
Development of The RISC-V Entropy Source Interface

Markku-Juhani O. Saarinen · G. Richard Newell · Ben Marshall

Version of Tuesday 22nd June, 2021

Abstract The RISC-V True Random Number Gen-

erator (TRNG) architecture breaks with previous ISA

TRNG practice by splitting the Entropy Source (ES)

component away from cryptographic DRBGs into a sep-

arate privileged interface, and in its use of polling. The

modular approach is suitable for the RISC-V hardware

IP ecosystem, allows a significantly smaller implemen-

tation footprint on platforms that need it, while di-

rectly supporting current standards compliance testing

methods. We describe the interface, its use in cryp-

tography, and offer additional discussion, background,

and rationale for various aspects of it. The design was

informed by lessons learned from earlier mainstream

ISAs, recently introduced SP 800-90B and FIPS 140-3

entropy audit requirements, AIS 31 and Common Cri-

teria, current and emerging cryptographic needs such as

post-quantum cryptography, and the goal of supporting

a wide variety of RISC-V implementations and appli-

cations. Many of the architectural choices result from

quantitative observations about random number gener-

ators in secure microcontrollers, the Linux kernel, and

cryptographic libraries.

Keywords Entropy Source · RISC-V · TRNG · FIPS

140-3 · SP 800-90B · AIS-31

Markku-Juhani O. Saarinen
PQShield Ltd., UK
E-mail: mjos@pqshield.com

G. Richard Newell
Microchip Technology Inc., USA
E-mail: richard.newell@microchip.com

Ben Marshall
PQShield Ltd. and University of Bristol, UK
E-mail: ben.marshall@pqshield.com

1 Introduction

The security of cryptographic systems is based on secret

bits and keys. To prevent guessing, these bits need to

be random, so they come from True Random Number

Generators (TRNGs).

As a fundamental security function, the generation

of random numbers is governed by numerous standards

and technical requirements. This work describes an ar-

chitecture and approach that can be taken by CPU de-

signers to address these challenges.

RISC-V (https://riscv.org/) is a popular open-

source Instruction Set Architecture (ISA) that anyone

can freely use. The minimalistic base instruction sets

RV32I and RV64I (for 32- and 64-bit architectures) are

often amended with extensions that provide features

such as floating-point arithmetic or bit manipulation.

1.1 The RISC-V Process

Anyone can build experimental and proprietary systems

around RISC-V, but the official, shared ISA specifica-

tions are created by committees and task groups within

the RISC-V International. The specifications are con-

tributed to the ISA under a permissive open source li-

cense. The architecture and instructions discussed here

are entering the official public review stage.

This work grew out of the efforts by individual mem-

bers of the Cryptographic Extensions Task Group [32]

and represents their personal opinions only; not their

respective employers or RISC-V International. As an

ISA specification has limited space to present the con-

siderations and research that led to particular engineer-

ing choices, this paper hopes to offer additional ratio-

nale to support the RISC-V standardization process.

2 Markku-Juhani O. Saarinen et al.

1.2 TRNG Standards and Terminology

A driving design goal for our architecture was for it

to be easy to implement, yet compatible with current

versions of FIPS 140-3 [43] and NIST SP 800-90B [53],

significantly updated standards that are only coming

into use in the 2020s. Naturally, the architecture should

also support other RNG frameworks such as German

AIS 20 / 31[26,27], which is widely used in Common

Criteria evaluations. These standards set many of the

technical requirements for the design, and we use their

terminology if possible.

1.2.1 Physical Entropy Source (ES)

We will only consider physical sources of true random-

ness in this work. When they meet certain design cri-

teria, they may be used as Entropy Sources (ES) for

cryptographic purposes [53]. Entropy sources are built

by sampling and processing data from a noise source

(Section 6.1). Since these are directly based on natu-

ral phenomena and are subject to environmental condi-

tions (which may be adversarial), they require features

that continuously monitor the “health” and quality of

those sources. See Section 5.3 for a discussion about

such security controls.

For the purposes of FIPS 140-3 certification, en-

tropy sources will soon have a separate ENT [44] scope.1

Hence it makes sense to separate the entropy source in

the RISC-V architecture too, and simply define an in-

terface for it. System designers who do not have the

time or resources to create and certify entropy sources

can simply license a compliant IP core and use it.

1.2.2 Conditioning

Raw physical randomness (noise) sources are rarely sta-

tistically perfect, and some generate very large amounts

of bits, which need to be “debiased” and reduced to a

smaller number of bits. This process is called condition-

ing. A secure hash function is an example of a crypto-

graphic conditioner. It is important to note that even

though hashing will make the output look statistically

more random, it does not increase its entropy content.

Non-cryptographic conditioners and extractors such

as von Neumann’s “debiased coin tossing” [38] are eas-

ier to implement efficiently but may reduce entropy as

well as redundancy (cryptographic hashes mix the input

entropy very efficiently to output bits). However, they

1 Separate entropy source validation scope was discussed at
the NIST “SP 800-90B Entropy Source Validation Workshop”
held in April 2021. There is an automated Entropy Source
Validation Test System (ESVTS) being developed by NIST.

do not require cryptanalytic or computational hardness

assumptions and are therefore inherently more future-

proof. See Section 6.3 for a more detailed discussion.

1.2.3 Pseudorandom Number Generator (PRNG)

Pseudorandom Number Generators (PRNGs) use de-

terministic mathematical formulas to create abundant

random numbers from a smaller amount of “seed” ran-

domness. PRNGs are divided into cryptographic and

non-cryptographic ones.

Non-cryptographic PRNGs, such as LFSRs and the

linear-congruential generators found in many program-

ming libraries, may generate statistically satisfactory

random numbers but must never be used for crypto-

graphic keying. This is because they are not designed to

resist cryptanalysis; it is usually possible to take some

output and mathematically derive the “seed” or the

internal state of the PRNG from it. This is a security

problem since knowledge of the state allows the attacker

to compute future or past outputs.

1.2.4 Deterministic Random Bit Generator (DRBG)

Cryptographic PRNGs are also known as Deterministic

Random Bit Generators (DRBGs), a term used by SP

800-90A [7]. A strong cryptographic algorithm such as

AES [39] or SHA-2/3 [41,40] is used to produce ran-

dom bits from a seed. The secret seed material is much

like a cryptographic key; determining the seed from the

DRBG output is as hard as breaking AES or a strong

hash function. This also illustrates that the seed/key

needs to be long enough and come from a trusted En-

tropy Source. The DRBG should still be frequently re-
freshed (reseeded) for forward and backward security.

1.3 RISC-V Target Considerations

One of the key features of RISC-V is that essentially

the same instruction set can be used on a wide range

of application platforms. We identify two broad targets

for the TRNG ISA: Secure Microcontrollers and Linux

Profile systems.

1.3.1 Secure Microcontrollers

Some RISC-V cores are being designed specifically for

smart cards and other secure elements, where a hardware-

based random number generator is the only viable source

of keying material. These “security chip” targets have

stringent engineering requirements in relation to RNG

quality and certification, physical security, energy effi-

ciency, and unit cost.

Development of The RISC-V Entropy Source Interface 3

Noise Source

“analog” shot, quantum, ..

Sampling

raw bits

Conditioning

pre-processed Entropy(X) > 12 bits

Health
Tests

OK?
PollEntropyISA

H
a
r
d
w
a
r
e
:

E
n
tr
o
p
y
S
o
u
rc
e
(E

S
)

S
o
ft
w
a
r
e
:

D
ri
ve
r
+

D
R
B
G
(s
)

(ES16) seed

Not OK:

(BIST / WAIT / DEAD)

Entropy Pool

processed “full entropy”

Crypto DRBG

Library API Kernel syscall

Application

Fig. 1 PollEntropy provides an Entropy Source (ES) only,
not a stateful random number generator. As a result, it can
support arbitrary security levels. Cryptographic (AES, SHA-
2/3) ISA Extension instructions can be used to construct
high-speed DRBGs that are seeded from the entropy source.

Configuration: Embedded-style CPUs may be perma-

nently in machine mode [56], and therefore run only

trusted firmware. They are likely to have an RV32 single-

hart configuration.

API Interfaces: These targets are expected to inter-

face and implement the TRNG subsystem via a cryp-

tographic library or security-oriented runtime firmware.

1.3.2 General-purpose Linux

We expect Linux and BSD-style operating system ker-

nels to be important in the mobile, desktop, and server

application areas. Some of these targets also need to

be hardened against invasive physical attacks. Energy

efficiency is a concern for mobile devices. Additional

entropy sources may be available.

Configuration: These higher-performance CPUs support

privilege separation and memory management. They

are more likely to be in RV64 multi-hart or even mul-

tiprocessor configuration.

API Interfaces: Generally, the TRNG interface will be

via the operating system kernel and hypervisor [57].

The Linux kernel conditions input entropy via a multi-

source random pool and makes it available to users

through /dev/[u]random and getrandom(2).

2 The Entropy Source Interface

The proposed RISC-V TRNG ISA is primarily an En-

tropy Source (ES) interface. A valid implementation

should satisfy properties that allow it to be used to

seed standard and nonstandard cryptographic DRBGs

of virtually any state size and security level.

The purpose of this baseline specification is to guar-

antee that a simple, device-independent driver compo-

nent (e.g., in Linux kernel, embedded firmware, or a

cryptographic library) can use the ISA instruction to

generate truly random bits.

The delineation of various components is illustrated

in Figure 1. This ISA interface does not have to be

the only entropy sourcing mechanism. IO interfaces and

custom (vendor-provided) drivers can be used for exter-

nal hardware sources, for example.

2.1 Pollentropy

The main ISA-level interface consists of a single pseu-

doinstruction, pollentropy, that returns a 32/64-bit

value in a CPU register.

pollentropy rd // Poll entropy/status to rd

csrrs rd , sentropy , x0 // Encoding -equivalent

The pollentropy pseudoinstruction reads XLEN

bits from the sentropy read-only CSR described in Ta-

ble 1. It is available in Machine Mode (M-mode may

be the only mode) or optionally in Supervisor (S/HS)

Mode (Table 4). See access control Section 5.1.

Bits Name Description

63:32 Set to 0 Upper bits are set to zero in RV64.
31:30 OPST Operational status: BIST (00), ES16

(01), WAIT (10), DEAD (11).
29:24 reserved Reserved for future use by the RISC-

V specification.
23:16 custom Reserved for vendor-specific and ex-

perimental use.
15: 0 seed 16 bits of randomness, but only

when OPST=ES16.

Table 1 The sentropy CSR. It is accessed at CSR address
0xDBF and is a read-only, S-mode CSR.

4 Markku-Juhani O. Saarinen et al.

The instruction is non-blocking and returns immedi-

ately, either with two status bits sentropy[31:30] =

OPST set to ES16 (01), indicating successful polling, or

with no entropy and one of three polling failure statuses

BIST (00), WAIT (10), or DEAD (11). See Table 2.

Status Bits at sentropy[31:30]=OPST:

00 BIST indicates that Built-In Self-Test “on-demand”
(BIST) statistical testing is being performed.

01 ES16 indicates success; the low bits sentropy[15:0] will
have 16 bits of randomness, which is be guaranteed to
meet the entropy requirements regardless of implementa-
tion.

10 WAIT means that a sufficient amount of entropy is not
currently available (but is expected to be available later).

11 DEAD indicates an unrecoverable self-test error.

Table 2 Status bits in the atomic pollentropy output word.

The sixteen bits of randomness in seed (located

in sentropy[15:0]) polled with ES16 status must be

cryptographically conditioned before they can be used

as SSPs (Sensitive Security Parameters) or keying ma-

terial. We suggest entropy output to be post-processed

in blocks of at least 256 bits, with a 128-bit resulting

output block. See Section 4 for seed requirements.

When OPST is not ES16, seed should be set to 0.

An implementation may safely set reserved and custom

bits to zeros. A polling software interface should ignore

their contents.

2.2 Further Notes about Status Bits

As an encoding example for Tables 1 and 2, the value

0x4000ABCD is a valid ES16 status output on RV32, with

0xABCD being the seed value.

In typical implementations, BIST will last only a few

milliseconds, up to a few hundred. If the system returns

temporarily to BIST from any other state, this signals a

non-fatal (usually non-actionable) self-test alarm. BIST

is also used to signal test mode (getnoise, Sect. 3).

WAIT is not an error condition and may (in fact) be

more frequent than ES16 since physical entropy sources

may not have very high bandwidth. The polling can be

opportunistic (e.g., a system watchdog interrupt).

The DEAD state indicates a hardware fault, a secu-

rity issue, or (extremely rarely) a type-1 statistical false

positive in the continuous testing procedures. In case of

a fatal failure, an immediate lockdown may also be an

appropriate response in dedicated security devices.

NOISE TEST = 0

reset

BIST

WAIT ES16
seed
ok!

DEAD

stays dead!

fatal

error

non-fatal
alarm

NOISE TEST = 1

BIST

DEAD

test mode disabled

test mode disabled

enabled:
BIST
WAIT
ES16

DEAD

GetNoise active:
no PollEntropy

Fig. 2 Normally the operational state alternates between
WAIT (no data) and ES16, which means that a 16-bit random
seed has been polled. BIST (Built-in Self-Test) only occurs
after reset or to signal a non-fatal self-test alarm (if reached
after WAIT or ES16). DEAD is an unrecoverable error state.
In test mode (when GetNoise is active), WAIT and ES16
states are unavailable in PollEntropy.

2.3 A Polling Mechanism with WFI

Figure 2 illustrates operational state (OPST) transitions.

The state is usually either WAIT or ES16.

We specifically recommend against busy-loop polling

on the entropy source (that may have relatively low

bandwidth). Even though no specific interrupt sequence

is specified, it is expected that the wfi (wait for inter-

rupt) instruction is available.

Especially in microcontrollers, the polling mecha-

nism can be implemented in a way that allows even

generic drivers to benefit from interrupt signals that

release the program flow from a wfi instruction with-

out causing an interrupt handler to be invoked.

Cores that implement sentropy must not raise an

Illegal Instruction Exception when executing wfi un-

less required to do so by the Timeout Wait bit of the

mstatus register, as detailed in Section 3.1.6.5 of the

Privileged ISA Manual [56]. The RISC-V ISA allows

wfi to be implemented as a nop. As a minimum re-

quirement for portable drivers, a WAIT or BIST from

sentropy should be followed by a wfi before another

sentropy read is issued. There is no need to poll after

a DEAD state.

To guarantee that no sensitive data is read twice and

that different callers don’t get correlated output, we

suggest that hardware implements “wipe-on-read” on

the randomness pathway during each read (successful

poll). For the same reasons, only complete and fully

processed random words shall be made available via

sentropy.

Development of The RISC-V Entropy Source Interface 5

2.4 Interface Rationale and Discussion

An entropy source does not require a high-bandwidth

interface; a single DRBG source initialization only re-

quires 512 bits (256 bits of entropy), and DRBG output

can be shared by any number of callers. Once initiated,

a DRBG requires new entropy only to mitigate the risk

of state compromise.

A blocking instruction may be easier to use, but

most users should be querying a (D)RBG instead of an

entropy source. Without a polling-style mechanism, the

entropy source could hang for thousands of cycles un-

der some circumstances. The wfi mechanism (at least

potentially) allows energy-saving sleep on MCUs and

context switching on higher-end CPUs.

The reason for the particular OPST two-bit mecha-

nism is to provide redundancy. The “fault” bit combi-

nations 11 (and 00) are more likely for electrical reasons

if feature discovery fails and the entropy source is ac-

tually not available (this has happened to AMD [51]).

The 16-bit bandwidth was a compromise motivated

by the desire to provide redundancy in the return value,

some protection against potential Power/EM leakage

(further alleviated by the 2:1 cryptographic condition-

ing discussed in Section 4), and the desire to have all of

the bits “in the same place” on both RV32 and RV64

architectures for programming convenience.

3 GetNoise Test Interface

For testing purposes, it is necessary to verify that the

noise source and sampler output matches their stochas-

tic models. This is often done in a laboratory setting
since NIST SP 800-90B [53] requires that the noise

source is protected in production devices.

The optional GetNoise interface allows access to

“raw noise” and is mainly intended for manufacturer

tests. It is must not be used as a source of randomness

or for other production use. Its contents and behavior

are interpreted in the context of mvendorid, marchid,

and mimpid CSR identifiers. Hence getnoise is almost

a “custom” instruction, apart from the test mode indi-

cator, which can be used by a generic driver.

The interface consists of the mnoise machine-mode

CSR, which (unlike sentropy) is read-write. We define

a pseudoinstruction for reading it:

getnoise rd // Optional ES test interface

csrrs rd , mnoise , x0 // Encoding -equivalent

The Crypto ISE defines the semantics of only a

single bit, mnoise[31], which is named NOISE_TEST.

Hence the only universal function of the CSR is for en-

abling/disabling this interface. This is because the test

interface effectively disables sentropy; this way, a soft

reset can also reset this feature. See Figure 2 for a state

transition diagram.

The mnoise CSR uses address 0x7A9, indicating it is

a standard read-write machine-mode CSR. This places

it adjacently to debug/trace CSRs, indicating that it is

not expected to be used in production.

When NOISE_TEST = 1 in getnoise and mnoise,

pollentropy and sentropy must not return anything

via ES16; we recommend that it is in BIST state. When

NOISE_TEST is again disabled, the entropy source shall

return from BIST via a zeroization and self-test mech-

anism (effectively a reset).

When not implemented (e.g., in virtual machines),

getnoise can permanently read zero (0x00000000). IF

available, but with NOISE_TEST = 0, getnoise can re-

turn a nonzero constant but no noise samples.

The behavior of other input and output bits is left

to the vendor. Although not used in production, we

recommend that the mnoise read operation is always

non-blocking.

4 Entropy Source Requirements

The output seed from sentropy is not necessarily fully

conditioned randomness due to hardware limitations of

smaller, low-powered implementations. However, mini-

mum requirements are defined. A caller should not use

the output directly but poll twice the amount of re-

quired entropy, cryptographically condition (hash) it,

and use that to seed a cryptographic DRBG.

RISC-V requires drivers to implement at least 2-to-1

cryptographic post-processing in software with the ex-

pectation that the final output from this post-processing

would have “computationally bounded full entropy.”

The expectation is that seed output passes typical

randomness tests (e.g. [48]), but weak, pseudorandom,

and non-robust sources can pass such tests as well. The

results of standard statistical tests should not be con-

fused with amount of entropy available, or the consis-

tency of output. Modern cryptologic evaluation of en-

tropy sources involves an investigation of the stochastic

model of the noise source, an analysis of the condition-

ing component, its health tests, etc.

Three Options. The specification of RISC-V entropy

source requirements is complicated by the existence of

two major, slightly conflicting standards: NIST SP 800-

90B [53] (Sect. 4.1) for FIPS 140-3 evaluations and AIS

31 [27] (Sect. 4.2) for many Common Criteria evalua-

tions. RISC-V implementors may design their entropy

6 Markku-Juhani O. Saarinen et al.

sources to meet either one of these standards (as a dif-

ferent type of evidence is required for each certifica-

tion). We hope that it is also possible for implementa-

tions to meet both criteria.

Alternatively, for virtual entropy sources (DRBGs),

the feeding generator must meet the “256-bit security”

requirements of Category 5 post-quantum cryptogra-

phy (Sect. 4.3). The virtual sources are intended to be

primarily provided to environments that require shar-

ing of a physical entropy source.

4.1 FIPS 140-3 Requirements (NIST SP 800-90B)

The interface requirement is satisfied if 128 bits of full

entropy can be obtained from each 256-bit (16 × 16

-bit) successful (ES16), but possibly non-consecutive

sentropy output sequence using a vetted conditioning

algorithm (See [53, Section 3.1.5.1.2].)

Rather than attempting to define the properties that

the entropy source output must satisfy, we define that

it should pass SP 800-90B evaluation and certification

when conditioned cryptographically (“perfectly”) in ra-

tio 2:1. The implication is that no specific 256-bit se-

quence should have a probability of larger than 2−192

of occurring. The stochastic model or heuristic analysis

must not assume that the input blocks to the condi-

tioner are consecutive words.

Driver developers may make this conservative as-

sumption but are not prohibited from using more than

twice the number of seed bits relative to the desired re-

sulting entropy. Even though entropy is defined in terms

of 128-bit full entropy blocks, we recommend at least

256-bit security (two blocks, ≥ 512 bits, ≥ 32 words).

Rationale: SP 800-90C [8, Appendix A] states that each

conditioned block of n bits is required to have n+64 bits

of input entropy to attain full entropy. Hence NIST SP

800-90B [53] min-entropy assessment must guarantee

at least 128 + 64 = 192 bits input entropy per 256-bit

block [8, Sections 4.1. and 4.3.2]). Only then a hash-

ing of 16 × 16 = 256 bits from the entropy source will

produce the desired 128 bits of full entropy. This fol-

lows from the specific requirements, threat model, and

distinguishability proof contained in SP 800-90C. The

implied min-entropy rate is 192/256 = 12/16 = 0.75.

The implied Shannon entropy is much larger.

An RBG2(P) construction is a cryptographically se-

cure RBG with continuous access to a physical entropy

source (sentropy) and output generated from condi-

tioned seeds with a DRBG. The entropy source can

also be used to build RBG3 full entropy sources [8].

The concatenation of output words corresponds to the

Get ES Bitstring function.

§P1 [PTG.2.1] Start-up tests map to §T1 and reset-
triggered (on-demand) BIST tests.

§P2 [PTG.2.2] Continuous testing total failure maps to
§T2 and the DEAD state.

§P3 [PTG.2.3] Online tests are continuous tests of §T2
– entropy output is prevented in the BIST state.

§P4 [PTG.2.4] Is related to the design of effective en-
tropy source health tests, which we encourage.

§P5 [PTG.2.5] Raw random sequence may be checked
via the GetNoise interface (Section 3).

§P6 [PTG.2.6] Test Procedure A [27, Sect 2.4.4.1] is
part of the evaluation process, and we suggest self-
evaluation using these tests even if Common Crite-
ria certification is not sought.

§P7 [PTG.2.7] Average per-bit Shannon entropy of “in-
ternal random bits” exceeds 0.997.

Table 3 Summary of AIS-31 PTG.2 requirements.

4.2 Common Criteria Requirements (BSI AIS-31)

For an alternative Common Criteria certification (or

self-certification), implementors should target BSI AIS

31 PTG.2 (P2) [27, Section 4.3.] requirements. In this

evaluation, seed bits are viewed as “internal random

numbers.” The PTG.2 requirements may be mapped to

security controls §T 1-3 (Sect. 5.3) and the sentropy

interface, as shown in Table 3.

The overall security requirement is the same as with

NIST sources (Section 4.1); that full entropy can be

obtained after 2:1 cryptographic conditioning.

Rationale: PTG.2 modules built and certified to the

AIS-31 standard can also meet the “full entropy” con-

dition of Section 4.1 after 2:1 cryptographic condition-

ing. However, the technical validation process is signif-
icantly different. The PTG.2 source requirements work

as a building block for other types of BSI generators

(e.g., PTG.3 with appropriate software post-processing.)

Note how §P7 concerns Shannon entropy, not min-

entropy as with NIST sources. See Section 4.4 for an

argument why a PTG.2 source is likely to satisfy the

full-entropy requirement of Section 4.1.

4.3 Virtual Sources: Security Requirement

A virtual source is intended especially for guest oper-

ating systems, sandboxes, emulators, and similar use

cases. A virtual source should not be considered to be

a physical entropy source. However, we’d like to guaran-

tee that even such virtual environments have sufficient

entropy available.

Virtualized environments should minimize security

risks by using a DRBG or other secure random on the

host rather than sharing the host’s hardware-backed

Development of The RISC-V Entropy Source Interface 7

Entropy Source to a guest environment. See Section 5.1

for a discussion about access control.

A random-distinguishing attack should require com-

putational resources comparable or greater than those

required for an exhaustive key searching on a block ci-

pher with a 256-bit key (e.g., AES 256).

Any implementation of sentropy that limits the se-

curity strength shall not reduce it to less than 256 bits.

If the security level is under 256 bits, then the interface

must not be available.

Example: A CTR DRBG built from AES-128 is

not sufficient, while one using AES-256 based RBG.2(P)

with appropriate seeding mechanism is.

Rationale: DRBGs can be used to feed other (virtual)

DRBGs, but that never increases the absolute amount

of entropy in the system. The entropy source must be

able to support current and future security standards

and applications. The 256-bit requirement maps to “Top

Secret” classified schemes in Suite B and the newer

U.S. Government CNSA Suite [45]. This security level

is equivalent to a Category 5 classical or quantum ad-

versary[42, Section 4.A.4 Security Strength Categories].

4.4 Further Notes on the Three Approaches

The usage of a vetted conditioner (such as SHA-2/3) in

Section 4.1 was specified for technical reasons related

to SP 800-90B itself; non-vetted conditioners may offer

similar security levels.

The 128-bit output block size was selected because

that is the output size of the CBC-MAC conditioner

specified in [53] and also the smallest key size we expect

to see in applications.

The min-entropy assessment methodology in SP 800-

90B [53] has an additional safety margin in its con-

fidence intervals, and therefore there must be consis-

tently more than 12 bits of min-entropy per 16-bit word.

In practice, we recommend the distribution to be sig-

nificantly closer to uniform.

Comparing the Entropies. We emphasize that the SP

800-90B validation process is concerned with “guessing

entropy” or min-entropy H∞, while AIS-31 is concerned

with more traditional Shannon entropy H1. These two

Rényi entropies are algebraically different. Min-entropy

does not satisfy some of the familiar, intuitive proper-

ties of Shannon entropy – such as subadditivity.

The SP 800 90B requirement can be expressed as

entropy rate bound H∞ > 0.75, and the AIS-31 re-

quirement as H1 > 0.997. The two conditions are not

mutually exclusive since H1 ≥ H∞ for all distributions.

The following trivial theorem illustrates that an entropy

source may have one without the other, at least when

16-bit blocks are considered in isolation.

Theorem 1 For a 16-bit discrete random variable X,
1
16H1(X) > 0.997 for does not imply 1

16H∞(X) > 0.75

and 1
16H∞(X) > 0.75 does not imply 1

16H1(X) > 0.997.

Proof We consider two independent sample distribu-

tions D1 and D2 of a 16-bit variable X ∈ Z, 0 ≤ X <

216, taking on values with probability px = Pr(X = x).

Claim 1. D1 has p0 = 0.00650 and pi = 1−p0

216−1
for 0 < i < 216. We have 1

16H1(D1) = 0.99703 and
1
16H∞(D1) = 0.45408.

Claim 2. D2 has pi = 1/4097 for 0 ≤ i < 4097

and pi = 0 for 4097 ≤ i < 216. We have equivalent
1
16H1(D2) = 1

16H∞(D2) = 0.75002.

However, if the Shannon entropy is analyzed per bit,

with information about other bits, then H1 > 0.997

implies a maximum individual guessing probability of

0.53223 per bit, or 2−233 for a 256-bit block. Since this

min-entropy is above the 128 + 64 threshold set in SP

800-90C, one can expect that a PTG.2 source satisfies

the full-entropy requirements of Section 4.1 after cryp-

tographic conditioning.

Still, if some specific 256-bit entropy source output

sequence has an expected probability larger than 2−192

(for any reason), then it is not a valid entropy source for

this interface. The min-entropy requirement overrides

much looser Shannon entropy estimates.

5 Information Flows and Security Controls

“The noise source state shall be protected from

adversarial knowledge or influence to the great-

est extent possible. The methods used for this

shall be documented, including a description of

the (conceptual) security boundary’s role in pro-

tecting the noise source from adversarial obser-

vation or influence.”

–Noise Source Requirements, SP 800-90B [53].

An entropy source is a singular resource, subject to de-

pletion and also covert channels [15]. Observation of the

entropy can be the same as the observation of the noise

source output, as cryptographic conditioning is manda-

tory only as a post-processing step. SP 800-90B and

other security standards mandate protection of noise

bits from observation and also influence.

8 Markku-Juhani O. Saarinen et al.

Mode PE GN Description

M Yes Opt. Both the sentropy and the optional mnoise interface are available in machine mode.
S, HS (SKES) No S and HS mode may access sentropy directly if mseccfg.SKES = 1, otherwise accesses to

sentropy will trap with an Illegal Opcode Exception. S and HS mode may not access
mnoise, which uses an M-mode CSR.

U, VS, VU No No There must be no direct access to sentropy or getnoise output from U-mode.

Table 4 Entropy Source Extension access policy in relation to standard privilege levels. Some systems only have an M-mode.
The HS, VS and VU modes are present in systems with the Hypervisor (H) extension implemented [57].

5.1 Access Control

The sentropy CSR is not available to general user pro-

cesses, and the raw source interface has been delegated

to a vendor-specific test interface getnoise. The test

interface and the main interface must not be opera-

tional at the same time.

Table 4 summarizes the access patterns in relation

to the basic RISC-V privilege levels. S-mode access to

the entropy source is controlled via mseccfg.SKES bit.

This is bit 8 of mseccnf at CSR address 0x390 [28].

If both ‘S‘ and ‘HS‘ mode and ‘mseccfg‘ are not

implemented in a system, then access to the entropy

source is M-mode only.

Bit value SKES=1 will allow direct access to the en-

tropy source from S-mode, while SKES=0 leads to an

illegal instruction trap when sentropy is called in S-

mode. If S / HS are not implemented, or mseccfg is

not available in a system, then access to the entropy

source is M-Mode only.

Virtualization. It is possible for a hypervisor or M-

mode code to trap and feed less privileged guest virtual

entropy source words (Sect. 4.3). Virtualization requires

both conditioning and DRBG processing of physical en-

tropy output. This is recommended if a single entropy

source is shared between multiple different S-mode in-

stances (multiple Kernels, not harts) or if the S-mode

instance is untrusted. A virtual entropy source is sig-

nificantly more resistant to depletion attacks and also

lessens the risk from covert channels.

Direct S-mode Access. The SKES option allows one to

draw a security boundary around an S or HS mode

component in relation to SSP flows, which is helpful

when implementing trusted enclaves.

It can also be useful for systems that consider an

S-level kernel to be a trusted component and reserve

M-mode just for system abstraction purposes. Oppor-

tunistic polling in interrupts is a natural way to gather

entropy (given that the instruction is non-blocking),

and its performance impact benefits from direct access

in general Linux-type operating systems.

The requirement for a conditioner and DRBG im-

plementation at a higher level introduces some latency,

grows the stateful memory footprint of such a manager,

and may also prove to be relatively inflexible if new

types of RBGs and new security levels are required.

5.2 Security Considerations

The ISA implementation and system design must try to

ensure that the hardware-software interface minimizes

avenues for adversarial information flow even if not ex-

plicitly forbidden in the specification.

Depletion. Active polling may deny the entropy source

to another simultaneously running instance. This can

(for example) delay the instantiation of that instance if

it requires entropy to initialize fully.

Covert Channels. Direct access to a component such as

the entropy source can be used to establish communica-

tion channels across security boundaries. Active polling

from one instance makes the resource unavailable to an-

other (which is polling infrequently). Such interactions

can be used to establish low-bandwidth channels.

Hardware Fingerprinting. An entropy source (and its

noise source circuits) may have a uniquely identifiable

hardware “signature.” This can be harmless or even

useful in some applications (as random sources may

exhibit PUF-like features) but highly undesirable in

others (anonymized virtualized environments and en-

claves). A DRBG masks such statistical features.

Side Channels. Some of the most devastating practi-

cal attacks against real-life cryptosystems have used

inconsequential-looking additional information, such as

padding error messages [6] or timing information [35].

We urge implementers against creating unnecessary

information flows via status or custom bits or to al-

low any other mechanism to disable or affect the en-

tropy source output. All information flows and interac-

tion mechanisms must be considered from an adversar-

ial viewpoint; less the better.

Development of The RISC-V Entropy Source Interface 9

As an example of side-channel analysis, we note that

the entropy polling interface is typically not “constant

time.” One needs to analyze what kind of information

is revealed via the timing oracle; one way of doing it

is to model sentropy as a rejection sampler. Such a

timing oracle can reveal information about the noise

source type and entropy source usage, but usually not

about the random output seed words themselves. If it

does, additional countermeasures are necessary.

5.3 Security Controls

The primary purpose of a cryptographic entropy source

is to produce secret keying material. In almost all cases,

a hardware entropy source must implement appropriate

security controls to guarantee unpredictability, prevent

leakage, detect attacks, and deny adversarial control

over the entropy output or its generation mechanism.

Security controls are not mandatory for RISC-V per se

(in case of virtual entropy sources) but are needed for

security certification.

Many of the security controls built into the device

are called “health checks.” Health checks can take the

form of integrity checks, start-up tests, and on-demand

tests. These tests can be implemented in hardware or

firmware, typically both. Several are mandated by stan-

dards such as NIST SP 800-90B [43]. The choice of ap-

propriate health tests depends on the certification tar-

get, system architecture, threat model, entropy source

type, and other factors.

Health checks are not intended for hardware diag-

nostics but for detecting security issues – hence the de-

fault action should be aimed at damage control (prevent

weak crypto keys from being generated). Additional

“debug” mechanisms may be implemented if necessary,

but then the device must be outside production use.

– §T1: On-demand testing. A sequence of simple

tests is invoked via resetting, rebooting, or power-

ing up the hardware (not an ISA signal). The imple-

mentation will simply return BIST during the initial

start-up self-test period; in any case, the driver must

wait for them to finish before starting cryptographic

operations. Upon failure, the entropy source will en-

ter a no-output DEAD state.

– §T2: Continuous tests. If an error is detected in

continuous tests or environmental sensors, the en-

tropy source will enter a no-output state. We de-

fine that a non-critical alarm is signaled if the en-

tropy source returns to BIST state from live (WAIT or

ES16) states. Such a BIST alarm should be latched

until polled at least once. Critical failures will re-

sult in DEAD state immediately. A hardware-based

continuous testing mechanism must not make sta-

tistical information externally available, and it must

be zeroized periodically or upon demand via reset,

power-up, or similar signal.

– §T3: Fatal error states, Since the security of most

cryptographic operations depends on the entropy

source, a system-wide “default deny” security pol-

icy approach is appropriate for most entropy source

failures. A hardware test failure should at least re-

sult in the DEAD state and possibly reset/halt. It’s

a show stopper: The entropy source (or its crypto-

graphic client application) must not be allowed to

run if its secure operation can’t be guaranteed.

Rationale: The testing requirement follows from the

definition of an Entropy Source; without it, the module

is simply a noise source and can’t be trusted to safely

generate keying material.

These tests can complement other integrity and tam-

per resistance mechanisms (See Chapter 18 of [2] for ex-

amples). Some hardware random generator tests report

seemingly non-adversarial environmental and manufac-

turing issues. However, even such “innocent” failure

modes may indicate a fault attack [25] and therefore

should be addressed as a system integrity failure rather

than as a diagnostic issue. Security architects will un-

derstand to use permanent or hard-to-recover “security-

fuse” lockdowns only if the threshold of a test is such

that the probability of false-positive is negligible over

the entire device lifetime.

6 Implementation Strategies

As a general rule, RISC-V specifies the ISA only. We

provide some additional requirements so that portable,

vendor-independent middleware and kernel components

can be created. The actual hardware implementation

and certification are left to vendors and circuit design-

ers; the discussion in this section is purely informa-

tional.

When considering implementation options and trade-

offs, one must look at the entire information flow.

1. A Noise Source generates private, unpredictable

signals from well-understood physical random events.

2. Sampling digitizes the noise signal into a raw stream

of bits. This raw data is considered very sensitive.

3. Health tests ensure that the noise source and its

environment meet its operational parameters.

4. Non-cryptographic conditioners remove much

of the bias and correlation in input noise.

5. Cryptographic conditioners produce full entropy

output, indistinguishable from ideal random.

10 Markku-Juhani O. Saarinen et al.

6. DRBG takes in≥ 256 bits of seed entropy as keying

material and uses a cryptographic process to rapidly

generate random bits on demand.

Steps 1-4 (possibly 5) are considered to be part of the

Entropy Source (ES) and provided by the sentropy

CSR. Adding the software-side cryptographic steps 5-6

and control logic complements it into a True Random

Number Generator (TRNG). This information flow is

illustrated in Figure 1.

Testing and Certification. While we do not require en-

tropy source implementations to be certified designs,

we do expect that they behave in a compatible manner

and do not create unnecessary security risks to users.

Self-evaluation and testing following appropriate secu-

rity standards are usually needed to achieve this. NIST

has made its SP 800-90B[53] min-entropy estimation

package freely available2 and similar free tools are also

available3 for AIS 31 [27].

6.1 Noise Sources

The theory of random signals and electrical noise be-

came well established in the post-World War II period

[13,24]. We will give some examples of common noise

sources that can be implemented in the processor itself

(using standard cells).

Ring Oscillators. The most common entropy source type

in production use today is based on “free-running” ring

oscillators and their timing jitter. Here, an odd num-

ber of inverters is connected into a loop from which
noise source bits are sampled in relation to a reference

clock [9]. The sampled bit sequence may be expected to

be relatively uncorrelated (close to IID) if the sample

rate is suitably low [27]. However, further processing is

usually required. AMD [1], ARM [3], and IBM [30] are

examples of ring oscillator TRNGs intended for high-

security applications.

There are related metastability-based generator de-

signs such as Transition Effect Ring Oscillator (TERO)

[55]. The differential/feedback Intel construction [19] is

slightly different but also falls into the same general

metastable oscillator-based category.

The main benefits of ring oscillators are: (1) They

can be implemented with standard cell libraries without

external components – and even on FPGAs [54], (2)

2 EntropyAssessment: https://github.com/usnistgov/

SP800-90B_EntropyAssessment
3 (In German) AIS 31-Implementierung in Java:

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/

Zertifizierung/Interpretationen/AIS_31_testsuit_zip

there is an established theory for their behavior [17,

18,9] and min-entropy estimation[49], and (3) ample

precedent exists for testing and certifying them at the

highest security levels.

Ring oscillators also have well-known implementa-

tion pitfalls. Their output is sometimes highly depen-

dent on temperature, which must be taken into account

in testing and modeling. If the ring oscillator construc-

tion is parallelized, it is important that the number of

stages and/or inverters in each chain is suitable to avoid

entropy reduction due to harmonic “Huyghens synchro-

nization.” [5] Such harmonics can also be inserted mali-

ciously in a frequency injection attack, which can have

devastating results [31]. Countermeasures are related to

circuit design; environmental sensors, electrical filters,

and usage of a differential oscillator may help.

Shot Noise. A category of random sources consisting

of discrete events and modeled as a Poisson process is

called “shot noise.” There’s a long-established prece-

dent of certifying them; the AIS 31 document [27] it-

self offers reference designs based on noisy diodes. Shot

noise sources are often more resistant to temperature

changes than ring oscillators. Some of these generators

can also be fully implemented with standard cells (The

Rambus / Inside Secure generic TRNG IP [47] is de-

scribed as a Shot Noise generator).

Other types of noise. It may be possible to certify more

exotic noise sources and designs, although their stochas-

tic model needs to be equally well understood, and their

CPU interfaces must be secure. See Section 7.6 for a

discussion of Quantum entropy sources.

6.2 Continuous Health Tests

If NIST SP 800-90B certification is required, the en-

tropy source should implement at least the health tests

defined in [53, Section 4.4]: repetition count test and

adaptive proportion test, or show that the same flaws

will be detected by vendor-defined tests.

Health monitoring requires some state information

related to the noise source to be maintained. The tests

should be designed in a way that polling some specific

number of samples guarantees a state flush (no fully

persistent state). We suggest flush size W ≤ 1024 to

match with the NIST SP 800-90B required tests. The

state is also fully zeroized in a system reset.

Rationale: The two mandatory tests can be built with

minimal circuitry. Full histograms are not required, only

simple counter registers: repetition count, window count,

Development of The RISC-V Entropy Source Interface 11

and sample count. The repetition count is reset ev-

ery time the output sample value changes; if the count

reaches a certain cutoff limit, a noise alarm (BIST) or

failure (DEAD) is signaled. The window counter is used

to save every W ’th output (typically W ∈ 512, 1024.)

The frequency of this reference sample in the follow-

ing window is counted; cutoff values are defined in the

standard. We see that the structure of the mandatory

tests is such that, if well implemented, no information

is carried beyond a limit of W samples.

Section 4.5 of [53] suggests additional developer-

defined tests, and several more were defined in earlier

versions of FIPS 140 before being “crossed out.” The

choice of additional tests depends on the nature and

implementation of the physical source.

The AIS 31 [27] online tests can be implemented in

hardware or by driver software. For some security pro-

files, AIS 31 mandates that the tolerances of the tests

are set in a way that the probability of an alarm is at

least 10−6 yearly under “normal usage.” There rarely

is anything that can or should be done about a non-

fatal alarm condition in an operator-free, autonomous

system. However, AIS 31 allows the DRBG component

to keep running despite a failure in its Entropy Source,

so we suggest re-entering temporary BIST state (Sec-

tion 5.3) to signal a non-fatal statistical error if such

(non-actionable) signaling is necessary. Drivers and ap-

plications can react to this appropriately (or simply log

it), but it will not directly affect the availability of the

TRNG. A permanent error condition should result in

DEAD state.

6.3 Non-cryptographic Conditioners

As noted in Section 1.2.2, physical randomness sources

generally require a post-processing step called condi-

tioning to meet the desired quality requirements, which

are outlined in Section 4. For some entropy sources, it

is sufficient to reduce the output (sampling) rate; for

others, it is additionally necessary to apply debiasing

and other non-cryptographic conditioning methods.

The approach taken in this interface is to allow a

combination of non-cryptographic and cryptographic

filtering to take place. The first stage (hardware) merely

needs to be able to distill the entropy comfortably above

the necessary level.

– One may take a set of bits from a noise source and

XOR them together to produce a less biased (and

more independent) bit. However, such an XOR may

introduce “pseudorandomness” and make the out-

put difficult to analyze.

– The von Neumann debiaser [38] looks at consecutive

pairs of bits, rejects 00 and 11, and outputs 0 or 1 for

01 and 10, respectively. It will reduce the number of

bits to less than 25% of the original, but the output

is provably unbiased (assuming independence).

– Blum’s extractor [12] can be used on sources whose

behavior resembles n-state Markov chains. If its as-

sumptions hold, it also removes dependencies, cre-

ating an IID source.

– Other linear and non-linear correctors such as those

discussed by Dichtl and Lacharme [29].

Note that the hardware may also implement a full

cryptographic conditioner in the entropy source, even

though the software driver still needs a cryptographic

conditioner, too (Sect. 4).

Rationale: The main advantage of non-cryptographic

filters is in their energy efficiency, relative simplicity,

and amenability to mathematical analysis. If well de-

signed, they can be evaluated in conjunction with a

stochastic model of the noise source itself. They do not

generally require computational hardness assumptions.

6.4 Cryptographic Conditioners

Cryptographic conditioners are always required on the

software side of the PollEntropy ISA boundary. They

may also be implemented on the hardware side if neces-

sary. In any case, the PollEntropy output must always

be compressed 2:1 (or more) before being used as keying

material or considered “full entropy.”

Examples of cryptographic conditioners include the

random pool of the Linux operating system, secure hash

functions (SHA-2/3, SHAKE [41,40]), and the AES-

based CBC-MAC conditioner [53, Appendix F].

In some constructions, such as the Linux RNG and

SHA-3/SHAKE [41] based generators, the cryptographic

conditioning and output (DRBG) generation is pro-

vided by the same component.

Rationale: For many low-power targets constructions

such as Intel’s [34] and AMD’s [1] hardware AES CBC-

MAC conditioner would be too complex and expensive

to implement solely to serve sentropy. On the other

hand, simpler non-cryptographic conditioners may be

too wasteful on input entropy if a very high-quality

random output is required – ARM TrustZone TRBG [3]

outputs only 10Kbit/sec at 200 MHz. Hence a resource-

saving compromise is made between hardware and soft-

ware generation that allows an implementation to use

the RISC-V cryptographic ISA.

12 Markku-Juhani O. Saarinen et al.

6.5 The Final Random: DRBGs

All random bits reaching end users and applications

must come from a cryptographic DRBG. These are

generally implemented by the driver component. The

RISC-V AES and SHA instruction set extensions [32]

should be used if available as they offer additional se-

curity features such as timing attack resistance.

Currently recommended DRBGs are defined in NIST

SP 800-90A (Rev 1) [7]: CTR_DRBG, Hash_DRBG, and

HMAC_DRBG. Certification often requires known answer

tests (KATs) for the symmetric components and the

DRBG as a whole. In addition to the directly certifi-

able SP 800-90A DRBGs, a Linux-style random pool

construction based on ChaCha20 [36] can be used or

an appropriate construction based on SHAKE256 [41].

These are just recommendations; programmers can

adjust the usage of the CPU Entropy Source to meet

future requirements.

7 Considerations and Case Studies

TRNGs are available in many mainstream CPUs and

mobile devices. This is by no means an exhaustive list.

Intel Secure Key. Intel’s random number interface is

known as “Intel Secure Key” [34] and has been available

via the RDRAND instruction since Ivy Bridge (2012).

A reseeding instruction RDSEED was added for Broad-

well (2014). Internally the Intel solution is based on

a self-oscillating feedback circuit [19], CBC-MAC con-

ditioning, and the CTR DRBG [7] – both built from

AES-128 (newer versions may have AES-256).

AMD. AMD’s interface is compatible with Intel’s but

internally uses 16 ring oscillator chains as a noise source,

CBC-MAC conditioning but a higher-security AES-256

version of CTR DRBG. AMD additionally offers raw

noise output via the TRNG RAW register in its cryp-

tographic coprocessor (CCP) [1].

ARM-based devices. The ARMv8.5-RNG ISA extension

has instructions RNDR (Random Number) and RN-

DRRS (Reseed Random Number) that seem to work

much like RDRAND and RDSEED [4]. These instruc-

tions are new and not very widely available.

More often, ARM devices interface TRNGs via a

bus (e.g., APB) instead of ISA. The TrustZone TRNG

[3] is actually a non-ISA Entropy Source, built from ring

oscillators [9] and a von Neumann debiaser [38] – with-

out a DRBG or other cryptographic components. This

makes the TRNG low-bandwidth but energy efficient.

7.1 A full DRBG in Hardware

“I am so glad I resisted pressure from Intel engi-

neers to let /dev/random rely only on the RDRAND

instruction. Relying solely on an implementation

sealed inside a chip and which is impossible to

audit is a BAD idea.”

–Theodore Ts’o, author of the Linux RNG.4

Our proposal does not prevent RISC-V implementers

from creating full DRBG implementations as (custom)

instructions, just like Intel and ARM does. However, we

can offer some reasons why that may not be as useful

as one might think.

7.2 No Black Boxes

Cryptographers generally don’t want to use hardware

DRBGs directly as it would force them to blindly rely

on hardware. This much more of an issue for a Linux-

profile system than to a security microcontroller where

the hardware and firmware are likely to come from the

same vendor.

If the DRBG is hardwired to the entropy source

and hardware is sourced from a third party, there is

usually no easy way to verify that it is doing what it

is supposed to be doing. As a source of secret keying

material, an RNG is an obvious location for a poten-

tial cryptographic backdoor. It has a large potential

for supply chain attacks such as hardware trojans [10]

and other un-auditable backdoors in the style of NSA’s

Dual_EC_DRBG [14].

However, most operating system kernels and well-

designed cryptographic libraries use (and welcome) a

CPU entropy source as one of the many ingredients

to their “entropy soup.” Hence the DRBGs are usu-

ally ultimately implemented in software anyway – pos-

sibly using cryptographic ISA instructions for speed.

This approach eliminates a single point of vulnerability

in entropy sourcing and allows a higher level of audit

transparency.

7.3 Flexibility

Deterministic hardware DRBGs can become technically

obsolete quickly, and ISA updates are hard. This can

happen due to a standards update or hardcoded design

problems and limitations. Intel’s RDRAND is designed

around AES-128 with forced reseeding only every 512

invocations.

4 September 5, 2013 (after Snowden): https://news.

ycombinator.com/item?id=6336505

Development of The RISC-V Entropy Source Interface 13

There is a simple attack that demonstrates the en-

tropy bottleneck and forward/backward secrecy prob-

lem; if two 128-bit output blocks are known, the secret

key and counter can be recovered with 2128 classical

effort. This, in turn, can be expanded to the entire seg-

ment of secret blocks, revealing up to 512×128 = 65536

bits of keying material with no additional effort. Intel’s

RDRAND generator will, therefore, create a security

bottleneck in applications that are specified to support

“256-bit” security.

For additional entropy (in case of unavailability of

RDSEED), Intel recommends polling 1024 × 64 bits

out of the RDRAND to force a reseed flush and then

reducing the DRBG output back to 128 bits (a pro-

cess with 99.8% redundancy) [34]. Hence users were

recommended to effectively “bypass” the large, expen-

sive DRBG component at the cost of many thousands

of cycles only a few years after its introduction.

7.4 Resource sharing

High-throughput DRBG sharing can be tricky to imple-

ment, as the CrossTalk / SRBDS vulnerability shows

[46]. This vulnerability causes the same random output

bytes to be available simultaneously to multiple cores.

The SRBDS mitigation serializes the entire DRBG op-

eration by locking the (memory) bus for RDRAND calls

and can have a serious performance impact [21]. Of

course, such problems may also occur if an Entropy

Source is shared rather than a DRBG. However, En-

tropy Source interfaces are not designed for through-
put, so more conservative design choices for the sharing

mechanism can be made.

7.5 Area

In a small microcontroller-type RISC-V implementa-

tion, it is difficult to justify the hardware area require-

ment of a full-sized AES or some other cryptographic

algorithm just to provide cryptographic conditioning

or a DRBG output. One would prefer to use that area

for cryptographic instructions that actually increase the

throughput of secure communications (TLS, IPSec), or

storage encryption, in addition to the DRBG compo-

nent. Random number entropy is rarely a performance

bottleneck in cryptographic implementations, so using

a lot of transistors for RNG speed is not compatible

with the quantitative approach usually associated with

RISC CPU design.

7.6 Quantum vs. Classical Random

“The NCSC believes that classical RNGs will con-

tinue to meet our needs for government and mil-

itary applications for the foreseeable future.”

– U.K. QRNG Guidance, March 2020 [37].

A Quantum Random Number Generator (QRNG) is

a TRNG whose source of randomness can be unambigu-

ously identified to be a specific quantum phenomenon

such as quantum state superposition, quantum state en-

tanglement, Heisenberg uncertainty, quantum tunnel-

ing, spontaneous emission, or radioactive decay [22].

Direct quantum entropy is theoretically the best

possible kind of entropy. A typical TRNG based on elec-

tronic noise is also largely based on quantum phenom-

ena and is equally unpredictable - the difference is that

the relative amount of quantum and classical physics

involved is difficult to quantify for a classical TRNG.

QRNGs are designed in a way that allows the amount

of quantum-origin entropy to be modeled and estimated.

This distinction is important in the security model used

by QKD (Quantum Key Distribution) security mecha-

nisms which can be used to protect the physical layer

(such as fiber optic cables) against interception by using

quantum mechanical effects directly.

This security model means that many of the avail-

able QRNG devices do not use cryptographic condition-

ing and may fail cryptographic statistical requirements

[20]. Many implementers may consider them to be en-

tropy sources instead.

Relatively little research has gone into QRNG im-

plementation security, but many QRNG designs are ar-

guably more susceptible to leakage than classical gener-

ators (such as ring oscillators) as they tend to employ

external components and mixed materials. As an ex-

ample, amplification of a photon detector signal may

be observable in power analysis, which classical noise-

based sources are designed to resist.

Post-Quantum Cryptography (PQC). The NIST PQC

public-key cryptography standards [42] do not require

quantum-origin randomness, just sufficiently secure key-

ing material. Recall that cryptography aims to protect

the confidentiality and integrity of data itself and does

not place any requirements on the physical communi-

cation channel (like QKD).

Classical good-quality TRNGs are perfectly suit-

able for generating the secret keys for PQC protocols

that are hard for quantum computers to break but im-

plementable on classical computers. What matters in

cryptography is that the secret keys have enough true

randomness (entropy) and that they are generated and

stored securely.

14 Markku-Juhani O. Saarinen et al.

Of course, one must avoid DRBGs that are based on

problems that are easily solvable with quantum com-

puters, such as factoring [52] in the case of the Blum-

Blum-Shub generator [11]. Most symmetric algorithms

are not affected as the best quantum attacks are still

exponential to key size [16].

As an example, the original Intel RNG [34], whose

output generation is based on AES-128, can be attacked

using Grover’s algorithm with approximately square-

root effort [23]. While even “64-bit” quantum security is

extremely difficult to break, many applications specify

a higher security requirement. NIST [42] defines AES-

128 to be “Category 1” equivalent post-quantum secu-

rity, while AES-256 is “Category 5” (highest). We avoid

this possible future issue by exposing a direct access to

the entropy source, which can derive its security from

information-theoretic assumptions only.

8 Evolution of the Design

Some of the early RISC-V CETG designs (predating

“scalar cryptography” work [32][33]) had many more

states and possibly complex interaction mechanisms,

which were simplified to the bare minimum that could

still meet the stated requirements.

Even though the basic pollentropy interface re-

mains the same as in an early publication [50], there

have been some important changes.

Addition of AIS-31 and Virtual Sources. Early versions

only referenced SP 800-90B requirements (Sect. 4.1),

but AIS-31 requirements (Sect. 4.2) were added after it

became clear that there is still some divergence between

the two sets of rules. Virtual sources were added so

that emulators and virtualization platforms could be

facilitated.

Full Entropy after Conditioning. There has been sig-

nificant changes to the language of the entropy require-

ments, which previously loosely discussed “8 bits per

16-bit word.” The full-entropy requirements in the SP

800-90C draft [8] forced the largest change in this (Sect.

4.1), even though 2:1 conditioning is still used.

No formal IID requirement. Earlier versions of the en-

tropy source interface mandated an IID (independent

and identically distributed) source, but this was dropped

as an unhelpful restriction. If the seed words have suffi-

cient entropy so that 2:1 conditioning yields full entropy

by SP 800-90C definitions, then that alone makes it in-

dependent enough. In other words, one may determine

some partial information about the input entropy (e.g.,

distinguish it from perfect random) but never obtain

most of the entropy of an undisclosed word from other

words. In any case, that leaked information is not help-

ful in guessing anything about the conditioned output,

which is “full entropy”.

Optional S-Mode Access. Another late change was to

reassign mentropy as sentropy so that it can be ac-

cessed from S-mode (and hypervisor HS mode [57]) too

– if additional access conditions in the machine security

configuration register are satisfied.

ENT Scope. An earlier version of this work [50] dis-

cussed a reference implementation that has since gone

through a significant revision. The ESVTS and sepa-

rate entropy scope (Sect. 1.2.1) is a new and welcome

development, which more readily allows vendors to li-

cense approved “readymade” entropy source modules

and connect them to CPU cores within their SoCs.

9 Conclusions

The RISC-V Cryptographic Extensions Task Group is

working to introduce True Random Number Genera-

tor (TRNG) support. The proposed CSRs, instructions,

and the wider TRNG architecture are designed to allow

compliance with FIPS 140-3 and related international

standards such as AIS 31 at high assurance levels while

being extremely lightweight to implement.

The proposal differs from other contemporary TRNG

ISAs in that it is based on a polling paradigm and fo-

cuses on providing Entropy Source (ES) functionality

only. The interface can be used to instantiate a random

number generator of virtually any strength.

We described the PollEntropy instruction and its

basic implementation and entropy requirements. These

definitions are needed so that interoperable drivers can

be implemented – they set the minimum standards that

can be expected from polled randomness.

We further discussed information flows, testing in-

terfaces, monitoring, and implementation aspects in de-

tail, diving into the rationale of various engineering de-

cisions that are required.

We concluded with case studies that contain a brief

overview of generators in current mainline ISAs, com-

mentary on the impact of quantum threat on TRNG

generation. We share the opinion of national security

authorities that on-chip generators are well suited for

the post-quantum cryptography era. A direct ISA inter-

face provides a good level of implementation security,

especially when compared to externally interfaced com-

ponents with a more complex security boundary.

Development of The RISC-V Entropy Source Interface 15

Acknowledgements In addition to anonymous reviewers, we
thank the RISC-V Cryptographic Extensions Task Group for
its input and support, especially Andy Glew, Barry Spin-
ney, Derek Atkins, Ken Dockser, and Nathan Menhorn. Many
other RISC-V community members have helped and provided
feedback and suggestions (but are blameless for our errors);
including Greg Favor, Allen Baum, and Krste Asanović. We
further thank BSI, CMVP/NIST, and CMUF members for
their input on various drafts. This work was supported in part
by Innovate UK (R&D Project Ref.: 105747), and by EPSRC
(Grant No.: EP/R012288/1, under the RISE programme.)

References

1. AMD: AMD random number generator. AMD Tech-
Docs (2017). URL https://www.amd.com/system/files/

TechDocs/amd-random-number-generator.pdf

2. Anderson, R.J.: Security engineering - a guide to building
dependable distributed systems (3. ed.). Wiley (2020).
URL https://www.cl.cam.ac.uk/~rja14/book.html

3. ARM: ARM TrustZone true random number gener-
ator (TRNG): Software integrator’s manual. ARM
101049 0000 00 en (2017). URL https://github.com/

ARM-software/TZ-TRNG/raw/master/trustzone_trng_

software_integrators_manual_101049_0000_00_en.pdf

4. ARM: ARM TrustZone true random number gener-
ator (TRNG): Technical reference manual. ARM
100976 0000 00 en (Second release r0p0 0000-01) (2020).
URL http://infocenter.arm.com/help/index.jsp?topic=

/com.arm.doc.100976_0000_00_en

5. Bak, P.: The devil’s staircase. Phys. Today 39(12), 38–45
(1986). DOI 10.1063/1.881047

6. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L.,
Steel, G., Tsay, J.: Efficient padding oracle attacks on
cryptographic hardware. In: R. Safavi-Naini, R. Canetti
(eds.) Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, Lecture Notes

in Computer Science, vol. 7417, pp. 608–625. Springer
(2012). DOI 10.1007/978-3-642-32009-5\ 36

7. Barker, E., Kelsey, J.: Recommendation for random num-
ber generation using deterministic random bit generators.
NIST Special Publication SP 800-90A Revision 1 (2015).
DOI 10.6028/NIST.SP.800-90Ar1

8. Barker, E., Kelsey, J., Roginsky, A., Turan, M.S., Buller,
D., Kaufer, A.: Recommendation for random bit genera-
tor (RBG) constructions. Draft NIST Special Publication
SP 800-90C (2021)

9. Baudet, M., Lubicz, D., Micolod, J., Tassiaux, A.: On
the security of oscillator-based random number gener-
ators. J. Cryptology 24(2), 398–425 (2011). DOI
10.1007/s00145-010-9089-3

10. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.:
Stealthy dopant-level hardware trojans: extended ver-
sion. J. Cryptographic Engineering 4(1), 19–31 (2014).
DOI 10.1007/s13389-013-0068-0

11. Blum, L., Blum, M., Shub, M.: A simple unpredictable
pseudo-random number generator. SIAM J. Comput.
15(2), 364–383 (1986). DOI 10.1137/0215025

12. Blum, M.: Independent unbiased coin flips from a corre-
lated biased source – a finite state Markov chain. Combi-
natorica 6(2), 97–108 (1986). DOI 10.1007/BF02579167

13. Brown, G.W.: History of RAND’s random digits – sum-
mary. Research Paper P-113, RAND Corporation (1949).
URL https://www.rand.org/pubs/papers/P113.html. Also

appeared in: Monte Carlo Method, Nat. Bur. Stand.,
Appl. Math. Series 12 (1951), pp. 31-32

14. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J.,
Cohney, S., Green, M., Heninger, N., Weinmann, R.,
Rescorla, E., Shacham, H.: Where did I leave my keys?:
lessons from the juniper dual EC incident. Commun.
ACM 61(11), 148–155 (2018). DOI 10.1145/3266291

15. Evtyushkin, D., Ponomarev, D.V.: Covert channels
through random number generator: Mechanisms, ca-
pacity estimation and mitigations. In: E.R. Weippl,
S. Katzenbeisser, C. Kruegel, A.C. Myers, S. Halevi (eds.)
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pp. 843–857. ACM (2016).
DOI 10.1145/2976749.2978374. URL http://dl.acm.org/

citation.cfm?id=2976749

16. Grover, L.K.: A fast quantum mechanical algorithm for
database search. In: Proceedings of the Twenty-eighth
Annual ACM Symposium on Theory of Computing,
STOC ’96, pp. 212–219. ACM (1996). DOI 10.1145/
237814.237866. URL http://arxiv.org/pdf/quant-ph/

9605043

17. Hajimiri, A., Lee, T.H.: A general theory of phase noise in
electrical oscillators. IEEE Journal of Solid-State Circuits
33(2), 179–194 (1998). DOI 10.1109/4.658619

18. Hajimiri, A., Limotyrakis, S., Lee, T.H.: Jitter and
phase noise in ring oscillators. IEEE Journal of Solid-
State Circuits 34(6), 790–804 (1999). DOI 10.1109/
4.766813. URL https://authors.library.caltech.edu/

4916/1/HAJieeejssc99a.pdf

19. Hamburg, M., Kocher, P., Marson, M.E.: Analysis of in-
tel’s ivy bridge digital random number generator. Techni-
cal Report, Cryptography Research (Prepared for Intel)
(2012)

20. Hurley-Smith, D., Hernández-Castro, J.C.: Quantum
leap and crash: Searching and finding bias in quan-
tum random number generators. ACM Transactions
on Privacy and Security 23(3), 1–25 (2020). DOI
10.1145/3403643

21. Intel: SRBDS mitigation impact on intel® secure
key. Intel Developer Zone (2020). URL https:

//software.intel.com/security-software-guidance/

insights/srbds-mitigation-impact-intel-secure-key

22. ITU: Quantum noise random number generator archi-
tecture. Recommendation ITU-T X.1702 (2019). URL
https://www.itu.int/rec/T-REC-X.1702-201911-I/en

23. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Imple-
menting grover oracles for quantum key search on AES
and LowMC. In: A. Canteaut, Y. Ishai (eds.) Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-
14, 2020, Proceedings, Part II, Lecture Notes in Computer
Science, vol. 12106, pp. 280–310. Springer (2020). DOI
10.1007/978-3-030-45724-2\ 10. URL https://arxiv.

org/pdf/1910.01700.pdf

24. Jr., W.B.D., Root, W.L.: An Introduction to the The-
ory of Random Signals and Noise. McGraw-Hill
(1958). URL https://ieeexplore.ieee.org/servlet/

opac?bknumber=5265617

25. Karaklajic, D., Schmidt, J., Verbauwhede, I.: Hardware
designer’s guide to fault attacks. IEEE Trans. Very Large
Scale Integr. Syst. 21(12), 2295–2306 (2013). DOI 10.
1109/TVLSI.2012.2231707

26. Killmann, W., Schindler, W.: A proposal for: Functional-
ity classes and evaluation methodology for true (physical)

16 Markku-Juhani O. Saarinen et al.

random number generators. AIS 31, Version 3.1, En-
glish Translation, BSI (2001). URL https://www.bsi.

bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/

Interpretationen/AIS_31_Functionality_classes_

evaluation_methodology_for_true_RNG_e.html

27. Killmann, W., Schindler, W.: A proposal for: Func-
tionality classes for random number generators. AIS
20 / AIS 31, Version 2.0, English Translation, BSI
(2011). URL https://www.bsi.bund.de/SharedDocs/

Downloads/DE/BSI/Zertifizierung/Interpretationen/

AIS_31_Functionality_classes_for_random_number_

generators_e.html

28. Kossifidis, N., Xie, J., Huffman, B., Baum, A., Favor, G.,
Kurd, T., Arakawa, F.: PMP enhancements for memory
access and execution prevention on machine mode. Ver-
sion 0.9.1 – RISC-V TEE Task Group (2021)

29. Lacharme, P.: Post-processing functions for a biased
physical random number generator. In: K. Nyberg (ed.)
Fast Software Encryption, 15th International Workshop,
FSE 2008, Lausanne, Switzerland, February 10-13, 2008,
Revised Selected Papers, Lecture Notes in Computer Sci-

ence, vol. 5086, pp. 334–342. Springer (2008). DOI
10.1007/978-3-540-71039-4\ 21

30. Liberty, J.S., Barrera, A., Boerstler, D.W., Chadwick,
T.B., Cottier, S.R., Hofstee, H.P., Rosser, J.A., Tsai,
M.L.: True hardware random number generation imple-
mented in the 32-nm SOI POWER7+ processor. IBM J.
Res. Dev. 57(6) (2013). DOI 10.1147/JRD.2013.2279599

31. Markettos, A.T., Moore, S.W.: The frequency injection
attack on ring-oscillator-based true random number gen-
erators. In: C. Clavier, K. Gaj (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland, Septem-
ber 6-9, 2009, Proceedings, Lecture Notes in Computer

Science, vol. 5747, pp. 317–331. Springer (2009). DOI
10.1007/978-3-642-04138-9\ 23

32. Marshall, B. (ed.): RISC-V Cryptographic Extension
Proposals. Volume I: Scalar & Entropy Source Instruc-
tions. RISC-V International (2021). URL https://

github.com/riscv/riscv-crypto

33. Marshall, B., Newell, G.R., Page, D., Saarinen, M.J.O.,
Wolf, C.: The design of scalar AES instruction set exten-
sions for RISC-V. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2021(1), 109–136 (2020). DOI 10.46586/tches.
v2021.i1.109-136

34. Mechalas, J.P.: Intel® digital random number generator
(drng) software implementation guide. Intel Technical
Report, Version 2.1 (2018)

35. Moghimi, D., Sunar, B., Eisenbarth, T., Heninger,
N.: TPM-FAIL: TPM meets timing and lattice at-
tacks. In: 29th USENIX Security Symposium (USENIX
Security 2020), pp. 2057–2073. USENIX Associa-
tion (2020). URL https://www.usenix.org/conference/

usenixsecurity20/presentation/moghimi-tpm

36. Müller, S.: Documentation and analysis of the linux
random number generator, version 3.6. Prepared for
BSI by atsec information security GmbH (2020). URL
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/

Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf

37. NCSC: Quantum security technologies. White pa-
per, Version 1.0. National Cyber Security Centre (UK)
(2020). URL https://www.ncsc.gov.uk/whitepaper/

quantum-security-technologies

38. von Neumann, J.: Various techniques used in connec-
tion with random digits. In: A.S. Householder, G.E.
Forsythe, H.H. Germond (eds.) Monte Carlo Method,
National Bureau of Standards Applied Mathematics Series,

vol. 12, chap. 13, pp. 36–38. US Government Printing Of-
fice, Washington, DC (1951). URL https://mcnp.lanl.

gov/pdf_files/nbs_vonneumann.pdf

39. NIST: Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication FIPS 197
(2001). DOI 10.6028/NIST.FIPS.197

40. NIST: Secure hash standard (SHS). Federal Information
Processing Standards Publication FIPS 180-4 (2015).
DOI 10.6028/NIST.FIPS.180-4

41. NIST: SHA-3 standard: Permutation-based hash and
extendable-output functions. Federal Information Pro-
cessing Standards Publication FIPS 202 (2015). DOI
10.6028/NIST.FIPS.202

42. NIST: Submission requirements and evaluation criteria
for the post-quantum cryptography standardization
process. Official Call for Proposals, National Insti-
tute for Standards and Technology (2016). URL
http://csrc.nist.gov/groups/ST/post-quantum-crypto/

documents/call-for-proposals-final-dec-2016.pdf

43. NIST: Security requirements for cryptographic modules.
Federal Information Processing Standards Publication
FIPS 140-3 (2019). DOI 10.6028/NIST.FIPS.140-3

44. NIST, CCCS: Implementation guidance for FIPS 140-
3 and the cryptographic module validation program.
CMVP (2021). URL https://csrc.nist.gov/CSRC/media/

Projects/cryptographic-module-validation-program/

documents/fips%20140-3/FIPS%20140-3%20IG.pdf

45. NSA/CSS: Commercial national security algorithm suite
(2015). URL https://apps.nsa.gov/iaarchive/programs/

iad-initiatives/cnsa-suite.cfm

46. Ragab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida,
C.: Crosstalk : Speculative data leaks across cores are
real. In: IEEE Symposium on Security & Privacy 2021, p.
To appear. IEEE (2021). URL https://download.vusec.

net/papers/crosstalk_sp21.pdf

47. Rambus: TRNG-ip-76 / EIP-76 family of FIPS approved
true random generators. Commercial Cryptographic
IP data sheet (2020). URL https://www.rambus.

com/security/crypto-accelerator-hardware-cores/

basic-crypto-blocks/trng-ip-76/

48. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.,
Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert,
A., JamesDray, Vo, S.: A statistical test suite for random
and pseudorandom number generators for cryptographic
applications (2010). DOI 10.6028/NIST.SP.800-22r1a

49. Saarinen, M.J.O.: On entropy and bit patterns of ring
oscillator jitter. Preprint (2021). URL https://arxiv.

org/abs/2102.02196

50. Saarinen, M.J.O., Newell, G.R., Marshall, B.: Building a
modern TRNG: An entropy source interface for RISC-V.
In: 4th Workshop on Attacks and Solutions in Hardware
Security (ASHES’20), November 13, 2020, Virtual Event,
USA., pp. 93–102. ACM (2020). DOI 10.1145/3411504.
3421212

51. Salter, J.: How a months-old AMD microcode bug de-
stroyed my weekend. Ars Technica (2019). URL https:

//bit.ly/3yCAczz

52. Shor, P.W.: Algorithms for quantum computation: Dis-
crete logarithms and factoring. In: 35th Annual Sym-
posium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994, pp. 124–134.
IEEE (1994). DOI 10.1109/SFCS.1994.365700. URL
https://arxiv.org/abs/quant-ph/9508027

53. Turan, M.S., Barker, E., Kelsey, J., McKay, K.A.,
Baish, M.L., Boyle, M.: Recommendation for the entropy
sources used for random bit generation. NIST Special

Development of The RISC-V Entropy Source Interface 17

Publication SP 800-90B (2018). DOI 10.6028/NIST.SP.
800-90B

54. Valtchanov, B., Fischer, V., Aubert, A., Bernard, F.:
Characterization of randomness sources in ring oscillator-
based true random number generators in fpgas. In:
E. Gramatová, Z. Kotásek, A. Steininger, H.T. Vier-
haus, H. Zimmermann (eds.) 13th IEEE International
Symposium on Design and Diagnostics of Electronic
Circuits and Systems, DDECS 2010, Vienna, Austria,
April 14-16, 2010, pp. 48–53. IEEE Computer Society
(2010). DOI 10.1109/DDECS.2010.5491819. URL https:

//ieeexplore.ieee.org/xpl/conhome/5484099/proceeding

55. Varchola, M., Drutarovský, M.: New high entropy ele-
ment for FPGA based true random number generators.
In: S. Mangard, F. Standaert (eds.) Cryptographic Hard-
ware and Embedded Systems, CHES 2010, 12th Inter-
national Workshop, Santa Barbara, CA, USA, August
17-20, 2010. Proceedings, Lecture Notes in Computer Sci-
ence, vol. 6225, pp. 351–365. Springer (2010). DOI
10.1007/978-3-642-15031-9\ 24

56. Waterman, A., Asanović, K. (eds.): The RISC-V In-
struction Set Manual, Volume II: Privileged Architec-
ture. RISC-V Foundation (2019). URL https://riscv.

org/specifications/. Document Version 20190608-Priv-
MSU-Ratified

57. Waterman, A., Asanović, K., Hauser, J. (eds.): The
RISC-V Instruction Set Manual, Volume II: Privileged
Architecture. RISC-V Foundation (2021). URL https:

//github.com/riscv/riscv-isa-manual. Document Ver-
sion 1.12-draft

