; a single DRBG source initialization only
requires 512 bits (256 bits of entropy) and the DRBG state can be
shared by any number of callers. Once initiated, a DRBG requires
new randomness only for the purposes of forward security.

Without a polling-style mechanism the entropy source could
hang for thousands of cycles under some circumstances. The WFI
mechanism (at least potentially) allows energy-saving sleep on
MCUs and context switching on a higher-end CPUs.

The reason for the particular OPST two-bit mechanism is to pro-
vide redundancy. The “fault” bit combinations 11 (and 00) are more
likely for electrical reasons if feature discovery fails and the entropy
source is actually not available (this has happened to AMD [46]).

The 16-bit bandwidth was a compromise motivated by the desire
to provide redundancy in the return value, some protection against
potential Power/EM leakage (further alleviated by the 2:1 crypto-
graphic conditioning discussed in Section 2.2.1), and the desire to
have all of the bits “in the same place” on both RV32 and RV64
architectures for programming convenience.

2.2 Entropy Source Requirements
Output SEED from PollEntropy is not necessarily fully conditioned
randomness due to hardware limitations of smaller, low-powered
implementations. However minimum requirements are defined.
Therefore a caller should not use the output directly but poll twice
the amount of required entropy, cryptographically condition (hash)
it, and use that to seed a cryptographic DRBG.

2.2.1 Entropy Requirement. Each 16-bit output sample (SEED) must
have more than 8 bits of independent, unpredictable entropy. This
minimum requirement is satisfied if (in a NIST SP 800-90B [48]
assessment) 128 bits of output entropy can be obtained from each
256-bit (16 × 16-bit) PollEntropy output sequence via a vetted
cryptographic conditioning algorithm (see Section 3.1.5.1.2 in [48]).

2020-08-28 13:00. Page 3 of 1–10.

Driver developers may make this conservative assumption but
are not prohibited from using more than twice the number of seed
bits relative to the desired resulting entropy.

Rationale: Rather than attempting to mathematically define the
properties that the entropy source output must satisfy, we define
that it should pass SP 800-90B evaluation and certification when
conditioned cryptographically (“perfectly”) in ratio 2:1. This is our
“safety margin” for non-cryptographic conditioners.

Note that the min-entropy assessment methodology in SP 800-
90B [48] also has a safety margin in its confidence intervals, and
therefore there must be consistently more than 8 bits of entropy
per 16-bit word. In practice, we recommend the distribution to be
significantly closer to uniform to satisfy possible additional use
cases and AIS 20 / 31 [25] requirements (if those can’t be met with
a software conditioner).

Note that the usage of a vetted conditioner (such as SHA-2/3)
was specified for technical reasons related to SP 800-90B itself;
non-vetted conditioners may offer similar security.

The 128-bit output block size was selected because that is the
output size of the CBC-MAC conditioner specified in [48] and also
the smallest key size we expect to see in applications.

2.2.2 I.I.D. Requirement. The output must be Independent and Iden-
tically Distributed (IID), meaning that the output distribution does
not change over time and that output words do not convey in-
formation about each other. This requirement is satisfied if the
construction of the physical source and sampling mechanism sug-
gests nothing against the IID assumption and the IID tests in Section
5 of NIST SP 800-90B [48] are consistently passed.

Rationale: IID is an optional requirement in SP 800-90B [48] but it
is needed to prevent information leakage between different entities
that possibly share the same entropy source. It also significantly
simplifies certification and vendor-independent driver development.
The PollEntropy instruction itself can be later expanded to support
non-IID sources (e.g. via a different immediate constant).

Note that the testing FIPS 140 requirements are more concerned
with independence than stability of the distribution [39].

2.2.3 Secret State Size Requirement. A PollEntropy implementa-
tion can also output fully conditioned, perfectly distributed num-
bers. However, it is required that if a DRBG is used as a source, it
must have an internal state with at least 256 bits of secret entropy
(Example: a CTR_DRBG built from AES-128 is never sufficient).
In general, any implementation of PollEntropy that limits the
security strength shall not reduce it to less than 256 bits.

Rationale: DRBGs can be used to feed other (virtual) DRBGs
but that does not increase the absolute amount of entropy in the
system. The entropy source must be able to support current and
future security standards and applications. The 256-bit requirement
maps to “Category 5” of NIST Post-Quantum Cryptography (4.A.5
“Security Strength Categories” in [37]) and TOP SECRET schemes
in Suite B and the newer U.S. Government CNSA Suite [40].

Source anonymization. In some cases, an entropy source (or the
circuit that interfaces it) may have a uniquely identifiable hardware
“signature.” This can be harmless or even useful in some applica-
tions (as random sources may exhibit PUF-like features) but highly
undesirable in others (anonymized virtualized environments and
enclaves). A DRBG masks such statistical features.

3 MONITORING AND INFORMATION FLOWS
“The noise source state shall be protected from adversar-
ial knowledge or influence to the greatest extent possible.
The methods used for this shall be documented, includ-
ing a description of the (conceptual) security boundary’s
role in protecting the noise source from adversarial ob-
servation or influence.”
–Noise Source Requirements, NIST SP 800-90B [48].

Some of our earlier designs had many more states and possibly
complex interaction mechanisms, which were simplified to the bare
minimum that could still meet our requirements.

3.1 Oracles and Side Channels
Our approach is informed by the experience of designing and
implementing cryptographic protocols. Some of the most devas-
tating practical attacks against real-life cryptosystems have used
inconsequential-looking additional information, such as padding
error messages [6] or timing information [31]. In cryptography,
such out-of-band information sources are called “oracles.”

This also applies to the raw noise source. While most developers
agree that access to the raw noise source would be nice to have, it
is less clear why a generic driver would need it, or know what to
do with it (the raw noise can literally be anything). Therefore raw
source interface has been delegated to an optional vendor-specific
debug interface outside the scope of the baseline specification.

The role of the RISC-V ISA implementation is to try to ensure
that the hardware-software interface minimizes avenues for adver-
sarial information flow; all status information that is unnecessary
in normal operation should be eliminated. We specifically urge im-
plementors against creating unnecessary information flows (“status
oracles”) via the custom bits or to allow the instruction to disable
or affect the TRNG output in any significant way. All informa-
tion flows and interaction mechanisms must be considered from
an adversarial viewpoint and implemented only if they are truly
necessary and their security impact can be fully understood.

For example, the entropy polling interface may not be “constant
time.” The pollingmechanism can bemodeled as a rejection sampler;
such a timing oracle can reveal information about the noise source
and the rejection criteria, but usually not the random output itself.
If these are correlated, additional countermeasures are necessary.

3.2 Security Controls
The primary purpose of a cryptographic entropy source is to pro-
duce secret keying material. In almost all cases a hardware entropy
source must implement appropriate security controls to guarantee
unpredictability, prevent leakage, detect attacks, and to deny adver-
sarial control over the entropy output or ts generation mechanism.

Many of the security controls built into the device are called
“health checks.” Health checks can take the form of integrity checks,
start-up tests, and on-demand tests. These tests can be implemented
in hardware or firmware; typically both. Several are mandated by
standards such as NIST SP 800-90B [38]. The choice of appropriate
health tests depends on the certification target, system architecture,
the threat model, entropy source type, and other factors.

Health checks are not intended for hardware diagnostics but
for detecting security issues – hence the default action should be

2020-08-28 13:00. Page 4 of 1–10.

aimed at damage control (prevent weak crypto keys from being
generated). Additional “debug” mechanisms may be implemented
if necessary, but then the device must be outside production use.

The statistical nature of some tests makes “type-1” false positives
a possibility. Security architects will understand to use permanent
or hard-to-recover “security-fuse” lockdowns only if the threshold
of a test is such that the probability of false-positive is negligible
over the entire device lifetime.

3.2.1 On-demand testing. A sequence of simple tests is invoked
via resetting, rebooting, or powering-up the hardware (not an ISA
signal). The implementation will simply return BIST during the
initial start-up self-test period; in any case, the driver must wait
for them to finish before starting cryptographic operations. Upon
failure the entropy source will enter a no-output DEAD state.

Rationale: Interaction with hardware self-test mechanisms from
the software side should be minimal; the term “on-demand” does
not mean that the end-user or application program should be able
to invoke them in the field (the term is a throwback to an age of
discrete, non-autonomous crypto devices with human operators.)

3.2.2 Continuous checks. If an error is detected in continuous tests
or environmental sensors, the entropy source will enter a no-output
state. We define that a non-critical alarm is signaled if the entropy
source returns to BIST state from live (WAIT or ES16) states. Such
a BIST alarm should be latched until polled at least once. Critical
failures will result in DEAD state immediately. A hardware-based
continuous testing mechanism must not make statistical informa-
tion externally available, and it must be zeroized periodically or
upon demand via reset, power-up, or similar signal.

Rationale: Physical attacks can occur while the device is running.
The design should avoid guiding such active attacks by revealing
detailed status information. Upon detection of an attack the default
action should be aimed at damage control – to prevent weak crypto
keys from being generated.

See Section 4.3 for further discussion: Theremay be requirements
for signaling of alarms; AIS 31 specifies “noise alarms” that can go
off with non-negligible probability even if the device is functioning
correctly; these can’t be fatal but can be signaled with BIST.

The state of statistical runtime health checks (such as counters)
is potentially correlated with some secret keying material, hence
the zeroization requirement.

3.2.3 Fatal error states. Since the security of most cryptographic
operations depends on the entropy source, a system-wide “default
deny” security policy approach is appropriate for most entropy
source failures. A hardware test failure should result in at least in
DEAD state and possibly reset/halt. It’s a show stopper: The entropy
source (or its cryptographic client application) must not be allowed
to run if its secure operation can’t be guaranteed.

Rationale: These tests can complement other integrity and tam-
per resistance mechanisms (See Chapter 18 of [2] for examples).

Some hardware random generators are, by their physical con-
struction, exposed to relatively non-adversarial environmental and
manufacturing issues. However, even such “innocent” failure modes
may indicate a fault attack [23] and therefore should be addressed
as a system integrity failure rather than as a diagnostic issue.

4 IMPLEMENTATION STRATEGIES
As a general rule, RISC-V specifies the ISA only. We provide some
additional requirements so that portable, vendor-independent mid-
dleware and kernel components can be created. The actual hard-
ware implementation and certification is left to vendors and circuit
designers; the discussion in this section is purely informational.

While we do not require entropy source implementations to be
certified designs, we do expect that they behave in a compatible
manner and do not create unnecessary security risks to users. Self-
evaluation and testing following appropriate security standards is
usually needed to achieve this. NIST has made its SP 800-90B[48]
min-entropy estimation package freely available1 and similar free
tools are also available2 for AIS 31 [25].

Entropy Flow. When considering implementation options and
trade-offs one must look at the entire information flow since each
step is interconnected.

(1) A Noise Source generates private, unpredictable signals
from stable and well-understood physical random events.

(2) Sampling digitizes the noise signal into a raw stream of bits.
This raw data also needs to be protected by the design.

(3) Continuous health tests ensure that the noise source and
its environment meet their operational parameters.

(4) Non-cryptographic conditioners removemuch of the bias
and correlation in input noise: Output entropy >4 bits/byte.

(5) Cryptographic conditioners produce nearly full entropy
output, completely indistinguishable from ideal random.

(6) DRBG takes in ≥ 256 bits of seed entropy as keying mate-
rial and uses a “one way” cryptographic process to rapidly
generate bits on demand (without revealing the seed/state).

Steps 1-4 (possibly 5) are considered to be part of the Entropy
Source (ES) and provided by the PollEntropy instruction. Adding
the software-side cryptographic steps 5-6 and control logic comple-
ments it into a True Random Number Generator (TRNG).

4.1 Noise Sources
The theory of random signals and electrical noise became well
established in the post-WorldWar II period [22, 43, 44]. We will give
some examples of common noise sources that can be implemented
in the processor itself (using standard cells).

4.1.1 Ring Oscillators. The most common entropy source type in
production use today is based on “free running” ring oscillators and
their timing jitter. Here, an odd number of inverters is connected
into a loop from which noise source bits are sampled in relation to
a reference clock [8]. The sampled bit sequence may be expected to
be relatively uncorrelated (close to IID) if the sample rate is suitably
low [25]. However further processing is usually required.

AMD [1], ARM [3], and IBM [27] are examples of ring oscillator
TRNGs intended for high-security applications (see Section 5.1.)

There are related metastability-based generator designs such as
Transition Effect Ring Oscillator (TERO) [50]. The differential/feed-
back Intel construction [17] is slightly different but also falls into
the same general metastable oscillator-based category.
1EntropyAssessment: https://github.com/usnistgov/SP800-90B_EntropyAssessment
2(In German) AIS 31-Implementierung in JAVA: https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip

2020-08-28 13:00. Page 5 of 1–10.

https://github.com/usnistgov/SP800-90B_EntropyAssessment
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip

The main benefits of ring oscillators are: (1) They can be imple-
mented with standard cell libraries without external components –
and even on FPGAs [49], (2) there is an established theory for their
behavior [8, 15, 16], and (3) ample precedent exists for testing and
certifying them at the highest security levels.

Ring oscillators also have well-known implementation pitfalls.
Their output is sometimes highly dependent on temperature, which
must be taken into account in testing and modeling. If the ring os-
cillator construction is parallelized, it is important that the number
of stages and/or inverters in each chain is coprime to avoid entropy
reduction due to harmonic “Huyghens synchronization” [5]. Such
harmonics can also be inserted maliciously in a frequency injection
attack, which can have devastating results [28]. Countermeasures
are related to circuit design; environmental sensors, electrical filters,
and usage of a differential oscillator may help.

4.1.2 Shot Noise. A category of random sources consisting of dis-
crete events and modeled as a Poisson process is called “shot noise.”
There’s a long-established precedent of certifying them; the AIS
31 document [25] itself offers reference designs based on noisy
diodes. Shot noise sources are often more resistant to temperature
changes than ring oscillators. Some of these generators can also be
fully implemented with standard cells (The Rambus / Inside Secure
generic TRNG IP [42] is described as a Shot Noise generator).

4.1.3 Other types of noise. It may be possible to certify more exotic
noise sources and designs, although their stochastic model needs to
be equally well understood and their CPU interfaces must be secure.
See Section 5.3 for a discussion of Quantum entropy sources.

4.2 Samplers and GetNoise
It is necessary to verify that the noise source and sampler output
matches with their stochastic models. We note that this is usually
done in a laboratory setting since NIST SP 800-90B [48] urges
implementors to protect the source in production devices. We are
leaving access as a vendor-specific matter but we urge them to
protect the raw source and to make it unavailable to casual users.

Rationale: Samplers can generate vast amounts of data. NIST SP
800-90B [48] defines a conceptual interface GetNoise() for the raw
output and also anticipates that the actual interfaces “will depend
on the entropy source deployed.”

Building data paths to make the raw noise available through the
ISA would be problematic as it is unclear how to “sample” possibly
up to several gigabits of information per second in a way that is
appropriately representative of its properties.

“The vendor may use special methods (or devices, such
as an oscilloscope) that require detailed knowledge of
the source to collect raw data. The testing laboratory
is required [...] to present a rationale why the data col-
lections methods will not alter the statistical properties
of the noise source or explain how to account for any
change in the source’s statistical characteristics [...]”

– FIPS 140 Implementation Guidance, 2019 [39]

4.3 Continuous Health Tests
If NIST SP 800-90B certification is required, the hardware should
implement at least the health tests defined in Section 4.4 of [48]:
repetition count test and adaptive proportion test.

Health monitoring requires some state information related to
the noise source to be maintained. The tests should be designed in
a way that a specific number of samples guarantees a state flush
(no hung states). We suggest flush size𝑊 ≤ 1024 to match with
the NIST SP 800-90B required tests (See Section 4.4 in [48]). The
state is also fully zeroized in a system reset.

Rationale: The two mandatory tests can be built with minimal
circuitry. Full histograms are not required, only simple counter
registers: repetition count, window count, and sample count. Repe-
tition count is reset every time the output sample value changes;
if the count reaches a certain cutoff limit, a noise alarm (BIST) or
failure (DEAD) is signaled. Window counter is used to save every
𝑊 ’th output (typically𝑊 ∈ 512, 1024.) The frequency of this refer-
ence sample in the following window is counted; cutoff values are
defined in the standard. We see that the structure of the mandatory
tests is such that, if well implemented, no information is carried
beyond a limit of𝑊 samples.

Section 4.5 of [48] explicitly permits additional developer-defined
tests and several more were defined in early versions of FIPS 140-1
before being “crossed out.” The choice of additional tests depends
on the nature and implementation of the physical source.

There rarely is anything that can or should be done about a
non-fatal alarm condition in an operator-free, autonomous system.
However, AIS 31 allows the DRBG component to keep running
despite a failure in its Entropy Source, so we suggest re-entering
temporary BIST state (Section 3.2.2) to signal a non-fatal statistical
error if such (non-actionable) signaling is necessary. A permanent
error condition should result in DEAD state.

4.4 Non-cryptographic Conditioners
As noted in Section 1.1.2, physical randomness sources generally re-
quire a post-processing step called conditioning to meet the desired
quality requirements, which are outlined in Section 2.2.

The approach taken in this interface is to allow a combination
of non-cryptographic and cryptographic filtering to take place.
The first stage (hardware) merely needs to be able to distill the
entropy comfortably above 4 bits per byte (Sect. 2.2.1, Entropy) and
to guarantee that the samples are independent (Sect. 2.2.2, IID).

• One may take a set of bits from a noise source and XOR them
together to produce a less biased (and more independent) bit.
If the source model is well understood, such a construction
lends itself well to analysis and entropy estimation [13].

• The von Neumann extractor [51] looks at consecutive pairs
of bits, rejects 00 and 11, and outputs 0 or 1 for 01 and 10,
respectively. It will reduce the number of bits to less than 25%
of original but the output is provably unbiased (assuming
independence).

• Blum’s extractor [11] can be used on sources whose behavior
resembles 𝑛-state Markov chains. If its assumptions hold, it
also removes dependencies, creating an IID source.

• Other linear and non-linear correctors such as those dis-
cussed by Dichtl and Lacharme [26].

2020-08-28 13:00. Page 6 of 1–10.

Note that the hardware may also implement a full cryptographic
conditioner to in the entropy source, even though the software
driver still needs a cryptographic conditioner too (Sect. 2.2.3).

Rationale: The main advantage of non-cryptographic filters is
in their energy efficiency, relative simplicity, and amenability to
mathematical analysis. If well designed, they can be evaluated in
conjunction with a stochastic model of the noise source itself. They
do not require computational hardness assumptions.

4.5 Cryptographic Conditioners
Cryptographic conditioners are always required on the software
side of the PollEntropy ISA boundary. They may be also imple-
mented on the hardware side if necessary. In any case, the PollEn-
tropy output must always be compressed 2:1 (or more) before being
used as keying material or considered “full entropy.”

Examples of cryptographic conditioners include the random
pool of the Linux operating system, secure hash functions (SHA-
2/3, SHAKE [35, 36]), and the AES-based CBC-MAC construction
of SP 800-90B [48].

In some constructions, such as the Linux RNG and SHA-3/SHAKE
[36] based generators the cryptographic conditioning and output
(DRBG) generation is provided by the same component.

Rationale: For many low-power targets constructions such as
Intel’s [30] and AMD’s [1] hardware AES CBC-MAC conditioner
would be too complex and expensive to implement solely to serve
PollEntropy. On the other hand, simpler non-cryptographic con-
ditioners may be too wasteful on input entropy if very high-quality
random output is required – ARM TrustZone TRBG [3] outputs
only 10Kbit/sec at 200 MHz. Hence a resource-saving compromise
is made between hardware and software generation that allows an
implementation to use the RISC-V cryptographic ISA.

4.6 The Final Random: DRBGs
All random bits reaching end users and applications must come
from a cryptographic DRBG. These are generally implemented
by the driver component in software. The RISC-V AES and SHA
instruction set extensions [29] should be used if available, since they
offer additional security features such as timing attack resistance.

Currently recommended DRBGs are defined in NIST SP 800-90A
(Rev 1) [7]: CTR_DRBG, Hash_DRBG, and HMAC_DRBG. Certification
often requires known answer tests (KATs) for the symmetric com-
ponents and the DRBG as a whole. These are significantly easier
to implement in software than in hardware. In addition to the di-
rectly certifiable SP 800-90A DRBGs, a Linux-style random pool
construction based on ChaCha20 [32] can be used, or an appropriate
construction based on SHAKE256 [36].

These are just recommendations; programmers can adjust the
usage of the CPU Entropy Source to meet future requirements.

5 CASE STUDIES
We discuss current mainstream TRNG ISAs and their implementa-
tions, anticipated cryptanalytic requirements, and our minimalistic
reference design, Minidice.

5.1 Current Mainstream TRNG ISAs
TRNGs are available in many mainstream CPUs and mobile devices.
This is by no means an exhaustive list.

5.1.1 Intel Secure Key. Intel’s random number interface is known
as “Intel Secure Key” [30] and has been available via the RDRAND
instruction since Ivy Bridge (2012). A reseeding instruction RDSEED
was added for Broadwell (2014). Internally the Intel solution is based
on a self-oscillating feedback circuit [17], CBC-MAC conditioning
and the CTR_DRBG [7] – both built from AES-128 .

5.1.2 AMD. AMD’s interface is compatible with Intel’s, but inter-
nally uses 16 ring oscillator chains as a noise source, CBC-MAC
conditioning but a higher-security AES-256 version of CTR_DRBG.
AMD additionally offers raw noise output via the TRNG_RAW
register in its cryptographic coprocessor (CCP) [1].

5.1.3 ARM-based devices. The ARMv8.5-RNG ISA extension has
instructions RNDR (Random Number) and RNDRRS (Reseed Ran-
dom Number) that seem to work much like RDRAND and RDSEED
[4]. These instructions are new and not very widely available.

More often ARM devices interface TRNGs via a bus (e.g. APB)
instead of ISA. The TrustZone TRNG [3] is actually a non-ISA
Entropy Source, built from ring oscillators [8] and a von Neumann
debiaser [51] –without a DRBG or other cryptographic components.
This makes the TRNG low-bandwidth but energy efficient.

5.2 A full DRBG in Hardware
“I am so glad I resisted pressure from Intel engineers to
let /dev/random rely only on the RDRAND instruction.
Relying solely on an implementation sealed inside a
chip and which is impossible to audit is a BAD idea.”

–Theodore Ts’o, author of the Linux RNG.3

Our proposal does not prevent RISC-V implementors from creating
full DRBG implementations as custom instructions, just like Intel
and ARM does. However, we can offer some reasons why that may
not be as useful as one might think.

5.2.1 No black boxes. Cryptographers actually don’t want to use
hardware DRBGs directly as it would force them to blindly rely on
hardware. This much more of an issue for a Linux-profile system
than to a securitymicrocontroller where the hardware and firmware
are likely to come from the same vendor.

If the DRBG is hardwired to the entropy source, and hardware
is sourced from a third party, there is usually no easy way to verify
that it is doing what it is supposed to be doing. As a source of secret
keying material, an RNG is an obvious location for a potential cryp-
tographic backdoor. It has a large potential for supply chain attacks
such as hardware trojans [9] and other un-auditable backdoors in
the style of NSA’s Dual_EC_DRBG [12].

However, most operating system kernels and well-designed cryp-
tographic libraries use (and welcome) CPU-sourced entropy source
as one of the many ingredients to their “entropy soup.” Hence the
DRBGs are ultimately implemented in software anyway – possi-
bly using cryptographic ISA instructions for speed. This approach

3September 5, 2013 (after Snowden): https://news.ycombinator.com/item?id=6336505
2020-08-28 13:00. Page 7 of 1–10.

https://news.ycombinator.com/item?id=6336505

eliminates a single point of vulnerability in entropy sourcing and
allows a higher level of audit transparency.

5.2.2 Flexibility. Deterministic hardware DRBGs can become tech-
nically obsolete quickly and ISA updates are hard. This can happen
due to a standards update or hardcoded design problems and limi-
tations. Intel’s RDRAND is designed around AES-128 with forced
reseeding only every 512 invocations.

There is a simple attack that demonstrates the entropy bottle-
neck and forward-security problem; if two 128-bit output blocks
are known, the secret key and counter can be recovered with 2128
classical effort. This in turn can be expanded to the entire segment
of secret blocks, revealing up to 512 × 128 = 65536 bits of key-
ing material with no additional effort. Intel’s RDRAND generator
can, therefore, create a security bottleneck in applications that are
specified to support “256-bit” security.

For additional entropy (in case of unavailability of RDSEED),
Intel recommends polling 1024 × 64-bit words out of the RDRAND
to force a reseed flush and then reducing the DRBG output back
to 128 bits (a process with 99.8% redundancy) [30]. Users were
recommended to effectively “bypass” the large, expensive Intel
DRBG component at cost of thousands and thousands of cycles
only a few years after its introduction.

5.2.3 Resource sharing. High-throughput DRBG sharing can be
tricky to implement, as the CrossTalk / SRBDS vulnerability shows
[41]. This vulnerability causes the same random output bytes to be
available simultaneously to multiple cores. The SRBDS mitigation
serializes the entire DRBG operation by locking the (memory) bus
for RDRAND calls and can have a serious performance impact [19].
Of course, such problems may also occur if an Entropy Source is
shared rather than a DRBG. However, Entropy Source interfaces are
not designed for throughput, so more conservative design choices
for the sharing mechanism can be made.

5.2.4 Area. In a small microcontroller-type RISC-V implementa-
tion it is difficult to justify the hardware area requirement of a
full-sized AES or some other cryptographic algorithm just to pro-
vide cryptographic conditioning or a DRBG output. One would
prefer to use that area for cryptographic instructions that actually
increase the throughput of secure communications (TLS, IPSec), or
disk encryption, in addition to the DRBG component. Random num-
ber entropy is rarely a performance bottleneck in cryptographic
implementations so using a lot of transistors for RNG speed is not
compatible with the quantitative approach usually associated with
RISC CPU design.

5.3 Quantum vs Classical Random
“The NCSC believes that classical RNGs will continue
to meet our needs for government and military applica-
tions for the foreseeable future.”

– U.K. QRNG Guidance, March 2020 [33].
A Quantum Random Number Generator (QRNG) is a TRNG

whose source of randomness can be unambiguously identified to
be a specific quantum phenomenon such as quantum state superpo-
sition, quantum state entanglement, Heisenberg uncertainty, quan-
tum tunneling, spontaneous emission, or radioactive decay [20].

Direct quantum entropy is theoretically the best possible kind of
entropy. A typical TRNG based on electronic noise is also largely
based on quantum phenomena and is equally unpredictable - the
difference is that the relative amount of quantum and classical
physics involved is difficult to quantify for a classical TRNG.

QRNGs are designed in away that allows the amount of quantum-
origin entropy to be modeled and estimated. This distinction is
important in the security model used by QKD (Quantum Key Dis-
tribution) security mechanisms which can be used to protect the
physical layer (such as fiber optic cables) against interception by
using quantum mechanical effects directly.

This security model means that many of the available QRNG
devices do not use cryptographic conditioning and may fail cryp-
tographic statistical requirements [18]. Many implementors may
consider them to be entropy sources instead.

Relatively little research has gone into QRNG implementation
security, but many QRNG designs are arguably more susceptible to
leakage than classical generators (such as ring oscillators) as they
tend to employ external components and mixed materials.

Post-Quantum Cryptography. The classical/quantum origin of
randomness is not important in NIST Post-Quantum Cryptography
(PQC) [37]. Recall that cryptography aims to protect the confiden-
tiality and integrity of data itself and does not place any require-
ments on the physical communication channel (like QKD). Classical
good-quality TRNGs are perfectly suitable for generating the secret
keys for PQC protocols that are hard for quantum computers to
break, but implementable on classical computers. What matters in
cryptography is that the secret keys have enough true randomness
(entropy) and that they are generated and stored securely.

Of course one must avoid DRBGs that are based on problems
that are easily solvable with quantum computers, such as factoring
[47] in the case of Blum-Blum-Shub generator [10]. However most
symmetric algorithms are less affected as the best quantum attacks
are still exponential to key size [14].

As an example, the original Intel RNG [30], whose output gener-
ation is based on AES-128 can be attacked using Grover’s algorithm
with approximately square-root effort [21]. While even “64-bit”
quantum security is extremely difficult to break, many applications
specify a higher security requirement. NIST [37] defines AES-128 to
be “Category 1” equivalent post-quantum security, while AES-256
is “Category 5” (highest). We avoid this possible future issue by
exposing a more direct access to the entropy source, which can
derive its security from information-theoretic assumptions only.

5.4 Minidice
Minidice is a minimalistic reference implementation of the RISC-V
TRNG design (as discussed in this work) for the microcontroller
profile (Section 1.2). This open source implementation is in Verilog
and can be easily integrated into cores such as PicoRV324. It can
also be expanded for the Linux profile with relatively little work.

Minidice demonstrates how small a RISC-V TRNG can be – just
a few hundred gate equivalents. Together with a RISC-V 32-bit
Scalar AES instruction set extension [29, 45], a device can be made
self-sufficient in entropy with a very small area and energy cost.

4PicoRV32 - A Size-Optimized RISC-V CPU https://github.com/cliffordwolf/picorv32
2020-08-28 13:00. Page 8 of 1–10.

https://github.com/cliffordwolf/picorv32

The quality of randomness is sufficient to support classical and
post-quantum cryptographic key generation and other operations
at the highest security levels.

The noise source of Minidice is based on a configurable ring
oscillator. If multiple, parallel chains are defined, their output is
XORed for the conditioner component. The conditioner uses a
variant of Blum’s [11] method to remove simple bias and correlation
between consecutive output bits.

Due to the structure of the conditioner, output bits are generated
at a variable rate, depending on the noise source. The 16-bit output
word is continuously overwritten. Furthermore, the data pathways
implement wipe-on-read (i.e. zeroization when polled).

Minidice implements the repetition count test and adaptive pro-
portion test (Section 4.3) by default. An additional delay counter
is used for a start-up / on-demand test. A reset clears all registers
and puts the device into BIST state – after a period of successful
continuous tests the implementation enters into normal operation
or the DEAD state in case of failure.

The firmware driver component consists of a polling mechanism,
AES-CBC type cryptographic conditioner and CTR_DRBG built from
AES-256 using RISC-V AES instructions. The firmware footprint of
only a few kilobytes, including KAT tests and integrity tests.

Minidice can be synthesized to FPGAs that lack native hardware
generators, such as Xilinx 7 Series and Lattice ECP5 FPGAs. It can
serve as an experimentation target and as a freely available “real
life” component will undoubtedly be subjected to many kinds of
attacks, which will serve to refine its design.

Minidice is aimed at helping RISC-V users and the open source
community to have access to built-in, highly secure sources of ran-
domness. It is our plan and hope that when Minidice or some other
open source reference TRNG design is taken through various official
certification processes, full submission documents and arguments
from the designers and certification laboratory will be published.
This in turn will ease the validation and certification of subsequent
PollEntropy and other open source TRNG implementations.

6 CONCLUSIONS
The RISC-V Cryptographic Extensions Task Group is working to
introduce True Random Number Generator (TRNG) support. The
proposed instruction and the wider TRNG architecture is designed
to allow compliance with FIPS 140-3 and related international stan-
dards such as AIS 31 at high assurance levels, while being extremely
lightweight to implement.

The proposal differs from other contemporary TRNG ISAs in
that it is based on a polling paradigm and focuses on providing
Entropy Source (ES) functionality only. The interface can be used
to instantiate a random number generator of virtually any strength.

We described the PollEntropy instruction and its basic imple-
mentation and entropy requirements. These definitions are needed
so that interoperable drivers can be implemented – they set the
minimum standards that can be expected from polled randomness.

We further discussed information flows, monitoring, and im-
plementation aspects in more detail, diving into the rationale of
various engineering decisions that are required.

We concluded with case studies that contain a brief overview of
generators in current mainline ISAs, commentary on the impact

of quantum threat on TRNG generation (not a problem for post-
quantum cryptography), and a description of Minidice, an open
source TRNG implementation.

ACKNOWLEDGMENTS
We thank RISC-V Cryptographic Extensions Task Group members
for their input, especially Andy Glew, Barry Spinney, Derek Atkins,
Ken Dockser, and Nathan Menhorn. This work was supported in
part by Innovate UK (R&D Project Ref.: 105747), and by EPSRC
(Grant No.: EP/R012288/1, under the RISE programme.)

REFERENCES
[1] AMD. 2017. AMD Random Number Generator. AMD TechDocs. https://www.

amd.com/system/files/TechDocs/amd-random-number-generator.pdf
[2] Ross J. Anderson. 2020. Security engineering - a guide to building dependable

distributed systems (3. ed.). Wiley. https://www.cl.cam.ac.uk/~rja14/book.html
[3] ARM. 2017. ARM TrustZone True Random Number Generator: Technical Refer-

ence Manual. ARM 100976_0000_00_en (rev. r0p0). http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.100976_0000_00_en

[4] ARM. 2020. Arm Architecture Registers: Armv8, for Armv8-A architecture profile.
ARM DDI 0595 (ID033020). https://developer.arm.com/docs/ddi0595/g

[5] Per Bak. 1986. The Devil’s Staircase. Phys. Today 39, 12 (December 1986), 38–45.
https://doi.org/10.1063/1.881047

[6] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Gra-
ham Steel, and Joe-Kai Tsay. 2012. Efficient Padding Oracle Attacks on Cryp-
tographic Hardware. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings
(Lecture Notes in Computer Science), Reihaneh Safavi-Naini and Ran Canetti (Eds.),
Vol. 7417. Springer, 608–625. https://doi.org/10.1007/978-3-642-32009-5_36

[7] Elaine Barker and John Kelsey. 2015. Recommendation for Random Number
Generation Using Deterministic RandomBit Generators. NIST Special Publication
SP 800-90A Revision 1. https://doi.org/10.6028/NIST.SP.800-90Ar1

[8] Mathieu Baudet, David Lubicz, Julien Micolod, and André Tassiaux. 2011. On
the Security of Oscillator-Based Random Number Generators. J. Cryptology 24,
2 (2011), 398–425. https://doi.org/10.1007/s00145-010-9089-3

[9] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson.
2014. Stealthy dopant-level hardware Trojans: extended version. J. Cryptographic
Engineering 4, 1 (2014), 19–31. https://doi.org/10.1007/s13389-013-0068-0

[10] Lenore Blum, Manuel Blum, and Mike Shub. 1986. A Simple Unpredictable
Pseudo-Random Number Generator. SIAM J. Comput. 15, 2 (1986), 364–383.
https://doi.org/10.1137/0215025

[11] Manuel Blum. 1986. Independent unbiased coin flips from a correlated biased
source – A finite state Markov chain. Combinatorica 6, 2 (1986), 97–108. https:
//doi.org/10.1007/BF02579167

[12] Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan
Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Weinmann, Eric Rescorla,
and Hovav Shacham. 2018. Where did I leave my keys?: lessons from the Juniper
Dual EC incident. Commun. ACM 61, 11 (2018), 148–155. https://doi.org/10.1145/
3266291

[13] Robert B. Davies. 2002. Exclusive OR (XOR) and hardware random number
generators. Author-hosted manuscript. http://www.robertnz.net/pdf/xor2.pdf

[14] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database
Search. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing (STOC ’96). ACM, 212–219. https://doi.org/10.1145/237814.237866

[15] Ali Hajimiri and Thomas H. Lee. 1998. A general theory of phase noise in
electrical oscillators. IEEE Journal of Solid-State Circuits 33, 2 (1998), 179–194.
https://doi.org/10.1109/4.658619

[16] Ali Hajimiri, Sotirios Limotyrakis, and Thomas H. Lee. 1999. Jitter and phase
noise in ring oscillators. IEEE Journal of Solid-State Circuits 34, 6 (June 1999),
790–804. https://doi.org/10.1109/4.766813

[17] Mike Hamburg, Paul Kocher, and Mark E. Marson. 2012. Analysis of Intel’s Ivy
Bridge Digital Random Number Generator. Technical Report, Cryptography
Research (Prepared for Intel).

[18] Darren Hurley-Smith and Julio César Hernández-Castro. 2020. Quantum Leap
and Crash: Searching and Finding Bias in Quantum Random Number Generators.
ACM Transactions on Privacy and Security 23, 3 (June 2020), 1–25. https://doi.
org/10.1145/3403643

[19] Intel. 2020. SRBDS Mitigation Impact on Intel® Secure Key. Intel Developer
Zone. https://software.intel.com/security-software-guidance/insights/srbds-
mitigation-impact-intel-secure-key

[20] ITU. 2019. Quantum noise random number generator architecture. Recommen-
dation ITU-T X.1702. https://www.itu.int/rec/T-REC-X.1702-201911-I/en

2020-08-28 13:00. Page 9 of 1–10.

https://www.amd.com/system/files/TechDocs/amd-random-number-generator.pdf
https://www.amd.com/system/files/TechDocs/amd-random-number-generator.pdf
https://www.cl.cam.ac.uk/~rja14/book.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100976_0000_00_en
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100976_0000_00_en
https://developer.arm.com/docs/ddi0595/g
https://doi.org/10.1063/1.881047
https://doi.org/10.1007/978-3-642-32009-5_36
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.1007/s00145-010-9089-3
https://doi.org/10.1007/s13389-013-0068-0
https://doi.org/10.1137/0215025
https://doi.org/10.1007/BF02579167
https://doi.org/10.1007/BF02579167
https://doi.org/10.1145/3266291
https://doi.org/10.1145/3266291
http://www.robertnz.net/pdf/xor2.pdf
https://doi.org/10.1145/237814.237866
https://doi.org/10.1109/4.658619
https://doi.org/10.1109/4.766813
https://doi.org/10.1145/3403643
https://doi.org/10.1145/3403643
https://software.intel.com/security-software-guidance/insights/srbds-mitigation-impact-intel-secure-key
https://software.intel.com/security-software-guidance/insights/srbds-mitigation-impact-intel-secure-key
https://www.itu.int/rec/T-REC-X.1702-201911-I/en

[21] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. 2020.
Implementing Grover Oracles for Quantum Key Search on AES and LowMC. In
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part II (Lecture Notes in Computer Science), Anne Canteaut
and Yuval Ishai (Eds.), Vol. 12106. Springer, 280–310. https://doi.org/10.1007/978-
3-030-45724-2_10

[22] Wilbur B. Davenport Jr. and William L. Root. 1958. An Introduction to the Theory
of Random Signals and Noise. McGraw-Hill. 401 pages. https://ieeexplore.ieee.
org/servlet/opac?bknumber=5265617

[23] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. 2013. Hardware
Designer’s Guide to Fault Attacks. IEEE Trans. Very Large Scale Integr. Syst. 21,
12 (2013), 2295–2306. https://doi.org/10.1109/TVLSI.2012.2231707

[24] Wolfgang Killmann and Werner Schindler. 2001. A Proposal for: Functionality
classes and evaluation methodology for true (physical) random number
generators. AIS 31, Version 3.1, English Translation, BSI. https://www.bsi.bund.
de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_
Functionality_classes_evaluation_methodology_for_true_RNG_e.html

[25] Wolfgang Killmann and Werner Schindler. 2011. A Proposal for: Functionality
classes for random number generators. AIS 20 / AIS 31, Version 2.0, English
Translation, BSI. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_
number_generators_e.html

[26] Patrick Lacharme. 2008. Post-Processing Functions for a Biased Physical Random
Number Generator. In Fast Software Encryption, 15th International Workshop, FSE
2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers (Lecture
Notes in Computer Science), Kaisa Nyberg (Ed.), Vol. 5086. Springer, 334–342.
https://doi.org/10.1007/978-3-540-71039-4_21

[27] John S. Liberty, Adrian Barrera, David W. Boerstler, Thomas B. Chadwick, Scott R.
Cottier, H. Peter Hofstee, Julie A. Rosser, and Marty L. Tsai. 2013. True hardware
random number generation implemented in the 32-nm SOI POWER7+ processor.
IBM J. Res. Dev. 57, 6 (2013). https://doi.org/10.1147/JRD.2013.2279599

[28] A. Theodore Markettos and Simon W. Moore. 2009. The Frequency Injection
Attack on Ring-Oscillator-Based True Random Number Generators. In Crypto-
graphic Hardware and Embedded Systems - CHES 2009, 11th InternationalWorkshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings (Lecture Notes in Computer
Science), Christophe Clavier and Kris Gaj (Eds.), Vol. 5747. Springer, 317–331.
https://doi.org/10.1007/978-3-642-04138-9_23

[29] Ben Marshall (Ed.). 2020. RISC-V Cryptographic Extension Proposals. RISC-V
Cryptographic Extensions Task Group. https://github.com/riscv/riscv-crypto

[30] John P. Mechalas. 2018. Intel® Digital Random Number Generator
(DRNG) Software Implementation Guide. Intel Technical Report, Version
2.1. https://software.intel.com/content/www/us/en/develop/articles/intel-
digital-random-number-generator-drng-software-implementation-guide.html

[31] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. 2020.
TPM-FAIL: TPM meets Timing and Lattice Attacks. In 29th USENIX Security
Symposium (USENIX Security 2020). USENIX Association, 2057–2073. https:
//www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

[32] Stephan Müller. 2020. Documentation and Analysis of the Linux Random Num-
ber Generator, Version 3.6. Prepared for BSI by atsec information security
GmbH. https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
Studies/LinuxRNG/LinuxRNG_EN.pdf

[33] NCSC. 2020. Quantum security technologies. White paper, Version 1.0. National
Cyber Security Centre (UK). https://www.ncsc.gov.uk/whitepaper/quantum-
security-technologies

[34] NIST. 2001. Advanced Encryption Standard (AES). Federal Information Process-
ing Standards Publication FIPS 197. https://doi.org/10.6028/NIST.FIPS.197

[35] NIST. 2015. Secure Hash Standard (SHS). Federal Information Processing Stan-
dards Publication FIPS 180-4. https://doi.org/10.6028/NIST.FIPS.180-4

[36] NIST. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Federal Information Processing Standards Publication FIPS 202. https:
//doi.org/10.6028/NIST.FIPS.202

[37] NIST. 2016. Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process. Official Call for Proposals,
National Institute for Standards and Technology. http://csrc.nist.gov/groups/ST/
post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

[38] NIST. 2019. Security Requirements for Cryptographic Modules. Federal Informa-
tion Processing Standards Publication FIPS 140-3. https://doi.org/10.6028/NIST.
FIPS.140-3

[39] NIST and CCCS. 2020. Implementation Guidance for FIPS 140-2
and the Cryptographic Module Validation Program. CMVP Update.
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-
program/documents/fips140-2/FIPS1402IG.pdf

[40] NSA/CSS. 2015. Commercial National Security Algorithm Suite. https://apps.
nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

[41] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2021. CrossTalk : Speculative Data Leaks Across Cores Are Real. In IEEE Sympo-
sium on Security & Privacy 2021. IEEE, To appear. https://download.vusec.net/

papers/crosstalk_sp21.pdf
[42] Rambus. 2020. TRNG-IP-76 / EIP-76 Family of FIPS Approved True Random

Generators. Commercial Cryptographic IP data sheet. https://www.rambus.com/
security/crypto-accelerator-hardware-cores/basic-crypto-blocks/trng-ip-76/

[43] Stephen O. Rice. 1944. Mathematical analysis of random noise (Parts I-II). The Bell
System Technical Journal 23, 3 (July 1944), 282–332. https://doi.org/10.1002/j.1538-
7305.1944.tb00874.x

[44] Stephen O. Rice. 1945. Mathematical analysis of random noise (Parts III-IV)). The
Bell System Technical Journal 24, 1 (January 1945), 46–156. https://doi.org/10.
1002/j.1538-7305.1945.tb00453.x

[45] Markku-Juhani O. Saarinen. 2020. A Lightweight ISA Extension for AES and SM4.
To appear in SECRISC-V 2020. arXiv:2002.07041. https://arxiv.org/abs/2002.07041

[46] Jim Salter. 2019. How a months-old AMD microcode bug destroyed my weekend.
Ars Technica. https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-
microcode-bug-destroyed-my-weekend/

[47] Peter W. Shor. 1994. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, USA, 20-22 November 1994. IEEE, 124–134. https://doi.org/
10.1109/SFCS.1994.365700

[48] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L.
Baish, and Mike Boyle. 2018. Recommendation for the Entropy Sources Used for
Random Bit Generation. NIST Special Publication SP 800-90B. https://doi.org/
10.6028/NIST.SP.800-90B

[49] Boyan Valtchanov, Viktor Fischer, Alain Aubert, and Florent Bernard. 2010.
Characterization of randomness sources in ring oscillator-based true random
number generators in FPGAs. In 13th IEEE International Symposium on Design
and Diagnostics of Electronic Circuits and Systems, DDECS 2010, Vienna, Austria,
April 14-16, 2010, Elena Gramatová, Zdenek Kotásek, Andreas Steininger, Hein-
rich Theodor Vierhaus, and Horst Zimmermann (Eds.). IEEE Computer Society,
48–53. https://doi.org/10.1109/DDECS.2010.5491819

[50] Michal Varchola and Milos Drutarovský. 2010. New High Entropy Element for
FPGA Based True Random Number Generators. In Cryptographic Hardware and
Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA,
USA, August 17-20, 2010. Proceedings (Lecture Notes in Computer Science), Stefan
Mangard and François-Xavier Standaert (Eds.), Vol. 6225. Springer, 351–365.
https://doi.org/10.1007/978-3-642-15031-9_24

[51] John von Neumann. 1951. Various Techniques Used in Connection with Ran-
dom Digits. In Monte Carlo Method, A. S. Householder, G. E. Forsythe, and
H. H. Germond (Eds.). National Bureau of Standards Applied Mathematics Series,
Vol. 12. US Government Printing Office, Washington, DC, Chapter 13, 36–38.
https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf

[52] Andrew Waterman and Krste Asanović (Eds.). 2019. The RISC-V Instruction
Set Manual, Volume I: User-Level ISA. RISC-V Foundation. https://riscv.org/
specifications/ Document Version 20191213.

[53] Andrew Waterman and Krste Asanović (Eds.). 2019. The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture. RISC-V Foundation. https://riscv.org/
specifications/ Document Version 20190608-Priv-MSU-Ratified.

2020-08-28 13:00. Page 10 of 1–10.

https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://ieeexplore.ieee.org/servlet/opac?bknumber=5265617
https://ieeexplore.ieee.org/servlet/opac?bknumber=5265617
https://doi.org/10.1109/TVLSI.2012.2231707
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_evaluation_methodology_for_true_RNG_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_evaluation_methodology_for_true_RNG_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_evaluation_methodology_for_true_RNG_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://doi.org/10.1007/978-3-540-71039-4_21
https://doi.org/10.1147/JRD.2013.2279599
https://doi.org/10.1007/978-3-642-04138-9_23
https://github.com/riscv/riscv-crypto
https://software.intel.com/content/www/us/en/develop/articles/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf
https://www.ncsc.gov.uk/whitepaper/quantum-security-technologies
https://www.ncsc.gov.uk/whitepaper/quantum-security-technologies
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://download.vusec.net/papers/crosstalk_sp21.pdf
https://download.vusec.net/papers/crosstalk_sp21.pdf
https://www.rambus.com/security/crypto-accelerator-hardware-cores/basic-crypto-blocks/trng-ip-76/
https://www.rambus.com/security/crypto-accelerator-hardware-cores/basic-crypto-blocks/trng-ip-76/
https://doi.org/10.1002/j.1538-7305.1944.tb00874.x
https://doi.org/10.1002/j.1538-7305.1944.tb00874.x
https://doi.org/10.1002/j.1538-7305.1945.tb00453.x
https://doi.org/10.1002/j.1538-7305.1945.tb00453.x
https://arxiv.org/abs/2002.07041
https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/
https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.1109/DDECS.2010.5491819
https://doi.org/10.1007/978-3-642-15031-9_24
https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf
https://riscv.org/specifications/
https://riscv.org/specifications/
https://riscv.org/specifications/
https://riscv.org/specifications/

	Abstract
	1 Introduction
	1.1 Standards and Terminology
	1.2 RISC-V Target Considerations

	2 The Entropy Source Interface
	2.1 PollEntropy
	2.2 Entropy Source Requirements

	3 Monitoring and Information Flows
	3.1 Oracles and Side Channels
	3.2 Security Controls

	4 Implementation Strategies
	4.1 Noise Sources
	4.2 Samplers and GetNoise
	4.3 Continuous Health Tests
	4.4 Non-cryptographic Conditioners
	4.5 Cryptographic Conditioners
	4.6 The Final Random: DRBGs

	5 Case Studies
	5.1 Current Mainstream TRNG ISAs
	5.2 A full DRBG in Hardware
	5.3 Quantum vs Classical Random
	5.4 Minidice

	6 Conclusions
	Acknowledgments
	References

